WorldWideScience

Sample records for global reference models

  1. Mars Global Reference Atmospheric Model 2010 Version: Users Guide

    Science.gov (United States)

    Justh, H. L.

    2014-01-01

    This Technical Memorandum (TM) presents the Mars Global Reference Atmospheric Model 2010 (Mars-GRAM 2010) and its new features. Mars-GRAM is an engineering-level atmospheric model widely used for diverse mission applications. Applications include systems design, performance analysis, and operations planning for aerobraking, entry, descent and landing, and aerocapture. Additionally, this TM includes instructions on obtaining the Mars-GRAM source code and data files as well as running Mars-GRAM. It also contains sample Mars-GRAM input and output files and an example of how to incorporate Mars-GRAM as an atmospheric subroutine in a trajectory code.

  2. A global reference for caesarean section rates (C-Model): a multicountry cross-sectional study.

    Science.gov (United States)

    Souza, J P; Betran, A P; Dumont, A; de Mucio, B; Gibbs Pickens, C M; Deneux-Tharaux, C; Ortiz-Panozo, E; Sullivan, E; Ota, E; Togoobaatar, G; Carroli, G; Knight, H; Zhang, J; Cecatti, J G; Vogel, J P; Jayaratne, K; Leal, M C; Gissler, M; Morisaki, N; Lack, N; Oladapo, O T; Tunçalp, Ö; Lumbiganon, P; Mori, R; Quintana, S; Costa Passos, A D; Marcolin, A C; Zongo, A; Blondel, B; Hernández, B; Hogue, C J; Prunet, C; Landman, C; Ochir, C; Cuesta, C; Pileggi-Castro, C; Walker, D; Alves, D; Abalos, E; Moises, Ecd; Vieira, E M; Duarte, G; Perdona, G; Gurol-Urganci, I; Takahiko, K; Moscovici, L; Campodonico, L; Oliveira-Ciabati, L; Laopaiboon, M; Danansuriya, M; Nakamura-Pereira, M; Costa, M L; Torloni, M R; Kramer, M R; Borges, P; Olkhanud, P B; Pérez-Cuevas, R; Agampodi, S B; Mittal, S; Serruya, S; Bataglia, V; Li, Z; Temmerman, M; Gülmezoglu, A M

    2016-02-01

    To generate a global reference for caesarean section (CS) rates at health facilities. Cross-sectional study. Health facilities from 43 countries. Thirty eight thousand three hundred and twenty-four women giving birth from 22 countries for model building and 10,045,875 women giving birth from 43 countries for model testing. We hypothesised that mathematical models could determine the relationship between clinical-obstetric characteristics and CS. These models generated probabilities of CS that could be compared with the observed CS rates. We devised a three-step approach to generate the global benchmark of CS rates at health facilities: creation of a multi-country reference population, building mathematical models, and testing these models. Area under the ROC curves, diagnostic odds ratio, expected CS rate, observed CS rate. According to the different versions of the model, areas under the ROC curves suggested a good discriminatory capacity of C-Model, with summary estimates ranging from 0.832 to 0.844. The C-Model was able to generate expected CS rates adjusted for the case-mix of the obstetric population. We have also prepared an e-calculator to facilitate use of C-Model (www.who.int/reproductivehealth/publications/maternal_perinatal_health/c-model/en/). This article describes the development of a global reference for CS rates. Based on maternal characteristics, this tool was able to generate an individualised expected CS rate for health facilities or groups of health facilities. With C-Model, obstetric teams, health system managers, health facilities, health insurance companies, and governments can produce a customised reference CS rate for assessing use (and overuse) of CS. The C-Model provides a customized benchmark for caesarean section rates in health facilities and systems. © 2015 World Health Organization; licensed by John Wiley & Sons Ltd on behalf of Royal College of Obstetricians and Gynaecologists.

  3. A new birthweight reference in Guangzhou, southern China, and its comparison with the global reference.

    Science.gov (United States)

    He, Jian-Rong; Xia, Hui-Min; Liu, Yu; Xia, Xiao-Yan; Mo, Wei-Jian; Wang, Ping; Cheng, Kar Keung; Leung, Gabriel M; Feng, Qiong; Schooling, C Mary; Qiu, Xiu

    2014-12-01

    To formulate a new birthweight reference for different gestational ages in Guangzhou, southern China, and compare it with the currently used reference in China and the global reference. All singleton live births of more than 26 weeks' gestational age recorded in the Guangzhou Perinatal Health Care and Delivery Surveillance System for the years 2009, 2010 and 2011 (n=510 837) were retrospectively included in the study. In addition, the study sample was supplemented by all singleton live births (n=3538) at gestational ages 26-33 weeks from 2007 and 2008. We used Gaussian mixture models and robust regression to exclude outliers of birth weight and then applied Generalized Additive Models for Location, Scale, and Shape (GAMLSS) to generate smoothed percentile curves separately for gender and parity. Of infants defined as small for gestational age (SGA) in the new reference, 15.3-47.7% (depending on gestational age) were considered appropriate for gestational age (AGA) by the currently used reference of China. Of the infants defined as SGA by the new reference, 9.2% with gestational ages 34-36 weeks and 14.3% with 37-41 weeks were considered AGA by the global reference. At the 50th centile line, the new reference curve was similar to that of the global reference for gestational ages 26-33 weeks and above the global reference for 34-40 weeks. The new birthweight reference based on birthweight data for neonates in Guangzhou, China, differs from the reference currently used in China and the global reference, and appears to be more relevant to the local population. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Global cross-station assessment of neuro-fuzzy models for estimating daily reference evapotranspiration

    Science.gov (United States)

    Shiri, Jalal; Nazemi, Amir Hossein; Sadraddini, Ali Ashraf; Landeras, Gorka; Kisi, Ozgur; Fard, Ahmad Fakheri; Marti, Pau

    2013-02-01

    SummaryAccurate estimation of reference evapotranspiration is important for irrigation scheduling, water resources management and planning and other agricultural water management issues. In the present paper, the capabilities of generalized neuro-fuzzy models were evaluated for estimating reference evapotranspiration using two separate sets of weather data from humid and non-humid regions of Spain and Iran. In this way, the data from some weather stations in the Basque Country and Valencia region (Spain) were used for training the neuro-fuzzy models [in humid and non-humid regions, respectively] and subsequently, the data from these regions were pooled to evaluate the generalization capability of a general neuro-fuzzy model in humid and non-humid regions. The developed models were tested in stations of Iran, located in humid and non-humid regions. The obtained results showed the capabilities of generalized neuro-fuzzy model in estimating reference evapotranspiration in different climatic zones. Global GNF models calibrated using both non-humid and humid data were found to successfully estimate ET0 in both non-humid and humid regions of Iran (the lowest MAE values are about 0.23 mm for non-humid Iranian regions and 0.12 mm for humid regions). non-humid GNF models calibrated using non-humid data performed much better than the humid GNF models calibrated using humid data in non-humid region while the humid GNF model gave better estimates in humid region.

  5. Global Reference Tables Services Architecture

    Data.gov (United States)

    Social Security Administration — This database stores the reference and transactional data used to provide a data-driven service access method to certain Global Reference Table (GRT) service tables.

  6. The assessment of the transformation of global tectonic plate models and the global terrestrial reference frames using the Velocity Decomposition Analysis

    Science.gov (United States)

    Ampatzidis, Dimitrios; König, Rolf; Glaser, Susanne; Heinkelmann, Robert; Schuh, Harald; Flechtner, Frank; Nilsson, Tobias

    2016-04-01

    The aim of our study is to assess the classical Helmert similarity transformation using the Velocity Decomposition Analysis (VEDA). The VEDA is a new methodology, developed by GFZ for the assessment of the reference frames' temporal variation and it is based on the separation of the velocities into two specified parts: The first is related to the reference system choice (the so called datum effect) and the latter one which refers to the real deformation of the terrestrial points. The advantage of the VEDA is its ability to detect the relative biases and reference system effects between two different frames or two different realizations of the same frame, respectively. We apply the VEDA for the assessment between several modern tectonic plate models and the recent global terrestrial reference frames.

  7. New global ICT-based business models

    DEFF Research Database (Denmark)

    The New Global Business model (NEWGIBM) book describes the background, theory references, case studies, results and learning imparted by the NEWGIBM project, which is supported by ICT, to a research group during the period from 2005-2011. The book is a result of the efforts and the collaborative ...... The NEWGIBM Cases Show? The Strategy Concept in Light of the Increased Importance of Innovative Business Models Successful Implementation of Global BM Innovation Globalisation Of ICT Based Business Models: Today And In 2020......The New Global Business model (NEWGIBM) book describes the background, theory references, case studies, results and learning imparted by the NEWGIBM project, which is supported by ICT, to a research group during the period from 2005-2011. The book is a result of the efforts and the collaborative....... The NEWGIBM book serves as a part of the final evaluation and documentation of the NEWGIBM project and is supported by results from the following projects: M-commerce, Global Innovation, Global Ebusiness & M-commerce, The Blue Ocean project, International Center for Innovation and Women in Business, NEFFICS...

  8. Astronomical relativistic reference systems with multipolar expansion: the global one

    International Nuclear Information System (INIS)

    Xie Yi

    2014-01-01

    With the rapid development of techniques for astronomical observations, the precision of measurements has been significantly increasing. Theories describing astronomical relativistic reference systems, which are the foundation for processing and interpreting these data now and in the future, may require extensions to satisfy the needs of these trends. Besides building a framework compatible with alternative theories of gravity and the pursuit of higher order post-Newtonian approximation, it will also be necessary to make the first order post-Newtonian multipole moments of celestial bodies be explicitly expressed in the astronomical relativistic reference systems. This will bring some convenience into modeling the observations and experiments and make it easier to distinguish different contributions in measurements. As a first step, the global solar system reference system is expressed as a multipolar expansion and the post-Newtonian mass and spin moments are shown explicitly in the metric which describes the coordinates of the system. The full expression of the global metric is given. (research papers)

  9. A Global Moving Hotspot Reference Frame: How well it fits?

    Science.gov (United States)

    Doubrovine, P. V.; Steinberger, B.; Torsvik, T. H.

    2010-12-01

    Since the early 1970s, when Jason Morgan proposed that hotspot tracks record motion of lithosphere over deep-seated mantle plumes, the concept of fixed hotspots has dominated the way we think about absolute plate reconstructions. In the last decade, with compelling evidence for southward drift of the Hawaiian hotspot from paleomagnetic studies, and for the relative motion between the Pacific and Indo-Atlantic hotspots from refined plate circuit reconstructions, the perception changed and a global moving hotspot reference frame (GMHRF) was introduced, in which numerical models of mantle convection and advection of plume conduits in the mantle flow were used to estimate hotspot motion. This reference frame showed qualitatively better performance in fitting hotspot tracks globally, but the error analysis and formal estimates of the goodness of fitted rotations were lacking in this model. Here we present a new generation of the GMHRF, in which updated plate circuit reconstructions and radiometric age data from the hotspot tracks were combined with numerical models of plume motion, and uncertainties of absolute plate rotations were estimated through spherical regression analysis. The overall quality of fit was evaluated using a formal statistical test, by comparing misfits produced by the model with uncertainties assigned to the data. Alternative plate circuit models linking the Pacific plate to the plates of Indo-Atlantic hemisphere were tested and compared to the fixed hotspot models with identical error budgets. Our results show that, with an appropriate choice of the Pacific plate circuit, it is possible to reconcile relative plate motions and modeled motions of mantle plumes globally back to Late Cretaceous time (80 Ma). In contrast, all fixed hotspot models failed to produce acceptable fits for Paleogene to Late Cretaceous time (30-80 Ma), highlighting significance of relative motion between the Pacific and Indo-Atlantic hotspots during this interval. The

  10. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John

    2017-01-01

    of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  11. The Global Flood Model

    Science.gov (United States)

    Williams, P.; Huddelston, M.; Michel, G.; Thompson, S.; Heynert, K.; Pickering, C.; Abbott Donnelly, I.; Fewtrell, T.; Galy, H.; Sperna Weiland, F.; Winsemius, H.; Weerts, A.; Nixon, S.; Davies, P.; Schiferli, D.

    2012-04-01

    Recently, a Global Flood Model (GFM) initiative has been proposed by Willis, UK Met Office, Esri, Deltares and IBM. The idea is to create a global community platform that enables better understanding of the complexities of flood risk assessment to better support the decisions, education and communication needed to mitigate flood risk. The GFM will provide tools for assessing the risk of floods, for devising mitigation strategies such as land-use changes and infrastructure improvements, and for enabling effective pre- and post-flood event response. The GFM combines humanitarian and commercial motives. It will benefit: - The public, seeking to preserve personal safety and property; - State and local governments, seeking to safeguard economic activity, and improve resilience; - NGOs, similarly seeking to respond proactively to flood events; - The insurance sector, seeking to understand and price flood risk; - Large corporations, seeking to protect global operations and supply chains. The GFM is an integrated and transparent set of modules, each composed of models and data. For each module, there are two core elements: a live "reference version" (a worked example) and a framework of specifications, which will allow development of alternative versions. In the future, users will be able to work with the reference version or substitute their own models and data. If these meet the specification for the relevant module, they will interoperate with the rest of the GFM. Some "crowd-sourced" modules could even be accredited and published to the wider GFM community. Our intent is to build on existing public, private and academic work, improve local adoption, and stimulate the development of multiple - but compatible - alternatives, so strengthening mankind's ability to manage flood impacts. The GFM is being developed and managed by a non-profit organization created for the purpose. The business model will be inspired from open source software (eg Linux): - for non-profit usage

  12. The Global Tsunami Model (GTM)

    Science.gov (United States)

    Lorito, S.; Basili, R.; Harbitz, C. B.; Løvholt, F.; Polet, J.; Thio, H. K.

    2017-12-01

    The tsunamis occurred worldwide in the last two decades have highlighted the need for a thorough understanding of the risk posed by relatively infrequent but often disastrous tsunamis and the importance of a comprehensive and consistent methodology for quantifying the hazard. In the last few years, several methods for probabilistic tsunami hazard analysis have been developed and applied to different parts of the world. In an effort to coordinate and streamline these activities and make progress towards implementing the Sendai Framework of Disaster Risk Reduction (SFDRR) we have initiated a Global Tsunami Model (GTM) working group with the aim of i) enhancing our understanding of tsunami hazard and risk on a global scale and developing standards and guidelines for it, ii) providing a portfolio of validated tools for probabilistic tsunami hazard and risk assessment at a range of scales, and iii) developing a global tsunami hazard reference model. This GTM initiative has grown out of the tsunami component of the Global Assessment of Risk (GAR15), which has resulted in an initial global model of probabilistic tsunami hazard and risk. Started as an informal gathering of scientists interested in advancing tsunami hazard analysis, the GTM is currently in the process of being formalized through letters of interest from participating institutions. The initiative has now been endorsed by the United Nations International Strategy for Disaster Reduction (UNISDR) and the World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR). We will provide an update on the state of the project and the overall technical framework, and discuss the technical issues that are currently being addressed, including earthquake source recurrence models, the use of aleatory variability and epistemic uncertainty, and preliminary results for a probabilistic global hazard assessment, which is an update of the model included in UNISDR GAR15.

  13. Updated Reference Model for Heat Generation in the Lithosphere

    Science.gov (United States)

    Wipperfurth, S. A.; Sramek, O.; Roskovec, B.; Mantovani, F.; McDonough, W. F.

    2017-12-01

    Models integrating geophysics and geochemistry allow for characterization of the Earth's heat budget and geochemical evolution. Global lithospheric geophysical models are now constrained by surface and body wave data and are classified into several unique tectonic types. Global lithospheric geochemical models have evolved from petrological characterization of layers to a combination of petrologic and seismic constraints. Because of these advances regarding our knowledge of the lithosphere, it is necessary to create an updated chemical and physical reference model. We are developing a global lithospheric reference model based on LITHO1.0 (segmented into 1°lon x 1°lat x 9-layers) and seismological-geochemical relationships. Uncertainty assignments and correlations are assessed for its physical attributes, including layer thickness, Vp and Vs, and density. This approach yields uncertainties for the masses of the crust and lithospheric mantle. Heat producing element abundances (HPE: U, Th, and K) are ascribed to each volume element. These chemical attributes are based upon the composition of subducting sediment (sediment layers), composition of surface rocks (upper crust), a combination of petrologic and seismic correlations (middle and lower crust), and a compilation of xenolith data (lithospheric mantle). The HPE abundances are correlated within each voxel, but not vertically between layers. Efforts to provide correlation of abundances horizontally between each voxel are discussed. These models are used further to critically evaluate the bulk lithosphere heat production in the continents and the oceans. Cross-checks between our model and results from: 1) heat flux (Artemieva, 2006; Davies, 2013; Cammarano and Guerri, 2017), 2) gravity (Reguzzoni and Sampietro, 2015), and 3) geochemical and petrological models (Rudnick and Gao, 2014; Hacker et al. 2015) are performed.

  14. A global reference model of Moho depths based on WGM2012

    Science.gov (United States)

    Zhou, D.; Li, C.

    2017-12-01

    The crust-mantle boundary (Moho discontinuity) represents the largest density contrast in the lithosphere, which can be detected by Bouguer gravity anomaly. We present our recent inversion of global Moho depths from World Gravity Map 2012. Because oceanic lithospheres increase in density as they cool, we perform thermal correction based on the plate cooling model. We adopt a temperature Tm=1300°C at the bottom of lithosphere. The plate thickness is tested by varying by 5 km from 90 to 140 km, and taken as 130 km that gives a best-fit crustal thickness constrained by seismic crustal thickness profiles. We obtain the residual Bouguer gravity anomalies by subtracting the thermal correction from WGM2012, and then estimate Moho depths based on the Parker-Oldenburg algorithm. Taking the global model Crust1.0 as a priori constraint, we adopt Moho density contrasts of 0.43 and 0.4 g/cm3 , and initial mean Moho depths of 37 and 20 km in the continental and oceanic domains, respectively. The number of iterations in the inversion is set to be 150, which is large enough to obtain an error lower than a pre-assigned convergence criterion. The estimated Moho depths range between 0 76 km, and are averaged at 36 and 15 km in continental and oceanic domain, respectively. Our results correlate very well with Crust1.0 with differences mostly within ±5.0 km. Compared to the low resolution of Crust1.0 in oceanic domain, our results have a much larger depth range reflecting diverse structures such as ridges, seamounts, volcanic chains and subduction zones. Base on this model, we find that young(95mm/yr) we observe relatively thicker crust. Conductive cooling of lithosphere may constrain the melting of the mantle at ultraslow spreading centers. Lower mantle temperatures indicated by deeper Curie depths at slow and fast spreading ridges may decrease the volume of magmatism and crustal thickness. This new global model of gravity-derived Moho depth, combined with geochemical and Curie

  15. A frequency domain global parameter estimation method for multiple reference frequency response measurements

    Science.gov (United States)

    Shih, C. Y.; Tsuei, Y. G.; Allemang, R. J.; Brown, D. L.

    1988-10-01

    A method of using the matrix Auto-Regressive Moving Average (ARMA) model in the Laplace domain for multiple-reference global parameter identification is presented. This method is particularly applicable to the area of modal analysis where high modal density exists. The method is also applicable when multiple reference frequency response functions are used to characterise linear systems. In order to facilitate the mathematical solution, the Forsythe orthogonal polynomial is used to reduce the ill-conditioning of the formulated equations and to decouple the normal matrix into two reduced matrix blocks. A Complex Mode Indicator Function (CMIF) is introduced, which can be used to determine the proper order of the rational polynomials.

  16. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study

    Directory of Open Access Journals (Sweden)

    F. C. Sperna Weiland

    2012-03-01

    Full Text Available Potential evaporation (PET is one of the main inputs of hydrological models. Yet, there is limited consensus on which PET equation is most applicable in hydrological climate impact assessments. In this study six different methods to derive global scale reference PET daily time series from Climate Forecast System Reanalysis (CFSR data are compared: Penman-Monteith, Priestley-Taylor and original and re-calibrated versions of the Hargreaves and Blaney-Criddle method. The calculated PET time series are (1 evaluated against global monthly Penman-Monteith PET time series calculated from CRU data and (2 tested on their usability for modeling of global discharge cycles.

    A major finding is that for part of the investigated basins the selection of a PET method may have only a minor influence on the resulting river flow. Within the hydrological model used in this study the bias related to the PET method tends to decrease while going from PET, AET and runoff to discharge calculations. However, the performance of individual PET methods appears to be spatially variable, which stresses the necessity to select the most accurate and spatially stable PET method. The lowest root mean squared differences and the least significant deviations (95% significance level between monthly CFSR derived PET time series and CRU derived PET were obtained for a cell-specific re-calibrated Blaney-Criddle equation. However, results show that this re-calibrated form is likely to be unstable under changing climate conditions and less reliable for the calculation of daily time series. Although often recommended, the Penman-Monteith equation applied to the CFSR data did not outperform the other methods in a evaluation against PET derived with the Penman-Monteith equation from CRU data. In arid regions (e.g. Sahara, central Australia, US deserts, the equation resulted in relatively low PET values and, consequently, led to relatively high discharge values for dry basins (e

  17. A global reference model of Curie-point depths based on EMAG2

    Science.gov (United States)

    Li, Chun-Feng; Lu, Yu; Wang, Jian

    2017-03-01

    In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.

  18. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong

    2017-11-28

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture the spatial and temporal behavior of these global data sets. Though the geodesic distance is the most natural metric for measuring distance on the surface of a sphere, mathematical limitations have compelled statisticians to use the chordal distance to compute the covariance matrix in many applications instead, which may cause physically unrealistic distortions. Therefore, covariance functions directly defined on a sphere using the geodesic distance are needed. We discuss the issues that arise when dealing with spherical data sets on a global scale and provide references to recent literature. We review the current approaches to building process models on spheres, including the differential operator, the stochastic partial differential equation, the kernel convolution, and the deformation approaches. We illustrate realizations obtained from Gaussian processes with different covariance structures and the use of isotropic and nonstationary covariance models through deformations and geographical indicators for global surface temperature data. To assess the suitability of each method, we compare their log-likelihood values and prediction scores, and we end with a discussion of related research problems.

  19. Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians.

    Science.gov (United States)

    Stanojevic, Sanja; Graham, Brian L; Cooper, Brendan G; Thompson, Bruce R; Carter, Kim W; Francis, Richard W; Hall, Graham L

    2017-09-01

    There are numerous reference equations available for the single-breath transfer factor of the lung for carbon monoxide ( T  LCO ); however, it is not always clear which reference set should be used in clinical practice. The aim of the study was to develop the Global Lung Function Initiative (GLI) all-age reference values for T  LCO Data from 19 centres in 14 countries were collected to define T  LCO reference values. Similar to the GLI spirometry project, reference values were derived using the LMS (lambda, mu, sigma) method and the GAMLSS (generalised additive models for location, scale and shape) programme in R.12 660 T  LCO measurements from asymptomatic, lifetime nonsmokers were submitted; 85% of the submitted data were from Caucasians. All data were uncorrected for haemoglobin concentration. Following adjustments for elevation above sea level, gas concentration and assumptions used for calculating the anatomic dead space volume, there was a high degree of overlap between the datasets. Reference values for Caucasians aged 5-85 years were derived for T  LCO , transfer coefficient of the lung for carbon monoxide and alveolar volume.This is the largest collection of normative T  LCO data, and the first global reference values available for T  LCO . Copyright ©ERS 2017.

  20. Global thermal models of the lithosphere

    Science.gov (United States)

    Cammarano, F.; Guerri, M.

    2017-12-01

    Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations

  1. Statistical considerations for harmonization of the global multicenter study on reference values.

    Science.gov (United States)

    Ichihara, Kiyoshi

    2014-05-15

    The global multicenter study on reference values coordinated by the Committee on Reference Intervals and Decision Limits (C-RIDL) of the IFCC was launched in December 2011, targeting 45 commonly tested analytes with the following objectives: 1) to derive reference intervals (RIs) country by country using a common protocol, and 2) to explore regionality/ethnicity of reference values by aligning test results among the countries. To achieve these objectives, it is crucial to harmonize 1) the protocol for recruitment and sampling, 2) statistical procedures for deriving the RI, and 3) test results through measurement of a panel of sera in common. For harmonized recruitment, very lenient inclusion/exclusion criteria were adopted in view of differences in interpretation of what constitutes healthiness by different cultures and investigators. This policy may require secondary exclusion of individuals according to the standard of each country at the time of deriving RIs. An iterative optimization procedure, called the latent abnormal values exclusion (LAVE) method, can be applied to automate the process of refining the choice of reference individuals. For global comparison of reference values, test results must be harmonized, based on the among-country, pair-wise linear relationships of test values for the panel. Traceability of reference values can be ensured based on values assigned indirectly to the panel through collaborative measurement of certified reference materials. The validity of the adopted strategies is discussed in this article, based on interim results obtained to date from five countries. Special considerations are made for dissociation of RIs by parametric and nonparametric methods and between-country difference in the effect of body mass index on reference values. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  3. Common lines modeling for reference free Ab-initio reconstruction in cryo-EM.

    Science.gov (United States)

    Greenberg, Ido; Shkolnisky, Yoel

    2017-11-01

    We consider the problem of estimating an unbiased and reference-free ab initio model for non-symmetric molecules from images generated by single-particle cryo-electron microscopy. The proposed algorithm finds the globally optimal assignment of orientations that simultaneously respects all common lines between all images. The contribution of each common line to the estimated orientations is weighted according to a statistical model for common lines' detection errors. The key property of the proposed algorithm is that it finds the global optimum for the orientations given the common lines. In particular, any local optima in the common lines energy landscape do not affect the proposed algorithm. As a result, it is applicable to thousands of images at once, very robust to noise, completely reference free, and not biased towards any initial model. A byproduct of the algorithm is a set of measures that allow to asses the reliability of the obtained ab initio model. We demonstrate the algorithm using class averages from two experimental data sets, resulting in ab initio models with resolutions of 20Å or better, even from class averages consisting of as few as three raw images per class. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A global vertical reference frame based on four regional vertical datums

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 493-502 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotentinal * local vertical datums * global vertical reference frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.447, year: 2004

  5. Global GPS Ionospheric Modelling Using Spherical Harmonic Expansion Approach

    Directory of Open Access Journals (Sweden)

    Byung-Kyu Choi

    2010-12-01

    Full Text Available In this study, we developed a global ionosphere model based on measurements from a worldwide network of global positioning system (GPS. The total number of the international GPS reference stations for development of ionospheric model is about 100 and the spherical harmonic expansion approach as a mathematical method was used. In order to produce the ionospheric total electron content (TEC based on grid form, we defined spatial resolution of 2.0 degree and 5.0 degree in latitude and longitude, respectively. Two-dimensional TEC maps were constructed within the interval of one hour, and have a high temporal resolution compared to global ionosphere maps which are produced by several analysis centers. As a result, we could detect the sudden increase of TEC by processing GPS observables on 29 October, 2003 when the massive solar flare took place.

  6. A new reference global instrumental earthquake catalogue (1900-2009)

    Science.gov (United States)

    Di Giacomo, D.; Engdahl, B.; Bondar, I.; Storchak, D. A.; Villasenor, A.; Bormann, P.; Lee, W.; Dando, B.; Harris, J.

    2011-12-01

    For seismic hazard studies on a global and/or regional scale, accurate knowledge of the spatial distribution of seismicity, the magnitude-frequency relation and the maximum magnitudes is of fundamental importance. However, such information is normally not homogeneous (or not available) for the various seismically active regions of the Earth. To achieve the GEM objectives (www.globalquakemodel.org) of calculating and communicating earthquake risk worldwide, an improved reference global instrumental catalogue for large earthquakes spanning the entire 100+ years period of instrumental seismology is an absolute necessity. To accomplish this task, we apply the most up-to-date techniques and standard observatory practices for computing the earthquake location and magnitude. In particular, the re-location procedure benefits both from the depth determination according to Engdahl and Villaseñor (2002), and the advanced technique recently implemented at the ISC (Bondár and Storchak, 2011) to account for correlated error structure. With regard to magnitude, starting from the re-located hypocenters, the classical surface and body-wave magnitudes are determined following the new IASPEI standards and by using amplitude-period data of phases collected from historical station bulletins (up to 1970), which were not available in digital format before the beginning of this work. Finally, the catalogue will provide moment magnitude values (including uncertainty) for each seismic event via seismic moment, via surface wave magnitude or via other magnitude types using empirical relationships. References Engdahl, E.R., and A. Villaseñor (2002). Global seismicity: 1900-1999. In: International Handbook of Earthquake and Engineering Seismology, eds. W.H.K. Lee, H. Kanamori, J.C. Jennings, and C. Kisslinger, Part A, 665-690, Academic Press, San Diego. Bondár, I., and D. Storchak (2011). Improved location procedures at the International Seismological Centre, Geophys. J. Int., doi:10.1111/j

  7. A global multicenter study on reference values: 1. Assessment of methods for derivation and comparison of reference intervals.

    Science.gov (United States)

    Ichihara, Kiyoshi; Ozarda, Yesim; Barth, Julian H; Klee, George; Qiu, Ling; Erasmus, Rajiv; Borai, Anwar; Evgina, Svetlana; Ashavaid, Tester; Khan, Dilshad; Schreier, Laura; Rolle, Reynan; Shimizu, Yoshihisa; Kimura, Shogo; Kawano, Reo; Armbruster, David; Mori, Kazuo; Yadav, Binod K

    2017-04-01

    The IFCC Committee on Reference Intervals and Decision Limits coordinated a global multicenter study on reference values (RVs) to explore rational and harmonizable procedures for derivation of reference intervals (RIs) and investigate the feasibility of sharing RIs through evaluation of sources of variation of RVs on a global scale. For the common protocol, rather lenient criteria for reference individuals were adopted to facilitate harmonized recruitment with planned use of the latent abnormal values exclusion (LAVE) method. As of July 2015, 12 countries had completed their study with total recruitment of 13,386 healthy adults. 25 analytes were measured chemically and 25 immunologically. A serum panel with assigned values was measured by all laboratories. RIs were derived by parametric and nonparametric methods. The effect of LAVE methods is prominent in analytes which reflect nutritional status, inflammation and muscular exertion, indicating that inappropriate results are frequent in any country. The validity of the parametric method was confirmed by the presence of analyte-specific distribution patterns and successful Gaussian transformation using the modified Box-Cox formula in all countries. After successful alignment of RVs based on the panel test results, nearly half the analytes showed variable degrees of between-country differences. This finding, however, requires confirmation after adjusting for BMI and other sources of variation. The results are reported in the second part of this paper. The collaborative study enabled us to evaluate rational methods for deriving RIs and comparing the RVs based on real-world datasets obtained in a harmonized manner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  8. A satellite-based global landslide model

    Directory of Open Access Journals (Sweden)

    A. Farahmand

    2013-05-01

    Full Text Available Landslides are devastating phenomena that cause huge damage around the world. This paper presents a quasi-global landslide model derived using satellite precipitation data, land-use land cover maps, and 250 m topography information. This suggested landslide model is based on the Support Vector Machines (SVM, a machine learning algorithm. The National Aeronautics and Space Administration (NASA Goddard Space Flight Center (GSFC landslide inventory data is used as observations and reference data. In all, 70% of the data are used for model development and training, whereas 30% are used for validation and verification. The results of 100 random subsamples of available landslide observations revealed that the suggested landslide model can predict historical landslides reliably. The average error of 100 iterations of landslide prediction is estimated to be approximately 7%, while approximately 2% false landslide events are observed.

  9. Collaborative networks: Reference modeling

    NARCIS (Netherlands)

    Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Collaborative Networks: Reference Modeling works to establish a theoretical foundation for Collaborative Networks. Particular emphasis is put on modeling multiple facets of collaborative networks and establishing a comprehensive modeling framework that captures and structures diverse perspectives of

  10. Reference methods and materials. A programme of support for regional and global marine pollution assessments

    International Nuclear Information System (INIS)

    1990-01-01

    This document describes a programme of comprehensive support for regional and global marine pollution assessments developed by the United Nations Environment Programme (UNEP) in cooperation with the International Atomic Energy Agency (IAEA) and the Intergovernmental Oceanographic Commission (IOC) and with the collaboration of a number of other United Nations Specialized agencies including the Food and Agriculture Organisation (FAO), the World Meteorological Organisation (WMO), the World Health Organisation (WHO) and the International Maritime Organisation (IMO). Two of the principle components of this programme, Reference Methods and Reference materials are given special attention in this document and a full Reference Method catalogue is included, giving details of over 80 methods currently available or in an advanced stage of preparation and testing. It is important that these methods are seen as a functional component of a much wider strategy necessary for assuring good quality and intercomparable data for regional and global pollution monitoring and the user is encouraged to read this document carefully before employing Reference Methods and Reference Materials in his/her laboratory. 3 figs

  11. The global rock art database: developing a rock art reference model for the RADB system using the CIDOC CRM and Australian heritage examples

    Science.gov (United States)

    Haubt, R. A.

    2015-08-01

    The Rock Art Database (RADB) is a virtual organisation that aims to build a global rock art community. It brings together rock art enthusiasts and professionals from around the world in one centralized location through the deployed publicly available RADB Management System. This online platform allows users to share, manage and discuss rock art information and offers a new look at rock art data through the use of new technologies in rich media formats. Full access to the growing platform is currently only available for a selected group of users but it already links over 200 rock art projects around the globe. This paper forms a part of the larger Rock Art Database (RADB) project. It discusses the design stage of the RADB System and the development of a conceptual RADB Reference Model (RARM) that is used to inform the design of the Rock Art Database Management System. It examines the success and failure of international and national systems and uses the Australian heritage sector and Australian rock art as a test model to develop a method for the RADB System design. The system aims to help improve rock art management by introducing the CIDOC CRM in conjunction with a rock art specific domain model. It seeks to improve data compatibility and data sharing to help with the integration of a variety of resources to create the global Rock Art Database Management System.

  12. The Open Global Glacier Model

    Science.gov (United States)

    Marzeion, B.; Maussion, F.

    2017-12-01

    Mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Notable examples from the ice sheet community include the Parallel Ice Sheet Model or Elmer/Ice. While the atmospheric modeling community has a long tradition of sharing models (e.g. the Weather Research and Forecasting model) or comparing them (e.g. the Coupled Model Intercomparison Project or CMIP), recent initiatives originating from the glaciological community show a new willingness to better coordinate global research efforts following the CMIP example (e.g. the Glacier Model Intercomparison Project or the Glacier Ice Thickness Estimation Working Group). In the recent past, great advances have been made in the global availability of data and methods relevant for glacier modeling, spanning glacier outlines, automatized glacier centerline identification, bed rock inversion methods, and global topographic data sets. Taken together, these advances now allow the ice dynamics of glaciers to be modeled on a global scale, provided that adequate modeling platforms are available. Here, we present the Open Global Glacier Model (OGGM), developed to provide a global scale, modular, and open source numerical model framework for consistently simulating past and future global scale glacier change. Global not only in the sense of leading to meaningful results for all glaciers combined, but also for any small ensemble of glaciers, e.g. at the headwater catchment scale. Modular to allow combinations of different approaches to the representation of ice flow and surface mass balance, enabling a new kind of model intercomparison. Open source so that the code can be read and used by anyone and so that new modules can be added and discussed by the community, following the principles of open governance. Consistent in order to provide uncertainty measures at all realizable scales.

  13. Future global SLR network evolution and its impact on the terrestrial reference frame

    Science.gov (United States)

    Kehm, Alexander; Bloßfeld, Mathis; Pavlis, Erricos C.; Seitz, Florian

    2018-06-01

    Satellite laser ranging (SLR) is an important technique that contributes to the determination of terrestrial geodetic reference frames, especially to the realization of the origin and the scale of global networks. One of the major limiting factors of SLR-derived reference frame realizations is the datum accuracy which significantly suffers from the current global SLR station distribution. In this paper, the impact of a potential future development of the SLR network on the estimated datum parameters is investigated. The current status of the SLR network is compared to a simulated potential future network featuring additional stations improving the global network geometry. In addition, possible technical advancements resulting in a higher amount of observations are taken into account as well. As a result, we find that the network improvement causes a decrease in the scatter of the network translation parameters of up to 24%, and up to 20% for the scale, whereas the technological improvement causes a reduction in the scatter of up to 27% for the translations and up to 49% for the scale. The Earth orientation parameters benefit by up to 15% from both effects.

  14. The International Reference Ionosphere: Model Update 2016

    Science.gov (United States)

    Bilitza, Dieter; Altadill, David; Reinisch, Bodo; Galkin, Ivan; Shubin, Valentin; Truhlik, Vladimir

    2016-04-01

    The International Reference Ionosphere (IRI) is recognized as the official standard for the ionosphere (COSPAR, URSI, ISO) and is widely used for a multitude of different applications as evidenced by the many papers in science and engineering journals that acknowledge the use of IRI (e.g., about 11% of all Radio Science papers each year). One of the shortcomings of the model has been the dependence of the F2 peak height modeling on the propagation factor M(3000)F2. With the 2016 version of IRI, two new models will be introduced for hmF2 that were developed directly based on hmF2 measurements by ionosondes [Altadill et al., 2013] and by COSMIC radio occultation [Shubin, 2015], respectively. In addition IRI-2016 will include an improved representation of the ionosphere during the very low solar activities that were reached during the last solar minimum in 2008/2009. This presentation will review these and other improvements that are being implemented with the 2016 version of the IRI model. We will also discuss recent IRI workshops and their findings and results. One of the most exciting new projects is the development of the Real-Time IRI [Galkin et al., 2012]. We will discuss the current status and plans for the future. Altadill, D., S. Magdaleno, J.M. Torta, E. Blanch (2013), Global empirical models of the density peak height and of the equivalent scale height for quiet conditions, Advances in Space Research 52, 1756-1769, doi:10.1016/j.asr.2012.11.018. Galkin, I.A., B.W. Reinisch, X. Huang, and D. Bilitza (2012), Assimilation of GIRO Data into a Real-Time IRI, Radio Science, 47, RS0L07, doi:10.1029/2011RS004952. Shubin V.N. (2015), Global median model of the F2-layer peak height based on ionospheric radio-occultation and ground-based Digisonde observations, Advances in Space Research 56, 916-928, doi:10.1016/j.asr.2015.05.029.

  15. Network interconnections: an architectural reference model

    NARCIS (Netherlands)

    Butscher, B.; Lenzini, L.; Morling, R.; Vissers, C.A.; Popescu-Zeletin, R.; van Sinderen, Marten J.; Heger, D.; Krueger, G.; Spaniol, O.; Zorn, W.

    1985-01-01

    One of the major problems in understanding the different approaches in interconnecting networks of different technologies is the lack of reference to a general model. The paper develops the rationales for a reference model of network interconnection and focuses on the architectural implications for

  16. BETR global - A geographically-explicit global-scale multimedia contaminant fate model

    International Nuclear Information System (INIS)

    MacLeod, Matthew; Waldow, Harald von; Tay, Pascal; Armitage, James M.; Woehrnschimmel, Henry; Riley, William J.; McKone, Thomas E.; Hungerbuhler, Konrad

    2011-01-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15 o x 15 o grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5). - Two new software implementations of the Berkeley-Trent Global Contaminant Fate Model are available. The new model software is illustrated using a case study of the global fate of decamethylcyclopentasiloxane (D5).

  17. Organizational Learning Supported by Reference Architecture Models

    DEFF Research Database (Denmark)

    Nardello, Marco; Møller, Charles; Gøtze, John

    2017-01-01

    The wave of the fourth industrial revolution (Industry 4.0) is bringing a new vision of the manufacturing industry. In manufacturing, one of the buzzwords of the moment is “Smart production”. Smart production involves manufacturing equipment with many sensors that can generate and transmit large...... amounts of data. These data and information from manufacturing operations are however not shared in the organization. Therefore the organization is not using them to learn and improve their operations. To address this problem, the authors implemented in an Industry 4.0 laboratory an instance...... of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0) as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory...

  18. Global modelling of Cryptosporidium in surface water

    Science.gov (United States)

    Vermeulen, Lucie; Hofstra, Nynke

    2016-04-01

    Conclusions GloWPa-Crypto is the first global model that can be used to analyse dynamics in surface water pathogen concentrations worldwide. Global human Cryptosporidium emissions are estimated at 1 x 10^17 oocysts/ year for the year 2010.We estimated future emissions for SSP1 and SSP3. Preliminary results show that for SSP1human emissions are approximately halved by 2050. The SSP3 human emissions are 1.5 times higher than the 2010 emissions due to increased population growth and urbanisation. Livestock Cryptosporidium emissions are expected to increase under both SSP1 and SSP3, as meat consumption continues to rise. We conclude that population growth, urbanization, changes in sanitation systems and treatment, and changes in livestock consumption and production systems are important processes that determine future Cryptosporidium emissions to surface water. References Hofstra N, Bouwman A F, Beusen A H W and Medema G J 2013 Exploring global Cryptosporidium emissions to surface water Sci. Total Environ. 442 10-9 Kiulia N M, Hofstra N, Vermeulen L C, Obara M A, Medema G J and Rose J B 2015 Global occurrence and emission of rotaviruses to surface waters Pathogens 4 229-55 Vermeulen L C, De Kraker J, Hofstra N, Kroeze C and Medema G J 2015 Modelling the impact of sanitation, population and urbanization estimates on human emissions of Cryptosporidium to surface waters - a case study for Bangladesh and India Environ. Res. Lett. 10

  19. A Comparison Between the OSI Reference Model and the B-ISDN Protocol Reference Model

    DEFF Research Database (Denmark)

    Staalhagen, Lars

    1996-01-01

    This article aims at comparing the Open Systems Interconnection (OSI) Reference Model (RM) and the broadband integrated services digital network (B-ISDN) Protocol Reference Model (PRM). According to the International Telecommunications Union - Telecommunications Sector (ITU-T), the exact...... relationship between the lower layers of the OSI RM and the B-ISDN PRM is for further study. It is therefore the intention of this article to present some views on these relationships which hopefully could facilitate an interconnection between B-ISDN and data networks conforming to the OSI standards....

  20. Global change and sustainable development. A modelling perspective for the next decade

    International Nuclear Information System (INIS)

    Rotmans, J.; Van Asselt, M.B.A.; De Bruin, A.J.; Den Elzen, M.G.J.; De greef, J.; Hilderink, H.; Hoekstra, A.Y.; Janssen, M.A.; Koester, H.W.; Martens, W.J.M.; Niessen, L.W.; De Vries, H.J.M.

    1994-06-01

    The main objective of the title program is to develop an integrated modelling framework for analysing global change and sustainable development. The framework to be developed is referred to as TARGETS: Tool to Assess Regional and Global Environmental and health Targets for Sustainability. The research is based on a systems-based, integrated modelling approach and has a multi- and interdisciplinary character. A top-down approach is chosen: analysis starts at the global level and will be disaggregated to the level of major world regions. Alliance has been sought with the IMAGE project team in regard to data collection, regionalization and aggregation levels. The modelling framework is to be used by both researchers and policy analysts. In this report attention is paid to the requirements of an integrated systems approach (a multi-disciplinary systems analysis, quantification of uncertainties, and visualization of various system perspectives); the TARGETS model; the use of sustainability indicators to monitor the pressure on, the status of, and the impact on the global environment, which are linked to TARGETS; the scientific and cultural perspectives from which to describe and evaluate the global change phenomenon; the expected results; and finally the organizational embedment of the title programme. 19 figs., 3 tabs., 200 refs

  1. Global Delivery Models

    DEFF Research Database (Denmark)

    Manning, Stephan; Larsen, Marcus M.; Bharati, Pratyush

    2013-01-01

    This article examines antecedents and performance implications of global delivery models (GDMs) in global business services. GDMs require geographically distributed operations to exploit both proximity to clients and time-zone spread for efficient service delivery. We propose and empirically show...

  2. Adaptive Control with Reference Model Modification

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje

    2012-01-01

    This paper presents a modification of the conventional model reference adaptive control (MRAC) architecture in order to improve transient performance of the input and output signals of uncertain systems. A simple modification of the reference model is proposed by feeding back the tracking error signal. It is shown that the proposed approach guarantees tracking of the given reference command and the reference control signal (one that would be designed if the system were known) not only asymptotically but also in transient. Moreover, it prevents generation of high frequency oscillations, which are unavoidable in conventional MRAC systems for large adaptation rates. The provided design guideline makes it possible to track a reference commands of any magnitude from any initial position without re-tuning. The benefits of the method are demonstrated with a simulation example

  3. Reference models supporting enterprise networks and virtual enterprises

    DEFF Research Database (Denmark)

    Tølle, Martin; Bernus, Peter

    2003-01-01

    This article analyses different types of reference models applicable to support the set up and (re)configuration of Virtual Enterprises (VEs). Reference models are models capturing concepts common to VEs aiming to convert the task of setting up of VE into a configuration task, and hence reducing...... the time needed for VE creation. The reference models are analysed through a mapping onto the Virtual Enterprise Reference Architecture (VERA) based upon GERAM and created in the IMS GLOBEMEN project....

  4. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  5. The carbon cycle in a land surface model: modelling, validation and implementation at a global scale; Cycle du carbone dans un modele de surface continentale: modelisation, validation et mise en oeuvre a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Gibelin, A L

    2007-05-15

    ISBA-A-gs is an option of the CNRM land surface model ISBA which allows for the simulation of carbon exchanges between the terrestrial biosphere and the atmosphere. The model was implemented for the first time at the global scale as a stand-alone model. Several global simulations were performed to assess the sensitivity of the turbulent fluxes and Leaf Area Index to a doubling of the CO{sub 2} atmospheric concentration, and to the climate change simulated by the end of the 21. century. In addition, a new option of ISBA, referred to as ISBA-CC, was developed in order to simulate a more detailed ecosystem respiration by separating the autotrophic respiration and the heterotrophic respiration. The vegetation dynamics and the carbon fluxes were validated at a global scale using satellite datasets, and at a local scale using data from 26 sites of the FLUXNET network. All these results show that the model is sufficiently realistic to be coupled with a general circulation model, in order to account for interactions between the terrestrial biosphere, the atmosphere and the carbon cycle. (author)

  6. Global ice sheet modeling

    International Nuclear Information System (INIS)

    Hughes, T.J.; Fastook, J.L.

    1994-05-01

    The University of Maine conducted this study for Pacific Northwest Laboratory (PNL) as part of a global climate modeling task for site characterization of the potential nuclear waste respository site at Yucca Mountain, NV. The purpose of the study was to develop a global ice sheet dynamics model that will forecast the three-dimensional configuration of global ice sheets for specific climate change scenarios. The objective of the third (final) year of the work was to produce ice sheet data for glaciation scenarios covering the next 100,000 years. This was accomplished using both the map-plane and flowband solutions of our time-dependent, finite-element gridpoint model. The theory and equations used to develop the ice sheet models are presented. Three future scenarios were simulated by the model and results are discussed

  7. Cross-scale intercomparison of climate change impacts simulated by regional and global hydrological models in eleven large river basins

    Energy Technology Data Exchange (ETDEWEB)

    Hattermann, F. F.; Krysanova, V.; Gosling, S. N.; Dankers, R.; Daggupati, P.; Donnelly, C.; Flörke, M.; Huang, S.; Motovilov, Y.; Buda, S.; Yang, T.; Müller, C.; Leng, G.; Tang, Q.; Portmann, F. T.; Hagemann, S.; Gerten, D.; Wada, Y.; Masaki, Y.; Alemayehu, T.; Satoh, Y.; Samaniego, L.

    2017-01-04

    Ideally, the results from models operating at different scales should agree in trend direction and magnitude of impacts under climate change. However, this implies that the sensitivity of impact models designed for either scale to climate variability and change is comparable. In this study, we compare hydrological changes simulated by 9 global and 9 regional hydrological models (HM) for 11 large river basins in all continents under reference and scenario conditions. The foci are on model validation runs, sensitivity of annual discharge to climate variability in the reference period, and sensitivity of the long-term average monthly seasonal dynamics to climate change. One major result is that the global models, mostly not calibrated against observations, often show a considerable bias in mean monthly discharge, whereas regional models show a much better reproduction of reference conditions. However, the sensitivity of two HM ensembles to climate variability is in general similar. The simulated climate change impacts in terms of long-term average monthly dynamics evaluated for HM ensemble medians and spreads show that the medians are to a certain extent comparable in some cases with distinct differences in others, and the spreads related to global models are mostly notably larger. Summarizing, this implies that global HMs are useful tools when looking at large-scale impacts of climate change and variability, but whenever impacts for a specific river basin or region are of interest, e.g. for complex water management applications, the regional-scale models validated against observed discharge should be used.

  8. Predictor-Based Model Reference Adaptive Control

    Science.gov (United States)

    Lavretsky, Eugene; Gadient, Ross; Gregory, Irene M.

    2010-01-01

    This paper is devoted to the design and analysis of a predictor-based model reference adaptive control. Stable adaptive laws are derived using Lyapunov framework. The proposed architecture is compared with the now classical model reference adaptive control. A simulation example is presented in which numerical evidence indicates that the proposed controller yields improved transient characteristics.

  9. Reference evapotranspiration forecasting based on local meteorological and global climate information screened by partial mutual information

    Science.gov (United States)

    Fang, Wei; Huang, Shengzhi; Huang, Qiang; Huang, Guohe; Meng, Erhao; Luan, Jinkai

    2018-06-01

    In this study, reference evapotranspiration (ET0) forecasting models are developed for the least economically developed regions subject to meteorological data scarcity. Firstly, the partial mutual information (PMI) capable of capturing the linear and nonlinear dependence is investigated regarding its utility to identify relevant predictors and exclude those that are redundant through the comparison with partial linear correlation. An efficient input selection technique is crucial for decreasing model data requirements. Then, the interconnection between global climate indices and regional ET0 is identified. Relevant climatic indices are introduced as additional predictors to comprise information regarding ET0, which ought to be provided by meteorological data unavailable. The case study in the Jing River and Beiluo River basins, China, reveals that PMI outperforms the partial linear correlation in excluding the redundant information, favouring the yield of smaller predictor sets. The teleconnection analysis identifies the correlation between Nino 1 + 2 and regional ET0, indicating influences of ENSO events on the evapotranspiration process in the study area. Furthermore, introducing Nino 1 + 2 as predictors helps to yield more accurate ET0 forecasts. A model performance comparison also shows that non-linear stochastic models (SVR or RF with input selection through PMI) do not always outperform linear models (MLR with inputs screen by linear correlation). However, the former can offer quite comparable performance depending on smaller predictor sets. Therefore, efforts such as screening model inputs through PMI and incorporating global climatic indices interconnected with ET0 can benefit the development of ET0 forecasting models suitable for data-scarce regions.

  10. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    International Nuclear Information System (INIS)

    Mackay, Duncan H.; Yeates, Anthony R.; Bocquet, Francois-Xavier

    2016-01-01

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  11. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9SS (United Kingdom); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Bocquet, Francois-Xavier, E-mail: dhm@st-andrews.ac.uk [Met Office, FitzRoy Road, Exeter, EX1 3PB (United Kingdom)

    2016-07-10

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  12. Top-Down Enterprise Application Integration with Reference Models

    Directory of Open Access Journals (Sweden)

    Willem-Jan van den Heuvel

    2000-11-01

    Full Text Available For Enterprise Resource Planning (ERP systems such as SAP R/3 or IBM SanFrancisco, the tailoring of reference models for customizing the ERP systems to specific organizational contexts is an established approach. In this paper, we present a methodology that uses such reference models as a starting point for a top-down integration of enterprise applications. The re-engineered models of legacy systems are individually linked via cross-mapping specifications to the forward-engineered reference model's specification. The actual linking of reference and legacy models is done with a methodology for connecting (new business objects with (old legacy systems.

  13. Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies.

    Science.gov (United States)

    deCamp, Allan; Hraber, Peter; Bailer, Robert T; Seaman, Michael S; Ochsenbauer, Christina; Kappes, John; Gottardo, Raphael; Edlefsen, Paul; Self, Steve; Tang, Haili; Greene, Kelli; Gao, Hongmei; Daniell, Xiaoju; Sarzotti-Kelsoe, Marcella; Gorny, Miroslaw K; Zolla-Pazner, Susan; LaBranche, Celia C; Mascola, John R; Korber, Bette T; Montefiori, David C

    2014-03-01

    Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit

  14. The carbon cycle in a land surface model: modelling, validation and implementation at a global scale; Cycle du carbone dans un modele de surface continentale: modelisation, validation et mise en oeuvre a l'echelle globale

    Energy Technology Data Exchange (ETDEWEB)

    Gibelin, A.L

    2007-05-15

    ISBA-A-gs is an option of the CNRM land surface model ISBA which allows for the simulation of carbon exchanges between the terrestrial biosphere and the atmosphere. The model was implemented for the first time at the global scale as a stand-alone model. Several global simulations were performed to assess the sensitivity of the turbulent fluxes and Leaf Area Index to a doubling of the CO{sub 2} atmospheric concentration, and to the climate change simulated by the end of the 21. century. In addition, a new option of ISBA, referred to as ISBA-CC, was developed in order to simulate a more detailed ecosystem respiration by separating the autotrophic respiration and the heterotrophic respiration. The vegetation dynamics and the carbon fluxes were validated at a global scale using satellite datasets, and at a local scale using data from 26 sites of the FLUXNET network. All these results show that the model is sufficiently realistic to be coupled with a general circulation model, in order to account for interactions between the terrestrial biosphere, the atmosphere and the carbon cycle. (author)

  15. Reference model for apparel product development

    Directory of Open Access Journals (Sweden)

    Isabel Cristina Moretti

    2017-03-01

    Full Text Available The purpose of this paper was to develop a reference model for the implementation of the process of product development (PDP for apparel. The tool was developed through an interactive process of comparison between theoretical. Managers in companies and professionals working in this market can utilize the reference model as a source for the organization and improvement of the PDP for apparel and the universities as a reference source for systematized teaching of this process. This model represents the first comprehensive attempt to develop an instrument at a detailed level (macro phases, phases, activities, inputs and outputs at each stage and at the gates to systematize the PDP process for fashion products and to consider its particularities.

  16. A global reference database of crowdsourced cropland data collected using the Geo-Wiki platform

    NARCIS (Netherlands)

    Laso Bayas, JC; Lesiv, M; Waldner, F; Schucknecht, A; Duerauer, M; See, L; Fritz, S.; Fraisl, D; Moorthy, I; McCallum, I.; Perger, C; Danylo, O; Defourny, P; Gallego, J; Gilliams, S; Akhtar, I.H.; Baishya, S. J.; Baruah, M; Bungnamei, K; Campos, A; Changkakati, T; Cipriani, A; Das, Krishna; Das, Keemee; Das, I; Davis, K.F.; Hazarika, P; Johnson, B.A.; Malek, Ziga; Molinari, M.E.; Panging, K; Pawe, C.K.; Pérez-Hoyos, A; Sahariah, P.K.; Sahariah, D; Saikia, A; Saikia, M; Schlesinger, Peter; Seidacaru, E; Singha, K; Wilson, John W

    2017-01-01

    A global reference data set on cropland was collected through a crowdsourcing campaign using the Geo-Wiki crowdsourcing tool. The campaign lasted three weeks, with over 80 participants from around the world reviewing almost 36,000 sample units, focussing on cropland identification. For quality

  17. Verification of SAP reference models

    NARCIS (Netherlands)

    Dongen, van B.F.; Jansen-Vullers, M.H.; Aalst, van der W.M.P.; Benatallah, B.; Casati, F.

    2005-01-01

    To configure a process-aware information system (e.g., a workflow system, an ERP system), a business model needs to be transformed into an executable process model. Due to similarities in these transformations for different companies, databases with reference models, such as ARIS for MySAP, have

  18. Thermal radiation transfer calculations in combustion fields using the SLW model coupled with a modified reference approach

    Science.gov (United States)

    Darbandi, Masoud; Abrar, Bagher

    2018-01-01

    The spectral-line weighted-sum-of-gray-gases (SLW) model is considered as a modern global model, which can be used in predicting the thermal radiation heat transfer within the combustion fields. The past SLW model users have mostly employed the reference approach to calculate the local values of gray gases' absorption coefficient. This classical reference approach assumes that the absorption spectra of gases at different thermodynamic conditions are scalable with the absorption spectrum of gas at a reference thermodynamic state in the domain. However, this assumption cannot be reasonable in combustion fields, where the gas temperature is very different from the reference temperature. Consequently, the results of SLW model incorporated with the classical reference approach, say the classical SLW method, are highly sensitive to the reference temperature magnitude in non-isothermal combustion fields. To lessen this sensitivity, the current work combines the SLW model with a modified reference approach, which is a particular one among the eight possible reference approach forms reported recently by Solovjov, et al. [DOI: 10.1016/j.jqsrt.2017.01.034, 2017]. The combination is called "modified SLW method". This work shows that the modified reference approach can provide more accurate total emissivity calculation than the classical reference approach if it is coupled with the SLW method. This would be particularly helpful for more accurate calculation of radiation transfer in highly non-isothermal combustion fields. To approve this, we use both the classical and modified SLW methods and calculate the radiation transfer in such fields. It is shown that the modified SLW method can almost eliminate the sensitivity of achieved results to the chosen reference temperature in treating highly non-isothermal combustion fields.

  19. The Use of Reference Models in Business Process Renovation

    Directory of Open Access Journals (Sweden)

    Dejan Pajk

    2010-01-01

    Full Text Available Enterprise resource planning (ERP systems are often used by companies to automate and enhance their busi- ness processes. The capabilities of ERP systems can be described by best-practice reference models. The purpose of the article is to demonstrate the business process renovation approach with the use of reference models. Although the use of reference models brings many positive effects for business, they are still rarely used in Slovenian small and medium-sized compa- nies. The reasons for this may be found in the reference models themselves as well as in project implementation methodologies. In the article a reference model based on Microsoft Dynamics NAV is suggested. The reference model is designed using upgraded BPMN notation with additional business objects, which help to describe the models in more detail.

  20. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  1. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  2. Global Hail Model

    Science.gov (United States)

    Werner, A.; Sanderson, M.; Hand, W.; Blyth, A.; Groenemeijer, P.; Kunz, M.; Puskeiler, M.; Saville, G.; Michel, G.

    2012-04-01

    Hail risk models are rare for the insurance industry. This is opposed to the fact that average annual hail losses can be large and hail dominates losses for many motor portfolios worldwide. Insufficient observational data, high spatio-temporal variability and data inhomogenity have hindered creation of credible models so far. In January 2012, a selected group of hail experts met at Willis in London in order to discuss ways to model hail risk at various scales. Discussions aimed at improving our understanding of hail occurrence and severity, and covered recent progress in the understanding of microphysical processes and climatological behaviour and hail vulnerability. The final outcome of the meeting was the formation of a global hail risk model initiative and the launch of a realistic global hail model in order to assess hail loss occurrence and severities for the globe. The following projects will be tackled: Microphysics of Hail and hail severity measures: Understand the physical drivers of hail and hailstone size development in different regions on the globe. Proposed factors include updraft and supercooled liquid water content in the troposphere. What are the thresholds drivers of hail formation around the globe? Hail Climatology: Consider ways to build a realistic global climatological set of hail events based on physical parameters including spatial variations in total availability of moisture, aerosols, among others, and using neural networks. Vulnerability, Exposure, and financial model: Use historical losses and event footprints available in the insurance market to approximate fragility distributions and damage potential for various hail sizes for property, motor, and agricultural business. Propagate uncertainty distributions and consider effects of policy conditions along with aggregating and disaggregating exposure and losses. This presentation provides an overview of ideas and tasks that lead towards a comprehensive global understanding of hail risk for

  3. BETR Global - A geographically explicit global-scale multimedia contaminant fate model

    Energy Technology Data Exchange (ETDEWEB)

    Macleod, M.; Waldow, H. von; Tay, P.; Armitage, J. M.; Wohrnschimmel, H.; Riley, W.; McKone, T. E.; Hungerbuhler, K.

    2011-04-01

    We present two new software implementations of the BETR Global multimedia contaminant fate model. The model uses steady-state or non-steady-state mass-balance calculations to describe the fate and transport of persistent organic pollutants using a desktop computer. The global environment is described using a database of long-term average monthly conditions on a 15{sup o} x 15{sup o} grid. We demonstrate BETR Global by modeling the global sources, transport, and removal of decamethylcyclopentasiloxane (D5).

  4. Progress in Global Multicompartmental Modelling of DDT

    Science.gov (United States)

    Stemmler, I.; Lammel, G.

    2009-04-01

    input parameters. Furthermore, better resolution of some processes could improve model performance. References: Marsland S.J., Haak H., Jungclaus J.H., Latif M., Röske F. (2003): The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Modelling 5, 91-127 Maier-Reimer E. , Kriest I., Segschneider J., Wetzel P. : The HAMburg Ocean Carbon Cycle Model HAMOCC 5.1 - Technical Description Release 1.1 (2005),Reports on Earth System Science 14 Stier P. , Feichter J. (2005), Kinne S., Kloster S., Vignati E., Wilson J.Ganzeveld L., Tegen I., Werner M., Blakanski Y., Schulz M., Boucher O., Minikin A., Petzold A.: The aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys 5, 1125-1156 Semeena V.S., Feichter J., Lammel G. (2006): Impact of the regional climate and substance properties on the fate and atmospheric long-range transport of persistent organic pollutants - examples of DDT and γ-HCH. Atmos. Chem. Phys. 6, 1231-1248

  5. Analysis of global warming stabilization scenarios. The Asian-Pacific Integrated Model

    International Nuclear Information System (INIS)

    Kainuma, Mikiko; Morita, Tsuneyuki; Masui, Toshihiko; Takahashi, Kiyoshi; Matsuoka, Yuzuru

    2004-01-01

    This paper analyzes the economic and climatic impacts of the EMF 19 emission scenarios. A reference scenario, three emission scenarios targeting 550 ppmv atmospheric concentration, and three tax scenarios are analyzed. The profiles of energy consumption and economic losses of each policy scenario are compared to the reference scenario. The model also estimates that global mean temperature will increase 1.7-2.9 C in 2100, and the sea level will rise 40-51 cm, compared to the 1990 levels under the EMF scenarios. Impacts on food productivity and malaria infection are estimated to be very severe in some countries in the Asian region

  6. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  7. Global Area Reference System (GARS), 30-minute Blocks for Louisiana, WGS84, NGA (2007) [gars_la_30min_nga_2007

    Data.gov (United States)

    Louisiana Geographic Information Center — Global Area Reference System (GARS) is developed by the National Geospatial-Intelligence Agency (NGA) as an area reference system. GARS is based on lines of...

  8. Errors in the SAP reference model

    NARCIS (Netherlands)

    Mendling, J.; Aalst, van der W.M.P.; Dongen, van B.F.; Verbeek, H.M.W.

    2006-01-01

    The SAP Reference Model is a set of information models that is utilized to guide the configuration of SAP systems. A big part of these models are business process models represented in the Eventdriven Process Chains (EPC) notation. These EPC models provide a easy to comprehend overview of SAP

  9. Global spatiotemporal distribution of soil respiration modeled using a global database

    Science.gov (United States)

    Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M.

    2015-07-01

    The flux of carbon dioxide from the soil to the atmosphere (soil respiration) is one of the major fluxes in the global carbon cycle. At present, the accumulated field observation data cover a wide range of geographical locations and climate conditions. However, there are still large uncertainties in the magnitude and spatiotemporal variation of global soil respiration. Using a global soil respiration data set, we developed a climate-driven model of soil respiration by modifying and updating Raich's model, and the global spatiotemporal distribution of soil respiration was examined using this model. The model was applied at a spatial resolution of 0.5°and a monthly time step. Soil respiration was divided into the heterotrophic and autotrophic components of respiration using an empirical model. The estimated mean annual global soil respiration was 91 Pg C yr-1 (between 1965 and 2012; Monte Carlo 95 % confidence interval: 87-95 Pg C yr-1) and increased at the rate of 0.09 Pg C yr-2. The contribution of soil respiration from boreal regions to the total increase in global soil respiration was on the same order of magnitude as that of tropical and temperate regions, despite a lower absolute magnitude of soil respiration in boreal regions. The estimated annual global heterotrophic respiration and global autotrophic respiration were 51 and 40 Pg C yr-1, respectively. The global soil respiration responded to the increase in air temperature at the rate of 3.3 Pg C yr-1 °C-1, and Q10 = 1.4. Our study scaled up observed soil respiration values from field measurements to estimate global soil respiration and provide a data-oriented estimate of global soil respiration. The estimates are based on a semi-empirical model parameterized with over one thousand data points. Our analysis indicates that the climate controls on soil respiration may translate into an increasing trend in global soil respiration and our analysis emphasizes the relevance of the soil carbon flux from soil to

  10. LPJmL4 - a dynamic global vegetation model with managed land - Part 1: Model description

    Science.gov (United States)

    Schaphoff, Sibyll; von Bloh, Werner; Rammig, Anja; Thonicke, Kirsten; Biemans, Hester; Forkel, Matthias; Gerten, Dieter; Heinke, Jens; Jägermeyr, Jonas; Knauer, Jürgen; Langerwisch, Fanny; Lucht, Wolfgang; Müller, Christoph; Rolinski, Susanne; Waha, Katharina

    2018-04-01

    This paper provides a comprehensive description of the newest version of the Dynamic Global Vegetation Model with managed Land, LPJmL4. This model simulates - internally consistently - the growth and productivity of both natural and agricultural vegetation as coherently linked through their water, carbon, and energy fluxes. These features render LPJmL4 suitable for assessing a broad range of feedbacks within and impacts upon the terrestrial biosphere as increasingly shaped by human activities such as climate change and land use change. Here we describe the core model structure, including recently developed modules now unified in LPJmL4. Thereby, we also review LPJmL model developments and evaluations in the field of permafrost, human and ecological water demand, and improved representation of crop types. We summarize and discuss LPJmL model applications dealing with the impacts of historical and future environmental change on the terrestrial biosphere at regional and global scale and provide a comprehensive overview of LPJmL publications since the first model description in 2007. To demonstrate the main features of the LPJmL4 model, we display reference simulation results for key processes such as the current global distribution of natural and managed ecosystems, their productivities, and associated water fluxes. A thorough evaluation of the model is provided in a companion paper. By making the model source code freely available at https://gitlab.pik-potsdam.de/lpjml/LPJmL" target="_blank">https://gitlab.pik-potsdam.de/lpjml/LPJmL, we hope to stimulate the application and further development of LPJmL4 across scientific communities in support of major activities such as the IPCC and SDG process.

  11. A global central banker competency model

    Directory of Open Access Journals (Sweden)

    David W. Brits

    2014-07-01

    Full Text Available Orientation: No comprehensive, integrated competency model exists for central bankers. Due to the importance of central banks in the context of the ongoing global financial crisis, it was deemed necessary to design and validate such a model. Research purpose: To craft and validate a comprehensive, integrated global central banker competency model (GCBCM and to assess whether central banks using the GCBCM for training have a higher global influence. Motivation for the study: Limited consensus exists globally about what constitutes a ‘competent’ central banker. A quantitatively validated GCBCM would make a significant contribution to enhancing central banker effectiveness, and also provide a solid foundation for effective people management. Research approach, design and method: A blended quantitative and qualitative research approach was taken. Two sets of hypotheses were tested regarding the relationships between the GCBCM and the training offered, using the model on the one hand, and a central bank’s global influence on the other. Main findings: The GCBCM was generally accepted across all participating central banks globally, although some differences were found between central banks with higher and lower global influence. The actual training offered by central banks in terms of the model, however, is generally limited to technical-functional skills. The GCBCM is therefore at present predominantly aspirational. Significant differences were found regarding the training offered. Practical/managerial implications: By adopting the GCBCM, central banks would be able to develop organisation-specific competency models in order to enhance their organisational capabilities and play their increasingly important global role more effectively. Contribution: A generic conceptual framework for the crafting of a competency model with evaluation criteria was developed. A GCBCM was quantitatively validated.

  12. The economics of greenhouse gas mitigation: Insights from illustrative global abatement scenarios modelling

    International Nuclear Information System (INIS)

    Gurney, Andrew; Ahammad, Helal; Ford, Melanie

    2009-01-01

    In this paper the Global Trade and Environment Model (GTEM) and MAGICC are used to simulate a number of global emission mitigation scenarios devised by the EMF 22 Transition Scenarios group in which radiative forcing goals and the architecture of developing economies' participation in hypothetical mitigation actions are varied. This paper presents a reference case of the world economy to 2100 and analyses some key regional and global results for the various global mitigation scenarios, including emission prices, emission levels, primary energy consumption and economic growth. Modelling results suggest that a transition to a low-carbon world would require a significant decarbonisation of electricity generation without necessarily cutting the electricity output in the long run. With the uptake of hybrids and non-fossil-fuel technologies, the transport sector could make an important contribution to global abatement of greenhouse gases. Furthermore, with substantial international mitigation efforts and uptake of low- and/or zero-emission technologies, the achievement of 3.7 W/m 2 and 4.5 W/m 2 radiative forcing targets by the end of the century could occur at emission prices of up to $550/t CO 2 -e. However, achieving the 2.6 W/m 2 (overshoot) radiative forcing target would require considerably higher emission prices and an immediate global mitigation action.

  13. Policy Internationalization, National Variety and Governance: Global Models and Network Power in Higher Education States

    Science.gov (United States)

    King, Roger

    2010-01-01

    This article analyzes policy convergence and the adoption of globalizing models by higher education states, a process we describe, following Thatcher (2007), as policy internationalization. This refers to processes found in many policy domains and which increasingly are exemplified in tertiary education systems too. The focus is on governmental…

  14. Medium-range reference evapotranspiration forecasts for the contiguous United States based on multi-model numerical weather predictions

    Science.gov (United States)

    Medina, Hanoi; Tian, Di; Srivastava, Puneet; Pelosi, Anna; Chirico, Giovanni B.

    2018-07-01

    Reference evapotranspiration (ET0) plays a fundamental role in agronomic, forestry, and water resources management. Estimating and forecasting ET0 have long been recognized as a major challenge for researchers and practitioners in these communities. This work explored the potential of multiple leading numerical weather predictions (NWPs) for estimating and forecasting summer ET0 at 101 U.S. Regional Climate Reference Network stations over nine climate regions across the contiguous United States (CONUS). Three leading global NWP model forecasts from THORPEX Interactive Grand Global Ensemble (TIGGE) dataset were used in this study, including the single model ensemble forecasts from the European Centre for Medium-Range Weather Forecasts (EC), the National Centers for Environmental Prediction Global Forecast System (NCEP), and the United Kingdom Meteorological Office forecasts (MO), as well as multi-model ensemble forecasts from the combinations of these NWP models. A regression calibration was employed to bias correct the ET0 forecasts. Impact of individual forecast variables on ET0 forecasts were also evaluated. The results showed that the EC forecasts provided the least error and highest skill and reliability, followed by the MO and NCEP forecasts. The multi-model ensembles constructed from the combination of EC and MO forecasts provided slightly better performance than the single model EC forecasts. The regression process greatly improved ET0 forecast performances, particularly for the regions involving stations near the coast, or with a complex orography. The performance of EC forecasts was only slightly influenced by the size of the ensemble members, particularly at short lead times. Even with less ensemble members, EC still performed better than the other two NWPs. Errors in the radiation forecasts, followed by those in the wind, had the most detrimental effects on the ET0 forecast performances.

  15. The global mean sea surface model WHU2013

    Directory of Open Access Journals (Sweden)

    Taoyong Jin

    2016-05-01

    Full Text Available The mean sea surface (MSS model is an important reference for the study of charting datum and sea level change. A global MSS model named WHU2013, with 2′ × 2′ spatial resolution between 80°S and 84°N, is established in this paper by combining nearly 20 years of multi-satellite altimetric data that include Topex/Poseidon (T/P, Jason-1, Jason-2, ERS-2, ENVISAT and GFO Exact Repeat Mission (ERM data, ERS-1/168, Jason-1/C geodetic mission data and Cryosat-2 low resolution mode (LRM data. All the ERM data are adjusted by the collinear method to achieve the mean along-track sea surface height (SSH, and the combined dataset of T/P, Jason-1 and Jason-2 from 1993 to 2012 after collinear adjustment is used as the reference data. The sea level variations in the non-ERM data (geodetic mission data and LRM data are mainly investigated, and a combined method is proposed to correct the sea level variations between 66°S and 66°N by along-track sea level variation time series and beyond 66°S or 66°N by seasonal sea level variations. In the crossover adjustment between multi-altimetric data, a stepwise method is used to solve the problem of inconsistency in the reference data between the high and low latitude regions. The proposed model is compared with the CNES-CLS2011 and DTU13 MSS models, and the standard derivation (STD of the differences between the models is about 5 cm between 80°S and 84°N, less than 3 cm between 66°S and 66°N, and less than 4 cm in the China Sea and its adjacent sea. Furthermore, the three models exhibit a good agreement in the SSH differences and the along-track gradient of SSH following comparisons with satellite altimetry data.

  16. Global model structures for ∗-modules

    DEFF Research Database (Denmark)

    Böhme, Benjamin

    2018-01-01

    We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....

  17. On coupling global biome models with climate models

    International Nuclear Information System (INIS)

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992), which predicts global vegetation patterns in equilibrium with climate, is coupled with the ECHAM climate model of the Max-Planck-Institut fuer Meteorologie, Hamburg. It is found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only between the initial biome distribution and the biome distribution computed after the first simulation period, provided that the climate-biome model is started from a biome distribution that resembles the present-day distribution. After the first simulation period, there is no significant shrinking, expanding, or shifting of biomes. Likewise, no trend is seen in global averages of land-surface parameters and climate variables. (orig.)

  18. Delusions of reference: a new theoretical model.

    Science.gov (United States)

    Startup, Mike; Bucci, Sandra; Langdon, Robyn

    2009-03-01

    Although delusions of reference are one of the most common psychotic symptoms, they have been the focus of little research, possibly because they have been considered to be integral to persecutory delusions. Evidence has now emerged that there are two kinds of delusion of reference. One of these, referential delusions of communication, which involves beliefs that others are communicating in subtle, nonverbal ways, is the focus of this paper. We present a new model designed to account for the four crucial aspects of the phenomenology of these delusions: (1) that neutral stimuli are experienced as having personal significance; (2) that the neutral stimuli are experienced as communicating a message nonverbally; (3) that the content of the message concerns the self; (4) that the experience of a self-referent communication is believed rather than being dismissed as implausible. We used PsycINFO and Scopus, using the term "delusion* of reference", to search for publications with a bearing on our model. The amount of research we found that was designed to test aspects of this model is small but other published research appears to provide some support for its various steps. Much of this research was not explicitly intended to provide an account of delusions of reference but its relevance nevertheless seems clear. There is preliminary support for the plausibility of our model but much additional research is needed. We conclude by summarising what we consider to be the main desiderata.

  19. On coupling global biome models with climate models

    OpenAIRE

    Claussen, M.

    1994-01-01

    The BIOME model of Prentice et al. (1992; J. Biogeogr. 19: 117-134), which predicts global vegetation patterns in equilibrium with climate, was coupled with the ECHAM climate model of the Max-Planck-Institut fiir Meteorologie, Hamburg, Germany. It was found that incorporation of the BIOME model into ECHAM, regardless at which frequency, does not enhance the simulated climate variability, expressed in terms of differences between global vegetation patterns. Strongest changes are seen only betw...

  20. Process-based modelling of phosphorus transformations and retention in global rivers

    Science.gov (United States)

    Vilmin, Lauriane; Mogollon, Jose; Beusen, Arthur; Bouwman, Lex

    2016-04-01

    Phosphorus (P) plays a major role in the biogeochemical functioning of aquatic systems. It typically acts as the limiting nutrient for primary productivity in freshwater bodies, and thus the increase in anthropogenic P loads during the XXth century has fuelled the eutrophication of these systems. Total P retention in global rivers has also escalated over this timeframe as demonstrated via a global model that implements the spiralling method at a spatial resolution of 0.5° (IMAGE-GNM, Beusen et al., 2015). Here, we refine this coupled hydrological - nutrient model by including mechanistic biogeochemical interactions that govern the P cycle. Special attention is paid to the representation of particle processes (i.e. particle loading, sedimentation and erosion), which play a major role in P transport and accumulation in aquatic systems. Our preliminary results are compared to measurements of suspended sediments, total P and orthophosphates in selected river basins. Initial model results show that P concentrations are particularly sensitive to particulate load distribution in the river network within a grid cell. This novel modelling approach will eventually allow a better assessment of the amounts of different forms of P (organic P, soluble reactive P, and particulate inorganic P), of P transformation rates and retention in inland waters. References Beusen, A.H.W., Van Beek, L.P.H., Bouwman, A.F., Mogollón, J.M., Middelburg, J.J. 2015. Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water - description of the IMAGE-GNM and analysis of performance. Geosci. Model Dev. 8, 4045-4067

  1. Global Analysis, Interpretation and Modelling: An Earth Systems Modelling Program

    Science.gov (United States)

    Moore, Berrien, III; Sahagian, Dork

    1997-01-01

    The Goal of the GAIM is: To advance the study of the coupled dynamics of the Earth system using as tools both data and models; to develop a strategy for the rapid development, evaluation, and application of comprehensive prognostic models of the Global Biogeochemical Subsystem which could eventually be linked with models of the Physical-Climate Subsystem; to propose, promote, and facilitate experiments with existing models or by linking subcomponent models, especially those associated with IGBP Core Projects and with WCRP efforts. Such experiments would be focused upon resolving interface issues and questions associated with developing an understanding of the prognostic behavior of key processes; to clarify key scientific issues facing the development of Global Biogeochemical Models and the coupling of these models to General Circulation Models; to assist the Intergovernmental Panel on Climate Change (IPCC) process by conducting timely studies that focus upon elucidating important unresolved scientific issues associated with the changing biogeochemical cycles of the planet and upon the role of the biosphere in the physical-climate subsystem, particularly its role in the global hydrological cycle; and to advise the SC-IGBP on progress in developing comprehensive Global Biogeochemical Models and to maintain scientific liaison with the WCRP Steering Group on Global Climate Modelling.

  2. Globalization and Europeanization. A Projection on a European Model of Public Administration

    Directory of Open Access Journals (Sweden)

    Ani Matei

    2008-04-01

    Full Text Available The specialized studies and literature present moreover and insistently the connection between globalization and Europeanization, more precisely between globalization and a European model of integration, whose features aim to set up a global-type European society. The development of the European model of integration starts with economic elements, it reveals nowadays the Economic and Monetary Union and in perspective it will be structured within a sui generis system of transnational governance. The values of the European model of integration become fundamental values of a social process, with powerful economic and political determinations, aiming the multi-causal interference between individual, community and European construction. This process, remarked increasingly in the specialized literature, being assigned with the name of Europeanization, has got original, functional features in the spectrum of significations of the globalization paradigm. As essential global-type formula, within Europeanization, we shall find models with economic, political or social finality, integrating also a model of administration among the latter ones. When we say administration, we refer to its up dated and adequate contents to the new European developments. This assertion derives from a less economic modality to conceptualize the relationship between globalization and Europeanization, presenting Europeanization more as a political adaptation to globalization and even a political expression of globalization. In this context, the development of a system for European governance on several levels (local, regional, national, intergovernmental and supranational suggests its evolution towards globalization. In fact, the literature specific for Europeanization asserts the fact that the European model has also features with integrative nature related to the supranational and trans-governmental dimensions, as well as features with normative nature in view of harmonization

  3. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    Science.gov (United States)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  4. A Reference Model for Virtual Machine Launching Overhead

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao; Ren, Shangping; Garzoglio, Gabriele; Timm, Steven; Bernabeu, Gerard; Chadwick, Keith; Noh, Seo-Young

    2016-07-01

    Cloud bursting is one of the key research topics in the cloud computing communities. A well designed cloud bursting module enables private clouds to automatically launch virtual machines (VMs) to public clouds when more resources are needed. One of the main challenges in developing a cloud bursting module is to decide when and where to launch a VM so that all resources are most effectively and efficiently utilized and the system performance is optimized. However, based on system operational data obtained from FermiCloud, a private cloud developed by the Fermi National Accelerator Laboratory for scientific workflows, the VM launching overhead is not a constant. It varies with physical resource utilization, such as CPU and I/O device utilizations, at the time when a VM is launched. Hence, to make judicious decisions as to when and where a VM should be launched, a VM launching overhead reference model is needed. In this paper, we first develop a VM launching overhead reference model based on operational data we have obtained on FermiCloud. Second, we apply the developed reference model on FermiCloud and compare calculated VM launching overhead values based on the model with measured overhead values on FermiCloud. Our empirical results on FermiCloud indicate that the developed reference model is accurate. We believe, with the guidance of the developed reference model, efficient resource allocation algorithms can be developed for cloud bursting process to minimize the operational cost and resource waste.

  5. Establishing a Business Process Reference Model for Universities

    KAUST Repository

    Svensson, Carsten

    2012-09-01

    Modern universities are by any standard complex organizations that, from an IT perspective, present a number of unique challenges. This paper will propose establishing a business process reference framework. The benefit to the users would be a better understanding of the system landscape, business process enablement, collection of performance data and systematic reuse of existing community experience and knowledge. For these reasons reference models such as the SCOR (Supply Chain Operations Reference), DCOR (Design Chain Operations Reference) and ITIL (Information Technology Infrastructure Library) have gained popularity among organizations in both the private and public sectors. We speculate that this success can be replicated in a university setting. Furthermore the paper will outline how the research group suggests moving ahead with the research which will lead to a reference model.

  6. Modeling of global horizontal irradiance in the United Arab Emirates with artificial neural networks

    International Nuclear Information System (INIS)

    Hejase, Hassan A.N.; Al-Shamisi, Maitha H.; Assi, Ali H.

    2014-01-01

    This paper employs ANN (Artificial Neural Network) models to estimate GHI (global horizontal irradiance) for three major cities in the UAE (United Arab Emirates), namely Abu Dhabi, Dubai and Al-Ain. City data are then used to develop a comprehensive global GHI model for other nearby locations in the UAE. The ANN models use MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) techniques with comprehensive training algorithms, architectures, and different combinations of inputs. The UAE models are tested and validated against individual city models and data available from the UAE Solar Atlas with good agreement as attested by the computed statistical error parameters. The optimal ANN model is MLP-based and requires four mean daily weather parameters; namely, maximum temperature, wind speed, sunshine hours, and relative humidity. The computed statistical error parameters for the optimal MLP-ANN model in relation to the measured three-cities mean data (referred to as UAE data) are MBE (mean bias error) = −0.0003 kWh/m 2 , RMSE = 0.179 kWh/m 2 , R 2  = 99%, NSE (Nash-Sutcliffe model Efficiency coefficient) = 99%, and t-statistic = 0.005 at 5% significance level. Results prove the suitability of the ANN models for estimating the monthly mean daily GHI in different locations of the UAE. - Highlights: • ANN prediction models for the GHI (global horizontal irradiance) in the UAE. • Models used to estimate the potential of global solar radiation for UAE cities. • Data from the UAE Solar Atlas are used to validate developed ANN models. • ANN models are more efficient than regression models in predicting GHI

  7. Modeling the Acceleration of Global Surface Temperture

    Science.gov (United States)

    Jones, B.

    2017-12-01

    A mathematical projection focusing on the changing rate of acceleration of Global Surface Temperatures. Using historical trajectory and informed expert near-term prediction, it is possible to extend this further forward drawing a reference arc of acceleration. Presented here is an example of this technique based on data found in the Summary of Findings of A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011 and that same team's stated prediction to 2050. With this, we can project a curve showing future acceleration: Decade (midpoint) Change in Global Land Temp Degrees C Known Slope Projected Trend 1755 0.000 1955 0.600 0.0030 2005 1.500 0.0051 2045 3.000 0.0375 2095 5.485 0.0497 2145 8.895 0.0682 2195 13.488 0.0919 Observations: Slopes are getting steeper and doing so faster in an "acceleration of the acceleration" or an "arc of acceleration". This is consistent with the non-linear accelerating feedback loops of global warming. Such projected temperatures threaten human civilization and human life. This `thumbnail' projection is consistent with the other long term predictions based on anthropogenic greenhouse gases. This projection is low when compared to those whose forecasts include greenhouse gases released from thawing permafrost and clathrate hydrates. A reference line: This curve should be considered a point of reference. In the near term and absent significant drawdown of greenhouse gases, my "bet" for this AGU session is that future temperatures will generally be above this reference curve. For example, the decade ending 2020 - more than 1.9C and the decade ending 2030 - more than 2.3C - again measured from the 1750 start point. *Caveat: The long term curve and prediction assumes that mankind does not move quickly away from high cost fossil fuels and does not invent, mobilize and take actions drawing down greenhouse gases. Those seeking a comprehensive action plan are directed to drawdown.org

  8. Sensitivities in global scale modeling of isoprene

    Directory of Open Access Journals (Sweden)

    R. von Kuhlmann

    2004-01-01

    Full Text Available A sensitivity study of the treatment of isoprene and related parameters in 3D atmospheric models was conducted using the global model of tropospheric chemistry MATCH-MPIC. A total of twelve sensitivity scenarios which can be grouped into four thematic categories were performed. These four categories consist of simulations with different chemical mechanisms, different assumptions concerning the deposition characteristics of intermediate products, assumptions concerning the nitrates from the oxidation of isoprene and variations of the source strengths. The largest differences in ozone compared to the reference simulation occured when a different isoprene oxidation scheme was used (up to 30-60% or about 10 nmol/mol. The largest differences in the abundance of peroxyacetylnitrate (PAN were found when the isoprene emission strength was reduced by 50% and in tests with increased or decreased efficiency of the deposition of intermediates. The deposition assumptions were also found to have a significant effect on the upper tropospheric HOx production. Different implicit assumptions about the loss of intermediate products were identified as a major reason for the deviations among the tested isoprene oxidation schemes. The total tropospheric burden of O3 calculated in the sensitivity runs is increased compared to the background methane chemistry by 26±9  Tg( O3 from 273 to an average from the sensitivity runs of 299 Tg(O3. % revised Thus, there is a spread of ± 35% of the overall effect of isoprene in the model among the tested scenarios. This range of uncertainty and the much larger local deviations found in the test runs suggest that the treatment of isoprene in global models can only be seen as a first order estimate at present, and points towards specific processes in need of focused future work.

  9. Long-range transport and global fractionation of POPs: insights from multimedia modeling studies

    International Nuclear Information System (INIS)

    Scheringer, M.; Salzmann, M.; Stroebe, M.; Wegmann, F.; Fenner, K.; Hungerbuehler, K.

    2004-01-01

    The long-range transport of persistent organic pollutants (POPs) is investigated with two multimedia box models of the global system. ChemRange is a purely evaluative, one-dimensional steady-state (level III) model; CliMoChem is a two-dimensional model with different temperatures, land/water ratios and vegetation types in different latitudinal zones. Model results are presented for three case studies: (i) the effect of atmospheric aerosol particles on the long-range transport of POPs, (ii) the effect of oceanic deposition on the long-range transport of different PCB congeners, (iii) the global fractionation of different PCB congeners. The model results for these case studies show: (i) the low atmospheric half-lives estimated for several organochlorine pesticides are likely to be inconsistent with the observed long-range transport of these compounds; (ii) export to the deep sea reduces the potential for long-range transport of highly hydrophobic compounds (but does not remove these chemicals from the biosphere); (iii) there are different meanings of the term global fractionation that refer to different aspects of the fractionation process and need to be distinguished. The case-study results further indicate that the influences of varying environmental conditions on the physicochemical properties and the degradation rate constants of POPs need to be determined. - Multimedia box models are applied to case studies of the behavior of POPs

  10. Global scale groundwater flow model

    Science.gov (United States)

    Sutanudjaja, Edwin; de Graaf, Inge; van Beek, Ludovicus; Bierkens, Marc

    2013-04-01

    As the world's largest accessible source of freshwater, groundwater plays vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater sustains water flows in streams, rivers, lakes and wetlands, and thus supports ecosystem habitat and biodiversity, while its large natural storage provides a buffer against water shortages. Yet, the current generation of global scale hydrological models does not include a groundwater flow component that is a crucial part of the hydrological cycle and allows the simulation of groundwater head dynamics. In this study we present a steady-state MODFLOW (McDonald and Harbaugh, 1988) groundwater model on the global scale at 5 arc-minutes resolution. Aquifer schematization and properties of this groundwater model were developed from available global lithological model (e.g. Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moorsdorff, in press). We force the groundwtaer model with the output from the large-scale hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the long term net groundwater recharge and average surface water levels derived from routed channel discharge. We validated calculated groundwater heads and depths with available head observations, from different regions, including the North and South America and Western Europe. Our results show that it is feasible to build a relatively simple global scale groundwater model using existing information, and estimate water table depths within acceptable accuracy in many parts of the world.

  11. A method for improving global pyranometer measurements by modeling responsivity functions

    Energy Technology Data Exchange (ETDEWEB)

    Lester, A. [Smith College, Northampton, MA 01063 (United States); Myers, D.R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2006-03-15

    Accurate global solar radiation measurements are crucial to climate change research and the development of solar energy technologies. Pyranometers produce an electrical signal proportional to global irradiance. The signal-to-irradiance ratio is the responsivity (RS) of the instrument (RS=signal/irradiance=microvolts/(W/m{sup 2})). Most engineering measurements are made using a constant RS. It is known that RS varies with day of year, zenith angle, and net infrared radiation. This study proposes a method to find an RS function to model a pyranometer's changing RS. Using a reference irradiance calculated from direct and diffuse instruments, we found instantaneous RS for two global pyranometers over 31 sunny days in a two-year period. We performed successive independent regressions of the error between the constant and instantaneous RS with respect to zenith angle, day of year, and net infrared to obtain an RS function. An alternative method replaced the infrared regression with an independently developed technique to account for thermal offset. Results show improved uncertainties with the function method than with the single-calibration value. Lower uncertainties also occur using a black-and-white (8-48), rather than all-black (PSP), shaded pyranometer as the diffuse reference instrument. We conclude that the function method is extremely effective in reducing uncertainty in the irradiance measurements for global PSP pyranometers if they are calibrated at the deployment site. Furthermore, it was found that the function method accounts for the pyranometer's thermal offset, rendering further corrections unnecessary. The improvements in irradiance data achieved in this study will serve to increase the accuracy of solar energy assessments and atmospheric research. (author)

  12. Virtual Reference, Real Money: Modeling Costs in Virtual Reference Services

    Science.gov (United States)

    Eakin, Lori; Pomerantz, Jeffrey

    2009-01-01

    Libraries nationwide are in yet another phase of belt tightening. Without an understanding of the economic factors that influence library operations, however, controlling costs and performing cost-benefit analyses on services is difficult. This paper describes a project to develop a cost model for collaborative virtual reference services. This…

  13. Historical change in fish species distribution: shifting reference conditions and global warming effects.

    Science.gov (United States)

    Pont, Didier; Logez, M; Carrel, G; Rogers, C; Haidvogl, G

    Species distributions models (SDM) that rely on estimated relationships between present environmental conditions and species presence-absence are widely used to forecast changes of species distributions caused by global warming but far less to reconstruct historical assemblages. By compiling historical fish data from the turn to the middle of the twentieth century in a similar way for several European catchments (Rhône, Danube), and using already published SDMs based on current observations, we: (1) tested the predictive accuracy of such models for past climatic conditions, (2) compared observed and expected cumulated historical species occurrences at sub-catchment level, and (3) compared the annual variability in the predictions within one sub-catchment (Salzach) under a future climate scenario to the long-term variability of occurrences reconstructed during an extended historical period (1800-2000). We finally discuss the potential of these SDMs to define a "reference condition", the possibility of a shift in baseline condition in relation with anthropogenic pressures, and past and future climate variability. The results of this study clearly highlight the potential of SDM to reconstruct the past composition of European fish assemblages and to analyze the historical ecological status of European rivers. Assessing the uncertainty associated with species distribution projections is of primary importance before evaluating and comparing the past and future distribution of species within a given catchment.

  14. Prospects for improving the representation of coastal and shelf seas in global ocean models

    Science.gov (United States)

    Holt, Jason; Hyder, Patrick; Ashworth, Mike; Harle, James; Hewitt, Helene T.; Liu, Hedong; New, Adrian L.; Pickles, Stephen; Porter, Andrew; Popova, Ekaterina; Icarus Allen, J.; Siddorn, John; Wood, Richard

    2017-02-01

    multiscale modelling options (e.g. finite element, finite volume or a two-way nesting approach), we consider a simple scale analysis and a conceptual grid refining approach. We put this analysis in the context of evolving computer systems, discussing model turnaround time, scalability and resource costs. Using a simple cost model compared to a reference configuration (taken to be a 1/4° global model in 2011) and the increasing performance of the UK Research Councils' computer facility, we estimate an unstructured mesh multiscale approach, resolving process scales down to 1.5 km, would use a comparable share of the computer resource by 2021, the two-way nested multiscale approach by 2022, and a 1/72° global model by 2026. However, we also note that a 1/12° global model would not have a comparable computational cost to a 1° global model in 2017 until 2027. Hence, we conclude that for computationally expensive models (e.g. for oceanographic research or operational oceanography), resolving scales to ˜ 1.5 km would be routinely practical in about a decade given substantial effort on numerical and computational development. For complex Earth system models, this extends to about 2 decades, suggesting the focus here needs to be on improved process parameterisation to meet these challenges.

  15. Effect of reference loads on fracture mechanics analysis of surface cracked pipe based on reference stress method

    International Nuclear Information System (INIS)

    Shim, Do Jun; Son, Beom Goo; Kim, Young Jin; Kim, Yun Jae

    2004-01-01

    To investigate relevance of the definition of the reference stress to estimate J and C * for surface crack problems, this paper compares FE J and C * results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (I) the local limit load, (II) the global limit load, (III) the global limit load determined from the FE limit analysis, and (IV) the optimised reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and C * . Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and C * . The use of the FE global limit load gives overall non-conservative estimates of J and C * . The reference stress based on the optimised reference load gives overall accurate estimates of J and C * , compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given

  16. On the Assessment of Global Terrestrial Reference Frame Temporal Variations

    Science.gov (United States)

    Ampatzidis, Dimitrios; Koenig, Rolf; Zhu, Shengyuan

    2015-04-01

    Global Terrestrial Reference Frames (GTRFs) as the International Terrestrial Reference Frame (ITRF) provide reliable 4-D position information (3-D coordinates and their evolution through time). The given 3-D velocities play a significant role in precise position acquisition and are estimated from long term coordinate time series from the space-geodetic techniques DORIS, GNSS, SLR, and VLBI. GTRFs temporal evolution is directly connected with their internal stability: The more intense and inhomogeneous velocity field, the less stable TRF is derived. The assessment of the quality of the GTRF is mainly realized by comparing it to each individual technique's reference frame. E.g the comparison of GTRFs to SLR-only based TRF gives the sense of the ITRF stability with respect to the Geocenter and scale and their associated rates respectively. In addition, the comparison of ITRF to the VLBI-only based TRF can be used for the scale validation. However, till now there is not any specified methodology for the total assessment (in terms of origin, orientation and scale respectively) of the temporal evolution and GTRFs associated accuracy. We present a new alternative diagnostic tool for the assessment of GTRFs temporal evolution based on the well-known time-dependent Helmert type transformation formula (three shifts, three rotations and scale rates respectively). The advantage of the new methodology relies on the fact that it uses the full velocity field of the TRF and therefore all points not just the ones common to different techniques. It also examines simultaneously rates of origin, orientation and scale. The methodology is presented and implemented to the two existing GTRFs on the market (ITRF and DTRF which is computed from DGFI) , the results are discussed. The results also allow to compare directly each GTRF dynamic behavior. Furthermore, the correlations of the estimated parameters can also provide useful information to the proposed GTRFs assessment scheme.

  17. Global Atmosphere Watch Workshop on Measurement-Model ...

    Science.gov (United States)

    The World Meteorological Organization’s (WMO) Global Atmosphere Watch (GAW) Programme coordinates high-quality observations of atmospheric composition from global to local scales with the aim to drive high-quality and high-impact science while co-producing a new generation of products and services. In line with this vision, GAW’s Scientific Advisory Group for Total Atmospheric Deposition (SAG-TAD) has a mandate to produce global maps of wet, dry and total atmospheric deposition for important atmospheric chemicals to enable research into biogeochemical cycles and assessments of ecosystem and human health effects. The most suitable scientific approach for this activity is the emerging technique of measurement-model fusion for total atmospheric deposition. This technique requires global-scale measurements of atmospheric trace gases, particles, precipitation composition and precipitation depth, as well as predictions of the same from global/regional chemical transport models. The fusion of measurement and model results requires data assimilation and mapping techniques. The objective of the GAW Workshop on Measurement-Model Fusion for Global Total Atmospheric Deposition (MMF-GTAD), an initiative of the SAG-TAD, was to review the state-of-the-science and explore the feasibility and methodology of producing, on a routine retrospective basis, global maps of atmospheric gas and aerosol concentrations as well as wet, dry and total deposition via measurement-model

  18. Reference Inflow Characterization for River Resource Reference Model (RM2)

    Energy Technology Data Exchange (ETDEWEB)

    Neary, Vincent S [ORNL

    2011-12-01

    Sandia National Laboratory (SNL) is leading an effort to develop reference models for marine and hydrokinetic technologies and wave and current energy resources. This effort will allow the refinement of technology design tools, accurate estimates of a baseline levelized cost of energy (LCoE), and the identification of the main cost drivers that need to be addressed to achieve a competitive LCoE. As part of this effort, Oak Ridge National Laboratory was charged with examining and reporting reference river inflow characteristics for reference model 2 (RM2). Published turbulent flow data from large rivers, a water supply canal and laboratory flumes, are reviewed to determine the range of velocities, turbulence intensities and turbulent stresses acting on hydrokinetic technologies, and also to evaluate the validity of classical models that describe the depth variation of the time-mean velocity and turbulent normal Reynolds stresses. The classical models are found to generally perform well in describing river inflow characteristics. A potential challenge in river inflow characterization, however, is the high variability of depth and flow over the design life of a hydrokinetic device. This variation can have significant effects on the inflow mean velocity and turbulence intensity experienced by stationary and bottom mounted hydrokinetic energy conversion devices, which requires further investigation, but are expected to have minimal effects on surface mounted devices like the vertical axis turbine device designed for RM2. A simple methodology for obtaining an approximate inflow characterization for surface deployed devices is developed using the relation umax=(7/6)V where V is the bulk velocity and umax is assumed to be the near-surface velocity. The application of this expression is recommended for deriving the local inflow velocity acting on the energy extraction planes of the RM2 vertical axis rotors, where V=Q/A can be calculated given a USGS gage flow time

  19. Ozone impacts of gas-aerosol uptake in global chemistry transport models

    Science.gov (United States)

    Stadtler, Scarlet; Simpson, David; Schröder, Sabine; Taraborrelli, Domenico; Bott, Andreas; Schultz, Martin

    2018-03-01

    The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are

  20. Towards a Reference Architecture to Provision Tools as a Service for Global Software Development

    DEFF Research Database (Denmark)

    Chauhan, Aufeef; Babar, Muhammad Ali

    2014-01-01

    Organizations involve in Global Software Development (GSD) face challenges in terms of having access to appropriate set of tools for performing distributed engineering and development activities, integration between heterogeneous desktop and web-based tools, management of artifacts developed...... distributed environment. In this paper, we argue the need to have a cloud-enabled platform for supporting GSD and propose reference architecture of a cloud based Platform for providing support to provision ecosystem of the Tools as a Service (PTaaS)....

  1. Charging of mobile services by mobile payment reference model

    OpenAIRE

    Pousttchi, Key; Wiedemann, Dietmar Georg

    2005-01-01

    The purpose of the paper is to analyze mobile payments in the mobile commerce scenario. Therefore, we first classify the mobile payment in the mobile commerce scenario by explaining general offer models, charging concepts, and intermediaries. Second, we describe the mobile payment reference model, especially, the mobile payment reference organization model and different mobile payment standard types. Finally, we conclude our findings.

  2. On global and regional spectral evaluation of global geopotential models

    International Nuclear Information System (INIS)

    Ustun, A; Abbak, R A

    2010-01-01

    Spectral evaluation of global geopotential models (GGMs) is necessary to recognize the behaviour of gravity signal and its error recorded in spherical harmonic coefficients and associated standard deviations. Results put forward in this wise explain the whole contribution of gravity data in different kinds that represent various sections of the gravity spectrum. This method is more informative than accuracy assessment methods, which use external data such as GPS-levelling. Comparative spectral evaluation for more than one model can be performed both in global and local sense using many spectral tools. The number of GGMs has grown with the increasing number of data collected by the dedicated satellite gravity missions, CHAMP, GRACE and GOCE. This fact makes it necessary to measure the differences between models and to monitor the improvements in the gravity field recovery. In this paper, some of the satellite-only and combined models are examined in different scales, globally and regionally, in order to observe the advances in the modelling of GGMs and their strengths at various expansion degrees for geodetic and geophysical applications. The validation of the published errors of model coefficients is a part of this evaluation. All spectral tools explicitly reveal the superiority of the GRACE-based models when compared against the models that comprise the conventional satellite tracking data. The disagreement between models is large in local/regional areas if data sets are different, as seen from the example of the Turkish territory

  3. Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; Blyth, Eleanor; de Roo, Ad; DöLl, Petra; Ek, Mike; Famiglietti, James; Gochis, David; van de Giesen, Nick; Houser, Paul; Jaffé, Peter R.; Kollet, Stefan; Lehner, Bernhard; Lettenmaier, Dennis P.; Peters-Lidard, Christa; Sivapalan, Murugesu; Sheffield, Justin; Wade, Andrew; Whitehead, Paul

    2011-05-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (˜10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 109 unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a "grand challenge" to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  4. Hyperresolution Global Land Surface Modeling: Meeting a Grand Challenge for Monitoring Earth's Terrestrial Water

    Science.gov (United States)

    Wood, Eric F.; Roundy, Joshua K.; Troy, Tara J.; van Beek, L. P. H.; Bierkens, Marc F. P.; 4 Blyth, Eleanor; de Roo, Ad; Doell. Petra; Ek, Mike; Famiglietti, James; hide

    2011-01-01

    Monitoring Earth's terrestrial water conditions is critically important to many hydrological applications such as global food production; assessing water resources sustainability; and flood, drought, and climate change prediction. These needs have motivated the development of pilot monitoring and prediction systems for terrestrial hydrologic and vegetative states, but to date only at the rather coarse spatial resolutions (approx.10-100 km) over continental to global domains. Adequately addressing critical water cycle science questions and applications requires systems that are implemented globally at much higher resolutions, on the order of 1 km, resolutions referred to as hyperresolution in the context of global land surface models. This opinion paper sets forth the needs and benefits for a system that would monitor and predict the Earth's terrestrial water, energy, and biogeochemical cycles. We discuss six major challenges in developing a system: improved representation of surface-subsurface interactions due to fine-scale topography and vegetation; improved representation of land-atmospheric interactions and resulting spatial information on soil moisture and evapotranspiration; inclusion of water quality as part of the biogeochemical cycle; representation of human impacts from water management; utilizing massively parallel computer systems and recent computational advances in solving hyperresolution models that will have up to 10(exp 9) unknowns; and developing the required in situ and remote sensing global data sets. We deem the development of a global hyperresolution model for monitoring the terrestrial water, energy, and biogeochemical cycles a grand challenge to the community, and we call upon the international hydrologic community and the hydrological science support infrastructure to endorse the effort.

  5. The 3D Reference Earth Model: Status and Preliminary Results

    Science.gov (United States)

    Moulik, P.; Lekic, V.; Romanowicz, B. A.

    2017-12-01

    In the 20th century, seismologists constructed models of how average physical properties (e.g. density, rigidity, compressibility, anisotropy) vary with depth in the Earth's interior. These one-dimensional (1D) reference Earth models (e.g. PREM) have proven indispensable in earthquake location, imaging of interior structure, understanding material properties under extreme conditions, and as a reference in other fields, such as particle physics and astronomy. Over the past three decades, new datasets motivated more sophisticated efforts that yielded models of how properties vary both laterally and with depth in the Earth's interior. Though these three-dimensional (3D) models exhibit compelling similarities at large scales, differences in the methodology, representation of structure, and dataset upon which they are based, have prevented the creation of 3D community reference models. As part of the REM-3D project, we are compiling and reconciling reference seismic datasets of body wave travel-time measurements, fundamental mode and overtone surface wave dispersion measurements, and normal mode frequencies and splitting functions. These reference datasets are being inverted for a long-wavelength, 3D reference Earth model that describes the robust long-wavelength features of mantle heterogeneity. As a community reference model with fully quantified uncertainties and tradeoffs and an associated publically available dataset, REM-3D will facilitate Earth imaging studies, earthquake characterization, inferences on temperature and composition in the deep interior, and be of improved utility to emerging scientific endeavors, such as neutrino geoscience. Here, we summarize progress made in the construction of the reference long period dataset and present a preliminary version of REM-3D in the upper-mantle. In order to determine the level of detail warranted for inclusion in REM-3D, we analyze the spectrum of discrepancies between models inverted with different subsets of the

  6. Ionosonde-based indices for improved representation of solar cycle variation in the International Reference Ionosphere model

    Science.gov (United States)

    Brown, Steven; Bilitza, Dieter; Yiǧit, Erdal

    2018-06-01

    A new monthly ionospheric index, IGNS, is presented to improve the representation of the solar cycle variation of the ionospheric F2 peak plasma frequency, foF2. IGNS is calculated using a methodology similar to the construction of the "global effective sunspot number", IG, given by Liu et al. (1983) but selects ionosonde observations based on hemispheres. We incorporated the updated index into the International Reference Ionosphere (IRI) model and compared the foF2 model predictions with global ionospheric observations. We also investigated the influence of the underlying foF2 model on the IG index. IRI has two options for foF2 specification, the CCIR-66 and URSI-88 foF2 models. For the first time, we have calculated IG using URSI-88 and assessed the impact on model predictions. Through a retrospective model-data comparison, results show that the inclusion of the new monthly IGNS index in place of the current 12-month smoothed IG index reduce the foF2 model prediction errors by nearly a factor of two. These results apply to both day-time and nightime predictions. This is due to an overall improved prediction of foF2 seasonal and solar cycle variations in the different hemispheres.

  7. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  8. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data

    Science.gov (United States)

    Wessel, Birgit; Huber, Martin; Wohlfart, Christian; Marschalk, Ursula; Kosmann, Detlev; Roth, Achim

    2018-05-01

    The primary goal of the German TanDEM-X mission is the generation of a highly accurate and global Digital Elevation Model (DEM) with global accuracies of at least 10 m absolute height error (linear 90% error). The global TanDEM-X DEM acquired with single-pass SAR interferometry was finished in September 2016. This paper provides a unique accuracy assessment of the final TanDEM-X global DEM using two different GPS point reference data sets, which are distributed across all continents, to fully characterize the absolute height error. Firstly, the absolute vertical accuracy is examined by about three million globally distributed kinematic GPS (KGPS) points derived from 19 KGPS tracks covering a total length of about 66,000 km. Secondly, a comparison is performed with more than 23,000 "GPS on Bench Marks" (GPS-on-BM) points provided by the US National Geodetic Survey (NGS) scattered across 14 different land cover types of the US National Land Cover Data base (NLCD). Both GPS comparisons prove an absolute vertical mean error of TanDEM-X DEM smaller than ±0.20 m, a Root Means Square Error (RMSE) smaller than 1.4 m and an excellent absolute 90% linear height error below 2 m. The RMSE values are sensitive to land cover types. For low vegetation the RMSE is ±1.1 m, whereas it is slightly higher for developed areas (±1.4 m) and for forests (±1.8 m). This validation confirms an outstanding absolute height error at 90% confidence level of the global TanDEM-X DEM outperforming the requirement by a factor of five. Due to its extensive and globally distributed reference data sets, this study is of considerable interests for scientific and commercial applications.

  9. Requirements for data integration platforms in biomedical research networks: a reference model.

    Science.gov (United States)

    Ganzinger, Matthias; Knaup, Petra

    2015-01-01

    Biomedical research networks need to integrate research data among their members and with external partners. To support such data sharing activities, an adequate information technology infrastructure is necessary. To facilitate the establishment of such an infrastructure, we developed a reference model for the requirements. The reference model consists of five reference goals and 15 reference requirements. Using the Unified Modeling Language, the goals and requirements are set into relation to each other. In addition, all goals and requirements are described textually in tables. This reference model can be used by research networks as a basis for a resource efficient acquisition of their project specific requirements. Furthermore, a concrete instance of the reference model is described for a research network on liver cancer. The reference model is transferred into a requirements model of the specific network. Based on this concrete requirements model, a service-oriented information technology architecture is derived and also described in this paper.

  10. Study and design of safety assessment model based on H12 reference case using GoldSim

    International Nuclear Information System (INIS)

    Nakajima, Kunihiko; Koo, Shigeru; Ebina, Takanori; Ebashi, Takeshi; Inagaki, Manabu

    2009-07-01

    Reference case of safety assessment analysis at the H12 report was calculated using the numerical code MESHNOTE and MATRICS mainly. On the other hand, recently general simulation software witch has a character of object-oriented is globally used and the numerical code GoldSim is typical software. After the H12 report, probability theory analysis and sensitivity analysis using GoldSim have carried out by statistical method for the purpose of following up safety assessment analysis at the H12 report. On this report, details of the method for the model design using GoldSim are summarized, and to confirm calculation reproducibility, verification between the H12 report and GoldSim results were carried out. And the guide book of calculation method using GoldSim is maintained for other investigators at JAEA who want to calculate reference case on the H12 report. In the future, application resources on this report will be able to upgrade probability theory analysis and other conceptual models. (author)

  11. 2-D model of global aerosol transport

    Energy Technology Data Exchange (ETDEWEB)

    Rehkopf, J; Newiger, M; Grassl, H

    1984-01-01

    The distribution of aerosol particles in the troposphere is described. Starting with long term mean seasonal flow and diffusivities as well as temperature, cloud distribution (six cloud classes), relative humidity and OH radical concentration, the steady state concentration of aerosol particles and SO/sub 2/ are calculated in a two-dimensional global (height and latitude) model. The following sources and sinks for particles are handled: direct emission, gas-to-particle conversion from SO/sub 2/, coagulation, rainout, washout, gravitational settling, and dry deposition. The sinks considered for sulphur emissions are dry deposition, washout, rainout, gasphase oxidation, and aqueous phase oxidation. Model tests with the water vapour cycle show a good agreement between measured and calculated zonal mean precipitation distribution. The steady state concentration distribution for natural emissions reached after 10 weeks model time, may be described by a mean exponent ..cap alpha.. = 3.2 near the surface assuming a modified Junge distribution and an increased value, ..cap alpha.. = 3.7, for the combined natural and man-made emission. The maximum ground level concentrations are 2000 and 10,000 particules cm/sup -3/ for natural and natural plus man-made emissions, respectively. The resulting distribution of sulphur dioxide agrees satisfactorily with measurements given by several authors. 37 references, 4 figures.

  12. A 'Global Reference' Comparator for Biosimilar Development.

    Science.gov (United States)

    Webster, Christopher J; Woollett, Gillian R

    2017-08-01

    Major drug regulators have indicated in guidance their flexibility to accept some development data for biosimilars generated with reference product versions licensed outside their own jurisdictions, but most authorities require new bridging studies between these versions and the versions of them licensed locally. The costs of these studies are not trivial in absolute terms and, due to the multiplier effect of required repetition by each biosimilar sponsor, their collective costs are substantial. Yet versions of biologics licensed in different jurisdictions usually share the same development data, and any manufacturing changes between versions have been justified by a rigorous comparability process. The fact that a biosimilar is usually expected to be licensed in multiple jurisdictions, in each case as similar to the local reference product, confirms that minor analytical differences between versions of reference biologics are typically inconsequential for clinical outcomes and licensing. A greatly simplified basis for selecting a reference comparator, that does not require conducting new bridging studies, is proposed and justified based on the shared data of the reference product versions as well as the proof offered where biosimilars have already been approved. The relevance of this proposal to the interchangeability designation available in the US is discussed.

  13. A reference model for model-based design of critical infrastructure protection systems

    Science.gov (United States)

    Shin, Young Don; Park, Cheol Young; Lee, Jae-Chon

    2015-05-01

    Today's war field environment is getting versatile as the activities of unconventional wars such as terrorist attacks and cyber-attacks have noticeably increased lately. The damage caused by such unconventional wars has also turned out to be serious particularly if targets are critical infrastructures that are constructed in support of banking and finance, transportation, power, information and communication, government, and so on. The critical infrastructures are usually interconnected to each other and thus are very vulnerable to attack. As such, to ensure the security of critical infrastructures is very important and thus the concept of critical infrastructure protection (CIP) has come. The program to realize the CIP at national level becomes the form of statute in each country. On the other hand, it is also needed to protect each individual critical infrastructure. The objective of this paper is to study on an effort to do so, which can be called the CIP system (CIPS). There could be a variety of ways to design CIPS's. Instead of considering the design of each individual CIPS, a reference model-based approach is taken in this paper. The reference model represents the design of all the CIPS's that have many design elements in common. In addition, the development of the reference model is also carried out using a variety of model diagrams. The modeling language used therein is the systems modeling language (SysML), which was developed and is managed by Object Management Group (OMG) and a de facto standard. Using SysML, the structure and operational concept of the reference model are designed to fulfil the goal of CIPS's, resulting in the block definition and activity diagrams. As a case study, the operational scenario of the nuclear power plant while being attacked by terrorists is studied using the reference model. The effectiveness of the results is also analyzed using multiple analysis models. It is thus expected that the approach taken here has some merits

  14. Estimation of Atmospheric Methane Surface Fluxes Using a Global 3-D Chemical Transport Model

    Science.gov (United States)

    Chen, Y.; Prinn, R.

    2003-12-01

    Accurate determination of atmospheric methane surface fluxes is an important and challenging problem in global biogeochemical cycles. We use inverse modeling to estimate annual, seasonal, and interannual CH4 fluxes between 1996 and 2001. The fluxes include 7 time-varying seasonal (3 wetland, rice, and 3 biomass burning) and 3 steady aseasonal (animals/waste, coal, and gas) global processes. To simulate atmospheric methane, we use the 3-D chemical transport model MATCH driven by NCEP reanalyzed observed winds at a resolution of T42 ( ˜2.8° x 2.8° ) in the horizontal and 28 levels (1000 - 3 mb) in the vertical. By combining existing datasets of individual processes, we construct a reference emissions field that represents our prior guess of the total CH4 surface flux. For the methane sink, we use a prescribed, annually-repeating OH field scaled to fit methyl chloroform observations. MATCH is used to produce both the reference run from the reference emissions, and the time-dependent sensitivities that relate individual emission processes to observations. The observational data include CH4 time-series from ˜15 high-frequency (in-situ) and ˜50 low-frequency (flask) observing sites. Most of the high-frequency data, at a time resolution of 40-60 minutes, have not previously been used in global scale inversions. In the inversion, the high-frequency data generally have greater weight than the weekly flask data because they better define the observational monthly means. The Kalman Filter is used as the optimal inversion technique to solve for emissions between 1996-2001. At each step in the inversion, new monthly observations are utilized and new emissions estimates are produced. The optimized emissions represent deviations from the reference emissions that lead to a better fit to the observations. The seasonal processes are optimized for each month, and contain the methane seasonality and interannual variability. The aseasonal processes, which are less variable, are

  15. Related work on reference modeling for collaborative networks

    NARCIS (Netherlands)

    Afsarmanesh, H.; Camarinha-Matos, L.M.; Camarinha-Matos, L.M.; Afsarmanesh, H.

    2008-01-01

    Several international research and development initiatives have led to development of models for organizations and organization interactions. These models and their approaches constitute a background for development of reference models for collaborative networks. A brief survey of work on modeling

  16. USING GEM - GLOBAL ECONOMIC MODEL IN ACHIEVING A GLOBAL ECONOMIC FORECAST

    Directory of Open Access Journals (Sweden)

    Camelia Madalina Orac

    2013-12-01

    Full Text Available The global economic development model has proved to be insufficiently reliable under the new economic crisis. As a result, the entire theoretical construction about the global economy needs rethinking and reorientation. In this context, it is quite clear that only through effective use of specific techniques and tools of economic-mathematical modeling, statistics, regional analysis and economic forecasting it is possible to obtain an overview of the future economy.

  17. Reference model analysis of suitability for logistics management

    Directory of Open Access Journals (Sweden)

    Cezary Mańkowski

    2011-12-01

    Full Text Available Reference models are one of the many instruments aspiring to find into a set of different concepts, methods and techniques used in managing the logistics. Therefore, the aim of this paper is to present the results of assessing the suitability of reference models for solving logistical problems. This evaluation indicates that they are universal, support the realization of all the logistics management function in various areas, such as logistics of manufacturing glass products.

  18. A high-resolution global flood hazard model

    Science.gov (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  19. The cost of model reference adaptive control - Analysis, experiments, and optimization

    Science.gov (United States)

    Messer, R. S.; Haftka, R. T.; Cudney, H. H.

    1993-01-01

    In this paper the performance of Model Reference Adaptive Control (MRAC) is studied in numerical simulations and verified experimentally with the objective of understanding how differences between the plant and the reference model affect the control effort. MRAC is applied analytically and experimentally to a single degree of freedom system and analytically to a MIMO system with controlled differences between the model and the plant. It is shown that the control effort is sensitive to differences between the plant and the reference model. The effects of increased damping in the reference model are considered, and it is shown that requiring the controller to provide increased damping actually decreases the required control effort when differences between the plant and reference model exist. This result is useful because one of the first attempts to counteract the increased control effort due to differences between the plant and reference model might be to require less damping, however, this would actually increase the control effort. Optimization of weighting matrices is shown to help reduce the increase in required control effort. However, it was found that eventually the optimization resulted in a design that required an extremely high sampling rate for successful realization.

  20. A high resolution global scale groundwater model

    Science.gov (United States)

    de Graaf, Inge; Sutanudjaja, Edwin; van Beek, Rens; Bierkens, Marc

    2014-05-01

    As the world's largest accessible source of freshwater, groundwater plays a vital role in satisfying the basic needs of human society. It serves as a primary source of drinking water and supplies water for agricultural and industrial activities. During times of drought, groundwater storage provides a large natural buffer against water shortage and sustains flows to rivers and wetlands, supporting ecosystem habitats and biodiversity. Yet, the current generation of global scale hydrological models (GHMs) do not include a groundwater flow component, although it is a crucial part of the hydrological cycle. Thus, a realistic physical representation of the groundwater system that allows for the simulation of groundwater head dynamics and lateral flows is essential for GHMs that increasingly run at finer resolution. In this study we present a global groundwater model with a resolution of 5 arc-minutes (approximately 10 km at the equator) using MODFLOW (McDonald and Harbaugh, 1988). With this global groundwater model we eventually intend to simulate the changes in the groundwater system over time that result from variations in recharge and abstraction. Aquifer schematization and properties of this groundwater model were developed from available global lithological maps and datasets (Dürr et al., 2005; Gleeson et al., 2010; Hartmann and Moosdorf, 2013), combined with our estimate of aquifer thickness for sedimentary basins. We forced the groundwater model with the output from the global hydrological model PCR-GLOBWB (van Beek et al., 2011), specifically the net groundwater recharge and average surface water levels derived from routed channel discharge. For the parameterization, we relied entirely on available global datasets and did not calibrate the model so that it can equally be expanded to data poor environments. Based on our sensitivity analysis, in which we run the model with various hydrogeological parameter settings, we observed that most variance in groundwater

  1. Fast tracking ICT infrastructure requirements and design, based on Enterprise Reference Architecture and matching Reference Models

    DEFF Research Database (Denmark)

    Bernus, Peter; Baltrusch, Rob; Vesterager, Johan

    2002-01-01

    The Globemen Consortium has developed the virtual enterprise reference architecture and methodology (VERAM), based on GERAM and developed reference models for virtual enterprise management and joint mission delivery. The planned virtual enterprise capability includes the areas of sales...

  2. Generating Ground Reference Data for a Global Impervious Surface Survey

    Science.gov (United States)

    Tilton, James C.; deColstoun, Eric Brown; Wolfe, Robert E.; Tan, Bin; Huang, Chengquan

    2012-01-01

    We are engaged in a project to produce a 30m impervious cover data set of the entire Earth for the years 2000 and 2010 based on the Landsat Global Land Survey (GLS) data set. The GLS data from Landsat provide an unprecedented opportunity to map global urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such as buildings, roads and parking lots. Finally, with GLS data available for the 1975, 1990, 2000, and 2005 time periods, and soon for the 2010 period, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. Our approach works across spatial scales using very high spatial resolution commercial satellite data to both produce and evaluate continental scale products at the 30m spatial resolution of Landsat data. We are developing continental scale training data at 1m or so resolution and aggregating these to 30m for training a regression tree algorithm. Because the quality of the input training data are critical, we have developed an interactive software tool, called HSegLearn, to facilitate the photo-interpretation of high resolution imagery data, such as Quickbird or Ikonos data, into an impervious versus non-impervious map. Previous work has shown that photo-interpretation of high resolution data at 1 meter resolution will generate an accurate 30m resolution ground reference when coarsened to that resolution. Since this process can be very time consuming when using standard clustering classification algorithms, we are looking at image segmentation as a potential avenue to not only improve the training process but also provide a semi-automated approach for generating the ground reference data. HSegLearn takes as its input a hierarchical set of image segmentations produced by the HSeg image segmentation program [1, 2]. HSegLearn lets an analyst specify pixel locations as being

  3. OWL references in ORM conceptual modelling

    Science.gov (United States)

    Matula, Jiri; Belunek, Roman; Hunka, Frantisek

    2017-07-01

    Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.

  4. Selection of References in Wind Turbine Model Predictive Control Design

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Hovgaard, Tobias

    2015-01-01

    a model predictive controller for a wind turbine. One of the important aspects for a tracking control problem is how to setup the optimal reference tracking problem, as it might be relevant to track, e.g., the three concurrent references: optimal pitch angle, optimal rotational speed, and optimal power......Lowering the cost of energy is one of the major focus areas in the wind turbine industry. Recent research has indicated that wind turbine controllers based on model predictive control methods can be useful in obtaining this objective. A number of design considerations have to be made when designing....... The importance if the individual references differ depending in particular on the wind speed. In this paper we investigate the performance of a reference tracking model predictive controller with two different setups of the used optimal reference signals. The controllers are evaluated using an industrial high...

  5. A Global Stock and Bond Model

    OpenAIRE

    Connor, Gregory

    1996-01-01

    Factor models are now widely used to support asset selection decisions. Global asset allocation, the allocation between stocks versus bonds and among nations, usually relies instead on correlation analysis of international equity and bond indexes. It would be preferable to have a single integrated framework for both asset selection and asset allocation. This framework would require a factor model applicable at an asset or country level, as well as at a global level,...

  6. Analysis of the Diurnal Variation of the Global Electric Circuit Obtained From Different Numerical Models

    Science.gov (United States)

    Jánský, Jaroslav; Lucas, Greg M.; Kalb, Christina; Bayona, Victor; Peterson, Michael J.; Deierling, Wiebke; Flyer, Natasha; Pasko, Victor P.

    2017-12-01

    This work analyzes different current source and conductivity parameterizations and their influence on the diurnal variation of the global electric circuit (GEC). The diurnal variations of the current source parameterizations obtained using electric field and conductivity measurements from plane overflights combined with global Tropical Rainfall Measuring Mission satellite data give generally good agreement with measured diurnal variation of the electric field at Vostok, Antarctica, where reference experimental measurements are performed. An approach employing 85 GHz passive microwave observations to infer currents within the GEC is compared and shows the best agreement in amplitude and phase with experimental measurements. To study the conductivity influence, GEC models solving the continuity equation in 3-D are used to calculate atmospheric resistance using yearly averaged conductivity obtained from the global circulation model Community Earth System Model (CESM). Then, using current source parameterization combining mean currents and global counts of electrified clouds, if the exponential conductivity is substituted by the conductivity from CESM, the peak to peak diurnal variation of the ionospheric potential of the GEC decreases from 24% to 20%. The main reason for the change is the presence of clouds while effects of 222Rn ionization, aerosols, and topography are less pronounced. The simulated peak to peak diurnal variation of the electric field at Vostok is increased from 15% to 18% from the diurnal variation of the global current in the GEC if conductivity from CESM is used.

  7. Dynamics of global vegetation biomass simulated by the integrated Earth System Model

    Science.gov (United States)

    Mao, J.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.; Piao, S.; Yang, X.; Truesdale, J. E.; Bond-Lamberty, B. P.; Chini, L. P.; Thomson, A. M.; Hurtt, G. C.; Collins, W.; Edmonds, J.

    2014-12-01

    The global vegetation biomass stores huge amounts of carbon and is thus important to the global carbon budget (Pan et al., 2010). For the past few decades, different observation-based estimates and modeling of biomass in the above- and below-ground vegetation compartments have been comprehensively conducted (Saatchi et al., 2011; Baccini et al., 2012). However, uncertainties still exist, in particular for the simulation of biomass magnitude, tendency, and the response of biomass to climatic conditions and natural and human disturbances. The recently successful coupling of the integrated Earth System Model (iESM) (Di Vittorio et al., 2014; Bond-Lamberty et al., 2014), which links the Global Change Assessment Model (GCAM), Global Land-use Model (GLM), and Community Earth System Model (CESM), offers a great opportunity to understand the biomass-related dynamics in a fully-coupled natural and human modeling system. In this study, we focus on the systematic analysis and evaluation of the iESM simulated historical (1850-2005) and future (2006-2100) biomass changes and the response of the biomass dynamics to various impact factors, in particular the human-induced Land Use/Land Cover Change (LULCC). By analyzing the iESM simulations with and without the interactive LULCC feedbacks, we further study how and where the climate feedbacks affect socioeconomic decisions and LULCC, such as to alter vegetation carbon storage. References Pan Y et. al: A large and persistent carbon sink in the World's forests. Science 2011, 333:988-993. Saatchi SS et al: Benchmark map of forest carbon stocks in tropical regions across three continents. Proc Natl Acad Sci 2011, 108:9899-9904. Baccini A et al: Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Clim Change 2012, 2:182-185. Di Vittorio AV et al: From land use to land cover: restoring the afforestation signal in a coupled integrated assessment-earth system model and the implications for

  8. A Simple Model of Global Aerosol Indirect Effects

    Science.gov (United States)

    Ghan, Steven J.; Smith, Steven J.; Wang, Minghuai; Zhang, Kai; Pringle, Kirsty; Carslaw, Kenneth; Pierce, Jeffrey; Bauer, Susanne; Adams, Peter

    2013-01-01

    Most estimates of the global mean indirect effect of anthropogenic aerosol on the Earth's energy balance are from simulations by global models of the aerosol lifecycle coupled with global models of clouds and the hydrologic cycle. Extremely simple models have been developed for integrated assessment models, but lack the flexibility to distinguish between primary and secondary sources of aerosol. Here a simple but more physically based model expresses the aerosol indirect effect (AIE) using analytic representations of cloud and aerosol distributions and processes. Although the simple model is able to produce estimates of AIEs that are comparable to those from some global aerosol models using the same global mean aerosol properties, the estimates by the simple model are sensitive to preindustrial cloud condensation nuclei concentration, preindustrial accumulation mode radius, width of the accumulation mode, size of primary particles, cloud thickness, primary and secondary anthropogenic emissions, the fraction of the secondary anthropogenic emissions that accumulates on the coarse mode, the fraction of the secondary mass that forms new particles, and the sensitivity of liquid water path to droplet number concentration. Estimates of present-day AIEs as low as 5 W/sq m and as high as 0.3 W/sq m are obtained for plausible sets of parameter values. Estimates are surprisingly linear in emissions. The estimates depend on parameter values in ways that are consistent with results from detailed global aerosol-climate simulation models, which adds to understanding of the dependence on AIE uncertainty on uncertainty in parameter values.

  9. Global Reference Tables for Production Systems

    Data.gov (United States)

    Social Security Administration — This database is a collection of reference tables that store common information used throughout SSA. These tables standardized code structures and code usage of SSA...

  10. The status and challenge of global fire modelling

    Science.gov (United States)

    Hantson, Stijn; Arneth, Almut; Harrison, Sandy P.; Kelley, Douglas I.; Prentice, I. Colin; Rabin, Sam S.; Archibald, Sally; Mouillot, Florent; Arnold, Steve R.; Artaxo, Paulo; Bachelet, Dominique; Ciais, Philippe; Forrest, Matthew; Friedlingstein, Pierre; Hickler, Thomas; Kaplan, Jed O.; Kloster, Silvia; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stephane; Melton, Joe R.; Meyn, Andrea; Sitch, Stephen; Spessa, Allan; van der Werf, Guido R.; Voulgarakis, Apostolos; Yue, Chao

    2016-06-01

    Biomass burning impacts vegetation dynamics, biogeochemical cycling, atmospheric chemistry, and climate, with sometimes deleterious socio-economic impacts. Under future climate projections it is often expected that the risk of wildfires will increase. Our ability to predict the magnitude and geographic pattern of future fire impacts rests on our ability to model fire regimes, using either well-founded empirical relationships or process-based models with good predictive skill. While a large variety of models exist today, it is still unclear which type of model or degree of complexity is required to model fire adequately at regional to global scales. This is the central question underpinning the creation of the Fire Model Intercomparison Project (FireMIP), an international initiative to compare and evaluate existing global fire models against benchmark data sets for present-day and historical conditions. In this paper we review how fires have been represented in fire-enabled dynamic global vegetation models (DGVMs) and give an overview of the current state of the art in fire-regime modelling. We indicate which challenges still remain in global fire modelling and stress the need for a comprehensive model evaluation and outline what lessons may be learned from FireMIP.

  11. Development of a forecast model for global air traffic emissions

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Martin

    2012-07-01

    The thesis describes the methodology and results of a simulation model that quantifies fuel consumption and emissions of civil air traffic. Besides covering historical emissions, the model aims at forecasting emissions in the medium-term future. For this purpose, simulation models of aircraft and engine types are used in combination with a database of global flight movements and assumptions about traffic growth, fleet rollover and operational aspects. Results from an application of the model include emissions of scheduled air traffic for the years 2000 to 2010 as well as forecasted emissions until the year 2030. In a baseline scenario of the forecast, input assumptions (e.g. traffic growth rates) are in line with predictions by the aircraft industry. Considering the effects of advanced technologies of the short-term and medium-term future, the forecast focusses on fuel consumption and emissions of nitric oxides. Calculations for historical air traffic additionally cover emissions of carbon monoxide, unburned hydrocarbons and soot. Results are validated against reference data including studies by the International Civil Aviation Organization (ICAO) and simulation results from international research projects. (orig.)

  12. Towards dynamic reference information models: Readiness for ICT mass customisation

    NARCIS (Netherlands)

    Verdouw, C.N.; Beulens, A.J.M.; Trienekens, J.H.; Verwaart, D.

    2010-01-01

    Current dynamic demand-driven networks make great demands on, in particular, the interoperability and agility of information systems. This paper investigates how reference information models can be used to meet these demands by enhancing ICT mass customisation. It was found that reference models for

  13. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  14. Modeling of the Global Water Cycle - Analytical Models

    Science.gov (United States)

    Yongqiang Liu; Roni Avissar

    2005-01-01

    Both numerical and analytical models of coupled atmosphere and its underlying ground components (land, ocean, ice) are useful tools for modeling the global and regional water cycle. Unlike complex three-dimensional climate models, which need very large computing resources and involve a large number of complicated interactions often difficult to interpret, analytical...

  15. Validation of A Global Hydrological Model

    Science.gov (United States)

    Doell, P.; Lehner, B.; Kaspar, F.; Vassolo, S.

    Freshwater availability has been recognized as a global issue, and its consistent quan- tification not only in individual river basins but also at the global scale is required to support the sustainable use of water. The Global Hydrology Model WGHM, which is a submodel of the global water use and availability model WaterGAP 2, computes sur- face runoff, groundwater recharge and river discharge at a spatial resolution of 0.5. WGHM is based on the best global data sets currently available, including a newly developed drainage direction map and a data set of wetlands, lakes and reservoirs. It calculates both natural and actual discharge by simulating the reduction of river discharge by human water consumption (as computed by the water use submodel of WaterGAP 2). WGHM is calibrated against observed discharge at 724 gauging sta- tions (representing about 50% of the global land area) by adjusting a parameter of the soil water balance. It not only computes the long-term average water resources but also water availability indicators that take into account the interannual and seasonal variability of runoff and discharge. The reliability of the model results is assessed by comparing observed and simulated discharges at the calibration stations and at se- lected other stations. We conclude that reliable results can be obtained for basins of more than 20,000 km2. In particular, the 90% reliable monthly discharge is simu- lated well. However, there is the tendency that semi-arid and arid basins are modeled less satisfactorily than humid ones, which is partially due to neglecting river channel losses and evaporation of runoff from small ephemeral ponds in the model. Also, the hydrology of highly developed basins with large artificial storages, basin transfers and irrigation schemes cannot be simulated well. The seasonality of discharge in snow- dominated basins is overestimated by WGHM, and if the snow-dominated basin is uncalibrated, discharge is likely to be underestimated

  16. A Collaboration Service Model for a Global Port Cluster

    Directory of Open Access Journals (Sweden)

    Keith K.T. Toh

    2010-03-01

    Full Text Available The importance of port clusters to a global city may be viewed from a number of perspectives. The development of port clusters and economies of agglomeration and their contribution to a regional economy is underpinned by information and physical infrastructure that facilitates collaboration between business entities within the cluster. The maturity of technologies providing portals, web and middleware services provides an opportunity to push the boundaries of contemporary service reference models and service catalogues to what the authors propose to be "collaboration services". Servicing port clusters, portal engineers of the future must consider collaboration services to benefit a region. Particularly, service orchestration through a "public user portal" must gain better utilisation of publically owned infrastructure, to share knowledge and collaborate among organisations through information systems.

  17. Statistical models of global Langmuir mixing

    Science.gov (United States)

    Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean

    2017-05-01

    The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.

  18. Recent developments in intellectual property law in Australia with some reference to the global economy

    OpenAIRE

    Crennan, Susan

    2010-01-01

    This paper by Susan Crennan, Justice of the High Court of Australia, addresses developments in Australia in intellectual property law, with some reference to the global economy, and deals with two patent cases, two copyright cases and a designs case. The paper was original presented as a lecture at the Institute of Advanced Legal Studies and is published in Amicus Curiae - Journal of the Society for Advanced Legal Studies. The Journal is produced by the Society for Advanced Legal Studies at t...

  19. Reference Model 6 (RM6): Oscillating Wave Energy Converter.

    Energy Technology Data Exchange (ETDEWEB)

    Bull, Diana L; Smith, Chris; Jenne, Dale Scott; Jacob, Paul; Copping, Andrea; Willits, Steve; Fontaine, Arnold; Brefort, Dorian; Gordon, Margaret Ellen; Copeland, Robert; Jepsen, Richard Alan

    2014-10-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter reference model design in a complementary manner to Reference Models 1-4 contained in the above report. In this report, a conceptual design for an Oscillating Water Column Wave Energy Converter (WEC) device appropriate for the modeled reference resource site was identified, and a detailed backward bent duct buoy (BBDB) device design was developed using a combination of numerical modeling tools and scaled physical models. Our team used the methodology in SAND2013-9040 for the economic analysis that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays, up to 100 devices. The methodology was applied to identify key cost drivers and to estimate levelized cost of energy (LCOE) for this RM6 Oscillating Water Column device in dollars per kilowatt-hour ($/kWh). Although many costs were difficult to estimate at this time due to the lack of operational experience, the main contribution of this work was to disseminate a detailed set of methodologies and models that allow for an initial cost analysis of this emerging technology. This project is sponsored by the U.S. Department of Energy's (DOE) Wind and Water Power Technologies Program Office (WWPTO), within the Office of Energy Efficiency & Renewable Energy (EERE). Sandia National Laboratories, the lead in this effort, collaborated with partners from National Laboratories, industry, and universities to design and test this reference model.

  20. Modeling higher education attractiveness to stand global environment

    Directory of Open Access Journals (Sweden)

    Leonel Cezar Rodrigues

    2016-04-01

    Full Text Available Inabilities to deal with the changing environment may lead Higher Education Institutions (HEI to loose institutional attractiveness. Digital transformation requires global insertion as essential feature to institutional attractiveness. Processes for international education seem to lack the links between real environmental trends and the internal capabilities to global education. HEI managers may approach endeavors to internationalize education combining ambidextrous strategy supported by consolidated resilience capabilities. The latest ones refer to building internal value attributes to increase institutional attractiveness assuring solid standing in the global environment. In this article, a theoretical essay, we approach the problem of creating resilience as a way of backing up ambidexterity to generate institutional attractiveness. The set of value attributes, on the other hand, may originate strategic routes to strengthen internal competences and to make the institution more attractive, as a dynamic capability.

  1. GEM - The Global Earthquake Model

    Science.gov (United States)

    Smolka, A.

    2009-04-01

    Over 500,000 people died in the last decade due to earthquakes and tsunamis, mostly in the developing world, where the risk is increasing due to rapid population growth. In many seismic regions, no hazard and risk models exist, and even where models do exist, they are intelligible only by experts, or available only for commercial purposes. The Global Earthquake Model (GEM) answers the need for an openly accessible risk management tool. GEM is an internationally sanctioned public private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) which will establish an authoritative standard for calculating and communicating earthquake hazard and risk, and will be designed to serve as the critical instrument to support decisions and actions that reduce earthquake losses worldwide. GEM will integrate developments on the forefront of scientific and engineering knowledge of earthquakes, at global, regional and local scale. The work is organized in three modules: hazard, risk, and socio-economic impact. The hazard module calculates probabilities of earthquake occurrence and resulting shaking at any given location. The risk module calculates fatalities, injuries, and damage based on expected shaking, building vulnerability, and the distribution of population and of exposed values and facilities. The socio-economic impact module delivers tools for making educated decisions to mitigate and manage risk. GEM will be a versatile online tool, with open source code and a map-based graphical interface. The underlying data will be open wherever possible, and its modular input and output will be adapted to multiple user groups: scientists and engineers, risk managers and decision makers in the public and private sectors, and the public-at- large. GEM will be the first global model for seismic risk assessment at a national and regional scale, and aims to achieve broad scientific participation and independence. Its development will occur in a

  2. Technology Learning Ratios in Global Energy Models

    International Nuclear Information System (INIS)

    Varela, M.

    2001-01-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this trend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy system including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs

  3. Perceptual quality estimation of H.264/AVC videos using reduced-reference and no-reference models

    Science.gov (United States)

    Shahid, Muhammad; Pandremmenou, Katerina; Kondi, Lisimachos P.; Rossholm, Andreas; Lövström, Benny

    2016-09-01

    Reduced-reference (RR) and no-reference (NR) models for video quality estimation, using features that account for the impact of coding artifacts, spatio-temporal complexity, and packet losses, are proposed. The purpose of this study is to analyze a number of potentially quality-relevant features in order to select the most suitable set of features for building the desired models. The proposed sets of features have not been used in the literature and some of the features are used for the first time in this study. The features are employed by the least absolute shrinkage and selection operator (LASSO), which selects only the most influential of them toward perceptual quality. For comparison, we apply feature selection in the complete feature sets and ridge regression on the reduced sets. The models are validated using a database of H.264/AVC encoded videos that were subjectively assessed for quality in an ITU-T compliant laboratory. We infer that just two features selected by RR LASSO and two bitstream-based features selected by NR LASSO are able to estimate perceptual quality with high accuracy, higher than that of ridge, which uses more features. The comparisons with competing works and two full-reference metrics also verify the superiority of our models.

  4. Usefulness and limitations of global flood risk models

    Science.gov (United States)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Bates, Paul; De Groeve, Tom; Muis, Sanne; Coughlan de Perez, Erin; Rudari, Roberto; Mark, Trigg; Winsemius, Hessel

    2016-04-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742

  5. Regionalizing global climate models

    NARCIS (Netherlands)

    Pitman, A.J.; Arneth, A.; Ganzeveld, L.N.

    2012-01-01

    Global climate models simulate the Earth's climate impressively at scales of continents and greater. At these scales, large-scale dynamics and physics largely define the climate. At spatial scales relevant to policy makers, and to impacts and adaptation, many other processes may affect regional and

  6. Global identifiability of linear compartmental models--a computer algebra algorithm.

    Science.gov (United States)

    Audoly, S; D'Angiò, L; Saccomani, M P; Cobelli, C

    1998-01-01

    A priori global identifiability deals with the uniqueness of the solution for the unknown parameters of a model and is, thus, a prerequisite for parameter estimation of biological dynamic models. Global identifiability is however difficult to test, since it requires solving a system of algebraic nonlinear equations which increases both in nonlinearity degree and number of terms and unknowns with increasing model order. In this paper, a computer algebra tool, GLOBI (GLOBal Identifiability) is presented, which combines the topological transfer function method with the Buchberger algorithm, to test global identifiability of linear compartmental models. GLOBI allows for the automatic testing of a priori global identifiability of general structure compartmental models from general multi input-multi output experiments. Examples of usage of GLOBI to analyze a priori global identifiability of some complex biological compartmental models are provided.

  7. Globalization and Shanghai Model: A Retrospective and Prospective Analysis

    Directory of Open Access Journals (Sweden)

    Linsun Cheng

    2012-11-01

    Full Text Available Intended to shed light on the debate on the results of globalization and providebetter understanding of the influences of globalization upon China as well as theworld, this article traces the history of Shanghai’s economic globalization over thepast 170 years since 1843 and demonstrates the benefits and problems Shanghaireceived from (or connected to its economic globalization. Divided into threesections (Globalization, de-globalization and re-globalization of Shanghai’s economy;Manufacturing-Oriented vs. Tertiary-oriented—Shanghai’s Double PriorityStrategy of Economic Growth; Free market, state enterprises, and Shanghai’s mixedeconomy the article summarizes and analyzes several characteristics that madeShanghai a unique model in the history of globalization: In adapting and adoptinginevitable economic globalization, Shanghai created its unique model of economicdevelopment—widely embracing economic globalization; placing Shanghai’seconomy on a solid foundation of both strong modern manufacturing and strongtertiary industry (consisting of finance and insurance, real estate, transportations,post and telecommunication, wholesale and retailing; and creating a mixedeconomic structure with hybrid of private and state owned enterprises. TheShanghai model proves that globalization has been an unavoidable trend as scienceand technology have made the world “smaller” and “smaller.” Actively engaging intoeconomic globalization is the only way for Shanghai, as well as many developingcountries, to accelerate its economic growth.

  8. Reference Management Methodologies for Large Structural Models at Kennedy Space Center

    Science.gov (United States)

    Jones, Corey; Bingham, Ryan; Schmidt, Rick

    2011-01-01

    There have been many challenges associated with modeling some of NASA KSC's largest structures. Given the size of the welded structures here at KSC, it was critically important to properly organize model struc.ture and carefully manage references. Additionally, because of the amount of hardware to be installed on these structures, it was very important to have a means to coordinate between different design teams and organizations, check for interferences, produce consistent drawings, and allow for simple release processes. Facing these challenges, the modeling team developed a unique reference management methodology and model fidelity methodology. This presentation will describe the techniques and methodologies that were developed for these projects. The attendees will learn about KSC's reference management and model fidelity methodologies for large structures. The attendees will understand the goals of these methodologies. The attendees will appreciate the advantages of developing a reference management methodology.

  9. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  10. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation

    Science.gov (United States)

    Aschonitis, Vassilis G.; Papamichail, Dimitris; Demertzi, Kleoniki; Colombani, Nicolo; Mastrocicco, Micol; Ghirardini, Andrea; Castaldelli, Giuseppe; Fano, Elisa-Anna

    2017-08-01

    The objective of the study is to provide global grids (0.5°) of revised annual coefficients for the Priestley-Taylor (P-T) and Hargreaves-Samani (H-S) evapotranspiration methods after calibration based on the ASCE (American Society of Civil Engineers)-standardized Penman-Monteith method (the ASCE method includes two reference crops: short-clipped grass and tall alfalfa). The analysis also includes the development of a global grid of revised annual coefficients for solar radiation (Rs) estimations using the respective Rs formula of H-S. The analysis was based on global gridded climatic data of the period 1950-2000. The method for deriving annual coefficients of the P-T and H-S methods was based on partial weighted averages (PWAs) of their mean monthly values. This method estimates the annual values considering the amplitude of the parameter under investigation (ETo and Rs) giving more weight to the monthly coefficients of the months with higher ETo values (or Rs values for the case of the H-S radiation formula). The method also eliminates the effect of unreasonably high or low monthly coefficients that may occur during periods where ETo and Rs fall below a specific threshold. The new coefficients were validated based on data from 140 stations located in various climatic zones of the USA and Australia with expanded observations up to 2016. The validation procedure for ETo estimations of the short reference crop showed that the P-T and H-S methods with the new revised coefficients outperformed the standard methods reducing the estimated root mean square error (RMSE) in ETo values by 40 and 25 %, respectively. The estimations of Rs using the H-S formula with revised coefficients reduced the RMSE by 28 % in comparison to the standard H-S formula. Finally, a raster database was built consisting of (a) global maps for the mean monthly ETo values estimated by ASCE-standardized method for both reference crops, (b) global maps for the revised annual coefficients of the P

  11. Improved data for integrated modeling of global environmental change

    Science.gov (United States)

    Lotze-Campen, Hermann

    2011-12-01

    Ethiopia. Together with data from household studies, the new dataset could provide the basis for improved assessments of targeted infrastructure investment, which could help to reduce environmental degradation, promote economic development and alleviate poverty. References Alcamo J et al 1996 Baseline scenarios of global environmental change Glob. Environ. Change—Human Policy Dimens. 6 261-303 CIESIN, IFPRI and WRI 2000 Gridded Population of the World (GPW), Version 2 (available at http://sedac.ciesin.columbia.edu/plue/gpw, accessed March 2004) Erb K-H et al 2007 A comprehensive global 5 min resolution land-use data set for the year 2000 consistent with national census data J. Land Use Sci. 2 191-224 Heistermann M, Müller C and Ronneberger K 2006 Land in sight? Achievements, deficits and potentials of global land-use modeling Agric. Ecosyst. Environ. 114 141-58 Lambin E F and Meyfroidt P 2011 Global land use change, economic globalization, and the looming land scarcity Proc. Natl Acad. Sci. USA 108 3465-72 Leemans R et al 1996 The land cover and carbon cycle consequences of large-scale utilizations of biomass as an energy source Glob. Environ. Change 6 335-57 Lotze-Campen H, Reusswig F and Stoll-Kleemann S 2008 Socio-ecological monitoring of biodiversity change: building upon the world network of biosphere reserves GAIA—Ecological Perspectives for Science and Society 17 (Suppl. 1) 107-15 Nelson A 2008 Estimated travel time to the nearest city of 50,000 or more people in year 2000 (Ispra: Global Environment Monitoring Unit, Joint Research Centre of the European Commission) (available at http://bioval.jrc.ec.europa.eu/products/gam/download.htm, accessed August 2011) Nordhaus W D 2006 Geography and macroeconomics: new data and new findings Proc. Natl Acad. Sci. USA 103 3510-7 Popp A et al 2011 The economic potential of bioenergy for climate change mitigation with special attention given to implications for the land system Environ. Res. Lett. 6 034017 Schneider U A et al

  12. An implicit adaptation algorithm for a linear model reference control system

    Science.gov (United States)

    Mabius, L.; Kaufman, H.

    1975-01-01

    This paper presents a stable implicit adaptation algorithm for model reference control. The constraints for stability are found using Lyapunov's second method and do not depend on perfect model following between the system and the reference model. Methods are proposed for satisfying these constraints without estimating the parameters on which the constraints depend.

  13. Validation of a Global Hydrodynamic Flood Inundation Model

    Science.gov (United States)

    Bates, P. D.; Smith, A.; Sampson, C. C.; Alfieri, L.; Neal, J. C.

    2014-12-01

    In this work we present first validation results for a hyper-resolution global flood inundation model. We use a true hydrodynamic model (LISFLOOD-FP) to simulate flood inundation at 1km resolution globally and then use downscaling algorithms to determine flood extent and depth at 90m spatial resolution. Terrain data are taken from a custom version of the SRTM data set that has been processed specifically for hydrodynamic modelling. Return periods of flood flows along the entire global river network are determined using: (1) empirical relationships between catchment characteristics and index flood magnitude in different hydroclimatic zones derived from global runoff data; and (2) an index flood growth curve, also empirically derived. Bankful return period flow is then used to set channel width and depth, and flood defence impacts are modelled using empirical relationships between GDP, urbanization and defence standard of protection. The results of these simulations are global flood hazard maps for a number of different return period events from 1 in 5 to 1 in 1000 years. We compare these predictions to flood hazard maps developed by national government agencies in the UK and Germany using similar methods but employing detailed local data, and to observed flood extent at a number of sites including St. Louis, USA and Bangkok in Thailand. Results show that global flood hazard models can have considerable skill given careful treatment to overcome errors in the publicly available data that are used as their input.

  14. COLUMBUS. A global gas market model

    Energy Technology Data Exchange (ETDEWEB)

    Hecking, Harald; Panke, Timo

    2012-03-15

    A model of the global gas market is presented which in its basic version optimises the future development of production, transport and storage capacities as well as the actual gas flows around the world assuming perfect competition. Besides the transport of natural gas via pipelines also the global market for liquefied natural gas (LNG) is modelled using a hub-and-spoke approach. While in the basic version of the model an inelastic demand and a piecewise-linear supply function are used, both can be changed easily, e.g. to a Golombek style production function or a constant elasticity of substitution (CES) demand function. Due to the usage of mixed complementary programming (MCP) the model additionally allows for the simulation of strategic behaviour of different players in the gas market, e.g. the gas producers.

  15. A new global grid model for the determination of atmospheric weighted mean temperature in GPS precipitable water vapor

    Science.gov (United States)

    Huang, Liangke; Jiang, Weiping; Liu, Lilong; Chen, Hua; Ye, Shirong

    2018-05-01

    In ground-based global positioning system (GPS) meteorology, atmospheric weighted mean temperature, T_m , plays a very important role in the progress of retrieving precipitable water vapor (PWV) from the zenith wet delay of the GPS. Generally, most of the existing T_m models only take either latitude or altitude into account in modeling. However, a great number of studies have shown that T_m is highly correlated with both latitude and altitude. In this study, a new global grid empirical T_m model, named as GGTm, was established by a sliding window algorithm using global gridded T_m data over an 8-year period from 2007 to 2014 provided by TU Vienna, where both latitude and altitude variations are considered in modeling. And the performance of GGTm was assessed by comparing with the Bevis formula and the GPT2w model, where the high-precision global gridded T_m data as provided by TU Vienna and the radiosonde data from 2015 are used as reference values. The results show the significant performance of the new GGTm model against other models when compared with gridded T_m data and radiosonde data, especially in the areas with great undulating terrain. Additionally, GGTm has the global mean RMS_{PWV} and RMS_{PWV} /PWV values of 0.26 mm and 1.28%, respectively. The GGTm model, fed only by the day of the year and the station coordinates, could provide a reliable and accurate T_m value, which shows the possible potential application in real-time GPS meteorology, especially for the application of low-latitude areas and western China.

  16. Towards a reference model for portfolio management for product development

    DEFF Research Database (Denmark)

    Larsson, Flemming

    2006-01-01

    The aim of this paper is to explore the concept of portfolio management for product development at company level. Departing from a combination of explorative interviews with industry professionals and a literature review a proposal for a reference model for portfolio management is developed....... The model consists of a set of defined and interrelated concepts which forms a coherent and consistent reference model that explicate the totality of the portfolio management concept at company level in terms of structure, processes and elements. The model simultaneously pinpoints, positions and integrates...... several central dimensions of portfolio management....

  17. The importance of the reference populations for coherent mortality forecasting models

    DEFF Research Database (Denmark)

    Kjærgaard, Søren; Canudas-Romo, Vladimir; Vaupel, James W.

    -population mortality models aiming to find the optimal of the set of countries to use as reference population and analyse the importance of the selection of countries. The two multi-population mortality models used are the Li-Lee model and the Double-Gap life expectancy forecasting model. The reference populations......Coherent forecasting models that take into consideration mortality changes observed in different countries are today among the essential tools for demographers, actuaries and other researchers interested in forecasts. Medium and long term life expectancy forecasts are compared for two multi...... is calculated taking into account all the possible combinations of a set of 20 industrialized countries. The different reference populations possibilities are compared by their forecast performance. The results show that the selection of countries for multi-population mortality models has a significant effect...

  18. Modelling water use in global hydrological models: review, challenges and directions

    Science.gov (United States)

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.

    2017-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  19. A model for global cycling of tritium

    International Nuclear Information System (INIS)

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper the authors present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the southern hemisphere, and the latitude dependence of tritium in both hemispheres. Names TRICYCLE (for TRItium CYCLE) the model is based on the global hydrologic cycle and includes hemispheric stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitude zones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if it is assumed that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The model's latitudinal disaggregation permits taking into account the distribution of population. For a uniformly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the NCRP model's corresponding prediction by a factor of three

  20. A model for global cycling of tritium

    International Nuclear Information System (INIS)

    Killough, G.G.; Kocher, D.C.

    1988-01-01

    Dynamic compartment models are widely used to describe global cycling of radionuclides for purposes of dose estimation. In this paper, we present a new global tritium model that reproduces environmental time-series data on concentrations in precipitation, ocean surface waters, and surface fresh waters in the northern hemisphere, concentrations of atmospheric tritium in the soutehrn hemisphere, and the latitude dependence of tritium in both hemispheres. Named TRICYCLE for Tritium CYCLE, the model is based on the global hydrologic cycle and includes hemisphereic stratospheric compartments, disaggregation of the troposphere and ocean surface waters into eight latitudezones, consideration of the different concentrations of atmospheric tritium over land and over the ocean, and a diffusive model for transport in the ocean. TRICYCLE reproduces the environmental data if we assume that about 50% of the tritium from atmospheric weapons testing was injected directly into the northern stratosphere as HTO. The models latitudinal disaggregation permits taking into account the distribution of population. For a unfiormaly distributed release of HTO into the worldwide troposphere, TRICYCLE predicts a collective dose commitment to the world population that exceeds the corresponding prediction by the NCRP model by about a factor of 3. 11 refs., 5 figs., 1 tab

  1. Groundwater development stress: Global-scale indices compared to regional modeling

    Science.gov (United States)

    Alley, William; Clark, Brian R.; Ely, Matt; Faunt, Claudia

    2018-01-01

    The increased availability of global datasets and technologies such as global hydrologic models and the Gravity Recovery and Climate Experiment (GRACE) satellites have resulted in a growing number of global-scale assessments of water availability using simple indices of water stress. Developed initially for surface water, such indices are increasingly used to evaluate global groundwater resources. We compare indices of groundwater development stress for three major agricultural areas of the United States to information available from regional water budgets developed from detailed groundwater modeling. These comparisons illustrate the potential value of regional-scale analyses to supplement global hydrological models and GRACE analyses of groundwater depletion. Regional-scale analyses allow assessments of water stress that better account for scale effects, the dynamics of groundwater flow systems, the complexities of irrigated agricultural systems, and the laws, regulations, engineering, and socioeconomic factors that govern groundwater use. Strategic use of regional-scale models with global-scale analyses would greatly enhance knowledge of the global groundwater depletion problem.

  2. Regional and global modeling estimates of policy relevant background ozone over the United States

    Science.gov (United States)

    Emery, Christopher; Jung, Jaegun; Downey, Nicole; Johnson, Jeremiah; Jimenez, Michele; Yarwood, Greg; Morris, Ralph

    2012-02-01

    Policy Relevant Background (PRB) ozone, as defined by the US Environmental Protection Agency (EPA), refers to ozone concentrations that would occur in the absence of all North American anthropogenic emissions. PRB enters into the calculation of health risk benefits, and as the US ozone standard approaches background levels, PRB is increasingly important in determining the feasibility and cost of compliance. As PRB is a hypothetical construct, modeling is a necessary tool. Since 2006 EPA has relied on global modeling to establish PRB for their regulatory analyses. Recent assessments with higher resolution global models exhibit improved agreement with remote observations and modest upward shifts in PRB estimates. This paper shifts the paradigm to a regional model (CAMx) run at 12 km resolution, for which North American boundary conditions were provided by a low-resolution version of the GEOS-Chem global model. We conducted a comprehensive model inter-comparison, from which we elucidate differences in predictive performance against ozone observations and differences in temporal and spatial background variability over the US. In general, CAMx performed better in replicating observations at remote monitoring sites, and performance remained better at higher concentrations. While spring and summer mean PRB predicted by GEOS-Chem ranged 20-45 ppb, CAMx predicted PRB ranged 25-50 ppb and reached well over 60 ppb in the west due to event-oriented phenomena such as stratospheric intrusion and wildfires. CAMx showed a higher correlation between modeled PRB and total observed ozone, which is significant for health risk assessments. A case study during April 2006 suggests that stratospheric exchange of ozone is underestimated in both models on an event basis. We conclude that wildfires, lightning NO x and stratospheric intrusions contribute a significant level of uncertainty in estimating PRB, and that PRB will require careful consideration in the ozone standard setting process.

  3. Man -made greenhouse gases trigger unified force to start global warming impacts referred to as climate change

    International Nuclear Information System (INIS)

    Karishnan, K.J.; Kalam, A.

    2011-01-01

    Global warming problems due to man-made greenhouse gases (GHGs), appear to be a serious concern and threat to the globe. CO/sub 2/, O/sub 3, NOx and HFC's are the main greenhouse gases and CO/sub 2/ is one of the main cause of global warming. CO/sub 2/ is emitted from burning fossil fuels to produce electricity from power plants and burning of gasoline in vehicles and airplanes. Global greenhouse gases and its sources in regions are discussed in this paper. This paper initially discusses the CO/sub 2/ emissions and the recycle of CO/sub 2/ in biodiesel. This paper mainly focuses on 'Unified Force'. The increase of H/sub 2/O in the sea due to warming of the globe triggers the 'Unified Force' or 'Self-Compressive Surrounding Pressure Force' which is proportional to the H/sub 2/O level in the sea to start global warming impacts referred to as climate change. This paper also points out the climate change and the ten surprising results of global warming. Finally, this paper suggests switching from fossil fuel technology to green energy technologies like biodiesel which recycles CO/sub 2/ emissions and also Hydrogen Energy and Fuel Cell Technologies which eradicates global warming impacts. The benefits of switching from fossil fuel to biodiesel and Hydrogen Energy utilization includes reduction of greenhouse gas emissions and pollution, economic independence by having distributed production and burning of biodiesel does not add extra CO/sub 2/ to the air that contributes global warming impacts. (author)

  4. The CAFE model: A net production model for global ocean phytoplankton

    Science.gov (United States)

    Silsbe, Greg M.; Behrenfeld, Michael J.; Halsey, Kimberly H.; Milligan, Allen J.; Westberry, Toby K.

    2016-12-01

    The Carbon, Absorption, and Fluorescence Euphotic-resolving (CAFE) net primary production model is an adaptable framework for advancing global ocean productivity assessments by exploiting state-of-the-art satellite ocean color analyses and addressing key physiological and ecological attributes of phytoplankton. Here we present the first implementation of the CAFE model that incorporates inherent optical properties derived from ocean color measurements into a mechanistic and accurate model of phytoplankton growth rates (μ) and net phytoplankton production (NPP). The CAFE model calculates NPP as the product of energy absorption (QPAR), and the efficiency (ϕμ) by which absorbed energy is converted into carbon biomass (CPhyto), while μ is calculated as NPP normalized to CPhyto. The CAFE model performance is evaluated alongside 21 other NPP models against a spatially robust and globally representative set of direct NPP measurements. This analysis demonstrates that the CAFE model explains the greatest amount of variance and has the lowest model bias relative to other NPP models analyzed with this data set. Global oceanic NPP from the CAFE model (52 Pg C m-2 yr-1) and mean division rates (0.34 day-1) are derived from climatological satellite data (2002-2014). This manuscript discusses and validates individual CAFE model parameters (e.g., QPAR and ϕμ), provides detailed sensitivity analyses, and compares the CAFE model results and parameterization to other widely cited models.

  5. Referent 3D tumor model at cellular level in radionuclide therapy

    International Nuclear Information System (INIS)

    Spaic, R.; Ilic, R.D.; Petrovic, B.J.

    2002-01-01

    Aim Conventional internal dosimetry has a lot of limitations because of tumor dose nonuniformity. The best approach for absorbed dose at cellular level for different tumors in radionuclide therapy calculation is Monte Carlo method. The purpose of this study is to introduce referent tumor 3D model at cellular level for Monte Carlo simulation study in radionuclide therapy. Material and Methods The moment when tumor is detectable and when same therapy can start is time period in which referent 3D tumor model at cellular level was defined. In accordance with tumor growth rate at that moment he was a sphere with same radius (10 000 μm). In that tumor there are cells or cluster of cells, which are randomly distributed spheres. Distribution of cells/cluster of cells can be calculated from histology data but it was assumed that this distribution is normal with the same mean value and standard deviation (100±50 mm). Second parameter, which was selected to define referent tumor, is volume density of cells (30%). In this referent tumor there are no necroses. Stroma is defined as space between spheres with same concentration of materials as in spheres. Results: Referent tumor defined on this way have about 2,2 10 5 cells or cluster of cells random distributed. Using this referent 3D tumor model and for same concentration of radionuclides (1:100) and energy of beta emitters (1000 keV) which are homogeneously distributed in labeled cells absorbed dose for all cells was calculated. Simulations are done using FOTELP Monte Carlo code, which is modified for this purposes. Results of absorbed dose in cells are given in numerical values (1D distribution) and as the images (2D or 3D distributions). Conclusion Geometrical module for Monte Carlo simulation study can be standardized by introducing referent 3D tumor model at cellular level. This referent 3D tumor model gives most realistic presentation of different tumors at the moment of their detectability. Referent 3D tumor model at

  6. Direct model reference adaptive control with application to flexible robots

    Science.gov (United States)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory W.

    1992-01-01

    A modification to a direct command generator tracker-based model reference adaptive control (MRAC) system is suggested in this paper. This modification incorporates a feedforward into the reference model's output as well as the plant's output. Its purpose is to eliminate the bounded model following error present in steady state when previous MRAC systems were used. The algorithm was evaluated using the dynamics for a single-link flexible-joint arm. The results of these simulations show a response with zero steady state model following error. These results encourage further use of MRAC for various types of nonlinear plants.

  7. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  8. GEM-AQ/EC, an on-line global multi-scale chemical weather modelling system: model development and evaluation of global aerosol climatology

    Directory of Open Access Journals (Sweden)

    S. L. Gong

    2012-09-01

    Full Text Available A global air quality modeling system GEM-AQ/EC was developed by implementing tropospheric chemistry and aerosol processes on-line into the Global Environmental Multiscale weather prediction model – GEM. Due to the multi-scale features of the GEM, the integrated model, GEM-AQ/EC, is able to investigate chemical weather at scales from global to urban domains. The current chemical mechanism is comprised of 50 gas-phase species, 116 chemical and 19 photolysis reactions, and is complemented by a sectional aerosol module CAM (The Canadian Aerosol Module with 5 aerosols types: sulphate, black carbon, organic carbon, sea-salt and soil dust. Monthly emission inventories of black carbon and organic carbon from boreal and temperate vegetation fires were assembled using the most reliable areas burned datasets by countries, from statistical databases and derived from remote sensing products of 1995–2004. The model was run for ten years from from 1995–2004 with re-analyzed meteorology on a global uniform 1° × 1° horizontal resolution domain and 28 hybrid levels extending up to 10 hPa. The simulating results were compared with various observations including surface network around the globe and satellite data. Regional features of global aerosols are reasonably captured including emission, surface concentrations and aerosol optical depth. For various types of aerosols, satisfactory correlations were achieved between modeled and observed with some degree of systematic bias possibly due to large uncertainties in the emissions used in this study. A global distribution of natural aerosol contributions to the total aerosols is obtained and compared with observations.

  9. A high-resolution global-scale groundwater model

    Science.gov (United States)

    de Graaf, I. E. M.; Sutanudjaja, E. H.; van Beek, L. P. H.; Bierkens, M. F. P.

    2015-02-01

    Groundwater is the world's largest accessible source of fresh water. It plays a vital role in satisfying basic needs for drinking water, agriculture and industrial activities. During times of drought groundwater sustains baseflow to rivers and wetlands, thereby supporting ecosystems. Most global-scale hydrological models (GHMs) do not include a groundwater flow component, mainly due to lack of geohydrological data at the global scale. For the simulation of lateral flow and groundwater head dynamics, a realistic physical representation of the groundwater system is needed, especially for GHMs that run at finer resolutions. In this study we present a global-scale groundwater model (run at 6' resolution) using MODFLOW to construct an equilibrium water table at its natural state as the result of long-term climatic forcing. The used aquifer schematization and properties are based on available global data sets of lithology and transmissivities combined with the estimated thickness of an upper, unconfined aquifer. This model is forced with outputs from the land-surface PCRaster Global Water Balance (PCR-GLOBWB) model, specifically net recharge and surface water levels. A sensitivity analysis, in which the model was run with various parameter settings, showed that variation in saturated conductivity has the largest impact on the groundwater levels simulated. Validation with observed groundwater heads showed that groundwater heads are reasonably well simulated for many regions of the world, especially for sediment basins (R2 = 0.95). The simulated regional-scale groundwater patterns and flow paths demonstrate the relevance of lateral groundwater flow in GHMs. Inter-basin groundwater flows can be a significant part of a basin's water budget and help to sustain river baseflows, especially during droughts. Also, water availability of larger aquifer systems can be positively affected by additional recharge from inter-basin groundwater flows.

  10. Global dynamics of a dengue epidemic mathematical model

    International Nuclear Information System (INIS)

    Cai Liming; Guo Shumin; Li, XueZhi; Ghosh, Mini

    2009-01-01

    The paper investigates the global stability of a dengue epidemic model with saturation and bilinear incidence. The constant human recruitment rate and exponential natural death, as well as vector population with asymptotically constant population, are incorporated into the model. The model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. The stability of these two equilibria is controlled by the threshold number R 0 . It is shown that if R 0 is less than one, the disease-free equilibrium is globally asymptotically stable and in such a case the endemic equilibrium does not exist; if R 0 is greater than one, then the disease persists and the unique endemic equilibrium is globally asymptotically stable.

  11. Discrete Model Reference Adaptive Control System for Automatic Profiling Machine

    Directory of Open Access Journals (Sweden)

    Peng Song

    2012-01-01

    Full Text Available Automatic profiling machine is a movement system that has a high degree of parameter variation and high frequency of transient process, and it requires an accurate control in time. In this paper, the discrete model reference adaptive control system of automatic profiling machine is discussed. Firstly, the model of automatic profiling machine is presented according to the parameters of DC motor. Then the design of the discrete model reference adaptive control is proposed, and the control rules are proven. The results of simulation show that adaptive control system has favorable dynamic performances.

  12. Tree-Based Global Model Tests for Polytomous Rasch Models

    Science.gov (United States)

    Komboz, Basil; Strobl, Carolin; Zeileis, Achim

    2018-01-01

    Psychometric measurement models are only valid if measurement invariance holds between test takers of different groups. Global model tests, such as the well-established likelihood ratio (LR) test, are sensitive to violations of measurement invariance, such as differential item functioning and differential step functioning. However, these…

  13. Model reference adaptive control and adaptive stability augmentation

    DEFF Research Database (Denmark)

    Henningsen, Arne; Ravn, Ole

    1993-01-01

    A comparison of the standard concepts in MRAC design suggests that a combination of the implicit and the explicit design techniques may lead to an improvement of the overall system performance in the presence of unmodelled dynamics. Using the ideas of adaptive stability augmentation a combined...... stability augmented model reference design is proposed. By utilizing the closed-loop control error, a simple auxiliary controller is tuned, using a normalized MIT rule for the parameter adjustment. The MIT adjustment is protected against the effects of unmodelled dynamics by lowpass filtering...... of the gradient. The proposed method is verified through simulation results indicating that the method may lead to an improvement of the model reference controller in the presence of unmodelled dynamics...

  14. Model Predictive Control for Offset-Free Reference Tracking

    Czech Academy of Sciences Publication Activity Database

    Belda, Květoslav

    2016-01-01

    Roč. 5, č. 1 (2016), s. 8-13 ISSN 1805-3386 Institutional support: RVO:67985556 Keywords : offset-free reference tracking * predictive control * ARX model * state-space model * multi-input multi-output system * robotic system * mechatronic system Subject RIV: BC - Control Systems Theory http://library.utia.cas.cz/separaty/2016/AS/belda-0458355.pdf

  15. SENTINEL-2 GLOBAL REFERENCE IMAGE VALIDATION AND APPLICATION TO MULTITEMPORAL PERFORMANCES AND HIGH LATITUDE DIGITAL SURFACE MODEL

    Directory of Open Access Journals (Sweden)

    A. Gaudel

    2017-05-01

    Full Text Available In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites with a revisit time of 5 days in order to have temporal images stacks and a global coverage over terrestrial surfaces. Satellite 2A was launched in June 2015, and satellite 2B will be launched in March 2017. In cooperation with the European Space Agency (ESA, the French space agency (CNES is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN and the Sentinel-2 Mission performance Centre (MPC for validation in geometric and radiometric image quality aspects, and in Sentinel-2 GRI geolocation performance assessment whose results will be presented in this paper. The GRI is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference enables accurate multi-temporal registration of refined Sentinel-2 products. While not primarily intended for the generation of DSM, Sentinel-2 swaths overlap between orbits would also allow for the generation of a complete DSM of land and ices over 60° of northern latitudes (expected accuracy: few S2 pixels in altimetry. This DSM would benefit from the very frequent revisit times of Sentinel-2, to monitor ice or snow level in area of frequent changes, or to increase measurement accuracy in areas of little changes.

  16. SENTINEL-2 Global Reference Image Validation and Application to Multitemporal Performances and High Latitude Digital Surface Model

    Science.gov (United States)

    Gaudel, A.; Languille, F.; Delvit, J. M.; Michel, J.; Cournet, M.; Poulain, V.; Youssefi, D.

    2017-05-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 is a constellation of 2 satellites with a revisit time of 5 days in order to have temporal images stacks and a global coverage over terrestrial surfaces. Satellite 2A was launched in June 2015, and satellite 2B will be launched in March 2017. In cooperation with the European Space Agency (ESA), the French space agency (CNES) is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. This cooperation is also extended to routine phase as CNES supports European Space Research Institute (ESRIN) and the Sentinel-2 Mission performance Centre (MPC) for validation in geometric and radiometric image quality aspects, and in Sentinel-2 GRI geolocation performance assessment whose results will be presented in this paper. The GRI is a set of S2A images at 10m resolution covering the whole world with a good and consistent geolocation. This ground reference enables accurate multi-temporal registration of refined Sentinel-2 products. While not primarily intended for the generation of DSM, Sentinel-2 swaths overlap between orbits would also allow for the generation of a complete DSM of land and ices over 60° of northern latitudes (expected accuracy: few S2 pixels in altimetry). This DSM would benefit from the very frequent revisit times of Sentinel-2, to monitor ice or snow level in area of frequent changes, or to increase measurement accuracy in areas of little changes.

  17. Open system LANs and their global interconnection electronics and communications reference series

    CERN Document Server

    Houldsworth, Jack; Caves, Keith; Mazda, FF

    2014-01-01

    Open System LANs and Their Global Interconnection focuses on the OSI layer 1 to 4 standards (the OSI bearer service) and also introduces TCP/IP and some of the proprietary PC Local Area Network (LAN) standards.The publication first provides an introduction to Local Area Networks (LANs) and Wide Area Networks (WANs), Open Systems Interconnection (OSI), and LAN standards. Discussions focus on MAC bridging, token bus, slotted ring, MAC constraints and design considerations, OSI functional standards, OSI model, value of the transport model, benefits and origins of OSI, and significance of the tran

  18. Enterprise Reference Library

    Science.gov (United States)

    Bickham, Grandin; Saile, Lynn; Havelka, Jacque; Fitts, Mary

    2011-01-01

    Introduction: Johnson Space Center (JSC) offers two extensive libraries that contain journals, research literature and electronic resources. Searching capabilities are available to those individuals residing onsite or through a librarian s search. Many individuals have rich collections of references, but no mechanisms to share reference libraries across researchers, projects, or directorates exist. Likewise, information regarding which references are provided to which individuals is not available, resulting in duplicate requests, redundant labor costs and associated copying fees. In addition, this tends to limit collaboration between colleagues and promotes the establishment of individual, unshared silos of information The Integrated Medical Model (IMM) team has utilized a centralized reference management tool during the development, test, and operational phases of this project. The Enterprise Reference Library project expands the capabilities developed for IMM to address the above issues and enhance collaboration across JSC. Method: After significant market analysis for a multi-user reference management tool, no available commercial tool was found to meet this need, so a software program was built around a commercial tool, Reference Manager 12 by The Thomson Corporation. A use case approach guided the requirements development phase. The premise of the design is that individuals use their own reference management software and export to SharePoint when their library is incorporated into the Enterprise Reference Library. This results in a searchable user-specific library application. An accompanying share folder will warehouse the electronic full-text articles, which allows the global user community to access full -text articles. Discussion: An enterprise reference library solution can provide a multidisciplinary collection of full text articles. This approach improves efficiency in obtaining and storing reference material while greatly reducing labor, purchasing and

  19. An Instructional Development Model for Global Organizations: The GOaL Model.

    Science.gov (United States)

    Hara, Noriko; Schwen, Thomas M.

    1999-01-01

    Presents an instructional development model, GOaL (Global Organization Localization), for use by global organizations. Topics include gaps in language, culture, and needs; decentralized processes; collaborative efforts; predetermined content; multiple perspectives; needs negotiation; learning within context; just-in-time training; and bilingual…

  20. Qualitative models of global warming amplifiers

    NARCIS (Netherlands)

    Milošević, U.; Bredeweg, B.; de Kleer, J.; Forbus, K.D.

    2010-01-01

    There is growing interest from ecological experts to create qualitative models of phenomena for which numerical information is sparse or missing. We present a number of successful models in the field of environmental science, namely, the domain of global warming. The motivation behind the effort is

  1. Global Reference Tables for Management Information Systems

    Data.gov (United States)

    Social Security Administration — This database is a collection of reference tables that store common information used throughout SSA. These tables standardize code structures and code usage of SSA...

  2. Global dynamics of a dengue epidemic mathematical model

    Energy Technology Data Exchange (ETDEWEB)

    Cai Liming [Department of Mathematics, Xinyang Normal University, Xinyang 464000 (China); Academy of Mathematics and Systems Science, Academia Sinica, Beijing 100080 (China)], E-mail: lmcai06@yahoo.com.cn; Guo Shumin [Beijing Institute of Information Control, Beijing 100037 (China); Li, XueZhi [Department of Mathematics, Xinyang Normal University, Xinyang 464000 (China); Ghosh, Mini [School of Mathematics and Computer Application, Thapar University, Patiala 147004 (India)

    2009-11-30

    The paper investigates the global stability of a dengue epidemic model with saturation and bilinear incidence. The constant human recruitment rate and exponential natural death, as well as vector population with asymptotically constant population, are incorporated into the model. The model exhibits two equilibria, namely, the disease-free equilibrium and the endemic equilibrium. The stability of these two equilibria is controlled by the threshold number R{sub 0}. It is shown that if R{sub 0} is less than one, the disease-free equilibrium is globally asymptotically stable and in such a case the endemic equilibrium does not exist; if R{sub 0} is greater than one, then the disease persists and the unique endemic equilibrium is globally asymptotically stable.

  3. Regional forecasting with global atmospheric models

    International Nuclear Information System (INIS)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    The scope of the report is to present the results of the fourth year's work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals

  4. Global distribution of urban parameters derived from high-resolution global datasets for weather modelling

    Science.gov (United States)

    Kawano, N.; Varquez, A. C. G.; Dong, Y.; Kanda, M.

    2016-12-01

    Numerical model such as Weather Research and Forecasting model coupled with single-layer Urban Canopy Model (WRF-UCM) is one of the powerful tools to investigate urban heat island. Urban parameters such as average building height (Have), plain area index (λp) and frontal area index (λf), are necessary inputs for the model. In general, these parameters are uniformly assumed in WRF-UCM but this leads to unrealistic urban representation. Distributed urban parameters can also be incorporated into WRF-UCM to consider a detail urban effect. The problem is that distributed building information is not readily available for most megacities especially in developing countries. Furthermore, acquiring real building parameters often require huge amount of time and money. In this study, we investigated the potential of using globally available satellite-captured datasets for the estimation of the parameters, Have, λp, and λf. Global datasets comprised of high spatial resolution population dataset (LandScan by Oak Ridge National Laboratory), nighttime lights (NOAA), and vegetation fraction (NASA). True samples of Have, λp, and λf were acquired from actual building footprints from satellite images and 3D building database of Tokyo, New York, Paris, Melbourne, Istanbul, Jakarta and so on. Regression equations were then derived from the block-averaging of spatial pairs of real parameters and global datasets. Results show that two regression curves to estimate Have and λf from the combination of population and nightlight are necessary depending on the city's level of development. An index which can be used to decide which equation to use for a city is the Gross Domestic Product (GDP). On the other hand, λphas less dependence on GDP but indicated a negative relationship to vegetation fraction. Finally, a simplified but precise approximation of urban parameters through readily-available, high-resolution global datasets and our derived regressions can be utilized to estimate a

  5. Technology Learning Ratios in Global Energy Models; Ratios de Aprendizaje Tecnologico en Modelos Energeticos Globales

    Energy Technology Data Exchange (ETDEWEB)

    Varela, M.

    2001-07-01

    The process of introduction of a new technology supposes that while its production and utilisation increases, also its operation improves and its investment costs and production decreases. The accumulation of experience and learning of a new technology increase in parallel with the increase of its market share. This process is represented by the technological learning curves and the energy sector is not detached from this process of substitution of old technologies by new ones. The present paper carries out a brief revision of the main energy models that include the technology dynamics (learning). The energy scenarios, developed by global energy models, assume that the characteristics of the technologies are variables with time. But this tend is incorporated in a exogenous way in these energy models, that is to say, it is only a time function. This practice is applied to the cost indicators of the technology such as the specific investment costs or to the efficiency of the energy technologies. In the last years, the new concept of endogenous technological learning has been integrated within these global energy models. This paper examines the concept of technological learning in global energy models. It also analyses the technological dynamics of the energy systems including the endogenous modelling of the process of technological progress. Finally, it makes a comparison of several of the most used global energy models (MARKAL, MESSAGE and ERIS) and, more concretely, about the use these models make of the concept of technological learning. (Author) 17 refs.

  6. Global Modeling Study of the Bioavailable Atmospheric Iron Supply to the Global Ocean

    Science.gov (United States)

    Myriokefalitakis, S.; Krol, M. C.; van Noije, T.; Le Sager, P.

    2017-12-01

    Atmospheric deposition of trace constituents acts as a nutrient source to the open ocean and affect marine ecosystem. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in a bioavailable form that can be assimilated by the marine biota. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in the High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant, but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe forms, associated with mineral dust and combustion aerosols. The impact of atmospheric acidity and organic ligands on mineral dissolution processes, is parameterized based on updated experimental and theoretical findings. Model results are also evaluated against available observations. Overall, the link between the labile Fe atmospheric deposition and atmospheric composition changes is here demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs; modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  7. The impact of global change on the hydropower potential of Europe: a model-based analysis

    International Nuclear Information System (INIS)

    Lehner, Bernhard; Czisch, Gregor; Vassolo, Sara

    2005-01-01

    This study presents a model-based approach for analyzing the possible effects of global change on Europe's hydropower potential at a country scale. By comparing current conditions of climate and water use with future scenarios, an overview is provided of today's potential for hydroelectricity generation and its mid- and long-term prospects. The application of the global water model WaterGAP for discharge calculations allows for an integrated assessment, taking both climate and socioeconomic changes into account. This study comprises two key parts: First, the 'gross' hydropower potential is analyzed, in order to outline the general distribution and trends in hydropower capabilities across Europe. Then, the assessment focuses on the 'developed' hydropower potential of existing hydropower plants, in order to allow for a more realistic picture of present and future electricity production. For the second part, a new data set has been developed which geo-references 5991 European hydropower stations and distinguishes them into run-of-river and reservoir stations. The results of this study present strong indications that, following moderate climate and global change scenario assumptions, severe future alterations in discharge regimes have to be expected, leading to unstable regional trends in hydropower potentials with reductions of 25% and more for southern and southeastern European countries

  8. Local and Global Function Model of the Liver

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hesheng, E-mail: hesheng@umich.edu [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Feng, Mary [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Jackson, Andrew [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Ten Haken, Randall K.; Lawrence, Theodore S. [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Cao, Yue [Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan (United States); Department of Radiology, University of Michigan, Ann Arbor, Michigan (United States); Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan (United States)

    2016-01-01

    Purpose: To develop a local and global function model in the liver based on regional and organ function measurements to support individualized adaptive radiation therapy (RT). Methods and Materials: A local and global model for liver function was developed to include both functional volume and the effect of functional variation of subunits. Adopting the assumption of parallel architecture in the liver, the global function was composed of a sum of local function probabilities of subunits, varying between 0 and 1. The model was fit to 59 datasets of liver regional and organ function measures from 23 patients obtained before, during, and 1 month after RT. The local function probabilities of subunits were modeled by a sigmoid function in relating to MRI-derived portal venous perfusion values. The global function was fitted to a logarithm of an indocyanine green retention rate at 15 minutes (an overall liver function measure). Cross-validation was performed by leave-m-out tests. The model was further evaluated by fitting to the data divided according to whether the patients had hepatocellular carcinoma (HCC) or not. Results: The liver function model showed that (1) a perfusion value of 68.6 mL/(100 g · min) yielded a local function probability of 0.5; (2) the probability reached 0.9 at a perfusion value of 98 mL/(100 g · min); and (3) at a probability of 0.03 [corresponding perfusion of 38 mL/(100 g · min)] or lower, the contribution to global function was lost. Cross-validations showed that the model parameters were stable. The model fitted to the data from the patients with HCC indicated that the same amount of portal venous perfusion was translated into less local function probability than in the patients with non-HCC tumors. Conclusions: The developed liver function model could provide a means to better assess individual and regional dose-responses of hepatic functions, and provide guidance for individualized treatment planning of RT.

  9. Modeling global distribution of agricultural insecticides in surface waters

    International Nuclear Information System (INIS)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J.; Schäfer, Ralf B.; Fornaroli, Riccardo; Liess, Matthias

    2015-01-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. - Highlights: • First global map on insecticide runoff through modelling. • Model predicts upper limit of insecticide exposure when compared to field data. • Water bodies in 40% of global land surface may be at risk of adverse effects. • Insecticide application rate, terrain slope and rainfall main drivers of exposure. - We provide the first global map on insecticide runoff to surface water predicting that water bodies in 40% of global land surface may be at risk of adverse effects

  10. Efficient Adoption and Assessment of Multiple Process Improvement Reference Models

    Directory of Open Access Journals (Sweden)

    Simona Jeners

    2013-06-01

    Full Text Available A variety of reference models such as CMMI, COBIT or ITIL support IT organizations to improve their processes. These process improvement reference models (IRMs cover different domains such as IT development, IT Services or IT Governance but also share some similarities. As there are organizations that address multiple domains and need to coordinate their processes in their improvement we present MoSaIC, an approach to support organizations to efficiently adopt and conform to multiple IRMs. Our solution realizes a semantic integration of IRMs based on common meta-models. The resulting IRM integration model enables organizations to efficiently implement and asses multiple IRMs and to benefit from synergy effects.

  11. Organizational Learning Supported by Reference Architecture Models: Industry 4.0 Laboratory Study

    Directory of Open Access Journals (Sweden)

    Marco Nardello

    2017-10-01

    Full Text Available The wave of the fourth industrial revolution (Industry 4.0 is bringing a new vision of the manufacturing industry. In manufacturing, one of the buzzwords of the moment is "Smart production". Smart production involves manufacturing equipment with many sensors that can generate and transmit large amounts of data. These data and information from manufacturing operations are however not shared in the organization. Therefore the organization is not using them to learn and improve their operations. To address this problem, the authors implemented in an Industry 4.0 laboratory an instance of an emerging technical standard specific for the manufacturing industry. Global manufacturing experts consider the Reference Architecture Model Industry 4.0 (RAMI4.0 as one of the corner stones for the implementation of Industry 4.0. The instantiation contributed to organizational learning in the laboratory by collecting and sharing up-to-date information concerning manufacturing equipment. This article discusses and generalizes the experience and outlines future research directions.

  12. Global and Regional Ecosystem Modeling: Databases of Model Drivers and Validation Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Olson, R.J.

    2002-03-19

    Understanding global-scale ecosystem responses to changing environmental conditions is important both as a scientific question and as the basis for making policy decisions. The confidence in regional models depends on how well the field data used to develop the model represent the region of interest, how well the environmental model driving variables (e.g., vegetation type, climate, and soils associated with a site used to parameterize ecosystem models) represent the region of interest, and how well regional model predictions agree with observed data for the region. To assess the accuracy of global model forecasts of terrestrial carbon cycling, two Ecosystem Model-Data Intercomparison (EMDI) workshops were held (December 1999 and April 2001). The workshops included 17 biogeochemical, satellite-driven, detailed process, and dynamic vegetation global model types. The approach was to run regional or global versions of the models for sites with net primary productivity (NPP) measurements (i.e., not fine-tuned for specific site conditions) and analyze the model-data differences. Extensive worldwide NPP data were assembled with model driver data, including vegetation, climate, and soils data, to perform the intercomparison. This report describes the compilation of NPP estimates for 2,523 sites and 5,164 0.5{sup o}-grid cells under the Global Primary Production Data Initiative (GPPDI) and the results of the EMDI review and outlier analysis that produced a refined set of NPP estimates and model driver data. The EMDI process resulted in 81 Class A sites, 933 Class B sites, and 3,855 Class C cells derived from the original synthesis of NPP measurements and associated driver data. Class A sites represent well-documented study sites that have complete aboveground and below ground NPP measurements. Class B sites represent more numerous ''extensive'' sites with less documentation and site-specific information available. Class C cells represent estimates of

  13. A Global Terrestrial Reference Frame from simulated VLBI and SLR data in view of GGOS

    Science.gov (United States)

    Glaser, Susanne; König, Rolf; Ampatzidis, Dimitrios; Nilsson, Tobias; Heinkelmann, Robert; Flechtner, Frank; Schuh, Harald

    2017-07-01

    In this study, we assess the impact of two combination strategies, namely local ties (LT) and global ties (GT), on the datum realization of Global Terrestrial Reference Frames in view of the Global Geodetic Observing System requiring 1 mm-accuracy. Simulated Very Long Baseline Interferometry (VLBI) and Satellite Laser Ranging (SLR) data over a 7 year time span was used. The LT results show that the geodetic datum can be best transferred if the precision of the LT is at least 1 mm. Investigating different numbers of LT, the lack of co-located sites on the southern hemisphere is evidenced by differences of 9 mm in translation and rotation compared to the solution using all available LT. For the GT, the combination applying all Earth rotation parameters (ERP), such as pole coordinates and UT1-UTC, indicates that the rotation around the Z axis cannot be adequately transferred from VLBI to SLR within the combination. Applying exclusively the pole coordinates as GT, we show that the datum can be transferred with mm-accuracy within the combination. Furthermore, adding artificial stations in Tahiti and Nigeria to the current VLBI network results in an improvement in station positions by 13 and 12%, respectively, and in ERP by 17 and 11%, respectively. Extending to every day VLBI observations leads to 65% better ERP estimates compared to usual twice-weekly VLBI observations.

  14. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G.

    2017-01-01

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture

  15. Modal-space reference-model-tracking fuzzy control of earthquake excited structures

    Science.gov (United States)

    Park, Kwan-Soon; Ok, Seung-Yong

    2015-01-01

    This paper describes an adaptive modal-space reference-model-tracking fuzzy control technique for the vibration control of earthquake-excited structures. In the proposed approach, the fuzzy logic is introduced to update optimal control force so that the controlled structural response can track the desired response of a reference model. For easy and practical implementation, the reference model is constructed by assigning the target damping ratios to the first few dominant modes in modal space. The numerical simulation results demonstrate that the proposed approach successfully achieves not only the adaptive fault-tolerant control system against partial actuator failures but also the robust performance against the variations of the uncertain system properties by redistributing the feedback control forces to the available actuators.

  16. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo; Lorz, Alexander

    2011-01-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  17. A coupled chemotaxis-fluid model: Global existence

    KAUST Repository

    Liu, Jian-Guo

    2011-09-01

    We consider a model arising from biology, consisting of chemotaxis equations coupled to viscous incompressible fluid equations through transport and external forcing. Global existence of solutions to the Cauchy problem is investigated under certain conditions. Precisely, for the chemotaxis-Navier- Stokes system in two space dimensions, we obtain global existence for large data. In three space dimensions, we prove global existence of weak solutions for the chemotaxis-Stokes system with nonlinear diffusion for the cell density.© 2011 Elsevier Masson SAS. All rights reserved.

  18. Establishing a business process reference model for Universities

    DEFF Research Database (Denmark)

    Svensson, Carsten; Hvolby, Hans-Henrik

    2012-01-01

    Modern universities are by any standard complex organizations that, from an IT perspective, present a number of unique challenges. This paper will propose establishing a business process reference framework. The benefit to the users would be a better understanding of the system landscape, business......) have gained popularity among organizations in both the private and public sectors. We speculate that this success can be replicated in a university setting. Furthermore the paper will outline how the research group suggests moving ahead with the research which will lead to a reference model....

  19. Multi-scale climate modelling over Southern Africa using a variable-resolution global model

    CSIR Research Space (South Africa)

    Engelbrecht, FA

    2011-12-01

    Full Text Available -mail: fengelbrecht@csir.co.za Multi-scale climate modelling over Southern Africa using a variable-resolution global model FA Engelbrecht1, 2*, WA Landman1, 3, CJ Engelbrecht4, S Landman5, MM Bopape1, B Roux6, JL McGregor7 and M Thatcher7 1 CSIR Natural... improvement. Keywords: multi-scale climate modelling, variable-resolution atmospheric model Introduction Dynamic climate models have become the primary tools for the projection of future climate change, at both the global and regional scales. Dynamic...

  20. A model for global diversity in response to temperature change over geological time scales, with reference to planktic organisms.

    Science.gov (United States)

    De Blasio, Fabio Vittorio; Liow, Lee Hsiang; Schweder, Tore; De Blasio, Birgitte Freiesleben

    2015-01-21

    There are strong propositions in the literature that abiotic factors override biotic drivers of diversity on time scales of the fossil record. In order to study the interaction of biotic and abiotic forces on long term changes, we devise a spatio-temporal discrete-time Markov process model of macroevolution featuring population formation, speciation, migration and extinction, where populations are free to migrate. In our model, the extinction probability of these populations is controlled by latitudinally and temporally varying environment (temperature) and competition. Although our model is general enough to be applicable to disparate taxa, we explicitly address planktic organisms, which are assumed to disperse freely without barriers over the Earth's oceans. While rapid and drastic environmental changes tend to eliminate many species, generalists preferentially survive and hence leave generalist descendants. In other words, environmental fluctuations result in generalist descendants which are resilient to future environmental changes. Periods of stable or slow environmental changes lead to more specialist species and higher population numbers. Simulating Cenozoic diversity dynamics with both competition and the environmental component of our model produces diversity curves that reflect current empirical knowledge, which cannot be obtained with just one component. Our model predicts that the average temperature optimum at which planktic species thrive best has declined over the Neogene, following the trend of global average temperatures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Reference-data modelling for tracking and tracing

    NARCIS (Netherlands)

    Dorp, van C.A.

    2004-01-01

    Subject headings: supply chain, tracking and tracing, reference-data modelling

  2. Global Carbon-and-Conservation Models, Global Eco-States? Ecuador’s Yasuní-ITT Initiative and Governance Implications

    Directory of Open Access Journals (Sweden)

    Conny Davidsen

    2013-05-01

    Full Text Available The “global carbon age” marks a structural change far beyond the economic realms of implementing carbon trade, affecting the fabric of global environmental governance and its actors. Carbon trade and conservation in the Global South have taken on various forms, and climate change mitigation efforts in light of continued rainforest deforestation are scrambling to establish effective approaches. Ecuador’s Yasuní-ITT Initiative proposes a new global carbon-and-conservation model in the Ecuadorian Amazon that leaves oil reserves of the Yasuní Ishpingo Tambococha Tiputini (ITT oil fields underground, in exchange for international compensation payments that would be based on voluntary contributions of governments and nongovernmental actors in an international conservation partnership and trust fund under the auspices of the United Nations Development Programme. This model suggests far-reaching consequences, as it introduces new global scales for the sharing and management of environmental costs within a framework of neoliberal cost internalization. The analysis in this paper uses the concept of the “ecological state” (Duit, 2008 as a theoretical point of departure to examine the trans-scalar implications of such a carbon-and-conservation model on global governance structures toward a “global ecological state” (or global eco-state.

  3. Forecasting the Reference Evapotranspiration Using Time Series Model

    Directory of Open Access Journals (Sweden)

    H. Zare Abyaneh

    2016-10-01

    Full Text Available Introduction: Reference evapotranspiration is one of the most important factors in irrigation timing and field management. Moreover, reference evapotranspiration forecasting can play a vital role in future developments. Therefore in this study, the seasonal autoregressive integrated moving average (ARIMA model was used to forecast the reference evapotranspiration time series in the Esfahan, Semnan, Shiraz, Kerman, and Yazd synoptic stations. Materials and Methods: In the present study in all stations (characteristics of the synoptic stations are given in Table 1, the meteorological data, including mean, maximum and minimum air temperature, relative humidity, dry-and wet-bulb temperature, dew-point temperature, wind speed, precipitation, air vapor pressure and sunshine hours were collected from the Islamic Republic of Iran Meteorological Organization (IRIMO for the 41 years from 1965 to 2005. The FAO Penman-Monteith equation was used to calculate the monthly reference evapotranspiration in the five synoptic stations and the evapotranspiration time series were formed. The unit root test was used to identify whether the time series was stationary, then using the Box-Jenkins method, seasonal ARIMA models were applied to the sample data. Table 1. The geographical location and climate conditions of the synoptic stations Station\tGeographical location\tAltitude (m\tMean air temperature (°C\tMean precipitation (mm\tClimate, according to the De Martonne index classification Longitude (E\tLatitude (N Annual\tMin. and Max. Esfahan\t51° 40'\t32° 37'\t1550.4\t16.36\t9.4-23.3\t122\tArid Semnan\t53° 33'\t35° 35'\t1130.8\t18.0\t12.4-23.8\t140\tArid Shiraz\t52° 36'\t29° 32'\t1484\t18.0\t10.2-25.9\t324\tSemi-arid Kerman\t56° 58'\t30° 15'\t1753.8\t15.6\t6.7-24.6\t142\tArid Yazd\t54° 17'\t31° 54'\t1237.2\t19.2\t11.8-26.0\t61\tArid Results and Discussion: The monthly meteorological data were used as input for the Ref-ET software and monthly reference

  4. A Reference Architecture for Providing Tools as a Service to Support Global Software Development

    DEFF Research Database (Denmark)

    Chauhan, Aufeef

    2014-01-01

    -computing paradigm for addressing above-mentioned issues by providing a framework to select appropriate tools as well as associated services and reference architecture of the cloud-enabled middleware platform that allows on demand provisioning of software engineering Tools as a Service (TaaS) with focus......Global Software Development (GSD) teams encounter challenges that are associated with distribution of software development activities across multiple geographic regions. The limited support for performing collaborative development and engineering activities and lack of sufficient support......-based solutions. The restricted ability of the organizations to have desired alignment of tools with software engineering and development processes results in administrative and managerial overhead that incur increased development cost and poor product quality. Moreover, stakeholders involved in the projects have...

  5. A global renewable energy system: A modelling exercise in ETSAP/TIAM

    DEFF Research Database (Denmark)

    Føyn, Tullik Helene Ystanes; Karlsson, Kenneth Bernard; Balyk, Olexandr

    2011-01-01

    This paper aims to test the ETSAP2-TIAM global energy system model and to try out how far it can go towards a global 100% renewable energy system with the existing model database. This will show where limits in global resources are met and where limits in the data fed to the model until now are met...

  6. The recent multi-ethnic global lung initiative 2012 (GLI2012) reference values don't reflect contemporary adult's North African spirometry.

    Science.gov (United States)

    Ben Saad, Helmi; El Attar, Mohamed Nour; Hadj Mabrouk, Khaoula; Ben Abdelaziz, Ahmed; Abdelghani, Ahmed; Bousarssar, Mohamed; Limam, Khélifa; Maatoug, Chiraz; Bouslah, Hmida; Charrada, Ameur; Rouatbi, Sonia

    2013-12-01

    The applicability of the recent multi-ethnic reference equations derived by the ERS Global Lung Initiative (ERS/GLI) in interpreting spirometry data in North African adult subjects has not been studied. To ascertain how well the recent ERS/GLI reference equations fit contemporary adult Tunisian spirometric data. Spirometric data were recorded from 1192 consecutive spirometry procedures in adults aged 18-60 years. Reference values and lower limits of normality (LLN) were calculated using the local and the ERS/GLI reference equations. Applied definitions: large airway obstructive ventilatory defect (LAOVD): FEV1/FVC contemporary Tunisian spirometry. Using Tunisian reference equations, 71.31%, 6.71% and 19.04% of spirometry records were interpreted as normal, and as having, LAOVD and TRVD, respectively. Using the ERS/GLI reference equations, these figures were respectively, 85.82%, 4.19% and 8.39%. The mean ± SD Z-scores for the contemporary healthy North African subject's data were -0.55 ± 0.87 for FEV1, -0.62 ± 0.86 for FVC and 0.10 ± 0.73 for FEV1/FVC. The present study don't recommend the use of the recent ERS/GLI reference equations to interpret spirometry in North African adult population. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Globalization and democracy with reference to eastern and southern ...

    African Journals Online (AJOL)

    Globalization has caused anxiety and uncertainty among the less developed countries; the reason being that it is still unclear as what this new political economy portends for these countries. Also at the heart of this unease is what seems to be globalization's profound political and social consequences for the Third World ...

  8. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  9. Using Models to Inform Policy: Insights from Modeling the Complexities of Global Polio Eradication

    Science.gov (United States)

    Thompson, Kimberly M.

    Drawing on over 20 years of experience modeling risks in complex systems, this talk will challenge SBP participants to develop models that provide timely and useful answers to critical policy questions when decision makers need them. The talk will include reflections on the opportunities and challenges associated with developing integrated models for complex problems and communicating their results effectively. Dr. Thompson will focus the talk largely on collaborative modeling related to global polio eradication and the application of system dynamics tools. After successful global eradication of wild polioviruses, live polioviruses will still present risks that could potentially lead to paralytic polio cases. This talk will present the insights of efforts to use integrated dynamic, probabilistic risk, decision, and economic models to address critical policy questions related to managing global polio risks. Using a dynamic disease transmission model combined with probabilistic model inputs that characterize uncertainty for a stratified world to account for variability, we find that global health leaders will face some difficult choices, but that they can take actions that will manage the risks effectively. The talk will emphasize the need for true collaboration between modelers and subject matter experts, and the importance of working with decision makers as partners to ensure the development of useful models that actually get used.

  10. Global warming description using Daisyworld model with greenhouse gases.

    Science.gov (United States)

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. History, Structure and Agency in Global Health Governance; Comment on “Global Health Governance Challenges 2016 – Are We Ready?”

    Directory of Open Access Journals (Sweden)

    Stephen Gill

    2017-04-01

    Full Text Available Ilona Kickbusch’s thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the “development of sustainability.”

  12. The Wunstorf Drilling Project: Coring a Global Stratigraphic Reference Section of the Oceanic Anoxic Event 2

    Directory of Open Access Journals (Sweden)

    Markus Wilmsen

    2007-03-01

    Full Text Available The Wunstorf drilling project aims at establishing a high resolution stable isotope record for the black shale succession (OAE 2 of the CTBI and developing this into a globally applicable high resolutionbio- and chemostratigraphic reference section. Disciplines involved include micropaleontology (calcareous nannofossils, planktonic foraminifera, macropaleontology (ammonites, inoceramids, stable isotopes and cyclostratigraphy mainly based on borehole logging, multisensor core logging, and x-ray flflfluorescence (XRF scanning data. The combination of geochemical, paleontological, and logging data will allow high resolution chemo- and biostratigraphy for the CTBI which may in the future serve as an international standard.

  13. Global qualitative analysis of a quartic ecological model

    NARCIS (Netherlands)

    Broer, Hendrik; Gaiko, Valery A.

    2010-01-01

    in this paper we complete the global qualitative analysis of a quartic ecological model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles. (C) 2009 Elsevier Ltd. All rights reserved.

  14. What can'(t) we do with global flood risk models?

    Science.gov (United States)

    Ward, P.; Jongman, B.; Salamon, P.; Simpson, A.; Bates, P. D.; de Groeve, T.; Muis, S.; Coughlan, E.; Rudari, R.; Trigg, M. A.; Winsemius, H.

    2015-12-01

    Global flood risk models are now a reality. Initially, their development was driven by a demand from users for first-order global assessments to identify risk hotspots. Relentless upward trends in flood damage over the last decade have enhanced interest in such assessments. The adoption of the Sendai Framework for Disaster Risk Reduction and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts have made these efforts even more essential. As a result, global flood risk models are being used more and more in practice, by an increasingly large number of practitioners and decision-makers. However, they clearly have their limits compared to local models. To address these issues, a team of scientists and practitioners recently came together at the Global Flood Partnership meeting to critically assess the question 'What can('t) we do with global flood risk models?'. The results of this dialogue (Ward et al., 2013) will be presented, opening a discussion on similar broader initiatives at the science-policy interface in other natural hazards. In this contribution, examples are provided of successful applications of global flood risk models in practice (for example together with the World Bank, Red Cross, and UNISDR), and limitations and gaps between user 'wish-lists' and model capabilities are discussed. Finally, a research agenda is presented for addressing these limitations and reducing the gaps. Ward, P.J. et al., 2015. Nature Climate Change, doi:10.1038/nclimate2742.

  15. Combined discriminative global and generative local models for visual tracking

    Science.gov (United States)

    Zhao, Liujun; Zhao, Qingjie; Chen, Yanming; Lv, Peng

    2016-03-01

    It is a challenging task to develop an effective visual tracking algorithm due to factors such as pose variation, rotation, and so on. Combined discriminative global and generative local appearance models are proposed to address this problem. Specifically, we develop a compact global object representation by extracting the low-frequency coefficients of the color and texture of the object based on two-dimensional discrete cosine transform. Then, with the global appearance representation, we learn a discriminative metric classifier in an online fashion to differentiate the target object from its background, which is very important to robustly indicate the changes in appearance. Second, we develop a new generative local model that exploits the scale invariant feature transform and its spatial geometric information. To make use of the advantages of the global discriminative model and the generative local model, we incorporate them into Bayesian inference framework. In this framework, the complementary models help the tracker locate the target more accurately. Furthermore, we use different mechanisms to update global and local templates to capture appearance changes. The experimental results demonstrate that the proposed approach performs favorably against state-of-the-art methods in terms of accuracy.

  16. HYbrid Coordinate Ocean Model (HYCOM): Global

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Global HYbrid Coordinate Ocean Model (HYCOM) and U.S. Navy Coupled Ocean Data Assimilation (NCODA) 3-day, daily forecast at approximately 9-km (1/12-degree)...

  17. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Science.gov (United States)

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  18. Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics

    Science.gov (United States)

    Rolinski, S.; Müller, C.; Lotze-Campen, H.; Bondeau, A.

    2010-12-01

    More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides

  19. Reference Model 5 (RM5): Oscillating Surge Wave Energy Converter

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Y. H. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jenne, D. S. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thresher, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Copping, A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geerlofs, S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hanna, L. A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-01-01

    This report is an addendum to SAND2013-9040: Methodology for Design and Economic Analysis of Marine Energy Conversion (MEC) Technologies. This report describes an Oscillating Water Column Wave Energy Converter (OSWEC) reference model design in a complementary manner to Reference Models 1-4 contained in the above report. A conceptual design for a taut moored oscillating surge wave energy converter was developed. The design had an annual electrical power of 108 kilowatts (kW), rated power of 360 kW, and intended deployment at water depths between 50 m and 100 m. The study includes structural analysis, power output estimation, a hydraulic power conversion chain system, and mooring designs. The results were used to estimate device capital cost and annual operation and maintenance costs. The device performance and costs were used for the economic analysis, following the methodology presented in SAND2013-9040 that included costs for designing, manufacturing, deploying, and operating commercial-scale MEC arrays up to 100 devices. The levelized cost of energy estimated for the Reference Model 5 OSWEC, presented in this report, was for a single device and arrays of 10, 50, and 100 units, and it enabled the economic analysis to account for cost reductions associated with economies of scale. The baseline commercial levelized cost of energy estimate for the Reference Model 5 device in an array comprised of 10 units is $1.44/kilowatt-hour (kWh), and the value drops to approximately $0.69/kWh for an array of 100 units.

  20. Model for assessing alpha doses for a Reference Japanese Man

    International Nuclear Information System (INIS)

    Kawamura, Hisao

    1993-01-01

    In view of the development of the nuclear fuel cycle in this country, it is urgently important to establish dose assessment models and related human and environmental parameters for long-lived radionuclides. In the current program, intake and body content of actinides (Pu, Th, U) and related alpha-emitting nuclides (Ra and daughters) have been studied as well as physiological aspects of Reference Japanese Man as the basic model of man for dosimetry. The ultimate object is to examine applicability of the existing models particularly recommended by the ICRP for workers to members of the public. The result of an interlaboratory intercomparison of 239 Pu + 240 Pu determination including our result was published. Alpha-spectrometric determinations of 226 Ra in bone yielded repesentative bone concentration level in Tokyo and Ra-Ca O.R. (bone-diet) which appear consistent with the literature value for Sapporo and Kyoto by Ohno using a Rn emanation method. Specific effective energies for alpha radiation from 226 Ra and daughters were calculated using the ICRP dosimetric model for bone incorporating masses of source and target organs of Reference Japanese Man. Reference Japanese data including the adult, adolescent, child and infant of both sexes was extensively and intensively studied by Tanaka as part of the activities of the ICRP Task Group on Reference Man Revision. Normal data for the physical measurements, mass and dimension of internal organs and body surfaces and some of the body composition were analysed viewing the nutritional data in the Japanese population. Some of the above works are to be continued. (author)

  1. A physically based model of global freshwater surface temperature

    Science.gov (United States)

    van Beek, Ludovicus P. H.; Eikelboom, Tessa; van Vliet, Michelle T. H.; Bierkens, Marc F. P.

    2012-09-01

    Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for

  2. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    Science.gov (United States)

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  3. Reference analysis of the signal + background model in counting experiments

    Science.gov (United States)

    Casadei, D.

    2012-01-01

    The model representing two independent Poisson processes, labelled as ``signal'' and ``background'' and both contributing additively to the total number of counted events, is considered from a Bayesian point of view. This is a widely used model for the searches of rare or exotic events in presence of a background source, as for example in the searches performed by high-energy physics experiments. In the assumption of prior knowledge about the background yield, a reference prior is obtained for the signal alone and its properties are studied. Finally, the properties of the full solution, the marginal reference posterior, are illustrated with few examples.

  4. Reference Priors for the General Location-Scale Model

    NARCIS (Netherlands)

    Fernández, C.; Steel, M.F.J.

    1997-01-01

    The reference prior algorithm (Berger and Bernardo 1992) is applied to multivariate location-scale models with any regular sampling density, where we establish the irrelevance of the usual assumption of Normal sampling if our interest is in either the location or the scale. This result immediately

  5. A study of the chilean vertical network through global geopotential models and the cnes cls 2011 global mean sea surface

    Directory of Open Access Journals (Sweden)

    Henry Montecino Castro

    Full Text Available Most aspects related to the horizontal component of the Geocentric Reference System for the Americas (SIRGAS have been solved. However, in the case of the vertical component there are still aspects of definition, national realizations and continental unification still not accomplished. Chile is no exception; due to its particular geographic characteristics, a number of tide gauges (TG had to be installed in the coast from which the leveling lines that compose the Chilean Vertical Network (CHVN were established. This study explored the offsets of the CHVN by two different approaches; one geodetic and one oceanographic. In the first approach, the offsets were obtained in relation to the following Global Geopotential Models (GGM: the satellite-only model (unbiased GO_CONS_gcf_2_tim_r3 derived from GOCE satellite mission; EGM2008 (combined-biased; and GOEGM08, combining information from the GO_CONS_gcf_2_tim_r3 in long wavelengths (n max~200 with the mean/short wavelengths of EGM2008 (n>200. In the oceanographic method, we used the CNES CLS 2011 Global Mean Sea surface and EIGEN_GRACE_5C GGM to obtain the values of MDT at the different TG. We also evaluated the CHVN in relation to different GGMs. The results showed consistency between the values obtained by the two methods at the TG of Valparaíso and Puerto Chacabuco. In terms of the evaluation of the GGM, GOEGM08 produced the best results.

  6. Targeting the right input data to improve crop modeling at global level

    Science.gov (United States)

    Adam, M.; Robertson, R.; Gbegbelegbe, S.; Jones, J. W.; Boote, K. J.; Asseng, S.

    2012-12-01

    practices, initial soil conditions, and soil characteristics information. Management practices were represented by planting date and the amount of fertilizer, initial conditions estimates for initial nitrogen, soil water, and stable soil carbon, and soil information is based on a simplified version of the WISE database, characterized by soil organic matter, texture and soil depth. We considered these factors as the most important determinants of nutrient supply to crops during their growing season. Our first global results demonstrate that the model is most sensitive to the initial conditions in terms of soil carbon and nitrogen (CN): wheat yields decreased by 45% when soil CN is null and increase by 15% when twice the soil CN content of the reference run is used. The yields did not appear to be very sensitive to initial soil water conditions, varying from 0% yield increase when initial soil water is set to wilting point to 6% yield increase when it was set to field capacity. They are slightly sensitive to nitrogen application: 8% yield decrease when no N is applied to 9% yield increase when 150 kg.ha-1 is applied. However, with closer examination of results, the model is more sensitive to nitrogen application than to initial soil CN content in Vietnam, Thailand and Japan compared to the rest of the world. More analyses per region and results on the planting dates and soil properties will be presented.

  7. An Analysis of Yip's Global Strategy Model, Using Coca-Cola ...

    African Journals Online (AJOL)

    Analysis of the selected business cases suggest a weak fit between the Yip model of a truly Global strategy ... like Coca-Cola in the beverage industry for effective implementation of a global strategy. ... Keywords: Global Strategy, Leadership.

  8. Global adjoint tomography: first-generation model

    KAUST Repository

    Bozdağ, Ebru

    2016-09-23

    We present the first-generation global tomographic model constructed based on adjoint tomography, an iterative full-waveform inversion technique. Synthetic seismograms were calculated using GPU-accelerated spectral-element simulations of global seismic wave propagation, accommodating effects due to 3-D anelastic crust & mantle structure, topography & bathymetry, the ocean load, ellipticity, rotation, and self-gravitation. Fréchet derivatives were calculated in 3-D anelastic models based on an adjoint-state method. The simulations were performed on the Cray XK7 named \\'Titan\\', a computer with 18 688 GPU accelerators housed at Oak Ridge National Laboratory. The transversely isotropic global model is the result of 15 tomographic iterations, which systematically reduced differences between observed and simulated three-component seismograms. Our starting model combined 3-D mantle model S362ANI with 3-D crustal model Crust2.0. We simultaneously inverted for structure in the crust and mantle, thereby eliminating the need for widely used \\'crustal corrections\\'. We used data from 253 earthquakes in the magnitude range 5.8 ≤ M ≤ 7.0. We started inversions by combining ~30 s body-wave data with ~60 s surface-wave data. The shortest period of the surface waves was gradually decreased, and in the last three iterations we combined ~17 s body waves with ~45 s surface waves. We started using 180 min long seismograms after the 12th iteration and assimilated minor- and major-arc body and surface waves. The 15th iteration model features enhancements of well-known slabs, an enhanced image of the Samoa/Tahiti plume, as well as various other plumes and hotspots, such as Caroline, Galapagos, Yellowstone and Erebus. Furthermore, we see clear improvements in slab resolution along the Hellenic and Japan Arcs, as well as subduction along the East of Scotia Plate, which does not exist in the starting model. Point-spread function tests demonstrate that we are approaching the

  9. Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    of the oceanic lithosphere. An entire modelling of the shallow Geopotential Energy is hereby approached, not taking into account possible deeper signals but all lithospheric signals for the subsequent stress calculation. Therefore a global lithospheric density model is necessary to calculate the corresponding...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  10. PI controller based model reference adaptive control for nonlinear

    African Journals Online (AJOL)

    user

    Keywords: Model Reference Adaptive Controller (MRAC), Artificial Neural ... attention, and many new approaches have been applied to practical process .... effectiveness of proposed method, it is compared with the simulation results of the ...

  11. Speed Sensorless Control of PMSM using Model Reference Adaptive System and RBFN

    OpenAIRE

    Wei Gao; Zhirong Guo

    2013-01-01

    In the speed sensorless vector control system, the amended method of estimating the rotor speed about model reference adaptive system (MRAS) based on radial basis function neural network (RBFN) for PMSM sensorless vector control system was presented. Based on the PI regulator, the radial basis function neural network which is more prominent learning efficiency and performance is combined with MRAS. The reference model and the adjust model are the PMSM itself and the PMSM current, respectively...

  12. Determination of Vertical Datum Offset between the Regional and the Global Height Datum

    Directory of Open Access Journals (Sweden)

    LI Jiancheng

    2017-10-01

    Full Text Available The unification of the global height datum is a key problem to be solved for geodesy after the unification of global geodetic coordination system and three-dimension spatial datum, and the basis of global spatial information sharing and exchange. In this paper, the theoretical and practical problems of vertical datum offset between the regional height datum and the global height datum are studied. Based on the classical theory of the height system in physical geodesy, the definition of the height datum vertical offset is given, and the rigorous formulas for calculating the vertical offset are derived. The formulas can be used to deduce the three methods of the height datum vertical offset determination. On that basis, the influences of different reference system and reference ellipsoid parameters on the calculation of the vertical offset are analyzed. The results show that the reference system and the ellipsoid parameter conversion are very necessary. At the same time, the height anomaly differences method needs to consider the degree zero correction caused by the inconsistency between gravity potential of the global height datum and the one computed by the model. Based on potential difference approach and the height anomaly difference method, the vertical offset between the China 1985 national height datum and the global height datum corresponding to the normal gravity potential U0 of GRS80, WGS-84 and CGCS2000 reference ellipsoidal from the 152 GPS/leveling points near the origin of Qingdao height origin and the EGM2008, EIGEN-6C4 and SGG-UGM-1 model. The regional datum is 23.1 cm lower than the global datum based on EIGEN-6C4 and WGS-84. When the Gauss-Listing geoid (mean sea surface is selected as the global height datum, the China 1985 national height datum is 21.0 cm higher than the global height datum. The results also show that there are still large differences among the accuracies of the current gravity field models on these GPS

  13. Global Oncology; Harvard Global Health Catalyst summit lecture notes

    Science.gov (United States)

    Ngwa, Wilfred; Nguyen, Paul

    2017-08-01

    The material presented in this book is at the cutting-edge of global oncology and provides highly illuminating examples, addresses frequently asked questions, and provides information and a reference for future work in global oncology care, research, education, and outreach.

  14. A Process-based Model of Global Lichen Productivity

    Science.gov (United States)

    Porada, P.; Kleidon, A.

    2012-04-01

    Lichens and biotic crusts are abundant in most ecosystems of the world. They are the main autotrophic organisms in many deserts and at high altitudes and they can also be found in large amounts as epiphytes in some forests, especially in the boreal zone. They are characterised by a great variety of physiological properties, such as growth form, productivity or color. Due to the vast land surface areas covered by lichens, they may contribute significantly to the global terrestrial net carbon uptake. Furthermore, they potentially play an important role with respect to nutrient cycles in some ecosystems and they have the ability to enhance weathering at the surface on which they grow. A possible way to quantify these processes at the global scale is presented here in form of a process-based lichen model. This approach is based on the concepts used in many dynamical vegetation models and extends these methods to account for the specific properties of lichens. Hence, processes such as photosynthesis, respiration and water exchange are implemented as well as important trade-offs like photosynthetic capacity versus respiratory load and water content versus CO2 conductivity. The great physiological variability of lichens is incorporated directly into the model through ranges of possible parameter values, which are randomly sampled. In this way, many artificial lichen "species" are created and climate then acts as a filter to determine the species which are able to survive permanently. By averaging over the surviving "species", the model predicts lichen productivity as a function of climate input data such as temperature, radiation and precipitation at the global scale. Consequently, the contribution of lichens to the global carbon balance can be quantified. Moreover, global patterns of lichen biodiversity and other properties can be illustrated. The model can be extended to account for the nutrient dynamics of lichens, such as nitrogen fixation and the acquisition and

  15. Establishment of reference intervals of clinical chemistry analytes for the adult population in Saudi Arabia: a study conducted as a part of the IFCC global study on reference values.

    Science.gov (United States)

    Borai, Anwar; Ichihara, Kiyoshi; Al Masaud, Abdulaziz; Tamimi, Waleed; Bahijri, Suhad; Armbuster, David; Bawazeer, Ali; Nawajha, Mustafa; Otaibi, Nawaf; Khalil, Haitham; Kawano, Reo; Kaddam, Ibrahim; Abdelaal, Mohamed

    2016-05-01

    This study is a part of the IFCC-global study to derive reference intervals (RIs) for 28 chemistry analytes in Saudis. Healthy individuals (n=826) aged ≥18 years were recruited using the global study protocol. All specimens were measured using an Architect analyzer. RIs were derived by both parametric and non-parametric methods for comparative purpose. The need for secondary exclusion of reference values based on latent abnormal values exclusion (LAVE) method was examined. The magnitude of variation attributable to gender, ages and regions was calculated by the standard deviation ratio (SDR). Sources of variations: age, BMI, physical exercise and smoking levels were investigated by using the multiple regression analysis. SDRs for gender, age and regional differences were significant for 14, 8 and 2 analytes, respectively. BMI-related changes in test results were noted conspicuously for CRP. For some metabolic related parameters the ranges of RIs by non-parametric method were wider than by the parametric method and RIs derived using the LAVE method were significantly different than those without it. RIs were derived with and without gender partition (BMI, drugs and supplements were considered). RIs applicable to Saudis were established for the majority of chemistry analytes, whereas gender, regional and age RI partitioning was required for some analytes. The elevated upper limits of metabolic analytes reflects the existence of high prevalence of metabolic syndrome in Saudi population.

  16. A hydroclimatic model of global fire patterns

    Science.gov (United States)

    Boer, Matthias

    2015-04-01

    Satellite-based earth observation is providing an increasingly accurate picture of global fire patterns. The highest fire activity is observed in seasonally dry (sub-)tropical environments of South America, Africa and Australia, but fires occur with varying frequency, intensity and seasonality in almost all biomes on Earth. The particular combination of these fire characteristics, or fire regime, is known to emerge from the combined influences of climate, vegetation, terrain and land use, but has so far proven difficult to reproduce by global models. Uncertainty about the biophysical drivers and constraints that underlie current global fire patterns is propagated in model predictions of how ecosystems, fire regimes and biogeochemical cycles may respond to projected future climates. Here, I present a hydroclimatic model of global fire patterns that predicts the mean annual burned area fraction (F) of 0.25° x 0.25° grid cells as a function of the climatic water balance. Following Bradstock's four-switch model, long-term fire activity levels were assumed to be controlled by fuel productivity rates and the likelihood that the extant fuel is dry enough to burn. The frequency of ignitions and favourable fire weather were assumed to be non-limiting at long time scales. Fundamentally, fuel productivity and fuel dryness are a function of the local water and energy budgets available for the production and desiccation of plant biomass. The climatic water balance summarizes the simultaneous availability of biologically usable energy and water at a site, and may therefore be expected to explain a significant proportion of global variation in F. To capture the effect of the climatic water balance on fire activity I focused on the upper quantiles of F, i.e. the maximum level of fire activity for a given climatic water balance. Analysing GFED4 data for annual burned area together with gridded climate data, I found that nearly 80% of the global variation in the 0.99 quantile of F

  17. Global Volcano Model

    Science.gov (United States)

    Sparks, R. S. J.; Loughlin, S. C.; Cottrell, E.; Valentine, G.; Newhall, C.; Jolly, G.; Papale, P.; Takarada, S.; Crosweller, S.; Nayembil, M.; Arora, B.; Lowndes, J.; Connor, C.; Eichelberger, J.; Nadim, F.; Smolka, A.; Michel, G.; Muir-Wood, R.; Horwell, C.

    2012-04-01

    Over 600 million people live close enough to active volcanoes to be affected when they erupt. Volcanic eruptions cause loss of life, significant economic losses and severe disruption to people's lives, as highlighted by the recent eruption of Mount Merapi in Indonesia. The eruption of Eyjafjallajökull, Iceland in 2010 illustrated the potential of even small eruptions to have major impact on the modern world through disruption of complex critical infrastructure and business. The effects in the developing world on economic growth and development can be severe. There is evidence that large eruptions can cause a change in the earth's climate for several years afterwards. Aside from meteor impact and possibly an extreme solar event, very large magnitude explosive volcanic eruptions may be the only natural hazard that could cause a global catastrophe. GVM is a growing international collaboration that aims to create a sustainable, accessible information platform on volcanic hazard and risk. We are designing and developing an integrated database system of volcanic hazards, vulnerability and exposure with internationally agreed metadata standards. GVM will establish methodologies for analysis of the data (eg vulnerability indices) to inform risk assessment, develop complementary hazards models and create relevant hazards and risk assessment tools. GVM will develop the capability to anticipate future volcanism and its consequences. NERC is funding the start-up of this initiative for three years from November 2011. GVM builds directly on the VOGRIPA project started as part of the GRIP (Global Risk Identification Programme) in 2004 under the auspices of the World Bank and UN. Major international initiatives and partners such as the Smithsonian Institution - Global Volcanism Program, State University of New York at Buffalo - VHub, Earth Observatory of Singapore - WOVOdat and many others underpin GVM.

  18. Teaching methodology for modeling reference evapotranspiration with artificial neural networks

    OpenAIRE

    Martí, Pau; Pulido Calvo, Inmaculada; Gutiérrez Estrada, Juan Carlos

    2015-01-01

    [EN] Artificial neural networks are a robust alternative to conventional models for estimating different targets in irrigation engineering, among others, reference evapotranspiration, a key variable for estimating crop water requirements. This paper presents a didactic methodology for introducing students in the application of artificial neural networks for reference evapotranspiration estimation using MatLab c . Apart from learning a specific application of this software wi...

  19. A reference model for space data system interconnection services

    Science.gov (United States)

    Pietras, John; Theis, Gerhard

    1993-01-01

    The widespread adoption of standard packet-based data communication protocols and services for spaceflight missions provides the foundation for other standard space data handling services. These space data handling services can be defined as increasingly sophisticated processing of data or information received from lower-level services, using a layering approach made famous in the International Organization for Standardization (ISO) Open System Interconnection Reference Model (OSI-RM). The Space Data System Interconnection Reference Model (SDSI-RM) incorporates the conventions of the OSIRM to provide a framework within which a complete set of space data handling services can be defined. The use of the SDSI-RM is illustrated through its application to data handling services and protocols that have been defined by, or are under consideration by, the Consultative Committee for Space Data Systems (CCSDS).

  20. Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models

    International Nuclear Information System (INIS)

    Liepert, Beate G; Previdi, Michael

    2012-01-01

    Observed changes such as increasing global temperatures and the intensification of the global water cycle in the 20th century are robust results of coupled general circulation models (CGCMs). In spite of these successes, model-to-model variability and biases that are small in first order climate responses, however, have considerable implications for climate predictability especially when multi-model means are used. We show that most climate simulations of the 20th and 21st century A2 scenario performed with CMIP3 (Coupled Model Inter-comparison Project Phase 3) models have deficiencies in simulating the global atmospheric moisture balance. Large biases of only a few models (some biases reach the simulated global precipitation changes in the 20th and 21st centuries) affect the multi-model mean global moisture budget. An imbalanced flux of −0.14 Sv exists while the multi-model median imbalance is only −0.02 Sv. Moreover, for most models the detected imbalance changes over time. As a consequence, in 13 of the 18 CMIP3 models examined, global annual mean precipitation exceeds global evaporation, indicating that there should be a ‘leaking’ of moisture from the atmosphere whereas for the remaining five models a ‘flooding’ is implied. Nonetheless, in all models, the actual atmospheric moisture content and its variability correctly increases during the course of the 20th and 21st centuries. These discrepancies therefore imply an unphysical and hence ‘ghost’ sink/source of atmospheric moisture in the models whose atmospheres flood/leak. The ghost source/sink of moisture can also be regarded as atmospheric latent heating/cooling and hence as positive/negative perturbation of the atmospheric energy budget or non-radiative forcing in the range of −1 to +6 W m −2 (median +0.1 W m −2 ). The inter-model variability of the global atmospheric moisture transport from oceans to land areas, which impacts the terrestrial water cycle, is also quite high and ranges

  1. GEM1: First-year modeling and IT activities for the Global Earthquake Model

    Science.gov (United States)

    Anderson, G.; Giardini, D.; Wiemer, S.

    2009-04-01

    GEM is a public-private partnership initiated by the Organisation for Economic Cooperation and Development (OECD) to build an independent standard for modeling and communicating earthquake risk worldwide. GEM is aimed at providing authoritative, open information about seismic risk and decision tools to support mitigation. GEM will also raise risk awareness and help post-disaster economic development, with the ultimate goal of reducing the toll of future earthquakes. GEM will provide a unified set of seismic hazard, risk, and loss modeling tools based on a common global IT infrastructure and consensus standards. These tools, systems, and standards will be developed in partnership with organizations around the world, with coordination by the GEM Secretariat and its Secretary General. GEM partners will develop a variety of global components, including a unified earthquake catalog, fault database, and ground motion prediction equations. To ensure broad representation and community acceptance, GEM will include local knowledge in all modeling activities, incorporate existing detailed models where possible, and independently test all resulting tools and models. When completed in five years, GEM will have a versatile, penly accessible modeling environment that can be updated as necessary, and will provide the global standard for seismic hazard, risk, and loss models to government ministers, scientists and engineers, financial institutions, and the public worldwide. GEM is now underway with key support provided by private sponsors (Munich Reinsurance Company, Zurich Financial Services, AIR Worldwide Corporation, and Willis Group Holdings); countries including Belgium, Germany, Italy, Singapore, Switzerland, and Turkey; and groups such as the European Commission. The GEM Secretariat has been selected by the OECD and will be hosted at the Eucentre at the University of Pavia in Italy; the Secretariat is now formalizing the creation of the GEM Foundation. Some of GEM's global

  2. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    Science.gov (United States)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  3. Paladin Enterprises: Monolithic particle physics models global climate.

    CERN Multimedia

    2002-01-01

    Paladin Enterprises presents a monolithic particle model of the universe which will be used by them to build an economical fusion energy system. The model is an extension of the work done by James Clerk Maxwell. Essentially, gravity is unified with electro-magnetic forces and shown to be a product of a closed loop current system, i.e. a particle - monolithic or sub atomic. This discovery explains rapid global climate changes which are evident in the geological record and also provides an explanation for recent changes in the global climate.

  4. Regression Model to Predict Global Solar Irradiance in Malaysia

    Directory of Open Access Journals (Sweden)

    Hairuniza Ahmed Kutty

    2015-01-01

    Full Text Available A novel regression model is developed to estimate the monthly global solar irradiance in Malaysia. The model is developed based on different available meteorological parameters, including temperature, cloud cover, rain precipitate, relative humidity, wind speed, pressure, and gust speed, by implementing regression analysis. This paper reports on the details of the analysis of the effect of each prediction parameter to identify the parameters that are relevant to estimating global solar irradiance. In addition, the proposed model is compared in terms of the root mean square error (RMSE, mean bias error (MBE, and the coefficient of determination (R2 with other models available from literature studies. Seven models based on single parameters (PM1 to PM7 and five multiple-parameter models (PM7 to PM12 are proposed. The new models perform well, with RMSE ranging from 0.429% to 1.774%, R2 ranging from 0.942 to 0.992, and MBE ranging from −0.1571% to 0.6025%. In general, cloud cover significantly affects the estimation of global solar irradiance. However, cloud cover in Malaysia lacks sufficient influence when included into multiple-parameter models although it performs fairly well in single-parameter prediction models.

  5. The Global Modeling Test Bed - Building a New National Capability for Advancing Operational Global Modeling in the United States.

    Science.gov (United States)

    Toepfer, F.; Cortinas, J. V., Jr.; Kuo, W.; Tallapragada, V.; Stajner, I.; Nance, L. B.; Kelleher, K. E.; Firl, G.; Bernardet, L.

    2017-12-01

    NOAA develops, operates, and maintains an operational global modeling capability for weather, sub seasonal and seasonal prediction for the protection of life and property and fostering the US economy. In order to substantially improve the overall performance and accelerate advancements of the operational modeling suite, NOAA is partnering with NCAR to design and build the Global Modeling Test Bed (GMTB). The GMTB has been established to provide a platform and a capability for researchers to contribute to the advancement primarily through the development of physical parameterizations needed to improve operational NWP. The strategy to achieve this goal relies on effectively leveraging global expertise through a modern collaborative software development framework. This framework consists of a repository of vetted and supported physical parameterizations known as the Common Community Physics Package (CCPP), a common well-documented interface known as the Interoperable Physics Driver (IPD) for combining schemes into suites and for their configuration and connection to dynamic cores, and an open evidence-based governance process for managing the development and evolution of CCPP. In addition, a physics test harness designed to work within this framework has been established in order to facilitate easier like-to-like comparison of physics advancements. This paper will present an overview of the design of the CCPP and test platform. Additionally, an overview of potential new opportunities of how physics developers can engage in the process, from implementing code for CCPP/IPD compliance to testing their development within an operational-like software environment, will be presented. In addition, insight will be given as to how development gets elevated to CPPP-supported status, the pre-cursor to broad availability and use within operational NWP. An overview of how the GMTB can be expanded to support other global or regional modeling capabilities will also be presented.

  6. An evaluation of temperature and precipitation from global and regional climate models over Scandinavia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Precipitation and temperature from global (GCMs) and regional (RCMs) climate models are compared with reanalysis and observations over Scandinavia. Also projections for the next 50-100 years are considered. The climate development is visualised as moving averages (1920-2100). Box plots are used to illuminate how well GCM runs capture the observed seasonal cycle. Maps show the seasonal difference between results from control runs (RCM) and observations (E-OBS dataset) for the reference period 1981-2000. Plots illustrate the RCM-representation of seasonal temperature and precipitations cycle for five locations in Norway and Sweden: Oslo, Bergen, Trondheim, Tromsoe and Oestersund. The results show rather large differences between control runs and observations, demonstrating the need for bias correction of results from climate models. To get an indicator of which GC M-RCM-combination give the best representation of present climate over Scandinavia, a model ranking is provided. The performance measure used is the root-mean-square deviation of mean monthly and seasonal values. The data is compared both in an area-weighted spatial average of the whole domain as well as for the selected locations. The results indicate that the regional models RACMO2 and RCA show the smallest deviations from observed climate. Among the top ranking GCM-RCM combinations, most were driven by the global model ECHAM5 and some by a version of HadCM3. These two GCMs are also present among the worst performing GCM-RCM combinations indicating that selection of RCMs is crucial. (Author)

  7. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    Science.gov (United States)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  8. ASTER Global Digital Elevation Model V002

    Data.gov (United States)

    National Aeronautics and Space Administration — The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Digital Elevation Model (GDEM) was developed jointly by the U.S. National...

  9. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    Science.gov (United States)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  10. Seismic waves and earthquakes in a global monolithic model

    Science.gov (United States)

    Roubíček, Tomáš

    2018-03-01

    The philosophy that a single "monolithic" model can "asymptotically" replace and couple in a simple elegant way several specialized models relevant on various Earth layers is presented and, in special situations, also rigorously justified. In particular, global seismicity and tectonics is coupled to capture, e.g., (here by a simplified model) ruptures of lithospheric faults generating seismic waves which then propagate through the solid-like mantle and inner core both as shear (S) or pressure (P) waves, while S-waves are suppressed in the fluidic outer core and also in the oceans. The "monolithic-type" models have the capacity to describe all the mentioned features globally in a unified way together with corresponding interfacial conditions implicitly involved, only when scaling its parameters appropriately in different Earth's layers. Coupling of seismic waves with seismic sources due to tectonic events is thus an automatic side effect. The global ansatz is here based, rather for an illustration, only on a relatively simple Jeffreys' viscoelastic damageable material at small strains whose various scaling (limits) can lead to Boger's viscoelastic fluid or even to purely elastic (inviscid) fluid. Self-induced gravity field, Coriolis, centrifugal, and tidal forces are counted in our global model, as well. The rigorous mathematical analysis as far as the existence of solutions, convergence of the mentioned scalings, and energy conservation is briefly presented.

  11. Adaptive control for a PWR using a self-tuning reference model concept

    International Nuclear Information System (INIS)

    Miley, G.H.; Park, G.T.; Kim, B.S.

    1992-01-01

    Possible applications of an adaptive control method to a pressurized-water reactor nuclear power plant are investigated. The self-tuning technique with a reference model concept is employed. This control algorithm is developed by combining the self-tuning controller with the model reference adaptive control. This approach overcomes the difficulties in choosing the appropriate weighting polynomials in the cost function of the self-tuning control

  12. Revising a conceptual model of partnership and sustainability in global health.

    Science.gov (United States)

    Upvall, Michele J; Leffers, Jeanne M

    2018-05-01

    Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.

  13. Description and Evaluation of IAP-AACM: A Global-regional Aerosol Chemistry Model for the Earth System Model CAS-ESM

    Science.gov (United States)

    Wei, Y.; Chen, X.

    2017-12-01

    We present a first description and evaluation of the IAP Atmospheric Aerosol Chemistry Model (IAP-AACM) which has been integrated into the earth system model CAS-ESM. In this way it is possible to research into interaction of clouds and aerosol by its two-way coupling with the IAP Atmospheric General Circulation Model (IAP-AGCM). The model has a nested global-regional grid based on the Global Environmental Atmospheric Transport Model (GEATM) and the Nested Air Quality Prediction Modeling System (NAQPMS). The AACM provides two optional gas chemistry schemes, the CBM-Z gas chemistry as well as a sulfur oxidize box designed specifically for the CAS-ESM. Now the model driven by AGCM has been applied to a 1-year simulation of tropospheric chemistry both on global and regional scales for 2014, and been evaluated against various observation datasets, including aerosol precursor gas concentration, aerosol mass and number concentrations. Furthermore, global budgets in AACM are compared with other global aerosol models. Generally, the AACM simulations are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of gases and particles concentration both on global and regional scales.

  14. Leveraging the Global Health Service Partnership Model for Workforce Development in Global Radiation Oncology

    Directory of Open Access Journals (Sweden)

    Omoruyi Credit Irabor

    2017-12-01

    Full Text Available A major contributor to the disparity in cancer outcome across the globe is the limited health care access in low- and middle-income countries that results from the shortfall in human resources for health (HRH, fomented by the limited training and leadership capacity of low-resource countries. In 2012, Seed Global Health teamed up with the Peace Corps to create the Global Health Service Partnership, an initiative that has introduced a novel model for tackling the HRH crises in developing regions of the world. The Global Health Service Partnership has made global health impacts in leveraging partnerships for HRH development, faculty activities and output, scholarship engagement, adding value to the learning environment, health workforce empowerment, and infrastructure development.

  15. Evaluation of the Global Lung Initiative 2012 Reference Values for Spirometry in African Children.

    Science.gov (United States)

    Arigliani, Michele; Canciani, Mario C; Mottini, Giovanni; Altomare, Michele; Magnolato, Andrea; Loa Clemente, Sofia Vanda; Tshilolo, Leon; Cogo, Paola; Quanjer, Philip H

    2017-01-15

    Despite the high burden of respiratory disease, no spirometry reference values for African children are available. Investigate whether the Global Lung Initiative (GLI-2012) reference values for spirometry are appropriate for children in sub-Saharan Africa and assess the impact of malnutrition on lung function. Anthropometry and spirometry were obtained in children aged 6 to 12 years from urban and semiurban schools in three African countries. Spirometry z-scores were derived using the GLI-2012 prediction equations for African Americans. Thinness (body mass index z-score Spirometry outcomes were compared with those of African American children from the third National Health and Nutrition Survey. Spirometry data were analyzed from 1,082 schoolchildren (51% boys) aged 6.0 to 12.8 years in Angola (n = 306), Democratic Republic of the Congo (n = 377), and Madagascar (n = 399). GLI-2012 provided a good fit with mean (SD) z-scores of -0.11 (0.83) for FEV 1 , -0.08 (0.86) for FVC, and -0.07 (0.83) for FEV 1 /FVC. Because of low scatter, the fifth centile corresponded to -1.3 z-scores in boys and -1.5 z-scores in girls. Malnourished African children had a normal FEV 1 /FVC ratio but significant reductions of ∼0.5 z-scores (∼5%) in FEV 1 and FVC compared with African American peers from the third National Health and Nutrition Survey. Children in Angola had the lowest, and those in Madagascar had the highest, zFEV 1 and zFVC. The results of this study support the use of GLI-2012 reference values for schoolchildren in sub-Saharan Africa. Malnutrition affects body growth, leading to a proportionately smaller FEV 1 and FVC without respiratory impairment, as shown by the normal FEV 1 /FVC ratio.

  16. Quantification of effective plant rooting depth: advancing global hydrological modelling

    Science.gov (United States)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  17. Time series modelling of global mean temperature for managerial decision-making.

    Science.gov (United States)

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  18. Modelo de referência para estruturar o Seis Sigma nas organizações Reference model to structure the Six Sigma in organizations

    Directory of Open Access Journals (Sweden)

    Adriana Barbosa Santos

    2008-04-01

    Full Text Available Este artigo apresenta o modelo de referência para estruturar o Seis Sigma, o qual é resultante da incorporação de teorias que contribuem para aumentar o potencial estratégico do Seis Sigma no sentido de incrementar o desempenho organizacional. Em sua proposta, o modelo de referência engloba um direcionamento sobre certos requisitos primordiais para o sucesso do programa Seis Sigma. A base teórica de sustentação do modelo de referência foi construída a partir de estudos sobre a influência dos seguintes fatores: orientação estratégica e alinhamento estratégico; medição e gerenciamento do desempenho organizacional; uso de estatística (pensamento estatístico; capacitação/especialização de pessoas; implementação e gerenciamento de projetos; e uso de tecnologia de informação. Complementando a proposição do modelo, o artigo traz evidências empíricas acerca da contribuição dos fatores identificados na formulação do modelo de referência, expondo resultados decorrentes de estudos de caso realizados em quatro subsidiárias brasileiras de multinacionais de grande porte. A análise dos dados forneceu evidências positivas de que os fatores mencionados influenciam de forma efetiva o sucesso e a consolidação do Seis Sigma nas empresas estudadas.This paper introduces the reference model to structure Six Sigma. This model is a result of theory incorporation that contributes to increase the strategic power of Six Sigma for improving businesses performance. Reference model proposal points out certain primordial requirements for de Six Sigma program success. The theoretical basis to sustain the reference model was supported in studies about the influence of critical factors such as: strategic orientation and strategic alignment; business performance measurement; statistical approach (statistical thinking; people training; project implementation; and information technology use. Complementing the model proposition, this paper

  19. Global stability analysis of epidemiological models based on Volterra–Lyapunov stable matrices

    International Nuclear Information System (INIS)

    Liao Shu; Wang Jin

    2012-01-01

    Highlights: ► Global dynamics of high dimensional dynamical systems. ► A systematic approach for global stability analysis. ► Epidemiological models of environment-dependent diseases. - Abstract: In this paper, we study the global dynamics of a class of mathematical epidemiological models formulated by systems of differential equations. These models involve both human population and environmental component(s) and constitute high-dimensional nonlinear autonomous systems, for which the global asymptotic stability of the endemic equilibria has been a major challenge in analyzing the dynamics. By incorporating the theory of Volterra–Lyapunov stable matrices into the classical method of Lyapunov functions, we present an approach for global stability analysis and obtain new results on some three- and four-dimensional model systems. In addition, we conduct numerical simulation to verify the analytical results.

  20. Evaluation of global climate models for Indian monsoon climatology

    International Nuclear Information System (INIS)

    Kodra, Evan; Ganguly, Auroop R; Ghosh, Subimal

    2012-01-01

    The viability of global climate models for forecasting the Indian monsoon is explored. Evaluation and intercomparison of model skills are employed to assess the reliability of individual models and to guide model selection strategies. Two dominant and unique patterns of Indian monsoon climatology are trends in maximum temperature and periodicity in total rainfall observed after 30 yr averaging over India. An examination of seven models and their ensembles reveals that no single model or model selection strategy outperforms the rest. The single-best model for the periodicity of Indian monsoon rainfall is the only model that captures a low-frequency natural climate oscillator thought to dictate the periodicity. The trend in maximum temperature, which most models are thought to handle relatively better, is best captured through a multimodel average compared to individual models. The results suggest a need to carefully evaluate individual models and model combinations, in addition to physical drivers where possible, for regional projections from global climate models. (letter)

  1. Fit Gap Analysis – The Role of Business Process Reference Models

    Directory of Open Access Journals (Sweden)

    Dejan Pajk

    2013-12-01

    Full Text Available Enterprise resource planning (ERP systems support solutions for standard business processes such as financial, sales, procurement and warehouse. In order to improve the understandability and efficiency of their implementation, ERP vendors have introduced reference models that describe the processes and underlying structure of an ERP system. To select and successfully implement an ERP system, the capabilities of that system have to be compared with a company’s business needs. Based on a comparison, all of the fits and gaps must be identified and further analysed. This step usually forms part of ERP implementation methodologies and is called fit gap analysis. The paper theoretically overviews methods for applying reference models and describes fit gap analysis processes in detail. The paper’s first contribution is its presentation of a fit gap analysis using standard business process modelling notation. The second contribution is the demonstration of a process-based comparison approach between a supply chain process and an ERP system process reference model. In addition to its theoretical contributions, the results can also be practically applied to projects involving the selection and implementation of ERP systems.

  2. CONSTRUCTION THEORY AND NOISE ANALYSIS METHOD OF GLOBAL CGCS2000 COORDINATE FRAME

    Directory of Open Access Journals (Sweden)

    Z. Jiang

    2018-04-01

    Full Text Available The definition, renewal and maintenance of geodetic datum has been international hot issue. In recent years, many countries have been studying and implementing modernization and renewal of local geodetic reference coordinate frame. Based on the precise result of continuous observation for recent 15 years from state CORS (continuously operating reference system network and the mainland GNSS (Global Navigation Satellite System network between 1999 and 2007, this paper studies the construction of mathematical model of the Global CGCS2000 frame, mainly analyzes the theory and algorithm of two-step method for Global CGCS2000 Coordinate Frame formulation. Finally, the noise characteristic of the coordinate time series are estimated quantitatively with the criterion of maximum likelihood estimation.

  3. Evaluation of Applicability of Global Solar Radiation Prediction Models for Kocaeli

    Directory of Open Access Journals (Sweden)

    Nurullah ARSLANOĞLU

    2016-04-01

    Full Text Available Design and analyses of solar energy systems needs value of global solar radiation falling on the surface of the earth. In this study,  thirty relative sunshine duration based regression models in the literature for determining the monthly average daily global solar radiation on a horizontal surface for Kocaeli were investigated. To indicate the performance of the models, the following statistical test methods are used: mean absolute bias error (MABE, mean bias error (MBE, mean absolute percent error (MAPE, mean percent error (MPE, root mean square error (RMSE. According to the statistical performance, Lewis model (Model 23, Model-18 (Jin et al. and Model 8 (Bahel et al. showed the best estimation of the global solar radiation on a horizontal surface for Kocaeli.

  4. Subjective Social Status and Well-Being: The Role of Referent Abstraction.

    Science.gov (United States)

    Haught, Heather M; Rose, Jason; Geers, Andrew; Brown, Jill A

    2015-01-01

    Subjective social status (SSS) has been shown to predict well-being and mental health, above and beyond objective social status (OSS). However, little is known about the factors that moderate this relationship. Two studies explored whether the link between SSS and well-being varied depending upon the referent used for comparison in SSS judgments. Participants judged their well-being and SSS in comparison to referents that varied in abstraction. A confirmatory factor analysis on SSS judgments yielded two factors: (a) SSS perceptions toward global referents and (b) SSS perceptions toward local referents. SSS relative to a global referent was a better predictor of depression (Studies 1 and 2), life satisfaction (Studies 1 and 2), and self-esteem (Study 2) than SSS relative to a local referent. These findings have theoretical implications for understanding how people differentiate between local vs. global referents and practical implications for status-related health disparities.

  5. A quantitative analysis of faulty EPCs in the SAP reference model

    NARCIS (Netherlands)

    Mendling, J.; Moser, M.; Neumann, G.; Verbeek, H.M.W.; Dongen, van B.F.; Aalst, van der W.M.P.

    2006-01-01

    The SAP reference model contains more than 600 non-trivial process models expressed in terms of Event-driven Process Chains (EPCs). We have automatically translated these EPCs into YAWL models and analyzed these models usingWofYAWL, a veri¯cation tool based on Petri nets. We discovered that at least

  6. A Java Reference Model of Transacted Memory for Smart Cards

    NARCIS (Netherlands)

    Poll, Erik; Hartel, Pieter H.; de Jong, Eduard

    Transacted Memory offers persistence, undoability and auditing. We present a Java/JML Reference Model of the Transacted Memory system on the basis of our earlier separate Z model and C implementation. We conclude that Java/JML combines the advantages of a high level specification in the JML part

  7. A Java Reference Model of Transacted Memory for Smart Cards

    NARCIS (Netherlands)

    Poll, Erik; Hartel, Pieter H.; de Jong, Eduard

    2002-01-01

    Transacted Memory offers persistence, undoability and auditing. We present a Java/JML Reference Model of the Transacted Memory system on the basis of our earlier separate Z model and C implementation. We conclude that Java/JML combines the advantages of a high level specification in the JML part

  8. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  9. A global sensitivity analysis approach for morphogenesis models

    KAUST Repository

    Boas, Sonja E. M.

    2015-11-21

    Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  10. A global sensitivity analysis approach for morphogenesis models.

    Science.gov (United States)

    Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G

    2015-11-21

    Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.

  11. Development of an Integrated Global Energy Model

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1999-01-01

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E 3 ) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term (approximately2,100) context. The E 3 model so developed was applied to create a Los Alamos presence in this E 3 area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E 3 model have been presented at a variety of national and international conferences and workshops. Through use of the E 3 model Los Alamos was afforded the opportunity to participate in a multi-national E 3 study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E 3 model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project

  12. Global tropospheric ozone modeling: Quantifying errors due to grid resolution

    OpenAIRE

    Wild, Oliver; Prather, Michael J

    2006-01-01

    Ozone production in global chemical models is dependent on model resolution because ozone chemistry is inherently nonlinear, the timescales for chemical production are short, and precursors are artificially distributed over the spatial scale of the model grid. In this study we examine the sensitivity of ozone, its precursors, and its production to resolution by running a global chemical transport model at four different resolutions between T21 (5.6° × 5.6°) and T106 (1.1° × 1.1°) and by quant...

  13. Prospective of Transformation of Current Models of the Global Pharmaceutical Market

    Directory of Open Access Journals (Sweden)

    Yuriy Solodkovskyy

    2012-02-01

    Full Text Available This article thoroughly analyzes the current state of the global pharmaceutical market, defines the key factors for its development and outlines the promising areas of transformation of existing business models of top companies. The forecasted data relating to the market development until 2015 have been investigated. The global, market, technological and organizational factors of transformation of modern model of the global pharmaceutical market have been identified.

  14. Regionalization of land use impact models for life cycle assessment: Recommendations for their use on the global scale and their applicability to Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Pavan, Ana Laura Raymundo, E-mail: laurarpavan@gmail.com [Center for Water Resource and Environmental Studies, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil); Ometto, Aldo Roberto [Center for Water Resource and Environmental Studies, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil); Department of Production Engineering, São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense 400, São Carlos 13566-590, SP (Brazil)

    2016-09-15

    Life Cycle Assessment (LCA) is the main technique for evaluate the environmental impacts of product life cycles. A major challenge in the field of LCA is spatial and temporal differentiation in Life Cycle Impact Assessment (LCIA) methods, especially impacts resulting from land occupation and land transformation. Land use characterization modeling has advanced considerably over the last two decades and many approaches have recently included crucial aspects such as geographic differentiation. Nevertheless, characterization models have so far not been systematically reviewed and evaluated to determine their applicability to South America. Given that Brazil is the largest country in South America, this paper analyzes the main international characterization models currently available in the literature, with a view to recommending regionalized models applicable on a global scale for land use life cycle impact assessments, and discusses their feasibility for regionalized assessment in Brazil. The analytical methodology involves classification based on the following criteria: midpoint/endpoint approach, scope of application, area of data collection, biogeographical differentiation, definition of recovery time and reference situation; followed by an evaluation of thirteen scientific robustness and environmental relevance subcriteria. The results of the scope of application are distributed among 25% of the models developed for the European context, and 50% have a global scope. There is no consensus in the literature about the definition of parameters such biogeographical differentiation and reference situation, and our review indicates that 35% of the models use ecoregion division while 40% use the concept of potential natural vegetation. Four characterization models show high scores in terms of scientific robustness and environmental relevance. These models are recommended for application in land use life cycle impact assessments, and also to serve as references for the

  15. Implementing an inclusive staffing model for today's reference services a practical guide for librarians

    CERN Document Server

    Nims, Julia K; Stevens, Robert

    2013-01-01

    Reference service remains a core function of modern libraries. However, how and where we provide assistance has evolved with changing technologies and the shifting habits and preferences of our users. One way libraries can provide the on-demand, in-person assistance while managing and developing new services and resources that will benefit current and future users is to reconsider how their reference points and services are staffed and adopt a staff-based reference model. In Implementing an Inclusive Staffing Model for Today's Reference Services, Nims, Storm, and Stevens describe step-by-step

  16. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  17. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  18. Looking back to move forward on model validation: insights from a global model of agricultural land use

    International Nuclear Information System (INIS)

    Baldos, Uris Lantz C; Hertel, Thomas W

    2013-01-01

    Global agricultural models are becoming indispensable in the debate over climate change impacts and mitigation policies. Therefore, it is becoming increasingly important to validate these models and identify critical areas for improvement. In this letter, we illustrate both the opportunities and the challenges in undertaking such model validation, using the SIMPLE model of global agriculture. We look back at the long run historical period 1961–2006 and, using a few key historical drivers—population, incomes and total factor productivity—we find that SIMPLE is able to accurately reproduce historical changes in cropland use, crop price, crop production and average crop yields at the global scale. Equally important is our investigation into how the specific assumptions embedded in many agricultural models will likely influence these results. We find that those global models which are largely biophysical—thereby ignoring the price responsiveness of demand and supply—are likely to understate changes in crop production, while failing to capture the changes in cropland use and crop price. Likewise, global models which incorporate economic responses, but do so based on limited time series estimates of these responses, are likely to understate land use change and overstate price changes. (letter)

  19. Comparison of a hybrid model to a global model of atmospheric pressure radio-frequency capacitive discharges

    International Nuclear Information System (INIS)

    Lazzaroni, C; Lieberman, M A; Lichtenberg, A J; Chabert, P

    2012-01-01

    A one-dimensional hybrid analytical-numerical global model of atmospheric pressure radio-frequency (rf) driven capacitive discharges, previously developed, is compared with a basic global model. A helium feed gas with small admixtures of oxygen is studied. For the hybrid model, the electrical characteristics are calculated analytically as a current-driven homogeneous discharge. The electron power balance is solved analytically to determine a time-varying Maxwellian electron temperature, which oscillates on the rf timescale. Averaging over the rf period yields effective rate coefficients for gas phase activated processes. For the basic global model, the electron temperature is constant in time and the sheath physics is neglected. For both models, the particle balance relations for all species are integrated numerically to determine the equilibrium discharge parameters. Variations of discharge parameters with composition and rf power are determined and compared. The rate coefficients for electron-activated processes are strongly temperature dependent, leading to significantly larger neutral and charged particle densities for the hybrid model. For small devices, finite sheath widths limit the operating regimes to low O 2 fractions. This is captured by the hybrid model but cannot be predicted from the basic global model.

  20. History, Structure and Agency in Global Health Governance Comment on "Global Health Governance Challenges 2016 - Are We Ready?"

    Science.gov (United States)

    Gill, Stephen; Benatar, Solomon R

    2016-08-29

    Ilona Kickbusch's thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the "development of sustainability." © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  1. The International Geomagnetic Reference Field (IGRF) generation 12: BGS candidates and final models

    OpenAIRE

    Beggan, Ciaran D.; Hamilton, Brian; Taylor, Victoria; Macmillan, Susan; Thomson, Alan

    2015-01-01

    The International Geomagnetic Reference Field (IGRF) model is a reference main field magnetic model updated on a quinquennial basis. The latest revision (generation 12) was released in January 2015. The IGRF-12 consists of a definitive model (DGRF2010) of the main field for 2010.0, a model for the field at 2015.0 (IGRF2015) and a prediction of secular variation (IGRF-12 SV) for the forthcoming five years until 2020.0. The remaining coefficients of IGRF-12 are unchanged from IGRF-11. Nin...

  2. An image-based skeletal tissue model for the ICRP reference newborn

    Energy Technology Data Exchange (ETDEWEB)

    Pafundi, Deanna; Lee, Choonsik; Bolch, Wesley [Department of Nuclear and Radiological Engineering, University of Florida, Gainesville, FL (United States); Watchman, Christopher; Bourke, Vincent [Department of Radiation Oncology, University of Arizona, Tucson, AZ (United States); Aris, John [Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL (United States); Shagina, Natalia [Urals Research Center for Radiation Medicine, Chelyabinsk (Russian Federation); Harrison, John; Fell, Tim [Radiation Protection Division, Health Protection Agency, Chilton (United Kingdom)], E-mail: wbolch@ufl.edu

    2009-07-21

    Hybrid phantoms represent a third generation of computational models of human anatomy needed for dose assessment in both external and internal radiation exposures. Recently, we presented the first whole-body hybrid phantom of the ICRP reference newborn with a skeleton constructed from both non-uniform rational B-spline and polygon-mesh surfaces (Lee et al 2007 Phys. Med. Biol. 52 3309-33). The skeleton in that model included regions of cartilage and fibrous connective tissue, with the remainder given as a homogenous mixture of cortical and trabecular bone, active marrow and miscellaneous skeletal tissues. In the present study, we present a comprehensive skeletal tissue model of the ICRP reference newborn to permit a heterogeneous representation of the skeleton in that hybrid phantom set-both male and female-that explicitly includes a delineation of cortical bone so that marrow shielding effects are correctly modeled for low-energy photons incident upon the newborn skeleton. Data sources for the tissue model were threefold. First, skeletal site-dependent volumes of homogeneous bone were obtained from whole-cadaver CT image analyses. Second, selected newborn bone specimens were acquired at autopsy and subjected to micro-CT image analysis to derive model parameters of the marrow cavity and bone trabecular 3D microarchitecture. Third, data given in ICRP Publications 70 and 89 were selected to match reference values on total skeletal tissue mass. Active marrow distributions were found to be in reasonable agreement with those given previously by the ICRP. However, significant differences were seen in total skeletal and site-specific masses of trabecular and cortical bone between the current and ICRP newborn skeletal tissue models. The latter utilizes an age-independent ratio of 80%/20% cortical and trabecular bone for the reference newborn. In the current study, a ratio closer to 40%/60% is used based upon newborn CT and micro-CT skeletal image analyses. These changes in

  3. Global river flood hazard maps: hydraulic modelling methods and appropriate uses

    Science.gov (United States)

    Townend, Samuel; Smith, Helen; Molloy, James

    2014-05-01

    Flood hazard is not well understood or documented in many parts of the world. Consequently, the (re-)insurance sector now needs to better understand where the potential for considerable river flooding aligns with significant exposure. For example, international manufacturing companies are often attracted to countries with emerging economies, meaning that events such as the 2011 Thailand floods have resulted in many multinational businesses with assets in these regions incurring large, unexpected losses. This contribution addresses and critically evaluates the hydraulic methods employed to develop a consistent global scale set of river flood hazard maps, used to fill the knowledge gap outlined above. The basis of the modelling approach is an innovative, bespoke 1D/2D hydraulic model (RFlow) which has been used to model a global river network of over 5.3 million kilometres. Estimated flood peaks at each of these model nodes are determined using an empirically based rainfall-runoff approach linking design rainfall to design river flood magnitudes. The hydraulic model is used to determine extents and depths of floodplain inundation following river bank overflow. From this, deterministic flood hazard maps are calculated for several design return periods between 20-years and 1,500-years. Firstly, we will discuss the rationale behind the appropriate hydraulic modelling methods and inputs chosen to produce a consistent global scaled river flood hazard map. This will highlight how a model designed to work with global datasets can be more favourable for hydraulic modelling at the global scale and why using innovative techniques customised for broad scale use are preferable to modifying existing hydraulic models. Similarly, the advantages and disadvantages of both 1D and 2D modelling will be explored and balanced against the time, computer and human resources available, particularly when using a Digital Surface Model at 30m resolution. Finally, we will suggest some

  4. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  5. A seawater desalination scheme for global hydrological models

    Science.gov (United States)

    Hanasaki, Naota; Yoshikawa, Sayaka; Kakinuma, Kaoru; Kanae, Shinjiro

    2016-10-01

    Seawater desalination is a practical technology for providing fresh water to coastal arid regions. Indeed, the use of desalination is rapidly increasing due to growing water demand in these areas and decreases in production costs due to technological advances. In this study, we developed a model to estimate the areas where seawater desalination is likely to be used as a major water source and the likely volume of production. The model was designed to be incorporated into global hydrological models (GHMs) that explicitly include human water usage. The model requires spatially detailed information on climate, income levels, and industrial and municipal water use, which represent standard input/output data in GHMs. The model was applied to a specific historical year (2005) and showed fairly good reproduction of the present geographical distribution and national production of desalinated water in the world. The model was applied globally to two periods in the future (2011-2040 and 2041-2070) under three distinct socioeconomic conditions, i.e., SSP (shared socioeconomic pathway) 1, SSP2, and SSP3. The results indicate that the usage of seawater desalination will have expanded considerably in geographical extent, and that production will have increased by 1.4-2.1-fold in 2011-2040 compared to the present (from 2.8 × 109 m3 yr-1 in 2005 to 4.0-6.0 × 109 m3 yr-1), and 6.7-17.3-fold in 2041-2070 (from 18.7 to 48.6 × 109 m3 yr-1). The estimated global costs for production for each period are USD 1.1-10.6 × 109 (0.002-0.019 % of the total global GDP), USD 1.6-22.8 × 109 (0.001-0.020 %), and USD 7.5-183.9 × 109 (0.002-0.100 %), respectively. The large spreads in these projections are primarily attributable to variations within the socioeconomic scenarios.

  6. Activating Global Operating Models: The bridge from organization design to performance

    Directory of Open Access Journals (Sweden)

    Amy Kates

    2015-07-01

    Full Text Available This article introduces the concept of activation and discusses its use in the implementation of global operating models by large multinational companies. We argue that five particular activators help set in motion the complex strategies and organizations required by global operating models.

  7. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1996-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  8. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  9. Assessing uncertainties in global cropland futures using a conditional probabilistic modelling framework

    NARCIS (Netherlands)

    Engström, Kerstin; Olin, Stefan; Rounsevell, Mark D A; Brogaard, Sara; Van Vuuren, Detlef P.; Alexander, Peter; Murray-Rust, Dave; Arneth, Almut

    2016-01-01

    We present a modelling framework to simulate probabilistic futures of global cropland areas that are conditional on the SSP (shared socio-economic pathway) scenarios. Simulations are based on the Parsimonious Land Use Model (PLUM) linked with the global dynamic vegetation model LPJ-GUESS

  10. Model of global evaluation for energetic resources; Modelo de avaliacao global de recursos energeticos

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Ricardo Junqueira; Udaeta, Miguel Edgar Morales; Galvao, Luiz Claudio Ribeiro [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Energia e Automacao Eletricas. Grupo de Energia]. E-mail: ricardo_fujii@pea.usp.br; daeta@pea.usp.br; lcgalvao@pea.usp.br

    2006-07-01

    The traditional energy planning usually takes into account the technical economical costs, considered alongside environmental and a few political restraints; however, there is a lack of methods to evenly assess environmental, economical, social and political costs. This work tries to change such scenario by elaborating a model to characterize an energy resource in all four dimensions - environmental, political, social and economical - in an integrated view. The model aims at two objectives: provide a method to assess the global cost of the energy resource and estimate its potential considering the limitations provided by these dimensions. To minimize the complexity of the integration process, the model strongly recommends the use of the Full Cost Accounting - FCA - method to assess the costs and benefits from any given resource. The FCA allows considering quantitative and qualitative costs, reducing the need of quantitative data, which are limited in some cases. The model has been applied in the characterization of the region of Aracatuba, located in the west part of the state of Sao Paulo - Brazil. The results showed that the potential of renewable sources are promising, especially when the global costs are considered. Some resources, in spite of being economically attractive, don't provide an acceptable global cost. It became clear that the model is a valuable tool when the conventional tools fail to address many issues, especially the need of an integrated view on the planning process; the results from this model can be applied in a portfolio selection method to evaluate the best options for a power system expansion. It has to be noticed that the usefulness of this model can be increased when adopted with a method to analyze demand side management measures, thus offering a complete set of possible choices of energy options for the decision maker. (author)

  11. Face it a visual reference for multi-ethnic facial modeling

    CERN Document Server

    Beckmann Wells, Patricia

    2013-01-01

    Face It  presents practical hands-on techniques, 3D modeling and sculpting tools with Maya and ZBrush production pipelines, uniquely focused on the facial modeling of 7 ethnicity models, featuring over 100 different models ranging in age from newborn to elderly characters. Face It is a resource for academic and professionals alike. Explore the modeling possibilities beyond the digital reference galleries online. No more having to adapt medical anatomy texts to your own models! Explore the finite details of facial anatomy with focus on skull development, muscle structure, e

  12. Standard Relativistic Reference Systems and the IAU Framework

    Science.gov (United States)

    Soffel, Michael H.

    2009-05-01

    The classical post-Newtonian (PN) framework is formulated in one single reference system. In a series of papers Damour, Soffel and Xu laid the foundations for a new improved PN framework dealing with the celestial mechanical problem of N gravitationally interacting rotating bodies of arbitrary shape and the problem of astronomical reference systems. In the DSX-framework a total of N+1 reference systems with corresponding coordinates is introduced in the N-body problem: a global one covering the entire model manifold where the translational equations of motion are formulated and one local system attached to each of the N bodies that is co-moving with the body under consideration. In each of these systems the metric tensor is assumed to be of a special form determined by two potentials: a scalar and a vector potential. Theorems are given for the transformations between local and global coordinates and metric potentials. In each of the local systems outside the local body the metric potentials are expressed in terms of Blanchet-Damour mass- and spin-multipole moments. The talk first introduces the original DSX formalism and then concentrates on IAU resolutions related with it. Finally, the formalism is extended to include also effects from the cosmic expansion. The influence of the Hubble expansion on the dynamics of the solar system is explicitly discussed in some detail.

  13. MATHEMATICAL MODEL OF TRIAXIAL MULTIMODE ATTITUDE AND HEADING REFERENCE SYSTEM

    Directory of Open Access Journals (Sweden)

    Olha Sushchenko

    2017-07-01

    Full Text Available Purpose: The paper deals with the mathematical description of the gimballed attitude and heading reference systems, which can be applied in design of strategic precision navigation systems. The main goal is to created mathematical description taking into consideration the necessity to use different navigations operating modes of this class of navigation systems. To provide the high accuracy the indirect control is used when the position of the gimballed platform is controlled by signals of gyroscopic devices, which are corrected using accelerometer’s signals. Methods: To solve the given problem the methods of the classical theoretical mechanics, gyro theory, and inertial navigation are used. Results: The full mathematical model of the gimballed attitude and heading reference system is derived including descriptions of different operating modes. The mathematical models of the system Expressions for control and correction moments in the different modes are represented. The simulation results are given. Conclusions: The represented results prove efficiency of the proposed models. Developed mathematical models can be useful for design of navigation systems of the wide class of moving vehicles.

  14. Challenges in Modeling of the Global Atmosphere

    Science.gov (United States)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    ") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  15. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yun [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China); Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY (United States); Liu, Yinhe, E-mail: yinheliu@mail.xjtu.edu.cn [School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an (China)

    2017-11-20

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C{sub hydrogen} < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C{sub hydrogen} > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  16. Numerical Simulation of Hydrogen Combustion: Global Reaction Model and Validation

    International Nuclear Information System (INIS)

    Zhang, Yun; Liu, Yinhe

    2017-01-01

    Due to the complexity of modeling the combustion process in nuclear power plants, the global mechanisms are preferred for numerical simulation. To quickly perform the highly resolved simulations with limited processing resources of large-scale hydrogen combustion, a method based on thermal theory was developed to obtain kinetic parameters of global reaction mechanism of hydrogen–air combustion in a wide range. The calculated kinetic parameters at lower hydrogen concentration (C hydrogen < 20%) were validated against the results obtained from experimental measurements in a container and combustion test facility. In addition, the numerical data by the global mechanism (C hydrogen > 20%) were compared with the results by detailed mechanism. Good agreement between the model prediction and the experimental data was achieved, and the comparison between simulation results by the detailed mechanism and the global reaction mechanism show that the present calculated global mechanism has excellent predictable capabilities for a wide range of hydrogen–air mixtures.

  17. Areva - 2016 Reference document

    International Nuclear Information System (INIS)

    2017-01-01

    Areva supplies high added-value products and services to support the operation of the global nuclear fleet. The company is present throughout the entire nuclear cycle, from uranium mining to used fuel recycling, including nuclear reactor design and operating services. Areva is recognized by utilities around the world for its expertise, its skills in cutting-edge technologies and its dedication to the highest level of safety. Areva's 36,000 employees are helping build tomorrow's energy model: supplying ever safer, cleaner and more economical energy to the greatest number of people. This Reference Document contains information on Areva's objectives, prospects and development strategies. It contains estimates of the markets, market shares and competitive position of Areva

  18. Systematic approach for the identification of process reference models

    CSIR Research Space (South Africa)

    Van Der Merwe, A

    2009-02-01

    Full Text Available and make it economically viable. In the identification of core elements within the process reference model, the focus is often on the end-product and not on the procedure used to identify the elements. As often proved in development of projects, there is a...

  19. Overall properties of the Gaia DR1 reference frame

    Science.gov (United States)

    Liu, N.; Zhu, Z.; Liu, J.-C.; Ding, C.-Y.

    2017-03-01

    Aims: The first Gaia data release (Gaia DR1) provides 2191 ICRF2 sources with their positions in the auxiliary quasar solution and five astrometric parameters - positions, parallaxes, and proper motions - for stars in common between the Tycho-2 catalogue and Gaia in the joint Tycho-Gaia astrometric solution (TGAS). We aim to analyze the overall properties of Gaia DR1 reference frame. Methods: We compare quasar positions of the auxiliary quasar solution with ICRF2 sources using different samples and evaluate the influence on the Gaia DR1 reference frame owing to the Galactic aberration effect over the J2000.0-J2015.0 period. Then we estimate the global rotation between TGAS with Tycho-2 proper motion systems to investigate the property of the Gaia DR1 reference frame. Finally, the Galactic kinematics analysis using the K-M giant proper motions is performed to understand the property of Gaia DR1 reference frame. Results: The positional comparison between the auxiliary quasar solution and ICRF2 shows negligible orientation and validates the declination bias of -0.1mas in Gaia quasar positions with respect to ICRF2. Galactic aberration effect is thought to cause an offset 0.01mas of the Z axis direction of Gaia DR1 reference frame. The global rotation between TGAS and Tycho-2 proper motion systems, obtained by different samples, shows a much smaller value than the claimed value 0.24mas yr-1. For the Galactic kinematics analysis of the TGAS K-M giants, we find possible non-zero Galactic rotation components beyond the classical Oort constants: the rigid part ωYG = -0.38±0.15mas yr-1 and the differential part ω^primeYG = -0.29±0.19mas yr-1 around the YG axis of Galactic coordinates, which indicates possible residual rotation in Gaia DR1 reference frame or problems in the current Galactic kinematical model. Conclusions: The Gaia DR1 reference frame is well aligned to ICRF2, and the possible influence of the Galactic aberration effect should be taken into consideration

  20. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    Science.gov (United States)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  1. [Human-robot global Simulink modeling and analysis for an end-effector upper limb rehabilitation robot].

    Science.gov (United States)

    Liu, Yali; Ji, Linhong

    2018-02-01

    Robot rehabilitation has been a primary therapy method for the urgent rehabilitation demands of paralyzed patients after a stroke. The parameters in rehabilitation training such as the range of the training, which should be adjustable according to each participant's functional ability, are the key factors influencing the effectiveness of rehabilitation therapy. Therapists design rehabilitation projects based on the semiquantitative functional assessment scales and their experience. But these therapies based on therapists' experience cannot be implemented in robot rehabilitation therapy. This paper modeled the global human-robot by Simulink in order to analyze the relationship between the parameters in robot rehabilitation therapy and the patients' movement functional abilities. We compared the shoulder and elbow angles calculated by simulation with the angles recorded by motion capture system while the healthy subjects completed the simulated action. Results showed there was a remarkable correlation between the simulation data and the experiment data, which verified the validity of the human-robot global Simulink model. Besides, the relationship between the circle radius in the drawing tasks in robot rehabilitation training and the active movement degrees of shoulder as well as elbow was also matched by a linear, which also had a remarkable fitting coefficient. The matched linear can be a quantitative reference for the robot rehabilitation training parameters.

  2. Modeling of reservoir operation in UNH global hydrological model

    Science.gov (United States)

    Shiklomanov, Alexander; Prusevich, Alexander; Frolking, Steve; Glidden, Stanley; Lammers, Richard; Wisser, Dominik

    2015-04-01

    Climate is changing and river flow is an integrated characteristic reflecting numerous environmental processes and their changes aggregated over large areas. Anthropogenic impacts on the river flow, however, can significantly exceed the changes associated with climate variability. Besides of irrigation, reservoirs and dams are one of major anthropogenic factor affecting streamflow. They distort hydrological regime of many rivers by trapping of freshwater runoff, modifying timing of river discharge and increasing the evaporation rate. Thus, reservoirs is an integral part of the global hydrological system and their impacts on rivers have to be taken into account for better quantification and understanding of hydrological changes. We developed a new technique, which was incorporated into WBM-TrANS model (Water Balance Model-Transport from Anthropogenic and Natural Systems) to simulate river routing through large reservoirs and natural lakes based on information available from freely accessible databases such as GRanD (the Global Reservoir and Dam database) or NID (National Inventory of Dams for US). Different formulations were applied for unregulated spillway dams and lakes, and for 4 types of regulated reservoirs, which were subdivided based on main purpose including generic (multipurpose), hydropower generation, irrigation and water supply, and flood control. We also incorporated rules for reservoir fill up and draining at the times of construction and decommission based on available data. The model were tested for many reservoirs of different size and types located in various climatic conditions using several gridded meteorological data sets as model input and observed daily and monthly discharge data from GRDC (Global Runoff Data Center), USGS Water Data (US Geological Survey), and UNH archives. The best results with Nash-Sutcliffe model efficiency coefficient in the range of 0.5-0.9 were obtained for temperate zone of Northern Hemisphere where most of large

  3. An innovative service process development based on a reference model

    Directory of Open Access Journals (Sweden)

    Lorenzo Sanfelice Frazzon

    2015-06-01

    Full Text Available This article examines the new service development (NSD process, focusing specifically in a case of a financial service, guided by the following research questions: what are the processes and practices used in the development and design of new financial services? How the results of the financial NSD proposal reflects on the NSD are as a whole? Therefore, the study aims to show and describe a financial service development, conducted at Helpinveste. The paper focuses on the Conceptual Design service (activities: definition of specifications and development of alternative solutions for the service and Service Process Design (Service Representation phases. The methodological procedures are based on the process approach, using a reference model for developing new services. In order to operationalize the model, several techniques for the various stages of the project were used, e.g. QFD and Service Blueprint. Lastly, conclusions report contributions from the reference model application, both theoretical and practical contributions, as well the limitations and further research recommendations.

  4. Global Information Enterprise (GIE) Modeling and Simulation (GIESIM)

    National Research Council Canada - National Science Library

    Bell, Paul

    2005-01-01

    ... AND S) toolkits into the Global Information Enterprise (GIE) Modeling and Simulation (GIESim) framework to create effective user analysis of candidate communications architectures and technologies...

  5. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Modeling Global Urbanization Supported by Nighttime Light Remote Sensing

    Science.gov (United States)

    Zhou, Y.

    2015-12-01

    Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.

  7. A global high-resolution model experiment on the predictability of the atmosphere

    Science.gov (United States)

    Judt, F.

    2016-12-01

    Forecasting high-impact weather phenomena is one of the most important aspects of numerical weather prediction (NWP). Over the last couple of years, a tremendous increase in computing power has facilitated the advent of global convection-resolving NWP models, which allow for the seamless prediction of weather from local to planetary scales. Unfortunately, the predictability of specific meteorological phenomena in these models is not very well known. This raises questions about which forecast problems are potentially tractable, and what is the value of global convection-resolving model predictions for the end user. To address this issue, we use the Yellowstone supercomputer to conduct a global high-resolution predictability experiment with the recently developed Model for Prediction Across Scales (MPAS). The computing power of Yellowstone enables the model to run at a globally uniform resolution of 4 km with 55 vertical levels (>2 billion grid cells). These simulations, which require 3 million core-hours for the entire experiment, allow for the explicit treatment of organized deep moist convection (i.e., thunderstorm systems). Resolving organized deep moist convection alleviates grave limitations of previous predictability studies, which either used high-resolution limited-area models or global simulations with coarser grids and cumulus parameterization. By computing the error growth characteristics in a set of "identical twin" model runs, the experiment will clarify the intrinsic predictability limits of atmospheric phenomena on a wide range of scales, from severe thunderstorms to global-scale wind patterns that affect the distribution of tropical rainfall. Although a major task by itself, this study is intended to be exploratory work for a future predictability experiment going beyond of what has so far been feasible. We hope to use CISL's new Cheyenne supercomputer to conduct a similar predictability experiments on a global mesh with 1-2 km resolution. This

  8. A reference-dependent model of the price-quality heuristic

    NARCIS (Netherlands)

    Gneezy, A.; Gneezy, U.; Lauga, D.O.

    2014-01-01

    People often use price as a proxy for quality, resulting in a positive correlation between prices and product liking, known as the "price- quality" (P-Q) heuristic. Using data from three experiments conducted at a winery, this article offers a more complex and complete reference-dependent model of

  9. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-07-01

    Many spatial processes in environmental applications, such as climate variables and climate model errors on a global scale, exhibit complex nonstationary dependence structure, in not only their marginal covariance but also their cross-covariance. Flexible cross-covariance models for processes on a global scale are critical for an accurate description of each spatial process as well as the cross-dependences between them and also for improved predictions. We propose various ways to produce cross-covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters vary over space, coupled with a differential operators approach for modeling large-scale nonstationarity. We compare their performance to the performance of some existing models in terms of the aic and spatial predictions in two applications: joint modeling of surface temperature and precipitation, and joint modeling of errors in climate model ensembles. © 2014 Elsevier Inc.

  10. DQ reference frame modeling and control of single-phase active power decoupling circuits

    DEFF Research Database (Denmark)

    Tang, Yi; Qin, Zian; Blaabjerg, Frede

    2015-01-01

    . This paper presents the dq synchronous reference frame modeling of single-phase power decoupling circuits and a complete model describing the dynamics of dc-link ripple voltage is presented. The proposed model is universal and valid for both inductive and capacitive decoupling circuits, and the input...... of decoupling circuits can be either dependent or independent of its front-end converters. Based on this model, a dq synchronous reference frame controller is designed which allows the decoupling circuit to operate in two different modes because of the circuit symmetry. Simulation and experimental results...... are presented to verify the effectiveness of the proposed modeling and control method....

  11. A Global Model of Meteoric Sodium

    Science.gov (United States)

    Marsh, Daniel R.; Janches, Diego; Feng, Wuhu; Plane, John M. C.

    2013-01-01

    A global model of sodium in the mesosphere and lower thermosphere has been developed within the framework of the National Center for Atmospheric Research's Whole Atmosphere Community Climate Model (WACCM). The standard fully interactive WACCM chemistry module has been augmented with a chemistry scheme that includes nine neutral and ionized sodium species. Meteoric ablation provides the source of sodium in the model and is represented as a combination of a meteoroid input function (MIF) and a parameterized ablation model. The MIF provides the seasonally and latitudinally varying meteoric flux which is modeled taking into consideration the astronomical origins of sporadic meteors and considers variations in particle entry angle, velocity, mass, and the differential ablation of the chemical constituents. WACCM simulations show large variations in the sodium constituents over time scales from days to months. Seasonality of sodium constituents is strongly affected by variations in the MIF and transport via the mean meridional wind. In particular, the summer to winter hemisphere flow leads to the highest sodium species concentrations and loss rates occurring over the winter pole. In the Northern Hemisphere, this winter maximum can be dramatically affected by stratospheric sudden warmings. Simulations of the January 2009 major warming event show that it caused a short-term decrease in the sodium column over the polar cap that was followed by a factor of 3 increase in the following weeks. Overall, the modeled distribution of atomic sodium in WACCM agrees well with both ground-based and satellite observations. Given the strong sensitivity of the sodium layer to dynamical motions, reproducing its variability provides a stringent test of global models and should help to constrain key atmospheric variables in this poorly sampled region of the atmosphere.

  12. Combined constraints on global ocean primary production using observations and models

    Science.gov (United States)

    Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le

    2013-09-01

    production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.

  13. Transport of nutrients from land to sea: Global modeling approaches and uncertainty analyses

    NARCIS (Netherlands)

    Beusen, A.H.W.

    2014-01-01

    This thesis presents four examples of global models developed as part of the Integrated Model to Assess the Global Environment (IMAGE). They describe different components of global biogeochemical cycles of the nutrients nitrogen (N), phosphorus (P) and silicon (Si), with a focus on approaches to

  14. Towards systematic evaluation of crop model outputs for global land-use models

    Science.gov (United States)

    Leclere, David; Azevedo, Ligia B.; Skalský, Rastislav; Balkovič, Juraj; Havlík, Petr

    2016-04-01

    Land provides vital socioeconomic resources to the society, however at the cost of large environmental degradations. Global integrated models combining high resolution global gridded crop models (GGCMs) and global economic models (GEMs) are increasingly being used to inform sustainable solution for agricultural land-use. However, little effort has yet been done to evaluate and compare the accuracy of GGCM outputs. In addition, GGCM datasets require a large amount of parameters whose values and their variability across space are weakly constrained: increasing the accuracy of such dataset has a very high computing cost. Innovative evaluation methods are required both to ground credibility to the global integrated models, and to allow efficient parameter specification of GGCMs. We propose an evaluation strategy for GGCM datasets in the perspective of use in GEMs, illustrated with preliminary results from a novel dataset (the Hypercube) generated by the EPIC GGCM and used in the GLOBIOM land use GEM to inform on present-day crop yield, water and nutrient input needs for 16 crops x 15 management intensities, at a spatial resolution of 5 arc-minutes. We adopt the following principle: evaluation should provide a transparent diagnosis of model adequacy for its intended use. We briefly describe how the Hypercube data is generated and how it articulates with GLOBIOM in order to transparently identify the performances to be evaluated, as well as the main assumptions and data processing involved. Expected performances include adequately representing the sub-national heterogeneity in crop yield and input needs: i) in space, ii) across crop species, and iii) across management intensities. We will present and discuss measures of these expected performances and weight the relative contribution of crop model, input data and data processing steps in performances. We will also compare obtained yield gaps and main yield-limiting factors against the M3 dataset. Next steps include

  15. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    Science.gov (United States)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  16. Model reference adaptive control of flexible robots in the presence of sudden load changes

    Science.gov (United States)

    Steinvorth, Rodrigo; Kaufman, Howard; Neat, Gregory

    1991-01-01

    Direct command generator tracker based model reference adaptive control (MRAC) algorithms are applied to the dynamics for a flexible-joint arm in the presence of sudden load changes. Because of the need to satisfy a positive real condition, such MRAC procedures are designed so that a feedforward augmented output follows the reference model output, thus, resulting in an ultimately bounded rather than zero output error. Thus, modifications are suggested and tested that: (1) incorporate feedforward into the reference model's output as well as the plant's output, and (2) incorporate a derivative term into only the process feedforward loop. The results of these simulations give a response with zero steady state model following error, and thus encourage further use of MRAC for more complex flexibile robotic systems.

  17. Global Land Use Regression Model for Nitrogen Dioxide Air Pollution.

    Science.gov (United States)

    Larkin, Andrew; Geddes, Jeffrey A; Martin, Randall V; Xiao, Qingyang; Liu, Yang; Marshall, Julian D; Brauer, Michael; Hystad, Perry

    2017-06-20

    Nitrogen dioxide is a common air pollutant with growing evidence of health impacts independent of other common pollutants such as ozone and particulate matter. However, the worldwide distribution of NO 2 exposure and associated impacts on health is still largely uncertain. To advance global exposure estimates we created a global nitrogen dioxide (NO 2 ) land use regression model for 2011 using annual measurements from 5,220 air monitors in 58 countries. The model captured 54% of global NO 2 variation, with a mean absolute error of 3.7 ppb. Regional performance varied from R 2 = 0.42 (Africa) to 0.67 (South America). Repeated 10% cross-validation using bootstrap sampling (n = 10,000) demonstrated a robust performance with respect to air monitor sampling in North America, Europe, and Asia (adjusted R 2 within 2%) but not for Africa and Oceania (adjusted R 2 within 11%) where NO 2 monitoring data are sparse. The final model included 10 variables that captured both between and within-city spatial gradients in NO 2 concentrations. Variable contributions differed between continental regions, but major roads within 100 m and satellite-derived NO 2 were consistently the strongest predictors. The resulting model can be used for global risk assessments and health studies, particularly in countries without existing NO 2 monitoring data or models.

  18. Reference models for forming organisational or collaborative pedagogical best practices

    NARCIS (Netherlands)

    Lee, Chien-Sing; Koper, Rob; Kommers, Piet; Hedberg, John

    2008-01-01

    Lee, Chien-Sing, Koper, R., Kommers, P., & Hedberg, John (Eds.) (2008). Reference models for forming organisational or collaborative pedagogical best practices [special issue]. International Journal of Continuing Engineering Education and Life-Long Learning, 18(1).

  19. Preparing the Model for Prediction Across Scales (MPAS) for global retrospective air quality modeling

    Science.gov (United States)

    The US EPA has a plan to leverage recent advances in meteorological modeling to develop a "Next-Generation" air quality modeling system that will allow consistent modeling of problems from global to local scale. The meteorological model of choice is the Model for Predic...

  20. Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems

    International Nuclear Information System (INIS)

    Kim, Yun-Jae; Shim, Do-Jun

    2005-01-01

    To investigate the relevance of the definition of the reference stress to estimate J and C* for surface crack problems, this paper compares finite element (FE) J and C* results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface cracks and finite internal axial cracks are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) a local limit load (ii), a global limit load, (iii) a global limit load determined from the FE limit analysis, and (iv) the optimised reference load. It is found that the reference stress based on a local limit load gives overall excessively conservative estimates of J and C*. Use of a global limit load clearly reduces the conservatism, compared to that of a local limit load, although it can sometimes provide non-conservative estimates of J and C*. The use of the FE global limit load gives overall non-conservative estimates of J and C*. The reference stress based on the optimised reference load gives overall accurate estimates of J and C*, compared to other definitions of the reference stress. Based on the present findings, general guidance on the choice of the reference stress for surface crack problems is given

  1. GLEAM version 3: Global Land Evaporation Datasets and Model

    Science.gov (United States)

    Martens, B.; Miralles, D. G.; Lievens, H.; van der Schalie, R.; de Jeu, R.; Fernandez-Prieto, D.; Verhoest, N.

    2015-12-01

    Terrestrial evaporation links energy, water and carbon cycles over land and is therefore a key variable of the climate system. However, the global-scale magnitude and variability of the flux, and the sensitivity of the underlying physical process to changes in environmental factors, are still poorly understood due to limitations in in situ measurements. As a result, several methods have risen to estimate global patterns of land evaporation from satellite observations. However, these algorithms generally differ in their approach to model evaporation, resulting in large differences in their estimates. One of these methods is GLEAM, the Global Land Evaporation: the Amsterdam Methodology. GLEAM estimates terrestrial evaporation based on daily satellite observations of meteorological variables, vegetation characteristics and soil moisture. Since the publication of the first version of the algorithm (2011), the model has been widely applied to analyse trends in the water cycle and land-atmospheric feedbacks during extreme hydrometeorological events. A third version of the GLEAM global datasets is foreseen by the end of 2015. Given the relevance of having a continuous and reliable record of global-scale evaporation estimates for climate and hydrological research, the establishment of an online data portal to host these data to the public is also foreseen. In this new release of the GLEAM datasets, different components of the model have been updated, with the most significant change being the revision of the data assimilation algorithm. In this presentation, we will highlight the most important changes of the methodology and present three new GLEAM datasets and their validation against in situ observations and an alternative dataset of terrestrial evaporation (ERA-Land). Results of the validation exercise indicate that the magnitude and the spatiotemporal variability of the modelled evaporation agree reasonably well with the estimates of ERA-Land and the in situ

  2. Mars approach for global sensitivity analysis of differential equation models with applications to dynamics of influenza infection.

    Science.gov (United States)

    Lee, Yeonok; Wu, Hulin

    2012-01-01

    Differential equation models are widely used for the study of natural phenomena in many fields. The study usually involves unknown factors such as initial conditions and/or parameters. It is important to investigate the impact of unknown factors (parameters and initial conditions) on model outputs in order to better understand the system the model represents. Apportioning the uncertainty (variation) of output variables of a model according to the input factors is referred to as sensitivity analysis. In this paper, we focus on the global sensitivity analysis of ordinary differential equation (ODE) models over a time period using the multivariate adaptive regression spline (MARS) as a meta model based on the concept of the variance of conditional expectation (VCE). We suggest to evaluate the VCE analytically using the MARS model structure of univariate tensor-product functions which is more computationally efficient. Our simulation studies show that the MARS model approach performs very well and helps to significantly reduce the computational cost. We present an application example of sensitivity analysis of ODE models for influenza infection to further illustrate the usefulness of the proposed method.

  3. Global and local level density models

    International Nuclear Information System (INIS)

    Koning, A.J.; Hilaire, S.; Goriely, S.

    2008-01-01

    Four different level density models, three phenomenological and one microscopic, are consistently parameterized using the same set of experimental observables. For each of the phenomenological models, the Constant Temperature Model, the Back-shifted Fermi gas Model and the Generalized Superfluid Model, a version without and with explicit collective enhancement is considered. Moreover, a recently published microscopic combinatorial model is compared with the phenomenological approaches and with the same set of experimental data. For each nuclide for which sufficient experimental data exists, a local level density parameterization is constructed for each model. Next, these local models have helped to construct global level density prescriptions, to be used for cases for which no experimental data exists. Altogether, this yields a collection of level density formulae and parameters that can be used with confidence in nuclear model calculations. To demonstrate this, a large-scale validation with experimental discrete level schemes and experimental cross sections and neutron emission spectra for various different reaction channels has been performed

  4. Model-reference robust tuning of PID controllers

    CERN Document Server

    Alfaro, Victor M

    2016-01-01

    This book presents a unified methodology for the design of PID controllers that encompasses the wide range of different dynamics to be found in industrial processes. This is extended to provide a coherent way of dealing with the tuning of PID controllers. The particular method at the core of the book is the so-called model-reference robust tuning (MoReRT), developed by the authors. MoReRT constitutes a novel and powerful way of thinking of a robust design and taking into account the usual design trade-offs encountered in any control design problem. The book starts by presenting the different two-degree-of-freedom PID control algorithm variations and their conversion relations as well as the indexes used for performance, robustness and fragility evaluation:the bases of the proposed model. Secondly, the MoReRT design methodology and normalized controlled process models and controllers used in the design are described in order to facilitate the formulation of the different design problems and subsequent derivati...

  5. Reference Model 2: "Rev 0" Rotor Design

    Energy Technology Data Exchange (ETDEWEB)

    Barone, Matthew F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Berg, Jonathan Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffith, Daniel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-12-01

    The preliminary design for a three-bladed cross-flow rotor for a reference marine hydrokinetic turbine is presented. A rotor performance design code is described, along with modifications to the code to allow prediction of blade support strut drag as well as interference between two counter-rotating rotors. The rotor is designed to operate in a reference site corresponding to a riverine environment. Basic rotor performance and rigid-body loads calculations are performed to size the rotor elements and select the operating speed range. The preliminary design is verified with a simple finite element model that provides estimates of bending stresses during operation. A concept for joining the blades and support struts is developed and analyzed with a separate finite element analysis. Rotor mass, production costs, and annual energy capture are estimated in order to allow calculations of system cost-of-energy. Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd Evaluation Only. Created with Aspose.Pdf.Kit. Copyright 2002-2011 Aspose Pty Ltd

  6. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Science.gov (United States)

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  7. Archaeomagnetic Dating in Europe Using a Global Geomagnetic Field Model

    Science.gov (United States)

    Lodge, A.; Suttie, N.; Holme, R.; Shaw, J.; Hill, M. J.; Linford, P.

    2009-12-01

    Using up-to-date archaeomagnetic data from Europe and CALS7K.2 as an apriori model, we produce a global geomagnetic field model to be used for archaeomagnetic dating in Europe. More details on the modelling process will be presented elsewhere (in session GP12, abstract: Geophysical insights from archaeomagnetic dating). Here we apply the global geomagnetic field model to a series of test cases from both recently published data and unpublished data to demonstrate its application to archaeomagnetic dating. We compare the results produced using our model with those from the spherical cap harmonic model, SCHA.DIF.3K (Pavón-Carrasco et al., 2009), the global geomagnetic field model, ARCH3K.1 (Korte et al., 2009) and those produced using the palaeosecular variation curves generated using Bayesian statistics (Lanos, 2004). We include examples which emphasise the importance of using three component data (declination, inclination and intensity) to produce an improved archaeomagnetic date. In addition to the careful selection of an appropriate model for archaeomagnetic dating, the choice of errors on the model curves is vital for providing archaeologists with an age range of possible dates. We discuss how best to constrain the errors on the model curves and alternative ways to the mathematical method of Lanos (2004) for producing an archaeomagnetic date for archaeologists.

  8. Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model

    Science.gov (United States)

    2012-05-31

    paper aooo not violate: any Oisclosur~,;·of trade• secrets or suggestions of outside individuals on::oncams whiCh have· beE !n communicated 1.o...fully three- dimensional global ocean circulation model, we will provide an internal tide capability everywhere, and allow nested models to include

  9. Biomass Scenario Model Documentation: Data and References

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Y.; Newes, E.; Bush, B.; Peterson, S.; Stright, D.

    2013-05-01

    The Biomass Scenario Model (BSM) is a system dynamics model that represents the entire biomass-to-biofuels supply chain, from feedstock to fuel use. The BSM is a complex model that has been used for extensive analyses; the model and its results can be better understood if input data used for initialization and calibration are well-characterized. It has been carefully validated and calibrated against the available data, with data gaps filled in using expert opinion and internally consistent assumed values. Most of the main data sources that feed into the model are recognized as baseline values by the industry. This report documents data sources and references in Version 2 of the BSM (BSM2), which only contains the ethanol pathway, although subsequent versions of the BSM contain multiple conversion pathways. The BSM2 contains over 12,000 total input values, with 506 distinct variables. Many of the variables are opportunities for the user to define scenarios, while others are simply used to initialize a stock, such as the initial number of biorefineries. However, around 35% of the distinct variables are defined by external sources, such as models or reports. The focus of this report is to provide insight into which sources are most influential in each area of the supply chain.

  10. Assessing flood risk at the global scale: model setup, results, and sensitivity

    International Nuclear Information System (INIS)

    Ward, Philip J; Jongman, Brenden; Weiland, Frederiek Sperna; Winsemius, Hessel C; Bouwman, Arno; Ligtvoet, Willem; Van Beek, Rens; Bierkens, Marc F P

    2013-01-01

    Globally, economic losses from flooding exceeded $19 billion in 2012, and are rising rapidly. Hence, there is an increasing need for global-scale flood risk assessments, also within the context of integrated global assessments. We have developed and validated a model cascade for producing global flood risk maps, based on numerous flood return-periods. Validation results indicate that the model simulates interannual fluctuations in flood impacts well. The cascade involves: hydrological and hydraulic modelling; extreme value statistics; inundation modelling; flood impact modelling; and estimating annual expected impacts. The initial results estimate global impacts for several indicators, for example annual expected exposed population (169 million); and annual expected exposed GDP ($1383 billion). These results are relatively insensitive to the extreme value distribution employed to estimate low frequency flood volumes. However, they are extremely sensitive to the assumed flood protection standard; developing a database of such standards should be a research priority. Also, results are sensitive to the use of two different climate forcing datasets. The impact model can easily accommodate new, user-defined, impact indicators. We envisage several applications, for example: identifying risk hotspots; calculating macro-scale risk for the insurance industry and large companies; and assessing potential benefits (and costs) of adaptation measures. (letter)

  11. Reference models and incentive regulation of electricity distribution networks: An evaluation of Sweden's Network Performance Assessment Model (NPAM)

    International Nuclear Information System (INIS)

    Jamasb, Tooraj; Pollitt, Michael

    2008-01-01

    Electricity sector reforms across the world have led to a search for innovative approaches to regulation that promote efficiency in the natural monopoly distribution networks and reduce their service charges. To this aim, a number of countries have adopted incentive regulation models based on efficiency benchmarking. While most regulators have used parametric and non-parametric frontier-based methods of benchmarking some have adopted engineering-designed 'reference firm' or 'norm' models. This paper examines the incentive properties and related aspects of the reference firm model-NPAM-as used in Sweden and compares this with frontier-based benchmarking methods. We identify a number of important differences between the two approaches that are not readily apparent and discuss their ramifications for the regulatory objectives and process. We conclude that, on balance, the reference models are less appropriate as benchmarks than real firms. Also, the implementation framework based on annual ex-post reviews exacerbates the regulatory problems mainly by increasing uncertainty and reducing the incentive for innovation

  12. Dynamic model of the global iodine cycle for the estimation of dose to the world population from releases of iodine-129 to the environment

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1979-11-01

    A dynamic linear compartment model of the global iodine cycle has been developed for the purpose of estimating long-term doses and dose commitments to the world population from releases of 129 I to the environment. The environmental compartments assumed in the model comprise the atmosphere, hydrosphere, lithosphere, and terrestrial biosphere. The global transport of iodine is described by means of time-invariant fractional transfer rates between the environmental compartments. The fractional transfer rates for 129 I are determined primarily from available data on compartment inventories and fluxes for naturally occurring stable iodine and from data on the global hydrologic cycle. The dose to the world population is estimated from the calculated compartment inventories of 129 I, the known compartment inventories of stable iodine, a pathway analysis of the intake of iodine by a reference individual, dose conversion factors for inhalation and ingestion, and an estimate of the world population. For an assumed constant population of 12.21 billion beyond the year 2075, the estimated population dose commitment is 2 x 10 5 man-rem/Ci. The sensitivity of the calculated doses to variations in some of the parameters in the model for the global iodine cycle is investigated. A computer code written to calculate global compartment inventories and dose rates and population doses is described and documented

  13. Order-Constrained Reference Priors with Implications for Bayesian Isotonic Regression, Analysis of Covariance and Spatial Models

    Science.gov (United States)

    Gong, Maozhen

    Selecting an appropriate prior distribution is a fundamental issue in Bayesian Statistics. In this dissertation, under the framework provided by Berger and Bernardo, I derive the reference priors for several models which include: Analysis of Variance (ANOVA)/Analysis of Covariance (ANCOVA) models with a categorical variable under common ordering constraints, the conditionally autoregressive (CAR) models and the simultaneous autoregressive (SAR) models with a spatial autoregression parameter rho considered. The performances of reference priors for ANOVA/ANCOVA models are evaluated by simulation studies with comparisons to Jeffreys' prior and Least Squares Estimation (LSE). The priors are then illustrated in a Bayesian model of the "Risk of Type 2 Diabetes in New Mexico" data, where the relationship between the type 2 diabetes risk (through Hemoglobin A1c) and different smoking levels is investigated. In both simulation studies and real data set modeling, the reference priors that incorporate internal order information show good performances and can be used as default priors. The reference priors for the CAR and SAR models are also illustrated in the "1999 SAT State Average Verbal Scores" data with a comparison to a Uniform prior distribution. Due to the complexity of the reference priors for both CAR and SAR models, only a portion (12 states in the Midwest) of the original data set is considered. The reference priors can give a different marginal posterior distribution compared to a Uniform prior, which provides an alternative for prior specifications for areal data in Spatial statistics.

  14. Minimizing the wintertime low bias of Northern Hemisphere carbon monoxide in global model simulations

    Science.gov (United States)

    Stein, Olaf; Schultz, Martin G.; Bouarar, Idir; Clark, Hannah; Huijnen, Vincent; Gaudel, Audrey; George, Maya; Clerbaux, Cathy

    2015-04-01

    underestimations of Northern Hemisphere wintertime CO concentrations which are in the same order than those from the current emission inventories. A methane lifetime of 9.7 yr for our basic model and 9.8 yr for the optimized simulation agrees well with current estimates of global OH, but we cannot fully exclude a potential effect from errors in the geographical and seasonal distribution of OH concentrations on the modelled CO. References: Granier C. et al., Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980-2010 period, Climatic Change, doi:10.1007/s10584-011-0154-1, 2011. Stein, O., Schultz, M. G., Bouarar, I., Clark, H., Huijnen, V., Gaudel, A., George, M., and Clerbaux, C.: On the wintertime low bias of Northern Hemisphere carbon monoxide found in global model simulations, Atmos. Chem. Phys., doi:10.5194/acp-14-9295-2014, 2014.

  15. A fully traits-based approach to modeling global vegetation distribution

    NARCIS (Netherlands)

    Bodegom, van P.M.; Douma, J.C.; Verheijen, L.M.

    2014-01-01

    Dynamic Global Vegetation Models (DGVMs) are indispensable for our understanding of climate change impacts. The application of traits in DGVMs is increasingly refined. However, a comprehensive analysis of the direct impacts of trait variation on global vegetation distribution does not yet exist.

  16. Global vegetation change predicted by the modified Budyko model

    Energy Technology Data Exchange (ETDEWEB)

    Monserud, R.A.; Tchebakova, N.M.; Leemans, R. (US Department of Agriculture, Moscow, ID (United States). Intermountain Research Station, Forest Service)

    1993-09-01

    A modified Budyko global vegetation model is used to predict changes in global vegetation patterns resulting from climate change (CO[sub 2] doubling). Vegetation patterns are predicted using a model based on a dryness index and potential evaporation determined by solving radiation balance equations. Climate change scenarios are derived from predictions from four General Circulation Models (GCM's) of the atmosphere (GFDL, GISS, OSU, and UKMO). All four GCM scenarios show similar trends in vegetation shifts and in areas that remain stable, although the UKMO scenario predicts greater warming than the others. Climate change maps produced by all four GCM scenarios show good agreement with the current climate vegetation map for the globe as a whole, although over half of the vegetation classes show only poor to fair agreement. The most stable areas are Desert and Ice/Polar Desert. Because most of the predicted warming is concentrated in the Boreal and Temperate zones, vegetation there is predicted to undergo the greatest change. Most vegetation classes in the Subtropics and Tropics are predicted to expand. Any shift in the Tropics favouring either Forest over Savanna, or vice versa, will be determined by the magnitude of the increased precipitation accompanying global warming. Although the model predicts equilibrium conditions to which many plant species cannot adjust (through migration or microevolution) in the 50-100 y needed for CO[sub 2] doubling, it is not clear if projected global warming will result in drastic or benign vegetation change. 72 refs., 3 figs., 3 tabs.

  17. Deep supervised dictionary learning for no-reference image quality assessment

    Science.gov (United States)

    Huang, Yuge; Liu, Xuesong; Tian, Xiang; Zhou, Fan; Chen, Yaowu; Jiang, Rongxin

    2018-03-01

    We propose a deep convolutional neural network (CNN) for general no-reference image quality assessment (NR-IQA), i.e., accurate prediction of image quality without a reference image. The proposed model consists of three components such as a local feature extractor that is a fully CNN, an encoding module with an inherent dictionary that aggregates local features to output a fixed-length global quality-aware image representation, and a regression module that maps the representation to an image quality score. Our model can be trained in an end-to-end manner, and all of the parameters, including the weights of the convolutional layers, the dictionary, and the regression weights, are simultaneously learned from the loss function. In addition, the model can predict quality scores for input images of arbitrary sizes in a single step. We tested our method on commonly used image quality databases and showed that its performance is comparable with that of state-of-the-art general-purpose NR-IQA algorithms.

  18. Global Environmental Change: An integrated modelling approach

    International Nuclear Information System (INIS)

    Den Elzen, M.

    1993-01-01

    Two major global environmental problems are dealt with: climate change and stratospheric ozone depletion (and their mutual interactions), briefly surveyed in part 1. In Part 2 a brief description of the integrated modelling framework IMAGE 1.6 is given. Some specific parts of the model are described in more detail in other Chapters, e.g. the carbon cycle model, the atmospheric chemistry model, the halocarbon model, and the UV-B impact model. In Part 3 an uncertainty analysis of climate change and stratospheric ozone depletion is presented (Chapter 4). Chapter 5 briefly reviews the social and economic uncertainties implied by future greenhouse gas emissions. Chapters 6 and 7 describe a model and sensitivity analysis pertaining to the scientific uncertainties and/or lacunae in the sources and sinks of methane and carbon dioxide, and their biogeochemical feedback processes. Chapter 8 presents an uncertainty and sensitivity analysis of the carbon cycle model, the halocarbon model, and the IMAGE model 1.6 as a whole. Part 4 presents the risk assessment methodology as applied to the problems of climate change and stratospheric ozone depletion more specifically. In Chapter 10, this methodology is used as a means with which to asses current ozone policy and a wide range of halocarbon policies. Chapter 11 presents and evaluates the simulated globally-averaged temperature and sea level rise (indicators) for the IPCC-1990 and 1992 scenarios, concluding with a Low Risk scenario, which would meet the climate targets. Chapter 12 discusses the impact of sea level rise on the frequency of the Dutch coastal defence system (indicator) for the IPCC-1990 scenarios. Chapter 13 presents projections of mortality rates due to stratospheric ozone depletion based on model simulations employing the UV-B chain model for a number of halocarbon policies. Chapter 14 presents an approach for allocating future emissions of CO 2 among regions. (Abstract Truncated)

  19. A Global Reference Model of the DNS

    NARCIS (Netherlands)

    Koc, Y.; Jamakovic, A.; Gijsen, B.M.M.

    2011-01-01

    The Domain Name System (DNS) is a crucial component of today’s Internet. At this point in time the DNS is facing major changes such as the introduction of DNSSEC and Internationalized Domain Name extensions (IDNs), the adoption of IPv6 and the upcoming extension of new generic Top-Level Domains.

  20. Structural Uncertainty in Model-Simulated Trends of Global Gross Primary Production

    Directory of Open Access Journals (Sweden)

    Zaichun Zhu

    2013-03-01

    Full Text Available Projected changes in the frequency and severity of droughts as a result of increase in greenhouse gases have a significant impact on the role of vegetation in regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production (GPP is usually modeled as a function of Vapor Pressure Deficit (VPD and/or soil moisture. Climate projections suggest a strong likelihood of increasing trend in VPD, while regional changes in precipitation are less certain. This difference in projections between VPD and precipitation can cause considerable discrepancies in the predictions of vegetation behavior depending on how ecosystem models represent the drought effect. In this study, we scrutinized the model responses to drought using the 30-year record of Global Inventory Modeling and Mapping Studies (GIMMS 3g Normalized Difference Vegetation Index (NDVI dataset. A diagnostic ecosystem model, Terrestrial Observation and Prediction System (TOPS, was used to estimate global GPP from 1982 to 2009 under nine different experimental simulations. The control run of global GPP increased until 2000, but stayed constant after 2000. Among the simulations with single climate constraint (temperature, VPD, rainfall and solar radiation, only the VPD-driven simulation showed a decrease in 2000s, while the other scenarios simulated an increase in GPP. The diverging responses in 2000s can be attributed to the difference in the representation of the impact of water stress on vegetation in models, i.e., using VPD and/or precipitation. Spatial map of trend in simulated GPP using GIMMS 3g data is consistent with the GPP driven by soil moisture than the GPP driven by VPD, confirming the need for a soil moisture constraint in modeling global GPP.

  1. Connection between dimensions of partner affective attachment and the global self-esteem

    Directory of Open Access Journals (Sweden)

    Zubić Ivana M.

    2014-01-01

    Full Text Available The research refers to a possible link between the dimensions of partner affective attachment (avoidance and anxiety, operationalized by questionnaire PAV, and the global self-esteem measured by The Rosenberg Self-Esteem Scale. Research was conducted on a sample of 120 students of the University of Nis. Results show the statistically significant low negative correlation between global self-esteem and dimension avoidance, and the statistically significant medium negative correlation between global self-esteem and dimension anxiety. The results also show that respondents with secure attachment pattern and dismissing pattern (positive inner working model of self have a higher degree of global self-esteem than respondents with disorganized pattern and preoccupied pattern (negative inner working model of self. .

  2. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    International Nuclear Information System (INIS)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok; Yi, Sun

    2016-01-01

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  3. Model Reference Adaptive Control of the Air Flow Rate of Centrifugal Compressor Using State Space Method

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jaeyoung; Jung, Mooncheong; Yu, Sangseok [Chungnam Nat’l Univ., Daejeon (Korea, Republic of); Yi, Sun [North Carolina A and T State Univ., Raleigh (United States)

    2016-08-15

    In this study, a model reference adaptive controller is developed to regulate the outlet air flow rate of centrifugal compressor for automotive supercharger. The centrifugal compressor is developed using the analytical based method to predict the transient behavior of operating and the designed model is validated with experimental data to confirm the system accuracy. The model reference adaptive control structure consists of a compressor model and a MRAC(model reference adaptive control) mechanism. The feedback control do not robust with variation of system parameter but the applied adaptive control is robust even if the system parameter is changed. As a result, the MRAC was regulated to reference air flow rate. Also MRAC was found to be more robust control compared with the feedback control even if the system parameter is changed.

  4. Fast and accurate global multiphase arrival tracking: the irregular shortest-path method in a 3-D spherical earth model

    Science.gov (United States)

    Huang, Guo-Jiao; Bai, Chao-Ying; Greenhalgh, Stewart

    2013-09-01

    The traditional grid/cell-based wavefront expansion algorithms, such as the shortest path algorithm, can only find the first arrivals or multiply reflected (or mode converted) waves transmitted from subsurface interfaces, but cannot calculate the other later reflections/conversions having a minimax time path. In order to overcome the above limitations, we introduce the concept of a stationary minimax time path of Fermat's Principle into the multistage irregular shortest path method. Here we extend it from Cartesian coordinates for a flat earth model to global ray tracing of multiple phases in a 3-D complex spherical earth model. The ray tracing results for 49 different kinds of crustal, mantle and core phases show that the maximum absolute traveltime error is less than 0.12 s and the average absolute traveltime error is within 0.09 s when compared with the AK135 theoretical traveltime tables for a 1-D reference model. Numerical tests in terms of computational accuracy and CPU time consumption indicate that the new scheme is an accurate, efficient and a practical way to perform 3-D multiphase arrival tracking in regional or global traveltime tomography.

  5. Plasma Reactors and Plasma Thrusters Modeling by Ar Complete Global Models

    Directory of Open Access Journals (Sweden)

    Chloe Berenguer

    2012-01-01

    Full Text Available A complete global model for argon was developed and adapted to plasma reactor and plasma thruster modeling. It takes into consideration ground level and excited Ar and Ar+ species and the reactor and thruster form factors. The electronic temperature, the species densities, and the ionization percentage, depending mainly on the pressure and the absorbed power, have been obtained and commented for various physical conditions.

  6. Architecture design in global and model-centric software development

    NARCIS (Netherlands)

    Heijstek, Werner

    2012-01-01

    This doctoral dissertation describes a series of empirical investigations into representation, dissemination and coordination of software architecture design in the context of global software development. A particular focus is placed on model-centric and model-driven software development.

  7. An Optimal Control Modification to Model-Reference Adaptive Control for Fast Adaptation

    Science.gov (United States)

    Nguyen, Nhan T.; Krishnakumar, Kalmanje; Boskovic, Jovan

    2008-01-01

    This paper presents a method that can achieve fast adaptation for a class of model-reference adaptive control. It is well-known that standard model-reference adaptive control exhibits high-gain control behaviors when a large adaptive gain is used to achieve fast adaptation in order to reduce tracking error rapidly. High gain control creates high-frequency oscillations that can excite unmodeled dynamics and can lead to instability. The fast adaptation approach is based on the minimization of the squares of the tracking error, which is formulated as an optimal control problem. The necessary condition of optimality is used to derive an adaptive law using the gradient method. This adaptive law is shown to result in uniform boundedness of the tracking error by means of the Lyapunov s direct method. Furthermore, this adaptive law allows a large adaptive gain to be used without causing undesired high-gain control effects. The method is shown to be more robust than standard model-reference adaptive control. Simulations demonstrate the effectiveness of the proposed method.

  8. A variable resolution nonhydrostatic global atmospheric semi-implicit semi-Lagrangian model

    Science.gov (United States)

    Pouliot, George Antoine

    2000-10-01

    The objective of this project is to develop a variable-resolution finite difference adiabatic global nonhydrostatic semi-implicit semi-Lagrangian (SISL) model based on the fully compressible nonhydrostatic atmospheric equations. To achieve this goal, a three-dimensional variable resolution dynamical core was developed and tested. The main characteristics of the dynamical core can be summarized as follows: Spherical coordinates were used in a global domain. A hydrostatic/nonhydrostatic switch was incorporated into the dynamical equations to use the fully compressible atmospheric equations. A generalized horizontal variable resolution grid was developed and incorporated into the model. For a variable resolution grid, in contrast to a uniform resolution grid, the order of accuracy of finite difference approximations is formally lost but remains close to the order of accuracy associated with the uniform resolution grid provided the grid stretching is not too significant. The SISL numerical scheme was implemented for the fully compressible set of equations. In addition, the generalized minimum residual (GMRES) method with restart and preconditioner was used to solve the three-dimensional elliptic equation derived from the discretized system of equations. The three-dimensional momentum equation was integrated in vector-form to incorporate the metric terms in the calculations of the trajectories. Using global re-analysis data for a specific test case, the model was compared to similar SISL models previously developed. Reasonable agreement between the model and the other independently developed models was obtained. The Held-Suarez test for dynamical cores was used for a long integration and the model was successfully integrated for up to 1200 days. Idealized topography was used to test the variable resolution component of the model. Nonhydrostatic effects were simulated at grid spacings of 400 meters with idealized topography and uniform flow. Using a high

  9. Toward an Integrative Model of Global Business Strategy

    DEFF Research Database (Denmark)

    Li, Xin

    fragmentation-integration-fragmentation-integration upward spiral. In response to the call for integrative approach to strategic management research, we propose an integrative model of global business strategy that aims at integrating not only strategy and IB but also the different paradigms within the strategy...... field. We also discuss the merit and limitation of our model....

  10. Reference man models based on normal data from human populations

    International Nuclear Information System (INIS)

    Tanaka, Gi-ichiro; Kawamura, Hisao

    2000-01-01

    Quantitative description of the physical, and metabolic parameters of the human body is the very basic for internal dosimetry. Compilation of anatomical and other types of data Asian populations for internal (and external) dosimetry is of grate significance because of the potential spread of nuclear energy use in the Asian region and the major contribution of the region to the world population (about 58%). It has been observed that some differences exist for habitat, race, body sizes and pattern of food consumption. In the early stage of revision of ICRP Reference man by the Task Group, Characteristics of the human body of non-European populations received considerable attention as well as those of the European populations of different sexes and ages. In this context, an IAEA-RCA Co-ordinated Research Program on Compilation of Anatomical, Physiological and Metabolic Characteristics for a Reference Asian Man endorsed. In later stages of reference Man revision, anatomical data for Asians was discusses together with those of European populations, presumably due to ICRP's decision of unanimous use of the Reference Man for radiation protection. Reference man models for adults and 15, 10, 5, 1, 0 year-old males and females of Asian populations were developed for use in internal and external dosimetry. Based on the concept of ICRP Reference Man (Publication 23), the reference values were derived from the normal organ mass data for Japanese and statistical data on the physique and nutrition of Japanese and Chinese. Also incorporated were variations in physical measurements, as observed in the above mentioned IAEA-RCA Co-ordinated Research Program. The work was partly carried out within the activities of the ICRP Task Group on Reference Man. The weight of the skeleton was adjusted following the revised values in Publication 70. This paper will report basic shared and non-shared characteristics of Reference Man' for Asians and ICRP Reference Man. (author)

  11. Takaful Models and Global Practices

    OpenAIRE

    Akhter, Waheed

    2010-01-01

    There is a global interest in Islamic finance in general and Takāful in particular. The main feature that differentiates Takāful services from conventional ones is Sharī‟ah compliance nature of these services. Investors are taking keen interest in this potential market as Muslims constitute about one fourth of the world population (Muslim population, 2006). To streamline operations of a Takāful company, management and Sharī‟ah experts have developed different operational models for Takāful bu...

  12. Direct Model Reference Adaptive Control for a Magnetic Bearing

    Energy Technology Data Exchange (ETDEWEB)

    Durling, Mike [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1999-11-01

    A Direct Model Reference Adaptive Controller (DMRAC) is applied to a magnetic bearing test stand. The bearing of interest is the MBC 500 Magnetic Bearing System manufactured by Magnetic Moments, LLC. The bearing model is presented in state space form and the system transfer function is measured directly using a closed-loop swept sine technique. Next, the bearing models are used to design a phase-lead controller, notch filter and then a DMRAC. The controllers are tuned in simulations and finally are implemented using a combination of MATLAB, SIMULINK and dSPACE. The results show a successful implementation of a DMRAC on the magnetic bearing hardware.

  13. Parabolic Trough Reference Plant for Cost Modeling with the Solar Advisor Model (SAM)

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C.

    2010-07-01

    This report describes a component-based cost model developed for parabolic trough solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), assisted by WorleyParsons Group Inc., for use with NREL's Solar Advisor Model (SAM). This report includes an overview and explanation of the model, two summary contract reports from WorleyParsons, and an Excel spreadsheet for use with SAM. The cost study uses a reference plant with a 100-MWe capacity and six hours of thermal energy storage. Wet-cooling and dry-cooling configurations are considered. The spreadsheet includes capital and operating cost by component to allow users to estimate the impact of changes in component costs.

  14. Integrating global socio-economic influences into a regional land use change model for China

    Science.gov (United States)

    Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li

    2014-03-01

    With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.

  15. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  16. Global modelling to predict timber production and prices: the GFPM approach

    Science.gov (United States)

    Joseph Buongiorno

    2014-01-01

    Timber production and prices are determined by the global demand for forest products, and the capability of producers from many countries to grow and harvest trees, transform them into products and export. The Global Forest Products Model (GFPM) simulates how this global demand and supply of multiple products among many countries determines prices and attendant...

  17. Regional forecasting with global atmospheric models; Third year report

    Energy Technology Data Exchange (ETDEWEB)

    Crowley, T.J.; North, G.R.; Smith, N.R. [Applied Research Corp., College Station, TX (United States)

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  18. GLOBATO: An enhanced global relief model at 30 arc-seconds resolution

    Science.gov (United States)

    O'Leary, V.; Amante, C.

    2017-12-01

    The National Centers for Environmental Information (NCEI), an office of the National Oceanic and Atmospheric Administration (NOAA), first developed a digital bathymetric and elevation model, ETOPO5, from publicly available data in 1993. For nearly 25 years, NCEI's ETOPO family of global relief models have supported research at a planetary scale, including tsunami forecasting, ocean circulation modeling, visualization of the seafloor, understanding geological phenomena, and aiding the development of other global and regional elevation models. GLOBATO (GLObal BAThymetry and TOpography) is now the most detailed version released by NCEI with a horizontal resolution of 30 arc-seconds and succeeds ETOPO1 with the inclusion of several new or updated data-sets for the seafloor as well as land areas. GLOBATO is a compilation of data derived from models of satellite measurements, ship depth soundings, and multibeam surveys, as well as regional models developed for Greenland and Antarctica. These data were converted from different formats, resolutions, spatial distributions, and projections into a single global model using GDAL v2.2 and MB-System v5.5. As with previous NCEI models, GLOBATO is available in two formats, "bedrock elevation" (measured as the base of major ice sheets) and "ice surface elevation" (measured as the surface of major ice sheets) which provides comprehensive topographic and bathymetric coverage between +- 90 degrees latitude and +- 180 degrees longitude. Adhering to best practices, GLOBATO, all related digital products, and any supporting documentation are available online through the NCEI data portal. These new, high resolution models will better support the variety of research ETOPO1 has made possible.

  19. Review of Media Sync Reference Models: Advances and Open Issues

    NARCIS (Netherlands)

    M.A. Montagud Climent (Mario); A.J. Jansen (Jack); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); M.A. Montagud Climent (Mario); P.S. Cesar Garcia (Pablo Santiago); F. Boronat (Fernando); H.M. Stokking (Hans)

    2015-01-01

    htmlabstractThe advances on multimedia systems have brought new challenges and requirements for media sync. Over the years, many media sync solutions have been devised. Due to this variety, several studies have surveyed the existing solutions and proposed classification schemes or reference models

  20. The MADE reference information model for interoperable pervasive telemedicine systems

    NARCIS (Netherlands)

    Fung, L.S.N.; Jones, Valerie M.; Hermens, Hermanus J.

    2017-01-01

    Objectives: The main objective is to develop and validate a reference information model (RIM) to support semantic interoperability of pervasive telemedicine systems. The RIM is one component within a larger, computer-interpretable "MADE language" developed by the authors in the context of the

  1. Weber’s models of bureaucracy in the age of globalization

    OpenAIRE

    Stojanovski, Strasko; Denkova, Jadranka; Trajkov, Petar

    2014-01-01

    In this paper we make an effort to establish connection between Max Weber’s models of bureaucracy and to apply the same in the context of the globalization. The theoretical bases of modern rational model of bureaucracy can be seen as one of the characteristics of global societies. Furthermore we analyze the function of international organizations as UN, World Bank, IMF etc. The example of European Union and its administrative capacities and structure are showing practical utilization of the m...

  2. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    Science.gov (United States)

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  3. Global modeling of land water and energy balances. Part III: Interannual variability

    Science.gov (United States)

    Shmakin, A.B.; Milly, P.C.D.; Dunne, K.A.

    2002-01-01

    The Land Dynamics (LaD) model is tested by comparison with observations of interannual variations in discharge from 44 large river basins for which relatively accurate time series of monthly precipitation (a primary model input) have recently been computed. When results are pooled across all basins, the model explains 67% of the interannual variance of annual runoff ratio anomalies (i.e., anomalies of annual discharge volume, normalized by long-term mean precipitation volume). The new estimates of basin precipitation appear to offer an improvement over those from a state-of-the-art analysis of global precipitation (the Climate Prediction Center Merged Analysis of Precipitation, CMAP), judging from comparisons of parallel model runs and of analyses of precipitation-discharge correlations. When the new precipitation estimates are used, the performance of the LaD model is comparable to, but not significantly better than, that of a simple, semiempirical water-balance relation that uses only annual totals of surface net radiation and precipitation. This implies that the LaD simulations of interannual runoff variability do not benefit substantially from information on geographical variability of land parameters or seasonal structure of interannual variability of precipitation. The aforementioned analyses necessitated the development of a method for downscaling of long-term monthly precipitation data to the relatively short timescales necessary for running the model. The method merges the long-term data with a reference dataset of 1-yr duration, having high temporal resolution. The success of the method, for the model and data considered here, was demonstrated in a series of model-model comparisons and in the comparisons of modeled and observed interannual variations of basin discharge.

  4. Information Reference Models for European Pork Supply Networks - Identifying Gaps in Information Infrastructures

    DEFF Research Database (Denmark)

    Lehmann, Richard J.; Hermansen, John Erik; Fritz, Melanie

    2011-01-01

    Several global developments such as diminishing production resources, limits in the availability of water and the growing demand for bio-energy as well as sector-wide crises (e.g. BSE, swine fever, dioxin) have led to a changing attitude of society towards the conse-quences of the food system......‘s activities for social, economic and environmental issues, cap-tured in the term of sustainability. As a consequence, consumers show increasing interest in the characteristics of food, and in turn, on the availability of related information and guaran-tees. The paper introduces different information reference...

  5. GLOMO - Global Mobility Model: Beschreibung und Ergebnisse

    OpenAIRE

    Kühn, André; Novinsky, Patrick; Schade, Wolfgang

    2014-01-01

    The development of both, emerging markets as well as the already establish markets (USA, Japan, Europe), is highly relevant for future success of the export-oriented German automotive industry. This paper describes the so called Global Mobility Model (GLOMO) based on the system dynamics approach, which simulates the future development of car sales by segment and drive technology. The modularized model contains population, income and GDP development in order to describe the framework in the mo...

  6. GLOBAL STABILITY AND PERIODIC SOLUTION OF A VIRAL DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Erhan COŞKUN

    2009-02-01

    Full Text Available Abstract:In this paper, we consider the classical viral dynamic mathematical model. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number, the HIV infection is cleared from the T-cell population; if , the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium can be unstable and periodic solutions may exist. We establish parameter regions for which is globally stable. Keywords: Global stability, HIV infection; CD4+ T cells; Periodic solution Mathematics Subject Classifications (2000: 65L10, 34B05 BİR VİRAL DİNAMİK MODELİN GLOBAL KARARLILIĞI VE PERİYODİK ÇÖZÜMÜ Özet: Bu makalede klasik viral dinamik modeli ele aldık. Modelin global dinamikleri oluşturuldu. Eğer temel üretim sayısı olur ise HIV enfeksiyonu T hücre nüfusundan çıkartılır, eğer olursa HIV enfeksiyonu çıkartılamaz. Parametre değerlerinin açık bir kümesi için kronik enfeksiyon dengesi kararsızdır ve periyodik çözüm oluşabilir. ın global kararlı olduğu parametre bölgeleri oluşturuldu. Anahtar Kelimeler: Global Kararlılık, HIV enfeksiyon, CD4+ T hücreler, Periyodik çözüm

  7. Terrestrial Feedbacks Incorporated in Global Vegetation Models through Observed Trait-Environment Responses

    Science.gov (United States)

    Bodegom, P. V.

    2015-12-01

    Most global vegetation models used to evaluate climate change impacts rely on plant functional types to describe vegetation responses to environmental stresses. In a traditional set-up in which vegetation characteristics are considered constant within a vegetation type, the possibility to implement and infer feedback mechanisms are limited as feedback mechanisms will likely involve a changing expression of community trait values. Based on community assembly concepts, we implemented functional trait-environment relationships into a global dynamic vegetation model to quantitatively assess this feature. For the current climate, a different global vegetation distribution was calculated with and without the inclusion of trait variation, emphasizing the importance of feedbacks -in interaction with competitive processes- for the prevailing global patterns. These trait-environmental responses do, however, not necessarily imply adaptive responses of vegetation to changing conditions and may locally lead to a faster turnover in vegetation upon climate change. Indeed, when running climate projections, simulations with trait variation did not yield a more stable or resilient vegetation than those without. Through the different feedback expressions, global and regional carbon and water fluxes were -however- strongly altered. At a global scale, model projections suggest an increased productivity and hence an increased carbon sink in the next decades to come, when including trait variation. However, by the end of the century, a reduced carbon sink is projected. This effect is due to a downregulation of photosynthesis rates, particularly in the tropical regions, even when accounting for CO2-fertilization effects. Altogether, the various global model simulations suggest the critical importance of including vegetation functional responses to changing environmental conditions to grasp terrestrial feedback mechanisms at global scales in the light of climate change.

  8. Global model of zenith tropospheric delay proposed based on EOF analysis

    Science.gov (United States)

    Sun, Langlang; Chen, Peng; Wei, Erhu; Li, Qinzheng

    2017-07-01

    Tropospheric delay is one of the main error budgets in Global Navigation Satellite System (GNSS) measurements. Many empirical correction models have been developed to compensate this delay, and models which do not require meteorological parameters have received the most attention. This study established a global troposphere zenith total delay (ZTD) model, called Global Empirical Orthogonal Function Troposphere (GEOFT), based on the empirical orthogonal function (EOF, also known as geographically weighted PCAs) analysis method and the Global Geodetic Observing System (GGOS) Atmosphere data from 2012 to 2015. The results showed that ZTD variation could be well represented by the characteristics of the EOF base function Ek and associated coefficients Pk. Here, E1 mainly signifies the equatorial anomaly; E2 represents north-south asymmetry, and E3 and E4 reflects regional variation. Moreover, P1 mainly reflects annual and semiannual variation components; P2 and P3 mainly contains annual variation components, and P4 displays semiannual variation components. We validated the proposed GEOFT model using tropospheric delay data of GGOS ZTD grid data and the tropospheric product of the International GNSS Service (IGS) over the year 2016. The results showed that GEOFT model has high accuracy with bias and RMS of -0.3 and 3.9 cm, respectively, with respect to the GGOS ZTD data, and of -0.8 and 4.1 cm, respectively, with respect to the global IGS tropospheric product. The accuracy of GEOFT demonstrating that the use of the EOF analysis method to characterize ZTD variation is reasonable.

  9. The Global Classroom Video Conferencing Model and First Evaluations

    DEFF Research Database (Denmark)

    Weitze, Charlotte Lærke; Ørngreen, Rikke; Levinsen, Karin

    2013-01-01

    pedagogical innovativeness, including collaborative and technological issues. The research is based on the Global Classroom Model as it is implemented and used at an adult learning center in Denmark (VUC Storstrøm). VUC Storstrøms (VUC) Global Classroom Model is an approach to video conferencing and e......Learning using campus-based teaching combined with laptop solutions for students at home. After a couple of years of campus-to-campus video streaming, VUC started a fulltime day program in 2011 with the support of a hybrid campus and videoconference model. In this model the teachers and some of the students......This paper presents and discusses findings about how students, teachers, and the organization experience a start-up-project applying video conferences between campus and home. This is new territory for adult learning centers. The paper discusses the transition to this eLearning form and discusses...

  10. Clouds and the extratropical circulation response to global warming in a hierarchy of global atmosphere models

    Science.gov (United States)

    Voigt, A.

    2017-12-01

    Climate models project that global warming will lead to substantial changes in extratropical jet streams. Yet, many quantitative aspects of warming-induced jet stream changes remain uncertain, and recent work has indicated an important role of clouds and their radiative interactions. Here, I will investigate how cloud-radiative changes impact the zonal-mean extratropical circulation response under global warming using a hierarchy of global atmosphere models. I will first focus on aquaplanet setups with prescribed sea-surface temperatures (SSTs), which reproduce the model spread found in realistic simulations with interactive SSTs. Simulations with two CMIP5 models MPI-ESM and IPSL-CM5A and prescribed clouds show that half of the circulation response can be attributed to cloud changes. The rise of tropical high-level clouds and the upward and poleward movement of midlatitude high-level clouds lead to poleward jet shifts. High-latitude low-level cloud changes shift the jet poleward in one model but not in the other. The impact of clouds on the jet operates via the atmospheric radiative forcing that is created by the cloud changes and is qualitatively reproduced in a dry Held-Suarez model, although the latter is too sensitive because of its simplified treatment of diabatic processes. I will then show that the aquaplanet results also hold when the models are used in a realistic setup that includes continents and seasonality. I will further juxtapose these prescribed-SST simulations with interactive-SST simulations and show that atmospheric and surface cloud-radiative interactions impact the jet poleward jet shifts in about equal measure. Finally, I will discuss the cloud impact on regional and seasonal circulation changes.

  11. Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM).

    Science.gov (United States)

    MacLeod, M J; Vellinga, T; Opio, C; Falcucci, A; Tempio, G; Henderson, B; Makkar, H; Mottet, A; Robinson, T; Steinfeld, H; Gerber, P J

    2018-02-01

    The livestock sector is one of the fastest growing subsectors of the agricultural economy and, while it makes a major contribution to global food supply and economic development, it also consumes significant amounts of natural resources and alters the environment. In order to improve our understanding of the global environmental impact of livestock supply chains, the Food and Agriculture Organization of the United Nations has developed the Global Livestock Environmental Assessment Model (GLEAM). The purpose of this paper is to provide a review of GLEAM. Specifically, it explains the model architecture, methods and functionality, that is the types of analysis that the model can perform. The model focuses primarily on the quantification of greenhouse gases emissions arising from the production of the 11 main livestock commodities. The model inputs and outputs are managed and produced as raster data sets, with spatial resolution of 0.05 decimal degrees. The Global Livestock Environmental Assessment Model v1.0 consists of five distinct modules: (a) the Herd Module; (b) the Manure Module; (c) the Feed Module; (d) the System Module; (e) the Allocation Module. In terms of the modelling approach, GLEAM has several advantages. For example spatial information on livestock distributions and crops yields enables rations to be derived that reflect the local availability of feed resources in developing countries. The Global Livestock Environmental Assessment Model also contains a herd model that enables livestock statistics to be disaggregated and variation in livestock performance and management to be captured. Priorities for future development of GLEAM include: improving data quality and the methods used to perform emissions calculations; extending the scope of the model to include selected additional environmental impacts and to enable predictive modelling; and improving the utility of GLEAM output.

  12. Homogenized global nonlinear constitutive model for RC panels under cyclic loadings

    International Nuclear Information System (INIS)

    Huguet, Miquel; Voldoire, Francois; Kotronis, Panagiotis; Erlicher, Silvano

    2014-01-01

    A new nonlinear stress resultant global constitutive model for RC panels is presented. Concrete damage, concrete stress transfer at cracks and bond-slip stress are the main nonlinear effects identified at the local scale that constitute the basis for the construction of the stress resultant global model through an analytical homogenization technique. The closed form solution is obtained using general functions for the previous phenomena. (authors)

  13. Drought Persistence Errors in Global Climate Models

    Science.gov (United States)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  14. A global workspace model for phenomenal and access consciousness.

    Science.gov (United States)

    Raffone, Antonino; Pantani, Martina

    2010-06-01

    Both the global workspace theory and Block's distinction between phenomenal and access consciousness, are central in the current debates about consciousness and the neural correlates of consciousness. In this article, a unifying global workspace model for phenomenal and access consciousness is proposed. In the model, recurrent neural interactions take place in distinct yet interacting access and phenomenal brain loops. The effectiveness of feedback signaling onto sensory cortical maps is emphasized for the neural correlates of phenomenal consciousness. Two forms of top-down attention, attention for perception and attention for access, play differential roles for phenomenal and access consciousness. The model is implemented in a neural network form, with the simulation of single and multiple visual object processing, and of the attentional blink. 2010 Elsevier Inc. All rights reserved.

  15. Modeling global distribution of agricultural insecticides in surface waters.

    Science.gov (United States)

    Ippolito, Alessio; Kattwinkel, Mira; Rasmussen, Jes J; Schäfer, Ralf B; Fornaroli, Riccardo; Liess, Matthias

    2015-03-01

    Agricultural insecticides constitute a major driver of animal biodiversity loss in freshwater ecosystems. However, the global extent of their effects and the spatial extent of exposure remain largely unknown. We applied a spatially explicit model to estimate the potential for agricultural insecticide runoff into streams. Water bodies within 40% of the global land surface were at risk of insecticide runoff. We separated the influence of natural factors and variables under human control determining insecticide runoff. In the northern hemisphere, insecticide runoff presented a latitudinal gradient mainly driven by insecticide application rate; in the southern hemisphere, a combination of daily rainfall intensity, terrain slope, agricultural intensity and insecticide application rate determined the process. The model predicted the upper limit of observed insecticide exposure measured in water bodies (n = 82) in five different countries reasonably well. The study provides a global map of hotspots for insecticide contamination guiding future freshwater management and conservation efforts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Validation of Global Lung Function Initiative and All Ages Reference Equations for Forced Spirometry in Healthy Spanish Preschoolers.

    Science.gov (United States)

    Martín de Vicente, Carlos; de Mir Messa, Inés; Rovira Amigo, Sandra; Torrent Vernetta, Alba; Gartner, Silvia; Iglesias Serrano, Ignacio; Carrascosa Lezcano, Antonio; Moreno Galdó, Antonio

    2018-01-01

    Recent publication of multi-ethnic spirometry reference equations for subjects aged from 3-95 years aim to avoid age-related discontinuities and provide a worldwide standard for interpreting spirometric test results. To assess the agreement of the Global Lung Function Initiative (GLI-2012) and All ages (FEV 0.5 ) reference equations with the Spanish preschool lung function data. To verify the appropriateness of these reference values for clinical use in Spanish preschool children. Spirometric measurements were obtained from children aged 3 to 6 years attending 10 randomly selected schools in Barcelona (Spain). Stanojevic's quality control criteria were applied. Z-scores were calculated for the spirometry outcomes based on the GLI equations. If the z-score (mean) of each parameter was close to 0, with a maximum variance of ± 0.5 from the mean and a standard deviation of 1, the GLI-2012 equations would be applicable in our population. Of 543 children recruited, 405 (74.6%) were 'healthy', and of these, 380 were Caucasians. Of these 380, 81.6% (169 females, 141 males) performed technically acceptable and reproducible maneuvers to assess FEVt, and 69.5% achieved a clear end-expiratory plateau. Z-scores for FVC, FEV 1 , FEV 1 /FVC, FEV 0.75 , FEV 0.75 /FVC, FEV 0.5 , FEF 75 and FEF 25-75 all fell within ± 0.5, except for FEV 1 /FVC (0.53 z-scores). GLI equations are appropriate for Spanish preschool children. These data provide further evidence to support widespread application of the GLI reference equations. Copyright © 2017 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Normalization references for USEtoxTM-based toxic impact categories: North American and European economic systems

    DEFF Research Database (Denmark)

    Laurent, Alexis; Lautier, Anne; Rosenbaum, Ralph K.

    2011-01-01

    economic regions, North America and Europe, to calculate normalization references for the three currently-modelled USEtoxTM-based impact categories, i.e. freshwater ecotoxicity, human toxicity, divided into cancer effects and non-cancer effects. Base years for the references are 2004 for Europe and 2006...... coverage of organics in both the inventory and the CF databases. With respect to the intended global character of the USEtoxTM model, different approaches to determine normalization references of other economic systems (e.g. Asia or world) are discussed in relation to these findings. Overall, we thus...... recommend the use of the provided set of normalization references for USEtoxTM, but we also advocate 1) to perform an update as soon as a more comprehensive inventory can be obtained and as soon as characterization factors for metals are revised; 2) to consider extension to other economic systems in order...

  18. Performance Guaranteed Inertia Emulation forDiesel-Wind System Feed Microgrid via ModelReference Control

    Energy Technology Data Exchange (ETDEWEB)

    Melin, Alexander M. [ORNL; Zhang, Yichen [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Djouadi, Seddik [University of Tennessee, Knoxville (UTK), Department of Electrical Engineering and Computer Science; Olama, Mohammed M. [ORNL

    2017-04-01

    In this paper, a model reference control based inertia emulation strategy is proposed. Desired inertia can be precisely emulated through this control strategy so that guaranteed performance is ensured. A typical frequency response model with parametrical inertia is set to be the reference model. A measurement at a specific location delivers the information of disturbance acting on the diesel-wind system to the referencemodel. The objective is for the speed of the diesel-wind system to track the reference model. Since active power variation is dominantly governed by mechanical dynamics and modes, only mechanical dynamics and states, i.e., a swing-engine-governor system plus a reduced-order wind turbine generator, are involved in the feedback control design. The controller is implemented in a three-phase diesel-wind system feed microgrid. The results show exact synthetic inertia is emulated, leading to guaranteed performance and safety bounds.

  19. A global hybrid coupled model based on atmosphere-SST feedbacks

    Energy Technology Data Exchange (ETDEWEB)

    Cimatoribus, Andrea A.; Drijfhout, Sybren S. [Royal Netherlands Meteorological Institute, De Bilt (Netherlands); Dijkstra, Henk A. [Utrecht University, Institute for Marine and Atmospheric Research Utrecht, Utrecht (Netherlands)

    2012-02-15

    A global hybrid coupled model is developed, with the aim of studying the effects of ocean-atmosphere feedbacks on the stability of the Atlantic meridional overturning circulation. The model includes a global ocean general circulation model and a statistical atmosphere model. The statistical atmosphere model is based on linear regressions of data from a fully coupled climate model on sea surface temperature both locally and hemispherically averaged, being the footprint of Atlantic meridional overturning variability. It provides dynamic boundary conditions to the ocean model for heat, freshwater and wind-stress. A basic but consistent representation of ocean-atmosphere feedbacks is captured in the hybrid coupled model and it is more than 10 times faster than the fully coupled climate model. The hybrid coupled model reaches a steady state with a climate close to the one of the fully coupled climate model, and the two models also have a similar response (collapse) of the Atlantic meridional overturning circulation to a freshwater hosing applied in the northern North Atlantic. (orig.)

  20. Constructing the [Parochial] Global Citizen

    Science.gov (United States)

    Salter, Peta; Halbert, Kelsey

    2017-01-01

    Cultural exchange is privileged in many higher education programs across the globe. The Australian government's New Colombo Plan refers to a "Third Wave" of globalisation which foregrounds global interrelatedness through developing student capabilities to live, work and contribute to global communities and aims to make the global an…

  1. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  2. Model-based synthesis of locally contingent responses to global market signals

    Science.gov (United States)

    Magliocca, N. R.

    2015-12-01

    Rural livelihoods and the land systems on which they depend are increasingly influenced by distant markets through economic globalization. Place-based analyses of land and livelihood system sustainability must then consider both proximate and distant influences on local decision-making. Thus, advancing land change theory in the context of economic globalization calls for a systematic understanding of the general processes as well as local contingencies shaping local responses to global signals. Synthesis of insights from place-based case studies of land and livelihood change is a path forward for developing such systematic knowledge. This paper introduces a model-based synthesis approach to investigating the influence of local socio-environmental and agent-level factors in mediating land-use and livelihood responses to changing global market signals. A generalized agent-based modeling framework is applied to six case-study sites that differ in environmental conditions, market access and influence, and livelihood settings. The largest modeled land conversions and livelihood transitions to market-oriented production occurred in sties with relatively productive agricultural land and/or with limited livelihood options. Experimental shifts in the distributions of agents' risk tolerances generally acted to attenuate or amplify responses to changes in global market signals. Importantly, however, responses of agents at different points in the risk tolerance distribution varied widely, with the wealth gap growing wider between agents with higher or lower risk tolerance. These results demonstrate model-based synthesis is a promising approach to overcome many of the challenges of current synthesis methods in land change science, and to identify generalized as well as locally contingent responses to global market signals.

  3. What can('t) we do with global flood risk models?

    Science.gov (United States)

    Ward, Philip; Jongman, Brenden; Salamon, Peter; Simpson, Alanna; Winsemius, Hessel

    2015-04-01

    In recent years, several global scale flood risk models have become available. Within the scientific community these have been, and are being, used to assess and map the current levels of risk faced by countries and societies. Increasingly, they are also being used to assess how that level of risk may change in the future, under scenarios of climate change and/or socioeconomic development. More and more, these 'quick and not so dirty' methods are also being used in practice, for a large range of uses and applications, and by an increasing range of practitioners and decision makers. For example, assessments can be used by: International Financing Institutes for prioritising investments in the most promising natural disaster risk reduction measures and strategies; intra-national institutes in the monitoring of progress on risk reduction activities; the (re-)insurance industry in assessing their risk portfolios and potential changes in those portfolios under climate change; by multinational companies in assessing risks to their regional investments and supply chains; and by international aid organisations for improved resource planning. However, global scale flood risk models clearly have their limits, and therefore both modellers and users need to critically address the question 'What can('t) we do with global flood risk models?'. This contribution is intended to start a dialogue between model developers, users, and decision makers to better answer this question. We will provide a number of examples of how the GLOFRIS global flood risk model has recently been used in several practical applications, and share both the positive and negative insights gained through these experiences. We wish to discuss similar experiences with other groups of modelers, users, and decision-makers, in order to better understand and harness the potential of this new generation of models, understand the differences in model approaches followed and their impacts on applicability, and develop

  4. A Global Change in Higher Education: Entrepreneurial University Model

    Directory of Open Access Journals (Sweden)

    Süreyya SAKINÇ

    2012-01-01

    Full Text Available Universities are affected by the social and economic diversity stemmed from globalization and internationalization, and its functions, area of responsibility, organizational structure, funding capability respond this diversity. In today's knowledge society, different new concepts regarding the university education system such as Entrepreneur University, Corporation University, virtual university etc. have been emerged with wave of globalization effect. The rising competition in academic education and the mass demands for education prompt to universities to get seeking new funds for fixing their financial situation, and hit them transforming into entrepreneurial identity. The reflections of neoliberal approach in education have transformed the universities into the corporations which are much more focused on entrepreneurial, student-oriented and aimed to appropriate education and producing creative human resources for global development. In this study, a comprehensive evaluation will be carried on regarding the entrepreneur university model through the litterateur research to investigate its causes and factors that impact and improve it. The aim of the paper is to generate a framework that identifies dynamic processes of entrepreneur university model, dependently the litterateur syntheses. The contribution of the paper will depend on its consequent argument that entrepreneur university model is viable for Turkey. In this paper, the entrepreneur university model will be analyzed by Triple Helix phenomenon with the comparative approach.

  5. Weather Test Reference Year of Greenland

    DEFF Research Database (Denmark)

    Kragh, Jesper; Pedersen, Frank; Svendsen, Svend

    2005-01-01

    the construction of two test reference years of Greenland used in the work of establishing new energy frame for the coming building code of Greenland. The first test reference year is constructed using measurements of climatic parameters from the town Nuuk located in the southwestern part of Greenland. The second...... test reference year is constructed using measurements from the town Uummannaq located in the north part of Greenland on the west coast. The construction of the test reference years fulfills the procedures described in the standard EN ISO 15927-4 using the following main weather parameters: Dry bulb...... temperature, global radiation, relative humidity and mean wind speed. To construct the test reference years a program called REFYEAR was developed in MatLab. REFYEAR automatically constructs the test reference year using an input file containing the climatic measurements. The two constructed test reference...

  6. Specification of a STEP Based Reference Model for Exchange of Robotics Models

    DEFF Research Database (Denmark)

    Haenisch, Jochen; Kroszynski, Uri; Ludwig, Arnold

    robot programming, the descriptions of geometry, kinematics, robotics, dynamics, and controller data using STEP are addressed as major goals of the project.The Project Consortium has now released the "Specificatin of a STEP Based Reference Model for Exchange of Robotics Models" on which a series......ESPRIT Project 6457: "Interoperability of Standards for Robotics in CIME" (InterRob) belongs to the Subprogram "Computer Integrated Manufacturing and Engineering" of ESPRIT, the European Specific Programme for Research and Development in Information Technology supported by the European Commision....... InterRob aims to develop an integrated solution to precision manufacturing by combining product data and database technologies with robotic off-line programming and simulation. Benefits arise from the use of high level simulation tools and developing standards for the exchange of product model data...

  7. Creating Flexible and Sustainable Work Models for Academic Obstetrician-Gynecologists Engaged in Global Health Work.

    Science.gov (United States)

    Molina, Rose; Boatin, Adeline; Farid, Huma; Luckett, Rebecca; Neo, Dayna; Ricciotti, Hope; Scott, Jennifer

    2017-10-01

    To describe various work models for obstetrics and gynecology global health faculty affiliated with academic medical centers and to identify barriers and opportunities for pursuing global health work. A mixed-methods study was conducted in 2016 among obstetrics and gynecology faculty and leaders from seven academic medical institutions in Boston, Massachusetts. Global health faculty members were invited to complete an online survey about their work models and to participate in semistructured interviews about barriers and facilitators of these models. Department chairs and residency directors were asked to participate in interviews. The survey response rate among faculty was 65.6% (21/32), of which 76.2% (16/21) completed an interview. Five department leaders (45.5% [5/11]) participated in an interview. Faculty described a range of work models with varied time and compensation, but only one third reported contracted time for global health work. The most common barriers to global health work were financial constraints, time limitations, lack of mentorship, need for specialized training, and maintenance of clinical skills. Career satisfaction, creating value for the obstetrics and gynecology department, and work model flexibility were the most important facilitators of sustainable global health careers. The study identified challenges and opportunities to creating flexible and sustainable work models for academic obstetrics and gynecology clinicians engaged in global health work. Additional research and innovation are needed to identify work models that allow for sustainable careers in global women's health. There are opportunities to create professional standards and models for academic global health work in the obstetrics and gynecology specialty.

  8. Combining observations and models to reduce uncertainty in the cloud response to global warming

    Science.gov (United States)

    Norris, J. R.; Myers, T.; Chellappan, S.

    2017-12-01

    Currently there is large uncertainty on how subtropical low-level clouds will respond to global warming and whether they will act as a positive feedback or negative feedback. Global climate models substantially agree on what changes in atmospheric structure and circulation will occur with global warming but greatly disagree over how clouds will respond to these changes in structure and circulation. An examination of models with the most realistic simulations of low-level cloudiness indicates that the model cloud response to atmospheric changes associated with global warming is quantitatively similar to the model cloud response to atmospheric changes at interannual time scales. For these models, the cloud response to global warming predicted by multilinear regression using coefficients derived from interannual time scales is quantitatively similar to the cloud response to global warming directly simulated by the model. Since there is a large spread among cloud response coefficients even among models with the most realistic cloud simulations, substitution of coefficients derived from satellite observations reduces the uncertainty range of the low-level cloud feedback. Increased sea surface temperature associated with global warming acts to reduce low-level cloudiness, which is partially offset by increased lower tropospheric stratification that acts to enhance low-level cloudiness. Changes in free-tropospheric relative humidity, subsidence, and horizontal advection have only a small impact on low-level cloud. The net reduction in subtropical low-level cloudiness increases absorption of solar radiation by the climate system, thus resulting in a weak positive feedback.

  9. "Competing Conceptions of Globalization" Revisited: Relocating the Tension between World-Systems Analysis and Globalization Analysis

    Science.gov (United States)

    Clayton, Thomas

    2004-01-01

    In recent years, many scholars have become fascinated by a contemporary, multidimensional process that has come to be known as "globalization." Globalization originally described economic developments at the world level. More specifically, scholars invoked the concept in reference to the process of global economic integration and the seemingly…

  10. A Reference Model for Distribution Grid Control in the 21st Century

    Energy Technology Data Exchange (ETDEWEB)

    Taft, Jeffrey D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); De Martini, Paul [California Inst. of Technology (CalTech), Pasadena, CA (United States); Kristov, Lorenzo [California Independent System Operator, Folsom, CA (United States)

    2015-07-01

    Intensive changes in the structure of the grid due to the penetration of new technologies, coupled with changing societal needs are outpacing the capabilities of traditional grid control systems. The gap is widening at an accelerating rate with the biggest impacts occurring at the distribution level due to the widespread adoption of diverse distribution-connected energy resources (DER) . This paper outlines the emerging distribution grid control environment, defines the new distribution control problem, and provides a distribution control reference model. The reference model offers a schematic representation of the problem domain to inform development of system architecture and control solutions for the high-DER electric system.

  11. VBE reference framework

    NARCIS (Netherlands)

    Afsarmanesh, H.; Camarinha-Matos, L.M.; Ermilova, E.; Camarinha-Matos, L.M.; Afsarmanesh, H.; Ollus, M.

    2008-01-01

    Defining a comprehensive and generic "reference framework" for Virtual organizations Breeding Environments (VBEs), addressing all their features and characteristics, is challenging. While the definition and modeling of VBEs has become more formalized during the last five years, "reference models"

  12. Orographic precipitation at global and regional scales: Observational uncertainty and evaluation of 25-km global model simulations

    Science.gov (United States)

    Schiemann, Reinhard; Roberts, Charles J.; Bush, Stephanie; Demory, Marie-Estelle; Strachan, Jane; Vidale, Pier Luigi; Mizielinski, Matthew S.; Roberts, Malcolm J.

    2015-04-01

    Precipitation over land exhibits a high degree of variability due to the complex interaction of the precipitation generating atmospheric processes with coastlines, the heterogeneous land surface, and orography. Global general circulation models (GCMs) have traditionally had very limited ability to capture this variability on the mesoscale (here ~50-500 km) due to their low resolution. This has changed with recent investments in resolution and ensembles of multidecadal climate simulations of atmospheric GCMs (AGCMs) with ~25 km grid spacing are becoming increasingly available. Here, we evaluate the mesoscale precipitation distribution in one such set of simulations obtained in the UPSCALE (UK on PrACE - weather-resolving Simulations of Climate for globAL Environmental risk) modelling campaign with the HadGEM-GA3 AGCM. Increased model resolution also poses new challenges to the observational datasets used to evaluate models. Global gridded data products such as those provided by the Global Precipitation Climatology Project (GPCP) are invaluable for assessing large-scale features of the precipitation distribution but may not sufficiently resolve mesoscale structures. In the absence of independent estimates, the intercomparison of different observational datasets may be the only way to get some insight into the uncertainties associated with these observations. Here, we focus on mid-latitude continental regions where observations based on higher-density gauge networks are available in addition to the global data sets: Europe/the Alps, South and East Asia, and the continental US. The ability of GCMs to represent mesoscale variability is of interest in its own right, as climate information on this scale is required by impact studies. An additional motivation for the research proposed here arises from continuing efforts to quantify the components of the global radiation budget and water cycle. Recent estimates based on radiation measurements suggest that the global mean

  13. Incorporation of detailed eye model into polygon-mesh versions of ICRP-110 reference phantoms.

    Science.gov (United States)

    Nguyen, Thang Tat; Yeom, Yeon Soo; Kim, Han Sung; Wang, Zhao Jun; Han, Min Cheol; Kim, Chan Hyeong; Lee, Jai Ki; Zankl, Maria; Petoussi-Henss, Nina; Bolch, Wesley E; Lee, Choonsik; Chung, Beom Sun

    2015-11-21

    The dose coefficients for the eye lens reported in ICRP 2010 Publication 116 were calculated using both a stylized model and the ICRP-110 reference phantoms, according to the type of radiation, energy, and irradiation geometry. To maintain consistency of lens dose assessment, in the present study we incorporated the ICRP-116 detailed eye model into the converted polygon-mesh (PM) version of the ICRP-110 reference phantoms. After the incorporation, the dose coefficients for the eye lens were calculated and compared with those of the ICRP-116 data. The results showed generally a good agreement between the newly calculated lens dose coefficients and the values of ICRP 2010 Publication 116. Significant differences were found for some irradiation cases due mainly to the use of different types of phantoms. Considering that the PM version of the ICRP-110 reference phantoms preserve the original topology of the ICRP-110 reference phantoms, it is believed that the PM version phantoms, along with the detailed eye model, provide more reliable and consistent dose coefficients for the eye lens.

  14. Developing and testing a global-scale regression model to quantify mean annual streamflow

    Science.gov (United States)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Hendriks, A. Jan; Beusen, Arthur H. W.; Clavreul, Julie; King, Henry; Schipper, Aafke M.

    2017-01-01

    Quantifying mean annual flow of rivers (MAF) at ungauged sites is essential for assessments of global water supply, ecosystem integrity and water footprints. MAF can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict MAF based on climate and catchment characteristics. Yet, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. In this study, we developed a global-scale regression model for MAF based on a dataset unprecedented in size, using observations of discharge and catchment characteristics from 1885 catchments worldwide, measuring between 2 and 106 km2. In addition, we compared the performance of the regression model with the predictive ability of the spatially explicit global hydrological model PCR-GLOBWB by comparing results from both models to independent measurements. We obtained a regression model explaining 89% of the variance in MAF based on catchment area and catchment averaged mean annual precipitation and air temperature, slope and elevation. The regression model performed better than PCR-GLOBWB for the prediction of MAF, as root-mean-square error (RMSE) values were lower (0.29-0.38 compared to 0.49-0.57) and the modified index of agreement (d) was higher (0.80-0.83 compared to 0.72-0.75). Our regression model can be applied globally to estimate MAF at any point of the river network, thus providing a feasible alternative to spatially explicit process-based global hydrological models.

  15. Global solution for a chemotactic haptotactic model of cancer invasion

    Science.gov (United States)

    Tao, Youshan; Wang, Mingjun

    2008-10-01

    This paper deals with a mathematical model of cancer invasion of tissue recently proposed by Chaplain and Lolas. The model consists of a reaction-diffusion-taxis partial differential equation (PDE) describing the evolution of tumour cell density, a reaction-diffusion PDE governing the evolution of the proteolytic enzyme concentration and an ordinary differential equation modelling the proteolysis of the extracellular matrix (ECM). In addition to random motion, the tumour cells are directed not only by haptotaxis (cellular locomotion directed in response to a concentration gradient of adhesive molecules along the ECM) but also by chemotaxis (cellular locomotion directed in response to a concentration gradient of the diffusible proteolytic enzyme). In one space dimension, the global existence and uniqueness of a classical solution to this combined chemotactic-haptotactic model is proved for any chemotactic coefficient χ > 0. In two and three space dimensions, the global existence is proved for small χ/μ (where μ is the logistic growth rate of the tumour cells). The fundamental point of proof is to raise the regularity of a solution from L1 to Lp (p > 1). Furthermore, the existence of blow-up solutions to a sub-model in two space dimensions for large χ shows, to some extent, that the condition that χ/μ is small is necessary for the global existence of a solution to the full model.

  16. Evaluation of Global Photosynthesis and BVOC Emission Covariance with Climate in NASA ModelE2-Y

    Science.gov (United States)

    Unger, N.

    2012-12-01

    Terrestrial gross primary productivity (GPP), a measure of the total amount of CO2 removed from the atmosphere every year to fuel photosynthesis, is the largest global carbon flux. GPP is vital for human welfare as the basis for food and fiber, and provides the crucial ecosystem service of reducing the accumulation of fossil fuel CO2 in the atmosphere. Land plants emit a significant fraction of the assimilated carbon back to the atmosphere in the form of biogenic volatile organic compounds (BVOCs). Isoprene is the dominant BVOC emission with an estimated global source of 200-660 TgC/yr. Global monoterpene emission estimates range from 30-130 TgC/yr. BVOC photochemical oxidation exerts a profound impact on the distribution and variability of the short-lived climate forcers: ozone, biogenic secondary organic aerosol and methane. Here, we apply multiple observational datasets from a suite of platforms to evaluate an updated global chemistry-climate model that is coupled to a new vegetation biophysics scheme incorporating photosynthesis-dependent BVOC emissions (NASA ModelE2-Y). A fixed vegetation structure dataset based on 8 plant functional types and prescribed phenology including crop planting and harvesting gives GPP of 128 PgC/yr and a global isoprene source of 200TgC/yr. The model GPP captures 85% of the annual average zonal mean variability in a FLUXNET-derived global dataset that was generated by data orientated diagnostic upscaling. We assess model BVOC emission climatology against a comprehensive database of campaign-average above canopy flux measurements and surface concentrations of isoprene and monoterpene collected between 1995-2010 across a wide range of ecosystem types, regions and seasons (> 25 flux estimates; > 22 surface concentration values). We evaluate the diurnal, seasonal and interannual integrity of the model BVOC variability against 9 sites for isoprene and 4 sites for monoterpene. The model captures ~60% of the variability in the time

  17. Teach for All: Storytelling "Shared Solutions" and Scaling Global Reform

    Science.gov (United States)

    Ahmann, Chloe

    2015-01-01

    "Teach For All" is a global network of state-based organizations that translate "Teach For America's" market model of school reform into moral projects of nation-building abroad. Referring to this challenge as one of "scaling" the organization, its leaders elaborate a theory of change that hinges on replicability: in…

  18. Energy management at public-private partnerships. A reference model for energy efficient building construction projects; Energiemanagement bei Oeffentlich-Privaten Partnerschaften. Ein Referenzmodell fuer energieeffiziente Hochbauprojekte

    Energy Technology Data Exchange (ETDEWEB)

    Heidel, Robin

    2013-04-01

    The enhancement of the energy efficiency reduces the life cycle costs of real estates, and is an important component in achieving global climate goals. In the construction and operation of public building constructions, the state has to assume the function of a role model. Due to the budgetary position of the public authority continuously in deficit, the alternative form of procurement public-private partnerships will become increasingly important. The author of the contribution under consideration reports on the design of building construction projects of public-private partnerships in order to guarantee an energy efficient operation. A reference model with process descriptions for the single phases of the project is developed. The author describes the possible benefit of this model by means of an application example.

  19. The Community Water Model (CWATM) / Development of a community driven global water model

    Science.gov (United States)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In

  20. Global dynamics of multi-group SEI animal disease models with indirect transmission

    International Nuclear Information System (INIS)

    Wang, Yi; Cao, Jinde

    2014-01-01

    A challenge to multi-group epidemic models in mathematical epidemiology is the exploration of global dynamics. Here we formulate multi-group SEI animal disease models with indirect transmission via contaminated water. Under biologically motivated assumptions, the basic reproduction number R 0 is derived and established as a sharp threshold that completely determines the global dynamics of the system. In particular, we prove that if R 0 <1, the disease-free equilibrium is globally asymptotically stable, and the disease dies out; whereas if R 0 >1, then the endemic equilibrium is globally asymptotically stable and thus unique, and the disease persists in all groups. Since the weight matrix for weighted digraphs may be reducible, the afore-mentioned approach is not directly applicable to our model. For the proofs we utilize the classical method of Lyapunov, graph-theoretic results developed recently and a new combinatorial identity. Since the multiple transmission pathways may correspond to the real world, the obtained results are of biological significance and possible generalizations of the model are also discussed

  1. An associative model of adaptive inference for learning word-referent mappings.

    Science.gov (United States)

    Kachergis, George; Yu, Chen; Shiffrin, Richard M

    2012-04-01

    People can learn word-referent pairs over a short series of individually ambiguous situations containing multiple words and referents (Yu & Smith, 2007, Cognition 106: 1558-1568). Cross-situational statistical learning relies on the repeated co-occurrence of words with their intended referents, but simple co-occurrence counts cannot explain the findings. Mutual exclusivity (ME: an assumption of one-to-one mappings) can reduce ambiguity by leveraging prior experience to restrict the number of word-referent pairings considered but can also block learning of non-one-to-one mappings. The present study first trained learners on one-to-one mappings with varying numbers of repetitions. In late training, a new set of word-referent pairs were introduced alongside pretrained pairs; each pretrained pair consistently appeared with a new pair. Results indicate that (1) learners quickly infer new pairs in late training on the basis of their knowledge of pretrained pairs, exhibiting ME; and (2) learners also adaptively relax the ME bias and learn two-to-two mappings involving both pretrained and new words and objects. We present an associative model that accounts for both results using competing familiarity and uncertainty biases.

  2. The Global Earthquake Model and Disaster Risk Reduction

    Science.gov (United States)

    Smolka, A. J.

    2015-12-01

    Advanced, reliable and transparent tools and data to assess earthquake risk are inaccessible to most, especially in less developed regions of the world while few, if any, globally accepted standards currently allow a meaningful comparison of risk between places. The Global Earthquake Model (GEM) is a collaborative effort that aims to provide models, datasets and state-of-the-art tools for transparent assessment of earthquake hazard and risk. As part of this goal, GEM and its global network of collaborators have developed the OpenQuake engine (an open-source software for hazard and risk calculations), the OpenQuake platform (a web-based portal making GEM's resources and datasets freely available to all potential users), and a suite of tools to support modelers and other experts in the development of hazard, exposure and vulnerability models. These resources are being used extensively across the world in hazard and risk assessment, from individual practitioners to local and national institutions, and in regional projects to inform disaster risk reduction. Practical examples for how GEM is bridging the gap between science and disaster risk reduction are: - Several countries including Switzerland, Turkey, Italy, Ecuador, Papua-New Guinea and Taiwan (with more to follow) are computing national seismic hazard using the OpenQuake-engine. In some cases these results are used for the definition of actions in building codes. - Technical support, tools and data for the development of hazard, exposure, vulnerability and risk models for regional projects in South America and Sub-Saharan Africa. - Going beyond physical risk, GEM's scorecard approach evaluates local resilience by bringing together neighborhood/community leaders and the risk reduction community as a basis for designing risk reduction programs at various levels of geography. Actual case studies are Lalitpur in the Kathmandu Valley in Nepal and Quito/Ecuador. In agreement with GEM's collaborative approach, all

  3. GLOFRIM v1.0-A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    NARCIS (Netherlands)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; Van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F.P.

    2017-01-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global

  4. Evaluation of global continental hydrology as simulated by the Land-surface Processes and eXchanges Dynamic Global Vegetation Model

    Directory of Open Access Journals (Sweden)

    S. J. Murray

    2011-01-01

    Full Text Available Global freshwater resources are sensitive to changes in climate, land cover and population density and distribution. The Land-surface Processes and eXchanges Dynamic Global Vegetation Model is a recent development of the Lund-Potsdam-Jena model with improved representation of fire-vegetation interactions. It allows simultaneous consideration of the effects of changes in climate, CO2 concentration, natural vegetation and fire regime shifts on the continental hydrological cycle. Here the model is assessed for its ability to simulate large-scale spatial and temporal runoff patterns, in order to test its suitability for modelling future global water resources. Comparisons are made against observations of streamflow and a composite dataset of modelled and observed runoff (1986–1995 and are also evaluated against soil moisture data and the Palmer Drought Severity Index. The model captures the main features of the geographical distribution of global runoff, but tends to overestimate runoff in much of the Northern Hemisphere (where this can be somewhat accounted for by freshwater consumption and the unrealistic accumulation of the simulated winter snowpack in permafrost regions and the southern tropics. Interannual variability is represented reasonably well at the large catchment scale, as are seasonal flow timings and monthly high and low flow events. Further improvements to the simulation of intra-annual runoff might be achieved via the addition of river flow routing. Overestimates of runoff in some basins could likely be corrected by the inclusion of transmission losses and direct-channel evaporation.

  5. Educating for Responsible Global Citizenship.

    Science.gov (United States)

    Drake, Christine

    1987-01-01

    Discusses geographical illiteracy in the United States and the problems of inadequate international awareness and poor understanding of major global issues. Examines what citizens should know, why they should care, and what people should do about the lack of global knowledge. Presents a list of 57 references dealing with global issues. (GEA)

  6. Technical Report Series on Global Modeling and Data Assimilation. Volume 31; Global Surface Ocean Carbon Estimates in a Model Forced by MERRA

    Science.gov (United States)

    Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.

    2013-01-01

    MERRA products were used to force an established ocean biogeochemical model to estimate surface carbon inventories and fluxes in the global oceans. The results were compared to public archives of in situ carbon data and estimates. The model exhibited skill for ocean dissolved inorganic carbon (DIC), partial pressure of ocean CO2 (pCO2) and air-sea fluxes (FCO2). The MERRA-forced model produced global mean differences of 0.02% (approximately 0.3 microns) for DIC, -0.3% (about -1.2 (micro) atm; model lower) for pCO2, and -2.3% (-0.003 mol C/sq m/y) for FCO2 compared to in situ estimates. Basin-scale distributions were significantly correlated with observations for all three variables (r=0.97, 0.76, and 0.73, P<0.05, respectively for DIC, pCO2, and FCO2). All major oceanographic basins were represented as sources to the atmosphere or sinks in agreement with in situ estimates. However, there were substantial basin-scale and local departures.

  7. Scenario and modelling uncertainty in global mean temperature change derived from emission driven Global Climate Models

    Science.gov (United States)

    Booth, B. B. B.; Bernie, D.; McNeall, D.; Hawkins, E.; Caesar, J.; Boulton, C.; Friedlingstein, P.; Sexton, D.

    2012-09-01

    We compare future changes in global mean temperature in response to different future scenarios which, for the first time, arise from emission driven rather than concentration driven perturbed parameter ensemble of a Global Climate Model (GCM). These new GCM simulations sample uncertainties in atmospheric feedbacks, land carbon cycle, ocean physics and aerosol sulphur cycle processes. We find broader ranges of projected temperature responses arising when considering emission rather than concentration driven simulations (with 10-90 percentile ranges of 1.7 K for the aggressive mitigation scenario up to 3.9 K for the high end business as usual scenario). A small minority of simulations resulting from combinations of strong atmospheric feedbacks and carbon cycle responses show temperature increases in excess of 9 degrees (RCP8.5) and even under aggressive mitigation (RCP2.6) temperatures in excess of 4 K. While the simulations point to much larger temperature ranges for emission driven experiments, they do not change existing expectations (based on previous concentration driven experiments) on the timescale that different sources of uncertainty are important. The new simulations sample a range of future atmospheric concentrations for each emission scenario. Both in case of SRES A1B and the Representative Concentration Pathways (RCPs), the concentration pathways used to drive GCM ensembles lies towards the lower end of our simulated distribution. This design decision (a legecy of previous assessments) is likely to lead concentration driven experiments to under-sample strong feedback responses in concentration driven projections. Our ensemble of emission driven simulations span the global temperature response of other multi-model frameworks except at the low end, where combinations of low climate sensitivity and low carbon cycle feedbacks lead to responses outside our ensemble range. The ensemble simulates a number of high end responses which lie above the CMIP5 carbon

  8. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models.

    Science.gov (United States)

    Pozo, Carlos; Marín-Sanguino, Alberto; Alves, Rui; Guillén-Gosálbez, Gonzalo; Jiménez, Laureano; Sorribas, Albert

    2011-08-25

    Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  9. Steady-state global optimization of metabolic non-linear dynamic models through recasting into power-law canonical models

    Directory of Open Access Journals (Sweden)

    Sorribas Albert

    2011-08-01

    Full Text Available Abstract Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

  10. Globalization

    DEFF Research Database (Denmark)

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  11. Flood Inundation Modelling Under Uncertainty Using Globally and Freely Available Remote Sensing Data

    Science.gov (United States)

    Yan, K.; Di Baldassarre, G.; Giustarini, L.; Solomatine, D. P.

    2012-04-01

    The extreme consequences of recent catastrophic events have highlighted that flood risk prevention still needs to be improved to reduce human losses and economic damages, which have considerably increased worldwide in recent years. Flood risk management and long term floodplain planning are vital for living with floods, which is the currently proposed approach to cope with floods. To support the decision making processes, a significant issue is the availability of data to build appropriate and reliable models, from which the needed information could be obtained. The desirable data for model building, calibration and validation are often not sufficient or available. A unique opportunity is offered nowadays by globally available data which can be freely downloaded from internet. This might open new opportunities for filling the gap between available and needed data, in order to build reliable models and potentially lead to the development of global inundation models to produce floodplain maps for the entire globe. However, there remains the question of what is the real potential of those global remote sensing data, characterized by different accuracy, for global inundation monitoring and how to integrate them with inundation models. This research aims at contributing to understand whether the current globally and freely available remote sensing data (e.g. SRTM, SAR) can be actually used to appropriately support inundation modelling. In this study, the SRTM DEM is used for hydraulic model building, while ENVISAT-ASAR satellite imagery is used for model validation. To test the usefulness of these globally and freely available data, a model based on the high resolution LiDAR DEM and ground data (high water marks) is used as benchmark. The work is carried out on a data-rich test site: the River Alzette in the north of Luxembourg City. Uncertainties are estimated for both SRTM and LiDAR based models. Probabilistic flood inundation maps are produced under the framework of

  12. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    Science.gov (United States)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  13. Business process modelling in demand-driven agri-food supply chains : a reference framework

    NARCIS (Netherlands)

    Verdouw, C.N.

    2010-01-01

    Keywords: Business process models; Supply chain management; Information systems; Reference information models; Market orientation; Mass customisation; Configuration; Coordination; Control; SCOR; Pot plants; Fruit industry

    Abstract

    The increasing volatility and diversity of

  14. Global sensitivity analysis using low-rank tensor approximations

    International Nuclear Information System (INIS)

    Konakli, Katerina; Sudret, Bruno

    2016-01-01

    In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model. - Highlights: • A new method is proposed for global sensitivity analysis of high-dimensional models. • Low-rank tensor approximations (LRA) are used as a meta-modeling technique. • Analytical formulas for the Sobol' indices in terms of LRA coefficients are derived. • The accuracy and efficiency of the approach is illustrated in application examples. • LRA-based indices are compared to indices based on polynomial chaos expansions.

  15. Modeling global scene factors in attention

    Science.gov (United States)

    Torralba, Antonio

    2003-07-01

    Models of visual attention have focused predominantly on bottom-up approaches that ignored structured contextual and scene information. I propose a model of contextual cueing for attention guidance based on the global scene configuration. It is shown that the statistics of low-level features across the whole image can be used to prime the presence or absence of objects in the scene and to predict their location, scale, and appearance before exploring the image. In this scheme, visual context information can become available early in the visual processing chain, which allows modulation of the saliency of image regions and provides an efficient shortcut for object detection and recognition. 2003 Optical Society of America

  16. An Effective Model for Improving Global Health Nursing Competence.

    Science.gov (United States)

    Kang, Sun-Joo

    2016-01-01

    This paper proposed an effective model for improving global health nursing competence among undergraduate students. A descriptive case study was conducted by evaluation of four implemented programs by the author. All programs were conducted with students majoring in nursing and healthcare, where the researcher was a program director, professor, or facilitator. These programs were analyzed in terms of students' needs assessment, program design, and implementation and evaluation factors. The concept and composition of global nursing competence, identified within previous studies, were deemed appropriate in all of our programs. Program composition varied from curricular to extracurricular domains. During the implementation phase, some of the programs included non-Korean students to improve cultural diversity and overcome language barriers. Qualitative and quantitative surveys were conducted to assess program efficacy. Data triangulation from students' reflective journals was examined. Additionally, students' awareness regarding changes within global health nursing, improved critical thinking, cultural understanding, and global leadership skills were investigated pre- and post-program implementation. The importance of identifying students' needs regarding global nursing competence when developing appropriate curricula is discussed.

  17. An Effective Model for Improving Global Health Nursing Competence

    Directory of Open Access Journals (Sweden)

    Sunjoo Kang

    2016-09-01

    Full Text Available This paper developed an effective model for improving global health nursing competence among undergraduate students. A descriptive case study was conducted by implementing four programs. All programs were conducted with students majoring nursing and healthcare, where the researcher was a program director, professor, or facilitator. These programs were analyzed in terms of students’ needs assessment, program design, and implementation and evaluation factors. The concept and composition of global nursing competence, identified within previous studies, were deemed appropriate in all of our programs. Program composition varied from curricular to extracurricular domains. During the implementation phase, most of the programs included non-Korean students to improve cultural diversity and overcome language barriers. Qualitative and quantitative surveys were conducted to assess program efficacy. Data triangulation from students’ reflective journals was examined. Additionally, students’ awareness regarding changes within global health nursing, improved critical thinking, cultural understanding, and global leadership skills were investigated pre and post-program implementation. We discuss how identifying students’ needs regarding global nursing competence when developing appropriate curricula.

  18. Modelling a Global EPCM (Engineering, Procurement and Construction Management Enterprise

    Directory of Open Access Journals (Sweden)

    Sekhar Chattopadhyay

    2010-03-01

    Full Text Available This paper investigates the applicability of enterprise architectures in the context of current business environment by examining the application of Purdue Enterprise Reference Architecture to WorleyParsons, a global engineering, procurement and construction management enterprise, under the backdrop of a similar study carried out on Fluor Daniel during mid-nineties of the last century. The outcome of this study recommends the need for new enterprise architecture, the People-Centric Enterprise Architecture that not only focuses on human dimension in modern enterprises as the central thread, but also includes more business characteristics of the enterprise other than engineerings.

  19. Incorporating nitrogen fixing cyanobacteria in the global biogeochemical model HAMOCC

    Science.gov (United States)

    Paulsen, Hanna; Ilyina, Tatiana; Six, Katharina

    2015-04-01

    Nitrogen fixation by marine diazotrophs plays a fundamental role in the oceanic nitrogen and carbon cycle as it provides a major source of 'new' nitrogen to the euphotic zone that supports biological carbon export and sequestration. Since most global biogeochemical models include nitrogen fixation only diagnostically, they are not able to capture its spatial pattern sufficiently. Here we present the incorporation of an explicit, dynamic representation of diazotrophic cyanobacteria and the corresponding nitrogen fixation in the global ocean biogeochemical model HAMOCC (Hamburg Ocean Carbon Cycle model), which is part of the Max Planck Institute for Meteorology Earth system model (MPI-ESM). The parameterization of the diazotrophic growth is thereby based on available knowledge about the cyanobacterium Trichodesmium spp., which is considered as the most significant pelagic nitrogen fixer. Evaluation against observations shows that the model successfully reproduces the main spatial distribution of cyanobacteria and nitrogen fixation, covering large parts of the tropical and subtropical oceans. Besides the role of cyanobacteria in marine biogeochemical cycles, their capacity to form extensive surface blooms induces a number of bio-physical feedback mechanisms in the Earth system. The processes driving these interactions, which are related to the alteration of heat absorption, surface albedo and momentum input by wind, are incorporated in the biogeochemical and physical model of the MPI-ESM in order to investigate their impacts on a global scale. First preliminary results will be shown.

  20. Existence of global attractor for the Trojan Y Chromosome model

    Directory of Open Access Journals (Sweden)

    Xiaopeng Zhao

    2012-04-01

    Full Text Available This paper is concerned with the long time behavior of solution for the equation derived by the Trojan Y Chromosome (TYC model with spatial spread. Based on the regularity estimates for the semigroups and the classical existence theorem of global attractors, we prove that this equations possesses a global attractor in $H^k(\\Omega^4$ $(k\\geq 0$ space.

  1. Characteristics of Extreme Extratropical Cyclones in a High-Resolution Global Climate Model

    Science.gov (United States)

    Catalano, A. J.; Broccoli, A. J.; Kapnick, S. B.; Janoski, T. P.

    2017-12-01

    In the northeastern United States, many of the strongest impacts from extratropical cyclones (ETCs) are associated with storms that exhibit slow movement, unusual tracks, or exceptional intensity. Examples of extreme ETCs include the Appalachian storm of November 1950, the Perfect Storm of October 1991, and the Superstorm of March 1993. Owing to the rare nature of these events, it is difficult to quantify the associated risks (e.g. high winds, storm surge) given the limited duration of high-quality observational datasets. Furthermore, storms with even greater impacts than those observed may be possible, particularly in a warming climate. In the context of tropical cyclones, Lin and Emanuel (2016) have used the metaphor "grey swans" to refer to high-impact events that have not been observed but may be physically possible. One method for analyzing "grey swans" is to generate a larger sample of ETCs using a coupled climate model. Therefore, we use long simulations (over 1,000 years with atmospheric constituents fixed at 1990 levels) from a global climate model (GFDL FLOR) with 50km atmospheric resolution. FLOR has been shown to realistically simulate the spatial distribution and climatology of ETCs during the reanalysis era. We will discuss the climatological features of these extreme ETC events.

  2. Meridional transport of salt in the global ocean from an eddy-resolving model

    Science.gov (United States)

    Treguier, A. M.; Deshayes, J.; Le Sommer, J.; Lique, C.; Madec, G.; Penduff, T.; Molines, J.-M.; Barnier, B.; Bourdalle-Badie, R.; Talandier, C.

    2014-04-01

    The meridional transport of salt is computed in a global eddy-resolving numerical model (1/12° resolution) in order to improve our understanding of the ocean salinity budget. A methodology is proposed that allows a global analysis of the salinity balance in relation to surface water fluxes, without defining a "freshwater anomaly" based on an arbitrary reference salinity. The method consists of a decomposition of the meridional transport into (i) the transport by the time-longitude-depth mean velocity, (ii) time-mean velocity recirculations and (iii) transient eddy perturbations. Water is added (rainfall and rivers) or removed (evaporation) at the ocean surface at different latitudes, which creates convergences and divergences of mass transport with maximum and minimum values close to ±1 Sv. The resulting meridional velocity effects a net transport of salt at each latitude (±30 Sv PSU), which is balanced by the time-mean recirculations and by the net effect of eddy salinity-velocity correlations. This balance ensures that the total meridional transport of salt is close to zero, a necessary condition for maintaining a quasi-stationary salinity distribution. Our model confirms that the eddy salt transport cannot be neglected: it is comparable to the transport by the time-mean recirculation (up to 15 Sv PSU) at the poleward and equatorial boundaries of the subtropical gyres. Two different mechanisms are found: eddy contributions are localized in intense currents such as the Kuroshio at the poleward boundary of the subtropical gyres, while they are distributed across the basins at the equatorward boundaries. Closer to the Equator, salinity-velocity correlations are mainly due to the seasonal cycle and large-scale perturbations such as tropical instability waves.

  3. Reference Values for Spirometry Derived Using Lambda, Mu, Sigma (LMS) Method in Korean Adults: in Comparison with Previous References.

    Science.gov (United States)

    Jo, Bum Seak; Myong, Jun Pyo; Rhee, Chin Kook; Yoon, Hyoung Kyu; Koo, Jung Wan; Kim, Hyoung Ryoul

    2018-01-15

    The present study aimed to update the prediction equations for spirometry and their lower limits of normal (LLN) by using the lambda, mu, sigma (LMS) method and to compare the outcomes with the values of previous spirometric reference equations. Spirometric data of 10,249 healthy non-smokers (8,776 females) were extracted from the fourth and fifth versions of the Korea National Health and Nutrition Examination Survey (KNHANES IV, 2007-2009; V, 2010-2012). Reference equations were derived using the LMS method which allows modeling skewness (lambda [L]), mean (mu [M]), and coefficient of variation (sigma [S]). The outcome equations were compared with previous reference values. Prediction equations were presented in the following form: predicted value = e{a + b × ln(height) + c × ln(age) + M - spline}. The new predicted values for spirometry and their LLN derived using the LMS method were shown to more accurately reflect transitions in pulmonary function in young adults than previous prediction equations derived using conventional regression analysis in 2013. There were partial discrepancies between the new reference values and the reference values from the Global Lung Function Initiative in 2012. The results should be interpreted with caution for young adults and elderly males, particularly in terms of the LLN for forced expiratory volume in one second/forced vital capacity in elderly males. Serial spirometry follow-up, together with correlations with other clinical findings, should be emphasized in evaluating the pulmonary function of individuals. Future studies are needed to improve the accuracy of reference data and to develop continuous reference values for spirometry across all ages. © 2018 The Korean Academy of Medical Sciences.

  4. Global assessment of ocean carbon export by combining satellite observations and food-web models

    Science.gov (United States)

    Siegel, D. A.; Buesseler, K. O.; Doney, S. C.; Sailley, S. F.; Behrenfeld, M. J.; Boyd, P. W.

    2014-03-01

    The export of organic carbon from the surface ocean by sinking particles is an important, yet highly uncertain, component of the global carbon cycle. Here we introduce a mechanistic assessment of the global ocean carbon export using satellite observations, including determinations of net primary production and the slope of the particle size spectrum, to drive a food-web model that estimates the production of sinking zooplankton feces and algal aggregates comprising the sinking particle flux at the base of the euphotic zone. The synthesis of observations and models reveals fundamentally different and ecologically consistent regional-scale patterns in export and export efficiency not found in previous global carbon export assessments. The model reproduces regional-scale particle export field observations and predicts a climatological mean global carbon export from the euphotic zone of 6 Pg C yr-1. Global export estimates show small variation (typically model parameter values. The model is also robust to the choices of the satellite data products used and enables interannual changes to be quantified. The present synthesis of observations and models provides a path for quantifying the ocean's biological pump.

  5. Multi-site evaluation of the JULES land surface model using global and local data

    Directory of Open Access Journals (Sweden)

    D. Slevin

    2015-02-01

    Full Text Available This study evaluates the ability of the JULES land surface model (LSM to simulate photosynthesis using local and global data sets at 12 FLUXNET sites. Model parameters include site-specific (local values for each flux tower site and the default parameters used in the Hadley Centre Global Environmental Model (HadGEM climate model. Firstly, gross primary productivity (GPP estimates from driving JULES with data derived from local site measurements were compared to observations from the FLUXNET network. When using local data, the model is biased with total annual GPP underestimated by 16% across all sites compared to observations. Secondly, GPP estimates from driving JULES with data derived from global parameter and atmospheric reanalysis (on scales of 100 km or so were compared to FLUXNET observations. It was found that model performance decreases further, with total annual GPP underestimated by 30% across all sites compared to observations. When JULES was driven using local parameters and global meteorological data, it was shown that global data could be used in place of FLUXNET data with a 7% reduction in total annual simulated GPP. Thirdly, the global meteorological data sets, WFDEI and PRINCETON, were compared to local data to find that the WFDEI data set more closely matches the local meteorological measurements (FLUXNET. Finally, the JULES phenology model was tested by comparing results from simulations using the default phenology model to those forced with the remote sensing product MODIS leaf area index (LAI. Forcing the model with daily satellite LAI results in only small improvements in predicted GPP at a small number of sites, compared to using the default phenology model.

  6. Analyzing Global Components in Developmental Dyscalculia and Dyslexia.

    Science.gov (United States)

    Filippo, Gloria Di; Zoccolotti, Pierluigi

    2018-01-01

    The study examined whether developmental deficits in reading and numerical skills could be expressed in terms of global factors by reference to the rate and amount (RAM) and difference engine (DEM) models. From a sample of 325 fifth grade children, we identified 5 children with dyslexia, 16 with dyscalculia, 7 with a "mixed pattern," and 49 control children. Children were asked to read aloud words presented individually that varied for frequency and length and to respond (either vocally or manually) to a series of simple number tasks (addition, subtraction, number reading, and number comparisons). Reaction times were measured. Results indicated that the deficit of children with dyscalculia and children with a mixed pattern on numerical tasks could be explained by a single global factor, similarly to the reading deficit shown by children with dyslexia. As predicted by the DEM, increases in task difficulty were accompanied by a corresponding increase in inter-individual variability for both the reading and numerical tasks. These relationships were constant across the four groups of children but differed in terms of slope and intercept on the x -axis, indicating that two different general rules underlie performance in reading and numerical skills. The study shows for the first time that, as previously shown for reading, also numerical performance can be explained with reference to a global factor. The advantage of this approach is that it takes into account the over-additivity effect, i.e., the presence of larger group differences in the case of more difficult conditions over and above the characteristics of the experimental conditions. It is concluded that reference to models such as the RAM and DEM can be useful in delineating the characteristics of the dyscalculic deficit as well as in the description of co-morbid disturbances, as in the case of dyslexia and dyscalculia.

  7. Analyzing Global Components in Developmental Dyscalculia and Dyslexia

    Directory of Open Access Journals (Sweden)

    Gloria Di Filippo

    2018-02-01

    Full Text Available The study examined whether developmental deficits in reading and numerical skills could be expressed in terms of global factors by reference to the rate and amount (RAM and difference engine (DEM models. From a sample of 325 fifth grade children, we identified 5 children with dyslexia, 16 with dyscalculia, 7 with a “mixed pattern,” and 49 control children. Children were asked to read aloud words presented individually that varied for frequency and length and to respond (either vocally or manually to a series of simple number tasks (addition, subtraction, number reading, and number comparisons. Reaction times were measured. Results indicated that the deficit of children with dyscalculia and children with a mixed pattern on numerical tasks could be explained by a single global factor, similarly to the reading deficit shown by children with dyslexia. As predicted by the DEM, increases in task difficulty were accompanied by a corresponding increase in inter-individual variability for both the reading and numerical tasks. These relationships were constant across the four groups of children but differed in terms of slope and intercept on the x-axis, indicating that two different general rules underlie performance in reading and numerical skills. The study shows for the first time that, as previously shown for reading, also numerical performance can be explained with reference to a global factor. The advantage of this approach is that it takes into account the over-additivity effect, i.e., the presence of larger group differences in the case of more difficult conditions over and above the characteristics of the experimental conditions. It is concluded that reference to models such as the RAM and DEM can be useful in delineating the characteristics of the dyscalculic deficit as well as in the description of co-morbid disturbances, as in the case of dyslexia and dyscalculia.

  8. Student's vacation travel: a reference dependent model of airline fares preferences

    NARCIS (Netherlands)

    Grigolon, A.B.; Kemperman, A.D.A.M.; Timmermans, H.J.P.

    2012-01-01

    This article reports the results of student vacation travel choice analysis using a reference dependent model of airline fare preferences. Findings suggests, as expected, that the preferences/utility decreases with increasing levels of cost. The evaluation of the airfare, however, becomes

  9. Globally COnstrained Local Function Approximation via Hierarchical Modelling, a Framework for System Modelling under Partial Information

    DEFF Research Database (Denmark)

    Øjelund, Henrik; Sadegh, Payman

    2000-01-01

    be obtained. This paper presents a new approach for system modelling under partial (global) information (or the so called Gray-box modelling) that seeks to perserve the benefits of the global as well as local methodologies sithin a unified framework. While the proposed technique relies on local approximations......Local function approximations concern fitting low order models to weighted data in neighbourhoods of the points where the approximations are desired. Despite their generality and convenience of use, local models typically suffer, among others, from difficulties arising in physical interpretation...... simultaneously with the (local estimates of) function values. The approach is applied to modelling of a linear time variant dynamic system under prior linear time invariant structure where local regression fails as a result of high dimensionality....

  10. A dynamic global-coefficient mixed subgrid-scale model for large-eddy simulation of turbulent flows

    International Nuclear Information System (INIS)

    Singh, Satbir; You, Donghyun

    2013-01-01

    Highlights: ► A new SGS model is developed for LES of turbulent flows in complex geometries. ► A dynamic global-coefficient SGS model is coupled with a scale-similarity model. ► Overcome some of difficulties associated with eddy-viscosity closures. ► Does not require averaging or clipping of the model coefficient for stabilization. ► The predictive capability is demonstrated in a number of turbulent flow simulations. -- Abstract: A dynamic global-coefficient mixed subgrid-scale eddy-viscosity model for large-eddy simulation of turbulent flows in complex geometries is developed. In the present model, the subgrid-scale stress is decomposed into the modified Leonard stress, cross stress, and subgrid-scale Reynolds stress. The modified Leonard stress is explicitly computed assuming a scale similarity, while the cross stress and the subgrid-scale Reynolds stress are modeled using the global-coefficient eddy-viscosity model. The model coefficient is determined by a dynamic procedure based on the global-equilibrium between the subgrid-scale dissipation and the viscous dissipation. The new model relieves some of the difficulties associated with an eddy-viscosity closure, such as the nonalignment of the principal axes of the subgrid-scale stress tensor and the strain rate tensor and the anisotropy of turbulent flow fields, while, like other dynamic global-coefficient models, it does not require averaging or clipping of the model coefficient for numerical stabilization. The combination of the global-coefficient eddy-viscosity model and a scale-similarity model is demonstrated to produce improved predictions in a number of turbulent flow simulations

  11. THREE MODELS OF NATIONAL CRIMINAL POLICY IN THE CONTEXT OF GLOBALIZATION

    Directory of Open Access Journals (Sweden)

    Ivan Kleymenov

    2017-01-01

    Full Text Available The author identifies three models of national criminal policy: the sovereign, reformist and experimental. The main criteria of such differentiation are the exposure to global influence, the criminological soundness and stability of criminal policy. Identification of the model of criminal policy in a particular state is a complex task that requires independent research.The subject. The article is devoted to modeling of the national criminal policy in modern conditions of globalization. The article discusses various models of criminal policy in the conditions of globalization.The purpose of the author is to describe the basic models of national criminal policy in modern conditions of globalization.The methodology. The author uses the method of analysis and synthesis, formal legal method as well as sociological methods (survey.The results, scope of application. The author identifies three models of national criminal policy: the sovereign, reformist and experimental. The main criteria of such differentiation are the exposure to global influence, the criminological soundness and stability of criminal policy. The sovereign model is based on doctrine of weak state and a strong combat criminal activity. It is distinguished by the pursuit of the realization of the equality of all before the law, criminal strategic and political planning system with a clear definition of goals and objectives; criminological security. The reform of criminal policy is characterized byuncertainty goals and objectives, utopianism and pretentiousness, dependence on standards of the international organization, the lower prestige of criminology, reduction of social programs, lobbying of group interests, permanent amendments to the criminal and criminal procedure legislation. Experimental model of criminal policy is connected with approbation of such technologies of management of society that are criminal and contrary to human experience in fighting crime.Conclusions. Criminal

  12. Examining the value of global seasonal reference evapotranspiration forecasts tosupport FEWS NET's food insecurity outlooks

    Science.gov (United States)

    Shukla, S.; McEvoy, D.; Hobbins, M.; Husak, G. J.; Huntington, J. L.; Funk, C.; Verdin, J.; Macharia, D.

    2017-12-01

    The Famine Early Warning Systems Network (FEWS NET) team provides food insecurity outlooks for several developing countries in Africa, Central Asia, and Central America. Thus far in terms of agroclimatic conditions that influence food insecurity, FEWS NET's primary focus has been on the seasonal precipitation forecasts while not adequately accounting for the atmospheric evaporative demand, which is also directly related to agricultural production and hence food insecurity, and is most often estimated by reference evapotranspiration (ETo). This presentation reports on the development of a new global ETo seasonal reforecast and skill evaluation with a particular emphasis on the potential use of this dataset by the FEWS NET to support food insecurity early warning. The ETo reforecasts span the 1982-2009 period and are calculated following ASCE's formulation of Penman-Monteith method driven by seasonal climate forecasts of monthly mean temperature, humidity, wind speed, and solar radiation from NCEP's CFSv2 and NASA's GEOS-5 models. The skill evaluation using deterministic and probabilistic scores focuses on the December-February (DJF), March-May (MAM), June-August (JJA) and September-November (SON) seasons. The results indicate that ETo forecasts are a promising tool for early warning of drought and food insecurity. The FEWS NET regions with promising level of skill (correlation >0.35 at lead times of 3 months) include Northern Sub-Saharan Africa (DJF, dry season), Central America (DJF, dry season), parts of East Africa (JJA, wet Season), Southern Africa (JJA, dry season), and Central Asia (MAM, wet season). A case study over parts of East Africa for the JJA season shows that, in combination with the precipitation forecasts, ETo forecasts could have provided early warning of recent severe drought events (e.g., 2002, 2004, 2009) that contributed to substantial food insecurity in the region.

  13. EIA model documentation: World oil refining logistics demand model,''WORLD'' reference manual

    International Nuclear Information System (INIS)

    1994-01-01

    This manual is intended primarily for use as a reference by analysts applying the WORLD model to regional studies. It also provides overview information on WORLD features of potential interest to managers and analysts. Broadly, the manual covers WORLD model features in progressively increasing detail. Section 2 provides an overview of the WORLD model, how it has evolved, what its design goals are, what it produces, and where it can be taken with further enhancements. Section 3 reviews model management covering data sources, managing over-optimization, calibration and seasonality, check-points for case construction and common errors. Section 4 describes in detail the WORLD system, including: data and program systems in overview; details of mainframe and PC program control and files;model generation, size management, debugging and error analysis; use with different optimizers; and reporting and results analysis. Section 5 provides a detailed description of every WORLD model data table, covering model controls, case and technology data. Section 6 goes into the details of WORLD matrix structure. It provides an overview, describes how regional definitions are controlled and defines the naming conventions for-all model rows, columns, right-hand sides, and bounds. It also includes a discussion of the formulation of product blending and specifications in WORLD. Several Appendices supplement the main sections

  14. Assessing the vertical structure of baroclinic tidal currents in a global model

    Science.gov (United States)

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  15. AN EVALUATION OF SUPPLY CHAIN MANAGEMENT IN A GLOBAL PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Marco Antonio Viana Borges

    2015-03-01

    Full Text Available Thecharacteristics and challenges of the integrated market, along with the risinginternational cooperation and vertical disintegration, have led to the notionthat firms are linked in a global supply chain. This study is focused onconcepts and models organized for the development of a theoretical essay inGlobal Supply Chain Management to evaluate characteristics and opportunities inthis field. It was used references that cover the global market factorsinvolving economic, cultural, political and demographic issues that representopportunities and barriers for going global.  It was indentified that the challenge relatedto the international operations is to develop a global strategy considering theinfluence of political and economic factors in the trade, culturalcharacteristics, supply chain costs, infrastructure, technology, market andcompetitive rules. From the elements raised from theory for the configurationof a global supply chain approach, this study also identified gaps andquestions for future research agenda in the area.

  16. A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2

    Science.gov (United States)

    Ray, Richard D.

    1999-01-01

    Goddard Ocean Tide model GOT99.2 is a new solution for the amplitudes and phases of the global oceanic tides, based on over six years of sea-surface height measurements by the TOPEX/POSEIDON satellite altimeter. Comparison with deep-ocean tide-gauge measurements show that this new tidal solution is an improvement over previous global models, with accuracies for the main semidiurnal lunar constituent M2 now below 1.5 cm (deep water only). The new solution benefits from use of prior hydrodynamic models, several in shallow and inland seas as well as the global finite-element model FES94.1. This report describes some of the data processing details involved in handling the altimetry, and it provides a comprehensive set of global cotidal charts of the resulting solutions. Various derived tidal charts are also provided, including tidal loading deformation charts, tidal gravimetric charts, and tidal current velocity (or transport) charts. Finally, low-degree spherical harmonic coefficients are computed by numerical quadrature and are tabulated for the major short-period tides; these are useful for a variety of geodetic and geophysical purposes, especially in combination with similar estimates from satellite laser ranging.

  17. Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models

    International Nuclear Information System (INIS)

    Martinsen, Thomas

    2011-01-01

    This paper describes a method to model the influence by global policy scenarios, particularly spillover of technology learning, on the energy service demand of the non-energy sectors of the national economy. It is exemplified by Norway. Spillover is obtained from the technology-rich global Energy Technology Perspective model operated by the International Energy Agency. It is provided to a national hybrid model where a national bottom-up Markal model carries forward spillover into a national top-down CGE model at a disaggregated demand category level. Spillover of technology learning from the global energy technology market will reduce national generation costs of energy carriers. This may in turn increase demand in the non-energy sectors of the economy because of the rebound effect. The influence of spillover on the Norwegian economy is most pronounced for the production level of industrial chemicals and for the demand for electricity for residential energy services. The influence is modest, however, because all existing electricity generating capacity is hydroelectric and thus compatible with the low emission policy scenario. In countries where most of the existing generating capacity must be replaced by nascent energy technologies or carbon captured and storage the influence on demand is expected to be more significant. - Highlights: → Spillover of global technology learning may be forwarded into a macroeconomic model. → The national electricity price differs significantly between the different global scenarios. → Soft-linking global and national models facilitate transparency in the technology learning effect chain.

  18. The Global Burden of Disease assessments--WHO is responsible?

    Directory of Open Access Journals (Sweden)

    Claudia Stein

    2007-12-01

    Full Text Available The Global Burden of Disease (GBD concept has been used by the World Health Organization (WHO for its reporting on health information for nearly 10 years. The GBD approach results in a single summary measure of morbidity, disability, and mortality, the so-called disability-adjusted life year (DALY. To ensure transparency and objectivity in the derivation of health information, WHO has been urged to use reference groups of external experts to estimate burden of disease. Under the leadership and coordination of WHO, expert groups have been appraising and abstracting burden of disease information. Examples include the Child Health Epidemiology Reference Group (CHERG, the Malaria Monitoring and Evaluation Reference Group (MERG, and the recently established Foodborne Disease Burden Epidemiology Reference Group (FERG. The structure and functioning of and lessons learnt by these groups are described in this paper. External WHO expert groups have provided independent scientific health information while operating under considerable differences in structure and functioning. Although it is not appropriate to devise a single "best practice" model, the common thread described by all groups is the necessity of WHO's leadership and coordination to ensure the provision and dissemination of health information that is to be globally accepted and valued.

  19. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities.

    Energy Technology Data Exchange (ETDEWEB)

    Brudvig, Lars A. [Department of Plant Biology, Michigan State University; Orrock, John L. [Department of Zoology, University of Wisconsin; Damschen, Ellen I. [Department of Zoology, University of Wisconsin; et al, et al

    2014-01-23

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils lol(which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together. and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility

  20. Land-Use History and Contemporary Management Inform an Ecological Reference Model for Longleaf Pine Woodland Understory Plant Communities

    Science.gov (United States)

    Brudvig, Lars A.; Orrock, John L.; Damschen, Ellen I.; Collins, Cathy D.; Hahn, Philip G.; Mattingly, W. Brett; Veldman, Joseph W.; Walker, Joan L.

    2014-01-01

    Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities), and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients–i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes). Our study demonstrates the utility of

  1. Land-use history and contemporary management inform an ecological reference model for longleaf pine woodland understory plant communities.

    Directory of Open Access Journals (Sweden)

    Lars A Brudvig

    Full Text Available Ecological restoration is frequently guided by reference conditions describing a successfully restored ecosystem; however, the causes and magnitude of ecosystem degradation vary, making simple knowledge of reference conditions insufficient for prioritizing and guiding restoration. Ecological reference models provide further guidance by quantifying reference conditions, as well as conditions at degraded states that deviate from reference conditions. Many reference models remain qualitative, however, limiting their utility. We quantified and evaluated a reference model for southeastern U.S. longleaf pine woodland understory plant communities. We used regression trees to classify 232 longleaf pine woodland sites at three locations along the Atlantic coastal plain based on relationships between understory plant community composition, soils (which broadly structure these communities, and factors associated with understory degradation, including fire frequency, agricultural history, and tree basal area. To understand the spatial generality of this model, we classified all sites together and for each of three study locations separately. Both the regional and location-specific models produced quantifiable degradation gradients-i.e., progressive deviation from conditions at 38 reference sites, based on understory species composition, diversity and total cover, litter depth, and other attributes. Regionally, fire suppression was the most important degrading factor, followed by agricultural history, but at individual locations, agricultural history or tree basal area was most important. At one location, the influence of a degrading factor depended on soil attributes. We suggest that our regional model can help prioritize longleaf pine woodland restoration across our study region; however, due to substantial landscape-to-landscape variation, local management decisions should take into account additional factors (e.g., soil attributes. Our study demonstrates

  2. Global dynamics of a novel multi-group model for computer worms

    International Nuclear Information System (INIS)

    Gong Yong-Wang; Song Yu-Rong; Jiang Guo-Ping

    2013-01-01

    In this paper, we study worm dynamics in computer networks composed of many autonomous systems. A novel multi-group SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly considering anti-virus measures and the network infrastructure. Then, the basic reproduction number of worm R 0 is derived and the global dynamics of the model are established. It is shown that if R 0 is less than or equal to 1, the disease-free equilibrium is globally asymptotically stable and the worm dies out eventually, whereas, if R 0 is greater than 1, one unique endemic equilibrium exists and it is globally asymptotically stable, thus the worm persists in the network. Finally, numerical simulations are given to illustrate the theoretical results. (general)

  3. Global properties of symmetric competition models with riddling and blowout phenomena

    Directory of Open Access Journals (Sweden)

    Giant-italo Bischi

    2000-01-01

    Full Text Available In this paper the problem of chaos synchronization, and the related phenomena of riddling, blowout and on–off intermittency, are considered for discrete time competition models with identical competitors. The global properties which determine the different effects of riddling and blowout bifurcations are studied by the method of critical curves, a tool for the study of the global dynamical properties of two-dimensional noninvertible maps. These techniques are applied to the study of a dynamic market-share competition model.

  4. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    Science.gov (United States)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During

  5. Analysing the temporal dynamics of model performance for hydrological models

    NARCIS (Netherlands)

    Reusser, D.E.; Blume, T.; Schaefli, B.; Zehe, E.

    2009-01-01

    The temporal dynamics of hydrological model performance gives insights into errors that cannot be obtained from global performance measures assigning a single number to the fit of a simulated time series to an observed reference series. These errors can include errors in data, model parameters, or

  6. Team Investment and Longitudinal Relationships: An Innovative Global Health Education Model.

    Science.gov (United States)

    Myers, Kimberly R; Fredrick, N Benjamin

    2017-12-01

    Increasing student interest in global health has resulted in medical schools offering more global health opportunities. However, concerns have been raised, particularly about one-time, short-term experiences, including lack of follow-through for students and perpetuation of unintentional messages of global health heroism, neocolonialism, and disregard for existing systems and communities of care. Medical schools must develop global health programs that address these issues. The Global Health Scholars Program (GHSP) was created in 2008-2009 at Penn State College of Medicine. This four-year program is based on values of team investment and longitudinal relationships and uses the service-learning framework of preparation, service, and reflection. Teams of approximately five students, with faculty oversight, participate in two separate monthlong trips abroad to the same host community in years 1 and 4, and in campus- and Web-based activities in years 2 and 3. As of December 2016, 191 students have been accepted into the GHSP. Since inception, applications have grown by 475% and program sites have expanded from one to seven sites on four continents. The response from students has been positive, but logistical challenges persist in sustaining team investment and maintaining longitudinal relationships between student teams and host communities. Formal methods of assessment should be used to compare the GHSP model with more traditional approaches to global health education. Other medical schools with similar aims can adapt the GHSP model to expand their global health programming.

  7. Modelling Global Pattern Formations for Collaborative Learning Environments

    DEFF Research Database (Denmark)

    Grappiolo, Corrado; Cheong, Yun-Gyung; Khaled, Rilla

    2012-01-01

    We present our research towards the design of a computational framework capable of modelling the formation and evolution of global patterns (i.e. group structures) in a population of social individuals. The framework is intended to be used in collaborative environments, e.g. social serious games...

  8. Matérn-based nonstationary cross-covariance models for global processes

    KAUST Repository

    Jun, Mikyoung

    2014-01-01

    -covariance models, based on the Matérn covariance model class, that are suitable for describing prominent nonstationary characteristics of the global processes. In particular, we seek nonstationary versions of Matérn covariance models whose smoothness parameters

  9. Modelling MIZ dynamics in a global model

    Science.gov (United States)

    Rynders, Stefanie; Aksenov, Yevgeny; Feltham, Daniel; Nurser, George; Naveira Garabato, Alberto

    2016-04-01

    Exposure of large, previously ice-covered areas of the Arctic Ocean to the wind and surface ocean waves results in the Arctic pack ice cover becoming more fragmented and mobile, with large regions of ice cover evolving into the Marginal Ice Zone (MIZ). The need for better climate predictions, along with growing economic activity in the Polar Oceans, necessitates climate and forecasting models that can simulate fragmented sea ice with a greater fidelity. Current models are not fully fit for the purpose, since they neither model surface ocean waves in the MIZ, nor account for the effect of floe fragmentation on drag, nor include sea ice rheology that represents both the now thinner pack ice and MIZ ice dynamics. All these processes affect the momentum transfer to the ocean. We present initial results from a global ocean model NEMO (Nucleus for European Modelling of the Ocean) coupled to the Los Alamos sea ice model CICE. The model setup implements a novel rheological formulation for sea ice dynamics, accounting for ice floe collisions, thus offering a seamless framework for pack ice and MIZ simulations. The effect of surface waves on ice motion is included through wave pressure and the turbulent kinetic energy of ice floes. In the multidecadal model integrations we examine MIZ and basin scale sea ice and oceanic responses to the changes in ice dynamics. We analyse model sensitivities and attribute them to key sea ice and ocean dynamical mechanisms. The results suggest that the effect of the new ice rheology is confined to the MIZ. However with the current increase in summer MIZ area, which is projected to continue and may become the dominant type of sea ice in the Arctic, we argue that the effects of the combined sea ice rheology will be noticeable in large areas of the Arctic Ocean, affecting sea ice and ocean. With this study we assert that to make more accurate sea ice predictions in the changing Arctic, models need to include MIZ dynamics and physics.

  10. The AgMIP GRIDded Crop Modeling Initiative (AgGRID) and the Global Gridded Crop Model Intercomparison (GGCMI)

    Science.gov (United States)

    Elliott, Joshua; Muller, Christoff

    2015-01-01

    Climate change is a significant risk for agricultural production. Even under optimistic scenarios for climate mitigation action, present-day agricultural areas are likely to face significant increases in temperatures in the coming decades, in addition to changes in precipitation, cloud cover, and the frequency and duration of extreme heat, drought, and flood events (IPCC, 2013). These factors will affect the agricultural system at the global scale by impacting cultivation regimes, prices, trade, and food security (Nelson et al., 2014a). Global-scale evaluation of crop productivity is a major challenge for climate impact and adaptation assessment. Rigorous global assessments that are able to inform planning and policy will benefit from consistent use of models, input data, and assumptions across regions and time that use mutually agreed protocols designed by the modeling community. To ensure this consistency, large-scale assessments are typically performed on uniform spatial grids, with spatial resolution of typically 10 to 50 km, over specified time-periods. Many distinct crop models and model types have been applied on the global scale to assess productivity and climate impacts, often with very different results (Rosenzweig et al., 2014). These models are based to a large extent on field-scale crop process or ecosystems models and they typically require resolved data on weather, environmental, and farm management conditions that are lacking in many regions (Bondeau et al., 2007; Drewniak et al., 2013; Elliott et al., 2014b; Gueneau et al., 2012; Jones et al., 2003; Liu et al., 2007; M¨uller and Robertson, 2014; Van den Hoof et al., 2011;Waha et al., 2012; Xiong et al., 2014). Due to data limitations, the requirements of consistency, and the computational and practical limitations of running models on a large scale, a variety of simplifying assumptions must generally be made regarding prevailing management strategies on the grid scale in both the baseline and

  11. Global modelling of river water quality under climate change

    Science.gov (United States)

    van Vliet, Michelle T. H.; Franssen, Wietse H. P.; Yearsley, John R.

    2017-04-01

    Climate change will pose challenges on the quality of freshwater resources for human use and ecosystems for instance by changing the dilution capacity and by affecting the rate of chemical processes in rivers. Here we assess the impacts of climate change and induced streamflow changes on a selection of water quality parameters for river basins globally. We used the Variable Infiltration Capacity (VIC) model and a newly developed global water quality module for salinity, temperature, dissolved oxygen and biochemical oxygen demand. The modelling framework was validated using observed records of streamflow, water temperature, chloride, electrical conductivity, dissolved oxygen and biochemical oxygen demand for 1981-2010. VIC and the water quality module were then forced with an ensemble of bias-corrected General Circulation Model (GCM) output for the representative concentration pathways RCP2.6 and RCP8.5 to study water quality trends and identify critical regions (hotspots) of water quality deterioration for the 21st century.

  12. Quantifying the causes of differences in tropospheric OH within global models

    Science.gov (United States)

    Nicely, Julie M.; Salawitch, Ross J.; Canty, Timothy; Anderson, Daniel C.; Arnold, Steve R.; Chipperfield, Martyn P.; Emmons, Louisa K.; Flemming, Johannes; Huijnen, Vincent; Kinnison, Douglas E.; Lamarque, Jean-François; Mao, Jingqiu; Monks, Sarah A.; Steenrod, Stephen D.; Tilmes, Simone; Turquety, Solene

    2017-02-01

    The hydroxyl radical (OH) is the primary daytime oxidant in the troposphere and provides the main loss mechanism for many pollutants and greenhouse gases, including methane (CH4). Global mean tropospheric OH differs by as much as 80% among various global models, for reasons that are not well understood. We use neural networks (NNs), trained using archived output from eight chemical transport models (CTMs) that participated in the Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols and Transport Model Intercomparison Project (POLMIP), to quantify the factors responsible for differences in tropospheric OH and resulting CH4 lifetime (τCH4) between these models. Annual average τCH4, for loss by OH only, ranges from 8.0 to 11.6 years for the eight POLMIP CTMs. The factors driving these differences were quantified by inputting 3-D chemical fields from one CTM into the trained NN of another CTM. Across all CTMs, the largest mean differences in τCH4 (ΔτCH4) result from variations in chemical mechanisms (ΔτCH4 = 0.46 years), the photolysis frequency (J) of O3 → O(1D) (0.31 years), local O3 (0.30 years), and CO (0.23 years). The ΔτCH4 due to CTM differences in NOx (NO + NO2) is relatively low (0.17 years), although large regional variation in OH between the CTMs is attributed to NOx. Differences in isoprene and J(NO2) have negligible overall effect on globally averaged tropospheric OH, although the extent of OH variations due to each factor depends on the model being examined. This study demonstrates that NNs can serve as a useful tool for quantifying why tropospheric OH varies between global models, provided that essential chemical fields are archived.

  13. U.S. Department of Energy Reference Model Program RM1: Experimental Results

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig [Univ. of Minnesota, Minneapolis, MN (United States); Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guala, Michele [Univ. of Minnesota, Minneapolis, MN (United States); Sotiropoulos, Fotis [Univ. of Minnesota, Minneapolis, MN (United States)

    2014-10-01

    The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing non-proprietary Reference Models (RM) of MHK technology designs as study objects for open-source research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM2) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.

  14. U.S. Department of Energy Reference Model Program RM1: Experimental Results.

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Craig [Univ. of Minnesota, Minneapolis, MN (United States); Neary, Vincent Sinclair [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gunawan, Budi [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Guala, Michele [Univ. of Minnesota, Minneapolis, MN (United States); Sotiropoulos, Fotis [Univ. of Minnesota, Minneapolis, MN (United States)

    2017-08-01

    The Reference Model Project (RMP), sponsored by the U.S. Department of Energy’s (DOE) Wind and Water Power Technologies Program within the Office of Energy Efficiency & Renewable Energy (EERE), aims at expediting industry growth and efficiency by providing nonproprietary Reference Models (RM) of MHK technology designs as study objects for opensource research and development (Neary et al. 2014a,b). As part of this program, MHK turbine models were tested in a large open channel facility at the University of Minnesota’s St. Anthony Falls Laboratory (UMN-SAFL). Reference Model 1 (RM1) is a 1:40 geometric scale dual-rotor axial flow horizontal axis device with counter-rotating rotors, each with a rotor diameter dT = 0.5m. Precise blade angular position and torque measurements were synchronized with three acoustic Doppler velocimeters (ADVs) aligned with each rotor and the midpoint for RM1. Flow conditions for each case were controlled such that depth, h = 1m, and volumetric flow rate, Qw = 2.425m3s-1, resulting in a hub height velocity of approximately Uhub = 1.05ms-1 and blade chord length Reynolds numbers of Rec ≈ 3.0x105. Vertical velocity profiles collected in the wake of each device from 1 to 10 rotor diameters are used to estimate the velocity recovery and turbulent characteristics in the wake, as well as the interaction of the counter-rotating rotor wakes. The development of this high resolution laboratory investigation provides a robust dataset that enables assessing turbulence performance models and their ability to accurately predict device performance metrics, including computational fluid dynamics (CFD) models that can be used to predict turbulent inflow environments, reproduce wake velocity deficit, recovery and higher order turbulent statistics, as well as device performance metrics.

  15. Is there a lean future for global startups?

    DEFF Research Database (Denmark)

    Tanev, Stoyan

    2017-01-01

    This article integrates insights from the latest research on the lean startup entrepreneurial method, born-global firms, and global startups. It contributes to the clarification of terminology referring to the global aspects of startups, summarizes insights from previous literature focusing on gl......-based global startup research and practice. The analysis should benefit both researchers and practitioners in technology entrepreneurship, international entrepreneurship, and global innovation management.......This article integrates insights from the latest research on the lean startup entrepreneurial method, born-global firms, and global startups. It contributes to the clarification of terminology referring to the global aspects of startups, summarizes insights from previous literature focusing...... on global startups, and further substantiates the articulation of the need for considering the lean global startup as a new type of firm. The main message is that the lessons learned from the emergence of lean startup entrepreneurship offer a basis for promoting a similar lean phase in technology...

  16. The Emergence of the Lean Global Startup as a New Type of Firm

    Directory of Open Access Journals (Sweden)

    Erik Stavnsager Rasmussen

    2015-11-01

    Full Text Available This article contributes to the interplay between international entrepreneurship, innovation networks, and early internationalization research by emphasizing the need to conceptualize and introduce a new type of firm: the lean global startup. It discussed two different paths in linking the lean startup and born-global internationalization strategies. The first path refers to generic lean startups that have undertaken a rapid internationalization strategy (i.e., lean-to-global startups. The second path refers to startups that have started operating on global scale since their inception and adopted the lean startup approach by seamlessly synergizing their global and lean product development activities. The article emphasizes several aspects that could be used as part of the theoretical foundation for conceptualizing lean global startups as a special new type of firm: i the emergent nature of their business models, including the challenges of partnership development on a global scale; ii the inherently relational nature of the global resource allocation processes; iii the integration of the entrepreneurial, effectuation, and global marketing perspectives; iv the need to deal with a high degree of uncertainty, including the uncertainty associated with cross-border business operations; and v linking the ex-ante characteristics of lean startups with the ex-post characteristics of born-global firms in order to develop a technology adoption marketing perspective that considers the “crossing the chasm” process as a successful entry into a global market niche.

  17. A vertically resolved, global, gap-free ozone database for assessing or constraining global climate model simulations

    Directory of Open Access Journals (Sweden)

    G. E. Bodeker

    2013-02-01

    Full Text Available High vertical resolution ozone measurements from eight different satellite-based instruments have been merged with data from the global ozonesonde network to calculate monthly mean ozone values in 5° latitude zones. These ''Tier 0'' ozone number densities and ozone mixing ratios are provided on 70 altitude levels (1 to 70 km and on 70 pressure levels spaced ~ 1 km apart (878.4 hPa to 0.046 hPa. The Tier 0 data are sparse and do not cover the entire globe or altitude range. To provide a gap-free database, a least squares regression model is fitted to the Tier 0 data and then evaluated globally. The regression model fit coefficients are expanded in Legendre polynomials to account for latitudinal structure, and in Fourier series to account for seasonality. Regression model fit coefficient patterns, which are two dimensional fields indexed by latitude and month of the year, from the N-th vertical level serve as an initial guess for the fit at the N + 1-th vertical level. The initial guess field for the first fit level (20 km/58.2 hPa was derived by applying the regression model to total column ozone fields. Perturbations away from the initial guess are captured through the Legendre and Fourier expansions. By applying a single fit at each level, and using the approach of allowing the regression fits to change only slightly from one level to the next, the regression is less sensitive to measurement anomalies at individual stations or to individual satellite-based instruments. Particular attention is paid to ensuring that the low ozone abundances in the polar regions are captured. By summing different combinations of contributions from different regression model basis functions, four different ''Tier 1'' databases have been compiled for different intended uses. This database is suitable for assessing ozone fields from chemistry-climate model simulations or for providing the ozone boundary conditions for global climate model simulations that do not

  18. An Adaptive Critic Approach to Reference Model Adaptation

    Science.gov (United States)

    Krishnakumar, K.; Limes, G.; Gundy-Burlet, K.; Bryant, D.

    2003-01-01

    Neural networks have been successfully used for implementing control architectures for different applications. In this work, we examine a neural network augmented adaptive critic as a Level 2 intelligent controller for a C- 17 aircraft. This intelligent control architecture utilizes an adaptive critic to tune the parameters of a reference model, which is then used to define the angular rate command for a Level 1 intelligent controller. The present architecture is implemented on a high-fidelity non-linear model of a C-17 aircraft. The goal of this research is to improve the performance of the C-17 under degraded conditions such as control failures and battle damage. Pilot ratings using a motion based simulation facility are included in this paper. The benefits of using an adaptive critic are documented using time response comparisons for severe damage situations.

  19. Reference Models of Information Systems Constructed with the use of Technologies of Cloud Calculations

    Directory of Open Access Journals (Sweden)

    Darya Sergeevna Simonenkova

    2013-09-01

    Full Text Available The subject of the research is analysis of various models of the information system constructed with the use of technologies of cloud calculations. Analysis of models is required for constructing a new reference model which will be used for develop a security threats model.

  20. Mapping the global depth to bedrock for land surface modelling

    Science.gov (United States)

    Shangguan, W.; Hengl, T.; Yuan, H.; Dai, Y. J.; Zhang, S.

    2017-12-01

    Depth to bedrock serves as the lower boundary of land surface models, which controls hydrologic and biogeochemical processes. This paper presents a framework for global estimation of Depth to bedrock (DTB). Observations were extracted from a global compilation of soil profile data (ca. 130,000 locations) and borehole data (ca. 1.6 million locations). Additional pseudo-observations generated by expert knowledge were added to fill in large sampling gaps. The model training points were then overlaid on a stack of 155 covariates including DEM-based hydrological and morphological derivatives, lithologic units, MODIS surfacee reflectance bands and vegetation indices derived from the MODIS land products. Global spatial prediction models were developed using random forests and Gradient Boosting Tree algorithms. The final predictions were generated at the spatial resolution of 250m as an ensemble prediction of the two independently fitted models. The 10-fold cross-validation shows that the models explain 59% for absolute DTB and 34% for censored DTB (depths deep than 200 cm are predicted as 200 cm). The model for occurrence of R horizon (bedrock) within 200 cm does a good job. Visual comparisons of predictions in the study areas where more detailed maps of depth to bedrock exist show that there is a general match with spatial patterns from similar local studies. Limitation of the data set and extrapolation in data spare areas should not be ignored in applications. To improve accuracy of spatial prediction, more borehole drilling logs will need to be added to supplement the existing training points in under-represented areas.

  1. Global climate model performance over Alaska and Greenland

    DEFF Research Database (Denmark)

    Walsh, John E.; Chapman, William L.; Romanovsky, Vladimir

    2008-01-01

    The performance of a set of 15 global climate models used in the Coupled Model Intercomparison Project is evaluated for Alaska and Greenland, and compared with the performance over broader pan-Arctic and Northern Hemisphere extratropical domains. Root-mean-square errors relative to the 1958...... to narrowing the uncertainty and obtaining more robust estimates of future climate change in regions such as Alaska, Greenland, and the broader Arctic....... of the models are generally much larger than the biases of the composite output, indicating that the systematic errors differ considerably among the models. There is a tendency for the models with smaller errors to simulate a larger greenhouse warming over the Arctic, as well as larger increases of Arctic...

  2. In-cloud oxalate formation in the global troposphere: a 3-D modeling study

    Directory of Open Access Journals (Sweden)

    S. Myriokefalitakis

    2011-06-01

    Full Text Available Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous-phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol. Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 1.16 ± 0.14, r2 = 0.36, N = 114 and suggest that aqueous-phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-cloud and less than 5 % is produced in aerosol water. About 62 % of the oxalate is removed via wet deposition, 30 % by in-cloud reaction with hydroxyl radical, 4 % by in-cloud reaction with nitrate radical and 4 % by dry deposition. The in-cloud global oxalate net chemical production is calculated to be about 21–37 Tg yr−1 with almost 79 % originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.2–0.3 Tg, i.e. 0.05–0.1 Tg-C that is about 5–9 % of model-calculated water soluble organic carbon burden.

  3. The GCOS Reference Upper-Air Network (GRUAN)

    Science.gov (United States)

    Vömel, H.; Berger, F. H.; Immler, F. J.; Seidel, D.; Thorne, P.

    2009-04-01

    While the global upper-air observing network has provided useful observations for operational weather forecasting for decades, its measurements lack the accuracy and long-term continuity needed for understanding climate change. Consequently, the scientific community faces uncertainty on such key issues as the trends of temperature in the upper troposphere and stratosphere or the variability and trends of stratospheric water vapour. To address these shortcomings, and to ensure that future climate records will be more useful than the records to date, the Global Climate Observing System (GCOS) program initiated the GCOS Reference Upper Air Network (GRUAN). GRUAN will be a network of about 30-40 observatories with a representative sampling of geographic regions and surface types. These stations will provide upper-air reference observations of the essential climate variables, i.e. temperature, geopotential, humidity, wind, radiation and cloud properties using specialized radiosondes and complementary remote sensing profiling instrumentation. Long-term stability, quality assurance / quality control, and a detailed assessment of measurement uncertainties will be the key aspects of GRUAN observations. The network will not be globally complete but will serve to constrain and adjust data from more spatially comprehensive global observing systems including satellites and the current radiosonde networks. This paper outlines the scientific rationale for GRUAN, its role in the Global Earth Observation System of Systems, network requirements and likely instrumentation, management structure, current status and future plans.

  4. River export of triclosan from land to sea: A global modelling approach.

    Science.gov (United States)

    van Wijnen, Jikke; Ragas, Ad M J; Kroeze, Carolien

    2018-04-15

    Triclosan (TCS) is an antibacterial agent that is added to commonly used personal care products. Emitted to the aquatic environment in large quantities, it poses a potential threat to aquatic organisms. Triclosan enters the aquatic environment mainly through sewage effluent. We developed a global, spatially explicit model, the Global TCS model, to simulate triclosan transport by rivers to coastal areas. With this model we analysed annual, basin-wide triclosan export for the year 2000 and two future scenarios for the year 2050. Our analyses for 2000 indicate that triclosan export to coastal areas in Western Europe, Southeast Asia and the East Coast of the USA is higher than in the rest of the world. For future scenarios, the Global TCS model predicts an increase in river export of triclosan in Southeast Asia and a small decrease in Europe. The number of rivers with an annual average triclosan concentration at the river mouth that exceeds a PNEC of 26.2ng/L is projected to double between 2000 and 2050. This increase is most prominent in Southeast Asia, as a result of fast population growth, increasing urbanisation and increasing numbers of people connected to sewerage systems with poor wastewater treatment. Predicted triclosan loads correspond reasonably well with measured values. However, basin-specific predictions have considerable uncertainty due to lacking knowledge and location-specific data on the processes determining the fate of triclosan in river water, e.g. sorption, degradation and sedimentation. Additional research on the fate of triclosan in river systems is therefore recommended. We developed a global spatially explicit model to simulate triclosan export by rivers to coastal seas. For two future scenarios this Global TCS model projects an increase in river export of triclosan to several seas around the world. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Modeling the Effect of Oil Price on Global Fertilizer Prices

    NARCIS (Netherlands)

    P-Y. Chen (Ping-Yu); C-L. Chang (Chia-Lin); C-C. Chen (Chi-Chung); M.J. McAleer (Michael)

    2010-01-01

    textabstractThe main purpose of this paper is to evaluate the effect of crude oil price on global fertilizer prices in both the mean and volatility. The endogenous structural breakpoint unit root test, the autoregressive distributed lag (ARDL) model, and alternative volatility models, including the

  6. Hydrologic Derivatives for Modeling and Analysis—A new global high-resolution database

    Science.gov (United States)

    Verdin, Kristine L.

    2017-07-17

    The U.S. Geological Survey has developed a new global high-resolution hydrologic derivative database. Loosely modeled on the HYDRO1k database, this new database, entitled Hydrologic Derivatives for Modeling and Analysis, provides comprehensive and consistent global coverage of topographically derived raster layers (digital elevation model data, flow direction, flow accumulation, slope, and compound topographic index) and vector layers (streams and catchment boundaries). The coverage of the data is global, and the underlying digital elevation model is a hybrid of three datasets: HydroSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales), GMTED2010 (Global Multi-resolution Terrain Elevation Data 2010), and the SRTM (Shuttle Radar Topography Mission). For most of the globe south of 60°N., the raster resolution of the data is 3 arc-seconds, corresponding to the resolution of the SRTM. For the areas north of 60°N., the resolution is 7.5 arc-seconds (the highest resolution of the GMTED2010 dataset) except for Greenland, where the resolution is 30 arc-seconds. The streams and catchments are attributed with Pfafstetter codes, based on a hierarchical numbering system, that carry important topological information. This database is appropriate for use in continental-scale modeling efforts. The work described in this report was conducted by the U.S. Geological Survey in cooperation with the National Aeronautics and Space Administration Goddard Space Flight Center.

  7. Various oscillation patterns in phase models with locally attractive and globally repulsive couplings.

    Science.gov (United States)

    Sato, Katsuhiko; Shima, Shin-ichiro

    2015-10-01

    We investigate a phase model that includes both locally attractive and globally repulsive coupling in one dimension. This model exhibits nontrivial spatiotemporal patterns that have not been observed in systems that contain only local or global coupling. Depending on the relative strengths of the local and global coupling and on the form of global coupling, the system can show a spatially uniform state (in-phase synchronization), a monotonically increasing state (traveling wave), and three types of oscillations of relative phase difference. One of the oscillations of relative phase difference has the characteristic of being locally unstable but globally attractive. That is, any small perturbation to the periodic orbit in phase space destroys its periodic motion, but after a long time the system returns to the original periodic orbit. This behavior is closely related to the emergence of saddle two-cluster states for global coupling only, which are connected to each other by attractive heteroclinic orbits. The mechanism of occurrence of this type of oscillation is discussed.

  8. GLOFRIM v1.0 – A globally applicable computational framework for integrated hydrological–hydrodynamic modelling

    NARCIS (Netherlands)

    Hoch, J.M.; Neal, Jeffrey; Baart, Fedor; van Beek, L.P.H.; Winsemius, Hessel; Bates, Paul; Bierkens, M.F.P.

    2017-01-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological–hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global

  9. Modeling and Managing the Risks of Measles and Rubella: A Global Perspective, Part I.

    Science.gov (United States)

    Thompson, Kimberly M; Cochi, Stephen L

    2016-07-01

    Over the past 50 years, the use of vaccines led to significant decreases in the global burdens of measles and rubella, motivated at least in part by the successive development of global control and elimination targets. The Global Vaccine Action Plan (GVAP) includes specific targets for regional elimination of measles and rubella in five of six regions of the World Health Organization by 2020. Achieving the GVAP measles and rubella goals will require significant immunization efforts and associated financial investments and political commitments. Planning and budgeting for these efforts can benefit from learning some important lessons from the Global Polio Eradication Initiative (GPEI). Following an overview of the global context of measles and rubella risks and discussion of lessons learned from the GPEI, we introduce the contents of the special issue on modeling and managing the risks of measles and rubella. This introduction describes the synthesis of the literature available to support evidence-based model inputs to support the development of an integrated economic and dynamic disease transmission model to support global efforts to optimally manage these diseases globally using vaccines. © 2016 Society for Risk Analysis.

  10. Roaming Reference: Reinvigorating Reference through Point of Need Service

    Directory of Open Access Journals (Sweden)

    Kealin M. McCabe

    2011-11-01

    Full Text Available Roaming reference service was pursued as a way to address declining reference statistics. The service was staffed by librarians armed with iPads over a period of six months during the 2010-2011 academic year. Transactional statistics were collected in relation to query type (Research, Facilitative or Technology, location and approach (librarian to patron, patron to librarian or via chat widget. Overall, roaming reference resulted in an additional 228 reference questions, 67% (n=153 of which were research related. Two iterations of the service were implemented, roaming reference as a standalone service (Fall 2010 and roaming reference integrated with traditional reference desk duties (Winter 2011. The results demonstrate that although the Weller Library’s reference transactions are declining annually, they are not disappearing. For a roaming reference service to succeed, it must be a standalone service provided in addition to traditional reference services. The integration of the two reference models (roaming reference and reference desk resulted in a 56% decline in the total number of roaming reference questions from the previous term. The simple act of roaming has the potential to reinvigorate reference services as a whole, forcing librarians outside their comfort zones, allowing them to reach patrons at their point of need.

  11. Petroleum Refinery Jobs and Economic Development Impact (JEDI) Model User Reference Guide

    Energy Technology Data Exchange (ETDEWEB)

    Goldberg, Marshall [MRG and Associates, Nevada City, CA (United States)

    2013-12-31

    The Jobs and Economic Development Impact (JEDI) models, developed through the National Renewable Energy Laboratory (NREL), are user-friendly tools utilized to estimate the economic impacts at the local level of constructing and operating fuel and power generation projects for a range of conventional and renewable energy technologies. The JEDI Petroleum Refinery Model User Reference Guide was developed to assist users in employing and understanding the model. This guide provides information on the model's underlying methodology, as well as the parameters and references used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features, operation of the model, and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the model estimates job creation, earning and output (total economic activity) for a given petroleum refinery. This includes the direct, indirect and induced economic impacts to the local economy associated with the refinery's construction and operation phases. Project cost and job data used in the model are derived from the most current cost estimations available. Local direct and indirect economic impacts are estimated using economic multipliers derived from IMPLAN software. By determining the regional economic impacts and job creation for a proposed refinery, the JEDI Petroleum Refinery model can be used to field questions about the added value refineries may bring to the local community.

  12. The GED4GEM project: development of a Global Exposure Database for the Global Earthquake Model initiative

    Science.gov (United States)

    Gamba, P.; Cavalca, D.; Jaiswal, K.S.; Huyck, C.; Crowley, H.

    2012-01-01

    In order to quantify earthquake risk of any selected region or a country of the world within the Global Earthquake Model (GEM) framework (www.globalquakemodel.org/), a systematic compilation of building inventory and population exposure is indispensable. Through the consortium of leading institutions and by engaging the domain-experts from multiple countries, the GED4GEM project has been working towards the development of a first comprehensive publicly available Global Exposure Database (GED). This geospatial exposure database will eventually facilitate global earthquake risk and loss estimation through GEM’s OpenQuake platform. This paper provides an overview of the GED concepts, aims, datasets, and inference methodology, as well as the current implementation scheme, status and way forward.

  13. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    International Nuclear Information System (INIS)

    Lamboni, Matieyendou; Monod, Herve; Makowski, David

    2011-01-01

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006 ) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  14. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models

    Energy Technology Data Exchange (ETDEWEB)

    Lamboni, Matieyendou [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Monod, Herve, E-mail: herve.monod@jouy.inra.f [INRA, Unite MIA (UR341), F78352 Jouy en Josas Cedex (France); Makowski, David [INRA, UMR Agronomie INRA/AgroParisTech (UMR 211), BP 01, F78850 Thiverval-Grignon (France)

    2011-04-15

    Many dynamic models are used for risk assessment and decision support in ecology and crop science. Such models generate time-dependent model predictions, with time either discretised or continuous. Their global sensitivity analysis is usually applied separately on each time output, but Campbell et al. (2006) advocated global sensitivity analyses on the expansion of the dynamics in a well-chosen functional basis. This paper focuses on the particular case when principal components analysis is combined with analysis of variance. In addition to the indices associated with the principal components, generalised sensitivity indices are proposed to synthesize the influence of each parameter on the whole time series output. Index definitions are given when the uncertainty on the input factors is either discrete or continuous and when the dynamic model is either discrete or functional. A general estimation algorithm is proposed, based on classical methods of global sensitivity analysis. The method is applied to a dynamic wheat crop model with 13 uncertain parameters. Three methods of global sensitivity analysis are compared: the Sobol'-Saltelli method, the extended FAST method, and the fractional factorial design of resolution 6.

  15. Time-Dependent Global Sensitivity Analysis for Long-Term Degeneracy Model Using Polynomial Chaos

    Directory of Open Access Journals (Sweden)

    Jianbin Guo

    2014-07-01

    Full Text Available Global sensitivity is used to quantify the influence of uncertain model inputs on the output variability of static models in general. However, very few approaches can be applied for the sensitivity analysis of long-term degeneracy models, as far as time-dependent reliability is concerned. The reason is that the static sensitivity may not reflect the completed sensitivity during the entire life circle. This paper presents time-dependent global sensitivity analysis for long-term degeneracy models based on polynomial chaos expansion (PCE. Sobol’ indices are employed as the time-dependent global sensitivity since they provide accurate information on the selected uncertain inputs. In order to compute Sobol’ indices more efficiently, this paper proposes a moving least squares (MLS method to obtain the time-dependent PCE coefficients with acceptable simulation effort. Then Sobol’ indices can be calculated analytically as a postprocessing of the time-dependent PCE coefficients with almost no additional cost. A test case is used to show how to conduct the proposed method, then this approach is applied to an engineering case, and the time-dependent global sensitivity is obtained for the long-term degeneracy mechanism model.

  16. Multi-media communication system: Upper layers in the OSI reference model

    NARCIS (Netherlands)

    Zafirovic-Vukotic, M.; Niemegeers, I.G.M.M.

    1992-01-01

    The structuring, services, and major protocol functions that are required in the upper layers of the OSI reference model in order to support end-to-end multimedia communication, assuming a simple transport service, are examined. It is assumed that variable-bit-rate (VBR) coding techniques will be

  17. Spatial modeling of agricultural land use change at global scale

    Science.gov (United States)

    Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.

    2014-11-01

    Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling

  18. Tropospheric Ozone Assessment Report: Assessment of global-scale model performance for global and regional ozone distributions, variability, and trends

    Directory of Open Access Journals (Sweden)

    P. J. Young

    2018-01-01

    Full Text Available The goal of the Tropospheric Ozone Assessment Report (TOAR is to provide the research community with an up-to-date scientific assessment of tropospheric ozone, from the surface to the tropopause. While a suite of observations provides significant information on the spatial and temporal distribution of tropospheric ozone, observational gaps make it necessary to use global atmospheric chemistry models to synthesize our understanding of the processes and variables that control tropospheric ozone abundance and its variability. Models facilitate the interpretation of the observations and allow us to make projections of future tropospheric ozone and trace gas distributions for different anthropogenic or natural perturbations. This paper assesses the skill of current-generation global atmospheric chemistry models in simulating the observed present-day tropospheric ozone distribution, variability, and trends. Drawing upon the results of recent international multi-model intercomparisons and using a range of model evaluation techniques, we demonstrate that global chemistry models are broadly skillful in capturing the spatio-temporal variations of tropospheric ozone over the seasonal cycle, for extreme pollution episodes, and changes over interannual to decadal periods. However, models are consistently biased high in the northern hemisphere and biased low in the southern hemisphere, throughout the depth of the troposphere, and are unable to replicate particular metrics that define the longer term trends in tropospheric ozone as derived from some background sites. When the models compare unfavorably against observations, we discuss the potential causes of model biases and propose directions for future developments, including improved evaluations that may be able to better diagnose the root cause of the model-observation disparity. Overall, model results should be approached critically, including determining whether the model performance is acceptable for

  19. The extrapolar SWIFT-model: Fast stratospheric ozone chemistry for global climate models

    OpenAIRE

    Kreyling, Daniel

    2016-01-01

    The goal of this PhD-thesis was the development of a fast yet accurate chemistry scheme for an interactive calculation of the extrapolar stratospheric ozone layer. The SWIFT-model is mainly intended for use in Global Climate Models (GCMs). For computing-time reasons GCMs often do not employ full stratospheric chemistry modules, but use prescribed ozone instead. This method does not consider the interaction between atmospheric dynamics and the ozone layer and can neither resolve the inter-annu...

  20. Vindicating communities in the context of Globalization

    Directory of Open Access Journals (Sweden)

    Wiesenfeld, Esther

    2006-05-01

    Full Text Available The prevalence and increase, specially in recent years, of diverse problems (social, economic environmental particularly in Latin America have led various sectors to question globalization as a convenient model for the development of these countries. In this article we present and analyse, in general terms, some notions, characteristics and implications of globalization, from two antagonistic versions: The first of them refers to the notion of globalization from the point of view of its creators and adepts, while the second one is based on the version ellaborated by its oponents. In this regard, we present some similarities between the first version with the dominant paradigm in science and between the second one with emergent paradigms. Thus, in the first version globalization is understood as the unique, universal, undeniable and irreversible reality, whereas in the second one various constructions regarding globalization, which signify this phenomenon as culturally and historically constructed and hence dynamic, are formulated. This second version serves us as base for analysing the impact of globalization on economically deprived communities in our continent and simultaneously for illustrating the potentialities of these communities, empowered through the contributions of community social psychology, for resisting unfavourable effects of globalization upon them

  1. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    Science.gov (United States)

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  2. Globally covering a-priori regional gravity covariance models

    Directory of Open Access Journals (Sweden)

    D. Arabelos

    2003-01-01

    Full Text Available Gravity anomaly data generated using Wenzel’s GPM98A model complete to degree 1800, from which OSU91A has been subtracted, have been used to estimate covariance functions for a set of globally covering equal-area blocks of size 22.5° × 22.5° at Equator, having a 2.5° overlap. For each block an analytic covariance function model was determined. The models are based on 4 parameters: the depth to the Bjerhammar sphere (determines correlation, the free-air gravity anomaly variance, a scale factor of the OSU91A error degree-variances and a maximal summation index, N, of the error degree-variances. The depth of Bjerhammar-sphere varies from -134km to nearly zero, N varies from 360 to 40, the scale factor from 0.03 to 38.0 and the gravity variance from 1081 to 24(10µms-22. The parameters are interpreted in terms of the quality of the data used to construct OSU91A and GPM98A and general conditions such as the occurrence of mountain chains. The variation of the parameters show that it is necessary to use regional covariance models in order to obtain a realistic signal to noise ratio in global applications.Key words. GOCE mission, Covariance function, Spacewise approach`

  3. Multicomponent quantitative spectroscopic analysis without reference substances based on ICA modelling.

    Science.gov (United States)

    Monakhova, Yulia B; Mushtakova, Svetlana P

    2017-05-01

    A fast and reliable spectroscopic method for multicomponent quantitative analysis of targeted compounds with overlapping signals in complex mixtures has been established. The innovative analytical approach is based on the preliminary chemometric extraction of qualitative and quantitative information from UV-vis and IR spectral profiles of a calibration system using independent component analysis (ICA). Using this quantitative model and ICA resolution results of spectral profiling of "unknown" model mixtures, the absolute analyte concentrations in multicomponent mixtures and authentic samples were then calculated without reference solutions. Good recoveries generally between 95% and 105% were obtained. The method can be applied to any spectroscopic data that obey the Beer-Lambert-Bouguer law. The proposed method was tested on analysis of vitamins and caffeine in energy drinks and aromatic hydrocarbons in motor fuel with 10% error. The results demonstrated that the proposed method is a promising tool for rapid simultaneous multicomponent analysis in the case of spectral overlap and the absence/inaccessibility of reference materials.

  4. Global Fluxon Modeling of the Solar Corona and Inner Heliosphere

    Science.gov (United States)

    Lamb, D. A.; DeForest, C. E.

    2017-12-01

    The fluxon approach to MHD modeling enables simulations of low-beta plasmas in the absence of undesirable numerical effects such as diffusion and magnetic reconnection. The magnetic field can be modeled as a collection of discrete field lines ("fluxons") containing a set amount of magnetic flux in a prescribed field topology. Due to the fluxon model's pseudo-Lagrangian grid, simulations can be completed in a fraction of the time of traditional grid-based simulations, enabling near-real-time simulations of the global magnetic field structure and its influence on solar wind properties. Using SDO/HMI synoptic magnetograms as lower magnetic boundary conditions, and a separate one-dimensional fluid flow model attached to each fluxon, we compare the resulting fluxon relaxations with other commonly-used global models (such as PFSS), and with white-light images of the corona (including the August 2017 total solar eclipse). Finally, we show the computed magnetic field expansion ratio, and the modeled solar wind speed near the coronal-heliospheric transition. Development of the fluxon MHD model FLUX (the Field Line Universal relaXer), has been funded by NASA's Living with a Star program and by Southwest Research Institute.

  5. Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models

    Science.gov (United States)

    Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.

    2015-12-01

    Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.

  6. Serious games for global education digital game-based learning in the english as a foreign language (EFL) classroom

    CERN Document Server

    Müller, Claudia

    2017-01-01

    The author of this book conducted different studies to investigate the potential of serious games for global education when used in EFL classrooms. The results show a clear contribution of serious games to global education when used with EFL learners, leading to a reference model of digital game-based learning in the EFL classroom.

  7. Hydrodynamic modelling and global datasets: Flow connectivity and SRTM data, a Bangkok case study.

    Science.gov (United States)

    Trigg, M. A.; Bates, P. B.; Michaelides, K.

    2012-04-01

    The rise in the global interconnected manufacturing supply chains requires an understanding and consistent quantification of flood risk at a global scale. Flood risk is often better quantified (or at least more precisely defined) in regions where there has been an investment in comprehensive topographical data collection such as LiDAR coupled with detailed hydrodynamic modelling. Yet in regions where these data and modelling are unavailable, the implications of flooding and the knock on effects for global industries can be dramatic, as evidenced by the recent floods in Bangkok, Thailand. There is a growing momentum in terms of global modelling initiatives to address this lack of a consistent understanding of flood risk and they will rely heavily on the application of available global datasets relevant to hydrodynamic modelling, such as Shuttle Radar Topography Mission (SRTM) data and its derivatives. These global datasets bring opportunities to apply consistent methodologies on an automated basis in all regions, while the use of coarser scale datasets also brings many challenges such as sub-grid process representation and downscaled hydrology data from global climate models. There are significant opportunities for hydrological science in helping define new, realistic and physically based methodologies that can be applied globally as well as the possibility of gaining new insights into flood risk through analysis of the many large datasets that will be derived from this work. We use Bangkok as a case study to explore some of the issues related to using these available global datasets for hydrodynamic modelling, with particular focus on using SRTM data to represent topography. Research has shown that flow connectivity on the floodplain is an important component in the dynamics of flood flows on to and off the floodplain, and indeed within different areas of the floodplain. A lack of representation of flow connectivity, often due to data resolution limitations, means

  8. Mapping the Potential Global Range of the Brown Marmorated Stink Bug, Halyomorpha halys, with Particular Reference to New Zealand

    Directory of Open Access Journals (Sweden)

    Diane Fraser

    2017-09-01

    Full Text Available Originating from Asia, the brown marmorated stink bug (BMSB is a significant pest of horticultural/agricultural crops, grapes, woody ornamental and herbaceous plants, and is also a nuisance to people, due to its overwintering behavior in human habitation. The global range of this pest is steadily increasing and previous predictions of environmental suitability have shown New Zealand to be highly suitable. Due to the economic value of horticultural and agricultural industries to the New Zealand economy, it is vital to understand the range of potential risk within the country. Global and New Zealand potential suitability for BMSB was modeled using three algorithms and the resulting predictions ensembled to predict the potential range under current climatic conditions and under trajectories of future low (Representative Concentration Pathways, RCP, 2.6 and high (RCP 8.5 greenhouse gas emissions for both 2050 and 2070. Under current conditions, models showed a high global suitability within latitudes 25°–50° N, southern South America, southeast and southwest regions of Australia and large areas of New Zealand. Modeling the effect of climate change on BMSB range in New Zealand resulted in a southerly range shift over time, particularly with high emissions trajectory. Currently, BMSB is not established in New Zealand and it is vital that this remains the case.

  9. An alternative ionospheric correction model for global navigation satellite systems

    Science.gov (United States)

    Hoque, M. M.; Jakowski, N.

    2015-04-01

    The ionosphere is recognized as a major error source for single-frequency operations of global navigation satellite systems (GNSS). To enhance single-frequency operations the global positioning system (GPS) uses an ionospheric correction algorithm (ICA) driven by 8 coefficients broadcasted in the navigation message every 24 h. Similarly, the global navigation satellite system Galileo uses the electron density NeQuick model for ionospheric correction. The Galileo satellite vehicles (SVs) transmit 3 ionospheric correction coefficients as driver parameters of the NeQuick model. In the present work, we propose an alternative ionospheric correction algorithm called Neustrelitz TEC broadcast model NTCM-BC that is also applicable for global satellite navigation systems. Like the GPS ICA or Galileo NeQuick, the NTCM-BC can be optimized on a daily basis by utilizing GNSS data obtained at the previous day at monitor stations. To drive the NTCM-BC, 9 ionospheric correction coefficients need to be uploaded to the SVs for broadcasting in the navigation message. Our investigation using GPS data of about 200 worldwide ground stations shows that the 24-h-ahead prediction performance of the NTCM-BC is better than the GPS ICA and comparable to the Galileo NeQuick model. We have found that the 95 percentiles of the prediction error are about 16.1, 16.1 and 13.4 TECU for the GPS ICA, Galileo NeQuick and NTCM-BC, respectively, during a selected quiet ionospheric period, whereas the corresponding numbers are found about 40.5, 28.2 and 26.5 TECU during a selected geomagnetic perturbed period. However, in terms of complexity the NTCM-BC is easier to handle than the Galileo NeQuick and in this respect comparable to the GPS ICA.

  10. Impact and prevention on global warming

    International Nuclear Information System (INIS)

    Park, Heon Ryeol

    2003-11-01

    This book deals with impact and prevention on global warming with eight chapters, which introduce the change after the earth was born and natural environment, how is global atmospheric environment under the control of radiant energy? What does global warming look with the earth history like? What's the status of global warming so far? How does climate change happen? What is the impact by global warming and climate change and for preservation of global environment of 21 century with consumption of energy, measure and prospect on global warming. It has reference, index and three appendixes.

  11. A review of and perspectives on global change modeling for Northern Eurasia

    Science.gov (United States)

    Monier, Erwan; Kicklighter, David W.; Sokolov, Andrei P.; Zhuang, Qianlai; Sokolik, Irina N.; Lawford, Richard; Kappas, Martin; Paltsev, Sergey V.; Groisman, Pavel Ya

    2017-08-01

    Northern Eurasia is made up of a complex and diverse set of physical, ecological, climatic and human systems, which provide important ecosystem services including the storage of substantial stocks of carbon in its terrestrial ecosystems. At the same time, the region has experienced dramatic climate change, natural disturbances and changes in land management practices over the past century. For these reasons, Northern Eurasia is both a critical region to understand and a complex system with substantial challenges for the modeling community. This review is designed to highlight the state of past and ongoing efforts of the research community to understand and model these environmental, socioeconomic, and climatic changes. We further aim to provide perspectives on the future direction of global change modeling to improve our understanding of the role of Northern Eurasia in the coupled human-Earth system. Modeling efforts have shown that environmental and socioeconomic changes in Northern Eurasia can have major impacts on biodiversity, ecosystems services, environmental sustainability, and the carbon cycle of the region, and beyond. These impacts have the potential to feedback onto and alter the global Earth system. We find that past and ongoing studies have largely focused on specific components of Earth system dynamics and have not systematically examined their feedbacks to the global Earth system and to society. We identify the crucial role of Earth system models in advancing our understanding of feedbacks within the region and with the global system. We further argue for the need for integrated assessment models (IAMs), a suite of models that couple human activity models to Earth system models, which are key to address many emerging issues that require a representation of the coupled human-Earth system.

  12. GAMBIT: the global and modular beyond-the-standard-model inference tool

    Science.gov (United States)

    Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-11-01

    We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.

  13. GAMBIT. The global and modular beyond-the-standard-model inference tool

    Energy Technology Data Exchange (ETDEWEB)

    Athron, Peter; Balazs, Csaba [Monash University, School of Physics and Astronomy, Melbourne, VIC (Australia); Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); Bringmann, Torsten; Dal, Lars A.; Gonzalo, Tomas E.; Krislock, Abram; Raklev, Are [University of Oslo, Department of Physics, Oslo (Norway); Buckley, Andy [University of Glasgow, SUPA, School of Physics and Astronomy, Glasgow (United Kingdom); Chrzaszcz, Marcin [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Polish Academy of Sciences, H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Conrad, Jan; Edsjoe, Joakim; Farmer, Ben; Lundberg, Johan [AlbaNova University Centre, Oskar Klein Centre for Cosmoparticle Physics, Stockholm (Sweden); Stockholm University, Department of Physics, Stockholm (Sweden); Cornell, Jonathan M. [McGill University, Department of Physics, Montreal, QC (Canada); Dickinson, Hugh [University of Minnesota, Minnesota Institute for Astrophysics, Minneapolis, MN (United States); Jackson, Paul; White, Martin [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); University of Adelaide, Department of Physics, Adelaide, SA (Australia); Kvellestad, Anders; Savage, Christopher [NORDITA, Stockholm (Sweden); McKay, James [Imperial College London, Blackett Laboratory, Department of Physics, London (United Kingdom); Mahmoudi, Farvah [Univ Lyon, Univ Lyon 1, ENS de Lyon, CNRS, Centre de Recherche Astrophysique de Lyon UMR5574, Saint-Genis-Laval (France); CERN, Theoretical Physics Department, Geneva (Switzerland); Martinez, Gregory D. [University of California, Physics and Astronomy Department, Los Angeles, CA (United States); Putze, Antje [LAPTh, Universite de Savoie, CNRS, Annecy-le-Vieux (France); Ripken, Joachim [Max Planck Institute for Solar System Research, Goettingen (Germany); Rogan, Christopher [Harvard University, Department of Physics, Cambridge, MA (United States); Saavedra, Aldo [Australian Research Council Centre of Excellence for Particle Physics at the Tera-scale (Australia); The University of Sydney, Faculty of Engineering and Information Technologies, Centre for Translational Data Science, School of Physics, Sydney, NSW (Australia); Scott, Pat [Imperial College London, Blackett Laboratory, Department of Physics, London (United Kingdom); Seo, Seon-Hee [Seoul National University, Department of Physics and Astronomy, Seoul (Korea, Republic of); Serra, Nicola [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Weniger, Christoph [University of Amsterdam, GRAPPA, Institute of Physics, Amsterdam (Netherlands); Wild, Sebastian [DESY, Hamburg (Germany); Collaboration: The GAMBIT Collaboration

    2017-11-15

    We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org. (orig.)

  14. GAMBIT. The global and modular beyond-the-standard-model inference tool

    International Nuclear Information System (INIS)

    Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Dal, Lars A.; Gonzalo, Tomas E.; Krislock, Abram; Raklev, Are; Buckley, Andy; Chrzaszcz, Marcin; Conrad, Jan; Edsjoe, Joakim; Farmer, Ben; Lundberg, Johan; Cornell, Jonathan M.; Dickinson, Hugh; Jackson, Paul; White, Martin; Kvellestad, Anders; Savage, Christopher; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; Wild, Sebastian

    2017-01-01

    We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org. (orig.)

  15. Polynomial estimation of the smoothing splines for the new Finnish reference values for spirometry.

    Science.gov (United States)

    Kainu, Annette; Timonen, Kirsi

    2016-07-01

    Background Discontinuity of spirometry reference values from childhood into adulthood has been a problem with traditional reference values, thus modern modelling approaches using smoothing spline functions to better depict the transition during growth and ageing have been recently introduced. Following the publication of the new international Global Lung Initiative (GLI2012) reference values also new national Finnish reference values have been calculated using similar GAMLSS-modelling, with spline estimates for mean (Mspline) and standard deviation (Sspline) provided in tables. The aim of this study was to produce polynomial estimates for these spline functions to use in lieu of lookup tables and to assess their validity in the reference population of healthy non-smokers. Methods Linear regression modelling was used to approximate the estimated values for Mspline and Sspline using similar polynomial functions as in the international GLI2012 reference values. Estimated values were compared to original calculations in absolute values, the derived predicted mean and individually calculated z-scores using both values. Results Polynomial functions were estimated for all 10 spirometry variables. The agreement between original lookup table-produced values and polynomial estimates was very good, with no significant differences found. The variation slightly increased in larger predicted volumes, but a range of -0.018 to +0.022 litres of FEV1 representing ± 0.4% of maximum difference in predicted mean. Conclusions Polynomial approximations were very close to the original lookup tables and are recommended for use in clinical practice to facilitate the use of new reference values.

  16. Low Cloud Feedback to Surface Warming in the World's First Global Climate Model with Explicit Embedded Boundary Layer Turbulence

    Science.gov (United States)

    Parishani, H.; Pritchard, M. S.; Bretherton, C. S.; Wyant, M. C.; Khairoutdinov, M.; Singh, B.

    2017-12-01

    Biases and parameterization formulation uncertainties in the representation of boundary layer clouds remain a leading source of possible systematic error in climate projections. Here we show the first results of cloud feedback to +4K SST warming in a new experimental climate model, the ``Ultra-Parameterized (UP)'' Community Atmosphere Model, UPCAM. We have developed UPCAM as an unusually high-resolution implementation of cloud superparameterization (SP) in which a global set of cloud resolving arrays is embedded in a host global climate model. In UP, the cloud-resolving scale includes sufficient internal resolution to explicitly generate the turbulent eddies that form marine stratocumulus and trade cumulus clouds. This is computationally costly but complements other available approaches for studying low clouds and their climate interaction, by avoiding parameterization of the relevant scales. In a recent publication we have shown that UP, while not without its own complexity trade-offs, can produce encouraging improvements in low cloud climatology in multi-month simulations of the present climate and is a promising target for exascale computing (Parishani et al. 2017). Here we show results of its low cloud feedback to warming in multi-year simulations for the first time. References: Parishani, H., M. S. Pritchard, C. S. Bretherton, M. C. Wyant, and M. Khairoutdinov (2017), Toward low-cloud-permitting cloud superparameterization with explicit boundary layer turbulence, J. Adv. Model. Earth Syst., 9, doi:10.1002/2017MS000968.

  17. Focus: Assessing the regional impacts of global warming

    International Nuclear Information System (INIS)

    Woo, Mingko

    1992-01-01

    Five studies are presented which assess the impacts of global warming on physical, economic, and social systems in Canada. A study on the use of climatic change scenarios to estimate ecoclimatic impacts was carried out. These scenarios may include synthetic scenarios produced from historical data, global climate model (GCM) simulations, and hybrid scenarios. The advantages and drawbacks of various scenarios are discussed along with the criteria for selecting impact assessment models. An examination of water resources in the Great Lakes and the Saskatchewan River subbasin uses case studies of two areas that have experienced wide hydrological variations due to climatic variability in order to determine the impacts of global warming scenarios on net basin supply. Problems of developing regional models are discussed and results of projected changes in net basin supply are presented for GCM-based simulations and hypothetical warming scenarios. A study of the impacts of climate warming on transportation and the regional economy in northern Canada uses stochastic models to provide examples of how Mackenzie River barge traffic will be affected. The economic impacts of the resultant lengthened shipping season are outlined under three scenarios. The implications of climatic change on Ontario agriculture are assessed according to GCM scenarios. Results are presented for crop yields and production as well as land resource suitability. Finally, sociocultural implications of global warming on the Arctic and the Inuit are summarized, with reference to a past warming episode occurring around the year 1000. 45 refs., 4 figs., 3 tabs

  18. Global embedding of fibre inflation models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Dipartimento di Fisica e Astronomia, Università di Bologna,via Irnerio 46, 40126 Bologna (Italy); INFN - Sezione di Bologna,viale Berti Pichat 6/2, 40127 Bologna (Italy); Abdus Salam ICTP,Strada Costiera 11, Trieste 34151 (Italy); Muia, Francesco [Rudolf Peierls Centre for Theoretical Physics, University of Oxford,1 Keble Rd., Oxford OX1 3NP (United Kingdom); Shukla, Pramod [Abdus Salam ICTP,Strada Costiera 11, Trieste 34151 (Italy)

    2016-11-30

    We present concrete embeddings of fibre inflation models in globally consistent type IIB Calabi-Yau orientifolds with closed string moduli stabilisation. After performing a systematic search through the existing list of toric Calabi-Yau manifolds, we find several examples that reproduce the minimal setup to embed fibre inflation models. This involves Calabi-Yau manifolds with h{sup 1,1}=3 which are K3 fibrations over a ℙ{sup 1} base with an additional shrinkable rigid divisor. We then provide different consistent choices of the underlying brane set-up which generate a non-perturbative superpotential suitable for moduli stabilisation and string loop corrections with the correct form to drive inflation. For each Calabi-Yau orientifold setting, we also compute the effect of higher derivative contributions and study their influence on the inflationary dynamics.

  19. Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor

    Science.gov (United States)

    Zhong, Chongquan; Lin, Yaoyao

    2017-11-01

    In this work, a model reference adaptive control-based estimated algorithm is proposed for online multi-parameter identification of surface-mounted permanent magnet synchronous machines. By taking the dq-axis equations of a practical motor as the reference model and the dq-axis estimation equations as the adjustable model, a standard model-reference-adaptive-system-based estimator was established. Additionally, the Popov hyperstability principle was used in the design of the adaptive law to guarantee accurate convergence. In order to reduce the oscillation of identification result, this work introduces a first-order low-pass digital filter to improve precision regarding the parameter estimation. The proposed scheme was then applied to an SPM synchronous motor control system without any additional circuits and implemented using a DSP TMS320LF2812. For analysis, the experimental results reveal the effectiveness of the proposed method.

  20. Global sensitivity analysis of thermomechanical models in modelling of welding; Analyse de sensibilite globale de modeles thermomecanique de simulation numerique du soudage

    Energy Technology Data Exchange (ETDEWEB)

    Petelet, M

    2008-07-01

    Current approach of most welding modellers is to content themselves with available material data, and to chose a mechanical model that seems to be appropriate. Among inputs, those controlling the material properties are one of the key problems of welding simulation: material data are never characterized over a sufficiently wide temperature range. This way to proceed neglect the influence of the uncertainty of input data on the result given by the computer code. In this case, how to assess the credibility of prediction? This thesis represents a step in the direction of implementing an innovative approach in welding simulation in order to bring answers to this question, with an illustration on some concretes welding cases.The global sensitivity analysis is chosen to determine which material properties are the most sensitive in a numerical welding simulation and in which range of temperature. Using this methodology require some developments to sample and explore the input space covering welding of different steel materials. Finally, input data have been divided in two groups according to their influence on the output of the model (residual stress or distortion). In this work, complete methodology of the global sensitivity analysis has been successfully applied to welding simulation and lead to reduce the input space to the only important variables. Sensitivity analysis has provided answers to what can be considered as one of the probable frequently asked questions regarding welding simulation: for a given material which properties must be measured with a good accuracy and which ones can be simply extrapolated or taken from a similar material? (author)