WorldWideScience

Sample records for global radiative perturbation

  1. Perturbed effects at radiation physics

    Külahcı, Fatih; Şen, Zekâi

    2013-01-01

    Perturbation methodology is applied in order to assess the linear attenuation coefficient, mass attenuation coefficient and cross-section behavior with random components in the basic variables such as the radiation amounts frequently used in the radiation physics and chemistry. Additionally, layer attenuation coefficient (LAC) and perturbed LAC (PLAC) are proposed for different contact materials. Perturbation methodology provides opportunity to obtain results with random deviations from the average behavior of each variable that enters the whole mathematical expression. The basic photon intensity variation expression as the inverse exponential power law (as Beer–Lambert's law) is adopted for perturbation method exposition. Perturbed results are presented not only in terms of the mean but additionally the standard deviation and the correlation coefficients. Such perturbation expressions provide one to assess small random variability in basic variables. - Highlights: • Perturbation methodology is applied to Radiation Physics. • Layer attenuation coefficient (LAC) and perturbed LAC are proposed for contact materials. • Perturbed linear attenuation coefficient is proposed. • Perturbed mass attenuation coefficient (PMAC) is proposed. • Perturbed cross-section is proposed

  2. A perturbed martingale approach to global optimization

    Sarkar, Saikat [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Roy, Debasish, E-mail: royd@civil.iisc.ernet.in [Computational Mechanics Lab, Department of Civil Engineering, Indian Institute of Science, Bangalore 560012 (India); Vasu, Ram Mohan [Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012 (India)

    2014-08-01

    A new global stochastic search, guided mainly through derivative-free directional information computable from the sample statistical moments of the design variables within a Monte Carlo setup, is proposed. The search is aided by imparting to the directional update term additional layers of random perturbations referred to as ‘coalescence’ and ‘scrambling’. A selection step, constituting yet another avenue for random perturbation, completes the global search. The direction-driven nature of the search is manifest in the local extremization and coalescence components, which are posed as martingale problems that yield gain-like update terms upon discretization. As anticipated and numerically demonstrated, to a limited extent, against the problem of parameter recovery given the chaotic response histories of a couple of nonlinear oscillators, the proposed method appears to offer a more rational, more accurate and faster alternative to most available evolutionary schemes, prominently the particle swarm optimization. - Highlights: • Evolutionary global optimization is posed as a perturbed martingale problem. • Resulting search via additive updates is a generalization over Gateaux derivatives. • Additional layers of random perturbation help avoid trapping at local extrema. • The approach ensures efficient design space exploration and high accuracy. • The method is numerically assessed via parameter recovery of chaotic oscillators.

  3. Gravitational perturbation theory and synchrotron radiation

    Breuer, R A [Max-Planck-Institut fuer Physik und Astrophysik, Muenchen (F.R. Germany). Inst. fuer Astrophysik

    1975-01-01

    This article presents methods and results for a gravitational perturbation theory which treats massless fields as linearized perturbations of an arbitrary gravitational vacuum background spacetime. The formalism is outlined for perturbations of type (22) spacetimes. As an application, high-frequency radiation emitted by particles moving approximately on relativistic circular geodesic orbits is computed. More precisely, the test particle assumption is made; throughout it is therefore assumed that the reaction of the radiation on the particle motion is negligible. In particular, these orbits are studied in the gravitational field of a spherically symmetric (Schwarzschild-) black hole as well as of a rotating (Kerr-) black hole. In this model, the outgoing radiation is highly focussed and of much higher fequency than the orbital frequency, i.e. one is dealing with 'gravitational synchrotron radiation'.

  4. Perturbative and global anomalies in supergravity theories

    Sezgin, E.

    1986-09-01

    Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)

  5. Density perturbations in a braneworld universe with dark radiation

    Gumjudpai, Burin; Maartens, Roy; Gordon, Christopher

    2003-01-01

    We investigate the effects on cosmological density perturbations of dark radiation in a Randall-Sundrum 2-type braneworld. Dark radiation in the background is limited by observational constraints to be a small fraction of the radiation energy density, but it has an interesting qualitative effect in the radiation era. On large scales, it serves to slightly suppress the radiation density perturbations at late times, while boosting the perturbations in dark radiation. In a kinetic (stiff) era, the suppression is much stronger, and drives the density perturbations to zero

  6. Positron annihilation and perturbed angular correlation studies of radiation damage

    Zhu Jiazheng; Li Anli; Xu Yongjun; Wang Zhiqiang; Zhou Dongmei; Zheng Yongnan; Zhu Shengyun; Iwata, T.

    2002-01-01

    The positron annihilation and perturbed angular correlation techniques have been employed to study radiation damage in Si and Nb. The results obtained by the positron annihilation are consistent with those given by the perturbed angular correlation

  7. Global terrestrial biogeochemistry: Perturbations, interactions, and time scales

    Braswell, B.H. Jr.

    1996-12-01

    Global biogeochemical processes are being perturbed by human activity, principally that which is associated with industrial activity and expansion of urban and agricultural complexes. Perturbations have manifested themselves at least since the beginning of the 19th Century, and include emissions of CO{sub 2} and other pollutants from fossil fuel combustion, agricultural emissions of reactive nitrogen, and direct disruption of ecosystem function through land conversion. These perturbations yield local impacts, but there are also global consequences that are the sum of local-scale influences. Several approaches to understanding the global-scale implications of chemical perturbations to the Earth system are discussed. The lifetime of anthropogenic CO{sub 2} in the atmosphere is an important concept for understanding the current and future commitment to an altered atmospheric heat budget. The importance of the terrestrial biogeochemistry relative to the lifetime of excess CO{sub 2} is demonstrated using dynamic, aggregated models of the global carbon cycle.

  8. Some global issues in string perturbation theory

    Atick, J.J.; Moore, G.; Sen, Ashoke

    1988-01-01

    Calculations of type II string vacuum amplitude using the picture changing prescription have been shown to lead, in general, to a positive cosmological constant. We show that there is a global obstruction to the choices of gauge slice for super-Teichmueller space that lead to such measures. We discuss the general restrictions on gauge slices appropriate for use in explicit fermionic string calculations. We also discuss the relation of the functional determinant and conformal field theory versions of the path integral measure, and show that, at arbitrary genus and in arbitrary backgrounds preserving tree level N=1 supersymmetry, the measure is an exact differential. We evaluate the boundary integrals of this total derivative at genus two in two ways for target space R 10 to show that the integrals are zero. Finally, we use the factorization hypothesis to show that in appropriate compactified spacetimes the boundary integrals continue to vanish. (orig.)

  9. Combined effects of perturbations, radiation and oblateness on the ...

    We have studied the effect of small perturbations in the coriolis and the centrifugal forces together with oblateness and radiation pressure forces of the primaries on the locations of equilibrium points in the restricted three-body problem. We have found that oblate-ness and radiation pressure forces affect the locations of ...

  10. Global Health in Radiation Oncology

    Rodin, Danielle; Yap, Mei Ling; Grover, Surbhi

    2017-01-01

    programs. However, formalized training and career promotion tracks in global health within radiation oncology have been slow to emerge, thereby limiting the sustained involvement of students and faculty, and restricting opportunities for leadership in this space. We examine here potential structures...... and benefits of formalized global health training in radiation oncology. We explore how defining specific competencies in this area can help trainees and practitioners integrate their activities in global health within their existing roles as clinicians, educators, or scientists. This would also help create...... and funding models might be used to further develop and expand radiation oncology services globally....

  11. Effects of stratospheric perturbations on the solar radiation budget

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  12. Global aspects of radiation memory

    Winicour, J

    2014-01-01

    Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the ‘electric’ type, or E mode, as characterized by the even parity of the polarization pattern. Although ‘magnetic’ type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged test particles obtain a net ‘kick’. Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B-mode radiation memory and the non-existence of E-mode radiation memory due to a bound charge distribution. (paper)

  13. Trace gases and other potential perturbations to global climate

    Wang, W.; Wuebbles, D.J.; Washington, W.M.; Isaacs, R.G.; Molnar, G.

    1986-01-01

    We review the various natural and anthropogenic factors that may affect the climate. The purpose is to summarize our understanding of these factors and their potential future climatic effects so that CO 2 -induced climate change can be viewed in a proper context. The factors we discuss include trace gases, anthropogenic and volcanic aerosols, variation of solar constant, change of surface characteristics, and releases of waste heat. We discuss the origins of the various natural and anthropogenic perturbations, the physical and chemical processes and their interactions, model sensitivity calculations, and model projections of their potential future climatic effects. The discussions center on trace gases because of their potentially large climatic effects. It appears that the increases of atmospheric trace gases of other kinds in addition to CO 2 could have important climatic effects. The model calculations suggest that the combined effect of these other trace gases, and the associated change of atmospheric ozone and water vapor distributions, could potentially warm the climate by an amount comparable in magnitude to the effect of doubling the CO 2 . Aerosols of anthropogenic origins may have substantial effects on regional climate, while the volcanic aerosols may have an effect on large-scale climate for up to a few years after injection. Changes of surface characteristics and releases of waste heat may also have substantial effects on the regional climate, but these effects are most likely to be small when compared with the effect of CO 2 increase. Changes of solar constant could have an effect on the global scale, but the time scale is much longer. There is much more that needs to be learned with regard to the above mentioned natural and anthropogenic factors that may affect the climate. A brief summary of those needs is presented

  14. Global environment and radiation exposure

    Okamoto, Kazuto

    1991-01-01

    The present status of investigation of acid rain, stratospheric ozone depletion and greenhouse effect and their relations to radiation exposure are reported. Soil acidification increases transfer rates of radioactivities to plants which increases the population dose. There are two types of ozone depletion, conventional type and ozone hole type and the latter is much more serious than the former. In the greenhouse effect, although there are large uncertainties both in theoretical and observational sides, present predictions about the global warming will not be very far from reality. Environmental effects are wide-ranging and serious. Radon and thoron exhalation rates are affected by the global warming. The influence of the greenhouse effect on ozone depletion is to suppress depletion for conventional type and enhance depletion for ozone hole type. (author) 65 refs

  15. Global trends in radiation processing

    Defalco, Gerry

    2002-01-01

    A global leader in radioisotope technology with three business units: - Nuclear Medicine supplies about two-thirds of the world requirements for molybdenum-99 and other isotopes used to diagnose disease - Radiation Therapy business unit supplied more than over 2,300 cobalt cancer treatment machines and is a leader in treatment planning - Ion Technologies is the world's leading supplier of cobalt 60 and innovative gamma irradiation systems About Ion Technologies · Supply over 70% of world's cobalt-60 sources · Custom-designed and built irradiation systems · Comprehensive engineering, physics, logistics, installation and marketing services · Canadian Irradiation Center for unique 'hands on' training, R and D product irradiation

  16. Observed perturbations of the Earth's Radiation Budget - A response to the El Chichon stratospheric aerosol layer?

    Ardanuy, P. E.; Kyle, H. L.

    1986-01-01

    The Earth Radiation Budget experiment, launched aboard the Nimbus-7 polar-orbiting spacecraft in late 1978, has now taken over seven years of measurements. The dataset, which is global in coverage, consists of the individual components of the earth's radiation budget, including longwave emission, net radiation, and both total and near-infrared albedos. Starting some six months after the 1982 eruption of the El Chichon volcano, substantial long-lived positive shortwave irradiance anomalies were observed by the experiment in both the northern and southern polar regions. Analysis of the morphology of this phenomena indicates that the cause is the global stratospheric aerosol layer which formed from the cloud of volcanic effluents. There was little change in the emitted longwave in the polar regions. At the north pole the largest anomaly was in the near-infrared, but at the south pole the near UV-visible anomaly was larger. Assuming an exponential decay, the time constant for the north polar, near-infrared anomaly was 1.2 years. At mid- and low latitudes the effect of the El Chichon aerosol layer could not be separated from the strong reflected-shortwave and emitted-longwave perturbations issuing from the El Nino/Southern Oscillation event of 1982-83.

  17. A global numerical solution of the radial Schroedinger equation by second-order perturbation theory

    Adam, G.

    1979-01-01

    A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)

  18. The anisotropy of the cosmic background radiation from local dynamic density perturbations

    Dyer, C.C.; Ip, P.S.S.

    1988-01-01

    Contrary to the usual assumption, it is shown here that the anisotropy of the cosmic background radiation need not be dominated by perturbations at the last scattering surface. The results of computer simulations are shown in which local dynamic density perturbations, in the form of Swiss cheese holes with finite, uniform density central lumps, are the main source of anisotropy of the cosmic background radiation. (author)

  19. On the spectral composition of global radiation

    Major, G

    1983-01-01

    The global radiation is recorded at several stations on the Earth. The information about its spectral composition is poor. In this paper the spectral composition means the ratio of spectral global radiation measured by coloured glass filter domes to the total global radiation. From the measuements made by Klein and Goldberg it follows that the monthly ratios vary significantly from place to place, while the variations from month to month at one place are significant only at the station which lies near to the North Pole. The Budapest data proved the dominant effect of cloudiness on the spectral composition of global radiation. This effect is in good statistical relationship with the relative global radiation. The regression constant tabulated in this paper do not contain the error of zero point elevation which is due to the overheating of glass filters by the absorbed solar radiation.

  20. Higher order perturbation theory applied to radiative transfer in non-plane-parallel media

    Box, M.A.; Polonsky, I.N.; Davis, A.B.

    2003-01-01

    Radiative transfer in non-plane-parallel media is a very challenging problem, which is currently the subject of concerted efforts to develop computational techniques which may be used to tackle different tasks. In this paper we develop the full formalism for another technique, based on radiative perturbation theory. With this approach, one starts with a plane-parallel 'base model', for which many solution techniques exist, and treat the horizontal variability as a perturbation. We show that under the most logical assumption as to the base model, the first-order perturbation term is zero for domain-average radiation quantities, so that it is necessary to go to higher order terms. This requires the computation of the Green's function. While this task is by no means simple, once the various pieces have been assembled they may be re-used for any number of perturbations--that is, any horizontal variations

  1. Non-perturbative approach for laser radiation interactions with solids

    Jalbert, G.

    1985-01-01

    Multiphoton transitions in direct-gap crystals are studied considering non-perturbative approaches. Two methods currently used for atoms and molecules are revised, generalized and applied to solids. In the first one, we construct an S-matrix which incorporates the eletromagnetic field to all orders in an approximated way leading to analytical solution for the multiphoton transition rates. In the second one, the transition probability is calculated within the Bloch-Floquet formalism applieed to the specific case of solids. This formalism is interpreted as a classical approximation to the quantum treatment of the field. In the weak field limit, we compare our results with the usual perturbation calculations. We also incorporate, in the first approach, the non homogeneity and the multimodes effects of a real laser. (author) [pt

  2. The global and UV-B radiation over Egypt

    BASSET, H. A.; KORANY, M. H.

    2007-01-01

    This work studies the relation between UV-B radiation and global radiation over Egypt. The relationships between the global solar radiation and UV-B radiation at four stations in Egypt have been studied, and linear empirical formulas for estimating UV-B from global radiation at these stations has been deduced. The deduced equations were applied to calculate the UV-B radiation for other stations where measurements were unavailable, using records of global radiation at these stations. Because o...

  3. Global magnetospheric perturbations stimulated by the plasma wave discharge in the lower ionosphere

    Markov, G.A.; Chugunov, Yu.V.

    1994-01-01

    In this paper we discuss a new method of controlled stimulation of global perturbations and the diagnostics of plasma physical processes in the ionosphere and the magnetosphere of the Earth. The method was realized with a series of rocket experiments by means of excitation of the radio frequency plasma wave discharge in the near field of the dipole antenna. We focus considerable attention on the results obtained in these experiments testifying to the wide choice and diversity of potentialities of this new method

  4. Global Dynamical Systems Involving Generalized -Projection Operators and Set-Valued Perturbation in Banach Spaces

    Yun-zhi Zou

    2012-01-01

    Full Text Available A new class of generalized dynamical systems involving generalized f-projection operators is introduced and studied in Banach spaces. By using the fixed-point theorem due to Nadler, the equilibrium points set of this class of generalized global dynamical systems is proved to be nonempty and closed under some suitable conditions. Moreover, the solutions set of the systems with set-valued perturbation is showed to be continuous with respect to the initial value.

  5. Radiation perturbation theory in gravity and quantum universe as a hydrogen atom

    Pervushin, V.N.

    1992-01-01

    In quantum theory of gravity of the (n+1)-dimensional space-time the Faddeev-Popov functional integral is constructed for radiation perturbation theory. In this version the Universe expansion looks as the collective superfluid motion of quantum space, and the vacuum energy density plays the role of the hidden mass. 6 refs

  6. Radiations in space and global environment

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  7. Global trends in radiation processing

    Defalco, G.

    2003-01-01

    There will be a brief introduction of the companies of MDS serving the Medical, Biotechnology and Pharmaceutical sectors worldwide. MDS Nordion will be introduced in more detail focused on the products and services of our Nuclear Medicine and Ion Technologies business units. World Trends and issues in Radiation Processing will be discussed on: Sterilization of Medical Devices, Pharmaceuticals, Cosmetics and Consumer products and finally I will present an overview on Food Irradiation progress worldwide

  8. Radiative effects of global MODIS cloud regimes

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  9. Radiative Effects of Global MODIS Cloud Regimes

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  10. Mitigate the tent-induced perturbation in ignition capsules by supersonic radiation propagation

    Dai, Zhensheng; Gu, Jianfa; Zheng, Wudi

    2017-10-01

    In the inertial confinement fusion (ICF) scheme, to trap the alpha particle products of the D-T reaction, the capsules needs to be imploded and compressed with high symmetry In the laser indirect drive scheme, the capsules are held at the center of high-Z hohlraums by thin membranes (tents). However, the tents are recognized as one of the most important contributors to hot spot asymmetries, areal density perturbations and reduced performance. To improve the capsule implosion performance, various alternatives such as the micro-scale rods, a larger fill-tube and a low-density foam layer around the capsule have been presented. Our simulations show that the radiation propagates supersonically in the low-density foam layer and starts to ablate the capsule before the perturbations induced by the tents reach the ablating fronts. The tent induced perturbations are remarkably weakened when they are propagating in the blow-off plasma.

  11. Satellite orbits perturbed by direct solar radiation pressure: general expansion of the disturbing function

    Hughes, S.

    1977-01-01

    An expression is derived for the solar radiation pressure disturbing function on an Earth satellite orbit which takes into account the variation of the solar radiation flux with distance from the Sun's centre and the absorption of radiation by the satellite. This expression is then expanded in terms of the Keplerian elements of the satellite and solar orbits using Kaula's method (Astr. J.; 67:300 (1962)). The Kaula inclination functions are replaced by an equivalent set of modified Allan (Proc. R. Soc. A.; 288:60 (1965)) inclination functions. The resulting expression reduces to the form commonly used in solar radiation pressure perturbation studies (e.g. Aksnes, Cel. Mech.; 13:89 (1976)), when certain terms are neglected. If, as happens quite often in practice, a satellite's orbit is in near-resonance with certain of these neglected terms, these near-resonant terms can cause changes in the satellite's orbital elements comparable to those produced by the largest term in Aksnes's expression. A new expression for the solar radiation pressure disturbing function expansion is suggested for use in future studies of satellite orbits perturbed by solar radiation pressure. (author)

  12. Soft and Collinear Radiation and Factorization in Perturbation Theory and Beyond

    Gardi, Einan

    2002-01-01

    Power corrections to differential cross sections near a kinematic threshold are analysed by Dressed Gluon Exponentiation. Exploiting the factorization property of soft and collinear radiation, the dominant radiative corrections in the threshold region are resummed, yielding a renormalization-scale-invariant expression for the Sudakov exponent. The interplay between Sudakov logs and renormalons is clarified, and the necessity to resum the latter whenever power corrections are non-negligible is emphasized. The presence of power-suppressed ambiguities in the exponentiation kernel suggests that power corrections exponentiate as well. This leads to a non-perturbative factorization formula with non-trivial predictions on the structure of power corrections, which can be contrasted with the OPE. Two examples are discussed. The first is event-shape distributions in the two-jet region, where a wealth of precise data provides a strong motivation for the improved perturbative technique and an ideal situation to study had...

  13. Perturbative S-matrix for massive scalar fields in global de Sitter space

    Marolf, Donald; Srednicki, Mark; Morrison, Ian A

    2013-01-01

    We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)

  14. Radiation dose to the global flying population

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  15. Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks

    Hua-Guang, Zhang; Tie-Dong, Ma; Jie, Fu; Shao-Cheng, Tong

    2009-01-01

    In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control algorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method

  16. Description of a neutron field perturbed by a probe using coupled Monte Carlo and discrete ordinates radiation transport calculations

    Zazula, J.M.

    1984-01-01

    This work concerns calculation of a neutron response, caused by a neutron field perturbed by materials surrounding the source or the detector. Solution of a problem is obtained using coupling of the Monte Carlo radiation transport computation for the perturbed region and the discrete ordinates transport computation for the unperturbed system. (author). 62 refs

  17. GERMON. Global Environmental Radiation Monitoring Network

    1992-01-01

    Between 15-18 December 1987, a meeting of experts of WHO/UNEP met at Le Vesinet, France, to develop the basic principles of a global environmental radiation monitoring network (GERMON) which would have the function of reporting on a regular basis environmental radiation levels, and be positioned to provide rapid and reliable radiation measurements in the event of a major radiation release. To date, some 58 countries have indicated their willingness to become part of GERMON. About 40 of these have technical staff and equipment to meet the minimum requirements for joining the network, and about 30 have designated appropriate organizations within their country to serve as national Liaison Institutions for GERMON. Sixteen countries are now providing data on a regular basis to the CCC at SCPRI in Le Vesinet, France. Thirty-two countries responded to the request of WHO for readiness to take part in a IAEA radiation emergency exercise. The present meeting has been held in Montgomery, Alabama, USA at the National Air and Radiation Environmental Laboratory between 27 April 1992 and 30 April 1992, with the purpose of reviewing GERMON. One important topic considered was the implementation of GERMON in the Americas. Particular attention was given to the need for better coordination with IAEA in responding to the Convention on Early Notification, to the role of the CCC, to forms of data transmission, etc

  18. Radiation-induced perturbation of cell-to-cell signalling and communication

    Mariotti, L.; Facoetti, A.; Bertolotti, A.; Ranza, E.; Alloni, D.; Ottolenghi, A.

    2011-01-01

    The investigation of the bystander phenomena (i.e. the induction of damage in cells not directly traversed by radiation) is strictly related to the study of the mechanisms of intercellular communication and of the perturbative effects of radiation. A new possible way to try to solve the bystander puzzle is through a 'systems radiation biology' approach with the total integration of experimental and theoretical activities. In particular, this contribution will focus on: (1) 'ad hoc' experiments designed to quantify key parameters involved in intercellular signalling (focusing, as a pilot study, on release, decay and internalization of interleukin-6 molecules, their modulation by radiation, and possible differences between in vivo/in vitro behaviour); (2) the implementation and the development of two different modelling approaches: a stochastic model (based on a Monte Carlo code) that takes account of the local mechanisms of release and internalization of signalling molecules (e.g. cytokines) and an analytical model where signal molecules are treated as a population and their temporal behaviour is described by differential equations. This approach provided instruments to investigate the complex phenomena of signal transmission and the role of cell communication to guarantee (maintain) the robustness of the in vitro experimental systems against the effects of perturbations. (authors)

  19. Non perturbative method for radiative corrections applied to lepton-proton scattering

    Chahine, C.

    1979-01-01

    We present a new, non perturbative method to effect radiative corrections in lepton (electron or muon)-nucleon scattering, useful for existing or planned experiments. This method relies on a spectral function derived in a previous paper, which takes into account both real soft photons and virtual ones and hence is free from infrared divergence. Hard effects are computed perturbatively and then included in the form of 'hard factors' in the non peturbative soft formulas. Practical computations are effected using the Gauss-Jacobi integration method which reduce the relevant integrals to a rapidly converging sequence. For the simple problem of the radiative quasi-elastic peak, we get an exponentiated form conjectured by Schwinger and found by Yennie, Frautschi and Suura. We compare also our results with the peaking approximation, which we derive independantly, and with the exact one-photon emission formula of Mo and Tsai. Applications of our method to the continuous spectrum include the radiative tail of the Δ 33 resonance in e + p scattering and radiative corrections to the Feynman scale invariant F 2 structure function for the kinematics of two recent high energy muon experiments

  20. The global assessment of medical radiation exposures

    Shannoun, F.

    2010-01-01

    World Health Organization (WHO) is the United Nations specialized agency which acts as a coordinating authority on international public health. It was established in 1948. It has 147 Country Offices, 6 Regional Offices and 193 Member States Ministries of Health Its headquarters is in Geneva. The World Health Assembly (WHA) requested WHO to s tudy the optimum use of ionizing radiation in medicine and the risks to health of excessive or improper use . (WHA, 1971) International Basic Safety Standards BSS) The (BSS) mark the culmination of efforts towards global harmonization of radiation safety requirements. However, the involvement of the health sector in the BSS implementation is still weak and scant. There is a need to mobilize the health sector towards safer and effective use of radiation in medicine. Radiation in Health Care The use of radiation in health care is by far the largest contributor to the exposure of the general population from artificial sources. Annually worldwide there are 3,600 million X-ray exams (> 300 million in children), 37 million nuclear medicine procedures and 7.5 million radiation oncology treatments [UNSCEAR Report 2008]. WHO Global Initiative on Radiation Safety in Health Care Settings Was launched in December 2008 It involved the following:- There was involvement of international organizations and professionals bodies, national health and radiation protection authorities, etc. Its aim is to improve the protection of patients and health care workers through better implementation of the BSS. It complements the International Action Plan for Radiological Protection of Patients established by the IAEA 7 UNSCEAR's medical exposure survey Objectives of UNSCEAR's survey were to facilitate evaluation of: - Global estimates of frequency and levels of exposures, with break-downs by medical procedure, age, sex, health care level, and country; - Trends in practice (including those relatively fast-changing); with supporting contextual

  1. First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica

    Yang, Yuekui; Palm, Stephen P.; Marshak, Alexander; Wu, Dong L.; Yu, Hongbin; Fu, Qiang

    2014-01-01

    We present the first satellite-detected perturbations of the outgoing longwave radiation (OLR) associated with blowing snow events over the Antarctic ice sheet using data from Cloud-Aerosol Lidar with Orthogonal Polarization and Clouds and the Earth's Radiant Energy System. Significant cloud-free OLR differences are observed between the clear and blowing snow sky, with the sign andmagnitude depending on season and time of the day. During nighttime, OLRs are usually larger when blowing snow is present; the average difference in OLRs between without and with blowing snow over the East Antarctic Ice Sheet is about 5.2 W/m2 for the winter months of 2009. During daytime, in contrast, the OLR perturbation is usually smaller or even has the opposite sign. The observed seasonal variations and day-night differences in the OLR perturbation are consistent with theoretical calculations of the influence of blowing snow on OLR. Detailed atmospheric profiles are needed to quantify the radiative effect of blowing snow from the satellite observations.

  2. The Global Environment Radiation Monitoring Network (GERMON)

    Zakheim, B.J.; Goellner, D.A.

    1994-01-01

    Following the Chernobyl accident in 1986, a group of experts from the World Health Organization (WHO) and the United Nations Environment Program (UNEP) met in France to discuss and develop the basic principles of a global environmental radiation monitoring network (GERMON). The basic functions of this network were to provide regular reports on environmental radiation levels and to be in a position to provide reliable and accurate radiation measurements on a quick and accurate radiation measurements on a quick turnaround basis in the event of a major radiation release. By 1992, although 58 countries had indicated an interest in becoming a part of the GERMON system, only 16 were providing data on a regular basis. This paper traces the history of GERMON from its inception in 1987 through its activities during 1993-4. It details the objectives of the network, describes functions, lists its participants, and presents obstacles in the current network. The paper examines the data requirements for radiological emergency preparedness and offers suggestions for the current system. The paper also describes the growing need for such a network. To add a domestic perspective, the authors present a summary of the environmental monitoring information system that was used by the NRC in 1986 in its analyses of the Chernobyl incident. Then we will use this 1986 experience to propose a method for the use of GERMON should a similar occasion arise in the future

  3. Alanine and proline content modulate global sensitivity to discrete perturbations in disordered proteins.

    Perez, Romel B; Tischer, Alexander; Auton, Matthew; Whitten, Steven T

    2014-12-01

    Molecular transduction of biological signals is understood primarily in terms of the cooperative structural transitions of protein macromolecules, providing a mechanism through which discrete local structure perturbations affect global macromolecular properties. The recognition that proteins lacking tertiary stability, commonly referred to as intrinsically disordered proteins (IDPs), mediate key signaling pathways suggests that protein structures without cooperative intramolecular interactions may also have the ability to couple local and global structure changes. Presented here are results from experiments that measured and tested the ability of disordered proteins to couple local changes in structure to global changes in structure. Using the intrinsically disordered N-terminal region of the p53 protein as an experimental model, a set of proline (PRO) and alanine (ALA) to glycine (GLY) substitution variants were designed to modulate backbone conformational propensities without introducing non-native intramolecular interactions. The hydrodynamic radius (R(h)) was used to monitor changes in global structure. Circular dichroism spectroscopy showed that the GLY substitutions decreased polyproline II (PP(II)) propensities relative to the wild type, as expected, and fluorescence methods indicated that substitution-induced changes in R(h) were not associated with folding. The experiments showed that changes in local PP(II) structure cause changes in R(h) that are variable and that depend on the intrinsic chain propensities of PRO and ALA residues, demonstrating a mechanism for coupling local and global structure changes. Molecular simulations that model our results were used to extend the analysis to other proteins and illustrate the generality of the observed PRO and alanine effects on the structures of IDPs. © 2014 Wiley Periodicals, Inc.

  4. Global source attribution of sulfate aerosol and its radiative forcing

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  5. Models for prediction of global solar radiation on horizontal surface ...

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  6. On dark energy isocurvature perturbation

    Liu, Jie; Zhang, Xinmin; Li, Mingzhe

    2011-01-01

    Determining the equation of state of dark energy with astronomical observations is crucially important to understand the nature of dark energy. In performing a likelihood analysis of the data, especially of the cosmic microwave background and large scale structure data the dark energy perturbations have to be taken into account both for theoretical consistency and for numerical accuracy. Usually, one assumes in the global fitting analysis that the dark energy perturbations are adiabatic. In this paper, we study the dark energy isocurvature perturbation analytically and discuss its implications for the cosmic microwave background radiation and large scale structure. Furthermore, with the current astronomical observational data and by employing Markov Chain Monte Carlo method, we perform a global analysis of cosmological parameters assuming general initial conditions for the dark energy perturbations. The results show that the dark energy isocurvature perturbations are very weakly constrained and that purely adiabatic initial conditions are consistent with the data

  7. A mathematical correlation between variations in solar radiation parameters - I: Daily sums of global radiation and midday global radiation

    Njau, E.C.

    1987-11-01

    An equation that simply relates variations in the daily sums of global radiation and the corresponding midday global radiation data over an arbitrarily chosen location on the Earth is derived from first principles. Although this equation is specifically tailored for periods incorporating only cloudless days, it is modified slightly in order also to suit any period that incorporates either cloudless days or consistently cloudy days or days characterised by consistently distributed cloud patches or any combination of these. Global radiation data for Dar es Salaam, Tanzania, calculated on the basis of the slightly modified version of the equation mentioned above agree with actual measurements to at least 89% if each of the days involved is either fairly cloudless or consistently cloudy or is characterised by fairly consistent cloud patches from sunrise to sunset. This clearly demonstrates that it is quite possible to work out reasonable estimates of the overall global radiation incident on a given area using only the corresponding midday global radiation data for that particular area. (author). 6 refs, 1 fig, 3 tabs

  8. Gravitational Radiation from Binary Black Holes: Advances in the Perturbative Approach

    Lousto, C. O.

    2005-08-01

    After the work of Regge, Wheeler, Zerilli, Teukolsky and others in the 1970s, it became possible to accurately compute the gravitational radiation generated by the collision of two black holes (in the extreme-mass limit). It was soon evident that, to first perturbative order, a particle in a circular orbit would continue orbiting forever if the radiative corrections to the particle motion that make the orbit decay were not taken into account. When I entered the field in 1996, a quick search of the literature showed that this problem was still unsolved. A straightforward computation leads to infinities produced by the representation of the particle in terms of Dirac delta functions. Since 1938, when Dirac had solved the equivalent problem in electromagnetic theory, nobody had succeeded in regularizing this in a self-consistent manner. Fortunately, the solution was arrived at much sooner than we expected. In 1997, Mino, Sasaki and Tanaka, and Quinn and Wald published the equations of motion that a particle obeys after self-force corrections. This essentially gave birth to the field of radiation reaction/self-force computations. The aim of this programme is first to obtain the corrections to the geodesic motion of a particle in the background of a single black hole, and then to use this corrected trajectory to compute second-order perturbations of the gravitational field. This will give us the energy-momentum radiated to infinity and into the hole, as well as the waveforms that we will eventually be able to measure with ground- or space-based gravitational wave detectors. As mentioned, the programme as a whole will give us waveforms accurate to second perturbative order in the mass ratio of the black holes, i.e. Script O[(m/M)2]. This will be a good approximation for galactic binary black holes of the order of a few solar masses, in the right frequency range (few hundred Hertz) to be detected by ground-based gravitational wave interferometers such as LIGO and VIRGO

  9. The phase lag of temperature behind global solar radiation

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  10. Perturbation of cobalt 60 radiation doses by metal objects implanted during oral and maxillofacial surgery

    Tatcher, M.; Kuten, A.; Helman, J.; Laufer, D.

    1984-01-01

    The influence on cobalt 60 dose distributions of typical metal parts used in oral and maxillofacial surgery was studied. Relative doses were determined by exposing x-ray films in a polystyrene phantom set-up containing samples of vitallium, titanium, and stainless steel. Optical densities were converted to doses with the aid of sensitometric curves. The results show that for normal incidence there is a 25% to 40% increase in dose at the entrance side of the metal and a 20% to 25% decrease in dose at the exit side. The enhancement effect falls off rapidly and becomes negligible at about 1 mm from the interface. The reduction effect decreases more gradually and is still evident at distances of a few centimeters. These dose perturbations should be taken into account in the planning of radiation therapy for patients in whom metal objects have been implanted

  11. Perturbation of cellular signaling cascades modulated by ionizing radiation and environmental stress

    Ugolini, M.

    2014-01-01

    Cellular signaling plays a central role in the regulation of several cell functions, which can be perturbed by different external stimuli, including environmental stress and ionizing radiation. The dysregulation of intra- and extracellular mechanisms may alter the correct behaviour of cells. The aim of this work was to investigate the activation of strongly interlaced intracellular signaling pathways, following the exposure to low- and medium-doses of X-rays, with a focus on the mechanisms involved in the inflammatory- and apoptotic-related responses. In particular, the temporal dynamics of the ERK1/2 and PKB/AKT pathways and their possible dose dependences were investigated. The presented results indicate a clear dose dependence of such pathways only at early time points, suggesting a fast response of the system to X-rays and the need for further studies at shorter times after exposures.

  12. Actual global problems of radiation protection

    Ninkovic, M.

    1995-01-01

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  13. Estimation of diffuse from measured global solar radiation

    Moriarty, W.W.

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors

  14. Global Melnikov Theory in Hamiltonian Systems with General Time-Dependent Perturbations

    Gidea, Marian; de la Llave, Rafael

    2018-04-01

    We consider a mechanical system consisting of n-penduli and a d-degree-of-freedom rotator. The phase space of the rotator defines a normally hyperbolic invariant manifold Λ _0 . We apply a time-dependent perturbation, which is not assumed to be either Hamiltonian, or periodic, or quasi-periodic, as we allow for rather general time dependence. The strength of the perturbation is given by a parameter ɛ \\in R . For all |ɛ | sufficiently small, the augmented flow—obtained by making the time into a new variable—has a normally hyperbolic locally invariant manifold \\tilde{Λ }_ɛ . For ɛ =0 , \\tilde{Λ }_0=Λ _0× R . We define a Melnikov-type vector, which gives the first-order expansion of the displacement of the stable and unstable manifolds of \\tilde{Λ }_0 under the perturbation. We provide an explicit formula for the Melnikov vector in terms of convergent improper integrals of the perturbation along homoclinic orbits of the unperturbed system. We show that if the perturbation satisfies some explicit non-degeneracy conditions, then the stable and unstable manifolds of \\tilde{Λ }_ɛ , W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) , respectively, intersect along a transverse homoclinic manifold, and, moreover, the splitting of W^s(\\tilde{Λ }_ɛ ) and W^u(\\tilde{Λ }_ɛ ) can be explicitly computed, up to the first order, in terms of the Melnikov-type vector. This implies that the excursions along some homoclinic trajectories yield a non-trivial increase of order O(ɛ ) in the action variables of the rotator, for all sufficiently small perturbations. The formulas that we obtain are independent of the unperturbed motions in Λ _0 , and give, at the same time, the effects on periodic, quasi-periodic, or general-type orbits. When the perturbation is Hamiltonian, we express the effects of the perturbation, up to the first order, in terms of a Melnikov potential. In addition, if the perturbation is periodic, we obtain that the non-degeneracy conditions on

  15. Evaluation of global solar radiation models for Shanghai, China

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  16. Measurement of global solar radiation over Brunei Darussalam

    Malik, A.Q.; Ak Abd Malik Abd Raub Pg Ghani

    2006-01-01

    Measurements of global solar radiation on a horizontal surface were carried out for a period of 11 months starting from June 2001 to April 2002. The pyrano meter (Kipp and Zonen) was placed at the top of the library building of University of Brunei Darussalam, which affords optimum exposure to the instrument sensor without appreciable obstacle for incoming global radiation. The maximum and minimum monthly-averaged global irradiations of 553 W/m 2 and 433 W/m 2 were recorded for the months of March and October respectively. The variation of global solar radiation can be divided into two distinct groups - the low radiation values being associated with cloud and turbidity while the high values are associated with less turbid and cloudy periods

  17. Global view on radiation protection in medicine

    Vano, E.

    2011-01-01

    When planning good management of ionising radiation in medicine, key factors such as ensuring that health professionals work together and convincing them that radiation protection (RP) represents a substantial part of the quality management system in their clinical practice are of utmost importance. The United Nations Scientific Committee on the Effects of Atomic Radiation has decided that one of the thematic priorities will be medical radiation exposure of patients. The International Commission on Radiological Protection has recently updated the report on RP in medicine and continues to work on focused documents centred on specific areas where advice is needed. The roles of the International Atomic Energy Agency, World Health Organization and the European Commission, in the area of RP in medicine, are described in the present document. The industry, the standardisation organisations as well as many scientific and professional societies are also dedicating significant effort to radiation safety aspects in medicine. Some of the efforts and priorities contemplated in RP in medicine over the coming years are suggested. The best outcome will be accomplished when all the actors, i.e. medical doctors, other health professionals, regulators, health authorities and the industry manage to work together. (authors)

  18. One-dimensional solar radiative transfer: Perturbation approach and its application to independent-pixel calculations for realistic cloud fields

    Jerg, Matthias; Trautmann, Thomas

    2007-01-01

    The radiative transfer perturbation theory (RTPT), which has already been introduced in atmospheric radiative transfer several years ago, is applied to cloud related problems. The RTPT requires the solution of the radiative transfer equation in the forward and the adjoint mode. The basic principles of this technique are presented as well as its extensions to isotropic surface reflection and its conjunction with the Hermite interpolation. This set of methods is applied to different atmospheric conditions including realistic cloud scenes. The results are compared with the usual (forward) independent-pixel calculations with respect to errors of individual pixels and domain-averaged values. The RTPT turns out to be sufficiently accurate in the case the clouds' internal vertical variations remain moderate. It is also shown that, depending on the specific radiative transfer problem, the RTPT can offer some advantages on computational speed. However, the limitations of the RTPT with regard to realistic clouds are addressed as well

  19. Shortwave and longwave radiative contributions to global warming under increasing CO2

    Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.

    2014-01-01

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628

  20. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  1. Exposures involving perturbations of the EM field have non-linear effects on radiation response and can alter the expression of radiation induced bystander effects

    Mothersill, Carmel; Seymour, Colin

    2012-07-01

    Our recent data suggest there is a physical component to the bystander signal induced by radiation exposure and that alternative medicine techniques such as Reiki and acupuncture or exposures to weak EM fields alter the response of cells to direct irradiation and either altered bystander signal production or altered the response of cells receiving bystander signals. Our proposed mechanism to explain these findings is that perturbation of electromagnetic (EM) fields is central to the induction of low radiation dose responses especially non-targeted bystander effects. In this presentation we review the alternative medicine data and other data sets from our laboratory which test our hypothesis that perturbation of bio-fields will modulate radiation response in the low dose region. The other data sets include exposure to MRI, shielding using lead and or Faraday cages, the use of physical barriers to bystander signal transmission and the use of membrane channel blockers. The data taken together strongly suggest that EM field perturbation can modulate low dose response and that in fact the EM field rather than the targeted deposition of ionizing energy in the DNA may be the key determinant of dose response in a cell or organism The results also lead us to suspect that at least when chemical transmission is blocked, bystander signals can be transmitted by other means. Our recent experiments suggest light signals and volatiles are not likely. We conclude that alternative medicine and other techniques involving electromagnetic perturbations can modify the response of cells to low doses of ionizing radiation and can induce bystander effects similar to those seen in medium transfer experiments. In addition to the obvious implications for mechanistic studies of low dose effects, this could perhaps provide a novel target to exploit in space radiation protection and in optimizing therapeutic gain during radiotherapy.

  2. Global levels of radiation exposure: Latest international findings

    Gonzalez, A.J.

    1993-01-01

    The radiation exposure of the world's population has recently been reviewed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR has reconfirmed that the normal operation of all peaceful nuclear installations contributes insignificantly to the global exposure to radiation. Even taking into account all the nuclear accidents to date (including Chernobyl), the additional exposure would be equivalent to only about 20 days of natural exposure. Military uses of nuclear energy have committed the world to most of the radiation exposure caused by human activities

  3. New Temperature-based Models for Predicting Global Solar Radiation

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  4. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  5. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  6. The role of natural climatic variation in perturbing the observed global mean temperature trend

    Hunt, B.G. [CSIRO Marine and Atmospheric Research, Aspendale, VIC (Australia)

    2011-02-15

    Controversy continues to prevail concerning the reality of anthropogenically-induced climatic warming. One of the principal issues is the cause of the hiatus in the current global warming trend. There appears to be a widely held view that climatic change warming should exhibit an inexorable upwards trend, a view that implies there is no longer any input by climatic variability in the existing climatic system. The relative roles of climatic change and climatic variability are examined here using the same coupled global climatic model. For the former, the model is run using a specified CO{sub 2} growth scenario, while the latter consisted of a multi-millennial simulation where any climatic variability was attributable solely to internal processes within the climatic system. It is shown that internal climatic variability can produce global mean surface temperature anomalies of {+-}0.25 K and sustained positive and negative anomalies sufficient to account for the anomalous warming of the 1940s as well as the present hiatus in the observed global warming. The characteristics of the internally-induced negative temperature anomalies are such that if this internal natural variability is the cause of the observed hiatus, then a resumption of the observed global warming trend is to be expected within the next few years. (orig.)

  7. Global solar radiation in Trieste (Italy)

    Anane-Fenin, K.

    1986-04-01

    Global irradiation data recorded at Trieste (CNR - Istituto Talassografico di Trieste) during 11-year period are grouped into ''summer'' and ''winter'' periods and are compared with values generated from seven different models and empirical correlations proposed by earlier investigations. Climatological parameters like sunshine duration, relative humidity, cloud cover and maximum air temperature are the models input. The calculated values obtained from correlations according to Angstrom and Black give better agreement with measured data in summer. Agreements are within +-3% and +-4%. In winter a quadratic equation is in better agreement with measured values. Agreement is within +7%

  8. Global crystallographic textures obtained by neutron and synchrotron radiation

    Brokmeier, Heinz-Guenter

    2006-01-01

    Global crystallographic textures belong to the main characteristic parameters of engineering materials. The global crystallographic texture is always the average texture of a well-defined sample volume which is representative to solve practical engineering problems. Thus a beam having a high penetration power is needed available as neutron or high energetic X-ray radiation. Texture type and texture sharpness are of great importance for materials properties such as the deep drawing behaviour, one of the basic techniques in many industries. Advantages and disadvantages of both radiations make them complementary for measuring crystallographic textures in a wide range of materials

  9. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  10. Application of homotopy perturbation method for a conductive–radiative fin with temperature dependent thermal conductivity and surface emissivity

    Pranab Kanti Roy

    2015-09-01

    Full Text Available This work aimed at studying the effects of environmental temperature and surface emissivity parameter on the temperature distribution, efficiency and heat transfer rate of a conductive–radiative fin. The Homotopy Perturbation Method (HPM being one of the semi-numerical methods for highly nonlinear and inhomogeneous equations, the local temperature distribution efficiencies and heat transfer rates are obtained using HPM in which Newton–Raphson method is used for the insulated boundary condition. It is found that the results of the present works are in good agreement with results available in the literature.

  11. Radiative bound-state formation in unbroken perturbative non-Abelian theories and implications for dark matter

    Harz, Julia; Petraki, Kalliopi

    2018-01-01

    We compute the cross-sections for the radiative capture of non-relativistic particles into bound states, in unbroken perturbative non-Abelian theories. We find that the formation of bound states via emission of a gauge boson can be significant for a variety of dark matter models that feature non-Abelian long-range interactions, including multi-TeV scale WIMPs and dark matter co-annihilating with coloured partners. Our results disagree with previous computations, on the relative sign of the Ab...

  12. QCD non-perturbative study in radiative and pure-leptonic decays of Bc by wave function

    Guo Peng; Hou Zhaoyu; Zhi Haisu

    2012-01-01

    The radiative and pure-leptonic decays of B c mesons are of hadrons uncertainty in theoretical calculations. Using three types of the B c meson wave functions which describe the characteristics of the QCD non-perturbative and by controlling the parameters in them, the uncertainties of B c meson decay caused by the hadron decay model are studied in detail. The theoretical results show the branching ratios are (1.81981∼3.18961) × 10 -5 , which are sensitive to the type of wave functions. (authors)

  13. Radiation and global environment. Consideration for the influence on ecosystems

    Muramatsu, Yasuyuki; Doi, Masahiro; Yoshida, Satoshi

    2003-09-01

    This book is based on presentations at the National Institute of Radiological Sciences (NIRS) symposium of the same title held by the NIRS Research Center for Radiation Safety in December, 2002, is edited with somehow enlightening intention as well, and is composed from 6 parts of; 1. Reasons for concern for influence on ecosystems, 2. Behavior of substances in ecosystems, 3. Changes of global environments and life, 4. Various environmental stresses and living/eco-systems, 5. New development of evaluation studies on radiation effects, and 6. For the radiation protection of environments. The 1st part involves 3 chapters concerning studies on effects on ecosystems and radiation protection of environments; 2nd part, 4 chapters concerning behavior of radioactive and/or stable cesium and iodine in forest and environmental microorganisms, and behavior and effects of acidic substances; 3rd part, 2 chapters concerning terrestrial history and evolution/adaptation of livings; 4th part, 5 chapters concerning radiation stress, active oxygen, radiodurance/radio-resistant microorganisms, ultraviolet, and environmental hormones; 5th part, 6 chapters concerning effects on cells of environmental toxic substance and radiation, environmental stress evaluation by DNA micro-array, effects on taxis, use of microcosm, simulation of computational model ecosystem, and aquatic ecosystems; 6th part, 5 chapters concerning environmental radioecology, safety measures in high-level radioactive waste disposal under the ground, radiation protection of environments from radiation biology aspect, effects of chemicals, and aspect and strategy for radiation effects on environments. (N.I.)

  14. Global DNA methylation responses to low dose radiation exposure

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  15. Global radiative effects of solid fuel cookstove aerosol emissions

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  16. Global Solar Radiation in Spain from Satellite Images

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  17. Empirical Models for the Estimation of Global Solar Radiation in ...

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  18. Boreal mire Green House Gas exchange in response to global change perturbations

    Nilsson, Mats

    2017-04-01

    High latitude boreal peatlands contribute importantly to the land-atmosphere-hydrosphere exchange of carbon and GHG, i.e. carbon dioxide, methane and dissolved organic carbon. High latitude biomes are identified as most vulnerable to changing climate. High latitudes are also characterized by a strong seasonality in incoming solar radiation, weather conditions and thus also in biogeochemical processes. The strong seasonality in incoming solar radiation, not to change in response to a changing climate, constitute firm constraints on how changes in air temperature, evapotranspiration and precipitation will affect biogeochemical processes underlying the land atmosphere and land hydrosphere exchange of green house gases. In this presentation I combine data from long-term monitoring, long-term field manipulations and detailed chemical analysis to understand how changes in atmosphere and weather conditions influence the major carbon fluxes of a boreal mire Net Ecosystem Carbon Balance. The long-term monitoring data contains >12 years of continuous Eddy Covariance CO2 data, growing season chamber CH4 data and continuous measurements of discharge export of DOC, CO2 and CH4. Data from long-term field snow removal manipulations and growing season temperature increase manipulations are used to further understand the impact of climate on mire carbon and GHG fluxes. Finally we uses Nuclear Magnetic Spectroscopy (NMR) to reveal how century scale changes in atmospheric CO2 from 300 to 400 pm CO2 and temperature have influenced the net photosynthetic capacity of Sphagnum mosses, the single most important plant genus for boreal mire carbon sequestration.

  19. Radiation Ethics in a Globalized World

    Zoelzer, Friedo

    2013-01-01

    The presentation focused on implications to the ethics in RP, in a world more and more globalized and it challenges the present status of the moral philosophy underlying the ICRP recommendations, which appears to be preferentially based on western ethics. After presenting evident data showing that the center of gravity for existing and new nuclear plants is more and more toward far east populated countries, Friedo Zolzer asked himself if there is something like a 'common morality' to approach moral questions from very different cultural perspectives. Reference was made to the studies of Beauchamp and Childress with their identification of four principles and their claim that 'all persons committed to morality' would agree with their four principles. Common morality, for the author, cannot be defined via a 'Universal poll', but by studying cultures and religions practiced by the different populations in the past ages. He stated the need to develop common morality into 'cross cultural ethics' and the presentation went on by finding a relationship between the three RP principles (Justification, Optimization, Limitation) with the four principles of biomedical ethics (as part of the common morality). The lecturer then asked himself if the common morality can be of help in cases where the three RP principles are not directly applicable and after discussing three different cases, he concluded that common morality can provide us with additional criteria for certain problems not covered by the main RP principles. This approach, open to new different cultural backgrounds, seems to give a fresh inside to some problems, which cannot be addressed only on the basis of the current mix of utilitarian and deontological approaches in RP

  20. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual

  1. An integrated artificial neural networks approach for predicting global radiation

    Azadeh, A.; Maghsoudi, A.; Sohrabkhani, S.

    2009-01-01

    This article presents an integrated artificial neural network (ANN) approach for predicting solar global radiation by climatological variables. The integrated ANN trains and tests data with multi layer perceptron (MLP) approach which has the lowest mean absolute percentage error (MAPE). The proposed approach is particularly useful for locations where no available measurement equipment. Also, it considers all related climatological and meteorological parameters as input variables. To show the applicability and superiority of the integrated ANN approach, monthly data were collected for 6 years (1995-2000) in six nominal cities in Iran. Separate model for each city is considered and the quantity of solar global radiation in each city is calculated. Furthermore an integrated ANN model has been introduced for prediction of solar global radiation. The acquired results of the integrated model have shown high accuracy of about 94%. The results of the integrated model have been compared with traditional angstrom's model to show its considerable accuracy. Therefore, the proposed approach can be used as an efficient tool for prediction of solar radiation in the remote and rural locations with no direct measurement equipment.

  2. T-odd correlations in radiative K+l3 decays and chiral perturbation theory

    Mueller, E.H.; Kubis, B.; Meissner, U.G.

    2006-01-01

    The charged kaon decay channel K + l3γ allows for studies of direct CP violation, possibly due to non-standard mechanisms, with the help of T-odd correlation variables. In order to be able to extract a CP-violating signal from experiment, it is necessary to understand all possible standard model phases that also produce T-odd asymmetries. We complement earlier studies by considering strong interaction phases in hadronic structure functions that appear at higher orders in chiral perturbation theory, and we compare our findings to other potential sources of asymmetries. (orig.)

  3. Radiation losses and global power balance of JT-60 plasmas

    Nishitani, T.; Itami, K.; Nagashima, K.; Tsuji, S.; Hosogane, N.; Yoshida, H.; Ando, T.; Kubo, H.; Takeuchi, H.

    1990-01-01

    The radiation losses and the global power balance for Ohmic and neutral beam heated plasmas have been investigated in different JT-60 configurations. Discharges with a TiC coated molybdenum wall and with a graphite wall, with limiter, outer and lower X-point configurations have been studied by bolometric measurements, thermocouples and an infrared TV camera. In neutral beam heated outer X-point discharges with a TiC coated molybdenum first wall, the radiation loss of the main plasma was very low (10% of the absorbed power). The radiation loss due to oxygen was dominant in this case. On the contrary, in discharges with TiC coated molybdenum limiters the radiation loss was very high (>60% of the absorbed power). In the discharges with a graphite wall the radiated power from the main plasma was 20-25% for both limiter and lower X-point configurations. In lower X-point discharges the main contributor to the radiation loss was oxygen, whereas in limiter discharges the loss due to carbon was equal to the loss due to oxygen. The radiation loss from the lower X-point divertor increased with increasing electron density of the main plasma. (author). 33 refs, 14 figs, 1 tab

  4. CO2 and solar radiation: cause of global warming?

    Bayona Gabriel; Garcia, Yuri C.; Sarmiento Heiner R

    2010-01-01

    A cause-effect relationship between global temperature as a climatic change indicator and some of the main forcing mechanisms (Atmospheric CO 2 concentration, solar radiation and volcanic activity) are analyzed in this paper through time series analysis for the 1610-1990 AD period comparing trends and variability for the frequency spectrums. Temperature seems to fit the CO 2 trend for the last century, but we found no cause-effect relationship for this interval. The frequency analysis shows a correlation between radiation and temperature for a period of 22 years. Volcanism presents an inverse relationship with temperature better seen at a decadal scale.

  5. Spectrum of perturbations arising in a nonsingular model of the Universe with the initial de Sitter stage and the anisotropy of the relic radiation

    Starobinskij, A.A.

    1983-01-01

    Spectrum of primary adiabatic perturbations and gravitational waves formed in the proposed earlier by the author nonsingular cosmological model with the initial quantum de Sitter stage generated by gravitational vacuum polarization is calculated. The spectrum of gravitational waves appears to be flat, the spectrum of adiabatic perturbations is close to the flat one. The large-scale anisotropy of the temperature T of the relic electromagnetic radiation due to these fluctuations is found. It is shown that the most promising way to detect the anisotropy in the case of a flat perturbation spectrum is the investigation of correlations of ΔT/T at the angles of 5 deg - 10 deg

  6. Applicability of empirical correlations for estimating global solar radiation

    Gopinathan, K.K.; Baholo, M.

    1987-01-01

    Three empirical models suggested by different investigators, for estimating monthly mean daily global radiation on a horizontal surface, are compared statistically to test their universal applicability. The models thus compared are those suggested by Rietveld, Glover and McCulloch and Gopinathan. The models are compared by calculating the root mean square error, mean bias error and mean relative percentage error values. The model suggested by Gopinathan yields the best results in terms of root mean square, mean bias and mean percentage errors. The model by Rietveld is the second best and the model by Glover and McCulloch comes at third place. However, the differences in the magnitude of errors among the three models are very small and all the three models can be considered to be accurate for global radiation estimation for any location in the world

  7. Global solar radiation estimation in Lavras region, Minas Gerais

    Dantas, A.A.A.; Carvalho, L.G. de; Ferreira, E.

    2003-01-01

    The objective of this work was the determination of the ''a'' and '' b'' constants of the Angstrom linear model in order to estimate the global solar radiation in Lavras, MG. The work was carried out in the Climatological Station of Lavras (ECP/INMET/UFLA), at the Federal University of Lavras, from December 2001 to November 2002, through insolation daily data and global solar radiation daily records. The ''a'' and '' b'' constants, that express the atmospheric transmitance, were obtained by regression analysis of those data. The obtained equation, Qg/Qt = 0,23 + 0,49 presented a determination coefficient of 0,89. The results are smaller than those suggested by the recommendations that uses the local latitude. According to the results, its possible to indicate the values of 0,23 and 0,49 to be used as the ''a'' and '' b'' constants on the Angstrom equation to estimate the global solar radiation in Lavras, MG. (author) [pt

  8. The Global Character of the Flux of Downward Longwave Radiation

    Stephens, Graeme L.; Wild, Martin; Stackhouse, Paul W., Jr.; L'Ecuyer, Tristan; Kato, Seiji; Henderson, David S.

    2012-01-01

    Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

  9. Performance analysis of tracked panel according to predicted global radiation

    Chang, T.P.

    2009-01-01

    In this paper, the performance of a south facing single-axis tracked panel was analyzed according to global radiation predicted by empirical model. Mathematic expressions appropriate for single-axis tracking system were derived to calculate the radiation on it. Instantaneous increments of solar energy collected by the tracked panel relative to fixed panel are illustrated. The validity of the empirical model to Taiwan area will also be examined with the actual irradiation data observed in Taipei. The results are summarized as follows: the gains made by the tracked panel relative to a fixed panel are between 20.0% and 33.9% for four specified days of year, between 20.9% and 33.2% for the four seasons and 27.6% over the entire year. For latitudes below 65 deg., the yearly optimal tilt angle of a fixed panel is close to 0.8 times latitude, the irradiation ratio of the tracked panel to the fixed panel is about 1.3, which are smaller than the corresponding values calculated from extraterrestrial radiation, suggesting us that the installation angle should be adjusted toward a flatter angle and that the gain of the tracked panel will reduce while it works in cloudy climate or in air pollution environment. Although the captured radiation increases with the maximal rotation angle of panel, but the benefit on the global radiation case is still not so good as that on extraterrestrial radiation case. The irradiation data observed is much less than the data predicted by the empirical model, however the trend of fitting curve to the observed data is somewhat in agreement with that to the predicted one; the yearly gain is 14.3% when a tracked panel is employed throughout the year.

  10. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    Y. Yang

    2017-07-01

    Full Text Available The global source–receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF from 16 regions/sectors for years 2010–2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is −0.42 W m−2, with −0.31 W m−2 contributed by anthropogenic sulfate and −0.11 W m−2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS contributes 17–84 % to the total DRF. East Asia has the largest contribution of 20–30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of −0.44 W m−2. DMS has the largest contribution, explaining −0.23 W m−2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  11. Global source attribution of sulfate concentration and direct and indirect radiative forcing

    Yang, Yang; Wang, Hailong; Smith, Steven J.; Easter, Richard; Ma, Po-Lun; Qian, Yun; Yu, Hongbin; Li, Can; Rasch, Philip J.

    2017-07-01

    The global source-receptor relationships of sulfate concentrations, and direct and indirect radiative forcing (DRF and IRF) from 16 regions/sectors for years 2010-2014 are examined in this study through utilizing a sulfur source-tagging capability implemented in the Community Earth System Model (CESM) with winds nudged to reanalysis data. Sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate concentrations are primarily attributed to non-local sources from long-range transport. Regional source efficiencies of sulfate concentrations are higher over regions with dry atmospheric conditions and less export, suggesting that lifetime of aerosols, together with regional export, is important in determining regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with -0.31 W m-2 contributed by anthropogenic sulfate and -0.11 W m-2 contributed by natural sulfate, relative to a state with no sulfur emissions. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes 17-84 % to the total DRF. East Asia has the largest contribution of 20-30 % over the Northern Hemisphere mid- and high latitudes. A 20 % perturbation of sulfate and its precursor emissions gives a sulfate incremental IRF of -0.44 W m-2. DMS has the largest contribution, explaining -0.23 W m-2 of the global sulfate incremental IRF. Incremental IRF over regions in the Southern Hemisphere with low background aerosols is more sensitive to emission perturbation than that over the polluted Northern Hemisphere.

  12. Effects of Electromagnetic Perturbations on Particles Trapped in the Radiation Belts

    Dungey, J. W. [Imperial College of Science and Technology, London (United Kingdom)

    1965-06-15

    Since the radiation belts were discovered by Van Allen in 1958, observations of trapped particles have rapidly built up a large body of information. Knowledge of the neutral atmosphere as well as the ionosphere shows that for energetic particles the probable time before colliding with another particle of any kind may be extremely long. Then the only feature known to affect the motion of the particle is the electromagnetic field and, conversely, over a long time even weak electromagnetic disturbances can be important. Consequently, electromagnetic disturbances should be important in determining the form of the radiation belts, and it will be seen that certain features encourage an interpretation of this kind. The physics of the radiation belts may be regarded as a part of plasma physics, namely the realm in which collisions are negligible. This needs qualifying in that there is a boundary layer (the ionosphere) where collisions are important, and this is analogous to laboratory plasma containment devices. The energy range of trapped particles is wide, but includes the energy range required for fusion reactors. The mean free time in the radiation belts is extreme, but the neglect of collisions yields a great simplification in theoretical work, and an understanding of collision-free plasmas is expected to be useful. Observations in space have great advantages. The quantity measured by a particle-detector sensitive to a limited range of energy and with a limited cone of acceptance is the velocity distribution function, which is fundamental in theoretical work. Local electric and magnetic measurements are also made with very little disturbance by the spacecraft. The disadvantage is that simultaneous measurements cannot be made at many different points.

  13. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  14. Rotational motion of an artificial satellite perturbed by solar radiation pressure

    Moraes, R.V. de; Zanardi, M.C.

    1988-01-01

    The motion of a satellite about its center of mass is studied using a semi-analytical method. Torques produced by conservative and non conservative forces are considered. An analytical model is proposed for solar radiation torques. Andoyer variables are used to describe the rotational motion. Analytical equations are used to transform osculating to a mean set of differential equations. Since the mean equations are more slowly varying, a numerical integration using large step size can be performed to obtain the mean state at a later time. (author) [pt

  15. Gravitational perturbation of the cosmic background radiation by density concentrations. [Swiss cheese model universe

    Dyer, C C [Cambridge Univ. (UK). Inst. of Theoretical Astronomy

    1976-05-01

    The gravitational effect of density concentrations in the Universe on the temperature distribution of the cosmic blackbody background radiation is considered, using the Swiss cheese model universe, and supposing each hole to contain an expanding, homogeneous dust sphere at its centre. The temperature profile across such a hole differs in an essential way from that obtained earlier by Rees et al (Nature; 217:511 (1968)). The evolution of this effect with the expansion of the Universe is considered for 'relatively increasing' density contrasts emerging from the same initial singular state as the rest of the Universe. This effect becomes comparable to the bremsstrahlung and Compton effects on the isotropy of the background radiation for masses of about 10/sup 19/ times the mass of the sun, and exceeds these other effects as about Msup(2/3) for larger masses. If large-scale condensations of the Universe can be found for z approximately 1 to 5, delineated, maybe, by the clustering of quasars, etc., then this effect may be observable.

  16. Estimation of clear sky hourly global solar radiation in Iraq

    Al-Jumaily, Kais J.; Al-Zuhairi, Munya F.; Mahdi, Zahraa S. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2012-07-01

    The availability of hourly solar radiation data is very important for applications utilizing solar energy and for climate and environmental aspects. The aim of this work is to use a simple model for estimating hourly global solar radiation under clear sky condition in Iraq. Calculations were compared with measurements obtained from local station in Baghdad city and from Meteosat satellite data for different locations in Iraq. The statistical test methods of the mean bias error (MBE), root mean square error (RMSE) and t-test were used to evaluate the performance of the model. Results indicated that a fairly good agreement exists between calculated and measured values for all locations in Iraq. Since the model is independent of any meteorological variable, it would be of a practical use for rural areas where no meteorological data are available.

  17. [Comparison of three daily global solar radiation models].

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  18. Global Horizontal Control Network of Shanghai Synchrotron Radiation Facility

    Yu Chenghao; Ke Ming; Du Hanwen; Yin Lixin; Zhao Zhentang; Dong Lan; Huang Kaixi

    2009-01-01

    As a national big scientific engineering, Shanghai Synchrotron Radiation Facility (SSRF) has rigid requirement to the components with sub-millimeter accuracy. In the process of survey and positioning global control network is a connecting link, which determines the position relationship between building and accelerator devices, and provides high accuracy datum to local control network. Within the designing process, building and devices are very restrict. While among observation, it's hard to be observed and abound with disadvantages. With continuous optimization and careful operation, super-high accuracy of 0.3 mm within 400 m circumference was achieved and slab's periodic movement could be seen through 3 times measurement. (authors)

  19. Frequency-independent radiation modes of interior sound radiation: Experimental study and global active control

    Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.

    2017-08-01

    Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.

  20. Gauge invariant perturbation theory prediction of the sensitivity required for experimental measurement of quadrupole and higher moments of the cosmic microwave background radiation

    Wilson, K.E.

    1985-01-01

    The temperature variation of the cosmic microwave background radiation is computed in a spherical harmonic expansion for a 4 million term sum of perturbations. Each term has a different direction and a randomly chosen phase. The spherical harmonics are evaluated for values of the index l from 1 through 9. The computation was done by starting with the model for gauge invariant cosmological perturbations composed by James M. Bardeen (1980). This model does linear perturbation theory against a background Friedmann-Robertson-Walker general relativistic cosmological model. The Bardeen model was recomputed for a cosmological-time metric then solved for zero curvature and zero cosmological constant in the background for radiation and dust equations of state. Instantaneous decoupling was assumed. The model was solved for zero curvature, cosmological constant, and pressure in perturbation order. These solutions were used to compute the redshift equation, and then the temperature variation equation. The integral over the null geodesic (photon) path can be evaluated analytically under the zero curvature cosmological constant, and pressure assumption. Analytic equations are obtained for the temperature variation caused by an isothermal or adiabatic perturbation of a single mode (amplitude, wavelength, phase, and direction)

  1. Global aerosol transport and consequences for the radiation budget

    Newiger, M.; Grassl, H.; Schussel, P.; Rehkopf, J.

    1984-01-01

    Man's activities may influence global climate by changing the atmospheric composition and surface characteristics and by waste heat. Most prominent within this discussion is the increase or decrease of radiatively active trace gases like CO/sub 2/, N/sub 2/O, O/sub 3/, and others. The general opinion is converging towards a greenhouse effect as a combined action of all trace gases, whose exact magnitude is uncertain mainly because of the unknown reaction of water cycle. The aim of our global 2-D (resolving latitude and height) aerosol transport model is the calculation of aerosol particle number density profiles as a function of latitude for present natural plus anthropogenic emissions. The aerosol transport model uses prescribed meridonal circulation, diffusivity factors and cloud climatology for January as well as July. All these latitude and height dependent input parameters were taken from well known sources. The fixed climatology excludes the feedback of aerosol particle parameter changes on mean circulation. However, the radiative parameters of six clouds types are modified, although they possess by adoption of the Telegadas and London (1954) cloud climatology prescribed amount and height. The inclusion of the feedback on mean circulation seems premature at present. Adding particles either accounting for natural emissions or natural anthropogenic emission and removing particles by all known sinks outside and within clouds gives us - for the stationary state - vertical profiles of aerosol number density in three sizes classes as a function of latitude. These profiles in turn are input for radiation flux calculations in clear and cloudy areas in order to assess net flux changes caused by the present aerosol load in comparison to a scenario without anthropogenic emissions. The net flux changes finally are compared to those calculated for increased CO/sub 2/ levels

  2. Improved correlation of monthly mean daily and hourly diffuse radiation with the corresponding global radiation for Indian stations

    Garg, H.P.; Garg, S.N.

    1985-12-01

    Several existing correlations between radiation monthly mean ratios of global to extraterrestrial and diffuse to global were tried for four Indian stations and found inadequate. New correlations were established for these stations and it was shown that these correlations are highly climate dependent. Classical equation of Liu and Jordon was tried to find hourly diffuse and global radiation from daily sums of diffuse and global radiation respectively. It was suitably modified to suit the Indian data. Equations developed by Collares-Pereira and Rabl have shown excellent agreement with the observed values

  3. Radiative transfer model for estimation of global solar radiation; Modelo de transferencia radiativa para la estimacion de la radiacion solar global

    Pettazzi, A.; Sabon, C. S.; Souto, G. J. A.

    2004-07-01

    In this work, the efficiency of a radiative transfer model in estimating the annual solar global radiation has been evaluated, over different locations at Galicia, Spain, in clear sky periods. Due to its quantitative significance, special attention has been focused on the analysis of the influence of visibility over the global radiation. By comparison of both estimated and measured global solar radiation along year 2002, a typical annual visibility series was obtained over every location. These visibility values has been analysed in order to identify patterns and typical values, in order to be used to estimate the global solar radiation along a different year. Validation was done over the year 2003, obtaining an annual estimation less than 10 % different to the measured value. (Author)

  4. An linear matrix inequality approach to global synchronisation of non-parameter perturbations of multi-delay Hopfield neural network

    Shao Hai-Jian; Cai Guo-Liang; Wang Hao-Xiang

    2010-01-01

    In this study, a successful linear matrix inequality approach is used to analyse a non-parameter perturbation of multi-delay Hopfield neural network by constructing an appropriate Lyapunov-Krasovskii functional. This paper presents the comprehensive discussion of the approach and also extensive applications

  5. Performance of Sayigh's universal formula in the estimation of global solar radiation in Ghana

    Oduro Afriyie, K.

    1995-10-01

    The performance of Sayigh's universal formula for the estimation of global solar radiation is tested against that of Angstrom-Black model for 13 stations in Ghana, using monthly mean daily global solar radiation averaged over the years 1957-1981. Sayigh's model is found not to perform as credibility as the Angstrom-Black model in the estimation of monthly global solar radiation in Ghana. Of the 156 values of monthly global solar radiation estimated by Sayigh's model, 123 (or 78.8%) had discrepancies of more than 10% with the measured values. The corresponding value for the Angstrom-Black model was 7 (or 4.5%). (author). 5 refs

  6. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    Njau, E.C.

    1988-06-01

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  7. Estimation of global solar radiation by means of sunshine duration

    Luis, Mazorra Aguiar; Felipe, Diaz Reyes [Electrical Engineering Dept., Las Palmas de Gran Canaria Univ. (U.L.P.G.C.), Campus Univ. Tafira (Spain); Pilar, Navarro Rivero [Canary Islands Technological Inst. (I.T.C.), Gran Canaria (Spain)

    2008-07-01

    This paper analyses the relationship between global solar irradiation and sunshine duration with different estimation models for the island of Gran Canaria (Spain). These parameters were taken from six measurement stations around the Island, and selected for their reliability and the long period of time they covered. All data used in this paper were handed over by the Canary Islands Technological Institute (I.T.C.). As a first approach, it was decided to study the Angstrom lineal model. In order to improve the knowledge on solar resources, a Typical Meteorological Year (TMY) was created from all daily data. TMY shows differences between southern and northern locations, where Trade Winds generate clouds during the summer months. TMY resumes a data bank much longer than a year in duration, generating the characteristics for a year series of each location, for both irradiation and sunshine duration. To create the TMY, weighted means have been used to smooth high or low values. At first, Angstrom lineal model has been used to estimate solar global irradiation from sunshine duration values, using TMY. But the lineal model didn't reproduce satisfactory results when used to obtain global solar radiation from all daily sunshine duration data. For this reason, different models based in both parameters were used. The parameters estimation of this model was achieved both from TMY daily and monthly series and from all daily data for every location. Because of the weather stability all over the year in the Island, most of the daily data are concentrated in a close range, occasioning a deviation in the lineal equations. To avoid this deviation it was proposed to consider a limit condition data, taking into account values out of the main cloud of data. Additionally, different models were proposed (quadratic, cubic, logarithmic and exponential) to make a regression from all daily data. The best results were obtained with the exponential model proposed in this paper. The

  8. Participation of the radiation hygiene laboratories to the WHO/UNEP global environmental radiation network

    Milu, C.; Gheorghe, R.

    2003-01-01

    In December 1987, a WHO-UNEP meeting held at SCPRI (Service Central de protection canter Les Rayonnements Ionisantes - Le Vesinet, France) set up the basis of the international network GERMON (Global Environmental Radiation Monitoring Network) as an extension of existing network 'Global Environment Monitoring Systems' (GEMS). The accident from Chernobyl certainly was the important nuclear event influencing this decision. The aim of the GERMON network is to initiate programmes for the routine monitoring of the environmental radioactivity and to ensure a quick interchange of credible data in case of major accidental radioactive releases, as well as the development of intervention devices in the member states running such programmes. The responsibility of the Co-ordinating Collaborating Centre (CCC) has been given to the French Service Central de Protection Centre les Rayonnements Ionisants (SCPRI). In 1994, this Service became the Office de Protection Centre les Rayonnements Ionisants (OPRI). The Ministry of Health has a national network consisting of 23 radiation hygiene laboratories; 19 of these are included in the framework of county divisions of public health , and the other 4 are compartments of the regional institutes of public health. WHO designated the Institute of Public Health from Bucharest as National Contact Centre, in charge with communicating the results obtained by the national laboratories on the indicators of environmental radioactivity, according to the established methodologies. The main indicators considered are: ambient gamma dose, radioactivity of the air, of the precipitation, and of the milk. Following the measurement and transmission protocols of the CCC, the Radiation Hygiene Laboratory from the Institute of Public Health has established a methodology to be followed by the laboratories of the national network. (authors)

  9. Using Perturbed Physics Ensembles and Machine Learning to Select Parameters for Reducing Regional Biases in a Global Climate Model

    Li, S.; Rupp, D. E.; Hawkins, L.; Mote, P.; McNeall, D. J.; Sarah, S.; Wallom, D.; Betts, R. A.

    2017-12-01

    This study investigates the potential to reduce known summer hot/dry biases over Pacific Northwest in the UK Met Office's atmospheric model (HadAM3P) by simultaneously varying multiple model parameters. The bias-reduction process is done through a series of steps: 1) Generation of perturbed physics ensemble (PPE) through the volunteer computing network weather@home; 2) Using machine learning to train "cheap" and fast statistical emulators of climate model, to rule out regions of parameter spaces that lead to model variants that do not satisfy observational constraints, where the observational constraints (e.g., top-of-atmosphere energy flux, magnitude of annual temperature cycle, summer/winter temperature and precipitation) are introduced sequentially; 3) Designing a new PPE by "pre-filtering" using the emulator results. Steps 1) through 3) are repeated until results are considered to be satisfactory (3 times in our case). The process includes a sensitivity analysis to find dominant parameters for various model output metrics, which reduces the number of parameters to be perturbed with each new PPE. Relative to observational uncertainty, we achieve regional improvements without introducing large biases in other parts of the globe. Our results illustrate the potential of using machine learning to train cheap and fast statistical emulators of climate model, in combination with PPEs in systematic model improvement.

  10. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  11. Prediction of monthly average global solar radiation based on statistical distribution of clearness index

    Ayodele, T.R.; Ogunjuyigbe, A.S.O.

    2015-01-01

    In this paper, probability distribution of clearness index is proposed for the prediction of global solar radiation. First, the clearness index is obtained from the past data of global solar radiation, then, the parameters of the appropriate distribution that best fit the clearness index are determined. The global solar radiation is thereafter predicted from the clearness index using inverse transformation of the cumulative distribution function. To validate the proposed method, eight years global solar radiation data (2000–2007) of Ibadan, Nigeria are used to determine the parameters of appropriate probability distribution for clearness index. The calculated parameters are then used to predict the future monthly average global solar radiation for the following year (2008). The predicted values are compared with the measured values using four statistical tests: the Root Mean Square Error (RMSE), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and the coefficient of determination (R"2). The proposed method is also compared to the existing regression models. The results show that logistic distribution provides the best fit for clearness index of Ibadan and the proposed method is effective in predicting the monthly average global solar radiation with overall RMSE of 0.383 MJ/m"2/day, MAE of 0.295 MJ/m"2/day, MAPE of 2% and R"2 of 0.967. - Highlights: • Distribution of clearnes index is proposed for prediction of global solar radiation. • The clearness index is obtained from the past data of global solar radiation. • The parameters of distribution that best fit the clearness index are determined. • Solar radiation is predicted from the clearness index using inverse transformation. • The method is effective in predicting the monthly average global solar radiation.

  12. Experimental study of the ultraviolet global radiation in San Jose, Costa Rica

    Wright, J.

    1996-01-01

    The ultraviolet global radiation and the global solar radiation at San Jose, Costa Rica (latitude: 9 0 56', longitude: 84 0 54', altitude: 1.172 m.) during the period October 1993 to January 1995 were analyzed with respect to their seasonal variations and their independence. The dependence between the ultraviolet radiation and the clearness index of the skies was also investigated. A poor correlation was found between the quotient of the ultraviolet radiation (Hv/Hg) and between the global solar radiation and the extraterrestrial solar radiation (Hg/Ho). The correlation coefficient found between Hv/Hg and Hg/Ho was not greater than 0.25 for four categories of clearness index, i.e., covered skies, clear skies, and two intermediate conditions. This demonstrates that the ultraviolet radiation is not only associated with other atmospheric transmission conditions. A regression analysis between the hourly values of the ultraviolet and global radiation yielded a linear relationship with a determination coefficient greater than 98%. Thus a simple linear regression is reliable for the estimation of the ultraviolet in San Jose from global solar radiation data. (author) [es

  13. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    Batlles, F.J.; Bosch, J.L. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain); Tovar-Pescador, J. [Dpto. Fisica, Universidad de Jaen, 23071 Jaen (Spain); Martinez-Durban, M. [Dpto. Ingenieria Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Ortega, R. [Dpto. Edafologia y Quimica Agricola, Universidad de Almeria, 04120 Almeria (Spain); Miralles, I. [Dpto. Edafologia y Quimica Agricola, Universidad de Granada, 28071 Granada (Spain)

    2008-02-15

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, {tau}. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been

  14. Perturbation theory

    Bartlett, R.; Kirtman, B.; Davidson, E.R.

    1978-01-01

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  15. A study of the radiative forcing and global warming potentials of hydrofluorocarbons

    Zhang Hua; Wu Jinxiu; Lu Peng

    2011-01-01

    We developed a new radiation parameterization of hydrofluorocarbons (HFCs), using the correlated k-distribution method and the high-resolution transmission molecular absorption (HITRAN) 2004 database. We examined the instantaneous and stratospheric adjusted radiative efficiencies of HFCs for clear-sky and all-sky conditions. We also calculated the radiative forcing of HFCs from preindustrial times to the present and for future scenarios given by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (SRES, in short). Global warming potential and global temperature potential were then examined and compared on the basis of the calculated radiative efficiencies. Finally, we discuss surface temperature changes due to various HFC emissions.

  16. Environmental radiation monitoring system with GPS (global positioning system)

    Komoto, Itsuro

    2000-01-01

    This system combines a radiation monitoring car with GPS and a data processor (personal computer). It distributes the position information acquired through GPS to the data such as measured environmental radiation dose rate and energy spectrum. It also displays and edits the data for each measuring position on a map. Transmitting the data to the power station through mobile phone enables plan managers to easily monitor the environmental radiation dose rate nearby and proper emergency monitoring. (author)

  17. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  18. Assessing the Performance of Global Solar Radiation Empirical ...

    In the region where solar radiation data are scarce, the next alternative method is to use solar radiation models to estimate the data needed for some applications such as simulation of crop performance and the design of solar energy conversion devices. In this paper, the validations of fifteen models for estimating monthly ...

  19. Global existence of a generalized solution for the radiative transfer equations

    Golse, F.; Perthame, B.

    1984-01-01

    We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr

  20. New technique for global solar radiation forecasting by simulated annealing and genetic algorithms using

    Tolabi, H.B.; Ayob, S.M.

    2014-01-01

    In this paper, a novel approach based on simulated annealing algorithm as a meta-heuristic method is implemented in MATLAB software to estimate the monthly average daily global solar radiation on a horizontal surface for six different climate cities of Iran. A search method based on genetic algorithm is applied to accelerate problem solving. Results show that simulated annealing based on genetic algorithm search is a suitable method to find the global solar radiation. (author)

  1. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  2. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran

    Mostafavi, Elham Sadat; Ramiyani, Sara Saeidi; Sarvar, Rahim; Moud, Hashem Izadi; Mousavi, Seyyed Mohammad

    2013-01-01

    This paper presents an innovative hybrid approach for the estimation of the solar global radiation. New prediction equations were developed for the global radiation using an integrated search method of genetic programming (GP) and simulated annealing (SA), called GP/SA. The solar radiation was formulated in terms of several climatological and meteorological parameters. Comprehensive databases containing monthly data collected for 6 years in two cities of Iran were used to develop GP/SA-based models. Separate models were established for each city. The generalization of the models was verified using a separate testing database. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the solar radiation. The derived models make accurate predictions of the solar global radiation and notably outperform the existing models. -- Highlights: ► A hybrid approach is presented for the estimation of the solar global radiation. ► The proposed method integrates the capabilities of GP and SA. ► Several climatological and meteorological parameters are included in the analysis. ► The GP/SA models make accurate predictions of the solar global radiation.

  3. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  4. A critical review on the estimation of daily global solar radiation from sunshine duration

    Yorukoglu, Mehmet; Celik, Ali Naci

    2006-01-01

    Models such as the Angstroem-Prescott equation are used to estimate global solar radiation from sunshine duration. In the literature, researchers investigate either the goodness of the model itself or the goodness of the estimation of global solar radiation based on a set of statistical parameters such as R 2 , RMSE, MBE, MABE, MPE and MAPE. If the former is the objective, then the statistical analysis should naturally be based on H/H o - S/S o (the ratio of daily solar radiation to extraterrestrial daily solar radiation vs. the ratio of sunshine duration to day length). If the latter is investigated, then the statistical analysis should be based on H c - H m (calculated daily solar radiation vs. measured daily solar radiation). A literature survey undertaken in the present article showed that these two data sets are apt to be confused, drawing the statistical parameters to be used in assessment of the estimation model from the latter data set or the vice versa set. The statistical parameters are clearly derived from the basics for both of the data sets, and the inconsistencies caused by this confusion and other factors are exposed. A case study of the estimation models and global solar radiation estimation from sunshine duration is presented using five different models (linear, quadratic, cubic, logarithmic and exponential), which are the most common models used in the literature, based on 6 years long measured hourly global solar radiation data

  5. A model for calculating hourly global solar radiation from satellite data in the tropics

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  6. A model for calculating hourly global solar radiation from satellite data in the tropics

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  7. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE)

    Turner, Sandra; Eriksen, Jesper G; Trotter, Theresa

    2015-01-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders...... with similar goals, would provide a valuable vehicle to ensure training program currency, through sharing of resources and expertise, and enhance high quality radiation oncology education. Potential projects for the Global Radiation Oncology Collaboration in Education (GRaCE) were agreed upon...

  8. Evaluation and reconstruction of global radiation at Bílý Kříž (the Czech Republic)

    Marková, I.; Rožnovský, J.; Janouš, D.

    2003-01-01

    Evaluation of global radiation was performed at the study site of Bílý Kříž (the Moravian-Silesian Beskids Mts, the Czech Republic) during the growing seasons (May-October) in 1991-2000. Radiation conditions were characterized by daily and monthly sums of global radiation. Detailed analysis of global radiation daily sums revealed that they vary considerably with time. Average value of global radiation daily sums calculated after the whole period of seasons 1991-2000 was 13.49 MJ per square m. While seasonal course of monthly averages of global radiation daily sums corresponded to the changes of sun elevation, the average monthly sums of global radiation did not. Average seasonal sum of global radiation at the study site in 1991-2000 was 2483 +/- 141 MJ per square m. Relationship between global radiation daily sums at the Bily Kriz study site and sunshine duration at the nearby site of Lysa hora was described and linear relationship between these two characteristics was confirmed. On the basis of this determined relationship it was possible to reconstruct global radiation daily sums at the study site for a period of forty years (1961-2000). Average of global radiation daily sums calculated for the whole period of seasons from 1961 to 2000 was 9.11 MJ per square m. The highest monthly averages of global radiation daily sums were found in June and July, the lowest in October. It was confirmed that average monthly sums of global radiation did not correspond to the sun elevation even for the long period of 1961-2000. Average seasonal sum of global radiation was 2415 ñ 152 MJ.m-2 in 1961-2000. On average, 40% of extra-terrestrial solar radiation reached the study site during the growing season in 1961-2000

  9. T-odd correlations in radiative K{sup +} {sub l3} decays and chiral perturbation theory

    Mueller, E.H.; Kubis, B. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Forschungszentrum Juelich, Institut fuer Kernphysik (Theorie), Juelich (Germany)

    2006-11-15

    The charged kaon decay channel K{sup +} {sub l3{gamma}} allows for studies of direct CP violation, possibly due to non-standard mechanisms, with the help of T-odd correlation variables. In order to be able to extract a CP-violating signal from experiment, it is necessary to understand all possible standard model phases that also produce T-odd asymmetries. We complement earlier studies by considering strong interaction phases in hadronic structure functions that appear at higher orders in chiral perturbation theory, and we compare our findings to other potential sources of asymmetries. (orig.)

  10. Global solar radiation in Sierra Leone (West Africa)

    Massaquoi, J.G.M.

    1987-09-01

    A correlation equation of the Angstrom type has been developed to predict the monthly average daily global solar irradiation incident on a horizontal surface in Freetown, Sierra Leone. Measurements of the global insolation have been compared with those predicted using the equation. A good agreement (greater than 95% in most cases) was observed between the measured values and the predicted ones. (author). 15 refs, 2 tabs

  11. RAMOS - the radiation monitoring system of the Umweltforschungsinstitut Global 2000

    Exler, M.; Schmittner, W.

    2001-01-01

    The radiation early warning system RAMOS (radiation monitoring system) measures the radioactivity of the areas surrounding nuclear technical facilities (at present, around the Nuclear Power Plants Dukovany and Mochovce). Measurements are taken with Gamma-radiation devices of the type RS 03/X by the firm BITT- Technology. These devices are measuring equipment of the type Proportion-count tube with a detection range of 10 nSv/h to 10 Sv/h. The measuring stations consist of this Gamma measuring equipment, a personal computer with modem, back-up electricity devices and meteorological measuring devices. Six such measuring stations surrounding the facility comprise a complete measuring ring. The values are measured each minute. Considering the normal fluctuation in radiation measurements due to geology and weather conditions and the average background radiation, a certain alarm threshold is defined (on all stations this threshold is under 230 nSv/h). If this threshold is breached, immediately the data is transmitted through telephone lines and is received by the central office. Because of the short reaction time and low threshold, valuable time is gained for an emergency response by government agencies and the population. Official warning of the government agencies occurs after fulfilling the commendation of the Austrian Radiation Protection Commission. In the continued measurements from the end of 1994 to 2000 at NPP Dukovany and continuous measurements from NPP Mochovce from mid-1999 to the end of 2000, there was not a detection of dangerous levels of radiation were released into the atmosphere. After close examination of the measured data, different types of fluctuations could be observed - such as during the day-time period and short-term peaks after rain-fall. Detailed knowledge about trends in these fluctuations, allows an easier continual evaluation of a potential accident. The measured data is given to the public in graphic form every month via the Internet

  12. Global analysis of nuclear parton distribution functions at leading and next-to-leading order perturbative QCD

    Pesznyak, Csilla

    The aim of the investigation is to give answer to some questions of the QC in the mega-voltage therapy for the sake of making the treatments more trouble-free. We investigated the terms of the usage of CT and PET/CT equipments in treatment planning that were made originally for diagnostic purposes. We compared the calculation algorithms of the Varian CadPlan(TM) and CMS XiORTM treatment planning systems (TPS) for photon and electron radiations of different energy. We also investigated the terms of usage of the PTW EPID QC PHANTOMRTM in the quality control of the EPID's and the portal images, as well. We laid down the terms in a protocol that make the diagnostic CT and PET/CT equipments capable for radiation treatment planning. The protocols should contain the exact patient setup, the tube voltage, detailed directions for use of patient immobilization tools, the review and use of the necessary QA/QC devices, the time consumption of the procedure, the frequency of controls and the worksheet to be used during the measurements. On the base of the measurements, it can be stated that on photon energies the superposition algorithm can be used for patient treatments in the case of the CMS XiORTM TPS while in the case of Varian CadPlan(TM) TPS the PBMB algorithm is the proper choice. It is not allowed to use the TPS without inhomogeneity correction. The CIRS Thorax IMRT phantom can be used for electron measurement only at higher than 10 MeV since only the Farmer chamber can be inserted into the holes of the phantom. On the base of the electron measurements, it can be stated that both planning systems give good results in soft tissue. In lung equivalent material the calculated values of the Varian CadPlan(TM) are in better agreement with the measured values, but the calculated values behind the bones are not accurate enough. In the QA/QC process the PTW EPID QC PHANTOMRTM is usable not only for the amorphous silicon EPID's but the image quality can be analysed on the video

  13. Spatial distribution of coefficients for determination of global radiation in Serbia

    Nikolić Jugoslav L.

    2012-01-01

    Full Text Available The aim of this paper is a creation of the spatial distribution of the corresponding coefficients for the indirect determination of global radiation using all direct measurements data of this shortwave radiation balance component in Serbia in the standard climate period (1961-1990. Based on the global radiation direct measurements data recorded in the past and routine measurements/observations of cloudiness and sunshine duration, the spatial distribution coefficients maps required for calculation of global radiation were produced on the basis of sunshine/cloudiness in an arbitrary point on the territory of Serbia. Besides, a specific verification of the proposed empirical formula was performed. This paper contributes to a wide range of practical applications as direct measurements of global radiation are relatively rare, and are not carried out in Serbia today. Significant application is possible in the domain of renewable energy sources. The development of method for determination of the global radiation has an importance from the aspect of the environmental protection; however it also has an economic importance through applications in numerous commercial projects, as it does not require special measurements or additional financial investments.

  14. Spatio-temporal distribution of global solar radiation for Mexico using GOES data

    Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.

    2013-05-01

    Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.

  15. Evaluation of long-term global radiation measurements in Denmark and Sweden

    Skalík, Lukáš; Lulkovičová, Otília; Furbo, Simon

    The climate, especially global radiation is one of the key factors influencing the energy yield of solar energy systems. In connection with planning and optimization of energy efficient buildings and solar energy systems it is important to know the climate data of the area where the buildings...... of the atmosphere, increased duration of periods without clouds and/or combination of both these effects. Twenty years of measurements from a climate station in Lyngby, Denmark show that the global radiation increase is almost 3.5 kWh/m2 per year, corresponding to a growth of 7 % for the last 20 years. The global....../systems are located. This study is based on yearly and monthly values of global radiation based on measurements from a climate station placed on the roof of building 119 at Technical University of Denmark in Kgs. Lyngby, from different Danish climate stations runned by Danish Meteorological Institute and from...

  16. Evaluation of different models to estimate the global solar radiation on inclined surface

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  17. An algorithm to provide UK global radiation for use with models

    Hamer, P.J.C.

    1999-01-01

    Decision support systems which include crop growth models require long-term average values of global radiation to simulate future expected growth. Global radiation is rarely available as there are relatively few meteorological stations with long-term records and so interpolation between sites is difficult. Global radiation data across a good geographical spread throughout the UK were obtained and sub-divided into ‘coastal’ and ‘inland’ sites. Monthly means of global radiation (S) were extracted and analysed in relation to irradiance in the absence of atmosphere (S o ) calculated from site latitude and the time of year. The ratio S/S o was fitted to the month of the year (t) and site latitude using a nonlinear fit function in which 90% of the variance was accounted for. An algorithm is presented which provides long-term daily values of global radiation from information on latitude, time of year and whether the site is inland or close to the coast. (author)

  18. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  19. Traffic Perturbation

    C. Colloca TS/FM

    2004-01-01

    TS/FM group informs you that, for the progress of the works at the Prévessin site entrance, some perturbation of the traffic may occur during the week between the 14th and 18th of June for a short duration. Access will be assured at any time. For more information, please contact 160239. C. Colloca TS/FM

  20. Perturbation analysis of magnetohydrodynamics oscillatory flow on convective-radiative heat and mass transfer of micropolar fluid in a porous medium with chemical reaction

    Dulal Pal

    2016-03-01

    Full Text Available This paper deals with the perturbation analysis of mixed convection heat and mass transfer of an oscillatory viscous electrically conducting micropolar fluid over an infinite moving permeable plate embedded in a saturated porous medium in the presence of transverse magnetic field. Analytical solutions are obtained for the governing basic equations. The effects of permeability, chemical reaction, viscous dissipation, magnetic field parameter and thermal radiation on the velocity distribution, micro-rotation, skin friction and wall couple stress coefficients are analyzed in detail. The results indicate that the effect of increasing the chemical reaction has a tendency to decrease the skin friction coefficient at the wall, while opposite trend is seen by increasing the permeability parameter of the porous medium. Also micro-rotational velocity distribution increases with an increase in the magnetic field parameter.

  1. SU-E-T-320: The Effect of Survivin Perturbation On the Radiation Response of Breast Cancer Cell Lines

    Smith, D; Debeb, B; Woodward, W

    2014-01-01

    Purpose: Survivin is the smallest member of the inhibitor of apoptosis protein family and is well-known for its universal over-expression in human cancers. Due to its role in apoptosis and cellular proliferation, survivin is implicated in the radiation response in several cancer types, and antisurvivin treatments have had success as a radiation sensitizer in many preclinical cancer models. As no studies to date have reported survivin as a factor affecting radiation resistance in breast cancer models, we sought to evaluate the synergistic relationship between survivin function and irradiation in breast cancer cell lines. Methods: Information regarding survivin protein expression in breast cancer was retrieved from three public databases: Oncomine, Kaplan-Meier Plotter, and GOBO. For the in vitro studies, survivin function was compromised by transducing a non-functional mutant form (survivin-DN) into two breast cancer cell lines, the estrogen receptor-positive MCF7 and the triple-negative, inflammatory SUM149. Cell growth was compared in the survivin-DN and control populations with colony-formation assays. To assess how survivin affects radiation response, clonogenic assays were performed by irradiating the cell lines up to 6 Gy. Results: From the public databases, survivin is more highly expressed in triple-negative breast cancer compared to all other subtypes, and is prognostic of poor survival in all breast cancer patients. In MCF7, the survivin-DN population had decreased colony-formation potential; the opposite was true in SUM149. In the clonogenic assays, abrogation of survivin function radio-protected MCF7 cells in monolayer and 3D growth conditions, while SUM149 survivin-DN cells were radiosensitized in monolayer conditions. Conclusion: We observed synergy between survivin function and radiation, although the results between the two cell lines were disparate. Further investigation is required to identify the mechanism of this discrepancy, including evaluation

  2. Perturbation in the 240Pu/239Pu global fallout ratio in local sediment following the nuclear accidents at Thule (Greenland) and Palomares (Spain)

    Mitchell, P.I.; Vintro, L.L.; Gasco, C.; Sanchez-Cabeza, J.A.

    1995-01-01

    It is well established that the main source of the plutonium found in marine sediments throughout the Northern Hemisphere is global stratospheric fallout, characterized by a typical 240 Pu/ 239 Pu atom ratio of ∼0.18. Measurements of perturbations in this ratio at various sites which had been subjected to close-in fallout, mainly from surface-based testing, has confirmed the feasibility of using this ratio to distinguish plutonium from different fallout sources. In the present study, the 240 Pu/ 239 Pu ratio has been examined in samples of sediment collected at Thule (Greenland) and Palomares (Spain), where accidents involving the release and dispersion of plutonium from fractured nuclear weapons occurred in 1968 and 1966, respectively. The 240 Pu/ 239 Pu ratio was measured by high-resolution alpha spectrometry and spectral deconvolution. The analytical results showed that at Thule the mean 240 Pu/ 239 Pu atom ratio was 0.033±0.004, while at Palomares the equivalent ratio appeared to be significantly higher at 0.056±0.003. Both ratios are consistent with those reported for soils samples at the Nevada site and Nagasaki, and are clearly indicative of weapons-grade plutonium. 27 refs., 1 fig., 2 tabs

  3. Leveraging the Global Health Service Partnership Model for Workforce Development in Global Radiation Oncology

    Omoruyi Credit Irabor

    2017-12-01

    Full Text Available A major contributor to the disparity in cancer outcome across the globe is the limited health care access in low- and middle-income countries that results from the shortfall in human resources for health (HRH, fomented by the limited training and leadership capacity of low-resource countries. In 2012, Seed Global Health teamed up with the Peace Corps to create the Global Health Service Partnership, an initiative that has introduced a novel model for tackling the HRH crises in developing regions of the world. The Global Health Service Partnership has made global health impacts in leveraging partnerships for HRH development, faculty activities and output, scholarship engagement, adding value to the learning environment, health workforce empowerment, and infrastructure development.

  4. Evaluation of Applicability of Global Solar Radiation Prediction Models for Kocaeli

    Nurullah ARSLANOĞLU

    2016-04-01

    Full Text Available Design and analyses of solar energy systems needs value of global solar radiation falling on the surface of the earth. In this study,  thirty relative sunshine duration based regression models in the literature for determining the monthly average daily global solar radiation on a horizontal surface for Kocaeli were investigated. To indicate the performance of the models, the following statistical test methods are used: mean absolute bias error (MABE, mean bias error (MBE, mean absolute percent error (MAPE, mean percent error (MPE, root mean square error (RMSE. According to the statistical performance, Lewis model (Model 23, Model-18 (Jin et al. and Model 8 (Bahel et al. showed the best estimation of the global solar radiation on a horizontal surface for Kocaeli.

  5. Estimation of radiation hazard of global 85Kr

    Vasilenko, I.Ya.; Moskalev, Yu.I.; Istomina, A.G.

    1979-01-01

    The data on sources and levels of the 85 Kr biosphere contamination are presented on the basis of generalization and analysis of literature. The potential irradiation doses for people are calculated and the biological estimation of the hazard of 85 Kr accumulation in the atmosphere up to 2050 is given taking into account the prospects for development of nuclear power engineering. The basis of the estimation is the radionuclide blastomogeneous and genetic effect. The conclusion is made that the prospects for development of nuclear power engineering do not lead to any sufficient increase in the number of malignant tumors and genetic abnormalities caused by 85 Kr radiation comparing with their natural frequency

  6. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  7. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation

    Baser, Furkan; Demirhan, Haydar

    2017-01-01

    Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics. - Highlights: • A fuzzy regression functions with support vector machines approach is proposed. • The approach is robust against outlier observations and over-fitting problem. • Estimation accuracy of the model is superior to several existent alternatives. • A new solar radiation estimation model is proposed for the region of Turkey. • The model is useful under complex terrestrial and climatic conditions.

  8. Effects of aerosol from biomass burning on the global radiation budget

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  9. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel

    Stubenrauch , C.J.; Rossow , W.B.; Kinne , S.; Ackerman , S.; Cesana , G.; Chepfer , H.; Di Girolamo , L.; Getzewich , B.; Guignard , A.; Heidinger , A.; Maddux , B.C.; Menzel , W.P.; Minnis , P.; Pearl , C.; Platnick , S.

    2013-01-01

    International audience; The Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel initiated the GEWEX Cloud Assessment in 2005 to compare available, global, long-term cloud data products with the International Satellite Cloud Climatology Project (ISCCP). The GEWEX Cloud Assessment database included cloud properties retrieved from different satellite sensor measurements, taken at various local times and over various time periods. The relevant passive satellite sensors measured radia...

  10. Radiation effects on man health, environment, safety, security. Global Chernobyl mapping

    Bebeshko, V.; Bazyka, D.; Volovik, S.; Loganovsky, K.; Sushko, V.; Siedow, J.; Cohen, H.; Ginsburg, G.; Chao, N.; Chute, J.

    2007-01-01

    Complete text of publication follows. Objectives: Ionizing radiation is a primordial terrestrial and extraterrestrial background and archetypal environmental stress-factor for life origin, evolution, and existence. We all live in radiation world inevitably involving nuclear energy production, nuclear weapon, nuclear navy, radioactive waste, pertinent medical diagnostics and treatment, etc with connected certain probability of relevant accidents and terrorist attack, space and jet travels, high natural background radiation, etc - actual and potential sources of radiation exposures and effects. State-of- the art integral fundamental research on radiation effects on man health, environment, safety, and security (REMHESS) is nowadays paramount necessity and challenge. Methods and results: In given generalized conceptual framework unique 20 years Chernobyl multidimensional research and databases for radiation effects on man's all organism systems represent invaluable original basis and resources for mapping Chernobyl data and REMHESS challenge. Granted by DOE brand new Chernobyl Research and Service Project based on 'Sarcophagus-II' (Object 'Shelter') workers only one in radiation history baseline cohort, corresponding biorepository prospective dynamic data, integrated conceptual database system, and 'state of the art' 'omics' (genomics, proteomics, metabolomics) analysis is designed specifically for coherent addressing global REMHESS problems. In this connection 'Sarcophagus-II' is only one unique universal model. Conclusions: The fundamental goals of novel strategic Project and global Chernobyl mapping are to determine specific 'omics' signatures of radiation for man depending of exposure peculiarity to understand ultimate molecular mechanisms of radiation effects, gene environment interactions, etiology of organisms systems disorders and diseases, and to develop new biomarkers and countermeasures to protect man health in the framework of global REMHESS challenge

  11. Global diagnostics of the ionospheric perturbations related to the seismic activity using the VLF radio signals collected on the DEMETER satellite

    O. Molchanov

    2006-01-01

    Full Text Available The analysis of the VLF signals radiated by ground transmitters and received on board of the French DEMETER satellite, reveals a drop of the signals (scattering spot connected with the occurrence of large earthquakes. The extension of the "scattering spots" zone is large enough (1000–5000 km and, probably, it increases with the magnitude of the "relative" earthquake. A possible model to explain the phenomenology, based on the acoustic gravity waves and the ionosphere turbulence, is proposed. The method of diagnostics applied to this study has the advantage to be a global one due to the world wide location of the powerful VLF transmitters and of the satellite reception. However, a specific disadvantage exists because the method requires rather a long time period of analysis due to the large longitudinal displacements among the successive satellite orbits. At the moment, at least, one month seems to be necessary.

  12. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-01-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, w...

  13. Inter-comparison of different models for estimating clear sky solar global radiation for the Negev region of Israel

    Ianetz, Amiran; Lyubansky, Vera; Setter, Ilan; Kriheli, Boris; Evseev, Efim G.; Kudish, Avraham I.

    2007-01-01

    Solar global radiation is a function of solar altitude, site altitude, albedo, atmospheric transparency and cloudiness, whereas solar global radiation on a clear day is defined such that it is a function of all the abovementioned parameters except cloudiness. Consequently, analysis of the relative magnitudes of solar global radiation and solar global radiation on a clear day provides a platform for studying the influence of cloudiness on solar global radiation. The Iqbal filter for determining the day type has been utilized to calculate the monthly average clear day solar global radiation at three sites in the Negev region of Israel. An inter-comparison between four models for estimating clear sky solar global radiation at the three sites was made. The relative accuracy of the four models was determined by comparing the monthly average daily clear sky solar global radiation to that determined using the Iqbal filter. The analysis was performed on databases consisting of measurements made during the time interval of January 1991 to December 2004. The monthly average daily clear sky solar global radiation determined by the Berlynd model was found to give the best agreement with that determined using the Iqbal filter. The Berlynd model was then utilized to calculate a daily clear day index, K c , which is defined as the ratio of the daily solar global radiation to the daily clear day solar global radiation. It is suggested that this index be used as an indication of the degree of cloudiness. Linear regression analysis was performed on the individual monthly databases for each site to determine the correlation between the daily clear day index and the daily clearness index, K T

  14. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  15. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia

    El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, Adel S.

    2009-01-01

    The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21 deg. 42'37''N, longitude 39 deg. 11'12''E), Saudi Arabia for the period 1996-2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and various meteorological parameters. The nonlinear Angstroem type model developed by Sen and the trigonometric function model proposed by Bulut and Bueyuekalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Bueyuekalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.

  16. Modelling, interpolation and stochastic simulation in space and time of global solar radiation

    Bechini, L.; Ducco, G.; Donatelli, M.; Stein, A.

    2000-01-01

    Global solar radiation data used as daily inputs for most cropping systems and water budget models are frequently available from only a few weather stations and over short periods of time. To overcome this limitation, the Campbell–Donatelli model relates daily maximum and minimum air temperatures to

  17. GLOBAL SOLAR RADIATION INTERCEPTION BY GRAPEVINES TRAINED TO A VERTICAL TRELLIS SYSTEM

    CLAUDIA GUIMARÃES CAMARGO CAMPOS

    2016-01-01

    Full Text Available ABSTRACT In this paper we assess the utilization of radiant energy in the growing of grapevines (Cabernet Sauvignon trained to a vertical trellis system, and estimate the global solar radiation interception taking into account the physical characteristics of the training system at different phenological stages. The experiment was based on daily measurements of global solar radiation made by an automatic weather station placed at the vineyard of a winery located in the municipality of São Joaquim, in the southern Brazilian State of Santa Catarina (Villa Francioni winery, 28º 15’ 14” S, 49º 57’ 02” W, 1294m a.s.l.. Growth and phenological development of the shoots were evaluated. The global solar radiation is intercepted by the canopy (trained to a vertical trellis system in different orientations and the accumulated total is slightly greater on the east than on the west face of the canopy, especially after flowering. The daily variability of global solar radiation intercepted by the canopy is greater after flowering. The accumulated solar energy incident on the canopy increases until the onset of ripening. From the results, vineyards trained to a vertical trellis system in the north-south direction provide favorable sunlight exposure to leaves and fruits and are promising in quality and productivity.

  18. Using probabilistic finite automata to simulate hourly series of global radiation

    Mora-Lopez, L. [Universidad de Malaga (Spain). Dpto. Lenguajes y Computacion; Sidrach-de-Cardona, M. [Universidad de Malaga (Spain). Dpto. Fisica Aplicada II

    2003-03-01

    A model to generate synthetic series of hourly exposure of global radiation is proposed. This model has been constructed using a machine learning approach. It is based on the use of a subclass of probabilistic finite automata which can be used for variable-order Markov processes. This model allows us to represent the different relationships and the representative information observed in the hourly series of global radiation; the variable-order Markov process can be used as a natural way to represent different types of days, and to take into account the ''variable memory'' of cloudiness. A method to generate new series of hourly global radiation, which incorporates the randomness observed in recorded series, is also proposed. As input data this method only uses the mean monthly value of the daily solar global radiation. We examine if the recorded and simulated series are similar. It can be concluded that both series have the same statistical properties. (author)

  19. The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state

    Grosfils, Eric B.; Head, James W.

    1994-01-01

    Magellan radar data of Venus reveal 163 large radial lineament systems composed of graben, fissure, and fracture elements. On the basis of their structure, plan view geometry, and volcanic associations, at least 72% are interpreted to have formed primarily through subsurface dike swarm emplacement, the remainder through uplift or a combination of these two mechanisms. The population of swarms is used to determine regional and global stress orientation. The stress configuration recorded from 330-210 deg E (Aphrodite Terra) is best explained by isostatic compensation of existing long wavelength topography or coupling between mantle flow and the lithosphere. The rest are correlated with concentrations of rifting and volcanism in the Beta-Atla-Themis region. The global stress field on Venus is different than that of Earth, where plate boundary forces dominate.

  20. Cosmological perturbations in antigravity

    Oltean, Marius; Brandenberger, Robert

    2014-10-01

    We compute the evolution of cosmological perturbations in a recently proposed Weyl-symmetric theory of two scalar fields with oppositely signed conformal couplings to Einstein gravity. It is motivated from the minimal conformal extension of the standard model, such that one of these scalar fields is the Higgs while the other is a new particle, the dilaton, introduced to make the Higgs mass conformally symmetric. At the background level, the theory admits novel geodesically complete cyclic cosmological solutions characterized by a brief period of repulsive gravity, or "antigravity," during each successive transition from a big crunch to a big bang. For simplicity, we consider scalar perturbations in the absence of anisotropies, with potential set to zero and without any radiation. We show that despite the necessarily wrong-signed kinetic term of the dilaton in the full action, these perturbations are neither ghostlike nor tachyonic in the limit of strongly repulsive gravity. On this basis, we argue—pending a future analysis of vector and tensor perturbations—that, with respect to perturbative stability, the cosmological solutions of this theory are viable.

  1. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)

    Duzen, Hacer; Aydin, Harun

    2012-01-01

    Highlights: ► The global solar radiation at Lake Van region is estimated. ► This study is unique for the Lake Van region. ► Solar radiation around Lake Van has the highest value at the east-southeast region. ► The annual average solar energy potential is obtained as 750–2458 kWh/m 2 . ► Results can be used to estimate evaporation. - Abstract: In this study several sunshine-based regression models have been evaluated to estimate monthly average daily global solar radiation on horizontal surface of Lake Van region in the Eastern Anatolia region in Turkey by using data obtained from seven different meteorological stations. These models are derived from Angström–Prescott linear regression model and its derivatives such as quadratic, cubic, logarithmic and exponential. The performance of this regression models were evaluated by comparing the calculated clearness index and the measured clearness index. Several statistical tests were used to control the validation and goodness of the regression models in terms of the coefficient of determination, mean percent error, mean absolute percent error, mean biased error, mean absolute biased error, root mean square error and t-statistic. The results of all the regression models are within acceptable limits according to the statistical tests. However, the best performances are obtained by cubic regression model for Bitlis, Gevaş, Hakkari, Muş stations and by quadratic regression model for Malazgirt, Tatvan and Van stations to predict global solar radiation. The spatial distributions of the monthly average daily global solar radiation around the Lake Van region were obtained with interpolation of calculated solar radiation data that acquired from best fit models of the stations. The annual average solar energy potential for Lake Van region is obtained between 750 kWh/m 2 and 2485 kWh/m 2 with annual average of 1610 kWh/m 2 .

  2. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  3. Building global and diffuse solar radiation series and assessing decadal trends in Girona (NE Iberian Peninsula)

    Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo

    2017-08-01

    Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.

  4. Global Surface Net-Radiation at 5 km from MODIS Terra

    Manish Verma

    2016-09-01

    Full Text Available Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years from the FLUXNET and Surface Radiation budget network (SURFRAD showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites. Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1° but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES. Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W·m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the

  5. Numbers game : using aluminum helps Global Heat Transfer develop new frac radiators

    Marsters, S.

    2009-11-15

    Aluminum is thought to be a beneficial new option for the construction of frac radiators. This article discussed how aluminum has been used to help Global Heat Transfer Ltd. (GHT) develop new frac radiators. The company developed the Jumbotron, an all-aluminum frac radiator that achieved 3,000 horsepower, but with less weight than a typical 2,250 horsepower package. The article provided information on Jumbotron, including how it was conceptualized, its features, applications, and other details. Background information on GHT was also presented. GHT focuses on the oil and gas and mining sectors and has over 500 employees worldwide in 15 locations. The aluminum parts for the Jumbotron frac radiator are produced at one of GHT's China facilities and brought to Canada for final assembly. 1 fig.

  6. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation at Thessaloniki, Greece

    A. V. Lindfors

    2013-04-01

    Full Text Available Pyranometer measurements of the solar surface radiation (SSR are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  7. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  8. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  9. Performance analysis and optimization of radiating fins with a step change in thickness and variable thermal conductivity by homotopy perturbation method

    Arslanturk, Cihat

    2011-02-01

    Although tapered fins transfer more rate of heat per unit volume, they are not found in every practical application because of the difficulty in manufacturing and fabrications. Therefore, there is a scope to modify the geometry of a constant thickness fin in view of the less difficulty in manufacturing and fabrication as well as betterment of heat transfer rate per unit volume of the fin material. For the better utilization of fin material, it is proposed a modified geometry of new fin with a step change in thickness (SF) in the literature. In the present paper, the homotopy perturbation method has been used to evaluate the temperature distribution within the straight radiating fins with a step change in thickness and variable thermal conductivity. The temperature profile has an abrupt change in the temperature gradient where the step change in thickness occurs and thermal conductivity parameter describing the variation of thermal conductivity has an important role on the temperature profile and the heat transfer rate. The optimum geometry which maximizes the heat transfer rate for a given fin volume has been found. The derived condition of optimality gives an open choice to the designer.

  10. A new simple parameterization of daily clear-sky global solar radiation including horizon effects

    Lopez, Gabriel; Javier Batlles, F.; Tovar-Pescador, Joaquin

    2007-01-01

    Estimation of clear-sky global solar radiation is usually an important previous stage for calculating global solar radiation under all sky conditions. This is, for instance, a common procedure to derive incoming solar radiation from remote sensing or by using digital elevation models. In this work, we present a new model to calculate daily values of clear-sky global solar irradiation. The main goal is the simple parameterization in terms of atmospheric temperature and relative humidity, Angstroem's turbidity coefficient, ground albedo and site elevation, including a factor to take into account horizon obstructions. This allows us to obtain estimates even though a free horizon is not present as is the case of mountainous locations. Comparisons of calculated daily values with measured data show that this model is able to provide a good level of accurate estimates using either daily or mean monthly values of the input parameters. This new model has also been shown to improve daily estimates against those obtained using the clear-sky model from the European Solar Radiation Atlas and other accurate parameterized daily irradiation models. The introduction of Angstroem's turbidity coefficient and ground albedo should allow us to use the increasing worldwide aerosol information available and to consider those sites affected by snow covers in an easy and fast way. In addition, the proposed model is intended to be a useful tool to select clear-sky conditions

  11. Effects of aerosol/cloud interactions on the global radiation budget

    Chuang, C.C.; Penner, J.E.

    1994-01-01

    Aerosols may modify the microphysics of clouds by acting as cloud condensation nuclei (CCN), thereby enhancing the cloud reflectivity. Aerosols may also alter precipitation development by affecting the mean droplet size, thereby influencing cloud lifetimes and modifying the hydrological cycle. Clouds have a major effect on climate, but aerosol/cloud interactions have not been accounted for in past climate model simulations. However, the worldwide steady rise of global pollutants and emissions makes it imperative to investigate how atmospheric aerosols affect clouds and the global radiation budget. In this paper, the authors examine the relationship between aerosol and cloud drop size distributions by using a detailed micro-physical model. They parameterize the cloud nucleation process in terms of local aerosol characteristics and updraft velocity for use in a coupled climate/chemistry model to predict the magnitude of aerosol cloud forcing. Their simulations indicate that aerosol/cloud interactions may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. This work is aimed at improving the assessment of the effects of anthropogenic aerosols on cloud optical properties and the global radiation budget

  12. Defining a Leader Role curriculum for radiation oncology: A global Delphi consensus study.

    Turner, Sandra; Seel, Matthew; Trotter, Theresa; Giuliani, Meredith; Benstead, Kim; Eriksen, Jesper G; Poortmans, Philip; Verfaillie, Christine; Westerveld, Henrike; Cross, Shamira; Chan, Ming-Ka; Shaw, Timothy

    2017-05-01

    The need for radiation oncologists and other radiation oncology (RO) professionals to lead quality improvement activities and contribute to shaping the future of our specialty is self-evident. Leadership knowledge, skills and behaviours, like other competencies, can be learned (Blumenthal et al., 2012). The objective of this study was to define a globally applicable competency set specific to radiation oncology for the CanMEDS Leader Role (Frank et al., 2015). A modified Delphi consensus process delivering two rounds of on-line surveys was used. Participants included trainees, radiation/clinical oncologists and other RO team members (radiation therapists, physicists, and nurses), professional educators and patients. 72 of 95 (76%) invitees from nine countries completed the Round 1 (R1) survey. Of the 72 respondents to RI, 70 completed Round 2 (R2) (97%). In R1, 35 items were deemed for 'inclusion' and 21 for 'exclusion', leaving 41 'undetermined'. After review of items, informed by participant comments, 14 competencies from the 'inclusion' group went into the final curriculum; 12 from the 'undetermined' group went to R2. In R2, 6 items reached consensus for inclusion. This process resulted in 20 RO Leader Role competencies with apparent global applicability. This is the first step towards developing learning, teaching and assessment tools for this important area of training. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Elucidation of the fluctuation history of cosmic radiation and global environmental using AMS

    Horiuchi, Kazuho

    2008-01-01

    Recently, accuracy of AMS has further been raised in trace amounts of sample. Besides application of 14 C to the age estimation, it has been able to restore in detail the past fluctuation of cosmic radiation strength using the other radioactive isotopes ( 10 Be, 36 Cl etc) in environmental samples and to elucidate the correlation of this with the fluctuation of climate and environment. In this report, the attempts to elucidate the fluctuation history of cosmic radiation and global environment with ice cores using AMS are presented. (M.H.)

  14. Basic principles of the WHO/UNEP global environmental radiation network

    1988-01-01

    After the accident at Chernobyl, attempts were made to improve radiation monitoring capabilities and the exchange of information at both national and international levels. As part of these efforts it is proposed to establish a Global Environmental Radiation Monitoring Network (GERMON). This report contains an overview of existing national and international programmes, and makes suggestions about the structure and operational requirements of GERMON. Annexes present the existing WHO environmental radioactivity monitoring network; give the measured CS-137 activities in milk samples in France, Sweden, Canada and the USA from 1974 to 1985; and reproduce the text of the Convention on Early Notification of a Nuclear Accident

  15. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  16. The International Atomic Energy Agency's activities in radiation medicine and cancer: promoting global health through diplomacy.

    Deatsch-Kratochvil, Amanda N; Pascual, Thomas Neil; Kesner, Adam; Rosenblatt, Eduardo; Chhem, Rethy K

    2013-02-01

    Global health has been an issue of seemingly low political importance in comparison with issues that have direct bearing on countries' national security. Recently, health has experienced a "political revolution" or a rise in political importance. Today, we face substantial global health challenges, from the spread of infectious disease, gaps in basic maternal and child health care, to the globalization of cancer. A recent estimate states that the "overall lifetime risk of developing cancer (both sexes) is expected to rise from more than one in three to one in two by 2015." These issues pose significant threats to international health security. To successfully combat these grave challenges, the international community must embrace and engage in global health diplomacy, defined by scholars Thomas Novotny and Vicanne Adams as a political activity aimed at improving global health, while at the same time maintaining and strengthening international relations. The IAEA (International Atomic Energy Agency) is an international organization with a unique mandate to "accelerate and enlarge the contribution of atomic energy to peace, health, and prosperity throughout the world." This article discusses global health diplomacy, reviews the IAEA's program activities in human health by focusing on radiation medicine and cancer, and the peaceful applications of atomic energy within the context of global health diplomacy. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  17. Ecosystem carbon and radiative fluxes: a global synthesis based on the FLUXNET network.

    Cescatti, A.

    2009-04-01

    Solar radiation is the most important environmental factor driving the temporal and spatial variability of the gross primary productivity (GPP) in terrestrial ecosystems. At the ecosystem scale, the light use efficiency (LUE) depends not only on radiation quantity but also on radiation "quality" both in terms of spectral composition and angular distribution. The day-to-day variations in LUE are largely determined by changes in the ratio of diffuse to total radiation. The relative importance of the concurrent variation in total incoming radiation and in LUE is essential to estimate the sign and the magnitude of the GPP sensitivity to radiation. Despite the scientific relevance of this issue, a global assessment on the sensitivity of GPP to the variations of Phar is still missing. Such an analysis is needed to improve our understanding of the current and future impacts of aerosols and cloud cover on the spatio-temporal variability of GPP. The current availability of ecosystem carbon fluxes, together with separate measurements of incoming direct and diffuse Phar at a large number of flux sites, offers the unique opportunity to extend the previous investigation, both in terms of ecosystem, spatial and climate coverage, and to address questions about the internal (e.g. leaf area index, canopy structure) and external (e.g. cloudiness, covarying meteorology) factors affecting the ecosystem sensitivity to radiation geometry. For this purpose half-hourly measurements of carbon fluxes and radiation have been analyzed at about 220 flux sites for a total of about 660 site-years. This analysis demonstrates that the sensitivity of GPP to incoming radiation varies across the different plant functional types and is correlated with the leaf area index and the local climatology. In particular, the sensitivity of GPP to changes in incoming diffuse light maximizes for the broadleaved forests of the Northern Hemisphere.

  18. Effects of UVB radiation on net community production in the upper global ocean

    Garcia-Corral, Lara S.

    2016-08-31

    Aim Erosion of the stratospheric ozone layer together with oligotrophication of the subtropical ocean is leading to enhanced exposure to ultraviolet B (UVB) radiation in ocean surface waters. The impact of increased exposure to UVB on planktonic primary producers and heterotrophs is uncertain. Here we test the null hypothesis that net community production (NCP) of plankton communities in surface waters of the tropical and subtropical ocean is not affected by ambient UVB radiation and extend this test to the global ocean, including the polar oceans and the Mediterranean Sea using previous results. Location We conducted experiments with 131 surface communities sampled during a circumnavigation cruise along the tropical and subtropical ocean and combined these results with 89 previous reports encompassing the Atlantic, Pacific, Arctic and Southern Oceans and the Mediterranean Sea. Methods The use of quartz (transparent to UVB radiation) and borosilicate glass materials (opaque to most UVB) for incubations allowed us to compare NCP between communities where UVB is excluded and those receiving natural UVB radiation. Results We found that NCP varies when exposed to natural UVB radiation compared to those where UVB was removed. NCP of autotrophic communities tended to decrease under natural UVB radiation, whereas the NCP of heterotrophic communities tended to increase. However, these variations showed the opposite trend under higher levels of UVB radiation. Main conclusions Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  19. Mobile-phone radiation-induced perturbation of gene-expression profiling, redox equilibrium and sporadic-apoptosis control in the ovary of Drosophila melanogaster.

    Manta, Areti K; Papadopoulou, Deppie; Polyzos, Alexander P; Fragopoulou, Adamantia F; Skouroliakou, Aikaterini S; Thanos, Dimitris; Stravopodis, Dimitrios J; Margaritis, Lukas H

    2017-04-03

    The daily use by people of wireless communication devices has increased exponentially in the last decade, begetting concerns regarding its potential health hazards. Drosophila melanogaster four days-old adult female flies were exposed for 30 min to radiation emitted by a commercial mobile phone at a SAR of 0.15 W/kg and a SAE of 270 J/kg. ROS levels and apoptotic follicles were assayed in parallel with a genome-wide microarrays analysis. ROS cellular contents were found to increase by 1.6-fold (x), immediately after the end of exposure, in follicles of pre-choriogenic stages (germarium - stage 10), while sporadically generated apoptotic follicles (germarium 2b and stages 7-9) presented with an averaged 2x upregulation in their sub-population mass, 4 h after fly's irradiation with mobile device. Microarray analysis revealed 168 genes being differentially expressed, 2 h post-exposure, in response to radiofrequency (RF) electromagnetic field-radiation exposure (≥1.25x, P mobile-phone radiation for 30 min has an immediate impact on ROS production in animal's ovary, which seems to cause a global, systemic and non-targeted transcriptional reprogramming of gene expression, 2 h post-exposure, being finally followed by induction of apoptosis 4 h after the end of exposure. Conclusively, this unique type of pulsed radiation, mainly being derived from daily used mobile phones, seems capable of mobilizing critical cytopathic mechanisms, and altering fundamental genetic programs and networks in D. melanogaster.

  20. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine

  1. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  2. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  3. Electron temperature and pressure at the edge of ASDEX Upgrade plasmas. Estimation via electron cyclotron radiation and investigations on the effect of magnetic perturbations

    Rathgeber, Sylvia K.

    2013-01-01

    Understanding and control of the plasma edge behaviour are essential for the success of ITER and future fusion plants. This requires the availability of suitable methods for assessing the edge parameters and reliable techniques to handle edge phenomena, e.g. to mitigate 'Edge Localized Modes' (ELMs) - a potentially harmful plasma edge instability. This thesis introduces a new method for the estimation of accurate edge electron temperature profiles by forward modelling of the electron cyclotron radiation transport and demonstrates its successful application to investigate the impact of Magnetic Perturbation (MP) fields used for ELM mitigation on the edge kinetic data. While for ASDEX Upgrade bulk plasmas, straightforward analysis of the measured electron cyclotron intensity spectrum based on the optically thick plasma approximation is usually justified, reasonable analysis of the steep and optically thin edge region relies on full treatment of the radiation transport considering broadened emission and absorption profiles. This is realized in the framework of integrated data analysis which applies Bayesian probability theory for joint analysis of the electron density and temperature with data of different independent and complementary diagnostics. The method reveals that in regimes with improved confinement ('High-confinement modes' (H-modes)) the edge gradient of the electron temperature can be several times higher than that of the radiation temperature. Furthermore, the model is able to reproduce the 'shine-through' peak - the observation of increased radiation temperatures at frequencies with cold resonance outside the confined plasma region. This phenomenon is caused by strongly down-shifted radiation of Maxwellian tail electrons located in the H-mode edge region and, therefore, contains valuable information about the electron temperature edge gradient. The accurate knowledge about the edge profiles and gradients of the electron temperature and - including the

  4. Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie-Laure

    2012-01-01

    We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (NWP). We particularly look at the multi-layer perceptron (MLP). After optimizing our architecture with NWP and endogenous data previously made stationary and using an innovative pre-input layer selection method, we combined it to an ARMA model from a rule based on the analysis of hourly data series. This model has been used to forecast the hourly global radiation for five places in Mediterranean area. Our technique outperforms classical models for all the places. The nRMSE for our hybrid model MLP/ARMA is 14.9% compared to 26.2% for the naïve persistence predictor. Note that in the standalone ANN case the nRMSE is 18.4%. Finally, in order to discuss the reliability of the forecaster outputs, a complementary study concerning the confidence interval of each prediction is proposed. -- Highlights: ► Time series forecasting with hybrid method based on the use of ALADIN numerical weather model, ANN and ARMA. ► Innovative pre-input layer selection method. ► Combination of optimized MLP and ARMA model obtained from a rule based on the analysis of hourly data series. ► Stationarity process (method and control) for the global radiation time series.

  5. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain)

    Pablo-Davila, F. de; Labajo, J.L.; Tomas-Sanchez, C.

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  6. Verification of Global Radiation Forecasts from the Ensemble Prediction System at DMI

    Lundholm, Sisse Camilla

    To comply with an increasing demand for sustainable energy sources, a solar heating unit is being developed at the Technical University of Denmark. To make optimal use — environmentally and economically —, this heating unit is equipped with an intelligent control system using forecasts of the heat...... consumption of the house and the amount of available solar energy. In order to make the most of this solar heating unit, accurate forecasts of the available solar radiation are esstential. However, because of its sensitivity to local meteorological conditions, the solar radiation received at the surface...... of the Earth can be highly fluctuating and challenging to forecast accurately. To comply with the accuracy requirements to forecasts of both global, direct, and diffuse radiation, the uncertainty of these forecasts is of interest. Forecast uncertainties can become accessible by running an ensemble of forecasts...

  7. Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case

    Voyant, Cyril; Notton, Gilles; Darras, Christophe; Fouilloy, Alexis; Motte, Fabrice

    2017-01-01

    As global solar radiation forecasting is a very important challenge, several methods are devoted to this goal with different levels of accuracy and confidence. In this study we propose to better understand how the uncertainty is propagated in the context of global radiation time series forecasting using machine learning. Indeed we propose to decompose the error considering four kinds of uncertainties: the error due to the measurement, the variability of time series, the machine learning uncertainty and the error related to the horizon. All these components of the error allow to determinate a global uncertainty generating prediction bands related to the prediction efficiency. We also have defined a reliability index which could be very interesting for the grid manager in order to estimate the validity of predictions. We have experimented this method on a multilayer perceptron which is a popular machine learning technique. We have shown that the global error and its components are essential to quantify in order to estimate the reliability of the model outputs. The described method has been successfully applied to four meteorological stations in Mediterranean area. - Highlights: • Solar irradiation predictions require confidence bands. • There are a lot of kinds of uncertainties to take into account in order to propose prediction bands. • the ranking of different kinds of uncertainties is essential to propose an operational tool for the grid managers.

  8. Supersingular quantum perturbations

    Detwiler, L.C.; Klauder, J.R.

    1975-01-01

    A perturbation potential is called supersingular whenever generally every matrix element of the perturbation in the unperturbed eigenstates is infinite. It follows that supersingular perturbations do not have conventional perturbation expansions, say for energy eigenvalues. By invoking variational arguments, we determine the asymptotic behavior of the energy eigenvalues for asymptotically small values of the coupling constant of the supersingular perturbation

  9. Nonperturbative perturbation theory

    Bender, C.M.

    1989-01-01

    In this talk we describe a recently proposed graphical perturbative calculational scheme for quantum field theory. The basic idea is to expand in the power of the interaction term. For example, to solve a λφ 4 theory in d-dimensional space-time, we introduce a small parameter δ and consider a λ(φ 2 ) 1+δ field theory. We show how to expand such a theory as a series in powers of δ. The resulting perturbation series appears to have a finite radius of convergence and numerical results for low-dimensional models are good. We have computed the two-point and four-point Green's functions to second order in powers of δ and the 2n-point Green's functions (n>2) to order δ. We explain how to renormalize the theory and show that, to first order in powers of δ, when δ>0 and d≥4 the theory is free. This conclusion remains valid to second order in powers of δ, and we believe that it remains valid to all orders in powers of δ. The new perturbative scheme is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not know of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  10. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  11. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  12. A simple formula for estimating global solar radiation in central arid deserts of Iran

    Sabziparvar, Ali A.

    2008-01-01

    Over the last two decades, using simple radiation models has been an interesting task to estimate daily solar radiation in arid and semi-arid deserts such as those in Iran, where the number of solar observation sites is poor. In Iran, most of the models used so far, have been validated for a few specific locations based on short-term solar observations. In this work, three different radiation models (Sabbagh, Paltridge, Daneshyar) have been revised to predict the climatology of monthly average daily solar radiation on horizontal surfaces in various cities in central arid deserts of Iran. The modifications are made by the inclusion of altitude, monthly total number of dusty days and seasonal variation of Sun-Earth distance. A new height-dependent formula is proposed based on MBE, MABE, MPE and RMSE statistical analysis. It is shown that the revised Sabbagh method can be a good estimator for the prediction of global solar radiation in arid and semi-arid deserts with an average error of less than 2%, that performs a more accurate prediction than those in the previous studies. The required data for the suggested method are usually available in most meteorological sites. For the locations, where some of the input data are not reported, an alternative approach is presented. (author)

  13. EDITORIAL: The Earth radiation balance as driver of the global hydrological cycle

    Wild, Martin; Liepert, Beate

    2010-06-01

    Variations in the intensity of the global hydrological cycle can have far-reaching effects on living conditions on our planet. While climate change discussions often revolve around possible consequences of future temperature changes, the adaptation to changes in the hydrological cycle may pose a bigger challenge to societies and ecosystems. Floods and droughts are already today amongst the most damaging natural hazards, with floods being globally the most significant disaster type in terms of loss of human life (Jonkman 2005). From an economic perspective, changes in the hydrological cycle can impose great pressures and damages on a variety of industrial sectors, such as water management, urban planning, agricultural production and tourism. Despite their obvious environmental and societal importance, our understanding of the causes and magnitude of the variations of the hydrological cycle is still unsatisfactory (e.g., Ramanathan et al 2001, Ohmura and Wild 2002, Allen and Ingram 2002, Allan 2007, Wild et al 2008, Liepert and Previdi 2009). The link between radiation balance and hydrological cycle Globally, precipitation can be approximated by surface evaporation, since the variability of the atmospheric moisture storage is negligible. This is the case because the fluxes are an order of magnitude larger than the atmospheric storage (423 x 1012 m3 year-1 versus 13 x 1012 m3 according to Baumgartner and Reichel (1975)), the latter being determined by temperature (Clausius-Clapeyron). Hence the residence time of evaporated water in the atmosphere is not more than a few days, before it condenses and falls back to Earth in the form of precipitation. Any change in the globally averaged surface evaporation therefore implies an equivalent change in precipitation, and thus in the intensity of the global hydrological cycle. The process of evaporation requires energy, which it obtains from the surface radiation balance (also known as surface net radiation), composed of the

  14. Global solar energy radiation in relation with electricity supply in Romania

    Zoran, Maria

    2001-01-01

    Solar energy is one of the most viable source of renewable energy being both clean and nonpolluting. Spiraling energy use and other human activities have led to measurable effects upon the global environment and climatic changes. There is increasing international concern particularly in the areas of global warming owing to the increase of carbon dioxide (CO 2 ) in the atmosphere and of other greenhouse gases as sulfur dioxide (SO 2 ), oxides of nitrogen (NOx), hydrogen sulfide H 2 S, diethyl sulfide (DMS), chlorofluorocarbons (CFCs), methane CH 4 , as well in the effect of depletion of ozone (O 3 ) layer in the stratosphere. Climatological and global solar radiation analysis for some Romanian zones with great solar energy potential are presented. Remote sensing data provided by satellites are used for radiative fluxes monitoring and solar energy mapping as well as for solar energy use assessment. The realistic technical potential for solar energy applications in Romania is substantial, over 40000 TJyear -1 . As average energy global solar radiation in horizontal plane lies between 1100 and 1300 kWhm -2 year -1 , solar energy using for electrical power supply being a reliable alternative. More than one half of Romania's area has a range of insolation period between 1200 and 1500 hours year -1 , at an overall average daily irradiation of 1000 - 1200 kWh m -2 . The most favorable area in Romania is the North - Western part of Black Sea coast with an insolation period above 2300 hours year -1 . A small part 140 TJyear -1 are used profitably and almost 10% of the installed 10 6 m 2 of collector area, is still in operation. (author)

  15. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use

    Obrist, Daniel; Zhang, Lei; Jiskra, Martin; Kirk, Jane L.; Sunderland, Elsie M.; Selin, Noelle E

    2018-01-01

    We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cyc...

  16. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  17. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation

    Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin

    2015-01-01

    Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models

  18. Estimating the Global Agricultural Impact of Solar Radiation Management using Volcanic Eruptions as Natural Experiments

    Proctor, J.; Hsiang, S. M.; Burney, J. A.; Burke, M.; Schlenker, W.

    2017-12-01

    Solar radiation management (SRM) is increasingly considered an option for managing global temperatures, yet the economic impacts of ameliorating climatic changes by scattering sunlight back to space remain largely unknown. Though SRM may increase crop yields by reducing heat stress, its impacts from concomitant changes in available sunlight have never been empirically estimated. Here we use the volcanic eruptions that inspired modern SRM proposals as natural experiments to provide the first estimates of how the stratospheric sulfate aerosols (SS) created by the eruptions of El Chichon and Pinatubo altered the quantity and quality of global sunlight, how those changes in sunlight impacted global crop yields, and the total effect that SS may have on yields in an SRM scenario when the climatic and sunlight effects are jointly considered. We find that the sunlight-mediated impact of SS on yields is negative for both C4 (maize) and C3 (soy, rice, wheat) crops. Applying our yield model to a geoengineering scenario using SS-based SRM from 2050-2069, we find that SRM damages due to scattering sunlight are roughly equal in magnitude to SRM benefits from cooling. This suggests that SRM - if deployed using SS similar to those emitted by the volcanic eruptions it seeks to mimic - would attenuate little of the damages from climate change to global agriculture on net. Our approach could be extended to study SRM impacts on other global systems, such as human health or ecosystem function.

  19. Artificial neural network optimisation for monthly average daily global solar radiation prediction

    Alsina, Emanuel Federico; Bortolini, Marco; Gamberi, Mauro; Regattieri, Alberto

    2016-01-01

    Highlights: • Prediction of the monthly average daily global solar radiation over Italy. • Multi-location Artificial Neural Network (ANN) model: 45 locations considered. • Optimal ANN configuration with 7 input climatologic/geographical parameters. • Statistical indicators: MAPE, NRMSE, MPBE. - Abstract: The availability of reliable climatologic data is essential for multiple purposes in a wide set of anthropic activities and operative sectors. Frequently direct measures present spatial and temporal lacks so that predictive approaches become of interest. This paper focuses on the prediction of the Monthly Average Daily Global Solar Radiation (MADGSR) over Italy using Artificial Neural Networks (ANNs). Data from 45 locations compose the multi-location ANN training and testing sets. For each location, 13 input parameters are considered, including the geographical coordinates and the monthly values for the most frequently adopted climatologic parameters. A subset of 17 locations is used for ANN training, while the testing step is against data from the remaining 28 locations. Furthermore, the Automatic Relevance Determination method (ARD) is used to point out the most relevant input for the accurate MADGSR prediction. The ANN best configuration includes 7 parameters, only, i.e. Top of Atmosphere (TOA) radiation, day length, number of rainy days and average rainfall, latitude and altitude. The correlation performances, expressed through statistical indicators as the Mean Absolute Percentage Error (MAPE), range between 1.67% and 4.25%, depending on the number and type of the chosen input, representing a good solution compared to the current standards.

  20. Temperature-based estimation of global solar radiation using soft computing methodologies

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  1. Diffuse radiation increases global ecosystem-level water-use efficiency

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  2. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  3. Compatibility of different measurement techniques. Long-term global solar radiation observations at Izaña Observatory [Discussion paper

    García Cabrera, Rosa Delia; Cuevas Agulló, Emilio; García Rodríguez, Omaira Elena; Ramos López, Ramón; Romero Campos, Pedro Miguel; Ory Ajamil, Fernando de; Cachorro, Victoria E.; Frutos, Ángel M. de

    2016-01-01

    A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.

  4. Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models

    Benmouiza, Khalil; Cheknane, Ali

    2013-01-01

    Highlights: • An unsupervised clustering algorithm with a neural network model was explored. • The forecasting results of solar radiation time series and the comparison of their performance was simulated. • A new method was proposed combining k-means algorithm and NAR network to provide better prediction results. - Abstract: In this paper, we review our work for forecasting hourly global horizontal solar radiation based on the combination of unsupervised k-means clustering algorithm and artificial neural networks (ANN). k-Means algorithm focused on extracting useful information from the data with the aim of modeling the time series behavior and find patterns of the input space by clustering the data. On the other hand, nonlinear autoregressive (NAR) neural networks are powerful computational models for modeling and forecasting nonlinear time series. Taking the advantage of both methods, a new method was proposed combining k-means algorithm and NAR network to provide better forecasting results

  5. Anomalies and Hawking radiation from the Reissner-Nordstroem black hole with a global monopole

    Wu Shuangqing; Peng Junjin

    2007-01-01

    We extend the work by Iso, Umetsu and Wilczek (2006 Phys. Rev. Lett. 96 151302) to derive the Hawking flux via gauge and gravitational anomalies of a most general two-dimensional non-extremal black hole spacetime with the determinant of its diagonal metric differing from unity √ (-g)1) ≠ 1 and use it to investigate Hawking radiation from the Reissner-Nordstroem black hole with a global monopole by requiring the cancellation of anomalies at the horizon. It is shown that the compensating energy-momentum and gauge fluxes required to cancel gravitational and gauge anomalies at the horizon are precisely equivalent to the (1 + 1)-dimensional thermal fluxes associated with Hawking radiation emanating from the horizon at the Hawking temperature. These fluxes are universally determined by the value of anomalies at the horizon

  6. The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms

    Murphy, K. R.; Watt, C. E. J.; Mann, I. R.; Jonathan Rae, I.; Sibeck, D. G.; Boyd, A. J.; Forsyth, C. F.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J.

    2018-05-01

    Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

  7. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel (Germany); Vichi, Marcello; Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia (INGV), Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2012-10-15

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall {approx}0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  8. Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells.

    Mykyta V Sokolov

    Full Text Available MicroRNAs (miRNA comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes, and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of radiation in hESC.

  9. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    Patara, Lavinia; Vichi, Marcello; Masina, Simona; Fogli, Pier Giuseppe; Manzini, Elisa

    2012-01-01

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall ∼0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  10. Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE

    El Chaar, Lana; Lamont, Lisa A. [Petroleum Institute, Electrical Engineering Department, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2010-07-15

    Renewable energy technology and in particular solar energy is being considered worldwide due to the fluctuations in oil prices, global warming and the growing demand for energy supply. This paper investigates the climate conditions available in the United Arab Emirates (UAE) in particular Abu Dhabi to implement Photovoltaic (PV) technology. Measured solar radiation was analyzed for five different geographical locations to ensure the suitability of this region. Hourly, daily and monthly global horizontal irradiation (GHI) were collected and processed. Statistical methods were used to evaluate the computed GHI and showed high values especially during the summer period. Moreover, clearness index was calculated to investigate the frequency of cloudy sky days and results have shown a high percentage of clear days during the year. This paper highlights a promising future for Abu Dhabi in the solar energy sector and in particular Photovoltaic (PV) technology. (author)

  11. Strong relationship between DMS and the solar radiation dose over the global surface ocean.

    Vallina, Sergio M; Simó, Rafel

    2007-01-26

    Marine biogenic dimethylsulfide (DMS) is the main natural source of tropospheric sulfur, which may play a key role in cloud formation and albedo over the remote ocean. Through a global data analysis, we found that DMS concentrations are highly positively correlated with the solar radiation dose in the upper mixed layer of the open ocean, irrespective of latitude, plankton biomass, or temperature. This is a necessary condition for the feasibility of a negative feedback in which light-attenuating DMS emissions are in turn driven by the light dose received by the pelagic ecosystem.

  12. CORRECTION OF GLOBAL AND REFLEX RADIATION VALUES MEASURED ABOVE THE LAKE BALATON

    Laszlo Menyhart

    2014-03-01

    Full Text Available Albedo measurements have been carried out since 2007 above the Lake Balaton near Keszthely and Siofok. It turned out that a systematic offset error was superposed to both the global and the reflex radiation. The value of this systematic error was approximately constant per pyranometer within a year but on the other hand it varied from year to year and from pyranometer to pyranometer. In this paper the values of this systematic errors were determined with two different methods. The difference between the values measured at night-time and the intrinsic thermal offset error of pyranometers were examined with both methods. The base of the first method is the empirical observation, that the values measured at night-time by a global radiometer are typically negative whereas by a reflex radiometer are typically positive. The substance of the second method is utilizing the air temperature measured within 1 as well as 5 hours before the radiation measuring to +select the fully overcast nights, when the thermal offset error of the global radiometer is zero. In addition, the cases where the thermal offset error of the reflex radiometer is zero were selected on the basis of the difference between water and air temperature. When the thermal offset error is zero the measured value is equal to the systematic error. Comparing the results of the two methods showed that the systematic error of the global radiometer were determined with uncertainty of 1 Wm–2, whereas that of the reflex radiometer with uncertainty of 2 Wm–2. The calibration constants were recalculated from the values being in the calibration reports taking the systematic errors into account.

  13. Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface in various cities of Pakistan

    Gadiwala, M.S.; Usman, A.; Akhtar, M.; Jamil, K.

    2013-01-01

    In developing countries like Pakistan the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Only five long-period locations data of solar radiation data is available in Pakistan (Karachi, Quetta, Lahore, Multan and Peshawar). These locations almost encompass the different geographical features of Pakistan. For this reason in this study the Mean monthly global solar radiation has been estimated using empirical models of Angstrom, FAO, Glover Mc-Culloch, Sangeeta & Tiwari for the diversity of approach and use of climatic and geographical parameters. Empirical constants for these models have been estimated and the results obtained by these models have been tested statistically. The results show encouraging agreement between estimated and measured values. The outcome of these empirical models will assist the researchers working on solar energy estimation of the location having similar conditions

  14. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

  15. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s{sup −1}

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B. [Cornell University, Ithaca, NY 14853 (United States); Mulichak, Anne M.; Keefe, Lisa J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States)

    2012-02-01

    Approximately half of global radiation damage to thaumatin crystals can be outrun at 260 K if data are collected in less than 1 s. Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s{sup −1}. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s{sup −1} can be outrun by collecting data at 680 kGy s{sup −1}. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.

  16. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  17. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  18. Contributions of projected land use to global radiative forcing ascribed to local sources

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2013-12-01

    With global demand for food expected to dramatically increase and put additional pressures on natural lands, there is a need to understand the environmental impacts of land use and land cover change (LULCC). Previous studies have shown that the magnitude and even the sign of the radiative forcing (RF) of biogeophysical effects from LULCC depends on the latitude and forest ecology of the disturbed region. Here we ascribe the contributions to the global RF by land-use related anthropogenic activities to their local sources, organized on a grid of 1.9 degrees latitude by 2.5 degrees longitude. We use RF estimates for the year 2100, using five future LULCC projections, computed from simulations with the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. Our definition of the LULCC RF includes changes to terrestrial carbon storage, methane and nitrous oxide emissions, atmospheric chemistry, aerosol emissions, and surface albedo. We ascribe the RF to gridded locations based on LULCC-related emissions of relevant trace gases and aerosols, including emissions from fires. We find that the largest contributions to the global RF in year 2100 from LULCC originate in the tropics for all future scenarios. In fact, LULCC is the largest tropical source of anthropogenic RF. The LULCC RF in the tropics is dominated by emissions of CO2 from deforestation and methane emissions from livestock and soils. Land surface albedo change is rarely the dominant forcing agent in any of the future LULCC projections, at any location. By combining the five future scenarios we find that deforested area at a specific tropical location can be used to predict the contribution to global RF from LULCC at that location (the relationship does not hold as well in the extratropics). This information could support global efforts like REDD (Reducing Emissions from Deforestation and Forest Degradation), that aim to reduce greenhouse gas

  19. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  20. A method for daily global solar radiation estimation from two instantaneous values using MODIS atmospheric products

    Xu, Xiaojun; Du, Huaqiang; Zhou, Guomo; Mao, Fangjie; Li, Pingheng; Fan, Weiliang; Zhu, Dien

    2016-01-01

    Accurate information on the temporal and spatial distributions of solar radiation is very important in many scientific fields. In this study, instantaneous solar irradiances on a horizontal surface at 10:30 and 13:30 local time (LT) were calculated from Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric data products with relatively high spatial resolution using a solar radiation model. These solar irradiances were combined to derive half-hourly averages of solar irradiance (HASI) and daily global solar radiation (GSR) on a horizontal surface using linear interpolation, piecewise linear regression, and quadratic polynomial regression. Compared with field observations, the HASI were estimated accurately when the total cloud fraction (TCF) was 0.6. Overall, the daily GSR estimated in this study was better than that estimated by the Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis of NASA. The daily GSR estimated in this study was underestimated, whereas it was overestimated by MERRA. The combination of the daily GSR estimates of this study and MERRA offers a simple and feasible technique for reducing uncertainty in daily GSR estimates. - Highlights: • Daily GSR is integrated from two observations from the MODIS products. • Daily GSR from the MODIS products is underestimated. • Biases were attributed primarily to variations in the total cloud percent. • Combining daily GSR estimates from the MODIS and the MERRA increases accuracy.

  1. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE): Objectives and priorities.

    Turner, Sandra; Eriksen, Jesper G; Trotter, Theresa; Verfaillie, Christine; Benstead, Kim; Giuliani, Meredith; Poortmans, Philip; Holt, Tanya; Brennan, Sean; Pötter, Richard

    2015-10-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders from the ESTRO School, encompassing many European countries adopting the ESTRO Core Curriculum, and clinician educators from Canada, Denmark, the United Kingdom, Australia and New Zealand considered the training and educational arrangements within their jurisdictions, identifying similarities and challenges between programs. Common areas of educational interest and need were defined, which included development of new competency statements and assessment tools, and the application of the latter. The group concluded that such an international cooperation, which might expand to include others with similar goals, would provide a valuable vehicle to ensure training program currency, through sharing of resources and expertise, and enhance high quality radiation oncology education. Potential projects for the Global Radiation Oncology Collaboration in Education (GRaCE) were agreed upon, as was a strategy designed to maintain momentum. This paper describes the rationale for establishing this collaboration, presents a comparative view of training in the jurisdictions represented, and reports early goals and priorities. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  2. Installation of a variable-angle spectrometer system for monitoring diffuse and global solar radiation

    Ormachea, O.; Abrahamse, A.; Tolavi, N.; Romero, F.; Urquidi, O.; Pearce, J. M.; Andrews, R.

    2013-11-01

    We report on the design and installation of a spectrometer system for monitoring solar radiation in Cochabamba, Bolivia. Both the light intensity and the spectral distribution affect the power produced by a photovoltaic device. Local variations in the solar spectrum (especially compared to the AM1.5 standard) may have important implications for device optimization and energy yield estimation. The spectrometer system, based on an Ocean Optics USB4000 (300-900nm) spectrometer, was designed to increase functionality. Typically systems only record the global horizontal radiation. Our system moves a fiber-optic cable 0-90 degrees and takes measurements in 9 degree increments. Additionally, a shadow band allows measurement of the diffuse component of the radiation at each position. The electronic controls utilize an Arduino UNO microcontroller to synchronizes the movement of two PAP bipolar (stepper) motors with the activation of the spectrometer via an external trigger. The spectrometer was factory calibrated for wavelength and calibrated for absolute irradiance using a Sellarnet SL1-Cal light source. We present preliminary results from data taken March-June, 2013, and comment on implications for PV devices in Cochabamba.

  3. Measurement of Global Solar Radiation data using Raspberry Pi and its estimation using Genetic Algorithm

    Priya S.Shanmuga

    2018-01-01

    Full Text Available The demand for more efficient and environmentally benign, non-conventional sources of energy came into picture due to increasing demands for human comforts. Solar energy is now the ultimate option. In this paper, the instruments used to measure the solar radiation at Innovation Centre, MIT Manipal were connected to a Raspberry Pi to access the data remotely. Genetic Algorithms were formulated, so that the monthly mean global solar radiation in Manipal can be effectively estimated. Meteorological data such as humidity, temperature, wind speed, etc. were used as inputs to train the networks. A successful network was made between the data loggers and the Raspberry Pi. The data collected by the data loggers from the devices are transmitted to the Raspberry Pi which in turn sends the data to an internal server. The Raspberry Pi can be accessed using any SSH client such as PuTTY. The meteorological data was collected for the years 2010-2014 in order to formulate the Artificial Intelligence models. The validity of the formulated models were checked by comparing the measured data with the estimated data using tools such as RMSE, correlation coefficient, etc. The modelling of solar radiation using GA was carried out in GeneXpro tools version 5.0.

  4. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  5. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  6. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  7. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  8. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

    Obrist, Daniel; Kirk, Jane L; Zhang, Lei; Sunderland, Elsie M; Jiskra, Martin; Selin, Noelle E

    2018-03-01

    We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg 0 concentrations and Hg II wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg 0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized Hg II in the tropical and subtropical free troposphere where deep convection can scavenge these Hg II reservoirs. As a result, up to 50% of total global wet Hg II deposition has been predicted to occur to tropical oceans. Ocean Hg 0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg 0 levels suggest enhanced Hg 0 ocean evasion in the intertropical convergence zone, which may be linked to high Hg II deposition. Estimates of gaseous Hg 0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and

  9. Assessing offsets between the δ13C of sedimentary components and the global exogenic carbon pool across early Paleogene carbon cycle perturbations

    Sluijs, A.; Dickens, G.R.

    2012-01-01

    Negative stable carbon isotope excursions (CIEs) across the Paleocene–Eocene thermal maximum (PETM; ∼56 Ma) range between 2‰ and 7‰, even after discounting sections with truncated records. Individual carbon isotope records differ in shape and magnitude from variations in the global exogenic carbon

  10. Cis- and trans-perfluorodecalin: Infrared spectra, radiative efficiency and global warming potential

    Le Bris, Karine; DeZeeuw, Jasmine; Godin, Paul J.; Strong, Kimberly

    2017-12-01

    Perfluorodecalin (PFD) is a molecule used in various medical applications for its capacity to dissolve gases. This potent greenhouse gas was detected for the first time in the atmosphere in 2005. We present infrared absorption cross-section spectra of a pure vapour of cis- and trans-perfluorodecalin at a resolution of 0.1 cm-1. Measurements were performed in the 560-3000 cm-1 spectral range using Fourier transform spectroscopy. The spectra have been compared with previous experimental data and theoretical calculations by density functional theory. The new experimental absorption cross-sections have been used to calculate a lifetime-corrected radiative efficiency at 300 K of 0.62 W m-2 ppb-1 and 0.57 W.m-2.ppb-1 for the cis and trans isomers respectively. This leads to a 100-year time horizon global warming potential of 8030 for cis-PFD and 7440 for trans-PFD.

  11. ARTIFICIAL NEURAL NETWORK AND WAVELET DECOMPOSITION IN THE FORECAST OF GLOBAL HORIZONTAL SOLAR RADIATION

    Luiz Albino Teixeira Júnior

    2015-04-01

    Full Text Available This paper proposes a method (denoted by WD-ANN that combines the Artificial Neural Networks (ANN and the Wavelet Decomposition (WD to generate short-term global horizontal solar radiation forecasting, which is an essential information for evaluating the electrical power generated from the conversion of solar energy into electrical energy. The WD-ANN method consists of two basic steps: firstly, it is performed the decomposition of level p of the time series of interest, generating p + 1 wavelet orthonormal components; secondly, the p + 1 wavelet orthonormal components (generated in the step 1 are inserted simultaneously into an ANN in order to generate short-term forecasting. The results showed that the proposed method (WD-ANN improved substantially the performance over the (traditional ANN method.

  12. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    Lee, Kyu Tae

    2016-12-06

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  13. Tectonic collision and uplift of Wallacea triggered the global songbird radiation

    Moyle, Robert G.; Oliveros, Carl H.; Andersen, Michael J.; Hosner, Peter A.; Benz, Brett W.; Manthey, Joseph D.; Travers, Scott L.; Brown, Rafe M.; Faircloth, Brant C.

    2016-08-01

    Songbirds (oscine passerines) are the most species-rich and cosmopolitan bird group, comprising almost half of global avian diversity. Songbirds originated in Australia, but the evolutionary trajectory from a single species in an isolated continent to worldwide proliferation is poorly understood. Here, we combine the first comprehensive genome-scale DNA sequence data set for songbirds, fossil-based time calibrations, and geologically informed biogeographic reconstructions to provide a well-supported evolutionary hypothesis for the group. We show that songbird diversification began in the Oligocene, but accelerated in the early Miocene, at approximately half the age of most previous estimates. This burst of diversification occurred coincident with extensive island formation in Wallacea, which provided the first dispersal corridor out of Australia, and resulted in independent waves of songbird expansion through Asia to the rest of the globe. Our results reconcile songbird evolution with Earth history and link a major radiation of terrestrial biodiversity to early diversification within an isolated Australian continent.

  14. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    Lee, Kyu Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Hussain, Muhammad Mustafa; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-01-01

    Emerging classes ofconcentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV scheme (

  15. Design, Construction And Characterization Of A Pyranometer For Measuring Global Solar Radiation

    Onah, D.U; Osuji, R.O.

    2004-01-01

    Due to cost and stringent importation requirement, we have designed and constructed a Pyranometer from locally available materials. The constructed Pyranometer was calibrated against a standard calibrated Eppley pyranometer model PSP17190F3. the two pyranometers were used simultaneously in measuring global solar radiation at Nsukka, Nigeria on latitude 6.8 degree North and longitude 7.35 degree East, located 488m above sea level. The average insolation for each of the two typical clear sky days were 3.221KW per square metre and 3.266KW per square metre. The maximum insolation obtained with the constructed pyranometer was 965.5 W per square metre on 16/1/03. The corresponding insolation obtained with the reference Eppley pyranometre on the same day was 1087.5W per square metre. We are happy to remark that there was not significant difference between the performances of the constructed pyranometer and the standard Eppley pyranometer

  16. Impact of Precipitating Ice Hydrometeors on Longwave Radiative Effect Estimated by a Global Cloud-System Resolving Model

    Chen, Ying-Wen; Seiki, Tatsuya; Kodama, Chihiro; Satoh, Masaki; Noda, Akira T.

    2018-02-01

    Satellite observation and general circulation model (GCM) studies suggest that precipitating ice makes nonnegligible contributions to the radiation balance of the Earth. However, in most GCMs, precipitating ice is diagnosed and its radiative effects are not taken into account. Here we examine the longwave radiative impact of precipitating ice using a global nonhydrostatic atmospheric model with a double-moment cloud microphysics scheme. An off-line radiation model is employed to determine cloud radiative effects according to the amount and altitude of each type of ice hydrometeor. Results show that the snow radiative effect reaches 2 W m-2 in the tropics, which is about half the value estimated by previous studies. This effect is strongly dependent on the vertical separation of ice categories and is partially generated by differences in terminal velocities, which are not represented in GCMs with diagnostic precipitating ice. Results from sensitivity experiments that artificially change the categories and altitudes of precipitating ice show that the simulated longwave heating profile and longwave radiation field are sensitive to the treatment of precipitating ice in models. This study emphasizes the importance of incorporating appropriate treatments for the radiative effects of precipitating ice in cloud and radiation schemes in GCMs in order to capture the cloud radiative effects of upper level clouds.

  17. Globally Stable Microresonator Turing Pattern Formation for Coherent High-Power THz Radiation On-Chip

    Huang, Shu-Wei; Yang, Jinghui; Yang, Shang-Hua; Yu, Mingbin; Kwong, Dim-Lee; Zelevinsky, T.; Jarrahi, Mona; Wong, Chee Wei

    2017-10-01

    In nonlinear microresonators driven by continuous-wave (cw) lasers, Turing patterns have been studied in the formalism of the Lugiato-Lefever equation with emphasis on their high coherence and exceptional robustness against perturbations. Destabilization of Turing patterns and the transition to spatiotemporal chaos, however, limit the available energy carried in the Turing rolls and prevent further harvest of their high coherence and robustness to noise. Here, we report a novel scheme to circumvent such destabilization, by incorporating the effect of local mode hybridizations, and we attain globally stable Turing pattern formation in chip-scale nonlinear oscillators with significantly enlarged parameter space, achieving a record-high power-conversion efficiency of 45% and an elevated peak-to-valley contrast of 100. The stationary Turing pattern is discretely tunable across 430 GHz on a THz carrier, with a fractional frequency sideband nonuniformity measured at 7.3 ×10-14 . We demonstrate the simultaneous microwave and optical coherence of the Turing rolls at different evolution stages through ultrafast optical correlation techniques. The free-running Turing-roll coherence, 9 kHz in 200 ms and 160 kHz in 20 minutes, is transferred onto a plasmonic photomixer for one of the highest-power THz coherent generations at room temperature, with 1.1% optical-to-THz power conversion. Its long-term stability can be further improved by more than 2 orders of magnitude, reaching an Allan deviation of 6 ×10-10 at 100 s, with a simple computer-aided slow feedback control. The demonstrated on-chip coherent high-power Turing-THz system is promising to find applications in astrophysics, medical imaging, and wireless communications.

  18. An artificial neural network ensemble model for estimating global solar radiation from Meteosat satellite images

    Linares-Rodriguez, Alvaro; Ruiz-Arias, José Antonio; Pozo-Vazquez, David; Tovar-Pescador, Joaquin

    2013-01-01

    An optimized artificial neural network ensemble model is built to estimate daily global solar radiation over large areas. The model uses clear-sky estimates and satellite images as input variables. Unlike most studies using satellite imagery based on visible channels, our model also exploits all information within infrared channels of the Meteosat 9 satellite. A genetic algorithm is used to optimize selection of model inputs, for which twelve are selected – eleven 3-km Meteosat 9 channels and one clear-sky term. The model is validated in Andalusia (Spain) from January 2008 through December 2008. Measured data from 83 stations across the region are used, 65 for training and 18 independent ones for testing the model. At the latter stations, the ensemble model yields an overall root mean square error of 6.74% and correlation coefficient of 99%; the generated estimates are relatively accurate and errors spatially uniform. The model yields reliable results even on cloudy days, improving on current models based on satellite imagery. - Highlights: • Daily solar radiation data are generated using an artificial neural network ensemble. • Eleven Meteosat channels observations and a clear sky term are used as model inputs. • Model exploits all information within infrared Meteosat channels. • Measured data for a year from 83 ground stations are used. • The proposed approach has better performance than existing models on daily basis

  19. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  20. Developments in perturbation theory

    Greenspan, E.

    1976-01-01

    Included are sections dealing with perturbation expressions for reactivity, methods for the calculation of perturbed fluxes, integral transport theory formulations for reactivity, generalized perturbation theory, sensitivity and optimization studies, multigroup calculations of bilinear functionals, and solution of inhomogeneous Boltzmann equations with singular operators

  1. Design strategies to minimize the radiative efficiency of global warming molecules

    Bera, Partha P.; Francisco, Joseph S.; Lee, Timothy J.

    2010-01-01

    A strategy is devised to screen molecules based on their radiative efficiency. The methodology should be useful as one additional constraint when determining the best molecule to use for an industrial application. The strategy is based on the results of a recent study where we examined molecular properties of global warming molecules using ab initio electronic structure methods to determine which fundamental molecular properties are important in assessing the radiative efficiency of a molecule. Six classes of perfluorinated compounds are investigated. For similar numbers of fluorine atoms, their absorption of radiation in the IR window decreases according to perfluoroethers > perfluorothioethers ≈ sulfur/carbon compounds > perfluorocarbons > perfluoroolefins > carbon/nitrogen compounds. Perfluoroethers and hydrofluorethers are shown to possess a large absorption in the IR window due to (i) the C─O bonds are very polar, (ii) the C-O stretches fall within the IR window and have large IR intensity due to their polarity, and (iii) the IR intensity for C-F stretches in which the fluorine atom is bonded to the carbon that is bonded to the oxygen atom is enhanced due to a larger C─F bond polarity. Lengthening the carbon chain leads to a larger overall absorption in the IR window, though the IR intensity per bond is smaller. Finally, for a class of partially fluorinated compounds with a set number of electronegative atoms, the overall absorption in the IR window can vary significantly, as much as a factor of 2, depending on how the fluorine atoms are distributed within the molecule. PMID:20439762

  2. Global Harmonization of Quality Assurance Naming Conventions in Radiation Therapy Clinical Trials

    Melidis, Christos, E-mail: christos.melidis@eortc.be [European Organization for the Research and Treatment of Cancer–Radiation Oncology Group (EORTC-ROG), Radiation Therapy Quality Assurance (RTQA), Brussels (Belgium); Bosch, Walther R. [Washington University, representing Advanced Technology Consortium, Radiation Oncology, St. Louis, Missouri (United States); Izewska, Joanna [Dosimetry Laboratory, International Atomic Energy Agency, Vienna (Austria); Fidarova, Elena; Zubizarreta, Eduardo [Applied Radiation Biology and Radiotherapy Section, International Atomic Energy Agency, Vienna (Austria); Ulin, Kenneth [Department of Radiation Oncology, University of Massachusetts Medical School, Representing Quality Assurance Review Center, Worcester, Massachusetts (United States); Ishikura, Satoshi [Department of Radiation Oncology, Juntendo University, Representing Japan Clinical Oncology Group, RTQA, Tokyo (Japan); Followill, David [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Representing Radiological Physics Center, RTQA, Houston, Texas (United States); Galvin, James [Department of Radiation Oncology, Thomas Jefferson University, Representing Radiation Therapy Oncology Group, RTQA, Philadelphia, Pennsylvania (United States); Haworth, Annette [Department of Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, representing TransTasman Radiation Oncology Group (TROG) Cancer Research, Newcastle (Australia); Besuijen, Deidre [North West Cancer Centre, Representing TROG Cancer Research, Newcastle (Australia); Clark, Clark H. [Department of Medical Physics, St. Luke' s Cancer Centre, Royal Surrey County Hospital, Guildford, Surrey and National Physical Laboratory, Teddington, Middlesex, representing Radiation Therapy Trials Quality Assurance (RTTQA) (United Kingdom); Miles, Elizabeth; Aird, Edwin [Mount Vernon Cancer Centre, Northwood, Middlesex representing RTTQA (United Kingdom); and others

    2014-12-01

    Purpose: To review the various radiation therapy quality assurance (RTQA) procedures used by the Global Clinical Trials RTQA Harmonization Group (GHG) steering committee members and present the harmonized RTQA naming conventions by amalgamating procedures with similar objectives. Methods and Materials: A survey of the GHG steering committee members' RTQA procedures, their goals, and naming conventions was conducted. The RTQA procedures were classified as baseline, preaccrual, and prospective/retrospective data capture and analysis. After all the procedures were accumulated and described, extensive discussions took place to come to harmonized RTQA procedures and names. Results: The RTQA procedures implemented within a trial by the GHG steering committee members vary in quantity, timing, name, and compliance criteria. The procedures of each member are based on perceived chances of noncompliance, so that the quality of radiation therapy planning and treatment does not negatively influence the trial measured outcomes. A comparison of these procedures demonstrated similarities among the goals of the various methods, but the naming given to each differed. After thorough discussions, the GHG steering committee members amalgamated the 27 RTQA procedures to 10 harmonized ones with corresponding names: facility questionnaire, beam output audit, benchmark case, dummy run, complex treatment dosimetry check, virtual phantom, individual case review, review of patients' treatment records, and protocol compliance and dosimetry site visit. Conclusions: Harmonized RTQA harmonized naming conventions, which can be used in all future clinical trials involving radiation therapy, have been established. Harmonized procedures will facilitate future intergroup trial collaboration and help to ensure comparable RTQA between international trials, which enables meta-analyses and reduces RTQA workload for intergroup studies.

  3. Solar Simulated Ultraviolet Radiation Induces Global Histone Hypoacetylation in Human Keratinocytes.

    Zhang, Xiaoru; Kluz, Thomas; Gesumaria, Lisa; Matsui, Mary S; Costa, Max; Sun, Hong

    2016-01-01

    Ultraviolet radiation (UVR) from sunlight is the primary effector of skin DNA damage. Chromatin remodeling and histone post-translational modification (PTM) are critical factors in repairing DNA damage and maintaining genomic integrity, however, the dynamic changes of histone marks in response to solar UVR are not well characterized. Here we report global changes in histone PTMs induced by solar simulated UVR (ssUVR). A decrease in lysine acetylation of histones H3 and H4, particularly at positions of H3 lysine 9, lysine 56, H4 lysine 5, and lysine 16, was found in human keratinocytes exposed to ssUVR. These acetylation changes were highly associated with ssUVR in a dose-dependent and time-specific manner. Interestingly, H4K16ac, a mark that is crucial for higher order chromatin structure, exhibited a persistent reduction by ssUVR that was transmitted through multiple cell divisions. In addition, the enzymatic activities of histone acetyltransferases were significantly reduced in irradiated cells, which may account for decreased global acetylation. Moreover, depletion of histone deacetylase SIRT1 in keratinocytes rescued ssUVR-induced H4K16 hypoacetylation. These results indicate that ssUVR affects both HDAC and HAT activities, leading to reduced histone acetylation.

  4. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  5. Brightening of the global cloud field by nitric acid and the associated radiative forcing

    R. Makkonen

    2012-08-01

    Full Text Available Clouds cool Earth's climate by reflecting 20% of the incoming solar energy, while also trapping part of the outgoing radiation. The effect of human activities on clouds is poorly understood, but the present-day anthropogenic cooling via changes of cloud albedo and lifetime could be of the same order as warming from anthropogenic addition in CO2. Soluble trace gases can increase water condensation to particles, possibly leading to activation of smaller aerosols and more numerous cloud droplets. We have studied the effect of nitric acid on the aerosol indirect effect with the global aerosol-climate model ECHAM5.5-HAM2. Including the nitric acid effect in the model increases cloud droplet number concentrations globally by 7%. The nitric acid contribution to the present-day cloud albedo effect was found to be −0.32 W m−2 and to the total indirect effect −0.46 W m−2. The contribution to the cloud albedo effect is shown to increase to −0.37 W m−2 by the year 2100, if considering only the reductions in available cloud condensation nuclei. Overall, the effect of nitric acid can play a large part in aerosol cooling during the following decades with decreasing SO2 emissions and increasing NOx and greenhouse gases.

  6. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  7. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  8. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)], E-mail: ugo.besson@unipv.it, E-mail: anna.deambrosisvigna@unipv.it

    2010-03-15

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  9. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    Jaffray, D.

    2015-01-01

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  10. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    Jaffray, D. [Princess Margaret Cancer Centre (Canada)

    2015-06-15

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  11. A Kalman Filter-Based Method for Reconstructing GMS-5 Global Solar Radiation by Introduction of In Situ Data

    Yong Wang

    2013-06-01

    Full Text Available Solar radiation is an important input for various land-surface energy balance models. Global solar radiation data retrieved from the Japanese Geostationary Meteorological Satellite 5 (GMS-5/Visible and Infrared Spin Scan Radiometer (VISSR has been widely used in recent years. However, due to the impact of clouds, aerosols, solar elevation angle and bidirectional reflection, spatial or temporal deficiencies often exist in solar radiation datasets that are derived from satellite remote sensing, which can seriously affect the accuracy of application models of land-surface energy balance. The goal of reconstructing radiation data is to simulate the seasonal variation patterns of solar radiation, using various statistical and numerical analysis methods to interpolate the missing observations and optimize the whole time-series dataset. In the current study, a reconstruction method based on data assimilation is proposed. Using a Kalman filter as the assimilation algorithm, the retrieved radiation values are corrected through the continuous introduction of local in-situ global solar radiation (GSR provided by the China Meteorological Data Sharing Service System (Daily radiation dataset_Version 3 which were collected from 122 radiation data collection stations over China. A complete and optimal set of time-series data is ultimately obtained. This method is applied and verified in China’s northern agricultural areas (humid regions, semi-humid regions and semi-arid regions in a warm temperate zone. The results show that the mean value and standard deviation of the reconstructed solar radiation data series are significantly improved, with greater consistency with ground-based observations than the series before reconstruction. The method implemented in this study provides a new solution for the time-series reconstruction of surface energy parameters, which can provide more reliable data for scientific research and regional renewable-energy planning.

  12. Prediction of Daily Global Solar Radiation by Daily Temperatures and Artificial Neural Networks in Different Climates

    S. I Saedi

    2018-03-01

    Full Text Available Introduction Global solar radiation is the sum of direct, diffuse, and reflected solar radiation. Weather forecasts, agricultural practices, and solar equipment development are three major fields that need proper information about solar radiation. Furthermore, sun in regarded as a huge source of renewable and clean energy which can be used in numerous applications to get rid of environmental impacts of non-renewable fossil fuels. Therefore, easy and fast estimation of daily global solar radiation would play an effective role is these affairs. Materials and Methods This study aimed at predicting the daily global solar radiation by means of artificial neural network (ANN method, based on easy-to-gain weather data i.e. daily mean, minimum and maximum temperatures. Having a variety of climates with long-term valid weather data, Washington State, located at the northwestern part of USA was chosen for this purpose. It has a total number of 19 weather stations to cover all the State climates. First, a station with the largest number of valid historical weather data (Lind was chosen to develop, validate, and test different ANN models. Three training algorithms i.e. Levenberg – Marquardt (LM, Scaled Conjugate Gradient (SCG, and Bayesian regularization (BR were tested in one and two hidden layer networks each with up to 20 neurons to derive six best architectures. R, RMSE, MAPE, and scatter plots were considered to evaluate each network in all steps. In order to investigate the generalizability of the best six models, they were tested in other Washington State weather stations. The most accurate and general models was evaluated in an Iran sample weather station which was chosen to be Mashhad. Results and Discussion The variation of MSE for the three training functions in one hidden layer models for Lind station indicated that SCG converged weights and biases in shorter time than LM, and LM did that faster than BR. It means that SCG provided the fastest

  13. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  14. Focusing on the Interfaces, Estuaries and Redox Transition Zones, for Understanding the Microbial Processes and Biogeochemical Cycling of Carbon under the Looming Influence of Global Warming and Anthropogenic Perturbations

    Dang, H.; Jiao, N.

    2013-12-01

    Estuaries are the natural interface between terrestrial and marine ecosystems. These are also the zones where human activities exert the strongest impact on the earth and ocean environments. Due to high pressure from the effects of global warming and anthropogenic activities, many estuaries are deteriorating and experiencing significant change of the ecological processes and environmental functions. Certain fundamental microbial processes, including carbon fixation and respiration, have been changing as responses to and consequences of the altered estuarine environment and geochemistry. Increased inputs of terrigenous and anthropogenic organic materials and nutrients and elevated temperature make estuaries easy to be subjected to harmful algal blooms and hypoxic and even anoxic events. The change of the redox status of the estuarine and coastal waters and the increased nutrient loads such as that from terrestrial nitrate stimulate anaerobic respiration processes, such as nitrate reduction and denitrification. This may have strong negative impact on the marine environment, ecosystem and even climate, such as those caused by greenhouse gas production (N2O, CH4) by anaerobic microbial processes. In addition, some nutrients may be consumed by anaerobically respiring heterotrophic microorganisms, instead of being utilized by phytoplankton for carbon fixation. In this regard, the ecological function of the estuarine ecosystem may be altered and the ecological efficiency may be lowered, as less energy is produced by the microbial respiration process and less carbon is fixed by phytoplankton. However, on the other side, in hypoxic and anoxic waters, inorganic carbon fixation by anaerobic microorganisms may happen, such as those via the chemolithoautotrophic denitrifying sulfur oxidizing process and the anaerobic ammonium oxidation (anammox) process. Global warming and anthropogenic perturbations may have lowered the diversity, complexity, stability and sustainability of

  15. Generation of common coefficients to estimate global solar radiation over different locations of India

    Samanta, Suman; Patra, Pulak Kumar; Banerjee, Saon; Narsimhaiah, Lakshmi; Sarath Chandran, M. A.; Vijaya Kumar, P.; Bandyopadhyay, Sanjib

    2018-06-01

    In developing countries like India, global solar radiation (GSR) is measured at very few locations due to non-availability of radiation measuring instruments. To overcome the inadequacy of GSR measurements, scientists developed many empirical models to estimate location-wise GSR. In the present study, three simple forms of Angstrom equation [Angstrom-Prescott (A-P), Ogelman, and Bahel] were used to estimate GSR at six geographically and climatologically different locations across India with an objective to find out a set of common constants usable for whole country. Results showed that GSR values varied from 9.86 to 24.85 MJ m-2 day-1 for different stations. It was also observed that A-P model showed smaller errors than Ogelman and Bahel models. All the models well estimated GSR, as the 1:1 line between measured and estimated values showed Nash-Sutcliffe efficiency (NSE) values ≥ 0.81 for all locations. Measured data of GSR pooled over six selected locations was analyzed to obtain a new set of constants for A-P equation which can be applicable throughout the country. The set of constants (a = 0.29 and b = 0.40) was named as "One India One Constant (OIOC)," and the model was named as "MOIOC." Furthermore, the developed constants are validated statistically for another six locations of India and produce close estimation. High R 2 values (≥ 76%) along with low mean bias error (MBE) ranging from - 0.64 to 0.05 MJ m-2 day-1 revealed that the new constants are able to predict GSR with lesser percentage of error.

  16. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie-Laure

    2011-01-01

    This paper presents an application of Artificial Neural Networks (ANNs) to predict daily solar radiation. We look at the Multi-Layer Perceptron (MLP) network which is the most used of ANNs architectures. In previous studies, we have developed an ad-hoc time series preprocessing and optimized a MLP with endogenous inputs in order to forecast the solar radiation on a horizontal surface. We propose in this paper to study the contribution of exogenous meteorological data (multivariate method) as time series to our optimized MLP and compare with different forecasting methods: a naive forecaster (persistence), ARIMA reference predictor, an ANN with preprocessing using only endogenous inputs (univariate method) and an ANN with preprocessing using endogenous and exogenous inputs. The use of exogenous data generates an nRMSE decrease between 0.5% and 1% for two stations during 2006 and 2007 (Corsica Island, France). The prediction results are also relevant for the concrete case of a tilted PV wall (1.175 kWp). The addition of endogenous and exogenous data allows a 1% decrease of the nRMSE over a 6 months-cloudy period for the power production. While the use of exogenous data shows an interest in winter, endogenous data as inputs on a preprocessed ANN seem sufficient in summer. -- Research highlights: → Use of exogenous data as ANN inputs to forecast horizontal daily global irradiation data. → New methodology allowing to choice the adequate exogenous data - a systematic method comparing endogenous and exogenous data. → Different referenced mathematical predictors allows to conclude about the pertinence of the proposed methodology.

  17. Concentrator photovoltaic module architectures with capabilities for capture and conversion of full global solar radiation

    Lee, Kyu-Tae; Yao, Yuan; He, Junwen; Fisher, Brent; Sheng, Xing; Lumb, Matthew; Xu, Lu; Anderson, Mikayla A.; Scheiman, David; Han, Seungyong; Kang, Yongseon; Gumus, Abdurrahman; Bahabry, Rabab R.; Lee, Jung Woo; Paik, Ungyu; Bronstein, Noah D.; Alivisatos, A. Paul; Meitl, Matthew; Burroughs, Scott; Mustafa Hussain, Muhammad; Lee, Jeong Chul; Nuzzo, Ralph G.; Rogers, John A.

    2016-12-01

    Emerging classes of concentrator photovoltaic (CPV) modules reach efficiencies that are far greater than those of even the highest performance flat-plate PV technologies, with architectures that have the potential to provide the lowest cost of energy in locations with high direct normal irradiance (DNI). A disadvantage is their inability to effectively use diffuse sunlight, thereby constraining widespread geographic deployment and limiting performance even under the most favorable DNI conditions. This study introduces a module design that integrates capabilities in flat-plate PV directly with the most sophisticated CPV technologies, for capture of both direct and diffuse sunlight, thereby achieving efficiency in PV conversion of the global solar radiation. Specific examples of this scheme exploit commodity silicon (Si) cells integrated with two different CPV module designs, where they capture light that is not efficiently directed by the concentrator optics onto large-scale arrays of miniature multijunction (MJ) solar cells that use advanced III-V semiconductor technologies. In this CPV+ scheme (“+” denotes the addition of diffuse collector), the Si and MJ cells operate independently on indirect and direct solar radiation, respectively. On-sun experimental studies of CPV+ modules at latitudes of 35.9886° N (Durham, NC), 40.1125° N (Bondville, IL), and 38.9072° N (Washington, DC) show improvements in absolute module efficiencies of between 1.02% and 8.45% over values obtained using otherwise similar CPV modules, depending on weather conditions. These concepts have the potential to expand the geographic reach and improve the cost-effectiveness of the highest efficiency forms of PV power generation.

  18. Evaluation of Various Methods for Estimating Global Solar Radiation in the Southeastern United States

    Woli, Prem; Paz, Joel O.

    2012-05-01

    Global solar radiation Rg is an important input for crop models to simulate crop responses. Because the scarcity of long and continuous records of Rg is a serious limitation in many countries, Rg is estimated using models. For crop-model application, empirical Rg models that use commonly measured meteorological variables, such as temperature and precipitation, are generally preferred. Although a large number of models of this kind exist, few have been evaluated for conditions in the United States. This study evaluated the performances of 16 empirical, temperature- and/or precipitation-based Rg models for the southeastern United States. By taking into account spatial distribution and data availability, 30 locations in the region were selected and their daily weather data spanning eight years obtained. One-half of the data was used for calibrating the models, and the other half was used for evaluation. For each model, location-specific parameter values were estimated through regressions. Models were evaluated for each location using the root-mean-square error and the modeling efficiency as goodness-of-fit measures. Among the models that use temperature or precipitation as the input variable, the Mavromatis model showed the best performance. The piecewise linear regression based Wu et al. model (WP) performed best not only among the models that use both temperature and precipitation but also among the 16 models evaluated, mainly because it has separate relationships for low and high radiation levels. The modeling efficiency of WP was from ~5% to more than 100% greater than those of the other models, depending on models and locations.

  19. Estimating Net Primary Productivity Beneath Snowpack Using Snowpack Radiative Transfer Modeling and Global Satellite Data

    Barber, D. E.; Peterson, M. C.

    2002-05-01

    Sufficient photosynthetically active radiation (PAR) penetrates snow for plants to grow beneath snowpack during late winter or early spring in tundra ecosystems. During the spring in this ecosystem, the snowpack creates an environment with higher humidity and less variable and milder temperatures than on the snow-free land. Under these conditions, the amount of PAR available is likely to be the limiting factor for plant growth. Current methods for determining net primary productivity (NPP) of tundra ecosystems do not account for this plant growth beneath snowpack, apparently resulting in underestimating plant production there. We are currently in the process of estimating the magnitude of this early growth beneath snow for tundra ecosystems. Our method includes a radiative transfer model that simulates diffuse and direct PAR penetrating snowpack based on downwelling PAR values and snow depth data from global satellite databases. These PAR levels are convolved with plant growth for vegetation that thrives beneath snowpacks, such as lichen. We expect to present the net primary production for Cladonia species (a common Arctic lichen) that has the capability of photosynthesizing at low temperatures beneath snowpack. This method may also be used to study photosynthesis beneath snowpacks in other hardy plants. Lichens are used here as they are common in snow-covered regions, flourish under snowpack, and provide an important food source for tundra herbivores (e.g. caribou). In addition, lichens are common in arctic-alpine environments and our results can be applied to these ecosystems as well. Finally, the NPP of lichen beneath snowpack is relatively well understood compared to other plants, making it ideal vegetation for this first effort at estimating the potential importance of photosynthesis at large scales. We are examining other candidate plants for their photosynthetic potential beneath snowpack at this time; however, little research has been done on this topic. We

  20. Global direct radiative forcing by process-parameterized aerosol optical properties

    KirkevâG, Alf; Iversen, Trond

    2002-10-01

    A parameterization of aerosol optical parameters is developed and implemented in an extended version of the community climate model version 3.2 (CCM3) of the U.S. National Center for Atmospheric Research. Direct radiative forcing (DRF) by monthly averaged calculated concentrations of non-sea-salt sulfate and black carbon (BC) is estimated. Inputs are production-specific BC and sulfate from [2002] and background aerosol size distribution and composition. The scheme interpolates between tabulated values to obtain the aerosol single scattering albedo, asymmetry factor, extinction coefficient, and specific extinction coefficient. The tables are constructed by full calculations of optical properties for an array of aerosol input values, for which size-distributed aerosol properties are estimated from theory for condensation and Brownian coagulation, assumed distribution of cloud-droplet residuals from aqueous phase oxidation, and prescribed properties of the background aerosols. Humidity swelling is estimated from the Köhler equation, and Mie calculations finally yield spectrally resolved aerosol optical parameters for 13 solar bands. The scheme is shown to give excellent agreement with nonparameterized DRF calculations for a wide range of situations. Using IPCC emission scenarios for the years 2000 and 2100, calculations with an atmospheric global cliamte model (AFCM) yield a global net anthropogenic DRF of -0.11 and 0.11 W m-2, respectively, when 90% of BC from biomass burning is assumed anthropogenic. In the 2000 scenario, the individual DRF due to sulfate and BC has separately been estimated to -0.29 and 0.19 W m-2, respectively. Our estimates of DRF by BC per BC mass burden are lower than earlier published estimates. Some sensitivity tests are included to investigate to what extent uncertain assumptions may influence these results.

  1. Non-perturbative effects in supersymmetry

    Veneziano, G.

    1987-01-01

    Some non perturbative aspects of globally supersymmetric (SUSY) gauge theories are discussed. These share with their non-supersymmetric analogues interesting non perturbative features, such as the spontaneous breaking of chiral symmetries via condensates. What is peculiar about supersymmetric theories, however, is that one is able to say a lot about non-perturbative effects even without resorting to elaborate numerical calculations: general arguments, supersymmetric and chiral Ward identities and analytic, dynamical calculations will turn out to effectively determine most of the supersymmetric vacuum properties. 28 references, 5 figures

  2. Campbell-Bristow development Model for Estimating Global Solar radiation in the Region of Junin, Perú

    Dr. Becquer Frauberth Camayo-Lapa

    2015-11-01

    Full Text Available In order to have a tool to estimate the monthly and annual solar radiation on the horizontal surface in Junín region, in which is not available with this information, adapted Bristow-Campbell (1984 model for estimating global solar radiation monthly average.   To develop the model of Bristow-Campbell that estimates the average daily global solar radiation monthly modeling technique proposed by Espinoza (2010, were recorded daily maximum and minimum temperatures of 19 weather stations and the equations proposed  by the Solar High Peru 2003 was adapted to this model.  The Bristow-Campbell model was developed with data recorded in stations: Santa Ana, Tarma and Satipo belonging to Sierra and Selva, respectively. The performance of applications calculated solar radiation was determined by considering the OLADE (1992 that solar radiation over 4,0 kWh/m2/day are profitable and 5,0 kWh/m2/day very profitable. The results indicate that the monthly average global solar radiation in Junín  region is 5,3  kWh/m2/day corresponding to the  4,2 Forest and the Sierra 5,6 kWh/m2/day kWh/m2/day. Profitability is determined for the less profitable Selva and Sierra is very profitable. In addition, the operating model is simple and available to all users. We conclude that application of the Bristow-Campbell model adapted, it is an instrument of great utility to generate a comprehensive database of available solar radiation in Junín region.

  3. Methods and strategy for modeling daily global solar radiation with measured meteorological data - A case study in Nanchang station, China

    Wu, Guofeng; Liu, Yaolin; Wang, Tiejun

    2007-01-01

    Solar radiation is a primary driver for many physical, chemical and biological processes on the earth's surface, and complete and accurate solar radiation data at a specific region are quite indispensable to the solar energy related researches. This study, with Nanchang station, China, as a case study, aimed to calibrate existing models and develop new models for estimating missing global solar radiation data using commonly measured meteorological data and to propose a strategy for selecting the optimal models under different situations of available meteorological data. Using daily global radiation, sunshine hours, temperature, total precipitation and dew point data covering the years from 1994 to 2005, we calibrated or developed and evaluated seven existing models and two new models. Validation criteria included intercept, slope, coefficient of determination, mean bias error and root mean square error. The best result (R 2 = 0.93) was derived from Chen model 2, which uses sunshine hours and temperature as predictors. The Bahel model, which only uses sunshine hours, was almost as good, explaining 92% of the solar radiation variance. Temperature based models (Bristow and Campbell, Allen, Hargreaves and Chen 1 models) provided less accurate results, of which the best one (R 2 = 0.69) is the Bristow and Campbell model. The temperature based models were improved by adding other variables (daily mean total precipitation and mean dew point). Two such models could explain 77% (Wu model 1) and 80% (Wu model 2) of the solar radiation variance. We, thus, propose a strategy for selecting an optimal method for calculating missing daily values of global solar radiation: (1) when sunshine hour and temperature data are available, use Chen model 2; (2) when only sunshine hour data are available, use Bahel model; (3) when temperature, total precipitation and dew point data are available but not sunshine hours, use Wu model 2; (4) when only temperature and total precipitation are

  4. An Assessment of the Current US Radiation Oncology Workforce: Methodology and Global Results of the American Society for Radiation Oncology 2012 Workforce Study

    Vichare, Anushree; Washington, Raynard; Patton, Caroline; Arnone, Anna [ASTRO, Fairfax, Virginia (United States); Olsen, Christine [Massachusetts General Hospital, Boston, Massachusetts, (United States); Fung, Claire Y. [Commonwealth Newburyport Cancer Center, Newburyport, Massachusetts (United States); Hopkins, Shane [William R. Bliss Cancer Center, Ames, Iowa (United States); Pohar, Surjeet, E-mail: spohar@netzero.net [Indiana University Health Cancer Center East, Indiana University, Indianapolis, Indiana (United States)

    2013-12-01

    Purpose: To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. Methods and Materials: An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results is presented in this paper. Results: A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. Conclusions: This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for

  5. An Assessment of the Current US Radiation Oncology Workforce: Methodology and Global Results of the American Society for Radiation Oncology 2012 Workforce Study

    Vichare, Anushree; Washington, Raynard; Patton, Caroline; Arnone, Anna; Olsen, Christine; Fung, Claire Y.; Hopkins, Shane; Pohar, Surjeet

    2013-01-01

    Purpose: To determine the characteristics, needs, and concerns of the current radiation oncology workforce, evaluate best practices and opportunities for improving quality and safety, and assess what we can predict about the future workforce. Methods and Materials: An online survey was distributed to 35,204 respondents from all segments of the radiation oncology workforce, including radiation oncologists, residents, medical dosimetrists, radiation therapists, medical physicists, nurse practitioners, nurses, physician assistants, and practice managers/administrators. The survey was disseminated by the American Society for Radiation Oncology (ASTRO) together with specialty societies representing other workforce segments. An overview of the methods and global results is presented in this paper. Results: A total of 6765 completed surveys were received, a response rate of 19%, and the final analysis included 5257 respondents. Three-quarters of the radiation oncologists, residents, and physicists who responded were male, in contrast to the other segments in which two-thirds or more were female. The majority of respondents (58%) indicated they were hospital-based, whereas 40% practiced in a free-standing/satellite clinic and 2% in another setting. Among the practices represented in the survey, 21.5% were academic, 25.2% were hospital, and 53.3% were private. A perceived oversupply of professionals relative to demand was reported by the physicist, dosimetrist, and radiation therapist segments. An undersupply was perceived by physician's assistants, nurse practitioners, and nurses. The supply of radiation oncologists and residents was considered balanced. Conclusions: This survey was unique as it attempted to comprehensively assess the radiation oncology workforce by directly surveying each segment. The results suggest there is potential to improve the diversity of the workforce and optimize the supply of the workforce segments. The survey also provides a benchmark for

  6. Support vector regression methodology for estimating global solar radiation in Algeria

    Guermoui, Mawloud; Rabehi, Abdelaziz; Gairaa, Kacem; Benkaciali, Said

    2018-01-01

    Accurate estimation of Daily Global Solar Radiation (DGSR) has been a major goal for solar energy applications. In this paper we show the possibility of developing a simple model based on the Support Vector Regression (SVM-R), which could be used to estimate DGSR on the horizontal surface in Algeria based only on sunshine ratio as input. The SVM model has been developed and tested using a data set recorded over three years (2005-2007). The data was collected at the Applied Research Unit for Renewable Energies (URAER) in Ghardaïa city. The data collected between 2005-2006 are used to train the model while the 2007 data are used to test the performance of the selected model. The measured and the estimated values of DGSR were compared during the testing phase statistically using the Root Mean Square Error (RMSE), Relative Square Error (rRMSE), and correlation coefficient (r2), which amount to 1.59(MJ/m2), 8.46 and 97,4%, respectively. The obtained results show that the SVM-R is highly qualified for DGSR estimation using only sunshine ratio.

  7. A simple and efficient algorithm to estimate daily global solar radiation from geostationary satellite data

    Lu, Ning; Qin, Jun; Yang, Kun; Sun, Jiulin

    2011-01-01

    Surface global solar radiation (GSR) is the primary renewable energy in nature. Geostationary satellite data are used to map GSR in many inversion algorithms in which ground GSR measurements merely serve to validate the satellite retrievals. In this study, a simple algorithm with artificial neural network (ANN) modeling is proposed to explore the non-linear physical relationship between ground daily GSR measurements and Multi-functional Transport Satellite (MTSAT) all-channel observations in an effort to fully exploit information contained in both data sets. Singular value decomposition is implemented to extract the principal signals from satellite data and a novel method is applied to enhance ANN performance at high altitude. A three-layer feed-forward ANN model is trained with one year of daily GSR measurements at ten ground sites. This trained ANN is then used to map continuous daily GSR for two years, and its performance is validated at all 83 ground sites in China. The evaluation result demonstrates that this algorithm can quickly and efficiently build the ANN model that estimates daily GSR from geostationary satellite data with good accuracy in both space and time. -- Highlights: → A simple and efficient algorithm to estimate GSR from geostationary satellite data. → ANN model fully exploits both the information from satellite and ground measurements. → Good performance of the ANN model is comparable to that of the classical models. → Surface elevation and infrared information enhance GSR inversion.

  8. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential.

    Betowski, Don; Bevington, Charles; Allison, Thomas C

    2016-01-19

    Halogenated chemical substances are used in a broad array of applications, and new chemical substances are continually being developed and introduced into commerce. While recent research has considerably increased our understanding of the global warming potentials (GWPs) of multiple individual chemical substances, this research inevitably lags behind the development of new chemical substances. There are currently over 200 substances known to have high GWP. Evaluation of schemes to estimate radiative efficiency (RE) based on computational chemistry are useful where no measured IR spectrum is available. This study assesses the reliability of values of RE calculated using computational chemistry techniques for 235 chemical substances against the best available values. Computed vibrational frequency data is used to estimate RE values using several Pinnock-type models, and reasonable agreement with reported values is found. Significant improvement is obtained through scaling of both vibrational frequencies and intensities. The effect of varying the computational method and basis set used to calculate the frequency data is discussed. It is found that the vibrational intensities have a strong dependence on basis set and are largely responsible for differences in computed RE values.

  9. Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region

    Mawloud GUERMOUI

    2016-07-01

    Full Text Available Accurate estimation of Daily Global Solar Radiation (DGSR has been a major goal for solar energy application. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly of the search for relationships between weather variables, such as temperature, humidity, sunshine duration, etc. In this respect, the present study focuses on the development of artificial neural network (ANN model for estimation of daily global solar radiation on horizontal surface in Ghardaia city (South Algeria. In this analysis back-propagation algorithm is applied. Daily mean air temperature, relative humidity and sunshine duration was used as climatic inputs parameters, while the daily global solar radiation (DGSR was the only output of the ANN. We have evaluated Multi-Layer Perceptron (MLP models to estimate DGSR using three year of measurement (2005-2008. It was found that MLP-model based on sunshine duration and mean air temperature give accurate results in term of Mean Absolute Bias Error, Root Mean Square Error, Relative Square Error and Correlation Coefficient. The obtained values of these indicators are 0.67 MJ/m², 1.28 MJ/m², 6.12%and 98.18%, respectively which shows that MLP is highly qualified for DGSR estimation in semi-arid climates.

  10. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  11. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  12. The assessment of four different correction models applied to the diffuse radiation measured with a shadow ring using global and normal beam radiation measurements for Beer Sheva, Israel

    Kudish, Avraham I.; Evseev, Efim G. [Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, E D Bergmann Campus, Beer Sheva 84105 (Israel)

    2008-02-15

    The measurement of the diffuse radiation incident on a horizontal surface, a priori a straightforward task, is fraught with difficulties. It is possible to measure the diffuse radiation by three different techniques: two of which measure it directly and the third indirectly. The most accurate is the indirect one, which is based upon the concurrent measurements of the horizontal global and the normal incidence beam radiation. The disadvantage of this being the relatively expensive tracking system required for measuring the latter. The diffuse radiation can be measured directly with a pyranometer outfitted with either an occulting disk or shadow ring, which prevent the beam radiation from impinging on the pyranometer sensor. The occulting disk can provide accurate measurements of the diffuse radiation but it requires a relatively expensive sun tracking system in the east-west axis. The shadow ring is a stationary device with regard to the east-west axis and blocks the beam radiation component by creating a permanent shadow on the pyranometer sensor. The major disadvantage of the shadow ring is that it also blocks that portion of the diffuse radiation obscured by the shadow ring. This introduces a measurement error that must be corrected to account for that portion of the sky obscured by the shadow band. In addition to this geometric correction factor there is a need to correct for anisotropic sky conditions. Four correction models have been applied to the data for Beer Sheva, Israel and the results have been evaluated both graphically and statistically. An attempt has been made to score the relative performance of the models under different sky conditions. (author)

  13. Correlations during the day of diffuse solar radiation to the global solar radiation in Vigo (Spain); Correlaciones minutarias, horarias y diarias de la radiacion solar difusa a la radiacion solar global en Vigo

    Vazquez, M.; Santos, J.

    2004-07-01

    In the Solar Energy Lab of the University of Vigo a weather station has been in operation since October 2001. Two Kipp and Zonen pyranometers, one of them with a shade ring, have been measuring global and diffuse solar radiation. From these data of the years 2002 and 2003, the diffuse-to-global minute, hourly and daily correlations are obtained and shown in graphs. These correlations are also plotted together with other correlations referred in the literature for comparison. The graphs show the effect of the clear-cloudy behaviour of the solar radiation for short periods of time, effect that is not seen for larger periods of time as daily periods. (Author)

  14. The spectrum of density perturbations in an expanding universe

    Silk, J.

    1974-01-01

    The basic dynamic equations that govern the evolution of perturbations in a Friedmann-Lemaitre universe are derived. General solutions describing the evolution of adiabatic perturbations in the density of matter are obtained, and the choice of the appropriate initial conditions is examined. The various perturbation modes are compared, and the effects of decoupling on the perturbation spectrum are studied. The scheme used to follow the evolution of density perturbations through decoupling is based on an extension of the Eddington approximation to the radiative transfer equation, and is strictly valid in both optically thick and thin limits.

  15. Hawking Radiation from Horizons of Reissner-Nordstroem de Sitter Black Hole with a Global Monopole via Anomalies

    Chen Shiwu; Liu Xiongwei; Lin Kai; Zeng Xiaoxiong; Yang Shuzheng

    2008-01-01

    Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstroem de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively

  16. Status of perturbative QCD

    Collins, J.C.

    1985-01-01

    Progress in quantum chromodynamics in the past year is reviewed in these specific areas: proof of factorization for hadron-hadron collisions, fast calculation of higher order graphs, perturbative Monte Carlo calculations for hadron-hadron scattering, applicability of perturbative methods to heavy quark production, and understanding of the small-x problem. 22 refs

  17. Perturbative and constructive renormalization

    Veiga, P.A. Faria da

    2000-01-01

    These notes are a survey of the material treated in a series of lectures delivered at the X Summer School Jorge Andre Swieca. They are concerned with renormalization in Quantum Field Theories. At the level of perturbation series, we review classical results as Feynman graphs, ultraviolet and infrared divergences of Feynman integrals. Weinberg's theorem and Hepp's theorem, the renormalization group and the Callan-Symanzik equation, the large order behavior and the divergence of most perturbation series. Out of the perturbative regime, as an example of a constructive method, we review Borel summability and point out how it is possible to circumvent the perturbation diseases. These lectures are a preparation for the joint course given by professor V. Rivasseau at the same school, where more sophisticated non-perturbative analytical methods based on rigorous renormalization group techniques are presented, aiming at furthering our understanding about the subject and bringing field theoretical models to a satisfactory mathematical level. (author)

  18. Medical exposure assessment: the global approach of the United Nations Scientific Committee on the Effects of Atomic Radiation

    Shannoun, F.

    2015-01-01

    The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) was established in 1955 to systematically collect, evaluate, publish and share data on the global levels and effects of ionizing radiation from natural and artificial sources. Regular surveys have been conducted to determinate the frequencies of medical radiological procedure, the number of equipment and staffing and the level of global exposure using the health care level (HCL) extrapolation model. UNSCEAR surveys revealed a range of issues relating to participation, survey process, data quality and analysis. Thus, UNSCEAR developed an improvement strategy to address the existing deficiencies in data quality and collection. The major element of this strategy is the introduction of an on-line platform to facilitate the data collection and archiving process. It is anticipated that the number of countries participating in UNSCEAR's surveys will increase in the future, particularly from HCL II -IV countries. (authors)

  19. Analysis of Global Horizontal Irradiance in Version 3 of the National Solar Radiation Database.

    Hansen, Clifford; Martin, Curtis E.; Guay, Nathan Gene

    2015-09-01

    We report an analysis that compares global horizontal irradiance (GHI) estimates from version 3 of the National Solar Radiation Database (NSRDB v3) with surface measurements of GHI at a wide variety of locations over the period spanning from 2005 to 2012. The NSRDB v3 estimate of GHI are derived from the Physical Solar Model (PSM) which employs physics-based models to estimate GHI from measurements of reflected visible and infrared irradiance collected by Geostationary Operational Environment Satellites (GOES) and several other data sources. Because the ground measurements themselves are uncertain our analysis does not establish the absolute accuracy for PSM GHI. However by examining the comparison for trends and for consistency across a large number of sites, we may establish a level of confidence in PSM GHI and identify conditions which indicate opportunities to improve PSM. We focus our evaluation on annual and monthly insolation because these quantities directly relate to prediction of energy production from solar power systems. We find that generally, PSM GHI exhibits a bias towards overestimating insolation, on the order of 5% when all sky conditions are considered, and somewhat less (-3%) when only clear sky conditions are considered. The biases persist across multiple years and are evident at many locations. In our opinion the bias originates with PSM and we view as less credible that the bias stems from calibration drift or soiling of ground instruments. We observe that PSM GHI may significantly underestimate monthly insolation in locations subject to broad snow cover. We found examples of days where PSM GHI apparently misidentified snow cover as clouds, resulting in significant underestimates of GHI during these days and hence leading to substantial understatement of monthly insolation. Analysis of PSM GHI in adjacent pixels shows that the level of agreement between PSM GHI and ground data can vary substantially over distances on the order of 2 km. We

  20. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  1. Radiation

    2013-01-01

    The chapter one presents the composition of matter and atomic theory; matter structure; transitions; origin of radiation; radioactivity; nuclear radiation; interactions in decay processes; radiation produced by the interaction of radiation with matter

  2. Generation of global hourly radiation sequences using a Transition Markov matrix for Madrid. Generacion de secuencias horarias de radiacion global utilizando matrices de transicion de Markov, para la localidad de Madrid

    Mora, Ll

    1989-11-01

    The aim of this work is the generation of sequences of hourly global radiation which have similar statistically characteristics of real sequences for the city of Madrid (Spain). For this generation, a first order Markov model has been proposed. The input parameters of simulation method are the following: The maximum value of hourly radiation and the average monthly value of the transparency normalized index. The maximum value of hourly radiation has been calculated as a function of the solar height by an empirical expression. The transparency normalized index has been defined as the ratio among the measured hourly global radiation to the maximum value for the corresponding solar height. The method is based on the following observations: -The transparency normalized index shows a significant correlation only for two consecutive hours. -The months with the same average transparency normalized indies have similar probability density function. Global solar radiation, time series, simulation, Markov transition matrix, solar energy.

  3. Perturbative QCD and jets

    Mueller, A.H.

    1986-03-01

    A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)

  4. Temperature Dependences of the Quantum-Mechanical and Semi-Classical Spectral-Line Widths and the Separation 0 of the Impact and Non-Impact Regions for an Ar-Perturbed/K-Radiator System

    W. C. Kreye

    2010-01-01

    Full Text Available Quantum-mechanical and semi-classical spectral-line shapes are computed at =400, 800, and 1000 K for the line core of the 5802 Å line of the Ar-Perturbed/K-Radiator system. HWHMs ('s are measured from computed full spectral-line shapes. The final-state pseudopotential is for the 721/2 state, and the initial-state potential is for the 423/2,3/2 state. Three high-pressure (P log(—versus—log( curves, corresponding to the non-impact region, intersect a similar set of low-P, impact-region curves at intersections, 0's. Similarly, for two sets of log(—versus—log( curves, which yield intersections, 0's, where is the perturber density. These 0's and 0's separate the two regions and represent the upper limits of the impact regions. A specific validity condition for the impact region is given by the equation ≤0. From an earlier spectroscopic, Fabry-Perot paper, expt=0.021 cm−1 at =400 K and =10 torr. Two theoretical values, theor=0.025 and 0.062 cm−1 corresponding to two different pseudo-potentials, are reported. Two -dependent figures are given, in which the first shows an increase in the impact region with , based on as the basic parameter, and the second which shows a decrease in the impact region with , based on as the basic parameter.

  5. Generalized chiral perturbation theory

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  6. Modeling the relationship between photosynthetically active radiation and global horizontal irradiance using singular spectrum analysis

    Zempila, Melina-Maria; Taylor, Michael; Bais, Alkiviadis; Kazadzis, Stelios

    2016-01-01

    We report on the construction of generic models to calculate photosynthetically active radiation (PAR) from global horizontal irradiance (GHI), and vice versa. Our study took place at stations of the Greek UV network (UVNET) and the Hellenic solar energy network (HNSE) with measurements from NILU-UV multi-filter radiometers and CM pyranometers, chosen due to their long (≈1 M record/site) high temporal resolution (≈1 min) record that captures a broad range of atmospheric environments and cloudiness conditions. The uncertainty of the PAR measurements is quantified to be ±6.5% while the uncertainty involved in GHI measurements is up to ≈±7% according to the manufacturer. We show how multi-linear regression and nonlinear neural network (NN) models, trained at a calibration site (Thessaloniki) can be made generic provided that the input–output time series are processed with multi-channel singular spectrum analysis (M-SSA). Without M-SSA, both linear and nonlinear models perform well only locally. M-SSA with 50 time-lags is found to be sufficient for identification of trend, periodic and noise components in aerosol, cloud parameters and irradiance, and to construct regularized noise models of PAR from GHI irradiances. Reconstructed PAR and GHI time series capture ≈95% of the variance of the cross-validated target measurements and have median absolute percentage errors <2%. The intra-site median absolute error of M-SSA processed models were ≈8.2±1.7 W/m"2 for PAR and ≈9.2±4.2 W/m"2 for GHI. When applying the models trained at Thessaloniki to other stations, the average absolute mean bias between the model estimates and measured values was found to be ≈1.2 W/m"2 for PAR and ≈0.8 W/m"2 for GHI. For the models, percentage errors are well within the uncertainty of the measurements at all sites. Generic NN models were found to perform marginally better than their linear counterparts. - Highlights: • Generic linear regression and nonlinear neural network

  7. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  8. Effects of UVB radiation on net community production in the upper global ocean

    Garcia-Corral, Lara S.; Holding, Johnna M.; Carrillo-de-Albornoz, Paloma; Steckbauer, Alexandra; Pé rez-Lorenzo, Marí a; Navarro, Nuria; Serret, Pablo; Duarte, Carlos M.; Agusti, Susana

    2016-01-01

    Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  9. Defining a Leader Role curriculum for radiation oncology: A global Delphi consensus study

    Turner, Sandra; Seel, Matthew; Trotter, Theresa; Giuliani, Meredith; Benstead, Kim; Eriksen, Jesper G.; Poortmans, Philip; Verfaillie, Christine; Westerveld, Henrike; Cross, Shamira; Chan, Ming-Ka; Shaw, Timothy

    2017-01-01

    The need for radiation oncologists and other radiation oncology (RO) professionals to lead quality improvement activities and contribute to shaping the future of our specialty is self-evident. Leadership knowledge, skills and behaviours, like other competencies, can be learned (Blumenthal et al.,

  10. Proceedings of INC 02. International Nuclear Conference 2002: Global Trends and Perspectives, Seminar V: Radiation Processing

    2002-01-01

    The papers discuss the folowing areas: radiation processing using low, medium and high energy electron beam, gamma and ultraviolet radiation; polymers blend; electron beam uses in wire, cables and polymers industry; studies of mechanical and tensile properties of elastomers / polymers blend

  11. Assessing the transferability of support vector machine model for estimation of global solar radiation from air temperature

    Chen, Ji-Long; Li, Guo-Sheng; Xiao, Bei-Bei; Wen, Zhao-Fei; Lv, Ming-Quan; Chen, Chun-Di; Jiang, Yi; Wang, Xiao-Xiao; Wu, Sheng-Jun

    2015-01-01

    Highlights: • Transferability of SVM in estimation of solar radiation is investigated. • Radiation at estimation site could be well estimated by SVM developed at source site. • A strategy for selecting a suitable source site is presented. • SVM accuracy is affected by distance and temperature difference between two sites. • RMSE of SVM shows logarithm or linearly relationship with altitude of source site. - Abstract: Exploring novel methods for estimation of global solar radiation from air temperature has been being a focus in many studies. This paper evaluates the transferability of support vector machines (SVM) for estimation of solar radiation in subtropical zone in China. Results suggest that solar radiation at one site (estimation site) could be well estimated by SVM model developed at another site (source site). The accuracy of estimation is affected by the distance and temperature difference between two sites, and altitude of source site. Higher correlations between RMSE of SVM and distance, and temperature differences are observed in northeastern region, increasing the reliability and confidence of SVM model developed at nearby stations. While lower correlations between RMSE and distance, and temperature differences are observed in southwest plateau region. When the altitude of estimation site is lower than 1200 m, RMSE show logarithm relationship with altitude of source sites where the altitude are lower than that of estimation site. Otherwise, RMSE show linearly relationship with altitude of source sites where the altitude are higher than 200 m but lower than that of the estimation site. This result suggests that solar radiation could be also estimated using SVM model developed at the site with similar but lower altitude. Based on these results, a strategy that takes into account the climatic conditions, topography, distance, and altitude for selecting a suitable source site is presented. The findings can guide and ease the appropriate choice of

  12. GLOBAL STRUCTURE OF THREE DISTINCT ACCRETION FLOWS AND OUTFLOWS AROUND BLACK HOLES FROM TWO-DIMENSIONAL RADIATION-MAGNETOHYDRODYNAMIC SIMULATIONS

    Ohsuga, Ken; Mineshige, Shin

    2011-01-01

    We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, ρ 0 , we can reproduce three distinct modes of accretion flow. In model A, which has the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of mild beaming, the apparent (isotropic) photon luminosity is ∼22L E (where L E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B, which has moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ∼7 R S (where R S is the Schwarzschild radius), while the flow is radiatively inefficient otherwise. The magnetic-pressure-driven disk wind appears in this model. In model C, the density is too low for the flow to be radiatively efficient. The flow thus becomes radiatively inefficient accretion flow, which is geometrically thick and optically thin. The magnetic-pressure force, together with the gas-pressure force, drives outflows from the disk surface, and the flow releases its energy via jets rather than via radiation. Observational implications are briefly discussed.

  13. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert

    2013-09-01

    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  14. Estimation of monthly global solar radiation in the eastern Mediterranean region in Turkey by using artificial neural networks

    Sahan, Muhittin; Yakut, Emre

    2016-01-01

    In this study, an artificial neural network (ANN) model was used to estimate monthly average global solar radiation on a horizontal surface for selected 5 locations in Mediterranean region for period of 18 years (1993-2010). Meteorological and geographical data were taken from Turkish State Meteorological Service. The ANN architecture designed is a feed-forward back-propagation model with one-hidden layer containing 21 neurons with hyperbolic tangent sigmoid as the transfer function and one output layer utilized a linear transfer function (purelin). The training algorithm used in ANN model was the Levenberg Marquand back propagation algorith (trainlm). Results obtained from ANN model were compared with measured meteorological values by using statistical methods. A correlation coefficient of 97.97 (~98%) was obtained with root mean square error (RMSE) of 0.852 MJ/m 2 , mean square error (MSE) of 0.725 MJ/m 2 , mean absolute bias error (MABE) 10.659MJ/m 2 , and mean absolute percentage error (MAPE) of 4.8%. Results show good agreement between the estimated and measured values of global solar radiation. We suggest that the developed ANN model can be used to predict solar radiation another location and conditions

  15. Hydrologic and radiative feedbacks on extratropical transient eddies: Implications of global warming

    Gutowski, W.J. Jr.; Branscome, L.E.

    1994-01-01

    Atmospheric transient eddies contribute significantly to global energy and water cycles through their transports of sensible heat and water vapor. Changes in global climate induced by greenhouse enhancement will likely alter transient eddy behavior. General circulation models (GCMs) can simulate such alterations, but unraveling all the feedbacks that occur in GCMs is difficult

  16. Global real-time dose measurements using the Automated Radiation Measurements for Aerospace Safety (ARMAS) system

    Tobiska, W. Kent; Bouwer, D.; Smart, D.; Shea, M.; Bailey, J.; Didkovsky, L.; Judge, K.; Garrett, H.; Atwell, W.; Gersey, B.; Wilkins, R.; Rice, D.; Schunk, R.; Bell, D.; Mertens, C.; Xu, X.; Wiltberger, M.; Wiley, S.; Teets, E.; Jones, B.; Hong, S.; Yoon, K.

    2016-11-01

    The Automated Radiation Measurements for Aerospace Safety (ARMAS) program has successfully deployed a fleet of six instruments measuring the ambient radiation environment at commercial aircraft altitudes. ARMAS transmits real-time data to the ground and provides quality, tissue-relevant ambient dose equivalent rates with 5 min latency for dose rates on 213 flights up to 17.3 km (56,700 ft). We show five cases from different aircraft; the source particles are dominated by galactic cosmic rays but include particle fluxes for minor radiation periods and geomagnetically disturbed conditions. The measurements from 2013 to 2016 do not cover a period of time to quantify galactic cosmic rays' dependence on solar cycle variation and their effect on aviation radiation. However, we report on small radiation "clouds" in specific magnetic latitude regions and note that active geomagnetic, variable space weather conditions may sufficiently modify the magnetospheric magnetic field that can enhance the radiation environment, particularly at high altitudes and middle to high latitudes. When there is no significant space weather, high-latitude flights produce a dose rate analogous to a chest X-ray every 12.5 h, every 25 h for midlatitudes, and every 100 h for equatorial latitudes at typical commercial flight altitudes of 37,000 ft ( 11 km). The dose rate doubles every 2 km altitude increase, suggesting a radiation event management strategy for pilots or air traffic control; i.e., where event-driven radiation regions can be identified, they can be treated like volcanic ash clouds to achieve radiation safety goals with slightly lower flight altitudes or more equatorial flight paths.

  17. Comparison of several methods to calculate sunshine hours from global radiation; Vergelijking van diverse methodes voor de berekening van zonneschijnduur uit globale straling

    Schipper, J.

    2004-07-01

    A formal definition of sunshine duration by the World Meteorological Organisation (WMO) has allowed the development of automatic instruments for measuring sunshine hours. This defines sunshine hours as the sum of the time intervals (in hours) during which the direct (normal) solar irradiance exceeds a threshold of 120W{sup m-2} . The most complex (and most accurate) of these instruments are tracking pyrheliometers, where a collimated sensor automatically moves to track the movement of the sun. This reads the direct beam radiation only. Any reading over 120Wm{sup -2} is defined as being sunshine. However, as this type of sensor does not truly track the sun it requires regular adjustment to take into account the seasonal changes in solar declination. Also, this sensor is relatively expensive and has moving parts requiring extra power. A much simpler approach is to try to estimate sunshine hours from the single pyranometer/solarimeter of the type normally installed on most weather stations. As these sensors measure total global radiation the normal definition of 'sunshine' cannot be used. Simple fixed thresholds, as often used in low grade weather stations, do not give reliable answers either, as diffuse radiation from a completely cloudy sky in the summer will often exceed direct beam radiation in the winter. An alternative algorithm has been suggested by workers at the Royal Dutch Meteorological Institute (KNMI). They have proposed and tested an algorithm (Slob-algorithm) which defines sunshine as being when the measured global radiation (G) is greater than 0.4 times the potential solar radiation outside the earth's atmosphere on a horizontal surface (G{sub 0}). One long term test of this algorithm showed that estimates of sunshine hours were on average within 0.9 hours of the daily total. While this might appear to give rather poor accuracy compared to that one would expect for totalised solar radiation, they consider it accurate enough for normal

  18. Pre-inflation physics and scalar perturbations

    Hirai, Shiro

    2005-01-01

    The effect of pre-inflation physics on the power spectrum of scalar perturbations is investigated. Considering various pre-inflation models with radiation-dominated or matter-dominated periods before inflation, the power spectra of curvature perturbations for large scales are calculated, and the spectral index and running spectral index are derived. It is shown that pre-inflation models in which the length of inflation is near 60 e-folds may reproduce some key properties implied by the Wilkinson microwave anisotropy probe data

  19. Perturbative anyon gas

    Dasnieres de Veigy, A.; Ouvry, S.; Paris-6 Univ., 75

    1992-06-01

    The problem of the statistical mechanics of an anyon gas is addressed. A perturbative analysis in the anyonic coupling constant α is reviewed, and the thermodynamical potential is computed at first and second order. An adequate second quantized formalism (field theory at finite temperature) is proposed. At first order in perturbation theory, the results are strikingly simple: only the second virial coefficient close to bosonic statistics is corrected. At second order, however, the complexity of the anyon model appears. One can compute exactly the perturbative correction to each cluster coefficient. However, and contrary to first order, a closed expression for the equation of state seems out of reach. As an illustration, the perturbative expressions of a 3 , a 4 , a 5 and a 6 are given at second order. Finally, using the same formalism, the equation of state of an anyon gas in a constant magnetic field is analyzed at first order in perturbation theory. (K.A.) 16 refs.; 3 figs.; 7 tabs

  20. Radiation accidents with global consequences for the population. Problems of risk evaluation

    Vasilev, G.; Doncheva, B.; Stoilova, S.; Miloslavov, V.; Tsenova, T.; Novkirishki, V.

    1987-01-01

    The theoretical problems concerning the delayed impacts as a result of considerable radiation accidents are discussed. The attention is paid to the maximum individual doses which are relatively low but many people are affected. In these cases, the risk evaluation is based on the cancerogenesis, genetic and teratogenetic consequences among the concerned population. The main equation of the linear threshold-free model 'dose effect' is subjected to analysis. Considering the real prognostic importance of this equation the following recommendations are made: further observation on epidemic diseases; investigation of teratogenetic consequences in connection with the radiation doses obtained during the antenatal development; radiation-hygienic standardization of the oral absorbtion of radionuclides for short and long periods of time; effective equivalent dose determination according to the irradiated organ or tissue (mammary glands, lungs, red marrow, gonads, skin); necessity of national system for in time announcement of radiation accidents, as well as suitable control of the internal and the external irradiation

  1. Photosynthetically Available Radiation, Aqua MODIS, NPP, 0.05 degrees, Global, Science Quality

    National Oceanic and Atmospheric Administration, Department of Commerce — MODIS measures photosynthetically available radiation that may be used to mode primary productivity. THIS IS AN EXPERIMENTAL PRODUCT: intended strictly for...

  2. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  3. Cosmological perturbations on the phantom brane

    Bag, Satadru; Sahni, Varun [Inter-University Centre for Astronomy and Astrophysics, Pune (India); Viznyuk, Alexander; Shtanov, Yuri, E-mail: satadru@iucaa.in, E-mail: viznyuk@bitp.kiev.ua, E-mail: shtanov@bitp.kiev.ua, E-mail: varun@iucaa.in [Bogolyubov Institute for Theoretical Physics, Kiev 03680 (Ukraine)

    2016-07-01

    We obtain a closed system of equations for scalar perturbations in a multi-component braneworld. Our braneworld possesses a phantom-like equation of state at late times, w {sub eff} < −1, but no big-rip future singularity. In addition to matter and radiation, the braneworld possesses a new effective degree of freedom—the 'Weyl fluid' or 'dark radiation'. Setting initial conditions on super-Hubble spatial scales at the epoch of radiation domination, we evolve perturbations of radiation, pressureless matter and the Weyl fluid until the present epoch. We observe a gradual decrease in the amplitude of the Weyl-fluid perturbations after Hubble-radius crossing, which results in a negligible effect of the Weyl fluid on the evolution of matter perturbations on spatial scales relevant for structure formation. Consequently, the quasi-static approximation of Koyama and Maartens provides a good fit to the exact results during the matter-dominated epoch. We find that the late-time growth of density perturbations on the brane proceeds at a faster rate than in ΛCDM. Additionally, the gravitational potentials Φ and Ψ evolve differently on the brane than in ΛCDM, for which Φ = Ψ. On the brane, by contrast, the ratio Φ/Ψ exceeds unity during the late matter-dominated epoch ( z ∼< 50). These features emerge as smoking gun tests of phantom brane cosmology and allow predictions of this scenario to be tested against observations of galaxy clustering and large-scale structure.

  4. Estimation of available global solar radiation using sunshine duration over South Korea

    Das, Amrita; Park, Jin-ki; Park, Jong-hwa

    2015-11-01

    Besides designing a solar energy system, accurate insolation data is also a key component for many biological and atmospheric studies. But solar radiation stations are not widely available due to financial and technical limitations; this insufficient number affects the spatial resolution whenever an attempt is made to construct a solar radiation map. There are several models in literature for estimating incoming solar radiation using sunshine fraction. Seventeen of such models among which 6 are linear and 11 non-linear, have been chosen for studying and estimating solar radiation on a horizontal surface over South Korea. The better performance of a non-linear model signifies the fact that the relationship between sunshine duration and clearness index does not follow a straight line. With such a model solar radiation over 79 stations measuring sunshine duration is computed and used as input for spatial interpolation. Finally monthly solar radiation maps are constructed using the Ordinary Kriging method. The cross validation results show good agreement between observed and predicted data.

  5. Quantum-mechanical vs. semi-classical spectral-line widths and shifts from the line core in the non-impact region for the Ar-perturbed/ K-radiator system

    Kreye, W.C.

    2007-01-01

    New quantum-mechanical (QM) and semi-classical (SC) shifts (d's) and widths (HWHM's, w's) were measured from the line core of computed full spectral-line shapes for the Ar-perturbed/K-radiator system (K/Ar). The initial state of our model was based on a 4p 2 P 3/2,1/2 pseudo-potential for the K/Ar system, and the final state on a zero potential. The Fourier transform of the line shape formed the basis for the computations. Excellent agreement was found between the QM and SC values of d and of w in a high-pressure (P) non-impact region, which was characterized by a √P dependence of w and a P dependence of d. These agreements were shown to be another example of a correspondence between classical (SC) quantities and QM quantities in the limit of large quantum numbers. Typically at P=1x10 6 Torr and T=400 K, w QM =448 cm -1 and w SC =479 cm -1 , where the deviation from the mean is ±3.3%. Also, d QM =-3815 cm -1 and d SC =-3716 cm -1 , where the deviation from the mean is ±1.3%. A new general method was formulated which yielded a definite pressure P 0 , which was defined as an upper limit to the low-pressure impact approximation and a lower limit to the non-impact region

  6. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Heintz, Desiree Ellen

    2012-07-01

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  7. Site specific X-ray induced changes in organic and metal organic compounds and their influence on global radiation damage

    Heintz, Desiree Ellen

    2012-07-15

    The aim of this work was to systematically investigate the effects of specific and global X-ray radiation damage to biological samples and obtain a conclusive model to describe the underlying principles. Based on the systematic studies performed in this work, it was possible to propose two conclusive mechanisms to describe X-ray induced photoreduction and global radiation damage. The influence of chemical composition, temperature and solvent on X-ray induced photoreduction was investigated by X-ray Absorption Near Edge Spectroscopy and single crystal X-ray diffraction of two B12 cofactors - cyano- and methylcobalamin - as well as iron(II) and iron(III) complexes. The obtained results revealed that X-ray induced photoreduction is a ligand dependent process, with a redox reaction taking place within the complex. It could further be shown that selective hydrogen abstraction plays an important role in the process of X-ray induced photoreduction. Based on the experimental results of this work, a model to describe X-ray induced photoreduction of metal organic complexes could be proposed. The process of X-ray induced hydrogen abstraction was further investigated in a combined X-ray and neutron diffraction study on the amino acids L-serine and L-alanine, which were used as model compounds for proteins, and the nucleoside deoxythymidine (thymidine) as a model for DNA. A damage mechanism for L-serine could be found. It involves the abstraction of two hydrogen atoms, one from the hydroxyl group and one from the adjacent methylene group. Such a hydrogen abstraction results in the formation of a carbonyl group. X-ray diffraction measurements on cyano- and methylcobalamin as well as on three metal amino acid complexes, containing nickel(II) and copper(II), respectively, were conducted to investigate the contribution of X-ray induced photoreduction to global radiation damage. Results from these measurements combined with the results from L-serine, L-alanine and thymidine allowed

  8. Measuring and prediction of global solar ultraviolet radiation (0295-0385 μ m) under clear and cloudless skies

    Wright, Jaime

    2008-01-01

    Values of global solar ultraviolet radiation were measured with an ultraviolet radiometer and also predicted with a atmospheric spectral model. The values obtained with the atmospheric spectral model, based physically, were analyzed and compared with experimental values measured in situ. Measurements were performed for different zenith angles in conditions of clear skies in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparison between measured and predicted values have been successful. (author) [es

  9. Estimation of Radiative Efficiency of Chemicals with Potentially Significant Global Warming Potential

    U.S. Environmental Protection Agency — The set of commercially available chemical substances in commerce that may have significant global warming potential (GWP) is not well defined. Although there are...

  10. Impact of Dust Radiative Forcing upon Climate. Chapter 13

    Miller, Ronald L.; Knippertz, Peter; Perez Garcia-Pando, Carlos; Perlwitz, Jan P.; Tegan, Ina

    2014-01-01

    Dust aerosols perturb the atmospheric radiative flux at both solar and thermal wavelengths, altering the energy and water cycles. The climate adjusts by redistributing energy and moisture, so that local temperature perturbations, for example, depend upon the forcing over the entire extent of the perturbed circulation. Within regions frequently mixed by deep convection, including the deep tropics, dust particles perturb the surface air temperature primarily through radiative forcing at the top of the atmosphere (TOA). Many models predict that dust reduces global precipitation. This reduction is typically attributed to the decrease of surface evaporation in response to dimming of the surface. A counterexample is presented, where greater shortwave absorption by dust increases evaporation and precipitation despite greater dimming of the surface. This is attributed to the dependence of surface evaporation upon TOA forcing through its influence upon surface temperature and humidity. Perturbations by dust to the surface wind speed and vegetation (through precipitation anomalies) feed back upon the dust aerosol concentration. The current uncertainty of radiative forcing attributed to dust and the resulting range of climate perturbations calculated by models remain a useful test of our understanding of the mechanisms relating dust radiative forcing to the climate response.

  11. Chiral perturbation theory

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  12. Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn

    Feng, Chang; Holder, Gilbert

    2018-05-01

    We revisit the global 21 cm signal calculation incorporating a possible radio background at early times, and find that the global 21 cm signal shows a much stronger absorption feature, which could enhance detection prospects for future 21 cm experiments. In light of recent reports of a possible low-frequency excess radio background, we propose that detailed 21 cm calculations should include a possible early radio background.

  13. Observation of thermal quench induced by runaway electrons in magnetic perturbation

    Cheon, MunSeong; Seo, Dongcheol; Kim, Junghee

    2018-04-01

    Experimental observations in Korea Superconducting Tokamak Advanced Research (KSTAR) plasmas show that a loss of pre-disruptive runaway electrons can induce a rapid radiative cooling of the plasma, by generating impurity clouds from the first wall. The synchrotron radiation image shows that the loss of runaway electrons occurs from the edge region when the resonant magnetic perturbation is applied on the plasma. When the impact of the runaway electrons on the wall is strong enough, a sudden drop of the electron cyclotron emission (ECE) signal occurs with the characteristic plasma behaviors such as the positive spike and following decay of the plasma current, Dα spike, big magnetic fluctuation, etc. The visible images at this runaway loss show an evidence of the generation of impurity cloud and the following radiative cooling. When the runaway beam is located on the plasma edge, thermal quenches are expected to occur without global destruction of the magnetic structure up to the core.

  14. Reasons for the variability of the climate sensitivity parameter regarding spatially inhomogeneous ozone perturbation; Ursachen der Variabilitaet des Klimasensitivitaetsparameters fuer raeumlich inhomogene Ozonstoerungen

    Stuber, N.

    2003-07-01

    A reduction of anthropogenic greenhouse gas emissions is a condition precedent for implementing the framework convention on climate change. ''Metrics'' allow for a comparison of different emissions with regard to their potential effects on global climate and, hence, are a prerequisite for political decisions. Currently ''radiative forcing'' is the most common metric: Global, annual mean radiative forcing resulting from some perturbation of the climate system is proportional to equilibrium surface temperature response. The coefficient of proportionality, {lambda}, is called the ''climate sensitivity parameter''. However, several studies have indicated that for spatially inhomogeneous perturbations {lambda} can no longer be regarded as a constant. This doctoral thesis examines the reasons for the non-linear relationship between radiative forcing and climate response. The response to several idealized ozone perturbations has been analysed. The equilibrium response of some radiatively relevant parameters features a characteristic signature, implying that the respective feedback mechanisms act quite differently in the various experiments. Accordingly, equality of radiative forcing is not sufficient to guarantee comparability of the gross effect of all feedback mechanisms. Analysis shows that the variability of {lambda} is largely due to the very different strength of stratospheric water vapor and sea-ice albedo feedback for the various experiments. (orig.)

  15. Radiation loss and global energy balance of ohmically heated divertor discharge in JT-60 tokamak

    Koide, Yoshihiko; Yamada, Kimio; Yoshida, Hidetoshi; Nakamura, Hiroo; Niikura, Setsuo; Tsuji, Shunji

    1986-03-01

    Divertor experiment in JT-60 with a small divertor chamber has been successfully performed up to 1.6 MA discharge. Several divertor effects were experimentally confirmed as follows. Radiation loss in main plasma saturates with the increase of plasma current and its ratio to the input power is about 20 % at 1.5 MA. The rest of input power is exhausted into the divertor chamber and a half of it is dissipated as the radiation loss. Impurity accumulation is not observed during a few sec without internal MHD activity and gross impurity confinement time is several hundred msec. (author)

  16. Strengthening global norms for protecting nuclear materials - feedback on little countries radiation safety

    Chelidze, L.; Kakushadze, S.

    2002-01-01

    Full text: Georgia is the part of New Great Silk Road, connecting Europe and Asia. Along this rout will be laid oil and gas pipelines, transport and telecommunication lines. Unfortunately, besides economical communication, the rout can be used for illegal transit of nuclear materials. There is special concern regarding uncontrolled territories of conflict zones. Taking into consideration recent terrible terrorist acts we feel great responsibility for ensuring safety of this rout, which is a precondition of economical development and political stability of the whole Caucasian region A potentially hazardous radiological situation developed in Georgia with orphan radiation sources in the late 1990s and 2001: discovery of high-activity strong Radiation sources of (Strontium-90 from thermo-generators) in Tsalenjikha district. Eight such generators were brought to Georgia in 1984, and four of them have been found in Svanety mountainous region in addition to the two found in the Tsalenjikha, but remaining two are not yet found. During the last years several incidents of illicit trafficking were reported. The radiation problems greatly relate to the withdrawal of the Russian military bases. The radiological accident took place in Lilo, Georgia, when sealed radiation sources had been abandoned by a previous owner at a site. Taking into account the geopolitical location of Georgia it is quite important to strengthen the physical protection infrastructure in country with has serious territorial problems. The first step was to provide an appropriate legal framework for the safety management in the country and clearly identify regulatory body. The ministry implements state control in the nuclear and radiation safety field for protection of environment and natural resources of Georgia (hereinafter referred to as the Ministry). The Ministry is obliged to supervise the physical protection systems. The Ministry shall co-ordinate the state system of physical protection of the use

  17. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  18. Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation.

    Benton, Michael G; Somasundaram, Swetha; Glasner, Jeremy D; Palecek, Sean P

    2006-12-01

    One of the most crucial tasks for a cell to ensure its long term survival is preserving the integrity of its genetic heritage via maintenance of DNA structure and sequence. While the DNA damage response in the yeast Saccharomyces cerevisiae, a model eukaryotic organism, has been extensively studied, much remains to be elucidated about how the organism senses and responds to different types and doses of DNA damage. We have measured the global transcriptional response of S. cerevisiae to multiple doses of two representative DNA damaging agents, methyl methanesulfonate (MMS) and gamma radiation. Hierarchical clustering of genes with a statistically significant change in transcription illustrated the differences in the cellular responses to MMS and gamma radiation. Overall, MMS produced a larger transcriptional response than gamma radiation, and many of the genes modulated in response to MMS are involved in protein and translational regulation. Several clusters of coregulated genes whose responses varied with DNA damaging agent dose were identified. Perhaps the most interesting cluster contained four genes exhibiting biphasic induction in response to MMS dose. All of the genes (DUN1, RNR2, RNR4, and HUG1) are involved in the Mec1p kinase pathway known to respond to MMS, presumably due to stalled DNA replication forks. The biphasic responses of these genes suggest that the pathway is induced at lower levels as MMS dose increases. The genes in this cluster with a threefold or greater transcriptional response to gamma radiation all showed an increased induction with increasing gamma radiation dosage. Analyzing genome-wide transcriptional changes to multiple doses of external stresses enabled the identification of cellular responses that are modulated by magnitude of the stress, providing insights into how a cell deals with genotoxicity.

  19. Analyzing the dose-dependence of the Saccharomyces cerevisiae global transcriptional response to methyl methanesulfonate and ionizing radiation

    Glasner Jeremy D

    2006-12-01

    Full Text Available Abstract Background One of the most crucial tasks for a cell to ensure its long term survival is preserving the integrity of its genetic heritage via maintenance of DNA structure and sequence. While the DNA damage response in the yeast Saccharomyces cerevisiae, a model eukaryotic organism, has been extensively studied, much remains to be elucidated about how the organism senses and responds to different types and doses of DNA damage. We have measured the global transcriptional response of S. cerevisiae to multiple doses of two representative DNA damaging agents, methyl methanesulfonate (MMS and gamma radiation. Results Hierarchical clustering of genes with a statistically significant change in transcription illustrated the differences in the cellular responses to MMS and gamma radiation. Overall, MMS produced a larger transcriptional response than gamma radiation, and many of the genes modulated in response to MMS are involved in protein and translational regulation. Several clusters of coregulated genes whose responses varied with DNA damaging agent dose were identified. Perhaps the most interesting cluster contained four genes exhibiting biphasic induction in response to MMS dose. All of the genes (DUN1, RNR2, RNR4, and HUG1 are involved in the Mec1p kinase pathway known to respond to MMS, presumably due to stalled DNA replication forks. The biphasic responses of these genes suggest that the pathway is induced at lower levels as MMS dose increases. The genes in this cluster with a threefold or greater transcriptional response to gamma radiation all showed an increased induction with increasing gamma radiation dosage. Conclusion Analyzing genome-wide transcriptional changes to multiple doses of external stresses enabled the identification of cellular responses that are modulated by magnitude of the stress, providing insights into how a cell deals with genotoxicity.

  20. Preheating curvaton perturbations

    Bastero-Gil, M.; Di Clemente, V.; King, S.F.

    2005-01-01

    We discuss the potentially important role played by preheating in certain variants of the curvaton mechanism in which isocurvature perturbations of a D-flat (and F-flat) direction become converted to curvature perturbations during reheating. We discover that parametric resonance of the isocurvature components amplifies the superhorizon fluctuations by a significant amount. As an example of these effects we develop a particle physics motivated model which involves hybrid inflation with the waterfall field N being responsible for generating the μ term, the right-handed neutrino mass scale, and the Peccei-Quinn symmetry breaking scale. The role of the curvaton field can be played either by usual Higgs field, or the lightest right-handed sneutrino. Our new results show that it is possible to achieve the correct curvature perturbations for initial values of the curvaton fields of order the weak scale. In this model we show that the prediction for the spectral index of the final curvature perturbation only depends on the mass of the curvaton during inflation, where consistency with current observational data requires the ratio of this mass to the Hubble constant to be 0.3

  1. String perturbation theory diverges

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  2. Divergent Perturbation Series

    Suslov, I.M.

    2005-01-01

    Various perturbation series are factorially divergent. The behavior of their high-order terms can be determined by Lipatov's method, which involves the use of instanton configurations of appropriate functional integrals. When the Lipatov asymptotic form is known and several lowest order terms of the perturbation series are found by direct calculation of diagrams, one can gain insight into the behavior of the remaining terms of the series, which can be resummed to solve various strong-coupling problems in a certain approximation. This approach is demonstrated by determining the Gell-Mann-Low functions in φ 4 theory, QED, and QCD with arbitrary coupling constants. An overview of the mathematical theory of divergent series is presented, and interpretation of perturbation series is discussed. Explicit derivations of the Lipatov asymptotic form are presented for some basic problems in theoretical physics. A solution is proposed to the problem of renormalon contributions, which hampered progress in this field in the late 1970s. Practical perturbation-series summation schemes are described both for a coupling constant of order unity and in the strong-coupling limit. An interpretation of the Borel integral is given for 'non-Borel-summable' series. Higher order corrections to the Lipatov asymptotic form are discussed

  3. Instantaneous stochastic perturbation theory

    Lüscher, Martin

    2015-01-01

    A form of stochastic perturbation theory is described, where the representative stochastic fields are generated instantaneously rather than through a Markov process. The correctness of the procedure is established to all orders of the expansion and for a wide class of field theories that includes all common formulations of lattice QCD.

  4. Perturbed Markov chains

    Solan, Eilon; Vieille, Nicolas

    2015-01-01

    We study irreducible time-homogenous Markov chains with finite state space in discrete time. We obtain results on the sensitivity of the stationary distribution and other statistical quantities with respect to perturbations of the transition matrix. We define a new closeness relation between transition matrices, and use graph-theoretic techniques, in contrast with the matrix analysis techniques previously used.

  5. Scalar cosmological perturbations

    Uggla, Claes; Wainwright, John

    2012-01-01

    Scalar perturbations of Friedmann-Lemaitre cosmologies can be analyzed in a variety of ways using Einstein's field equations, the Ricci and Bianchi identities, or the conservation equations for the stress-energy tensor, and possibly introducing a timelike reference congruence. The common ground is the use of gauge invariants derived from the metric tensor, the stress-energy tensor, or from vectors associated with a reference congruence, as basic variables. Although there is a complication in that there is no unique choice of gauge invariants, we will show that this can be used to advantage. With this in mind our first goal is to present an efficient way of constructing dimensionless gauge invariants associated with the tensors that are involved, and of determining their inter-relationships. Our second goal is to give a unified treatment of the various ways of writing the governing equations in dimensionless form using gauge-invariant variables, showing how simplicity can be achieved by a suitable choice of variables and normalization factors. Our third goal is to elucidate the connection between the metric-based approach and the so-called 1 + 3 gauge-invariant approach to cosmological perturbations. We restrict our considerations to linear perturbations, but our intent is to set the stage for the extension to second-order perturbations. (paper)

  6. Generalized perturbation series

    Baird, L.C.; Stinchcomb, G.

    1973-01-01

    An approximate solution of the Green's function equation may be used to generate an exact solution of the Schroedinger equation. This is accomplished through an iterative procedure. The procedure is equivalent to a perturbation expansion if the approximate Green's function is exact with respect to some reference potential

  7. Perturbed S3 neutrinos

    jora, Renata; Schechter, Joseph; Naeem Shahid, M.

    2009-01-01

    We study the effects of the perturbation which violates the permutation symmetry of three Majorana neutrinos but preserves the well known (23) interchange symmetry. This is done in the presenceof an arbitrary Majorana phase which serves to insure the degeneracy of the three neutrinos at the unper...... at the unperturbed level....

  8. A computation ANN model for quantifying the global solar radiation: A case study of Al-Aqabah-Jordan

    Abolgasem, I M; Alghoul, M A; Ruslan, M H; Chan, H Y; Khrit, N G; Sopian, K

    2015-01-01

    In this paper, a computation model is developed to predict the global solar radiation (GSR) in Aqaba city based on the data recorded with association of Artificial Neural Networks (ANN). The data used in this work are global solar radiation (GSR), sunshine duration, maximum and minimum air temperature and relative humidity. These data are available from Jordanian meteorological station over a period of two years. The quality of GSR forecasting is compared by using different Learning Algorithms. The decision of changing the ANN architecture is essentially based on the predicted results to obtain the best ANN model for monthly and seasonal GSR. Different configurations patterns were tested using available observed data. It was found that the model using mainly sunshine duration and air temperature as inputs gives accurate results. The ANN model efficiency and the mean square error values show that the prediction model is accurate. It is found that the effect of the three learning algorithms on the accuracy of the prediction model at the training and testing stages for each time scale is mostly within the same accuracy range. (paper)

  9. Global smooth solution of the Cauchy problem for a model of a radiative flow

    Ducomet, B.; Nečasová, Šárka

    2015-01-01

    Roč. 14, č. 1 (2015), s. 1-36 ISSN 0391-173X R&D Projects: GA ČR GA201/08/0012 Institutional support: RVO:67985840 Keywords : Navier - Stokes -Fourier system * radiative equilibrium Subject RIV: BA - General Mathematics Impact factor: 0.891, year: 2015 http://annaliscienze.sns.it/index.php?page=Article&id=332

  10. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  11. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE): Objectives and priorities

    Turner, S.; Eriksen, J.G.; Trotter, T.; Verfaillie, C.; Benstead, K.; Giuliani, M.; Poortmans, P.; Holt, T.; Brennan, S.; Potter, R.

    2015-01-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders from

  12. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions

    M. Toohey

    2011-12-01

    Full Text Available Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD, clear-sky and all-sky shortwave (SW radiative flux is quantified by first integrating each field for four years after the eruption, then calculating for each cumulative field the absolute or percent difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~75 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for Pinatubo-magnitude eruption, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to

  13. Inter-comparison of the solar UVB, UVA and global radiation clearness and UV indices for Beer Sheva and Neve Zohar (Dead Sea), Israel

    Kudish, A.I.; Lyubansky, V.; Evseev, E.G.; Ianetz, A.

    2005-01-01

    An inter-comparison of the clearness indices for the solar UVB, UVA and global radiation for Beer Sheva and Neve Zohar (Dead Sea) are presented utilizing radiation data measured from January 1995 through December 2001 for which there is a one-to-one correspondence between the measurements, viz., any day for which a hourly value for one of the sites was missing is rejected and not included in the analysis for that particular radiation type. Beer Sheva is located ca. 65 km to the west and is approximately 700 m above Neve Zohar, which is located on the western shore of the Dead Sea. The Dead Sea is the lowest terrestrial point on the earth, approximately 400 m below mean sea level. The relative magnitudes of the global, UVB and UVA radiation intensities at the two sites can be attributed to the enhanced scattering at the Dead Sea due to the longer optical path length the solar radiation must traverse at the Dead Sea. The degree of attenuation due to scattering phenomena is inversely proportional to the wavelength raised to some power and, consequently, it is greatest for UVB and very small for global radiation. The UVB and UVA solar constants were determined from the extraterrestrial radiation values tabulated by Froehlich and Wehrli [Spectral distribution of solar irradiance from 25000 nm to 250nm, in: M. Iqbal, An introduction to solar radiation, Academic Press, New York, 1981, Appendix C, pp. 380-381]. The clearness indices for global and UVA radiation were of similar magnitude, whereas those for UVB radiation were of two orders of magnitude smaller. In addition, the monthly average hourly UV Index at both sites has also been determined and an inter-comparison of the values has been performed for all available hourly values from January 1995 through August 2002 for both sites. It is observed that the monthly average hourly UV Index values at the Dead Sea are never in the extreme range

  14. SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies

    Ngwa, W; Sajo, E; Ngoma, T; Dachi, J; Julius Mwaiselage, J; Kenton, O; Avery, S

    2016-01-01

    Purpose: Recent publications have highlighted the potential of Information and Communication Technologies (ICTs) to catalyze collaborations in cancer care, research and education in global radiation oncology. This work reports on the use of ICTs for global Medical Physics education and training across three countries: USA, Tanzania and Kuwait Methods: An online education platform was established by Radiation Oncology Faculty from Harvard Medical School, and the University of Pennsylvania with integrated Medical Physics Course modules accessible to trainees in Tanzania via partnership with the Muhimbili University of Health and Allied Sciences, and the Ocean Road Cancer Institute. The course modules incorporated lectures covering Radiation Therapy Physics with videos, discussion board, assessments and grade center. Faculty at Harvard Medical School and the University of Massachusetts Lowell also employed weekly Skype meetings to train/mentor three graduate students, living out-of-state and in Kuwait for up to 9 research credits per semester for over two semesters towards obtaining their graduate degrees Results: Students were able to successfully access the Medical Physics course modules and participate in learning activities, online discussion boards, and assessments. Other instructors could also access/co-teach the course modules from USA and Tanzania. Meanwhile all three graduate students with remote training via Skype and email made major progress in their graduate training with each one of them submitting their research results as abstracts to be presented at the 2016 AAPM conference. One student has also published her work already and all three are developing these abstracts for publication in peer-reviewed journals. Conclusion: Altogether, this work highlights concrete examples/model on how ICTs can be used for capacity building in Medical Physics across continents, for both education and research training needed for Masters/PhD degrees. The developed modules

  15. SU-F-E-14: Global Radiation Oncology Education and Training in Medical Physics Powered by Information and Communication Technologies

    Ngwa, W [Harvard Medical School, Boston, MA (United States); University Massachusetts Lowell, Lowell, MA (United States); Sajo, E [University Massachusetts Lowell, Lowell, MA (United States); Ngoma, T [Muhimbili University of Health and Allied Sciences, Dar Es Salaam, TA (Tanzania, United Republic of); Dachi, J; Julius Mwaiselage, J [Ocean Road Cancer Institute, Dar Es Salaam (Tanzania, United Republic of); Kenton, O [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Avery, S [University of Pennsylvania, Sicklerville, NJ (United States)

    2016-06-15

    Purpose: Recent publications have highlighted the potential of Information and Communication Technologies (ICTs) to catalyze collaborations in cancer care, research and education in global radiation oncology. This work reports on the use of ICTs for global Medical Physics education and training across three countries: USA, Tanzania and Kuwait Methods: An online education platform was established by Radiation Oncology Faculty from Harvard Medical School, and the University of Pennsylvania with integrated Medical Physics Course modules accessible to trainees in Tanzania via partnership with the Muhimbili University of Health and Allied Sciences, and the Ocean Road Cancer Institute. The course modules incorporated lectures covering Radiation Therapy Physics with videos, discussion board, assessments and grade center. Faculty at Harvard Medical School and the University of Massachusetts Lowell also employed weekly Skype meetings to train/mentor three graduate students, living out-of-state and in Kuwait for up to 9 research credits per semester for over two semesters towards obtaining their graduate degrees Results: Students were able to successfully access the Medical Physics course modules and participate in learning activities, online discussion boards, and assessments. Other instructors could also access/co-teach the course modules from USA and Tanzania. Meanwhile all three graduate students with remote training via Skype and email made major progress in their graduate training with each one of them submitting their research results as abstracts to be presented at the 2016 AAPM conference. One student has also published her work already and all three are developing these abstracts for publication in peer-reviewed journals. Conclusion: Altogether, this work highlights concrete examples/model on how ICTs can be used for capacity building in Medical Physics across continents, for both education and research training needed for Masters/PhD degrees. The developed modules

  16. A new hybrid support vector machine–wavelet transform approach for estimation of horizontal global solar radiation

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Tong, Chong Wen; Arif, Muhammad; Petković, Dalibor; Ch, Sudheer

    2015-01-01

    Highlights: • Horizontal global solar radiation (HGSR) is predicted based on a new hybrid approach. • Support Vector Machines and Wavelet Transform algorithm (SVM–WT) are combined. • Different sets of meteorological elements are used to predict HGSR. • The precision of SVM–WT is assessed thoroughly against ANN, GP and ARMA. • SVM–WT would be an appealing approach to predict HGSR and outperforms others. - Abstract: In this paper, a new hybrid approach by combining the Support Vector Machine (SVM) with Wavelet Transform (WT) algorithm is developed to predict horizontal global solar radiation. The predictions are conducted on both daily and monthly mean scales for an Iranian coastal city. The proposed SVM–WT method is compared against other existing techniques to demonstrate its efficiency and viability. Three different sets of parameters are served as inputs to establish three models. The results indicate that the model using relative sunshine duration, difference between air temperatures, relative humidity, average temperature and extraterrestrial solar radiation as inputs shows higher performance than other models. The statistical analysis demonstrates that SVM–WT approach enjoys very good performance and outperforms other approaches. For the best SVM–WT model, the obtained statistical indicators of mean absolute percentage error, mean absolute bias error, root mean square error, relative root mean square error and coefficient of determination for daily estimation are 6.9996%, 0.8405 MJ/m 2 , 1.4245 MJ/m 2 , 7.9467% and 0.9086, respectively. Also, for monthly mean estimation the values are 3.2601%, 0.5104 MJ/m 2 , 0.6618 MJ/m 2 , 3.6935% and 0.9742, respectively. Based upon relative percentage error, for the best SVM–WT model, 88.70% of daily predictions fall within the acceptable range of −10% to +10%

  17. A New Database of Global and Direct Solar Radiation Using the Eastern Meteosat Satellite, Models and Validation

    Ana Gracia Amillo

    2014-08-01

    Full Text Available We present a new database of solar radiation at ground level for Eastern Europe and Africa, the Middle East and Asia, estimated using satellite images from the Meteosat East geostationary satellites. The method presented calculates global horizontal (G and direct normal irradiance (DNI at hourly intervals, using the full Meteosat archive from 1998 to present. Validation of the estimated global horizontal and direct normal irradiance values has been performed by comparison with high-quality ground station measurements. Due to the low number of ground measurements in the viewing area of the Meteosat Eastern satellites, the validation of the calculation method has been extended by a comparison of the estimated values derived from the same class of satellites but positioned at 0°E, where more ground stations are available. Results show a low overall mean bias deviation (MBD of +1.63 Wm−2 or +0.73% for global horizontal irradiance. The mean absolute bias of the individual station MBD is 2.36%, while the root mean square deviation of the individual MBD values is 3.18%. For direct normal irradiance the corresponding values are overall MBD of +0.61 Wm−2 or +0.62%, while the mean absolute bias of the individual station MBD is 5.03% and the root mean square deviation of the individual MBD values is 6.30%. The resulting database of hourly solar radiation values will be made freely available. These data will also be integrated into the PVGIS web application to allow users to estimate the energy output of photovoltaic (PV systems not only in Europe and Africa, but now also in Asia.

  18. On Effective Radiative Forcing of Partial Internally and Externally Mixed Aerosols and Their Effects on Global Climate

    Zhou, Chen; Zhang, Hua; Zhao, Shuyun; Li, Jiangnan

    2018-01-01

    The total effective radiative forcing (ERF) due to partial internally mixed (PIM) and externally mixed (EM) anthropogenic aerosols, as well as their climatic effects since the year of 1850, was evaluated and compared using the aerosol-climate online coupled model of BCC_AGCM2.0_CUACE/Aero. The influences of internal mixing (IM) on aerosol hygroscopicity parameter, optical properties, and concentration were considered. Generally, IM could markedly weaken the negative ERF and cooling effects of anthropogenic aerosols. The global annual mean ERF of EM anthropogenic aerosols from 1850 to 2010 was -1.87 W m-2, of which the aerosol-radiation interactive ERF (ERFari) and aerosol-cloud interactive ERF (ERFaci) were -0.49 and -1.38 W m-2, respectively. The global annual mean ERF due to PIM anthropogenic aerosols from 1850 to 2010 was -1.23 W m-2, with ERFari and ERFaci of -0.23 and -1.01 W m-2, respectively. The global annual mean surface temperature and water evaporation and precipitation were reduced by 1.74 K and 0.14 mm d-1 for EM scheme and 1.28 K and 0.11 mm d-1 for PIM scheme, respectively. However, the relative humidity near the surface was slightly increased for both mixing cases. The Intertropical Convergence Zone was southwardly shifted for both EM and PIM cases but was less southwardly shifted in PIM scheme due to the less reduction in atmospheric temperature in the midlatitude and low latitude of the Northern Hemisphere.

  19. Global analysis of cloud field coverage and radiative properties, using morphological methods and MODIS observations

    R. Z. Bar-Or

    2011-01-01

    Full Text Available The recently recognized continuous transition zone between detectable clouds and cloud-free atmosphere ("the twilight zone" is affected by undetectable clouds and humidified aerosol. In this study, we suggest to distinguish cloud fields (including the detectable clouds and the surrounding twilight zone from cloud-free areas, which are not affected by clouds. For this classification, a robust and simple-to-implement cloud field masking algorithm which uses only the spatial distribution of clouds, is presented in detail. A global analysis, estimating Earth's cloud field coverage (50° S–50° N for 28 July 2008, using the Moderate Resolution Imaging Spectroradiometer (MODIS data, finds that while the declared cloud fraction is 51%, the global cloud field coverage reaches 88%. The results reveal the low likelihood for finding a cloud-free pixel and suggest that this likelihood may decrease as the pixel size becomes larger. A global latitudinal analysis of cloud fields finds that unlike oceans, which are more uniformly covered by cloud fields, land areas located under the subsidence zones of the Hadley cell (the desert belts, contain proper areas for investigating cloud-free atmosphere as there is 40–80% probability to detect clear sky over them. Usually these golden-pixels, with higher likelihood to be free of clouds, are over deserts. Independent global statistical analysis, using MODIS aerosol and cloud products, reveals a sharp exponential decay of the global mean aerosol optical depth (AOD as a function of the distance from the nearest detectable cloud, both above ocean and land. Similar statistical analysis finds an exponential growth of mean aerosol fine-mode fraction (FMF over oceans when the distance from the nearest cloud increases. A 30 km scale break clearly appears in several analyses here, suggesting this is a typical natural scale of cloud fields. This work shows different microphysical and optical properties of cloud fields

  20. Cosmological perturbations in transient phantom inflation scenarios

    Richarte, Martin G. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil); Universidad de Buenos Aires, Ciudad Universitaria 1428, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina); Kremer, Gilberto M. [Universidade Federal do Parana, Departamento de Fisica, Caixa Postal 19044, Curitiba (Brazil)

    2017-01-15

    We present a model of inflation where the inflaton is accommodated as a phantom field which exhibits an initial transient pole behavior and then decays into a quintessence field which is responsible for a radiation era. We must stress that the present unified model only deals with a single field and that the transition between the two eras is achieved in a smooth way, so the model does not suffer from the eternal inflation issue. We explore the conditions for the crossing of the phantom divide line within the inflationary era along with the structural stability of several critical points. We study the behavior of the phantom field within the slow-climb approximation along with the necessary conditions to have sufficient inflation. We also examine the model at the level of classical perturbations within the Newtonian gauge and determine the behavior of the gravitational potential, contrast density and perturbed field near the inflation stage and the subsequent radiation era. (orig.)

  1. Local perturbations perturb—exponentially–locally

    De Roeck, W.; Schütz, M.

    2015-01-01

    We elaborate on the principle that for gapped quantum spin systems with local interaction, “local perturbations [in the Hamiltonian] perturb locally [the groundstate].” This principle was established by Bachmann et al. [Commun. Math. Phys. 309, 835–871 (2012)], relying on the “spectral flow technique” or “quasi-adiabatic continuation” [M. B. Hastings, Phys. Rev. B 69, 104431 (2004)] to obtain locality estimates with sub-exponential decay in the distance to the spatial support of the perturbation. We use ideas of Hamza et al. [J. Math. Phys. 50, 095213 (2009)] to obtain similarly a transformation between gapped eigenvectors and their perturbations that is local with exponential decay. This allows to improve locality bounds on the effect of perturbations on the low lying states in certain gapped models with a unique “bulk ground state” or “topological quantum order.” We also give some estimate on the exponential decay of correlations in models with impurities where some relevant correlations decay faster than one would naively infer from the global gap of the system, as one also expects in disordered systems with a localized groundstate

  2. Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers

    Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas

    2017-03-01

    The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken

  3. An Evaluation of C1-C3 Hydrochlorofluorocarbon (HCFC) Metrics: Lifetimes, Ozone Depletion Potentials, Radiative Efficiencies, Global Warming and Global Temperature Potentials

    Burkholder, J. B.; Papanastasiou, D. K.; Marshall, P.

    2017-12-01

    Hydrochlorofluorocarbons (HCFCs) have been used as chlorofluorocarbon (CFC) substitutes in a number of applications, e.g. refrigerator and air-conditioning systems. Although HCFCs have lower ozone-depletion potentials (ODPs) compared to CFCs, they are potent greenhouse gases. The twenty-eighth meeting of the parties to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali, 2016) included a list of 274 HCFCs to be controlled under the Montreal Protocol. However, from this list, only 15 of the HCFCs have values for their atmospheric lifetime, ODP, global warming potential (GWP), and global temperature potential (GTP) that are based on fundamental experimental studies, while 48 are registered compounds. In this work, we present a comprehensive evaluation of the atmospheric lifetimes, ODPs, radiative efficiencies (REs), GWPs, and GTPs for all 274 HCFCs to be included in the Montreal Protocol. Atmospheric lifetimes were estimated based on HCFC reactivity with OH radicals and O(1D), as well as their removal by UV photolysis using structure activity relationships and reactivity trends. ODP values are based on the semi-empirical approach described in the WMO/UNEP ozone assessment. Radiative efficiencies were estimated, based on infrared spectra calculated using theoretical electronic structure methods (Gaussian 09). GWPs and GTPs were calculated relative to CO2 using our estimated atmospheric lifetimes and REs. The details of the methodology will be discussed as well as the associated uncertainties. This study has provided a consistent set of atmospheric metrics for a wide range of HCFCs that support future policy decisions. More accurate metrics for a specific HCFC, if desired, would require fundamental laboratory studies to better define the OH reactivity and infrared absorption spectrum of the compound of interest. Overall, HCFCs within the same family (isomers) show a large ODP, GWP, GTP dependence on the molecular geometry of the isomers. The

  4. Global albedo change and radiative cooling from anthropogenic land cover change, 1700 to 2005 based on MODIS, land use harmonization, radiative kernels, and reanalysis

    Ghimire, Bardan; Williams, Christopher A.; Masek, Jeffrey; Gao, Feng; Wang, Zhuosen; Schaaf, Crystal; He, Tao

    2014-12-01

    Widespread anthropogenic land cover change over the last five centuries has influenced the global climate system through both biogeochemical and biophysical processes. Models indicate that warming from carbon emissions associated with land cover conversion has been partially offset by cooling from elevated albedo, but considerable uncertainty remains partly because of uncertainty in model treatments of albedo. This study incorporates a new spatially and temporally explicit, land cover specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product) to provide more precise, observationally derived estimates of albedo impacts from anthropogenic land cover change with a complete range of data set specific uncertainty. The mean annual global albedo increase due to land cover change during 1700-2005 was estimated as 0.00106 ± 0.00008 (mean ± standard deviation), mainly driven by snow exposure due to land cover transitions from natural vegetation to agriculture. This translates to a top-of-atmosphere radiative cooling of -0.15 ± 0.1 W m-2 (mean ± standard deviation). Our estimate was in the middle of the Intergovernmental Panel on Climate Change Fifth Assessment Report range of -0.05 to -0.25 W m-2 and incorporates variability in albedo within land cover classes.

  5. History of chemically and radiatively important atmospheric gases from the Advanced Global Atmospheric Gases Experiment (AGAGE

    R. G. Prinn

    2018-06-01

    Full Text Available We present the organization, instrumentation, datasets, data interpretation, modeling, and accomplishments of the multinational global atmospheric measurement program AGAGE (Advanced Global Atmospheric Gases Experiment. AGAGE is distinguished by its capability to measure globally, at high frequency, and at multiple sites all the important species in the Montreal Protocol and all the important non-carbon-dioxide (non-CO2 gases assessed by the Intergovernmental Panel on Climate Change (CO2 is also measured at several sites. The scientific objectives of AGAGE are important in furthering our understanding of global chemical and climatic phenomena. They are the following: (1 to accurately measure the temporal and spatial distributions of anthropogenic gases that contribute the majority of reactive halogen to the stratosphere and/or are strong infrared absorbers (chlorocarbons, chlorofluorocarbons – CFCs, bromocarbons, hydrochlorofluorocarbons – HCFCs, hydrofluorocarbons – HFCs and polyfluorinated compounds (perfluorocarbons – PFCs, nitrogen trifluoride – NF3, sulfuryl fluoride – SO2F2, and sulfur hexafluoride – SF6 and use these measurements to determine the global rates of their emission and/or destruction (i.e., lifetimes; (2 to accurately measure the global distributions and temporal behaviors and determine the sources and sinks of non-CO2 biogenic–anthropogenic gases important to climate change and/or ozone depletion (methane – CH4, nitrous oxide – N2O, carbon monoxide – CO, molecular hydrogen – H2, methyl chloride – CH3Cl, and methyl bromide – CH3Br; (3 to identify new long-lived greenhouse and ozone-depleting gases (e.g., SO2F2, NF3, heavy PFCs (C4F10, C5F12, C6F14, C7F16, and C8F18 and hydrofluoroolefins (HFOs; e.g., CH2  =  CFCF3 have been identified in AGAGE, initiate the real-time monitoring of these new gases, and reconstruct their past histories from AGAGE, air archive, and firn air measurements; (4

  6. Global micro RNA expression in papillary thyroid carcinomas of young patients exposed to radiation

    Unger, K.; Elmahjoub, A.; Thomas, G. [Human Cancer Studies Group, Surgery and Cancer, Imperial College London, London (United Kingdom); Bogdanova, T. [Institute of Endocrinology and Metabolism, Academy of Medical Sciences of the Ukraine, Kiew (Ukraine)

    2012-07-01

    One of the main effects of the Chernobyl reactor accident is an increase in childhood papillary thyroid carcinomas (PTC) in the regions that were contaminated with radio-iodine from the fallout. Despite a considerable research effort, molecular profiles have yet to be identified that reliably distinguish between age matched patients with radiation associated and sporadic PTCs. Expression of micro RNAs (miRNA) have recently been studied extensively in many different cancer types. MiRNAs have the potential to provide insights into the network of molecular pathways that are involved in the development of tumorigenesis as they are involved in the regulation of networks of mRNAs. In addition, miRNAs can be studied in formalin-fixed paraffin embedded material, making them ideal for clinical studies. This study was designed specifically to identify differentially expressed miRNAs in patients with childhood PTC that were exposed (n=11) and non-exposed (n=9) to irradiation. The results suggest that in radiation-associated childhood PTC DNA repair processes which are reflected by genes that encode DNA-binding proteins are de-regulated. DNA mutation and double-strand breaks are induced by ionising radiation and subsequent mis-repair and inactivation of tumour suppressor genes and the activation of oncogenes leads to growth and proliferation of the tumour cell. These findings suggest that in addition to the MAP kinase pathway which is known to be a key pathway in PTC, additional pathways such as the Fc epsilon RI signalling, the VEGF pathway and p53 signalling pathway seem to be involved in radiation-associated tumorigenesis of PTC

  7. Global existence of a weak solution for a model in radiation magnetohydrodynamics

    Ducomet, B.; Kobera, M.; Nečasová, Šárka

    2017-01-01

    Roč. 150, č. 1 (2017), s. 43-65 ISSN 0167-8019 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation magnetohydrodynamics * Navier-Stokes- Fourier system * weak solutio Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.702, year: 2016 https://link.springer.com/article/10.1007%2Fs10440-016-0093-y

  8. Global micro RNA expression in papillary thyroid carcinomas of young patients exposed to radiation

    Unger, K.; Elmahjoub, A.; Thomas, G.; Bogdanova, T.

    2012-01-01

    One of the main effects of the Chernobyl reactor accident is an increase in childhood papillary thyroid carcinomas (PTC) in the regions that were contaminated with radio-iodine from the fallout. Despite a considerable research effort, molecular profiles have yet to be identified that reliably distinguish between age matched patients with radiation associated and sporadic PTCs. Expression of micro RNAs (miRNA) have recently been studied extensively in many different cancer types. MiRNAs have the potential to provide insights into the network of molecular pathways that are involved in the development of tumorigenesis as they are involved in the regulation of networks of mRNAs. In addition, miRNAs can be studied in formalin-fixed paraffin embedded material, making them ideal for clinical studies. This study was designed specifically to identify differentially expressed miRNAs in patients with childhood PTC that were exposed (n=11) and non-exposed (n=9) to irradiation. The results suggest that in radiation-associated childhood PTC DNA repair processes which are reflected by genes that encode DNA-binding proteins are de-regulated. DNA mutation and double-strand breaks are induced by ionising radiation and subsequent mis-repair and inactivation of tumour suppressor genes and the activation of oncogenes leads to growth and proliferation of the tumour cell. These findings suggest that in addition to the MAP kinase pathway which is known to be a key pathway in PTC, additional pathways such as the Fc epsilon RI signalling, the VEGF pathway and p53 signalling pathway seem to be involved in radiation-associated tumorigenesis of PTC

  9. Global existence of a weak solution for a model in radiation magnetohydrodynamics

    Ducomet, B.; Kobera, M.; Nečasová, Šárka

    2017-01-01

    Roč. 150, č. 1 (2017), s. 43-65 ISSN 0167-8019 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : radiation magnetohydrodynamics * Navier-Stokes-Fourier system * weak solutio Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.702, year: 2016 https://link.springer.com/article/10.1007%2Fs10440-016-0093-y

  10. A Global Three-Dimensional Radiation Hydrodynamic Simulation of a Self-Gravitating Accretion Disk

    Phillipson, Rebecca; Vogeley, Michael S.; McMillan, Stephen; Boyd, Patricia

    2018-01-01

    We present three-dimensional, radiation hydrodynamic simulations of initially thin accretion disks with self-gravity using the grid-based code PLUTO. We produce simulated light curves and spectral energy distributions and compare to observational data of X-ray binary (XRB) and active galactic nuclei (AGN) variability. These simulations are of interest for modeling the role of radiation in accretion physics across decades of mass and frequency. In particular, the characteristics of the time variability in various bandwidths can probe the timescales over which different physical processes dominate the accretion flow. For example, in the case of some XRBs, superorbital periods much longer than the companion orbital period have been observed. Smoothed particle hydrodynamics (SPH) calculations have shown that irradiation-driven warping could be the mechanism underlying these long periods. In the case of AGN, irradiation-driven warping is also predicted to occur in addition to strong outflows originating from thermal and radiation pressure driving forces, which are important processes in understanding feedback and star formation in active galaxies. We compare our simulations to various toy models via traditional time series analysis of our synthetic and observed light curves.

  11. Cosmological N -body simulations including radiation perturbations

    Brandbyge, Jacob; Rampf, Cornelius; Tram, Thomas

    2017-01-01

    CosmologicalN-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects such as the ......CosmologicalN-body simulations are the standard tools to study the emergence of the observed large-scale structure of the Universe. Such simulations usually solve for the gravitational dynamics of matter within the Newtonian approximation, thus discarding general relativistic effects...

  12. Studying the perturbative Reggeon

    Griffiths, S.; Ross, D.A.

    2000-01-01

    We consider the flavour non-singlet Reggeon within the context of perturbative QCD. This consists of ladders built out of ''reggeized'' quarks. We propose a method for the numerical solution of the integro-differential equation for the amplitude describing the exchange of such a Reggeon. The solution is known to have a sharp rise at low values of Bjorken-x when applied to non-singlet quantities in deep-inelastic scattering. We show that when the running of the coupling is taken into account this sharp rise is further enhanced, although the Q 2 dependence is suppressed by the introduction of the running coupling. We also investigate the effects of simulating non-perturbative physics by introducing a constituent mass for the soft quarks and an effective mass for the soft gluons exchanged in the t-channel. (orig.)

  13. Renormalized Lie perturbation theory

    Rosengaus, E.; Dewar, R.L.

    1981-07-01

    A Lie operator method for constructing action-angle transformations continuously connected to the identity is developed for area preserving mappings. By a simple change of variable from action to angular frequency a perturbation expansion is obtained in which the small denominators have been renormalized. The method is shown to lead to the same series as the Lagrangian perturbation method of Greene and Percival, which converges on KAM surfaces. The method is not superconvergent, but yields simple recursion relations which allow automatic algebraic manipulation techniques to be used to develop the series to high order. It is argued that the operator method can be justified by analytically continuing from the complex angular frequency plane onto the real line. The resulting picture is one where preserved primary KAM surfaces are continuously connected to one another

  14. Modelling radiation-induced cell death and tumour re-oxygenation: local versus global and instant versus delayed cell death

    Gago-Arias, Araceli; Espinoza, Ignacio; Sánchez-Nieto, Beatriz; Aguiar, Pablo; Pardo-Montero, Juan

    2016-01-01

    The resistance of hypoxic cells to radiation, due to the oxygen dependence of radiosensitivity, is well known and must be taken into account to accurately calculate the radiation induced cell death. A proper modelling of the response of tumours to radiation requires deriving the distribution of oxygen at a microscopic scale. This usually involves solving the reaction-diffusion equation in tumour voxels using a vascularization distribution model. Moreover, re-oxygenation arises during the course of radiotherapy, one reason being the increase of available oxygen caused by cell killing, which can turn hypoxic tumours into oxic. In this work we study the effect of cell death kinetics in tumour oxygenation modelling, analysing how it affects the timing of re-oxygenation, surviving fraction and tumour control. Two models of cell death are compared, an instantaneous cell killing, mimicking early apoptosis, and a delayed cell death scenario in which cells can die shortly after being damaged, as well as long after irradiation. For each of these scenarios, the decrease in oxygen consumption due to cell death can be computed globally (macroscopic voxel average) or locally (microscopic). A re-oxygenation model already used in the literature, the so called full re-oxygenation, is also considered. The impact of cell death kinetics and re-oxygenation on tumour responses is illustrated for two radiotherapy fractionation schemes: a conventional schedule, and a hypofractionated treatment. The results show large differences in the doses needed to achieve 50% tumour control for the investigated cell death models. Moreover, the models affect the tumour responses differently depending on the treatment schedule. This corroborates the complex nature of re-oxygenation, showing the need to take into account the kinetics of cell death in radiation response models. (paper)

  15. Perturbed asymptotically linear problems

    Bartolo, R.; Candela, A. M.; Salvatore, A.

    2012-01-01

    The aim of this paper is investigating the existence of solutions of some semilinear elliptic problems on open bounded domains when the nonlinearity is subcritical and asymptotically linear at infinity and there is a perturbation term which is just continuous. Also in the case when the problem has not a variational structure, suitable procedures and estimates allow us to prove that the number of distinct crtitical levels of the functional associated to the unperturbed problem is "stable" unde...

  16. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    A. Lauer

    2007-10-01

    Full Text Available International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2 per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the

  17. Estimativas das componentes da radiação solar incidente em superfícies inclinadas baseadas na radiação global horizontal Estimates of solar radiation components on a tilted surface based on global horizontal radiation

    Adilson P. Souza

    2011-03-01

    Full Text Available Foram avaliadas equações estatísticas de estimativas com agrupamentos de dados anuais e mensais e suas respectivas validações, para as componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85, 22,85 e 32,85º, com face para o Norte, nas condições climáticas e geográficas de Botucatu, SP. Empregou-se as frações das três componentes da radiação a do topo da atmosfera em correlação com o coeficiente de transmissividade atmosférica do plano horizontal, em uma base de dados de abril/1998 a dezembro/2007, cujas medidas nas três inclinações ocorreram em diferentes períodos, todavia concomitantes ao plano horizontal. O aumento do ângulo de inclinação da superfície propiciou aumento do espalhamento dos valores diários do índice de claridade para superfícies inclinada e horizontal. Nos agrupamentos anuais os piores desempenhos foram verificados na estimativa da radiação difusa diária para superfície inclinada, com valores máximos de espalhamentos iguais a 3,89 MJ m-2 d-1 (43,65% e ajustamento em torno de 62%. Na estimativa das componentes global e direta da radiação solar nos planos inclinados, podem ser aplicadas, tanto as equações anuais como as mensais, com desempenhos dependentes das condições climáticas.Statistics equations and validations with groups of annual and monthly data were evaluated for global, direct and diffuse solar radiation components incident on the tilted surface to 12.85, 22.85 and 32.85° with the face North, in climate and geographical conditions of Botucatu, SP. It was employed the fractions of three components of extraterrestrial radiation in correlation with the coefficient clearness index horizontal plane, in a database of April/1998 to December/2007, whose measures at different periods in three inclinations, however concomitant to the horizontal plane. Increasing the angle of the surface led to increased scattering of the daily values of

  18. Twisting perturbed parafermions

    A.V. Belitsky

    2017-07-01

    Full Text Available The near-collinear expansion of scattering amplitudes in maximally supersymmetric Yang–Mills theory at strong coupling is governed by the dynamics of stings propagating on the five sphere. The pentagon transitions in the operator product expansion which systematize the series get reformulated in terms of matrix elements of branch-point twist operators in the two-dimensional O(6 nonlinear sigma model. The facts that the latter is an asymptotically free field theory and that there exists no local realization of twist fields prevents one from explicit calculation of their scaling dimensions and operator product expansion coefficients. This complication is bypassed making use of the equivalence of the sigma model to the infinite-level limit of WZNW models perturbed by current–current interactions, such that one can use conformal symmetry and conformal perturbation theory for systematic calculations. Presently, to set up the formalism, we consider the O(3 sigma model which is reformulated as perturbed parafermions.

  19. Estimativa da radiação solar global a partir dos dados de insolação, para Santa Maria - RS Estimation of global radiation from insolation data for Santa Maria, RS, Brazil

    Galileo Adeli Buriol

    2012-09-01

    Full Text Available Foram determinados os coeficientes a e b da equação de Angströn-Prescott para a estimativa da radiação solar global para Santa Maria, RS. Utilizaram-se os dados diários da intensidade de fluxo de radiação solar global e de insolação (brilho solar registrados na Estação Meteorológica pertencente ao 8° Distrito de Meteorologia, localizada no Campus da Universidade Federal de Santa Maria - UFSM, período 2002-2008. Os dados foram copiados no banco de dados do 8° Distrito de Meteorologia - 8° DISME, em Porto Alegre, e calculados os valores diários de radiação solar global no topo da atmosfera e de insolação máxima possível, considerando a latitude local. Com esses dados, foram determinadas as equações mensais e estacionais de regressão para a estimativa da radiação solar global em função da insolação. Constatou-se que existe alta correlação entre os dados de radiação solar global com aqueles de insolação, sendo, assim, possível estimar a radiação solar global em função da insolação.Coefficients a and b of the Angströn - Prescott equation to estimate global solar radiation for Santa Maria, RS were determined. Daily data of global solar radiation and sunshine, were obtained from the Meteorological Station which belongs to the 8th District of Meteorology, located on the campus of the Federal University of Santa Maria - UFSM, period from 2002 to 2008. The mentioned data were copied from the database of the 8th District of Meteorology - 8th DISME in Porto Alegre. Top of atmosphere radiation and possible maximum sunshine were calculated considering local latitude. With such elements, monthly regression equations were determined for the estimation of solar radiation as a function of insolation. We found a high correlation between insolation and global solar radiation and it's possible to estimate the solar radiation depending on the measured insolation.

  20. Trends of the global radiation and sunshine hours in 1961-1998 and their relationships in China

    Chen Rensheng; Kang Ersi; Ji Xibin; Yang Jianping; Zhang Zhihui

    2006-01-01

    Trends of the yearly global radiation E g , annual sunshine hours S, yearly precipitation P and yearly averaged air temperature T at 51 stations in 1961-1998 in China were detected, and the significance test method was the F-test. A total of 47 stations showed decreasing trend in the E g series of which 35 passed the F-test at the 5% significant level. At 42 stations, the trend of S was also decreasing, and 36 of them passed the F-test at the 5% significant level. The P series did not change largely in 1961-1998 and at 37 stations showed a positive trend, while the positive trend or reduced trend at 39 stations did not pass the F-test at the 25% significant level. The positive trend of the T series was shown at 49 stations, of which 29 passed the F-test at the 1% significant level. In the yearly scale, the empirical relationship between E g and S at any station was very low because the length of the E g series was too short. When using all the data at the used 51 stations together to simulate E g , the results were good. Using the longitude λ, latitude φ and altitude H, or/and P and T, of the used stations to adjust the parameters a and b of the Angstroem model, respectively, or just to adjust the parameter a, the results will be better. The parameter b of the Angstroem model was little affected by the geographical position of the used stations. At last, a simple equation is recommended to use for simulation of the yearly global radiation in China

  1. Estimation of the daily global solar radiation based on the Gaussian process regression methodology in the Saharan climate

    Guermoui, Mawloud; Gairaa, Kacem; Rabehi, Abdelaziz; Djafer, Djelloul; Benkaciali, Said

    2018-06-01

    Accurate estimation of solar radiation is the major concern in renewable energy applications. Over the past few years, a lot of machine learning paradigms have been proposed in order to improve the estimation performances, mostly based on artificial neural networks, fuzzy logic, support vector machine and adaptive neuro-fuzzy inference system. The aim of this work is the prediction of the daily global solar radiation, received on a horizontal surface through the Gaussian process regression (GPR) methodology. A case study of Ghardaïa region (Algeria) has been used in order to validate the above methodology. In fact, several combinations have been tested; it was found that, GPR-model based on sunshine duration, minimum air temperature and relative humidity gives the best results in term of mean absolute bias error (MBE), root mean square error (RMSE), relative mean square error (rRMSE), and correlation coefficient ( r) . The obtained values of these indicators are 0.67 MJ/m2, 1.15 MJ/m2, 5.2%, and 98.42%, respectively.

  2. Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies

    Voyant, Cyril; Motte, Fabrice; Fouilloy, Alexis; Notton, Gilles; Paoli, Christophe; Nivet, Marie-Laure

    2017-01-01

    Integration of unpredictable renewable energy sources into electrical networks intensifies the complexity of the grid management due to their intermittent and unforeseeable nature. Because of the strong increase of solar power generation the prediction of solar yields becomes more and more important. Electrical operators need an estimation of the future production. For nowcasting and short term forecasting, the usual technics based on machine learning need large historical data sets of good quality during the training phase of predictors. However data are not always available and induce an advanced maintenance of meteorological stations, making the method inapplicable for poor instrumented or isolated sites. In this work, we propose intuitive methodologies based on the Kalman filter use (also known as linear quadratic estimation), able to predict a global radiation time series without the need of historical data. The accuracy of these methods is compared to other classical data driven methods, for different horizons of prediction and time steps. The proposed approach shows interesting capabilities allowing to improve quasi-systematically the prediction. For one to 10 h horizons Kalman model performances are competitive in comparison to more sophisticated models such as ANN which require both consistent historical data sets and computational resources. - Highlights: • Solar radiation forecasting with time series formalism. • Trainless approach compared to machine learning methods. • Very simple method dedicated to solar irradiation forecasting with high accuracy.

  3. Occupational radiation exposure in PWR: International comparison of some global indicators between 1975 and 1985

    Lochard, J.; Benedittini, M.

    1987-09-01

    This report presents the main results of an international comparative study of occupational radiation exposure in Pressurised Water Reactors (PWRs). The comparison is based on some synthetic indicators concerning both collective and mean individual exposures assessed for the following countries: Belgium, United-States, France, Japan, Federal Republic of Germany, Sweden and Switzerland. Information has been gained from the published literature and when it was possible, through direct correspondence with power station operators or national regulatory authorities. It concerns 120 reactors totalizing more than 900 reactor operating years. For the comparison, only reactors which were installed after 1974 have been considered, in order to have more homogeneous data representative of modern operating plants. Indicators calculated for the comparison are the collective and mean individual doses per reactor expressed either on a calendar year basis (from 1975 to 1985) or on a number of operating year basis (up to 11 years) [fr

  4. Non-Perturbative Renormalization

    Mastropietro, Vieri

    2008-01-01

    The notion of renormalization is at the core of several spectacular achievements of contemporary physics, and in the last years powerful techniques have been developed allowing to put renormalization on a firm mathematical basis. This book provides a self-consistent and accessible introduction to the sophisticated tools used in the modern theory of non-perturbative renormalization, allowing an unified and rigorous treatment of Quantum Field Theory, Statistical Physics and Condensed Matter models. In particular the first part of this book is devoted to Constructive Quantum Field Theory, providi

  5. Perturbative quantum chromodynamics

    1989-01-01

    This book will be of great interest to advanced students and researchers in the area of high energy theoretical physics. Being the most complete and updated review volume on Perturbative QCD, it serves as an extremely useful textbook or reference book. Some of the reviews in this volume are the best that have been written on the subject anywhere. Contents: Factorization of Hard Processes in QCD (J C Collins, D E Soper & G Sterman); Exclusive Processes in Quantum Chromodynamics (S J Brodsky & G P Lepage); Coherence and Physics of QCD Jets (Yu L Dokshitzer, V A Khoze & S I Troyan); Pomeron in Qu

  6. Perturbative quantum chromodynamics

    Radyushkin, A.V.

    1987-01-01

    The latest achievements in perturbative quantum chromodynamics (QCD) relating to the progress in factorization of small and large distances are presented. The following problems are concerned: Development of the theory of Sudakov effects on the basis of mean contour formalism. Development of nonlocal condensate formalism. Calculation of hadron wave functions and hadron distribution functions using QCD method of sum rules. Development of the theory of Regge behaviour in QCD, behaviour of structure functions at small x. Study of polarization effects in hadron processes with high momentum transfer

  7. Development of multi-sensor global cloud and radiance composites for earth radiation budget monitoring from DSCOVR

    Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher

    2017-10-01

    The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95% of the globe.

  8. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    Seinfeld, John H. [California Inst. of Technology (CalTech), Pasadena, CA (United States)

    2011-12-02

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  9. The mass and angular momentum of reconstructed metric perturbations

    van de Meent, Maarten

    2017-06-01

    We prove a key result regarding the mass and angular momentum content of linear vacuum perturbations of the Kerr metric obtained through the formalism developed by Chrzarnowski, Cohen, and Kegeles (CCK). More precisely, we prove that the Abbott-Deser mass and angular momentum integrals of any such perturbation vanish when that perturbation was obtained from a regular Fourier mode of the Hertz potential. As a corollary we obtain a generalization of previous results on the completion of the ‘no string’ radiation gauge metric perturbation generated by a point particle. We find that for any bound orbit around a Kerr black hole, the mass and angular momentum perturbations completing the CCK metric are simply the energy and angular momentum of the particle ‘outside’ the orbit and vanish ‘inside’ the orbit.

  10. Global Pattern of Nasopharyngeal Cancer: Correlation of Outcome With Access to Radiation Therapy

    Lam, Ka-On [Clinical Oncology Center, University of Hong Kong-Shenzhen Hospital, Shenzhen (China); Lee, Anne W.M., E-mail: annelee@hku-szh.org [Clinical Oncology Center, University of Hong Kong-Shenzhen Hospital, Shenzhen (China); Choi, Cheuk-Wai [Department of Systems Engineering and Engineering Management, City University of Hong Kong, Hong Kong (China); Sze, Henry C.K. [Clinical Oncology Center, University of Hong Kong-Shenzhen Hospital, Shenzhen (China); Zietman, Anthony L. [Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts (United States); Hopkins, Kirsten I.; Rosenblatt, Eduardo [International Atomic Energy Agency, Vienna (Austria)

    2016-04-01

    Purpose: This study aimed to estimate the treatment outcome of nasopharyngeal cancer (NPC) across the world and its correlation with access to radiation therapy (RT). Methods and Materials: The age-standardized mortality (ASM) and age-standardized incidence (ASI) rates of NPC from GLOBOCAN (2012) were summarized, and [1−(ASM/ASI)] was computed to give the proxy relative survival (RS). Data from the International Atomic Energy Agency (IAEA) and the World Bank were used to assess the availability of RT in surrogate terms: the number of RT equipment units and radiation oncologists per million population. Results: A total of 112 countries with complete valid data were analyzed, and the proxy RS varied widely from 0% to 83% (median, 50%). Countries were categorized into Good, Median, and Poor outcome groups on the basis of their proxy RS (<45%, 45%-55%, and >55%). Eighty percent of new cases occurred in the Poor outcome group. Univariable linear regression showed a significant correlation between outcome and the availability of RT: proxy RS increased at 3.4% (P<.001) and 1.5% (P=.001) per unit increase in RT equipment and oncologist per million population, respectively. The median number of RT equipment units per million population increased significantly from 0.5 in the Poor, to 1.5 in the Median, to 4.6 in the Good outcome groups, and the corresponding number of oncologists increased from 1.1 to 3.3 to 7.1 (P<.001). Conclusions: Nasopharyngeal cancer is a highly treatable disease, but the outcome varies widely across the world. The current study shows a significant correlation between survival and access to RT based on available surrogate indicators. However, the possible reasons for poor outcome are likely to be multifactorial and complex. Concerted international efforts are needed not only to address the fundamental requirement for adequate RT access but also to obtain more comprehensive and accurate data for research to improve cancer outcome.

  11. Predictive spatio-temporal model for spatially sparse global solar radiation data

    André, Maïna; Dabo-Niang, Sophie; Soubdhan, Ted; Ould-Baba, Hanany

    2016-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at a located station for very short time scale. We built a multivariate model in using few stations (3 stations) separated with irregular distances from 26 km to 56 km. The proposed model is a spatio temporal vector autoregressive VAR model specifically designed for the analysis of spatially sparse spatio-temporal data. This model differs from classic linear models in using spatial and temporal parameters where the available predictors are the lagged values at each station. A spatial structure of stations is defined by the sequential introduction of predictors in the model. Moreover, an iterative strategy in the process of our model will select the necessary stations removing the uninteresting predictors and also selecting the optimal p-order. We studied the performance of this model. The metric error, the relative root mean squared error (rRMSE), is presented at different short time scales. Moreover, we compared the results of our model to simple and well known persistence model and those found in literature. - Highlights: • A spatio-temporal VAR forecast model is used for spatially sparse data solar. • Lags and locations are selected by an optimization strategy. • Definition of spatial ordering of predictors influences forecasting results. • The model shows a better performance predictive at 30 min ahead in our context. • Benchmarking study shows a more accurate forecast at 1 h ahead with spatio-temporal VAR.

  12. Resummation of the QCD perturbative series for hard processes

    Catani, S.

    1989-01-01

    We study the region of inhibited radiation in hard hadronic processes, as for jet cross sections and heavy flavour production near threshold. The cases of deep inelastic scattering and Drell-Yan annihilation are explicitly considered. A general method to exponentiate leading and next-to-leading logarithms to all orders in perturbation theory is developed. A complete formula for the large N-moments is given and shown to agree with previous two-loop calculations. The resummation procedure suggests how to connect the perturbative and nonperturbative regions. The natural limit within the perturbative phase is shown to be the intrinsic transverse momentum. (orig.)

  13. Comparison of 37 months global net radiation flux derived from PICARD-BOS over the same period observations of CERES and ARGO

    Zhu, Ping; Wild, Martin

    2016-04-01

    The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.

  14. Non-perturbative versus perturbative renormalization of lattice operators

    Goeckeler, M.; Technische Hochschule Aachen; Horsley, R.; Ilgenfritz, E.M.; Oelrich, H.; Forschungszentrum Juelich GmbH; Schierholz, G.; Forschungszentrum Juelich GmbH; Perlt, H.; Schiller, A.; Rakow, P.

    1995-09-01

    Our objective is to compute the moments of the deep-inelastic structure functions of the nucleon on the lattice. A major source of uncertainty is the renormalization of the lattice operators that enter the calculation. In this talk we compare the renormalization constants of the most relevant twist-two bilinear quark operators which we have computed non-perturbatively and perturbatively to one loop order. Furthermore, we discuss the use of tadpole improved perturbation theory. (orig.)

  15. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  16. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate

  17. Multi-GPU configuration of 4D intensity modulated radiation therapy inverse planning using global optimization

    Hagan, Aaron; Sawant, Amit; Folkerts, Michael; Modiri, Arezoo

    2018-01-01

    We report on the design, implementation and characterization of a multi-graphic processing unit (GPU) computational platform for higher-order optimization in radiotherapy treatment planning. In collaboration with a commercial vendor (Varian Medical Systems, Palo Alto, CA), a research prototype GPU-enabled Eclipse (V13.6) workstation was configured. The hardware consisted of dual 8-core Xeon processors, 256 GB RAM and four NVIDIA Tesla K80 general purpose GPUs. We demonstrate the utility of this platform for large radiotherapy optimization problems through the development and characterization of a parallelized particle swarm optimization (PSO) four dimensional (4D) intensity modulated radiation therapy (IMRT) technique. The PSO engine was coupled to the Eclipse treatment planning system via a vendor-provided scripting interface. Specific challenges addressed in this implementation were (i) data management and (ii) non-uniform memory access (NUMA). For the former, we alternated between parameters over which the computation process was parallelized. For the latter, we reduced the amount of data required to be transferred over the NUMA bridge. The datasets examined in this study were approximately 300 GB in size, including 4D computed tomography images, anatomical structure contours and dose deposition matrices. For evaluation, we created a 4D-IMRT treatment plan for one lung cancer patient and analyzed computation speed while varying several parameters (number of respiratory phases, GPUs, PSO particles, and data matrix sizes). The optimized 4D-IMRT plan enhanced sparing of organs at risk by an average reduction of 26% in maximum dose, compared to the clinical optimized IMRT plan, where the internal target volume was used. We validated our computation time analyses in two additional cases. The computation speed in our implementation did not monotonically increase with the number of GPUs. The optimal number of GPUs (five, in our study) is directly related to the

  18. Hourly forecasting of global solar radiation based on multiscale decomposition methods: A hybrid approach

    Monjoly, Stéphanie; André, Maïna; Calif, Rudy; Soubdhan, Ted

    2017-01-01

    This paper introduces a new approach for the forecasting of solar radiation series at 1 h ahead. We investigated on several techniques of multiscale decomposition of clear sky index K_c data such as Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decomposition (EEMD) and Wavelet Decomposition. From these differents methods, we built 11 decomposition components and 1 residu signal presenting different time scales. We performed classic forecasting models based on linear method (Autoregressive process AR) and a non linear method (Neural Network model). The choice of forecasting method is adaptative on the characteristic of each component. Hence, we proposed a modeling process which is built from a hybrid structure according to the defined flowchart. An analysis of predictive performances for solar forecasting from the different multiscale decompositions and forecast models is presented. From multiscale decomposition, the solar forecast accuracy is significantly improved, particularly using the wavelet decomposition method. Moreover, multistep forecasting with the proposed hybrid method resulted in additional improvement. For example, in terms of RMSE error, the obtained forecasting with the classical NN model is about 25.86%, this error decrease to 16.91% with the EMD-Hybrid Model, 14.06% with the EEMD-Hybid model and to 7.86% with the WD-Hybrid Model. - Highlights: • Hourly forecasting of GHI in tropical climate with many cloud formation processes. • Clear sky Index decomposition using three multiscale decomposition methods. • Combination of multiscale decomposition methods with AR-NN models to predict GHI. • Comparison of the proposed hybrid model with the classical models (AR, NN). • Best results using Wavelet-Hybrid model in comparison with classical models.

  19. Spatio-Temporal Characteristics in the Clearness Index Derived from Global Solar Radiation Observations in Korea

    Yeonjin Jung

    2016-04-01

    Full Text Available The spatio-temporal characteristics of the clearness index (KT were investigated using daily global solar irradiance measurements (290–2800 nm for the period of 2000–2014 at 21 sites in Korea, a complex region in East Asia with a distinct monsoon season and heavy aerosol loading year-round. The annual mean KT value for all sites is 0.46, with values of 0.63 and 0.25 for clear and overcast skies, respectively. The seasonal variations in monthly average KT show a minimum of 0.37 in July at all sites except for Jeju, where the value was 0.29 in January. The maximum value (KT = 0.51 is observed in October, followed by a secondary peak (KT = 0.49 during February–April. The lowest KT value (KT = 0.42 was observed at both the Seoul and Jeju sites, and the highest (KT = 0.48 in the southeastern regions. Increases in average KT exceeding 4% per decade were observed in the middle and southeastern regions, with the maximum (+8% per decade at the Daegu site. Decreasing trends (<−4% per decade were observed in the southwestern regions, with the maximum (−7% per decade at the Mokpo site. Cloud amount, relative humidity, and aerosol optical depth together explained 57% of the variance in daily mean KT values. The contributions of these three variables to variations in KT are 42%, 9% and 6%, respectively. Thus, the variations in KT in Korea can be primarily attributed to the presence of clouds and water vapor, with relatively weak aerosol effects.

  20. Perturbative Universality in Soft Particle Production

    Khoze, V A; Ochs, Wolfgang; Khoze, Valery A.; Lupia, Sergio; Ochs, Wolfgang

    1998-01-01

    The spectrum of partons in a QCD jet becomes independent of the primary energy in the low momentum limit. This follows within the perturbative QCD from the colour coherence in soft gluon branching. Remarkably, the hadrons follow such behaviour closely, suggesting the parton hadron duality picture to be appropriate also for the low momentum particles. More generally, this scaling property holds for particles of low transverse and arbitrary longitudinal momentum, which explains an old experimental observation (``fan invariance''). Further tests of the perturbatively based picture for soft particle production are proposed for three-jet events in e+e- annihilation and di-jet production events in gamma p, gamma-gamma and p\\bar p collisions. They are based upon the difference in the intensity of the soft radiation from primary q\\bar q and gg antennae.

  1. Perturbation studies on KAHTER

    Rueckert, M.; Jonas, H.; Neef, R. D.

    1974-10-15

    The paper describes experimental and analytical results by both transport theory and diffusion theory calculations of perturbation tests in the KAHTER pebble bed critical experiment. The fission-weighted adjoint flux is measured from in-core detector responses by introducing a Cf-source into the core. Adjoint-weighted reactivities are calculated and compared to reactivity measurements for the introduction of a fuel and graphite pebble onto the top of the critical pile, the central rod worth, and the effect of replacing B4C with varying amounts of HfC in the central rod. In addition, analytical studies were made of the sensitivity of criticality to the fuel to graphite pebble ratio as measured in tests and of the effect of the upper void cavity as simulated in tests by placing cadmium layer across the top of the pebble pile to force a zero flux boundary condition.

  2. Introduction to perturbation methods

    Holmes, M

    1995-01-01

    This book is an introductory graduate text dealing with many of the perturbation methods currently used by applied mathematicians, scientists, and engineers. The author has based his book on a graduate course he has taught several times over the last ten years to students in applied mathematics, engineering sciences, and physics. The only prerequisite for the course is a background in differential equations. Each chapter begins with an introductory development involving ordinary differential equations. The book covers traditional topics, such as boundary layers and multiple scales. However, it also contains material arising from current research interest. This includes homogenization, slender body theory, symbolic computing, and discrete equations. One of the more important features of this book is contained in the exercises. Many are derived from problems of up- to-date research and are from a wide range of application areas.

  3. Perturbation theory with instantons

    Carruthers, P.; Pinsky, S.S.; Zachariasen, F.

    1977-05-01

    ''Perturbation theory'' rules are developed for calculating the effect of instantons in a pure Yang-Mills theory with no fermions, in the ''dilute gas'' approximation in which the N-instanton solution is assumed to be the sum of N widely separated one-instanton solutions. These rules are then used to compute the gluon propagator and proper vertex function including all orders of the instanton interaction but only to lowest order in the gluon coupling. It is to be expected that such an approximation is valid only for momenta q larger than the physical mass μ. The result is that in this regime instantons cause variations in the propagator and vertex of the form (μ 2 /q 2 )/sup -8π 2 b/ where b is the coefficient in the expansion of the β function: β = bg 3 +...

  4. Comparative studies of measured and estimated values of global solar radiation using Eppley pyranometer and Hargreaves Samani-model at Nsukka under varying climatic conditions

    Anikpa, P.O.; Osuji, R.U.

    2005-12-01

    This study uses the Hargreaves and Samani (HS) modified model in estimating daily global solar radiation at Nsukka. The model equation was based on daily air temperature range and extraterrestrial solar radiation. The estimated results obtained for six months, staring from 25th August, 2003 to 20th February, 2004 were compared to measured values obtained with standard Eppley pyranometer. The measurements were taken manually within the same period. The comparison indicates that in the dry season months under consideration (December, 2003; January, 2004 and February, 2004) the model clearly gave higher insolation values of the daily global solar radiation. In the wet season months considered (i.e., part of August, 2003 through November, 2003) the model showed neither a clear pattern of higher nor a lower insolation. Further correlation analysis produced neither bias for the wet season nor dry season months. This indicates that on a monthly basis, the monthly average for estimated and measured values correlated well. (author)

  5. Radiations

    Pujol Mora, J.

    1999-01-01

    The exposition to ionizing radiations is a constant fact in the life of the human being and its utilization as diagnostic and therapeutic method is generalized. However, it is notorious how as years go on, the fear to the ionizing radiation seems to persist too, and this fact is not limited to the common individual, but to the technical personnel and professional personnel that labors with them same. (S. Grainger) [es

  6. Radiation

    Davidson, J.H.

    1986-01-01

    The basic facts about radiation are explained, along with some simple and natural ways of combating its ill-effects, based on ancient healing wisdom as well as the latest biochemical and technological research. Details are also given of the diet that saved thousands of lives in Nagasaki after the Atomic bomb attack. Special comment is made on the use of radiation for food processing. (U.K.)

  7. Bridging Innovation and Outreach to Overcome Global Gaps in Radiation Oncology Through Information and Communication Tools, Trainee Advancement, Engaging Industry, Attention to Ethical Challenges, and Political Advocacy.

    Dad, Luqman; Royce, Trevor J; Morris, Zachary; Moran, Meena; Pawlicki, Todd; Khuntia, Deepak; Hardenbergh, Patricia; Cummings, Bernard; Mayr, Nina; Hu, Kenneth

    2017-04-01

    An evolving paradigm in global outreach in radiation oncology has been the implementation of a more region-specific, needs-based approach to help close the gap in radiation services to low- and middle-income countries through the use of innovative tools in information and communication technology. This report highlights 4 information and communication technology tools in action today: (1) the NCCN Framework for Resource Stratification of NCCN guidelines, (2) ASTRO e-Contouring, (3) i.treatsafely.org, and (4) ChartRounds.com. We also render special consideration to matters related to global outreach that we believe require distinct attention to help us meet the goals established by the 2011 United Nations׳ Declaration on noncommunicable diseases: (1) trainee advancement toward careers in global health, (2) ethical challenges of international outreach, (3) critical importance of political advocacy, and (4) collaboration with Industry. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Variability and trends of downward surface global solar radiation over the Iberian Peninsula based on ERA-40 reanalysis

    Perdigão, João Carlos

    2016-01-26

    © 2016 Royal Meteorological Society. A climate study of the incidence of downward surface global solar radiation (SSRD) in the Iberian Peninsula (IP) based primarily on ERA-40 reanalysis is presented. NCEP/NCAR reanalysis and ground-based records from several Portuguese and Spanish stations have been also considered. The results show that reanalysis can capture a similar inter-annual variability as compared to ground-based observations, especially on a monthly basis, even though annual ERA-40 (NCEP/NCAR) values tend to underestimate (overestimate) the observations with a mean relative difference of around 20Wm-2 (40Wm-2). On the other hand, ground-based measurements in Portuguese stations during the period 1964-1989 show a tendency to decrease until the mid-1970s followed by an increase up to the end of the study period, in line with the dimming/brightening phenomenon reported in the literature. Nevertheless, there are different temporal behaviours as a greater increase since the 1970s is observed in the south and less industrialized regions. Similarly, the ERA-40 reanalysis shows a noticeable decrease until the early 1970s followed by a slight increase up to the end of the 1990s, suggesting a dimming/brightening transition around the early 1970s, earlier in the south and centre and later in the north of the IP. Although there are slight differences in the magnitude of the trends as well as the turning year of the dimming/brightening periods, the decadal changes of ERA-40 fairly agree with the ground-based observations in Portugal and Spain, in contrast to most of the literature for other regions of the world, and is used in the climatology of the SSRD in the study area. NCEP/NCAR reanalysis does not capture the decadal variations of SSRD in the IP. The results show that part of the decadal variability of the global radiation in the IP is related to changes in cloud cover (represented in ERA-40).

  9. Variability and trends of downward surface global solar radiation over the Iberian Peninsula based on ERA-40 reanalysis

    Perdigã o, Joã o Carlos; Salgado, Rui; Costa, Maria Joã o; Dasari, Hari Prasad; Sanchez-Lorenzo, Arturo

    2016-01-01

    © 2016 Royal Meteorological Society. A climate study of the incidence of downward surface global solar radiation (SSRD) in the Iberian Peninsula (IP) based primarily on ERA-40 reanalysis is presented. NCEP/NCAR reanalysis and ground-based records from several Portuguese and Spanish stations have been also considered. The results show that reanalysis can capture a similar inter-annual variability as compared to ground-based observations, especially on a monthly basis, even though annual ERA-40 (NCEP/NCAR) values tend to underestimate (overestimate) the observations with a mean relative difference of around 20Wm-2 (40Wm-2). On the other hand, ground-based measurements in Portuguese stations during the period 1964-1989 show a tendency to decrease until the mid-1970s followed by an increase up to the end of the study period, in line with the dimming/brightening phenomenon reported in the literature. Nevertheless, there are different temporal behaviours as a greater increase since the 1970s is observed in the south and less industrialized regions. Similarly, the ERA-40 reanalysis shows a noticeable decrease until the early 1970s followed by a slight increase up to the end of the 1990s, suggesting a dimming/brightening transition around the early 1970s, earlier in the south and centre and later in the north of the IP. Although there are slight differences in the magnitude of the trends as well as the turning year of the dimming/brightening periods, the decadal changes of ERA-40 fairly agree with the ground-based observations in Portugal and Spain, in contrast to most of the literature for other regions of the world, and is used in the climatology of the SSRD in the study area. NCEP/NCAR reanalysis does not capture the decadal variations of SSRD in the IP. The results show that part of the decadal variability of the global radiation in the IP is related to changes in cloud cover (represented in ERA-40).

  10. Singular perturbation of simple eigenvalues

    Greenlee, W.M.

    1976-01-01

    Two operator theoretic theorems which generalize those of asymptotic regular perturbation theory and which apply to singular perturbation problems are proved. Application of these theorems to concrete problems is involved, but the perturbation expansions for eigenvalues and eigenvectors are developed in terms of solutions of linear operator equations. The method of correctors, as well as traditional boundary layer techniques, can be used to apply these theorems. The current formulation should be applicable to highly singular ''hard core'' potential perturbations of the radial equation of quantum mechanics. The theorems are applied to a comparatively simple model problem whose analysis is basic to that of the quantum mechanical problem

  11. Radiation

    Winther, J.F.; Ulbak, K.; Dreyer, L.; Pukkala, E.; Oesterlind, A.

    1997-01-01

    Exposure to solar and ionizing radiation increases the risk for cancer in humans. Some 5% of solar radiation is within the ultraviolet spectrum and may cause both malignant melanoma and non-melanocytic skin cancer; the latter is regarded as a benign disease and is accordingly not included in our estimation of avoidable cancers. Under the assumption that the rate of occurrence of malignant melanoma of the buttocks of both men and women and of the scalp of women would apply to all parts of the body in people completely unexposed to solar radiation, it was estimated that approximately 95% of all malignant melanomas arising in the Nordic populations around the year 2000 will be due to exposure to natural ultraviolet radiation, equivalent to an annual number of about 4700 cases, with 2100 in men and 2600 in women, or some 4% of all cancers notified. Exposure to ionizing radiation in the Nordic countries occurs at an average effective dose per capita per year of about 3 mSv (Iceland, 1.1 mSv) from natural sources, and about 1 mSv from man-made sources. While the natural sources are primarily radon in indoor air, natural radionuclides in food, cosmic radiation and gamma radiation from soil and building materials, the man-made sources are dominated by the diagnostic and therapeutic use of ionizing radiation. On the basis of measured levels of radon in Nordic dwellings and associated risk estimates for lung cancer derived from well-conducted epidemiological studies, we estimated that about 180 cases of lung cancer (1% of all lung cancer cases) per year could be avoided in the Nordic countries around the year 2000 if indoor exposure to radon were eliminated, and that an additional 720 cases (6%) could be avoided annually if either radon or tobacco smoking were eliminated. Similarly, it was estimated that the exposure of the Nordic populations to natural sources of ionizing radiation other than radon and to medical sources will each give rise to an annual total of 2120

  12. Cosmological perturbations in a family of deformations of general relativity

    Krasnov, Kirill; Shtanov, Yuri

    2010-01-01

    We study linear cosmological perturbations in a previously introduced family of deformations of general relativity characterized by the absence of new degrees of freedom. The homogeneous and isotropic background in this class of theories is unmodified and is described by the usual Friedmann equations. The theory of cosmological perturbations is modified and the relevant deformation parameter has the dimension of length. Gravitational perturbations of the scalar type can be described by a certain relativistic potential related to the matter perturbations just as in general relativity. A system of differential equations describing the evolution of this potential and of the stress-energy density perturbations is obtained. We find that the evolution of scalar perturbations proceeds with a modified effective time-dependent speed of sound, which, contrary to the case of general relativity, does not vanish even at the matter-dominated stage. In a broad range of values of the length parameter controlling the deformation, a specific transition from the regime of modified gravity to the regime of general relativity in the evolution of scalar perturbations takes place during the radiation domination. In this case, the resulting power spectrum of perturbations in radiation and dark matter is suppressed on the comoving spatial scales that enter the Hubble radius before this transition. We estimate the bounds on the deformation parameter for which this suppression does not lead to observable consequences. Evolution of scalar perturbations at the inflationary stage is modified but very slightly and the primordial spectrum generated during inflation is not noticeably different from the one obtained in general relativity

  13. Radiative efficiencies and global warming potentials using theoretically determined absorption cross-sections for several hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs)

    Bravo, Ivan; Marston, George; Nutt, David R.; Shine, Keith P.

    2011-01-01

    Integrated infrared cross-sections and wavenumber positions for the vibrational modes of a range of hydrofluoroethers (HFEs) and hydrofluoropolyethers (HFPEs) have been calculated. Spectra were determined using a density functional method with an empirically derived correction for the wavenumbers of band positions. Radiative efficiencies (REs) were determined using the Pinnock et al. method and were used with atmospheric lifetimes from the literature to determine global warming potentials (GWPs). For the HFEs and the majority of the molecules in the HG series HFPEs, theoretically determined absorption cross-sections and REs lie within ca. 10% of those determined using measured spectra. For the larger molecules in the HG series and the HG' series of HFPEs, agreement is less good, with theoretical values for the integrated cross-sections being up to 35% higher than the experimental values; REs are up to 45% higher. Our method gives better results than previous theoretical approaches, because of the level of theory chosen and, for REs, because an empirical wavenumber correction derived for perfluorocarbons is effective in predicting the positions of C-F stretching frequencies at around 1250 cm -1 for the molecules considered here.

  14. Chiral perturbation theory

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  15. Perturbed angular correlation

    Fabris, J.D.

    1977-01-01

    The electric quadrupolar interaction in some hafnium complexes, measured at the metal nucleus level is studied. For that purpose, the technique of γ-γ perturbed angular correlation is used: the frequencies of quadrupolar interaction are compared with some hafnium α-hydroxicarboxilates, namely glycolate, lactate, mandelate and benzylate; the influence of the temperature on the quadrupolar coupling on the hafnium tetramandelate is studied; finally, the effects associated with the capture of thermal neutrons by hafnium tetramandelate are examined locally at the nuclear level. The first group of results shows significant differences in a series of complexes derived from glycolic acid. On the other hand, the substitution of the protons in hafnium tetramandelate structure by some alkaline cations permits to verify a correlation between the variations in the quadrupolar coupling and the electronegativities of the substituent elements. Measurements at high temperatures show that this complex is thermally stable at 100 and 150 0 C. It is possible to see the appearance of two distinct sites for the probe nucleus, after heating the sample at 100 0 C for prolonged time. This fact is attributed to a probable interconversion among the postulated structural isomers for the octacoordinated compounds. Finally, measurements of angular correlation on the irradiated complex show that there is an effective destruction of the target molecule by neutron capture [pt

  16. Perturbative quantum chromodynamics

    Brodsky, S.J.

    1979-12-01

    The application of QCD to hadron dynamics at short distances, where asymptotic freedom allows a systematic perturbative approach, is addressed. The main theme of the approach is to incorporate systematically the effects of the hadronic wave function in large momentum transfer exclusive and inclusive reactions. Although it is conventional to treat the hadron as a classical source of on-shell quarks, there are important dynamical effects due to hadronic constituent structure which lead to a broader testing ground for QCD. QCD predictions are discussed for exclusive processes and form factors at large momentum transfer in which the short-distance behavior and the finite compositeness of the hadronic wave functions play crucial roles. Many of the standard tests of QCD are reviewed including the predictions for R = sigma/sub e + e - →had//sigma/sub e + e - →μ + μ - /, the structure functions of hadrons and photons, jet phenomena, and the QCD corrections to deep inelastic processes. The exclusive-inclusive connection in QCD, the effects of power-law scale-breaking contributions, and the important role of the available energy in controlling logarithmic scale violations are also discussed. 150 references, 44 figures

  17. Dissipative motion perturbation theory and exact solutions

    Lodder, J.J.

    1976-06-01

    Dissipative motion of classical and quantum systems is described. In particular, attention is paid to systems coupled to the radiation field. A dissipative equation of motion for a particle in an arbitrary potential coupled to the radiation field is derived by means of perturbation theory. The usual divrgencies associated with the radiation field are eliminated by the application of a theory of generalized functions. This theory is developed as a subject in its own right and is presented independently. The introduction of classical zero-point energy makes the classical equa tion of motion for the phase density formally the same as its quantum counterpart. In particular, it is shown that the classical zero-point energy prevents the collapse of a classical H-atom and gives rise to a classical ground state. For systems with a quadratic Hamiltoian, the equation of motion can be solved exactly, even in the continuum limit for the radiation field, by means of the new generalized functions. Classically, the Fokker-Planck equation is found without any approximations, and quantum mechanically, the only approximation is the neglect of the change in the ground state caused by the interaction. The derivation is valid even for strong damping and arbitrarily short times. There is no transient time. For harmonic oscillators complete equivalence is shown to exist between quantum mechanics and classical mechanics with zero-point energy. A discussion of the derivation of the Pauli equation is given and perturbation theory is compared with the exact derivation. The exactly solvable models are used to calculate the Langevin force of the radiation field. The result is that the classical Langevin force is exactly delta-correlated, while the quantum Langevin force is not delta-correlated at all. The fluctuation-dissipation theorem is shown to be an exact consequence of the solution to the equations of motion

  18. Lattice regularized chiral perturbation theory

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  19. Perturbative QCD (1/3)

    CERN. Geneva

    2013-01-01

    Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.

  20. Propagation of Ion Acoustic Perturbations

    Pécseli, Hans

    1975-01-01

    Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered.......Equations describing the propagation of ion acoustic perturbations are considered, using the assumption that the electrons are Boltzman distributed and isothermal at all times. Quasi-neutrality is also considered....

  1. On summation of perturbation expansions

    Horzela, A.

    1985-04-01

    The problem of the restoration of physical quantities defined by divergent perturbation expansions is analysed. The Pad'e and Borel summability is proved for alternating perturbation expansions with factorially growing coefficients. The proof is based on the methods of the classical moments theory. 17 refs. (author)

  2. Continual integral in perturbation theory

    Slavnov, A.A.

    1975-01-01

    It is shown that all results obtained by means of continual integration within the framework of perturbation theory are completely equivalent to those obtained by the usual diagram technique and are therfore just as rigorous. A rigorous justification is given for the rules for operating with continual integrals in perturbation theory. (author)

  3. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  4. Amplification of curvature perturbations in cyclic cosmology

    Zhang Jun; Liu Zhiguo; Piao Yunsong

    2010-01-01

    We analytically and numerically show that through the cycles with nonsingular bounce, the amplitude of curvature perturbation on a large scale will be amplified and the power spectrum will redden. In some sense, this amplification will eventually destroy the homogeneity of the background, which will lead to the ultimate end of cycles of the global universe. We argue that for the model with increasing cycles, it might be possible that a fissiparous multiverse will emerge after one or several cycles, in which the cycles will continue only at corresponding local regions.

  5. Numerical simulation of surface solar radiation over Southern Africa. Part 1: Evaluation of regional and global climate models

    Tang, Chao; Morel, Béatrice; Wild, Martin; Pohl, Benjamin; Abiodun, Babatunde; Bessafi, Miloud

    2018-02-01

    This study evaluates the performance of climate models in reproducing surface solar radiation (SSR) over Southern Africa (SA) by validating five Regional Climate Models (RCM, including CCLM4, HIRHAM5, RACMO22T, RCA4 and REMO2009) that participated in the Coordinated Regional Downscaling Experiment program over Africa (CORDEX-Africa) along with their ten driving General Circulation Models (GCMs) from the Coupled Model Intercomparison Project Phase 5 over SA. The model simulated SSR was thereby compared to reference data from ground-based measurements, satellite-derived products and reanalyses over the period 1990-2005. Results show that (1) the references obtained from satellite retrievals and reanalyses overall overestimate SSR by up to 10 W/m2 on average when compared to ground-based measurements from the Global Energy Balance Archive, which are located mainly over the eastern part of the southern African continent. (2) Compared to one of the satellite products (Surface Solar Radiation Data Set—Heliosat Edition 2; SARAH-2): GCMs overestimate SSR over SA in terms of their multi-model mean by about 1 W/m2 (compensation of opposite biases over sub-regions) and 7.5 W/m2 in austral summer and winter respectively; RCMs driven by GCMs show in their multimodel mean underestimations of SSR in both seasons with Mean Bias Errors (MBEs) of about - 30 W/m2 in austral summer and about - 14 W/m2 in winter compared to SARAH-2. This multi-model mean low bias is dominated by the simulations of the CCLM4, with negative biases up to - 76 W/m2 in summer and - 32 W/m2 in winter. (3) The discrepancies in the simulated SSR over SA are larger in the RCMs than in the GCMs. (4) In terms of trend during the "brightening" period 1990-2005, both GCMs and RCMs (driven by European Centre for Medium-Range Weather Forecasts Reanalysis ERA-Interim, short as ERAINT and GCMs) simulate an SSR trend of less than 1 W/m2 per decade. However, variations of SSR trend exist among different references data

  6. Investigating the Linear Dependence of Direct and Indirect Radiative Forcing on Emission of Carbonaceous Aerosols in a Global Climate Model

    Chen, Yanju [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA; Wang, Hailong [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Singh, Balwinder [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Ma, Po-Lun [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Rasch, Philip J. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland WA USA; Bond, Tami C. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana IL USA

    2018-02-02

    The linearity of dependence of aerosol direct and indirect radiative forcing (DRF and IRF) on emissions is essential to answer the policy-relevant question on how the change in forcing would result from a change in emission. In this study, the forcing-to-emission relationship is investigated for black carbon (BC) and primary organic carbon (OC) emitted from North America and Asia. Direct and indirect radiative forcing of BC and OC are simulated with the Community Atmosphere Model (CAM5.1). Two diagnostics are introduced to aid in policy-relevant discussion: emission-normalized forcing (ENF) and linearity (R). DRF is linearly related to emission for both BC and OC from the two regions and emission-normalized DRF is similar, within 15%. IRF is linear to emissions for weaker sources and regions far from source (North American BC and OC), while for large emission sources and near source regions (Asian OC) the response of forcing to emission is sub-linear. In North America emission-normalized IRF (ENIRF) is 2-4 times higher than that in Asia. The difference among regions and species is primarily caused by failure of accumulation mode particles to become CCN, and then to activate into CDNC. Optimal aggregation area (30ºx 30º) has been used to communicate the regional variation of forcing-to-emission relationship. For IRF, only 15-40% of the Earth’s surface is significantly affected by the two emission regions, but the forcing in these regions comprises most of the global impact. Linearity of IRF occurs in about two-thirds of the significant regions except for Asian OC. ENF is an effective tool to estimate forcing changes due to reduction of surface emissions, as long as there is sufficient attention to the causes of nonlinearity in the simulations used to derive ENIRF (emission into polluted regions and emission elevation). The differences in ENIRF have important implications for policy decisions. Lower ENIRF in more polluted region like Asia means that reductions of

  7. CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4: Infrared spectra, radiative efficiencies, and global warming potentials

    Wallington, Timothy J.; Pivesso, Bruno Pasquini; Lira, Alane Moura; Anderson, James E.; Nielsen, Claus Jørgen; Andersen, Niels Højmark; Hodnebrog, Øivind

    2016-01-01

    Infrared spectra for the title compounds were measured experimentally in 700 Torr of air at 295 K and systematically modeled in B3LYP, M06-2X and MP2 calculations employing various basis sets. Calibrated infrared spectra over the wavenumber range 600–3500 cm"−"1 are reported and combined with literature data to provide spectra for use in experimental studies and radiative transfer calculations. Integrated absorption cross sections are (units of cm"−"1 molecule"−"1): CH_3Cl, 660–780 cm"−"1, (3.89±0.19)×10"−"1"8; CH_2Cl_2, 650–800 cm"−"1, (2.16±0.11)×10"−"1"7; CHCl_3, 720–810 cm"−"1, (4.08±0.20)×10"−"1"7; and CCl_4, 730–825 cm"−"1, (6.30±0.31)×10"−"1"7. CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 have radiative efficiencies of 0.004, 0.028, 0.070, and 0.174 W m"−"2 ppb"−"1 and global warming potentials (100 year horizon) of 5, 8, 15, and 1775, respectively. Quantum chemistry calculations generally predict larger band intensities than the experimental values. The best agreement with experiments is obtained in MP2(Full) calculations employing basis sets of at least triple-zeta quality augmented by diffuse functions. The B3LYP functional is found ill-suited for calculating vibrational frequencies and infrared intensities of halocarbons. - Highlights: • Infrared spectra reported for CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4. • REs of CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 are 0.004, 0.028, 0.070, and 0.174 W m"−"2 ppb"−"1, respectively. • GWPs of CH_3Cl, CH_2Cl_2, CHCl_3, and CCl_4 are 5, 8, 15, and 1775, respectively.

  8. Disformal transformation of cosmological perturbations

    Masato Minamitsuji

    2014-10-01

    Full Text Available We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (nonconservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame.

  9. Disformal transformation of cosmological perturbations

    Minamitsuji, Masato

    2014-01-01

    We investigate the gauge-invariant cosmological perturbations in the gravity and matter frames in the general scalar–tensor theory where two frames are related by the disformal transformation. The gravity and matter frames are the extensions of the Einstein and Jordan frames in the scalar–tensor theory where two frames are related by the conformal transformation, respectively. First, it is shown that the curvature perturbation in the comoving gauge to the scalar field is disformally invariant as well as conformally invariant, which gives the predictions from the cosmological model where the scalar field is responsible both for inflation and cosmological perturbations. Second, in case that the disformally coupled matter sector also contributes to curvature perturbations, we derive the evolution equations of the curvature perturbation in the uniform matter energy density gauge from the energy (non)conservation in the matter sector, which are independent of the choice of the gravity sector. While in the matter frame the curvature perturbation in the uniform matter energy density gauge is conserved on superhorizon scales for the vanishing nonadiabatic pressure, in the gravity frame it is not conserved even if the nonadiabatic pressure vanishes. The formula relating two frames gives the amplitude of the curvature perturbation in the matter frame, once it is evaluated in the gravity frame

  10. Analysis of Long-Term Global Solar Radiation, Sunshine Duration and Air Temperature Data of Ankara and Modeling with Curve Fitting Methods

    Mehmet YEŞİLBUDAK

    2018-03-01

    Full Text Available The information about solar parameters is important in the installation of photovoltaic energy systems that are reliable, environmentally friendly and sustainable. In this study, initially, long-term global solar radiation, sunshine duration and air temperature data of Ankara are analyzed on the annual, monthly and daily basis, elaborately. Afterwards, three different empirical methods that are polynomial, Gaussian and Fourier are used for the purpose of modeling long-term monthly total global solar radiation, monthly total sunshine duration and monthly mean air temperature data. The coefficient of determination and the root mean square error are computed as statistical test metrics in order to compare data modeling performance of the mentioned empirical methods. The empirical methods that provide the best results enable to model the solar characteristics of Ankara more accurately and the achieved outcomes constitute the significant resource for other locations with similar climatic conditions.

  11. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  12. Cosmological perturbations beyond linear order

    CERN. Geneva

    2013-01-01

    Cosmological perturbation theory is the standard tool to understand the formation of the large scale structure in the Universe. However, its degree of applicability is limited by the growth of the amplitude of the matter perturbations with time. This problem can be tackled with by using N-body simulations or analytical techniques that go beyond the linear calculation. In my talk, I'll summarise some recent efforts in the latter that ameliorate the bad convergence of the standard perturbative expansion. The new techniques allow better analytical control on observables (as the matter power spectrum) over scales very relevant to understand the expansion history and formation of structure in the Universe.

  13. Instabilities in mimetic matter perturbations

    Firouzjahi, Hassan; Gorji, Mohammad Ali [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of); Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir [Physics Department, Shahrood University of Technology, P.O. Box 3619995161 Shahrood (Iran, Islamic Republic of)

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  14. Perturbation theory of effective Hamiltonians

    Brandow, B.H.

    1975-01-01

    This paper constitutes a review of the many papers which have used perturbation theory to derive ''effective'' or ''model'' Hamiltonians. It begins with a brief review of nondegenerate and non-many-body perturbation theory, and then considers the degenerate but non-many-body problem in some detail. It turns out that the degenerate perturbation problem is not uniquely defined, but there are some practical criteria for choosing among the various possibilities. Finally, the literature dealing with the linked-cluster aspects of open-shell many-body systems is reviewed. (U.S.)

  15. The theory of singular perturbations

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  16. The power of perturbation theory

    Serone, Marco [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Spada, Gabriele [SISSA International School for Advanced Studies and INFN Trieste, Via Bonomea 265, 34136, Trieste (Italy); Villadoro, Giovanni [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy)

    2017-05-10

    We study quantum mechanical systems with a discrete spectrum. We show that the asymptotic series associated to certain paths of steepest-descent (Lefschetz thimbles) are Borel resummable to the full result. Using a geometrical approach based on the Picard-Lefschetz theory we characterize the conditions under which perturbative expansions lead to exact results. Even when such conditions are not met, we explain how to define a different perturbative expansion that reproduces the full answer without the need of transseries, i.e. non-perturbative effects, such as real (or complex) instantons. Applications to several quantum mechanical systems are presented.

  17. Chiral perturbation theory approach to hadronic weak amplitudes

    Rafael, E. de

    1989-01-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)

  18. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain). Estudio de la interaccin nubosidad-radiacion solar en Salamanca

    Pablo-Davila, F. de, Labajo, J.L.; Tomas-Sanchez, C

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  19. Dynamics of entropy perturbations in assisted dark energy with mixed kinetic terms

    Karwan, Khamphee

    2011-01-01

    We study dynamics of entropy perturbations in the two-field assisted dark energy model. Based on the scenario of assisted dark energy, in which one scalar field is subdominant compared with the other in the early epoch, we show that the entropy perturbations in this two-field system tend to be constant on large scales in the early epoch and hence survive until the present era for a generic evolution of both fields during the radiation and matter eras. This behaviour of the entropy perturbations is preserved even when the fields are coupled via kinetic interaction. Since, for assisted dark energy, the subdominant field in the early epoch becomes dominant at late time, the entropy perturbations can significantly influence the dynamics of density perturbations in the universe. Assuming correlations between the entropy and curvature perturbations, the entropy perturbations can enhance the integrated Sachs-Wolfe (ISW) effect if the signs of the contributions from entropy perturbations and curvature perturbations are opposite after the matter era, otherwise the ISW contribution is suppressed. For canonical scalar field the effect of entropy perturbations on ISW effect is small because the initial value of the entropy perturbations estimated during inflation cannot be sufficiently large. However, in the case of k-essence, the initial value of the entropy perturbations can be large enough to affect the ISW effect to leave a significant imprint on the CMB power spectrum

  20. Infrared Absorption Spectra, Radiative Efficiencies, and Global Warming Potentials of Newly-Detected Halogenated Compounds: CFC-113a, CFC-112 and HCFC-133a

    Maryam Etminan

    2014-07-01

    Full Text Available CFC-113a (CF3CCl3, CFC-112 (CFCl2CFCl2 and HCFC-133a (CF3CH2Cl are three newly detected molecules in the atmosphere that are almost certainly emitted as a result of human activity. It is important to characterise the possible contribution of these gases to radiative forcing of climate change and also to provide information on the CO2-equivalence of their emissions. We report new laboratory measurements of absorption cross-sections of these three compounds at a resolution of 0.01 cm−1 for two temperatures 250 K and 295 K in the spectral range of 600–1730 cm−1. These spectra are then used to calculate the radiative efficiencies and global warming potentials (GWP. The radiative efficiencies are found to be between 0.15 and 0.3 W∙m−2∙ppbv−1. The GWP for a 100 year time horizon, relative to carbon dioxide, ranges from 340 for the relatively short-lived HCFC-133a to 3840 for the longer-lived CFC-112. At current (2012 concentrations, these gases make a trivial contribution to total radiative forcing; however, the concentrations of CFC-113a and HCFC-133a are continuing to increase. The 2012 CO2-equivalent emissions, using the GWP (100, are estimated to be about 4% of the current global CO2-equivalent emissions of HFC-134a.

  1. Prediction of monthly global solar radiation using adaptive neuro fuzzy inference system (ANFIS) technique over the state of Tamilnadu (India): a comparative study

    Sumithira, T. R.; Nirmal, Kumar A.

    2012-01-01

    Enormous potential of solar energy as a clean and pollution free source enrich the global power generation. India, being a tropical country, has high solar radiation and it lies to the north of equator between 8 degree 4' and 37 degree 6' North latitude and 68 degree 7' , and 97 degree 5' East longitude. In south india, Tamilnadu is located in the extreme south east with an average temperature of grater than 27.5 degree (> 81.5 F). In this study, an adaptive neuro-fuzzy inference system (ANFIS) based modelling approach to predict the monthly global solar radiation (MGSR) in Tamilnadu is presented using the real meteorological solar radiation data from the 31 districts of Tamilnadu with different latitude and longitude. The purpose of the study is to compare the accuracy of ANFIS and other soft computing models as found in literature to assess the solar radiation. The performance of the proposed model was tested and compared with other earth region in a case study. The statistical performance parameters such as root mean square error (RMSE), mean bias error (MBE), and coefficient of determination (R2) are presented and compared to validate the performance. The comparative test results prove the ANFIS based prediction are better than other models and furthermore proves its prediction capability for any geographical area with changing meteorological conditions. (author)

  2. Tunnelling instability via perturbation theory

    Graffi, S. (Bologna Univ. (Italy). Dip. di Matematica); Grecchi, V. (Moderna Univ. (Italy). Dip. di Matematica); Jona-Lasinio, G. (Paris-11 Univ., 91 - Orsay (France). Lab. de Physique Theorique et Hautes Energies)

    1984-10-21

    The semiclassical limit of low lying states in a multiwell potential is studied by rigorous perturbative techniques. In particular tunnelling instability and localisation of wave functions is obtained in a simple way under small deformations of symmetric potentials.

  3. Perturbation theory of quantum resonances

    Durand, P.; Paidarová, Ivana

    2016-01-01

    Roč. 135, č. 7 (2016), s. 159 ISSN 1432-2234 Institutional support: RVO:61388955 Keywords : Partitioning technique * Analytic continuation * Perturbative expansion Subject RIV: CF - Physical ; Theoretical Chemistry

  4. Perturbation Theory of Embedded Eigenvalues

    Engelmann, Matthias

    project gives a general and systematic approach to analytic perturbation theory of embedded eigenvalues. The spectral deformation technique originally developed in the theory of dilation analytic potentials in the context of Schrödinger operators is systematized by the use of Mourre theory. The group...... of dilations is thereby replaced by the unitary group generated y the conjugate operator. This then allows to treat the perturbation problem with the usual Kato theory.......We study problems connected to perturbation theory of embedded eigenvalues in two different setups. The first part deals with second order perturbation theory of mass shells in massive translation invariant Nelson type models. To this end an expansion of the eigenvalues w.r.t. fiber parameter up...

  5. Perturbative tests of quantum chromodynamics

    Michael, C.

    1978-01-01

    A review is given of perturbation theory results for quantum chromodynamics and of tests in deep inelastic lepton scattering, electron-positron annihilation, hadronic production of massive dileptons and hadronic large-momentum-transfer processes. (author)

  6. Large-order perturbation theory

    Wu, T.T.

    1982-01-01

    The original motivation for studying the asymptotic behavior of the coefficients of perturbation series came from quantum field theory. An overview is given of some of the attempts to understand quantum field theory beyond finite-order perturbation series. At least is the case of the Thirring model and probably in general, the full content of a relativistic quantum field theory cannot be recovered from its perturbation series. This difficulty, however, does not occur in quantum mechanics, and the anharmonic oscillator is used to illustrate the methods used in large-order perturbation theory. Two completely different methods are discussed, the first one using the WKB approximation, and a second one involving the statistical analysis of Feynman diagrams. The first one is well developed and gives detailed information about the desired asymptotic behavior, while the second one is still in its infancy and gives instead information about the distribution of vertices of the Feynman diagrams

  7. Review of chiral perturbation theory

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  8. Perturbation theory in light-cone gauge

    Vianello, Eliana

    2000-01-01

    Perturbation calculations are presented for the light-cone gauge Schwinger model. Eigenstates can be calculated perturbatively but the perturbation theory is nonstandard. We hope to extend the work to QCD 2 to resolve some outstanding issues in those theories

  9. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  10. A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset

    Deo, Ravinesh C.; Wen, Xiaohu; Qi, Feng

    2016-01-01

    Highlights: • A forecasting model for short- and long-term global incident solar radiation (R_n) has been developed. • The support vector machine and discrete wavelet transformation algorithm has been integrated. • The precision of the wavelet-coupled hybrid model is assessed using several prediction score metrics. • The proposed model is an appealing tool for forecasting R_n in the present study region. - Abstract: A solar radiation forecasting model can be utilized is a scientific contrivance for investigating future viability of solar energy potentials. In this paper, a wavelet-coupled support vector machine (W-SVM) model was adopted to forecast global incident solar radiation based on the sunshine hours (S_t), minimum temperature (T_m_a_x), maximum temperature (T_m_a_x), windspeed (U), evaporation (E) and precipitation (P) as the predictor variables. To ascertain conclusive results, the merit of the W-SVM was benchmarked with the classical SVM model. For daily forecasting, sixteen months of data (01-March-2014 to 30-June-2015) partitioned into the train (65%) and test (35%) set for the three metropolitan stations (Brisbane City, Cairns Aero and Townsville Aero) were utilized. Data were decomposed into their wavelet sub-series by discrete wavelet transformation algorithm and summed up to create new series with one approximation and four levels of detail using Daubechies-2 mother wavelet. For daily forecasting, six model scenarios were formulated where the number of input was increased and the forecast was assessed by statistical metrics (correlation coefficient r; Willmott’s index d; Nash-Sutcliffe coefficient E_N_S; peak deviation P_d_v), distribution statistics and prediction errors (mean absolute error MAE; root mean square error RMSE; mean absolute percentage error MAPE; relative root mean square error RMSE). Results for daily forecasts showed that the W-SVM model outperformed the classical SVM model for optimum input combinations. A sensitivity

  11. A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects

    P. Trisolino

    2018-06-01

    Full Text Available Measurements of global and diffuse photosynthetically active radiation (PAR have been carried out on the island of Lampedusa, in the central Mediterranean Sea, since 2002. PAR is derived from observations made with multi-filter rotating shadowband radiometers (MFRSRs by comparison with a freshly calibrated PAR sensor and by relying on the on-site Langley plots. In this way, a long-term calibrated record covering the period 2002–2016 is obtained and is presented in this work. The monthly mean global PAR peaks in June, with about 160 W m−2, while the diffuse PAR reaches 60 W m−2 in spring or summer. The global PAR displays a clear annual cycle with a semi amplitude of about 52 W m−2. The diffuse PAR annual cycle has a semi amplitude of about 12 W m−2. A simple method to retrieve the cloud-free PAR global and diffuse irradiances in days characterized by partly cloudy conditions has been implemented and applied to the dataset. This method allows retrieval of the cloud-free evolution of PAR and calculation of the cloud radiative effect, CRE, for downwelling PAR. The cloud-free monthly mean global PAR reaches 175 W m−2 in summer, while the diffuse PAR peaks at about 40 W m−2. The cloud radiative effect, CRE, on global and diffuse PAR is calculated as the difference between all-sky and cloud-free measurements. The annual average CRE is about −14.7 W m−2 for the global PAR and +8.1 W m−2 for the diffuse PAR. The smallest CRE is observed in July, due to the high cloud-free condition frequency. Maxima (negative for the global, and positive for the diffuse component occur in March–April and in October, due to the combination of elevated PAR irradiances and high occurrence of cloudy conditions. Summer clouds appear to be characterized by a low frequency of occurrence, low altitude, and low optical thickness, possibly linked to the peculiar marine boundary layer structure. These properties also contribute

  12. A perturbed hydrological cycle during Oceanic Anoxic Event 2

    van Helmond, N.A.G.M.; Sluijs, A.; Reichart, G.J; Sinninghe Damsté, J.S.; Slomp, C.P.; Brinkhuis, H.

    2014-01-01

    The Late Cretaceous Oceanic Anoxic Event 2 (OAE2; ca. 94 Ma) was one of the largest global carbon cycle perturbations during the Phanerozoic. OAE2 represents an important, although extreme, case study for modern trends because widespread anoxia and enhanced organic carbon burial during OAE2 were

  13. The UNSCEAR data base on global radiation exposure estimation; Die UNSCEAR-Datensammlung zur Schaetzung der globalen Strahlenexposition

    Shannoun, Ferid [UNSCEAR Wien (Austria)

    2017-10-01

    Due to nuclear weapon tests at the beginning of the 1950ies public concerns were raised concerning effects of radioactivity on air, water and food. The general assembly of the United Nations established in 1955 the scientific committee on the effects of atomic radiation (UNSCEAR). The scientific committee was supposed to compile information on worldwide radiation exposures and the effects of ionizing radiation on health and environment.

  14. Persistence and extinction for stochastic logistic model with Levy noise and impulsive perturbation

    Chun Lu; Qiang Ma; Xiaohua Ding

    2015-01-01

    This article investigates a stochastic logistic model with Levy noise and impulsive perturbation. In the model, the impulsive perturbation and Levy noise are taken into account simultaneously. This model is new and more feasible and more accordance with the actual. The definition of solution to a stochastic differential equation with Levy noise and impulsive perturbation is established. Based on this definition, we show that our model has a unique global positive solut...

  15. Non-perturbative calculation of equilibrium polarization of stored electron beams

    Yokoya, Kaoru.

    1992-05-01

    Stored electron/positron beams polarize spontaneously owing to the spin-flip synchrotron radiation. In the existing computer codes, the degree of the equilibrium polarization has been calculated using perturbation expansions in terms of the orbital oscillation amplitudes. In this paper a new numerical method is presented which does not employ the perturbation expansion. (author)

  16. A global quality assurance system for personalized radiation therapy treatment planning for the prostate (or other sites)

    Nwankwo, Obioma; Sihono, Dwi Seno K; Schneider, Frank; Wenz, Frederik

    2014-01-01

    likely dose that OARs will receive before treatment planning. This prospective knowledge could be used to implement a global quality assurance system for personalized radiation therapy treatment planning. (paper)

  17. A global quality assurance system for personalized radiation therapy treatment planning for the prostate (or other sites)

    Nwankwo, Obioma; Sihono, Dwi Seno K.; Schneider, Frank; Wenz, Frederik

    2014-09-01

    likely dose that OARs will receive before treatment planning. This prospective knowledge could be used to implement a global quality assurance system for personalized radiation therapy treatment planning.

  18. Combined Global MHD and Test-Particle Simulation of a Radiation Belt Storm: Comparing Depletion, Recovery and Enhancement with in Situ Measurements

    Sorathia, K.; Ukhorskiy, A. Y.; Merkin, V. G.; Wiltberger, M. J.; Lyon, J.; Claudepierre, S. G.; Fennell, J. F.

    2017-12-01

    During geomagnetic storms the intensities of radiation belt electrons exhibit dramatic variability. In the main phase electron intensities exhibit deep depletion over a broad region of the outer belt. The intensities then increase during the recovery phase, often to levels that significantly exceed their pre-storm values. In this study we analyze the depletion, recovery and enhancement of radiation belt intensities during the 2013 St. Patrick's geomagnetic storm. We simulate the dynamics of high-energy electrons using our newly-developed test-particle radiation belt model (CHIMP) based on a hybrid guiding-center/Lorentz integrator and electromagnetic fields derived from high-resolution global MHD (LFM) simulations. Our approach differs from previous work in that we use MHD flow information to identify and seed test-particles into regions of strong convection in the magnetotail. We address two science questions: 1) what are the relative roles of magnetopause losses, transport-driven atmospheric precipitation, and adiabatic cooling in the radiation belt depletion during the storm main phase? and 2) to what extent can enhanced convection/mesoscale injections account for the radiation belt buildup during the recovery phase? Our analysis is based on long-term model simulation and the comparison of our model results with electron intensity measurements from the MAGEIS experiment of the Van Allen Probes mission.

  19. A revised radiation package of G-packed McICA and two-stream approximation: Performance evaluation in a global weather forecasting model

    Baek, Sunghye

    2017-07-01

    For more efficient and accurate computation of radiative flux, improvements have been achieved in two aspects, integration of the radiative transfer equation over space and angle. First, the treatment of the Monte Carlo-independent column approximation (MCICA) is modified focusing on efficiency using a reduced number of random samples ("G-packed") within a reconstructed and unified radiation package. The original McICA takes 20% of CPU time of radiation in the Global/Regional Integrated Model systems (GRIMs). The CPU time consumption of McICA is reduced by 70% without compromising accuracy. Second, parameterizations of shortwave two-stream approximations are revised to reduce errors with respect to the 16-stream discrete ordinate method. Delta-scaled two-stream approximation (TSA) is almost unanimously used in Global Circulation Model (GCM) but contains systematic errors which overestimate forward peak scattering as solar elevation decreases. These errors are alleviated by adjusting the parameterizations of each scattering element—aerosol, liquid, ice and snow cloud particles. Parameterizations are determined with 20,129 atmospheric columns of the GRIMs data and tested with 13,422 independent data columns. The result shows that the root-mean-square error (RMSE) over the all atmospheric layers is decreased by 39% on average without significant increase in computational time. Revised TSA developed and validated with a separate one-dimensional model is mounted on GRIMs for mid-term numerical weather forecasting. Monthly averaged global forecast skill scores are unchanged with revised TSA but the temperature at lower levels of the atmosphere (pressure ≥ 700 hPa) is slightly increased (< 0.5 K) with corrected atmospheric absorption.

  20. Non-adiabatic perturbations in Ricci dark energy model

    Karwan, Khamphee; Thitapura, Thiti

    2012-01-01

    We show that the non-adiabatic perturbations between Ricci dark energy and matter can grow both on superhorizon and subhorizon scales, and these non-adiabatic perturbations on subhorizon scales can lead to instability in this dark energy model. The rapidly growing non-adiabatic modes on subhorizon scales always occur when the equation of state parameter of dark energy starts to drop towards -1 near the end of matter era, except that the parameter α of Ricci dark energy equals to 1/2. In the case where α = 1/2, the rapidly growing non-adiabatic modes disappear when the perturbations in dark energy and matter are adiabatic initially. However, an adiabaticity between dark energy and matter perturbations at early time implies a non-adiabaticity between matter and radiation, this can influence the ordinary Sachs-Wolfe (OSW) effect. Since the amount of Ricci dark energy is not small during matter domination, the integrated Sachs-Wolfe (ISW) effect is greatly modified by density perturbations of dark energy, leading to a wrong shape of CMB power spectrum. The instability in Ricci dark energy is difficult to be alleviated if the effects of coupling between baryon and photon on dark energy perturbations are included

  1. Changing global carbon cycle

    Canadell, Pep

    2007-01-01

    Full text: The increase in atmospheric carbon dioxide (C02) is the single largest human perturbation on the earth's radiative balance contributing to climate change. Its rate of change reflects the balance between anthropogenic carbon emissions and the dynamics of a number of terrestrial and ocean processes that remove or emit C02. It is the long term evolution of this balance that will determine to large extent the speed and magnitude of the human induced climate change and the mitigation requirements to stabilise atmospheric C02 concentrations at any given level. In this talk, we show new trends in global carbon sources and sinks, with particularly focus on major shifts occurring since 2000 when the growth rate of atmospheric C02 has reached its highest level on record. The acceleration in the C02 growth results from the combination of several changes in properties of the carbon cycle, including: acceleration of anthropogenic carbon emissions; increased carbon intensity of the global economy, and decreased efficiency of natural carbon sinks. We discuss in more detail some of the possible causes of the reduced efficiency of natural carbon sinks on land and oceans, such as the decreased net sink in the Southern Ocean and on terrestrial mid-latitudes due to world-wide occurrence of drought. All these changes reported here characterise a carbon cycle that is generating stronger than expected climate forcing, and sooner than expected

  2. Effect of coupled anthropogenic perturbations on stratospheric ozone

    Wuebbles, D.J.; Luther, F.M.; Penner, J.E.

    1992-01-01

    Since 1976 the greatest concern about potential perturbations to stratospheric ozone has been in regard to the atmospheric release of chlorofluorocarbons. Consequently, atmospheric measurements of ozone have usually been compared with model calculations in which only chlorocarbon perturbations are considered. However, in order to compare theoretical calculations with recent measurements of ozone and to project expected changes to atmospheric ozone levels over the next few decades, one must consider the effect from other perturbations as well. In this paper, the authors consider the coupling between several possible anthropogenic atmospheric perturbations. Namely, they examine the effects of past and possible future increases of chlorocarbons, CO 2 , N 2 O, and NO x . The focus of these calculations is on the potential changes in ozone due to chlorocarbon emissions, how other anthropogenic perturbations may have influenced the actual change in ozone over the last decade, and how these perturbations may influence future changes in ozone. Although calculations including future chlorocarbon emissions alone result in significant reductions in ozone, there is very little change in total ozone over the coming decades when other anthropogenic sources are included. Increasing CO 2 concentrations have the largest offsetting effect on the change in total ozone due to chlorocarbons. Owing to the necessity of considering emissions from a number of trace gases simultaneously, determining expected global-scale chemical and climatic effects is more complex than was previously recognized

  3. Base case and perturbation scenarios

    Edmunds, T

    1998-10-01

    This report describes fourteen energy factors that could affect electricity markets in the future (demand, process, source mix, etc.). These fourteen factors are believed to have the most influence on the State's energy environment. A base case, or most probable, characterization is given for each of these fourteen factors over a twenty year time horizon. The base case characterization is derived from quantitative and qualitative information provided by State of California government agencies, where possible. Federal government databases are nsed where needed to supplement the California data. It is envisioned that a initial selection of issue areas will be based upon an evaluation of them under base case conditions. For most of the fourteen factors, the report identities possible perturbations from base case values or assumptions that may be used to construct additional scenarios. Only those perturbations that are plausible and would have a significant effect on energy markets are included in the table. The fourteen factors and potential perturbations of the factors are listed in Table 1.1. These perturbations can be combined to generate internally consist.ent. combinations of perturbations relative to the base case. For example, a low natural gas price perturbation should be combined with a high natural gas demand perturbation. The factor perturbations are based upon alternative quantitative forecasts provided by other institutions (the Department of Energy - Energy Information Administration in some cases), changes in assumptions that drive the quantitative forecasts, or changes in assumptions about the structure of the California energy markets. The perturbations are intended to be used for a qualitative reexamination of issue areas after an initial evaluation under the base case. The perturbation information would be used as a "tiebreaker;" to make decisions regarding those issue areas that were marginally accepted or rejected under the base case. Hf a

  4. The Montbeliard Radiation Protection Pilot Project: a global approach of radiation protection addressing occupational, public and patient exposures at the level of a large urban community

    Schieber, Caroline; Lochard, Jacques; Badajoz, Coralie; Bataille, Celine; Croueail, Pascal; Klein, Didier; Klopfenstein, Jean-Francois; Makovicka, Libor

    2008-01-01

    The Montbeliard Radiation Protection Pilot Project started in March 2004, at the initiative of the Inter- City Council of the Montbeliard Country in cooperation with CEPN. It aims at improving the radiation protection of the inhabitants of the Montbeliard Country in the various exposure situations which can be potentially encountered on the territory (hospital, dwellings, environment,...) as well as at promoting the creation of a pole of competence in the field of radiation protection in the Montbeliard Country. The project relies on the involvement of all relevant stakeholders at the local, national and international level. This paper provides with a quick insight of the project organisation, followed by a synthetic description of the main achievements of the various project areas. (author)

  5. Effects of core perturbations on the structure of the sun

    Sweigart, A.V.

    1983-01-01

    A number of numerical experiments have been carried out in order to investigate the sensivity of the solar luminosity and radius to perturbations within the radiative core. In these experiments the core was perturbed by suddenly mixing various parts of the composition profile during evolutionary sequences for the present Sun. The hydrostatic readjustment caused by these ''mixing events'' induced an immediate change in the surface luminosity and radius on both the hydrodynamic time scale (approx.15 minutes) and the thermal time scale of the superadiabatic layers (approx.1 day). The subsequent evolution of the luminosity and radius perturbations was followed for 5 x 10 5 yr after each mixing event. The time-dependent behavior of these perturbations was found to depend on where the mixing event occurred. In all cases, however, the ratio W(t) = Δ log R/Δ log L had an initial value of 0.71 and showed only a mild time dependence during the first several thousand years. Two other relationships between the luminosity and radius perturbations are also discussed. One of these, V(t) = (d log R/dd)/(d log L/dt), has a fairly constant value of 0.3 +- 0.1. Both perturbations in the mixing-length ratio α and perturbations in the magnetic pressure within the solar convective envelope yield the same value for V/(t). During the normal unperturbed evolution of the present Sun, V(t) = 0.4. Our results show that core perturbations such as the present mixing events cannot explain the decrease in the solar radius indicated by the solar eclipse data between 1925 and 1980

  6. (Non)perturbative gravity, nonlocality, and nice slices

    Giddings, Steven B.

    2006-01-01

    Perturbative dynamics of gravity is investigated for high-energy scattering and in black hole backgrounds. In the latter case, a straightforward perturbative analysis fails, in a close parallel to the failure of the former when the impact parameter reaches the Schwarzschild radius. This suggests a flaw in a semiclassical description of physics on spatial slices that intersect both outgoing Hawking radiation and matter that has carried information into a black hole; such slices are instrumental in a general argument for black hole information loss. This indicates a possible role for the proposal that nonperturbative gravitational physics is intrinsically nonlocal

  7. Toroidal rotation braking with n = 1 magnetic perturbation field on JET

    Sun, Y; Liang, Y; Koslowski, H R

    2010-01-01

    A strong toroidal rotation braking has been observed in plasmas with application of an n = 1 magnetic perturbation field on the JET tokamak. Calculation results from the momentum transport analysis show that the torque induced by the n = 1 perturbation field has a global profile. The maximal value...

  8. Perturbation theory in large order

    Bender, C.M.

    1978-01-01

    For many quantum mechanical models, the behavior of perturbation theory in large order is strikingly simple. For example, in the quantum anharmonic oscillator, which is defined by -y'' + (x 2 /4 + ex 4 /4 - E) y = 0, y ( +- infinity) = 0, the perturbation coefficients, A/sub n/, in the expansion for the ground-state energy, E(ground state) approx. EPSILON/sub n = 0//sup infinity/ A/sub n/epsilon/sup n/, simplify dramatically as n → infinity: A/sub n/ approx. (6/π 3 )/sup 1/2/(-3)/sup n/GAMMA(n + 1/2). Methods of applied mathematics are used to investigate the nature of perturbation theory in quantum mechanics and show that its large-order behavior is determined by the semiclassical content of the theory. In quantum field theory the perturbation coefficients are computed by summing Feynman graphs. A statistical procedure in a simple lambda phi 4 model for summing the set of all graphs as the number of vertices → infinity is presented. Finally, the connection between the large-order behavior of perturbation theory in quantum electrodynamics and the value of α, the charge on the electron, is discussed. 7 figures

  9. Development of a global 1-D chemically radiatively coupled model and an introduction to the development of a chemically coupled General Circulation Model

    Akiyoshi, H.

    1997-01-01

    A global one-dimensional, chemically and radiatively coupled model has been developed. The basic concept of the coupled model, definition of globally averaged zenith angles, the formulation of the model chemistry, radiation, the coupled processes, and profiles and diurnal variations of temperature and chemical species at a normal steady state are presented. Furthermore, a suddenly doubled CO 2 experiment and a Pinatubo aerosol increase experiment were performed with the model. The time scales of variations in ozone and temperature in the lower stratosphere of the coupled system in the doubled CO 2 experiment was long, due to a feedback process among ultra violet radiation, O(1D), NO y , NO x , and O 3 . From the Pinatubo aerosol experiment, a delay of maximum ozone decrease from the maximum aerosol loading is shown and discussed. Developments of 3-D chemical models with coupled processes are briefly described, and the ozone distribution from the first version of the 3-D model are presented. Chemical model development in National Institute for Environmental Studies (NIES) are briefly described. (author)

  10. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    Verheijen, F.G.A.; Jeffery, S.L.; Velde, te M.; Penizek, V.; Beland, M.; Bastos, A.C.; Keizer, J.J.

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71-130 Pg CO2-C-e over 100

  11. Gauge-invariant perturbations in hybrid quantum cosmology

    Gomar, Laura Castelló; Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Martín-Benito, Mercedes, E-mail: laura.castello@iem.cfmac.csic.es, E-mail: m.martin@hef.ru.nl, E-mail: mena@iem.cfmac.csic.es [Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen, Heyendaalseweg 135, NL-6525 AJ Nijmegen (Netherlands)

    2015-06-01

    We consider cosmological perturbations around homogeneous and isotropic spacetimes minimally coupled to a scalar field and present a formulation which is designed to preserve covariance. We truncate the action at quadratic perturbative order and particularize our analysis to flat compact spatial sections and a field potential given by a mass term, although the formalism can be extended to other topologies and potentials. The perturbations are described in terms of Mukhanov-Sasaki gauge invariants, linear perturbative constraints, and variables canonically conjugate to them. This set is completed into a canonical one for the entire system, including the homogeneous degrees of freedom. We find the global Hamiltonian constraint of the model, in which the contribution of the homogeneous sector is corrected with a term quadratic in the perturbations, that can be identified as the Mukhanov-Sasaki Hamiltonian in our formulation. We then adopt a hybrid approach to quantize the model, combining a quantum representation of the homogeneous sector with a more standard field quantization of the perturbations. Covariance is guaranteed in this approach inasmuch as no gauge fixing is adopted. Next, we adopt a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger-like equation for the quantum evolution of the perturbations. This evolution is governed by the Mukhanov-Sasaki Hamiltonian, with the dependence on the homogeneous geometry evaluated at quantum expectation values, and with a time parameter defined also in terms of suitable expectation values on that geometry. Finally, we derive effective equations for the dynamics of the Mukhanov-Sasaki gauge invariants, that include quantum contributions, but have the same ultraviolet limit as the classical equations. They provide the master equation to extract predictions about the power spectrum of primordial scalar perturbations.

  12. Gauge-invariant perturbations in hybrid quantum cosmology

    Gomar, Laura Castelló; Marugán, Guillermo A. Mena; Martín-Benito, Mercedes

    2015-01-01

    We consider cosmological perturbations around homogeneous and isotropic spacetimes minimally coupled to a scalar field and present a formulation which is designed to preserve covariance. We truncate the action at quadratic perturbative order and particularize our analysis to flat compact spatial sections and a field potential given by a mass term, although the formalism can be extended to other topologies and potentials. The perturbations are described in terms of Mukhanov-Sasaki gauge invariants, linear perturbative constraints, and variables canonically conjugate to them. This set is completed into a canonical one for the entire system, including the homogeneous degrees of freedom. We find the global Hamiltonian constraint of the model, in which the contribution of the homogeneous sector is corrected with a term quadratic in the perturbations, that can be identified as the Mukhanov-Sasaki Hamiltonian in our formulation. We then adopt a hybrid approach to quantize the model, combining a quantum representation of the homogeneous sector with a more standard field quantization of the perturbations. Covariance is guaranteed in this approach inasmuch as no gauge fixing is adopted. Next, we adopt a Born-Oppenheimer ansatz for physical states and show how to obtain a Schrödinger-like equation for the quantum evolution of the perturbations. This evolution is governed by the Mukhanov-Sasaki Hamiltonian, with the dependence on the homogeneous geometry evaluated at quantum expectation values, and with a time parameter defined also in terms of suitable expectation values on that geometry. Finally, we derive effective equations for the dynamics of the Mukhanov-Sasaki gauge invariants, that include quantum contributions, but have the same ultraviolet limit as the classical equations. They provide the master equation to extract predictions about the power spectrum of primordial scalar perturbations

  13. Perturbations of the Friedmann universe

    Novello, M.; Salim, J.M.; Heintzmann, H.

    1982-01-01

    Correcting and extending previous work by Hawking (1966) and Olson (1976) the complete set of perturbation equations of a Friedmann Universe in the quasi-Maxwellian form is derived and analized. The formalism is then applied to scalar, vector and tensor perturbations of a phenomenological fluid, which is modelled such as to comprise shear and heat flux. Depending on the equation of state of the background it is found that there exist unstable (growing) modes of purely rotational character. It is further found that (to linear order at least) any vortex perturbation is equivalent to a certain heat flux vector. The equation for the gravitational waves are derived in a completely equivalent method as in case of the propagation, in a curved space-time, of electromagnetic waves in a plasma endowed with some definite constitutive relations. (Author) [pt

  14. Analytic continuation in perturbative QCD

    Caprini, Irinel

    2002-01-01

    We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)

  15. A new perturbative approximation applied to supersymmetric quantum field theory

    Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.

    1988-01-01

    We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)

  16. Perturbative coherence in field theory

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    A general condition for coherent quantization by perturbative methods is given, because the basic field equations of a fild theory are not always derivable from a Lagrangian. It's seen that non-lagrangian models way have well defined vertices, provided they satisfy what they call the 'coherence condition', which is less stringent than the condition for the existence of a Lagrangian. They note that Lagrangian theories are perturbatively coherent, in the sense that they have well defined vertices, and that they satisfy automatically that condition. (G.D.F.) [pt

  17. Cosmological perturbation theory and quantum gravity

    Brunetti, Romeo [Dipartimento di Matematica, Università di Trento,Via Sommarive 14, 38123 Povo TN (Italy); Fredenhagen, Klaus [II Institute für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, 22761 Hamburg (Germany); Hack, Thomas-Paul [Institute für Theoretische Physik, Universität Leipzig,Brüderstr. 16, 04103 Leipzig (Germany); Pinamonti, Nicola [Dipartimento di Matematica, Università di Genova,Via Dodecaneso 35, 16146 Genova (Italy); INFN, Sezione di Genova,Via Dodecaneso 33, 16146 Genova (Italy); Rejzner, Katarzyna [Department of Mathematics, University of York,Heslington, York YO10 5DD (United Kingdom)

    2016-08-04

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  18. Chaotic inflation with metric and matter perturbations

    Feldman, H.A.; Brandenberger, R.H.

    1989-01-01

    A perturbative scheme to analyze the evolution of both metric and scalar field perturbations in an expanding universe is developed. The scheme is applied to study chaotic inflation with initial metric and scalar field perturbations present. It is shown that initial gravitational perturbations with wavelength smaller than the Hubble radius rapidly decay. The metric simultaneously picks up small perturbations determined by the matter inhomogeneities. Both are frozen in once the wavelength exceeds the Hubble radius. (orig.)

  19. Behaviour of scalar perturbations of a Reissner-Nordstroem black hole inside the event horizon

    McNamara, J.M.

    1978-01-01

    This paper considers general scalar perturbations of a Reissner-Nordstrom black hole and examines the qualitative behaviour of these perturbations in the region between and on the inner and outer horizons. Initial data are specified in terms of the ingoing radiation crossing the outer (event) horizon. The only essential restriction on these data is that the radiation should not die away too slowly on this horizon. The resultant perturbations are shown to be bounded and continuous. In particular, these properties hold for perturbations on the inner horizon. For certain types of scalar field (including the zero rest mass scalar field) perturbations vanish at the cross-over point on the inner horizon. (author)

  20. Effects of ionizing radiation on plastic food packaging materials: a review. 2. Global migration, sensory changes and the fate of additives

    Buchalla, R.; Schuttler, C.; Bogl, K.W.

    1993-01-01

    Increased ''global'' migration into food simulants has been described as a consequence of irradiation, particularly with fatty media; development of off-odors and taint transfer into food simulants have been observed with various plastics. Additives, especially antioxidants, are destroyed during irradiation, and increased ''specific'' migration values have been observed under certain circumstances. Organotin stabilizers in PVC are ultimately degraded to SnCl4, and increased migration of tin compounds was observed after gamma irradiation. Degradation products of phenol antioxidants, that were also found as migrants, have only recently been identified; some of these structures seem to be radiation specific

  1. Global Soil Moisture Estimation from L-Band Satellite Data: The Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

    De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre

    2018-01-01

    The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.

  2. Basics of QCD perturbation theory

    Soper, D.E.

    1997-01-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  3. Current issues in perturbative QCD

    Hinchliffe, I.

    1994-12-01

    This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets

  4. New results in perturbative QCD

    Ellis, R.K.

    1986-01-01

    Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures

  5. Perturbation theory from stochastic quantization

    Hueffel, H.

    1984-01-01

    By using a diagrammatical method it is shown that in scalar theories the stochastic quantization method of Parisi and Wu gives the usual perturbation series in Feynman diagrams. It is further explained how to apply the diagrammatical method to gauge theories, discussing the origin of ghost effects. (Author)

  6. Seven topics in perturbative QCD

    Buras, A.J.

    1980-09-01

    The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics

  7. Reggeon interactions in perturbative QCD

    Kirschner, R.

    1994-08-01

    We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)

  8. Basics of QCD perturbation theory

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  9. Status of chiral perturbation theory

    Ecker, G.

    1996-10-01

    A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)

  10. Principles of chiral perturbation theory

    Leutwyler, H.

    1995-01-01

    An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)

  11. Superfield perturbation theory and renormalization

    Delbourgo, R.

    1975-01-01

    The perturbation theory graphs and divergences in super-symmetric Lagrangian models are studied by using superfield techniques. In super PHI 3 -theory very little effort is needed to arrive at the single infinite (wave function) renormalization counterterm, while in PHI 4 -theory the method indicates the counter-Lagrangians needed at the one-loop level and possibly beyond

  12. Chiral symmetry in perturbative QCD

    Trueman, T.L.

    1979-04-01

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  13. Perturbative QCD and exclusive processes

    Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.

    1991-01-01

    The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable

  14. Perturbative treatment of nuclear rotations

    Civitarese, O.

    1980-01-01

    In this work, it is described the case corresponding to perturbative quantum treatment of a fermion system in free rotation and the divergences which resulted from the 'break' in symmetry, associated by the adoption of a deformed basis as a non pertubed solution. (A.C.A.S.) [pt

  15. Estimation of spectral solar radiation based on global insolation and characteristics of spectral solar radiation on a tilt surface; Zenten nissharyo ni motozuku zenten nissha supekutoru no suitei to keishamen bunko tokusei

    Baba, H; Kanayama, K; Endo, N; Koromohara, K; Takayama, H [Kitami Institute of Technology, Hokkaido (Japan)

    1996-10-27

    Use of global insolation for estimating the corresponding spectral distribution is proposed. Measurements of global insolation spectrum throughout a year were compiled for clear days and cloudy days, ranked by 100W/m{sup 2}, for the clarification of spectral distribution. Global insolation quantity for a clear day was subject mainly to sun elevation. The global insolation spectral distribution with the sun elevation not lower than 15{degree} was similar to Bird`s model. Under the cloudy sky, energy density was lower in the region of wavelengths longer than the peak wavelength of 0.46{mu}m, and the distribution curve was sharper than that under the clear sky. Values given by Bird`s model were larger than measured values in the wavelength range of 0.6-1.8{mu}m, which was attributed to absorption by vapor. From the standard spectral distribution charts for the clear sky and cloudy sky, and from the dimensionless spectral distributions obtained by dividing them by the peak values, spectral distributions could be estimated of insolation quantities for the clear sky, cloudy sky, etc. As for the characteristics of spectral solar radiation on a tilt surface obtained from Bird`s model, they agreed with actually measured values at an angle of inclination of 60{degree} or smaller. 6 refs., 10 figs., 1 tab.

  16. High-resolution global grids of revised Priestley-Taylor and Hargreaves-Samani coefficients for assessing ASCE-standardized reference crop evapotranspiration and solar radiation

    Aschonitis, Vassilis G.; Papamichail, Dimitris; Demertzi, Kleoniki; Colombani, Nicolo; Mastrocicco, Micol; Ghirardini, Andrea; Castaldelli, Giuseppe; Fano, Elisa-Anna

    2017-08-01

    The objective of the study is to provide global grids (0.5°) of revised annual coefficients for the Priestley-Taylor (P-T) and Hargreaves-Samani (H-S) evapotranspiration methods after calibration based on the ASCE (American Society of Civil Engineers)-standardized Penman-Monteith method (the ASCE method includes two reference crops: short-clipped grass and tall alfalfa). The analysis also includes the development of a global grid of revised annual coefficients for solar radiation (Rs) estimations using the respective Rs formula of H-S. The analysis was based on global gridded climatic data of the period 1950-2000. The method for deriving annual coefficients of the P-T and H-S methods was based on partial weighted averages (PWAs) of their mean monthly values. This method estimates the annual values considering the amplitude of the parameter under investigation (ETo and Rs) giving more weight to the monthly coefficients of the months with higher ETo values (or Rs values for the case of the H-S radiation formula). The method also eliminates the effect of unreasonably high or low monthly coefficients that may occur during periods where ETo and Rs fall below a specific threshold. The new coefficients were validated based on data from 140 stations located in various climatic zones of the USA and Australia with expanded observations up to 2016. The validation procedure for ETo estimations of the short reference crop showed that the P-T and H-S methods with the new revised coefficients outperformed the standard methods reducing the estimated root mean square error (RMSE) in ETo values by 40 and 25 %, respectively. The estimations of Rs using the H-S formula with revised coefficients reduced the RMSE by 28 % in comparison to the standard H-S formula. Finally, a raster database was built consisting of (a) global maps for the mean monthly ETo values estimated by ASCE-standardized method for both reference crops, (b) global maps for the revised annual coefficients of the P

  17. The bispectrum of matter perturbations from cosmic strings

    Regan, Donough; Hindmarsh, Mark, E-mail: d.regan@sussex.ac.uk, E-mail: m.b.hindmarsh@sussex.ac.uk [Astronomy Centre, University of Sussex, Falmer, Brighton, BN1 9QH (United Kingdom)

    2015-03-01

    We present the first calculation of the bispectrum of the matter perturbations induced by cosmic strings. The calculation is performed in two different ways: the first uses the unequal time correlators (UETCs) of the string network - computed using a Gaussian model previously employed for cosmic string power spectra. The second approach uses the wake model, where string density perturbations are concentrated in sheet-like structures whose surface density grows with time. The qualitative and quantitative agreement of the two gives confidence to the results. An essential ingredient in the UETC approach is the inclusion of compensation factors in the integration with the Green's function of the matter and radiation fluids, and we show that these compensation factors must be included in the wake model also. We also present a comparison of the UETCs computed in the Gaussian model, and those computed in the unconnected segment model (USM) used by the standard cosmic string perturbation package CMBACT. We compare numerical estimates for the bispectrum of cosmic strings to those produced by perturbations from an inflationary era, and discover that, despite the intrinsically non-Gaussian nature of string-induced perturbations, the matter bispectrum is unlikely to produce competitive constraints on a population of cosmic strings.

  18. Effects of thermal inflation on small scale density perturbations

    Hong, Sungwook E. [School of Physics, Korea Institute for Advanced Study, 85 Hoegiro, Seoul 130-722 (Korea, Republic of); Lee, Hyung-Joo; Lee, Young Jae; Stewart, Ewan D. [Department of Physics, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 305-338 (Korea, Republic of); Zoe, Heeseung, E-mail: swhong@kias.re.kr, E-mail: ohsk111@kaist.ac.kr, E-mail: noasac@kaist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Basic Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno jungang-daero, Daegu 711-873 (Korea, Republic of)

    2015-06-01

    In cosmological scenarios with thermal inflation, extra eras of moduli matter domination, thermal inflation and flaton matter domination exist between primordial inflation and the radiation domination of Big Bang nucleosynthesis. During these eras, cosmological perturbations on small scales can enter and re-exit the horizon, modifying the power spectrum on those scales. The largest modified scale, k{sub b}, touches the horizon size when the expansion changes from deflation to inflation at the transition from moduli domination to thermal inflation. We analytically calculate the evolution of perturbations from moduli domination through thermal inflation and evaluate the curvature perturbation on the constant radiation density hypersurface at the end of thermal inflation to determine the late time curvature perturbation. Our resulting transfer function suppresses the power spectrum by a factor 0∼ 5 at k >> k{sub b}, with k{sub b} corresponding to anywhere from megaparsec to subparsec scales depending on the parameters of thermal inflation. Thus, thermal inflation might be constrained or detected by small scale observations such as CMB distortions or 21cm hydrogen line observations.

  19. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    Duda, D. P.; Khlopenkov, K. V.; Palikonda, R.; Khaiyer, M. M.; Minnis, P.; Su, W.; Sun-Mack, S.

    2016-12-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  20. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    Duda, David P.; Khlopenkov, Konstantin V.; Thiemann, Mandana; Palikonda, Rabindra; Sun-Mack, Sunny; Minnis, Patrick; Su, Wenying

    2016-01-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can be computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  1. Cosmic global strings

    Sikivie, P.

    1991-01-01

    The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)

  2. Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.

    Garratt, J. R.; Prata, A. J.

    1996-03-01

    Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.

  3. Studying the Physical Basis of Global Warming: Thermal Effects of the Interaction between Radiation and Matter and Greenhouse Effect

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation…

  4. WNA's Policy Document : sustaining global best practices in uranium, mining and processing, principles for managing radiation, health and safety, waste and the environment

    Saint-Pierre, S.; Waste Management and Decommissioning Working Group-WM and DW

    2008-01-01

    The worldwide community of uranium mining and processing recognizes that managing radiation, health and safety, waste and the environment is paramount. Such responsible management applies at all stages of planning and activities. Today we are acting to ensure that all parties directly involved in uranium mining and processing strive to achieve the highest levels of excellence in these fields. We are doing so by sustaining a strong safety culture based on a commitment to common, internationally shared principles. This paper sets out principles for the management of radiation, health and safety, waste and the environment applicable to sites throughout the world. In national and regional settings where nuclear fuel cycle activities are well developed, these principles already serve as the underpinning for 'Codes of Practice' that govern uranium mining and processing. In any given setting, a Code of Practice is needed to guide practical implementation of these principles according to the regional, national or site-specific context. These principles are published in the belief that they hold special relevance for emerging uranium producing countries that do not yet have fully developed regulations for the control of radiation, health and safety, waste and the environment associated with uranium mining and processing. The principles are equally relevant for operators, contractors, and regulators newly engaged in uranium mining and processing. Once national regulations are fully developed, they can be expected to embody these principles. Each principle affirmed here will not apply to the same extent for each party. Ultimately, the precise allocation of responsibilities must be set at the national and local levels. This document holds the status of a policy and ethical declaration by the full WNA membership, which the global nuclear industry. The principles affirmed here are supported by key relevant international organizations, including the IAEA and the global mining

  5. Atmospheric lifetimes, infrared absorption spectra, radiative forcings and global warming potentials of NF3 and CF3CF2Cl (CFC-115

    A. Totterdill

    2016-09-01

    Full Text Available Fluorinated compounds such as NF3 and C2F5Cl (CFC-115 are characterised by very large global warming potentials (GWPs, which result from extremely long atmospheric lifetimes and strong infrared absorptions in the atmospheric window. In this study we have experimentally determined the infrared absorption cross sections of NF3 and CFC-115, calculated the radiative forcing and efficiency using two radiative transfer models and identified the effect of clouds and stratospheric adjustment. The infrared cross sections are within 10 % of previous measurements for CFC-115 but are found to be somewhat larger than previous estimates for NF3, leading to a radiative efficiency for NF3 that is 25 % larger than that quoted in the Intergovernmental Panel on Climate Change Fifth Assessment Report. A whole atmosphere chemistry–climate model was used to determine the atmospheric lifetimes of NF3 and CFC-115 to be (509 ± 21 years and (492 ± 22 years, respectively. The GWPs for NF3 are estimated to be 15 600, 19 700 and 19 700 over 20, 100 and 500 years, respectively. Similarly, the GWPs for CFC-115 are 6030, 7570 and 7480 over 20, 100 and 500 years, respectively.

  6. A nonlinear support vector machine model with hard penalty function based on glowworm swarm optimization for forecasting daily global solar radiation

    Jiang, He; Dong, Yao

    2016-01-01

    Highlights: • Eclat data mining algorithm is used to determine the possible predictors. • Support vector machine is converted into a ridge regularization problem. • Hard penalty selects the number of radial basis functions to simply the structure. • Glowworm swarm optimization is utilized to determine the optimal parameters. - Abstract: For a portion of the power which is generated by grid connected photovoltaic installations, an effective solar irradiation forecasting approach must be crucial to ensure the quality and the security of power grid. This paper develops and investigates a novel model to forecast 30 daily global solar radiation at four given locations of the United States. Eclat data mining algorithm is first presented to discover association rules between solar radiation and several meteorological factors laying a theoretical foundation for these correlative factors as input vectors. An effective and innovative intelligent optimization model based on nonlinear support vector machine and hard penalty function is proposed to forecast solar radiation by converting support vector machine into a regularization problem with ridge penalty, adding a hard penalty function to select the number of radial basis functions, and using glowworm swarm optimization algorithm to determine the optimal parameters of the model. In order to illustrate our validity of the proposed method, the datasets at four sites of the United States are split to into training data and test data, separately. The experiment results reveal that the proposed model delivers the best forecasting performances comparing with other competitors.

  7. Perturbations in electromagnetic dark energy

    Jiménez, Jose Beltrán; Maroto, Antonio L.; Koivisto, Tomi S.; Mota, David F.

    2009-01-01

    It has been recently proposed that the presence of a temporal electromagnetic field on cosmological scales could explain the phase of accelerated expansion that the universe is currently undergoing. The field contributes as a cosmological constant and therefore, the homogeneous cosmology produced by such a model is exactly the same as that of ΛCDM. However, unlike a cosmological constant term, electromagnetic fields can acquire perturbations which in principle could affect CMB anisotropies and structure formation. In this work, we study the evolution of inhomogeneous scalar perturbations in this model. We show that provided the initial electromagnetic fluctuations generated during inflation are small, the model is perfectly compatible with both CMB and large scale structure observations at the same level of accuracy as ΛCDM

  8. Perturbative instabilities in Horava gravity

    Bogdanos, Charalampos; Saridakis, Emmanuel N

    2010-01-01

    We investigate the scalar and tensor perturbations in Horava gravity, with and without detailed balance, around a flat background. Once both types of perturbations are taken into account, it is revealed that the theory is plagued by ghost-like scalar instabilities in the range of parameters which would render it power-counting renormalizable, that cannot be overcome by simple tricks such as analytic continuation. Implementing a consistent flow between the UV and IR limits seems thus more challenging than initially presumed, regardless of whether the theory approaches general relativity at low energies or not. Even in the phenomenologically viable parameter space, the tensor sector leads to additional potential problems, such as fine-tunings and super-luminal propagation.

  9. The status of perturbative QCD

    Ellis, R.K.

    1988-10-01

    The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs

  10. Scalar perturbations and conformal transformation

    Fabris, J.C.; Tossa, J.

    1995-11-01

    The non-minimal coupling of gravity to a scalar field can be transformed into a minimal coupling through a conformal transformation. We show how to connect the results of a perturbation calculation, performed around a Friedman-Robertson-Walker background solution, before and after the conformal transformation. We work in the synchronous gauge, but we discuss the implications of employing other frames. (author). 16 refs

  11. Perturbative QCD at finite temperature

    Altherr, T.

    1989-03-01

    We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks

  12. The correlation function for density perturbations in an expanding universe. I - Linear theory

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  13. Global view on the radiological protection of patients: Position paper by the International Society for Radiation Oncology

    Svensson, H.

    2001-01-01

    The International Society for Radiation Oncology (ISRO) is a federation of regional and national societies. These societies include about 80 000 radiation oncologists, physicists and related specialists. The incidence of cancer per year in developing countries is about 0.08 to about 0.2% of the population. In some developed countries, up to 0.5% of the population will be diagnosed with cancer each year - this is a very high figure. You must also look at prevalence: that is, how many of those that have had the diagnosis 'cancer' are still alive. In some developed countries, up to 3% of the population have had the diagnosis 'cancer' at some stage in their life. The projected number of new cases in the year 2000 is five million for developing and five million for developed countries. On the basis of practices exercised today in many advanced developed countries, it is estimated that 50% of these would need radiotherapy. In some countries, up to 60% of cancer cases receive at least one course of radiation treatment. Of course, good quality assurance is a matter of life and death for the patient, and radiation protection and quality assurance are in many situations much the same thing. What can the international societies do in this context? We can try to inform and teach our friends in less developed countries. For this reason, many educational meetings have been organized by the ISRO. The society tries to hold these meetings outside developed areas such as Europe and north America, and to convene them in developing regions of the world, instead. By including experienced teachers from more developed areas, the society seeks to help those who do not yet have all the knowledge they need

  14. Gauge-invariant cosmological density perturbations

    Sasaki, Misao.

    1986-06-01

    Gauge-invariant formulation of cosmological density perturbation theory is reviewed with special emphasis on its geometrical aspects. Then the gauge-invariant measure of the magnitude of a given perturbation is presented. (author)

  15. Perturbation of an exact strong gravity solution

    Baran, S.A.

    1982-10-01

    Perturbations of an exact strong gravity solution are investigated. It is shown, by using the new multipole expansions previously presented, that this exact and static spherically symmetric solution is stable under odd parity perturbations. (author)

  16. Non-axisymmetric line-driven disc winds - I. Disc perturbations

    Dyda, Sergei; Proga, Daniel

    2018-04-01

    We study mass outflows driven from accretion discs by radiation pressure due to spectral lines. To investigate non-axisymmetric effects, we use the ATHENA++ code and develop a new module to account for radiation pressure driving. In 2D, our new simulations are consistent with previous 2D axisymmetric solutions by Proga et al., who used the ZEUS 2D code. Specifically, we find that the disc winds are time dependent, characterized by a dense stream confined to ˜45° relative to the disc mid-plane and bounded on the polar side by a less dense, fast stream. In 3D, we introduce a vertical, ϕ-dependent, subsonic velocity perturbation in the disc mid-plane. The perturbation does not change the overall character of the solution but global outflow properties such as the mass, momentum, and kinetic energy fluxes are altered by up to 100 per cent. Non-axisymmetric density structures develop and persist mainly at the base of the wind. They are relatively small, and their densities can be a few times higher than the azimuthal average. The structure of the non-axisymmetric and axisymmetric solutions differ also in other ways. Perhaps most importantly from the observational point of view are the differences in the so-called clumping factors, that serve as a proxy for emissivity due to two body processes. In particular, the spatially averaged clumping factor over the entire fast stream, while it is of a comparable value in both solutions, it varies about 10 times faster in the non-axisymmetric case.

  17. Non-perturbative Green functions in quantum gauge theories

    Shabanov, S.V.

    1991-01-01

    Non-perturbative Green functions for gauge invariant variables are considered. The Green functions are found to be modified as compared with the usual ones in a definite gauge because of a physical configuration space (PCS) reduction. In the Yang-Mills theory with fermions this phenomenon follows from the Singer theorem about the absence of a global gauge condition for the fields tensing to zero at spatial infinity. 20 refs

  18. Metabolomic applications in radiation biodosimetry: exploring radiation effects through small molecules.

    Pannkuk, Evan L; Fornace, Albert J; Laiakis, Evagelia C

    2017-10-01

    Exposure of the general population to ionizing radiation has increased in the past decades, primarily due to long distance travel and medical procedures. On the other hand, accidental exposures, nuclear accidents, and elevated threats of terrorism with the potential detonation of a radiological dispersal device or improvised nuclear device in a major city, all have led to increased needs for rapid biodosimetry and assessment of exposure to different radiation qualities and scenarios. Metabolomics, the qualitative and quantitative assessment of small molecules in a given biological specimen, has emerged as a promising technology to allow for rapid determination of an individual's exposure level and metabolic phenotype. Advancements in mass spectrometry techniques have led to untargeted (discovery phase, global assessment) and targeted (quantitative phase) methods not only to identify biomarkers of radiation exposure, but also to assess general perturbations of metabolism with potential long-term consequences, such as cancer, cardiovascular, and pulmonary disease. Metabolomics of radiation exposure has provided a highly informative snapshot of metabolic dysregulation. Biomarkers in easily accessible biofluids and biospecimens (urine, blood, saliva, sebum, fecal material) from mouse, rat, and minipig models, to non-human primates and humans have provided the basis for determination of a radiation signature to assess the need for medical intervention. Here we provide a comprehensive description of the current status of radiation metabolomic studies for the purpose of rapid high-throughput radiation biodosimetry in easily accessible biofluids and discuss future directions of radiation metabolomics research.

  19. Geometric Hamiltonian structures and perturbation theory

    Omohundro, S.

    1984-08-01

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  20. Multiplicative perturbations of local C-semigroups

    2016-08-26

    Aug 26, 2016 ... In this paper, we establish some left and right multiplicative perturbation theorems concerning local -semigroups when the generator of a perturbed local -semigroup S(⋅) may not be densely defined and the perturbation operator is a bounded linear operator from ¯D(A) into () such that = ...