WorldWideScience

Sample records for global radiation budget

  1. Effects of aerosol/cloud interactions on the global radiation budget

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.

    1994-01-01

    Aerosols may modify the microphysics of clouds by acting as cloud condensation nuclei (CCN), thereby enhancing the cloud reflectivity. Aerosols may also alter precipitation development by affecting the mean droplet size, thereby influencing cloud lifetimes and modifying the hydrological cycle. Clouds have a major effect on climate, but aerosol/cloud interactions have not been accounted for in past climate model simulations. However, the worldwide steady rise of global pollutants and emissions makes it imperative to investigate how atmospheric aerosols affect clouds and the global radiation budget. In this paper, the authors examine the relationship between aerosol and cloud drop size distributions by using a detailed micro-physical model. They parameterize the cloud nucleation process in terms of local aerosol characteristics and updraft velocity for use in a coupled climate/chemistry model to predict the magnitude of aerosol cloud forcing. Their simulations indicate that aerosol/cloud interactions may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. This work is aimed at improving the assessment of the effects of anthropogenic aerosols on cloud optical properties and the global radiation budget

  2. ISLSCP II Surface Radiation Budget (SRB) Radiation Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains global Surface Radiation Budget (SRB) and a few top-of-atmosphere (TOA) radiation budget parameters on a 1-degree x 1-degree spatial...

  3. GEWEX Surface Radiation Budget (SRB)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NASA/GEWEX Surface Radiation Budget (SRB) Release-3.0 data sets contains global 3-hourly, daily, monthly/3-hourly, and monthly averages of surface and top-of...

  4. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  5. Radiation budget measurement/model interface research

    Science.gov (United States)

    Vonderhaar, T. H.

    1981-01-01

    The NIMBUS 6 data were analyzed to form an up to date climatology of the Earth radiation budget as a basis for numerical model definition studies. Global maps depicting infrared emitted flux, net flux and albedo from processed NIMBUS 6 data for July, 1977, are presented. Zonal averages of net radiation flux for April, May, and June and zonal mean emitted flux and net flux for the December to January period are also presented. The development of two models is reported. The first is a statistical dynamical model with vertical and horizontal resolution. The second model is a two level global linear balance model. The results of time integration of the model up to 120 days, to simulate the January circulation, are discussed. Average zonal wind, meridonal wind component, vertical velocity, and moisture budget are among the parameters addressed.

  6. Earth Radiation Budget Experiment (ERBE) Data Sets for Global Environment and Climate Change Studies

    Science.gov (United States)

    Bess, T. Dale; Carlson, Ann B.; Denn, Fredrick M.

    1997-01-01

    For a number of years there has been considerable interest in the earth's radiation budget (ERB) or energy balance, and entails making the best measurements possible of absorbed solar radiation, reflected shortwave radiation (RSW), thermal outgoing longwave radiation (OLR), and net radiation. ERB data are fundamental to the development of realistic climate models and studying natural and anthropogenic perturbations of the climate. Much of the interest and investigations in the earth's energy balance predated the age of earth-orbiting satellites (Hunt et al., 1986). Beginning in the mid 1960's earth-orbiting satellites began to play an important role in making measurements of the earth's radiation flux although much effort had gone into measuring ERB parameters prior to 1960 (House et al., 1986). Beginning in 1974 and extending until the present time, three different satellite experiments (not all operating at the same time) have been making radiation budget measurements almost continually in time. Two of the experiments were totally dedicated to making radiation budget measurements of the earth, and the other experiment flown on NOAA sun-synchronous AVHRR weather satellites produced radiation budget parameters as a by-product. The heat budget data from the AVHRR satellites began collecting data in June 1974 and have operated almost continuously for 23 years producing valuable data for long term climate monitoring.

  7. A history of presatellite investigations of the earth's radiation budget

    Science.gov (United States)

    Hunt, G. E.; Kandel, R.; Mecherikunnel, A. T.

    1986-01-01

    The history of radiation budget studies from the early twentieth century to the advent of the space age is reviewed. By the beginning of the 1960's, accurate radiative models had been developed capable of estimating the global and zonally averaged components of the radiation budget, though great uncertainty in the derived parameters existed due to inaccuracy of the data describing the physical parameters used in the model, associated with clouds, the solar radiation, and the gaseous atmospheric absorbers. Over the century, the planetary albedo estimates had reduced from 89 to 30 percent.

  8. Radiation budget measurement/model interface

    Science.gov (United States)

    Vonderhaar, T. H.; Ciesielski, P.; Randel, D.; Stevens, D.

    1983-01-01

    This final report includes research results from the period February, 1981 through November, 1982. Two new results combine to form the final portion of this work. They are the work by Hanna (1982) and Stevens to successfully test and demonstrate a low-order spectral climate model and the work by Ciesielski et al. (1983) to combine and test the new radiation budget results from NIMBUS-7 with earlier satellite measurements. Together, the two related activities set the stage for future research on radiation budget measurement/model interfacing. Such combination of results will lead to new applications of satellite data to climate problems. The objectives of this research under the present contract are therefore satisfied. Additional research reported herein includes the compilation and documentation of the radiation budget data set a Colorado State University and the definition of climate-related experiments suggested after lengthy analysis of the satellite radiation budget experiments.

  9. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    Directory of Open Access Journals (Sweden)

    A. Lauer

    2007-10-01

    Full Text Available International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2 per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the

  10. Global Carbon Budget 2017

    NARCIS (Netherlands)

    Le Quere, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frederic; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Goldewijk, Kees Klein; Koertzinger, Arne; Landschuetzer, Peter; Lefevre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Roedenbeck, Christian; Schwinger, Jorg; Seferian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Soenke; Zhu, Dan

    2018-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project

  11. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Ivar Korsbakken, Jan; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian A; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M S; Munro, David R.; Nabel, Julia E M S; Nakaoka, Shin Ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Van Der Laan-Luijkx, Ingrid T.; Van Der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere-the "global carbon budget"-is important to better understand the global carbon cycle, support the development of climate policies, and project future

  12. Radiation budget in green beans crop with and without polyethylene cover

    International Nuclear Information System (INIS)

    Souza, J.L. de; Escobedo, J.F.

    1997-01-01

    The radiation budget in agricultural crops is very important on the microclimate characterization, on the water losses determination and on dry matter accumulation of vegetation. This work describes the radiation budget determination in a green beans crop (Phaseolus vulgaris L.), in Botucatu, SP, Brazil (22° 54′S; 48° 27′W; 850 m), under two different conditions: the normal field culture and in a polyethylene greenhouse. The densities of fluxes of radiation were used to construct diurnal curves of the components of global radiation (Rg), reflected radiation (Rr), net radiation (Rn).The arithmetic's relations allowed to obtain the components net short-waves (Rc) and net long-waves (Rl). The analysis of these components related to the leaf area index (LAI) in many phenological phases of the culture showed Rg distributed in 68%, 85%, 17% and 66%, 76%, 10% to Rn, Rc and Rl in the internal and external ambients in a polyethylene greenhouse, respectively [pt

  13. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    Science.gov (United States)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  14. Global carbon budget 2013

    International Nuclear Information System (INIS)

    Le Quere, C.; Moriarty, R.; Jones, S.D.; Boden, T.A.; Peters, G.P.; Andrew, R.M.; Andres, R.J.; Ciais, P.; Bopp, L.; Maignan, F.; Viovy, N.

    2014-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO 2 ) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates, consistency within and among components, alongside methodology and data limitations. CO 2 emissions from fossil-fuel combustion and cement production (EFF) are based on energy statistics, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO 2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO 2 sink (SOCEAN) is based on observations from the 1990's, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated for the first time in this budget with data products based on surveys of ocean CO 2 measurements. The global residual terrestrial CO 2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO 2 and land cover change (some including nitrogen-carbon interactions). All uncertainties are reported as ±1, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2003-2012), EFF was 8.6±0.4 GtC yr -1 , ELUC 0.9±0.5 GtC yr -1 , GATM 4.3±0

  15. Analysis of the radiation budget in regional climate simulations with COSMO-CLM for Africa

    Directory of Open Access Journals (Sweden)

    Steffen Kothe

    2014-09-01

    Full Text Available This study analysed two regional climate simulations for Africa regarding the radiation budgets with particular focus on the contribution of potentially influential parameters on uncertainties in the radiation components. The ERA-Interim driven simulations have been performed with the COSMO-CLM (grid-spacings of 0.44 ° or 0.22 °. The simulated budgets were compared to the satellite-based Global Energy and Water Cycle Experiment Surface Radiation Budget and ERA-Interim data sets. The COSMO-CLM tended to underestimate the net solar radiation and the outgoing long-wave radiation, and showed a regionally varying over- or underestimation in all budget components. An increase in horizontal resolution from 0.44 ° to 0.22 ° slightly reduced the mean errors by up to 5 %. Especially over sea regions, uncertainties in cloud fraction were the main influencing parameter on errors in the simulated radiation fluxes. Compared to former simulations the introduction of a new bare soil albedo treatment reduced the influence of uncertainties in surface albedo significantly. Over the African continent errors in aerosol optical depth and skin temperature were regionally important sources for the discrepancies within the simulated radiation. In a sensitivity test it was shown that the use of aerosol optical depth values from the MACC reanalysis product improved the simulated surface radiation substantially.

  16. Greater future global warming inferred from Earth's recent energy budget.

    Science.gov (United States)

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  17. Effects of globalization on state budgeting system in Ukraine

    Directory of Open Access Journals (Sweden)

    Bobukh S.О.

    2017-06-01

    Full Text Available When writing the scientific article the scientific approaches of scientists concerning the essence of budgeting have been described. The paper deals with the principles of budgeting on the basis of which three main methodological components are singled out. It also analyzes the budgeting goals. The author investigates the impact of globalization on the system of state budgeting in Ukraine, its positive and negative effects. Despite significant achievements it is necessary to explore the effects of globalization on the system of state budgeting in Ukraine. Budgeting is the management technology that provides the formation of budgets for the selected objects and their use to ensure optimal structure and correlation of profits and expenses, income and expenditure, assets and liabilities of the organization or its components to achieve the set goals taking into account the influence of the environment. It should be emphasized that budgeting in no way replaces the control system, but only creates a new approach to management from the standpoint of the balance of incomes and expenditures, profits and expenses, assets and liabilities of the organization as a whole or its components. The state budgeting of the country as the part of the financial system is the channel through which economic globalization, namely financial globalization, affects economic development of the state. Favorable global effect occurs, in particular, in terms of the impact on financial development. Therefore, it is necessary to + the nature of the relationship between these two processes.

  18. Global Carbon Budget 2017

    Science.gov (United States)

    Le Quéré, Corinne; Andrew, Robbie M.; Friedlingstein, Pierre; Sitch, Stephen; Pongratz, Julia; Manning, Andrew C.; Korsbakken, Jan Ivar; Peters, Glen P.; Canadell, Josep G.; Jackson, Robert B.; Boden, Thomas A.; Tans, Pieter P.; Andrews, Oliver D.; Arora, Vivek K.; Bakker, Dorothee C. E.; Barbero, Leticia; Becker, Meike; Betts, Richard A.; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Cosca, Catherine E.; Cross, Jessica; Currie, Kim; Gasser, Thomas; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Houghton, Richard A.; Hunt, Christopher W.; Hurtt, George; Ilyina, Tatiana; Jain, Atul K.; Kato, Etsushi; Kautz, Markus; Keeling, Ralph F.; Klein Goldewijk, Kees; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lima, Ivan; Lombardozzi, Danica; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; Nojiri, Yukihiro; Padin, X. Antonio; Peregon, Anna; Pfeil, Benjamin; Pierrot, Denis; Poulter, Benjamin; Rehder, Gregor; Reimer, Janet; Rödenbeck, Christian; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Tian, Hanqin; Tilbrook, Bronte; Tubiello, Francesco N.; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; van Heuven, Steven; Viovy, Nicolas; Vuichard, Nicolas; Walker, Anthony P.; Watson, Andrew J.; Wiltshire, Andrew J.; Zaehle, Sönke; Zhu, Dan

    2018-03-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the global carbon budget - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007-2016), EFF was 9.4 ± 0.5 GtC yr-1, ELUC 1.3 ± 0.7 GtC yr-1, GATM 4.7 ± 0.1 GtC yr-1, SOCEAN 2.4 ± 0.5 GtC yr-1, and SLAND 3.0 ± 0.8 GtC yr-1, with a budget imbalance BIM of 0.6 GtC yr-1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr-1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr-1, GATM was 6.1 ± 0.2 GtC yr-1, SOCEAN was 2.6 ± 0.5 GtC yr-1, and SLAND was 2.7 ± 1.0 GtC yr-1, with a small BIM of -0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007-2016), reflecting in part the high fossil emissions and the small SLAND

  19. Effects of aerosol from biomass burning on the global radiation budget

    Science.gov (United States)

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  20. Greater future global warming inferred from Earth’s recent energy budget

    Science.gov (United States)

    Brown, Patrick T.; Caldeira, Ken

    2017-12-01

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  1. Global Carbon Budget 2017

    Directory of Open Access Journals (Sweden)

    C. Le Quéré

    2018-03-01

    Full Text Available Accurate assessment of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the global carbon budget – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC, mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN and terrestrial CO2 sink (SLAND are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM, the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016, EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be

  2. The geostationary Earth radiation budget (GERB) instrument on EUMETSAT's MSG satellite

    Science.gov (United States)

    Sandford, M. C. W.; Allan, P. M.; Caldwell, M. E.; Delderfield, J.; Oliver, M. B.; Sawyer, E.; Harries, J. E.; Ashmall, J.; Brindley, H.; Kellock, S.; Mossavati, R.; Wrigley, R.; Llewellyn-Jones, D.; Blake, O.; Butcher, G.; Cole, R.; Nelms, N.; DeWitte, S.; Gloesener, P.; Fabbrizzi, F.

    2003-12-01

    Geostationary Earth radiation budget (GERB) is an Announcement of Opportunity Instrument for EUMETSAT's Meteosat Second Generation (MSG) satellite. GERB will make accurate measurements of the Earth Radiation Budget from geostationary orbit, provide an absolute reference calibration for LEO Earth radiation budget instruments and allow studies of the energetics of atmospheric processes. By operating from geostationary orbit, measurements may be made many times a day, thereby providing essentially perfect diurnal sampling of the radiation balance between reflected and emitted radiance for that area of the globe within the field of view. GERB will thus complement other instruments which operate in low orbit and give complete global coverage, but with poor and biased time resolution. GERB measures infrared radiation in two wavelength bands: 0.32-4.0 and 0.32- 30 μm, with a pixel element size of 44 km at sub-satellite point. This paper gives an overview of the project and concentrates on the design and development of the instrument and ground testing and calibration, and lessons learnt from a short time scale low-budget project. The instrument was delivered for integration on the MSG platform in April 1999 ready for the proposed launch in October 2000, which has now been delayed probably to early 2002. The ground segment is being undertaken by RAL and RMIB and produces near real-time data for meteorological applications in conjunction with the main MSG imager—SEVERI. Climate research and other applications which are being developed under a EU Framework IV pilot project will be served by fully processed data. Because of the relevance of the observations to climate change, it is planned to maintain an operating instrument in orbit for at least 3.5 years. Two further GERB instruments are being built for subsequent launches of MSG.

  3. Global Carbon Budget 2016

    Science.gov (United States)

    Quéré, Corinne Le; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; hide

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere the global carbon budget is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as +/- 1(sigma), reflecting the current capacity to characterize the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  4. Global volcanic emissions: budgets, plume chemistry and impacts

    Science.gov (United States)

    Mather, T. A.

    2012-12-01

    Over the past few decades our understanding of global volcanic degassing budgets, plume chemistry and the impacts of volcanic emissions on our atmosphere and environment has been revolutionized. Global volcanic emissions budgets are needed if we are to make effective use of regional and global atmospheric models in order to understand the consequences of volcanic degassing on global environmental evolution. Traditionally volcanic SO2 budgets have been the best constrained but recent efforts have seen improvements in the quantification of the budgets of other environmentally important chemical species such as CO2, the halogens (including Br and I) and trace metals (including measurements relevant to trace metal atmospheric lifetimes and bioavailability). Recent measurements of reactive trace gas species in volcanic plumes have offered intriguing hints at the chemistry occurring in the hot environment at volcanic vents and during electrical discharges in ash-rich volcanic plumes. These reactive trace species have important consequences for gas plume chemistry and impacts, for example, in terms of the global fixed nitrogen budget, volcanically induced ozone destruction and particle fluxes to the atmosphere. Volcanically initiated atmospheric chemistry was likely to have been particularly important before biological (and latterly anthropogenic) processes started to dominate many geochemical cycles, with important consequences in terms of the evolution of the nitrogen cycle and the role of particles in modulating the Earth's climate. There are still many challenges and open questions to be addressed in this fascinating area of science.

  5. The Global Methane Budget 2000-2012

    Science.gov (United States)

    Saunois, Marielle; Bousquet, Philippe; Poulter, Benjamin; Peregon, Anna; Ciais, Philippe; Canadell, Josep G.; Dlugokencky, Edward J.; Etiope, Giuseppe; Bastviken, David; Houweling, Sander; hide

    2016-01-01

    The global methane (CH4) budget is becoming an increasingly important component for managing realistic pathways to mitigate climate change. This relevance, due to a shorter atmospheric lifetime and a stronger warming potential than carbon dioxide, is challenged by the still unexplained changes of atmospheric CH4 over the past decade. Emissions and concentrations of CH4 are continuing to increase, making CH4 the second most important human-induced greenhouse gas after carbon dioxide. Two major difficulties in reducing uncertainties come from the large variety of diffusive CH4 sources that overlap geographically, and from the destruction of CH4 by the very short-lived hydroxyl radical (OH). To address these difficulties, we have established a consortium of multi-disciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate research on the methane cycle, and producing regular (approximately biennial) updates of the global methane budget. This consortium includes atmospheric physicists and chemists, biogeochemists of surface and marine emissions, and socio-economists who study anthropogenic emissions. Following Kirschke et al. (2013), we propose here the first version of a living review paper that integrates results of top-down studies (exploiting atmospheric observations within an atmospheric inverse-modeling framework) and bottom-up models, inventories and data-driven approaches (including process-based models for estimating land surface emissions and atmospheric chemistry, and inventories for anthropogenic emissions, data-driven extrapolations).For the 2003-2012 decade, global methane emissions are estimated by top-down inversions at 558 TgCH4 yr(exp -1), range 540-568. About 60 of global emissions are anthropogenic (range 50-65%). Since 2010, the bottom-up global emission inventories have been closer to methane emissions in the most carbon-intensive Representative Concentrations Pathway (RCP8.5) and higher than all other RCP

  6. Contrasting regional versus global radiative forcing by megacity pollution emissions

    Science.gov (United States)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  7. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    Science.gov (United States)

    Duda, D. P.; Khlopenkov, K. V.; Palikonda, R.; Khaiyer, M. M.; Minnis, P.; Su, W.; Sun-Mack, S.

    2016-12-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  8. Construction of a Matched Global Cloud and Radiance Product from LEO/GEO and EPIC Observations to Estimate Daytime Earth Radiation Budget from DSCOVR

    Science.gov (United States)

    Duda, David P.; Khlopenkov, Konstantin V.; Thiemann, Mandana; Palikonda, Rabindra; Sun-Mack, Sunny; Minnis, Patrick; Su, Wenying

    2016-01-01

    With the launch of the Deep Space Climate Observatory (DSCOVR), new estimates of the daytime Earth radiation budget can be computed from a combination of measurements from the two Earth-observing sensors onboard the spacecraft, the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). Although these instruments can provide accurate top-of-atmosphere (TOA) radiance measurements, they lack sufficient resolution to provide details on small-scale surface and cloud properties. Previous studies have shown that these properties have a strong influence on the anisotropy of the radiation at the TOA, and ignoring such effects can result in large TOA-flux errors. To overcome these effects, high-resolution scene identification is needed for accurate Earth radiation budget estimation. Selected radiance and cloud property data measured and derived from several low earth orbit (LEO, including NASA Terra and Aqua MODIS, NOAA AVHRR) and geosynchronous (GEO, including GOES (east and west), METEOSAT, INSAT-3D, MTSAT-2, and HIMAWARI-8) satellite imagers were collected to create hourly 5-km resolution global composites of data necessary to compute angular distribution models (ADM) for reflected shortwave (SW) and longwave (LW) radiation. The satellite data provide an independent source of radiance measurements and scene identification information necessary to construct ADMs that are used to determine the daytime Earth radiation budget. To optimize spatial matching between EPIC measurements and the high-resolution composite cloud properties, LEO/GEO retrievals within the EPIC fields of view (FOV) are convolved to the EPIC point spread function (PSF) in a similar manner to the Clouds and the Earth's Radiant Energy System (CERES) Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product. Examples of the merged LEO/GEO/EPIC product will be presented, describing the chosen radiance and cloud properties and

  9. Atlas of albedo and absorbed solar radiation derived from Nimbus 7 earth radiation budget data set, November 1985 to October 1987

    Science.gov (United States)

    Smith, G. Louis; Rutan, David; Bess, T. Dale

    1992-01-01

    An atlas of monthly mean global contour maps of albedo and absorbed solar radiation is presented for 21 months from Nov. 1985 to Oct. 1987. These data were retrieved from measurements made by the shortwave wide-field-of-view radiometer of the Earth Radiation Budget (ERB) instrument aboard the Nimbus 7 spacecraft. Profiles of zonal mean albedos and absorbed solar radiation were tabulated. These geographical distributions are provided as a resource for researchers studying the radiation budget of the Earth. The El Nino/Southern Oscillation event of 1986-1987 is included in this data set. This atlas of albedo and absorbed solar radiation extends to 12 years the period covered by two similar atlases: NASA RP-1230 (Jul. 1975 - Oct. 1978) and NASA RP-1231 (Nov. 1978 - Oct. 1985). These three compilations complement the atlases of outgoing longwave radiation by Bess and Smith in NASA RP-1185, RP-1186, and RP-1261, which were also based on the Nimbus 6 and 7 ERB data.

  10. Global Carbon Budget 2016

    Science.gov (United States)

    Le Quéré, Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M. S.; Munro, David R.; Nabel, Julia E. M. S.; Nakaoka, Shin-ichiro; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; van der Laan-Luijkx, Ingrid T.; van der Werf, Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-11-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere - the "global carbon budget" - is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates and consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models. We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2006-2015), EFF was 9

  11. Global Carbon Budget 2015

    Science.gov (United States)

    Le Quéré, C.; Moriarty, R.; Andrew, R. M.; Canadell, J. G.; Sitch, S.; Korsbakken, J. I.; Friedlingstein, P.; Peters, G. P.; Andres, R. J.; Boden, T. A.; Houghton, R. A.; House, J. I.; Keeling, R. F.; Tans, P.; Arneth, A.; Bakker, D. C. E.; Barbero, L.; Bopp, L.; Chang, J.; Chevallier, F.; Chini, L. P.; Ciais, P.; Fader, M.; Feely, R. A.; Gkritzalis, T.; Harris, I.; Hauck, J.; Ilyina, T.; Jain, A. K.; Kato, E.; Kitidis, V.; Klein Goldewijk, K.; Koven, C.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Lenton, A.; Lima, I. D.; Metzl, N.; Millero, F.; Munro, D. R.; Murata, A.; Nabel, J. E. M. S.; Nakaoka, S.; Nojiri, Y.; O'Brien, K.; Olsen, A.; Ono, T.; Pérez, F. F.; Pfeil, B.; Pierrot, D.; Poulter, B.; Rehder, G.; Rödenbeck, C.; Saito, S.; Schuster, U.; Schwinger, J.; Séférian, R.; Steinhoff, T.; Stocker, B. D.; Sutton, A. J.; Takahashi, T.; Tilbrook, B.; van der Laan-Luijkx, I. T.; van der Werf, G. R.; van Heuven, S.; Vandemark, D.; Viovy, N.; Wiltshire, A.; Zaehle, S.; Zeng, N.

    2015-12-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen-carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global

  12. Development of multi-sensor global cloud and radiance composites for earth radiation budget monitoring from DSCOVR

    Science.gov (United States)

    Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher

    2017-10-01

    The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95% of the globe.

  13. Global aerosol transport and consequences for the radiation budget

    International Nuclear Information System (INIS)

    Newiger, M.; Grassl, H.; Schussel, P.; Rehkopf, J.

    1984-01-01

    Man's activities may influence global climate by changing the atmospheric composition and surface characteristics and by waste heat. Most prominent within this discussion is the increase or decrease of radiatively active trace gases like CO/sub 2/, N/sub 2/O, O/sub 3/, and others. The general opinion is converging towards a greenhouse effect as a combined action of all trace gases, whose exact magnitude is uncertain mainly because of the unknown reaction of water cycle. The aim of our global 2-D (resolving latitude and height) aerosol transport model is the calculation of aerosol particle number density profiles as a function of latitude for present natural plus anthropogenic emissions. The aerosol transport model uses prescribed meridonal circulation, diffusivity factors and cloud climatology for January as well as July. All these latitude and height dependent input parameters were taken from well known sources. The fixed climatology excludes the feedback of aerosol particle parameter changes on mean circulation. However, the radiative parameters of six clouds types are modified, although they possess by adoption of the Telegadas and London (1954) cloud climatology prescribed amount and height. The inclusion of the feedback on mean circulation seems premature at present. Adding particles either accounting for natural emissions or natural anthropogenic emission and removing particles by all known sinks outside and within clouds gives us - for the stationary state - vertical profiles of aerosol number density in three sizes classes as a function of latitude. These profiles in turn are input for radiation flux calculations in clear and cloudy areas in order to assess net flux changes caused by the present aerosol load in comparison to a scenario without anthropogenic emissions. The net flux changes finally are compared to those calculated for increased CO/sub 2/ levels

  14. Reactor safety and radiation protection. Draft of the BMU deparmental budget 16 of the 1998 German federal budget

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The expenditures earmarked for reactor safety and radiation protection in the 1998 budget of the German Federal Ministry for the Environment, Nature Conservation, and Reactor Safety (BMU) total DM 101 million. The expenditures of the German Federal Office for Radiation Protection (BfS) are to amount to a total of DM 579 million. These are the figures included in departmental budget 16 of the 1998 federal budget, which was discussed by the Federal Parliament in September 1997. The atw compilation singles out a number of significant items of the departmental budget. (orig.) [de

  15. Toward an Improved Understanding of the Global Fresh Water Budget

    Science.gov (United States)

    Hildebrand, Peter H.

    2005-01-01

    The major components of the global fresh water cycle include the evaporation from the land and ocean surfaces, precipitation onto the Ocean and land surfaces, the net atmospheric transport of water from oceanic areas over land, and the return flow of water from the land back into the ocean. The additional components of oceanic water transport are few, principally, the mixing of fresh water through the oceanic boundary layer, transport by ocean currents, and sea ice processes. On land the situation is considerably more complex, and includes the deposition of rain and snow on land; water flow in runoff; infiltration of water into the soil and groundwater; storage of water in soil, lakes and streams, and groundwater; polar and glacial ice; and use of water in vegetation and human activities. Knowledge of the key terms in the fresh water flux budget is poor. Some components of the budget, e.g. precipitation, runoff, storage, are measured with variable accuracy across the globe. We are just now obtaining precise measurements of the major components of global fresh water storage in global ice and ground water. The easily accessible fresh water sources in rivers, lakes and snow runoff are only adequately measured in the more affluent portions of the world. presents proposals are suggesting methods of making global measurements of these quantities from space. At the same time, knowledge of the global fresh water resources under the effects of climate change is of increasing importance and the human population grows. This paper provides an overview of the state of knowledge of the global fresh water budget, evaluating the accuracy of various global water budget measuring and modeling techniques. We review the measurement capabilities of satellite instruments as compared with field validation studies and modeling approaches. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest

  16. The Surface Radiation Budget over Oceans and Continents.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.; Rotstayn, L. D.; McAvaney, B. J.; Cusack, S.

    1998-08-01

    An updated evaluation of the surface radiation budget in climate models (1994-96 versions; seven datasets available, with and without aerosols) and in two new satellite-based global datasets (with aerosols) is presented. All nine datasets capture the broad mean monthly zonal variations in the flux components and in the net radiation, with maximum differences of some 100 W m2 occurring in the downwelling fluxes at specific latitudes. Using long-term surface observations, both from land stations and the Pacific warm pool (with typical uncertainties in the annual values varying between ±5 and 20 W m2), excess net radiation (RN) and downwelling shortwave flux density (So) are found in all datasets, consistent with results from earlier studies [for global land, excesses of 15%-20% (12 W m2) in RN and about 12% (20 W m2) in So]. For the nine datasets combined, the spread in annual fluxes is significant: for RN, it is 15 (50) W m2 over global land (Pacific warm pool) in an observed annual mean of 65 (135) W m2; for So, it is 25 (60) W m2 over land (warm pool) in an annual mean of 176 (197) W m2.The effects of aerosols are included in three of the authors' datasets, based on simple aerosol climatologies and assumptions regarding aerosol optical properties. They offer guidance on the broad impact of aerosols on climate, suggesting that the inclusion of aerosols in models would reduce the annual So by 15-20 W m2 over land and 5-10 W m2 over the oceans. Model differences in cloud cover contribute to differences in So between datasets; for global land, this is most clearly demonstrated through the effects of cloud cover on the surface shortwave cloud forcing. The tendency for most datasets to underestimate cloudiness, particularly over global land, and possibly to underestimate atmospheric water vapor absorption, probably contributes to the excess downwelling shortwave flux at the surface.

  17. [The department budget, in the context of the hospital global budget. Initial results in general medicine].

    Science.gov (United States)

    Besançon, F

    1984-02-23

    In a general hospital (Hôtel-Dieu, in the center of Paris), run with a global budget, budgets determined for each unit were introduced as an experiment in 1980. Physicians were in charge of certain expenses, mainly: linen, drugs, transportation of patients to and from other hospitals within Paris, and blood fractions. The whole does not exceed 4% of the turnover (FF 20 millions in 1980) of a 67 bed internal medicine unit. Other accounts deal with the stays, admissions, prescriptions of technical acts, laboratory analyses, and X-rays. In 1980, expenses were 11% more than budgeted, but the increase in stays and particularly in admissions was significantly greater. The resulting savings were 8.8% and 18.7% for stays and admissions respectively. Psychic reactions were variable. The subsequent budgets followed the fluctuations of recorded expenses, which were fairly important in both directions. The unit budget may be an advance or a regression, in a restrictive and past-perpetuating context. The coherence between the unit budget and the global hospital budget is questionable. Physicians were willing to take part in accounting and saving. They have good reason for not enlarging their financial responsibilities. Conversely, they may give more attention to diseases of public opinion.

  18. Influence of Ice Cloud Microphysics on Imager-Based Estimates of Earth's Radiation Budget

    Science.gov (United States)

    Loeb, N. G.; Kato, S.; Minnis, P.; Yang, P.; Sun-Mack, S.; Rose, F. G.; Hong, G.; Ham, S. H.

    2016-12-01

    A central objective of the Clouds and the Earth's Radiant Energy System (CERES) is to produce a long-term global climate data record of Earth's radiation budget from the TOA down to the surface along with the associated atmospheric and surface properties that influence it. CERES relies on a number of data sources, including broadband radiometers measuring incoming and reflected solar radiation and OLR, high-resolution spectral imagers, meteorological, aerosol and ozone assimilation data, and snow/sea-ice maps based on microwave radiometer data. While the TOA radiation budget is largely determined directly from accurate broadband radiometer measurements, the surface radiation budget is derived indirectly through radiative transfer model calculations initialized using imager-based cloud and aerosol retrievals and meteorological assimilation data. Because ice cloud particles exhibit a wide range of shapes, sizes and habits that cannot be independently retrieved a priori from passive visible/infrared imager measurements, assumptions about the scattering properties of ice clouds are necessary in order to retrieve ice cloud optical properties (e.g., optical depth) from imager radiances and to compute broadband radiative fluxes. This presentation will examine how the choice of an ice cloud particle model impacts computed shortwave (SW) radiative fluxes at the top-of-atmosphere (TOA) and surface. The ice cloud particle models considered correspond to those from prior, current and future CERES data product versions. During the CERES Edition2 (and Edition3) processing, ice cloud particles were assumed to be smooth hexagonal columns. In the Edition4, roughened hexagonal columns are assumed. The CERES team is now working on implementing in a future version an ice cloud particle model comprised of a two-habit ice cloud model consisting of roughened hexagonal columns and aggregates of roughened columnar elements. In each case, we use the same ice particle model in both the

  19. Earth Radiation Budget Research at the NASA Langley Research Center

    Science.gov (United States)

    Smith, G. Louis; Harrison, Edwin F.; Gibson, Gary G.

    2014-01-01

    In the 1970s research studies concentrating on satellite measurements of Earth's radiation budget started at the NASA Langley Research Center. Since that beginning, considerable effort has been devoted to developing measurement techniques, data analysis methods, and time-space sampling strategies to meet the radiation budget science requirements for climate studies. Implementation and success of the Earth Radiation Budget Experiment (ERBE) and the Clouds and the Earth's Radiant Energy System (CERES) was due to the remarkable teamwork of many engineers, scientists, and data analysts. Data from ERBE have provided a new understanding of the effects of clouds, aerosols, and El Nino/La Nina oscillation on the Earth's radiation. CERES spacecraft instruments have extended the time coverage with high quality climate data records for over a decade. Using ERBE and CERES measurements these teams have created information about radiation at the top of the atmosphere, at the surface, and throughout the atmosphere for a better understanding of our climate. They have also generated surface radiation products for designers of solar power plants and buildings and numerous other applications

  20. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R; Hollmann, R; Mueller, J; Stuhlmann, R [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  1. Study on Earth Radiation Budget mission scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dlhopolsky, R.; Hollmann, R.; Mueller, J.; Stuhlmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    The goal of this study is to study optimized satellite configurations for observation of the radiation balance of the earth. We present a literature survey of earth radiation budget missions and instruments. We develop a parametric tool to simulate realistic multiple satellite mission scenarios. This tool is a modular computer program which models satellite orbits and scanning operation. We use Meteosat data sampled at three hour intervals as a database to simulate atmospheric scenes. Input variables are satellite equatorial crossing time and instrument characteristics. Regional, zonal and global monthly averages of shortwave and longwave fluxes for an ideal observing system and several realistic satellite scenarios are produced. Comparisons show that the three satellite combinations which have equatorial crossing times at midmorning, noon and midafternoon provide the best shortwave monitoring. Crossing times near sunrise and sunset should be avoided for the shortwave. Longwave diurnal models are necessary over and surfaces and cloudy regions, if there are only two measurements made during daylight hours. We have found in the shortwave inversion comparison that at least 15% of the monthly regional errors can be attributed to the shortwave anisotropic models used. (orig.) 68 refs.

  2. Observed perturbations of the Earth's Radiation Budget - A response to the El Chichon stratospheric aerosol layer?

    Science.gov (United States)

    Ardanuy, P. E.; Kyle, H. L.

    1986-01-01

    The Earth Radiation Budget experiment, launched aboard the Nimbus-7 polar-orbiting spacecraft in late 1978, has now taken over seven years of measurements. The dataset, which is global in coverage, consists of the individual components of the earth's radiation budget, including longwave emission, net radiation, and both total and near-infrared albedos. Starting some six months after the 1982 eruption of the El Chichon volcano, substantial long-lived positive shortwave irradiance anomalies were observed by the experiment in both the northern and southern polar regions. Analysis of the morphology of this phenomena indicates that the cause is the global stratospheric aerosol layer which formed from the cloud of volcanic effluents. There was little change in the emitted longwave in the polar regions. At the north pole the largest anomaly was in the near-infrared, but at the south pole the near UV-visible anomaly was larger. Assuming an exponential decay, the time constant for the north polar, near-infrared anomaly was 1.2 years. At mid- and low latitudes the effect of the El Chichon aerosol layer could not be separated from the strong reflected-shortwave and emitted-longwave perturbations issuing from the El Nino/Southern Oscillation event of 1982-83.

  3. The oceanic cycle and global atmospheric budget of carbonyl sulfide

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, P.S.

    1994-12-31

    A significant portion of stratospheric air chemistry is influenced by the existence of carbonyl sulfide (COS). This ubiquitous sulfur gas represents a major source of sulfur to the stratosphere where it is converted to sulfuric acid aerosol particles. Stratospheric aerosols are climatically important because they scatter incoming solar radiation back to space and are able to increase the catalytic destruction of ozone through gas phase reactions on particle surfaces. COS is primarily formed at the surface of the earth, in both marine and terrestrial environments, and is strongly linked to natural biological processes. However, many gaps in the understanding of the global COS cycle still exist, which has led to a global atmospheric budget that is out of balance by a factor of two or more, and a lack of understanding of how human activity has affected the cycling of this gas. The goal of this study was to focus on COS in the marine environment by investigating production/destruction mechanisms and recalculating the ocean-atmosphere flux.

  4. 3D modeling of satellite spectral images, radiation budget and energy budget of urban landscapes

    Science.gov (United States)

    Gastellu-Etchegorry, J. P.

    2008-12-01

    DART EB is a model that is being developed for simulating the 3D (3 dimensional) energy budget of urban and natural scenes, possibly with topography and atmosphere. It simulates all non radiative energy mechanisms (heat conduction, turbulent momentum and heat fluxes, water reservoir evolution, etc.). It uses DART model (Discrete Anisotropic Radiative Transfer) for simulating radiative mechanisms: 3D radiative budget of 3D scenes and their remote sensing images expressed in terms of reflectance or brightness temperature values, for any atmosphere, wavelength, sun/view direction, altitude and spatial resolution. It uses an innovative multispectral approach (ray tracing, exact kernel, discrete ordinate techniques) over the whole optical domain. This paper presents two major and recent improvements of DART for adapting it to urban canopies. (1) Simulation of the geometry and optical characteristics of urban elements (houses, etc.). (2) Modeling of thermal infrared emission by vegetation and urban elements. The new DART version was used in the context of the CAPITOUL project. For that, districts of the Toulouse urban data base (Autocad format) were translated into DART scenes. This allowed us to simulate visible, near infrared and thermal infrared satellite images of Toulouse districts. Moreover, the 3D radiation budget was used by DARTEB for simulating the time evolution of a number of geophysical quantities of various surface elements (roads, walls, roofs). Results were successfully compared with ground measurements of the CAPITOUL project.

  5. Global Surface Net-Radiation at 5 km from MODIS Terra

    Directory of Open Access Journals (Sweden)

    Manish Verma

    2016-09-01

    Full Text Available Reliable and fine resolution estimates of surface net-radiation are required for estimating latent and sensible heat fluxes between the land surface and the atmosphere. However, currently, fine resolution estimates of net-radiation are not available and consequently it is challenging to develop multi-year estimates of evapotranspiration at scales that can capture land surface heterogeneity and are relevant for policy and decision-making. We developed and evaluated a global net-radiation product at 5 km and 8-day resolution by combining mutually consistent atmosphere and land data from the Moderate Resolution Imaging Spectroradiometer (MODIS on board Terra. Comparison with net-radiation measurements from 154 globally distributed sites (414 site-years from the FLUXNET and Surface Radiation budget network (SURFRAD showed that the net-radiation product agreed well with measurements across seasons and climate types in the extratropics (Wilmott’s index ranged from 0.74 for boreal to 0.63 for Mediterranean sites. Mean absolute deviation between the MODIS and measured net-radiation ranged from 38.0 ± 1.8 W∙m−2 in boreal to 72.0 ± 4.1 W∙m−2 in the tropical climates. The mean bias was small and constituted only 11%, 0.7%, 8.4%, 4.2%, 13.3%, and 5.4% of the mean absolute error in daytime net-radiation in boreal, Mediterranean, temperate-continental, temperate, semi-arid, and tropical climate, respectively. To assess the accuracy of the broader spatiotemporal patterns, we upscaled error-quantified MODIS net-radiation and compared it with the net-radiation estimates from the coarse spatial (1° × 1° but high temporal resolution gridded net-radiation product from the Clouds and Earth’s Radiant Energy System (CERES. Our estimates agreed closely with the net-radiation estimates from the CERES. Difference between the two was less than 10 W·m−2 in 94% of the total land area. MODIS net-radiation product will be a valuable resource for the

  6. Quantifying the Global Fresh Water Budget: Capabilities from Current and Future Satellite Sensors

    Science.gov (United States)

    Hildebrand, Peter; Zaitchik, Benjamin

    2007-01-01

    The global water cycle is complex and its components are difficult to measure, particularly at the global scales and with the precision needed for assessing climate impacts. Recent advances in satellite observational capabilities, however, are greatly improving our knowledge of the key terms in the fresh water flux budget. Many components of the of the global water budget, e.g. precipitation, atmospheric moisture profiles, soil moisture, snow cover, sea ice are now routinely measured globally using instruments on satellites such as TRMM, AQUA, TERRA, GRACE, and ICESat, as well as on operational satellites. New techniques, many using data assimilation approaches, are providing pathways toward measuring snow water equivalent, evapotranspiration, ground water, ice mass, as well as improving the measurement quality for other components of the global water budget. This paper evaluates these current and developing satellite capabilities to observe the global fresh water budget, then looks forward to evaluate the potential for improvements that may result from future space missions as detailed by the US Decadal Survey, and operational plans. Based on these analyses, and on the goal of improved knowledge of the global fresh water budget under the effects of climate change, we suggest some priorities for the future, based on new approaches that may provide the improved measurements and the analyses needed to understand and observe the potential speed-up of the global water cycle under the effects of climate change.

  7. Continuity of Earth Radiation Budget Observations

    Science.gov (United States)

    Loeb, N. G.; Su, W.; Wong, T.; Priestley, K.

    2017-12-01

    Earth's climate is determined by the exchange of radiant energy between the Sun, Earth and space. The absorbed solar radiation at the top-of-atmosphere (TOA) fuels the climate system, providing the energy required for atmospheric and oceanic motions. Earth's radiation budget (ERB) involves a balance between how much solar energy Earth absorbs and how much terrestrial thermal infrared radiation is emitted to space. Because of its critical role in climate, continuous monitoring of the ERB is necessary for improved understanding and prediction of climate variability and change. NASA's long history in observing the TOA ERB is acknowledged in the 2007 and 2013 reports of the IPCC (IPCC 2007, 2013), the 2007 NRC Decadal Survey (NRC 2007), and the GCOS implementation plan of the WMO (GCOS 2016). A key reason for NASA's success in this area is due to its support of the CERES Project and its predecessor, ERBE. During ERBE, the TOA ERB was observed using both scanner and nonscanner broadband instruments. The CERES project consists of six scanner instruments flying alongside high-resolution spectral imagers (MODIS, VIIRS) in morning and afternoon sun-synchronous orbits. In addition to extending the ERBE TOA radiation budget record, CERES also provides observations of Earth's surface radiation budget with unprecedented accuracy. Here we assess the likelihood of a measurement gap in the ERB record. We show that unless a follow-on ERB instrument to the last available CERES copy (FM6) is built and launched, there is a significant risk of a measurement gap in the ERB record by the mid-2020s. A gap is of concern not only because the ERB would not be monitored during the gap period but also because it would be exceedingly difficult to tie the records before and after the gap together with sufficient accuracy for climate analyses. While ERB instruments are highly stable temporally, they lack the absolute accuracy needed to bridge a gap. Consequently, there is a requirement that

  8. Daily Radiation Budget of the Baltic Sea Surface from Satellite Data

    Directory of Open Access Journals (Sweden)

    Zapadka Tomasz

    2015-09-01

    Full Text Available Recently developed system for assessment of radiation budget for the Baltic Sea has been presented and verified. The system utilizes data from various sources: satellite, model and in situ measurements. It has been developed within the SatBałtyk project (Satellite Monitoring of the Baltic Sea Environment - www.satbaltyk.eu where the energy radiation budget is one of the key element. The SatBałtyk system generates daily maps of the all components of radiation budget on every day basis. We show the scheme of making daily maps, applied algorithms and empirical data collection within the system. An empirical verification of the system has been carried out based on empirical data collected on the oil rig placed on the Baltic Sea. This verification concerned all the components of the surface radiation budget. The average daily NET products are estimated with statistical error ca. 13 Wm-2. The biggest absolute statistical error is for LWd component and equals 14 Wm-2. The relative error in relation to the average annual values for whole Baltic is the biggest for SWu and reaches 25%. All estimated components have correlation coefficient above 0.91.

  9. The Geostationary Earth Radiation Budget Project.

    Science.gov (United States)

    Harries, J. E.; Russell, J. E.; Hanafin, J. A.; Brindley, H.; Futyan, J.; Rufus, J.; Kellock, S.; Matthews, G.; Wrigley, R.; Last, A.; Mueller, J.; Mossavati, R.; Ashmall, J.; Sawyer, E.; Parker, D.; Caldwell, M.; Allan, P. M.; Smith, A.; Bates, M. J.; Coan, B.; Stewart, B. C.; Lepine, D. R.; Cornwall, L. A.; Corney, D. R.; Ricketts, M. J.; Drummond, D.; Smart, D.; Cutler, R.; Dewitte, S.; Clerbaux, N.; Gonzalez, L.; Ipe, A.; Bertrand, C.; Joukoff, A.; Crommelynck, D.; Nelms, N.; Llewellyn-Jones, D. T.; Butcher, G.; Smith, G. L.; Szewczyk, Z. P.; Mlynczak, P. E.; Slingo, A.; Allan, R. P.; Ringer, M. A.

    2005-07-01

    This paper reports on a new satellite sensor, the Geostationary Earth Radiation Budget (GERB) experiment. GERB is designed to make the first measurements of the Earth's radiation budget from geostationary orbit. Measurements at high absolute accuracy of the reflected sunlight from the Earth, and the thermal radiation emitted by the Earth are made every 15 min, with a spatial resolution at the subsatellite point of 44.6 km (north south) by 39.3 km (east west). With knowledge of the incoming solar constant, this gives the primary forcing and response components of the top-of-atmosphere radiation. The first GERB instrument is an instrument of opportunity on Meteosat-8, a new spin-stabilized spacecraft platform also carrying the Spinning Enhanced Visible and Infrared (SEVIRI) sensor, which is currently positioned over the equator at 3.5°W. This overview of the project includes a description of the instrument design and its preflight and in-flight calibration. An evaluation of the instrument performance after its first year in orbit, including comparisons with data from the Clouds and the Earth's Radiant Energy System (CERES) satellite sensors and with output from numerical models, are also presented. After a brief summary of the data processing system and data products, some of the scientific studies that are being undertaken using these early data are described. This marks the beginning of a decade or more of observations from GERB, as subsequent models will fly on each of the four Meteosat Second Generation satellites.

  10. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    Science.gov (United States)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual

  11. 1999-2003 Shortwave Characterizations of Earth Radiation Budget Satellite (ERBS)/Earth Radiation Budget Experiment (ERBE) Broadband Active Cavity Radiometer Sensors

    Science.gov (United States)

    Lee, Robert B., III; Smith, George L.; Wong, Takmeng

    2008-01-01

    From October 1984 through May 2005, the NASA Earth Radiation Budget Satellite (ERBS/ )/Earth Radiation Budget Experiment (ERBE)ERBE nonscanning active cavity radiometers (ACR) were used to monitor long-term changes in the earth radiation budget components of the incoming total solar irradiance (TSI), earth-reflected TSI, and earth-emitted outgoing longwave radiation (OLR). From September1984 through September 1999, using on-board calibration systems, the ERBS/ERBE ACR sensor response changes, in gains and offsets, were determined from on-orbit calibration sources and from direct observations of the incoming TSI through calibration solar ports at measurement precision levels approaching 0.5 W/sq m , at satellite altitudes. On October 6, 1999, the onboard radiometer calibration system elevation drive failed. Thereafter, special spacecraft maneuvers were performed to observe cold space and the sun in order to define the post-September 1999 geometry of the radiometer measurements, and to determine the October 1999-September 2003 ERBS sensor response changes. Analyses of these special solar and cold space observations indicate that the radiometers were pointing approximately 16 degrees away from the spacecraft nadir and on the anti-solar side of the spacecraft. The special observations indicated that the radiometers responses were stable at precision levels approaching 0.5 W/sq m . In this paper, the measurement geometry determinations and the determinations of the radiometers gain and offset are presented, which will permit the accurate processing of the October 1999 through September 2003 ERBE data products at satellite and top-of-the-atmosphere altitudes.

  12. Modelling, interpolation and stochastic simulation in space and time of global solar radiation

    NARCIS (Netherlands)

    Bechini, L.; Ducco, G.; Donatelli, M.; Stein, A.

    2000-01-01

    Global solar radiation data used as daily inputs for most cropping systems and water budget models are frequently available from only a few weather stations and over short periods of time. To overcome this limitation, the Campbell–Donatelli model relates daily maximum and minimum air temperatures to

  13. Think the way to measure the Earth Radiation Budget and the Total Solar Irradiance with a small satellites constellation

    Science.gov (United States)

    Meftah, M.; Keckhut, P.; Damé, L.; Bekki, S.; Sarkissian, A.; Hauchecorne, A.

    2018-05-01

    Within the past decade, satellites constellations have become possible and practical. One of the interest to use a satellites constellation is to measure the true Earth Radiation Imbalance, which is a crucial quantity for testing climate models and for predicting the future course of global warming. This measurement presents a high interest because the 2001-2010 decade has not shown the accelerating pace of global warming that most models predict, despite the fact that the greenhouse-gas radiative forcing continues to rise. All estimates (ocean heat content and top of atmosphere) show that over the past decade the Earth radiation imbalance ranges between 0.5 to 1W-2. Up to now, the Earth radiation imbalance has not been measured directly. The only way to measure the imbalance with sufficient accuracy is to measure both the incoming solar radiations (total solar irradiance) and the outgoing terrestrial radiations (top of atmosphere outgoing longwave radiations and shortwave radiations) onboard the same satellite, and ideally, with the same instrument. The incoming solar radiations and the outgoing terrestrial radiations are of nearly equal magnitude of the order of 340.5W-2. The objective is to measure these quantities over time by using differential Sun-Earth measurements (to counter calibration errors) with an accuracy better than 0.05Wm-2 at 1σ. It is also necessary to have redundant instruments to track aging in space in order to measure during a decade and to measure the global diurnal cycle with a dozen satellites. Solar irradiance and Earth Radiation Budget (SERB) is a potential first in orbit demonstration satellite. The SERB nano-satellite aims to measure on the same platform the different components of the Earth radiation budget and the total solar irradiance. Instrumental payloads (solar radiometer and Earth radiometers) can acquire the technical maturity for the future large missions (constellation that insure global measurement cover) by flying in a

  14. U.S. Global Change Research Program Budget Crosscut

    Data.gov (United States)

    Office of Science and Technology Policy, Executive Office of the President — U.S. Global Change Research Program budget authority for Agency activities in which the primary focus is on:Observations, research, and analysis of climate change...

  15. Radiation budget studies using collocated observations from advanced Very High Resolution Radiometer, High-Resolution Infrared Sounder/2, and Earth Radiation Budget Experiment instruments

    Science.gov (United States)

    Ackerman, Steven A.; Frey, Richard A.; Smith, William L.

    1992-01-01

    Collocated observations from the Advanced Very High Resolution Radiometer (AVHRR), High-Resolution Infrared Sounder/2 (HIRS/2), and Earth Radiation Budget Experiment (ERBE) instruments onboard the NOAA 9 satellite are combined to describe the broadband and spectral radiative properties of the earth-atmosphere system. Broadband radiative properties are determined from the ERBE observations, while spectral properties are determined from the HIRS/2 and AVHRR observations. The presence of clouds, their areal coverage, and cloud top pressure are determined from a combination of the HIRS/2 and the AVHRR observations. The CO2 slicing method is applied to the HIRS/2 to determine the presence of upper level clouds and their effective emissivity. The AVHRR data collocated within the HIRS/2 field of view are utilized to determine the uniformity of the scene and retrieve sea surface temperature. Changes in the top of the atmosphere longwave and shortwave radiative energy budgets, and the spectral distribution of longwave radiation are presented as a function of cloud amount and cloud top pressure. The radiative characteristics of clear sky conditions over oceans are presented as a function of sea surface temperature and atmospheric water vapor structure.

  16. Nimbus 7 earth radiation budget wide field of view climate data set improvement. II - Deconvolution of earth radiation budget products and consideration of 1982-1983 El Nino event

    Science.gov (United States)

    Ardanuy, Phillip E.; Hucek, Richard R.; Groveman, Brian S.; Kyle, H. Lee

    1987-01-01

    A deconvolution technique is employed that permits recovery of daily averaged earth radiation budget (ERB) parameters at the top of the atmosphere from a set of the Nimbus 7 ERB wide field of view (WFOV) measurements. Improvements in both the spatial resolution of the resultant fields and in the fidelity of the time averages is obtained. The algorithm is evaluated on a set of months during the period 1980-1983. The albedo, outgoing long-wave radiation, and net radiation parameters are analyzed. The amplitude and phase of the quasi-stationary patterns that appear in the spatially deconvolved fields describe the radiation budget components for 'normal' as well as the El Nino/Southern Oscillation (ENSO) episode years. They delineate the seasonal development of large-scale features inherent in the earth's radiation budget as well as the natural variability of interannual differences. These features are underscored by the powerful emergence of the 1982-1983 ENSO event in the fields displayed. The conclusion is that with this type of resolution enhancement, WFOV radiometers provide a useful tool for the observation of the contemporary climate and its variability.

  17. Continental Ice Sheets and the Planetary Radiation Budget

    NARCIS (Netherlands)

    Oerlemans, J.

    1980-01-01

    The interaction between continental ice sheets and the planetary radiation budget is potentially important in climate-sensitivity studies. A simple ice-sheet model incorporated in an energybalance climate model provides a tool for studying this interaction in a quantitative way. Experiments in which

  18. Long-term monitoring of the earth's radiation budget; Proceedings of the Meeting, Orlando, FL, Apr. 17, 18, 1990

    Science.gov (United States)

    Barkstrom, Bruce R. (Editor)

    1990-01-01

    The uses of the broadband flux measurements as well as the improvements in the Earth Radiation Budget Experiment in instrumentation and data reduction are summarized. Scientific uses of earth-radiation budget data are discussed, along with a perspective on the instrumentation giving a new foundation for studies of the radiation budget, with emphasis on calibration and long-term stability. Cloud identification and angular modeling are covered including angular dependence models for radiance to flux conversion and the pattern recognition of clouds and ice in polar regions. The surface-radiation budget and atmospheric radiative flux divergence from the Clouds and Earth Radiant Energy System are covered, and time dependence of the earth's radiation fields, determination of the outgoing longwave radiation and its diurnal variations are considered.

  19. Observational constraints on the global atmospheric budget of ethanol

    Directory of Open Access Journals (Sweden)

    V. Naik

    2010-06-01

    Full Text Available Energy security and climate change concerns have led to the promotion of biomass-derived ethanol, an oxygenated volatile organic compound (OVOC, as a substitute for fossil fuels. Although ethanol is ubiquitous in the troposphere, our knowledge of its current atmospheric budget and distribution is limited. Here, for the first time we use a global chemical transport model in conjunction with atmospheric observations to place constraints on the ethanol budget, noting that additional measurements of ethanol (and its precursors are still needed to enhance confidence in our estimated budget. Global sources of ethanol in the model include 5.0 Tg yr−1 from industrial sources and biofuels, 9.2 Tg yr−1 from terrestrial plants, ~0.5 Tg yr−1 from biomass burning, and 0.05 Tg yr−1 from atmospheric reactions of the ethyl peroxy radical (C2H5O2 with itself and with the methyl peroxy radical (CH3O2. The resulting atmospheric lifetime of ethanol in the model is 2.8 days. Gas-phase oxidation by the hydroxyl radical (OH is the primary global sink of ethanol in the model (65%, followed by dry deposition (25%, and wet deposition (10%. Over continental areas, ethanol concentrations predominantly reflect direct anthropogenic and biogenic emission sources. Uncertainty in the biogenic ethanol emissions, estimated at a factor of three, may contribute to the 50% model underestimate of observations in the North American boundary layer. Current levels of ethanol measured in remote regions are an order of magnitude larger than those in the model, suggesting a major gap in understanding. Stronger constraints on the budget and distribution of ethanol and OVOCs are a critical step towards assessing the impacts of increasing the use of ethanol as a fuel.

  20. Does a global budget superimposed on fee-for-service payments mitigate hospitals' medical claims in Taiwan?

    Science.gov (United States)

    Hsu, Pi-Fem

    2014-12-01

    Taiwan's global budgeting for hospital health care, in comparison to other countries, assigns a regional budget cap for hospitals' medical benefits claimed on the basis of fee-for-service (FFS) payments. This study uses a stays-hospitals-years database comprising acute myocardial infarction inpatients to examine whether the reimbursement policy mitigates the medical benefits claimed to a third-payer party during 2000-2008. The estimated results of a nested random-effects model showed that hospitals attempted to increase their medical benefit claims under the influence of initial implementation of global budgeting. The magnitudes of hospitals' responses to global budgeting were significantly attributed to hospital ownership, accreditation status, and market competitiveness of a region. The results imply that the regional budget cap superimposed on FFS payments provides only blunt incentive to the hospitals to cooperate to contain medical resource utilization, unless a monitoring mechanism attached with the payment system.

  1. Measuring Earth's Radiation Budget from the Vicinity of the Moon

    Science.gov (United States)

    Swartz, W. H.; Lorentz, S. R.; Erlandson, R. E.; Cahalan, R. F.; Huang, P. M.

    2018-02-01

    We propose to measure Earth's radiation budget (integrated total and solar-reflected shortwave) using broadband radiometers and other technology demonstrated in space. The instrument is compact, autonomous, and has modest resource requirements.

  2. The global carbon budget 1959–2011

    Directory of Open Access Journals (Sweden)

    C. Le Quéré

    2013-05-01

    Full Text Available Accurate assessments of anthropogenic carbon dioxide (CO2 emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the climate policy process, and project future climate change. Present-day analysis requires the combination of a range of data, algorithms, statistics and model estimates and their interpretation by a broad scientific community. Here we describe datasets and a methodology developed by the global carbon cycle science community to quantify all major components of the global carbon budget, including their uncertainties. We discuss changes compared to previous estimates, consistency within and among components, and methodology and data limitations. CO2 emissions from fossil fuel combustion and cement production (EFF are based on energy statistics, while emissions from Land-Use Change (ELUC, including deforestation, are based on combined evidence from land cover change data, fire activity in regions undergoing deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM is computed from the concentration. The mean ocean CO2 sink (SOCEAN is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. Finally, the global residual terrestrial CO2 sink (SLAND is estimated by the difference of the other terms. For the last decade available (2002–2011, EFF was 8.3 ± 0.4 PgC yr−1, ELUC 1.0 ± 0.5 PgC yr−1, GATM 4.3 ± 0.1PgC yr−1, SOCEAN 2.5 ± 0.5 PgC yr−1, and SLAND 2.6 ± 0.8 PgC yr−1. For year 2011 alone, EFF was 9.5 ± 0.5 PgC yr−1, 3.0 percent above 2010, reflecting a continued trend in these emissions; ELUC was 0.9 ± 0.5 PgC yr−1, approximately constant throughout the decade; GATM was 3.6 ± 0.2 PgC yr−1, SOCEAN was 2.7 ± 0.5 PgC yr−1, and SLAND was 4.1 ± 0.9 PgC yr−1. GATM was low in 2011

  3. Radiation budget changes with dry forest clearing in temperate Argentina.

    Science.gov (United States)

    Houspanossian, Javier; Nosetto, Marcelo; Jobbágy, Esteban G

    2013-04-01

    Land cover changes may affect climate and the energy balance of the Earth through their influence on the greenhouse gas composition of the atmosphere (biogeochemical effects) but also through shifts in the physical properties of the land surface (biophysical effects). We explored how the radiation budget changes following the replacement of temperate dry forests by crops in central semiarid Argentina and quantified the biophysical radiative forcing of this transformation. For this purpose, we computed the albedo and surface temperature for a 7-year period (2003-2009) from MODIS imagery at 70 paired sites occupied by native forests and crops and calculated the radiation budget at the tropopause and surface levels using a columnar radiation model parameterized with satellite data. Mean annual black-sky albedo and diurnal surface temperature were 50% and 2.5 °C higher in croplands than in dry forests. These contrasts increased the outgoing shortwave energy flux at the top of the atmosphere in croplands by a quarter (58.4 vs. 45.9 W m(-2) ) which, together with a slight increase in the outgoing longwave flux, yielded a net cooling of -14 W m(-2) . This biophysical cooling effect would be equivalent to a reduction in atmospheric CO2 of 22 Mg C ha(-1) , which involves approximately a quarter to a half of the typical carbon emissions that accompany deforestation in these ecosystems. We showed that the replacement of dry forests by crops in central Argentina has strong biophysical effects on the energy budget which could counterbalance the biogeochemical effects of deforestation. Underestimating or ignoring these biophysical consequences of land-use changes on climate will certainly curtail the effectiveness of many warming mitigation actions, particularly in semiarid regions where high radiation load and smaller active carbon pools would increase the relative importance of biophysical forcing. © 2012 Blackwell Publishing Ltd.

  4. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    Science.gov (United States)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  5. Refined global methyl halide budgets with respect to rapeseed (Brassica napus) by life-cycle measurements

    Science.gov (United States)

    Jiao, Y.; Acdan, J.; Xu, R.; Deventer, M. J.; Rhew, R. C.

    2017-12-01

    A precise quantification of global methyl halide budgets is needed to evaluate the ozone depletion potential of these compounds and to predict future changes of stratospheric ozone. However, the global budgets of methyl halides are not balanced between currently identified and quantified sources and sinks. Our study re-evaluated the methyl bromide budget from global cultivated rapeseed (Brassica napus) through life-cycle flux measurements both in the greenhouse and in the field, yielding a methyl bromide emission rate that scales globally to 1.0 - 1.2 Gg yr-1. While this indicates a globally significant source, it is much smaller than the previously widely cited value of 5 - 6 Gg yr-1(Mead et al., 2008), even taking into account the near tripling of annual global yield of rapeseed since the previous evaluation was conducted. Our study also evaluated the methyl chloride and methyl iodide emission levels from rapeseed, yielding emission rates that scale to 5.4 Gg yr-1 for methyl chloride and 1.8 Gg yr-1 of methyl iodide. The concentrations of the methyl donor SAM (S-adenosyl methionine) and the resultant product SAH (S-Adenosyl-L-homocysteine) were also analyzed to explore their role in biogenic methyl halide formation. Halide gradient incubations showed that the magnitude of methyl halide emissions from rapeseed is highly correlated to soil halide levels, thus raising the concern that the heterogeneity of soil halide contents geographically should be considered when extrapolating to global budget.

  6. A Climate Data Record (CDR) for the global terrestrial water budget: 1984-2010

    Science.gov (United States)

    Zhang, Yu; Pan, Ming; Sheffield, Justin; Siemann, Amanda L.; Fisher, Colby K.; Liang, Miaoling; Beck, Hylke E.; Wanders, Niko; MacCracken, Rosalyn F.; Houser, Paul R.; Zhou, Tian; Lettenmaier, Dennis P.; Pinker, Rachel T.; Bytheway, Janice; Kummerow, Christian D.; Wood, Eric F.

    2018-01-01

    Closing the terrestrial water budget is necessary to provide consistent estimates of budget components for understanding water resources and changes over time. Given the lack of in situ observations of budget components at anything but local scale, merging information from multiple data sources (e.g., in situ observation, satellite remote sensing, land surface model, and reanalysis) through data assimilation techniques that optimize the estimation of fluxes is a promising approach. Conditioned on the current limited data availability, a systematic method is developed to optimally combine multiple available data sources for precipitation (P), evapotranspiration (ET), runoff (R), and the total water storage change (TWSC) at 0.5° spatial resolution globally and to obtain water budget closure (i.e., to enforce P - ET - R - TWSC = 0) through a constrained Kalman filter (CKF) data assimilation technique under the assumption that the deviation from the ensemble mean of all data sources for the same budget variable is used as a proxy of the uncertainty in individual water budget variables. The resulting long-term (1984-2010), monthly 0.5° resolution global terrestrial water cycle Climate Data Record (CDR) data set is developed under the auspices of the National Aeronautics and Space Administration (NASA) Earth System Data Records (ESDRs) program. This data set serves to bridge the gap between sparsely gauged regions and the regions with sufficient in situ observations in investigating the temporal and spatial variability in the terrestrial hydrology at multiple scales. The CDR created in this study is validated against in situ measurements like river discharge from the Global Runoff Data Centre (GRDC) and the United States Geological Survey (USGS), and ET from FLUXNET. The data set is shown to be reliable and can serve the scientific community in understanding historical climate variability in water cycle fluxes and stores, benchmarking the current climate, and

  7. Determine Daytime Earth's Radiation Budget from DSCOVR

    Science.gov (United States)

    Su, W.; Thieman, M. M.; Duda, D. P.; Khlopenkov, K. V.; Liang, L.; Sun-Mack, S.; Minnis, P.; SUN, M.

    2017-12-01

    The Deep Space Climate Observatory (DSCOVR) platform provides a unique perspective for remote sensing of the Earth. With the National Institute of Standards and Technology Advanced Radiometer (NISTAR) and the Earth Polychromatic Imaging Camera (EPIC) onboard, it provides full-disk measurements of the broadband shortwave and total radiances reaching the L1 position. Because the satellite orbits around the L1 spot, it continuously observes a nearly full Earth, providing the potential to determine the daytime radiation budget of the globe at the top of the atmosphere. The NISTAR is a single-pixel instrument that measures the broadband radiance from the entire globe, while EPIC is a spectral imager with channels in the UV and visible ranges. The Level 1 NISTAR shortwave radiances are filtered radiances. To determine the daytime TOA shortwave and longwave radiative fluxes, the NISTAR measured shortwave radiances must be unfiltered first. We will describe the algorithm used to un-filter the shortwave radiances. These unfiltered NISTAR radiances are then converted to the full disk shortwave and daytime longwave fluxes, by accounting for the anisotropic characteristics of the Earth-reflected and emitted radiances. These anisotropy factors are determined by using the scene identifications determined from multiple low Earth orbit and geostationary satellites matched into the EPIC field of view. Time series of daytime radiation budget determined from NISTAR will be presented, and methodology of estimating the fluxes from the small unlit crescent of the Earth that comprises part of the field of view will also be described. The daytime shortwave and longwave fluxes from NISTAR will be compared with CERES dataset.

  8. Surface radiation budget in the Clouds and the Earth's Radiant Energy System (CERES) effort and in the Global Energy and Water Cycle Experiment (GEWEX)

    Science.gov (United States)

    Charlock, Thomas P.; Smith, G. L.; Rose, Fred G.

    1990-01-01

    The surface radiation budget (SRB) and the atmospheric radiative flux divergence (ARD) are vital components of the weather and climate system. The importance of radiation in a complex international scientific endeavor, the GEWEX of the World Climate Research Programme is explained. The radiative transfer techniques and satellite instrumentation that will be used to retrieve the SRB and ARD later in this decade with the CERES are discussed; CERES is a component of the Earth Observing System satellite program. Examples of consistent SRB and ARD retrievals made with Nimbus-7 and International Satellite Cloud Climatology Project data from July 1983 are presented.

  9. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    Science.gov (United States)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  10. A radiometric model of an earth radiation budget radiometer optical system with diffuse-specular surfaces

    Science.gov (United States)

    Luther, M. R.

    1981-01-01

    The Earth Radiation Budget Experiment (ERBE) is to fly on NASA's Earth Radiation Budget Satellite (ERBS) and on NOAA F and NOAA G. Large spatial scale earth energy budget data will be derived primarily from measurements made by the ERBE nonscanning instrument (ERBE-NS). A description is given of a mathematical model capable of simulating the radiometric response of any of the ERBE-NS earth viewing channels. The model uses a Monte Carlo method to accurately account for directional distributions of emission and reflection from optical surfaces which are neither strictly diffuse nor strictly specular. The model computes radiation exchange factors among optical system components, and determines the distribution in the optical system of energy from an outside source. Attention is also given to an approach for implementing the model and results obtained from the implementation.

  11. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  12. Observational evidence for the impact of jet condensation trails upon the earths radiation budget

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1997-12-31

    Jet condensation trails have been classified in AVHRR images from a couple of month. It was tried to estimate their impact upon the radiation budget from the observed radiances. This has been performed by direct comparison of contrail image points to neighboring image points, assuming a slowly varying background. The classification method, basing on an artificial neural network for pattern recognition is explained. The details of the estimation of the net impact of contrails upon the radiation budget are shown by one example. (author) 5 refs.

  13. Observational evidence for the impact of jet condensation trails upon the earths radiation budget

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, D [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    1998-12-31

    Jet condensation trails have been classified in AVHRR images from a couple of month. It was tried to estimate their impact upon the radiation budget from the observed radiances. This has been performed by direct comparison of contrail image points to neighboring image points, assuming a slowly varying background. The classification method, basing on an artificial neural network for pattern recognition is explained. The details of the estimation of the net impact of contrails upon the radiation budget are shown by one example. (author) 5 refs.

  14. Cumulative carbon emissions budgets consistent with 1.5 °C global warming

    Science.gov (United States)

    Tokarska, Katarzyna B.; Gillett, Nathan P.

    2018-04-01

    The Paris Agreement1 commits ratifying parties to pursue efforts to limit the global temperature increase to 1.5 °C relative to pre-industrial levels. Carbon budgets2-5 consistent with remaining below 1.5 °C warming, reported in the IPCC Fifth Assessment Report (AR5)2,6,8, are directly based on Earth system model (Coupled Model Intercomparison Project Phase 5)7 responses, which, on average, warm more than observations in response to historical CO2 emissions and other forcings8,9. These models indicate a median remaining budget of 55 PgC (ref. 10, base period: year 1870) left to emit from January 2016, the equivalent to approximately five years of emissions at the 2015 rate11,12. Here we calculate warming and carbon budgets relative to the decade 2006-2015, which eliminates model-observation differences in the climate-carbon response over the historical period9, and increases the median remaining carbon budget to 208 PgC (33-66% range of 130-255 PgC) from January 2016 (with mean warming of 0.89 °C for 2006-2015 relative to 1861-188013-18). There is little sensitivity to the observational data set used to infer warming that has occurred, and no significant dependence on the choice of emissions scenario. Thus, although limiting median projected global warming to below 1.5 °C is undoubtedly challenging19-21, our results indicate it is not impossible, as might be inferred from the IPCC AR5 carbon budgets2,8.

  15. Estimating the daily global solar radiation spatial distribution from diurnal temperature ranges over the Tibetan Plateau in China

    International Nuclear Information System (INIS)

    Pan, Tao; Wu, Shaohong; Dai, Erfu; Liu, Yujie

    2013-01-01

    Highlights: ► Bristow–Campbell model was calibrated and validated over the Tibetan Plateau. ► Develop a simple method to rasterise the daily global solar radiation and get gridded information. ► The daily global solar radiation spatial distribution over the Tibetan Plateau was estimated. - Abstract: Daily global solar radiation is fundamental to most ecological and biophysical processes because it plays a key role in the local and global energy budget. However, gridded information about the spatial distribution of solar radiation is limited. This study aims to parameterise the Bristow–Campbell model for the daily global solar radiation estimation in the Tibetan Plateau and propose a method to rasterise the daily global solar radiation. Observed daily solar radiation and diurnal temperature data from eleven stations over the Tibetan Plateau during 1971–2010 were used to calibrate and validate the Bristow–Campbell radiation model. The extra-terrestrial radiation and clear sky atmospheric transmittance were calculated on a Geographic Information System (GIS) platform. Results show that the Bristow–Campbell model performs well after adjusting the parameters, the average Pearson’s correlation coefficients (r), Nash–Sutcliffe equation (NSE), ratio of the root mean square error to the standard deviation of measured data (RSR), and root mean-square error (RMSE) of 11 stations are 0.85, 2.81 MJ m −2 day −1 , 0.3 and 0.77 respectively. Gridded maximum and minimum average temperature data were obtained using Parameter-elevation Regressions on Independent Slopes Model (PRISM) and validated by the Chinese Ecosystem Research Network (CERN) stations’ data. The spatial daily global solar radiation distribution pattern was estimated and analysed by combining the solar radiation model (Bristow–Campbell model) and meteorological interpolation model (PRISM). Based on the overall results, it can be concluded that a calibrated Bristow–Campbell performs well

  16. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming

    International Nuclear Information System (INIS)

    Rogelj, Joeri; Riahi, Keywan; Meinshausen, Malte; Schaeffer, Michiel; Knutti, Reto

    2015-01-01

    Limiting global warming to any level requires limiting the total amount of CO 2 emissions, or staying within a CO 2 budget. Here we assess how emissions from short-lived non-CO 2 species like methane, hydrofluorocarbons (HFCs), black-carbon, and sulphates influence these CO 2 budgets. Our default case, which assumes mitigation in all sectors and of all gases, results in a CO 2 budget between 2011–2100 of 340 PgC for a >66% chance of staying below 2°C, consistent with the assessment of the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Extreme variations of air-pollutant emissions from black-carbon and sulphates influence this budget by about ±5%. In the hypothetical case of no methane or HFCs mitigation—which is unlikely when CO 2 is stringently reduced—the budgets would be much smaller (40% or up to 60%, respectively). However, assuming very stringent CH 4 mitigation as a sensitivity case, CO 2 budgets could be 25% higher. A limit on cumulative CO 2 emissions remains critical for temperature targets. Even a 25% higher CO 2 budget still means peaking global emissions in the next two decades, and achieving net zero CO 2 emissions during the third quarter of the 21st century. The leverage we have to affect the CO 2 budget by targeting non-CO 2 diminishes strongly along with CO 2 mitigation, because these are partly linked through economic and technological factors. (letter)

  17. Global Health in Radiation Oncology

    DEFF Research Database (Denmark)

    Rodin, Danielle; Yap, Mei Ling; Grover, Surbhi

    2017-01-01

    programs. However, formalized training and career promotion tracks in global health within radiation oncology have been slow to emerge, thereby limiting the sustained involvement of students and faculty, and restricting opportunities for leadership in this space. We examine here potential structures...... and benefits of formalized global health training in radiation oncology. We explore how defining specific competencies in this area can help trainees and practitioners integrate their activities in global health within their existing roles as clinicians, educators, or scientists. This would also help create...... and funding models might be used to further develop and expand radiation oncology services globally....

  18. A mathematical correlation between variations in solar radiation parameters - I: Daily sums of global radiation and midday global radiation

    International Nuclear Information System (INIS)

    Njau, E.C.

    1987-11-01

    An equation that simply relates variations in the daily sums of global radiation and the corresponding midday global radiation data over an arbitrarily chosen location on the Earth is derived from first principles. Although this equation is specifically tailored for periods incorporating only cloudless days, it is modified slightly in order also to suit any period that incorporates either cloudless days or consistently cloudy days or days characterised by consistently distributed cloud patches or any combination of these. Global radiation data for Dar es Salaam, Tanzania, calculated on the basis of the slightly modified version of the equation mentioned above agree with actual measurements to at least 89% if each of the days involved is either fairly cloudless or consistently cloudy or is characterised by fairly consistent cloud patches from sunrise to sunset. This clearly demonstrates that it is quite possible to work out reasonable estimates of the overall global radiation incident on a given area using only the corresponding midday global radiation data for that particular area. (author). 6 refs, 1 fig, 3 tabs

  19. An audit of the global carbon budget: identifying and reducing sources of uncertainty

    Science.gov (United States)

    Ballantyne, A. P.; Tans, P. P.; Marland, G.; Stocker, B. D.

    2012-12-01

    Uncertainties in our carbon accounting practices may limit our ability to objectively verify emission reductions on regional scales. Furthermore uncertainties in the global C budget must be reduced to benchmark Earth System Models that incorporate carbon-climate interactions. Here we present an audit of the global C budget where we try to identify sources of uncertainty for major terms in the global C budget. The atmospheric growth rate of CO2 has increased significantly over the last 50 years, while the uncertainty in calculating the global atmospheric growth rate has been reduced from 0.4 ppm/yr to 0.2 ppm/yr (95% confidence). Although we have greatly reduced global CO2 growth rate uncertainties, there remain regions, such as the Southern Hemisphere, Tropics and Arctic, where changes in regional sources/sinks will remain difficult to detect without additional observations. Increases in fossil fuel (FF) emissions are the primary factor driving the increase in global CO2 growth rate; however, our confidence in FF emission estimates has actually gone down. Based on a comparison of multiple estimates, FF emissions have increased from 2.45 ± 0.12 PgC/yr in 1959 to 9.40 ± 0.66 PgC/yr in 2010. Major sources of increasing FF emission uncertainty are increased emissions from emerging economies, such as China and India, as well as subtle differences in accounting practices. Lastly, we evaluate emission estimates from Land Use Change (LUC). Although relative errors in emission estimates from LUC are quite high (2 sigma ~ 50%), LUC emissions have remained fairly constant in recent decades. We evaluate the three commonly used approaches to estimating LUC emissions- Bookkeeping, Satellite Imagery, and Model Simulations- to identify their main sources of error and their ability to detect net emissions from LUC.; Uncertainties in Fossil Fuel Emissions over the last 50 years.

  20. A Predictor Analysis Framework for Surface Radiation Budget Reprocessing Using Design of Experiments

    Science.gov (United States)

    Quigley, Patricia Allison

    Earth's Radiation Budget (ERB) is an accounting of all incoming energy from the sun and outgoing energy reflected and radiated to space by earth's surface and atmosphere. The National Aeronautics and Space Administration (NASA)/Global Energy and Water Cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project produces and archives long-term datasets representative of this energy exchange system on a global scale. The data are comprised of the longwave and shortwave radiative components of the system and is algorithmically derived from satellite and atmospheric assimilation products, and acquired atmospheric data. It is stored as 3-hourly, daily, monthly/3-hourly, and monthly averages of 1° x 1° grid cells. Input parameters used by the algorithms are a key source of variability in the resulting output data sets. Sensitivity studies have been conducted to estimate the effects this variability has on the output data sets using linear techniques. This entails varying one input parameter at a time while keeping all others constant or by increasing all input parameters by equal random percentages, in effect changing input values for every cell for every three hour period and for every day in each month. This equates to almost 11 million independent changes without ever taking into consideration the interactions or dependencies among the input parameters. A more comprehensive method is proposed here for the evaluating the shortwave algorithm to identify both the input parameters and parameter interactions that most significantly affect the output data. This research utilized designed experiments that systematically and simultaneously varied all of the input parameters of the shortwave algorithm. A D-Optimal design of experiments (DOE) was chosen to accommodate the 14 types of atmospheric properties computed by the algorithm and to reduce the number of trials required by a full factorial study from millions to 128. A modified version of the algorithm was made

  1. Mangrove production and carbon sinks: A revision of global budget estimates

    Science.gov (United States)

    Bouillon, S.; Borges, A.V.; Castaneda-Moya, E.; Diele, K.; Dittmar, T.; Duke, N.C.; Kristensen, E.; Lee, S.-Y.; Marchand, C.; Middelburg, J.J.; Rivera-Monroy, V. H.; Smith, T. J.; Twilley, R.R.

    2008-01-01

    Mangrove forests are highly productive but globally threatened coastal ecosystems, whose role in the carbon budget of the coastal zone has long been debated. Here we provide a comprehensive synthesis of the available data on carbon fluxes in mangrove ecosystems. A reassessment of global mangrove primary production from the literature results in a conservative estimate of ???-218 ?? 72 Tg C a-1. When using the best available estimates of various carbon sinks (organic carbon export, sediment burial, and mineralization), it appears that >50% of the carbon fixed by mangrove vegetation is unaccounted for. This unaccounted carbon sink is conservatively estimated at ??? 112 ?? 85 Tg C a-1, equivalent in magnitude to ??? 30-40% of the global riverine organic carbon input to the coastal zone. Our analysis suggests that mineralization is severely underestimated, and that the majority of carbon export from mangroves to adjacent waters occurs as dissolved inorganic carbon (DIC). CO2 efflux from sediments and creek waters and tidal export of DIC appear to be the major sinks. These processes are quantitatively comparable in magnitude to the unaccounted carbon sink in current budgets, but are not yet adequately constrained with the limited published data available so far. Copyright 2008 by the American Geophysical Union.

  2. The carbon-budget approach to climate stabilization: Costeffective subglobal versus global action

    OpenAIRE

    Eichner, Thomas; Pethig, Rüdiger

    2010-01-01

    Scientific expertise suggests that mitigating extreme world-wide climate change damages requires avoiding increases in the world mean temperature exceeding 2ê Celsius. To achieve the two degree target, the cumulated global emissions must not exceed some limit, the so-called global carbon budget. In a two-period twocountry general equilibrium model with a finite stock of fossil fuels we compare the cooperative cost-effective policy with the unilateral cost-effective policy of restricting emiss...

  3. Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect

    Science.gov (United States)

    Yi, Bingqi; Yang, Ping; Baum, Bryan A.; LEcuyer, Tristan; Oreopoulos, Lazaros; Mlawer, Eli J.; Heymsfield, Andrew J.; Liou, Kuo-Nan

    2013-01-01

    Ice clouds influence the climate system by changing the radiation budget and large-scale circulation. Therefore, climate models need to have an accurate representation of ice clouds and their radiative effects. In this paper, new broadband parameterizations for ice cloud bulk scattering properties are developed for severely roughened ice particles. The parameterizations are based on a general habit mixture that includes nine habits (droxtals, hollow/solid columns, plates, solid/hollow bullet rosettes, aggregate of solid columns, and small/large aggregates of plates). The scattering properties for these individual habits incorporate recent advances in light-scattering computations. The influence of ice particle surface roughness on the ice cloud radiative effect is determined through simulations with the Fu-Liou and the GCM version of the Rapid Radiative Transfer Model (RRTMG) codes and the National Center for Atmospheric Research Community Atmosphere Model (CAM, version 5.1). The differences in shortwave (SW) and longwave (LW) radiative effect at both the top of the atmosphere and the surface are determined for smooth and severely roughened ice particles. While the influence of particle roughening on the single-scattering properties is negligible in the LW, the results indicate that ice crystal roughness can change the SW forcing locally by more than 10 W m(exp -2) over a range of effective diameters. The global-averaged SW cloud radiative effect due to ice particle surface roughness is estimated to be roughly 1-2 W m(exp -2). The CAM results indicate that ice particle roughening can result in a large regional SW radiative effect and a small but nonnegligible increase in the global LW cloud radiative effect.

  4. The global and UV-B radiation over Egypt

    OpenAIRE

    BASSET, H. A.; KORANY, M. H.

    2007-01-01

    This work studies the relation between UV-B radiation and global radiation over Egypt. The relationships between the global solar radiation and UV-B radiation at four stations in Egypt have been studied, and linear empirical formulas for estimating UV-B from global radiation at these stations has been deduced. The deduced equations were applied to calculate the UV-B radiation for other stations where measurements were unavailable, using records of global radiation at these stations. Because o...

  5. Radiation budget, soil heat flux and latent heat flux at the forest floor in warm, temperate mixed forest

    International Nuclear Information System (INIS)

    Tamai, K.; Abe, T.; Araki, M.; Ito, H.

    1998-01-01

    Seasonal changes in the radiation budget and soil heat flux of a forest floor were measured in a mixed forest located in Kyoto, Japan. The basal area at breast height in the survey forest was about 15·82 m 2 ha −1 , for evergreen trees, and 12·46 m 2 ha −1 , for deciduous trees. The sky view factor was 16 and 22% at the survey site in the foliate and defoliate seasons, respectively. The small difference between the sky view factor in the two seasons was reflected in the seasonal change in the radiation budget of the forest floor. Namely, the net long-wave radiation changed rapidly in leafing and falling days, and the rate of net short-wave radiation was highest in April. The distinctive characteristic of the radiation budget was that the rates of available radiation in the daytime and at night were almost equal in September and October. Latent heat flux at the forest floor was estimated to be around 94 MJ m −2 annually, from our measurement with the simulation model. (author)

  6. Simulated effects of nitrogen saturation the global carbon budget using the IBIS model

    Science.gov (United States)

    Lu, Xuehe; Jiang, Hong; Liu, Jinxun; Zhang, Xiuying; Jin, Jiaxin; Zhu, Qiuan; Zhang, Zhen; Peng, Changhui

    2016-01-01

    Over the past 100 years, human activity has greatly changed the rate of atmospheric N (nitrogen) deposition in terrestrial ecosystems, resulting in N saturation in some regions of the world. The contribution of N saturation to the global carbon budget remains uncertain due to the complicated nature of C-N (carbon-nitrogen) interactions and diverse geography. Although N deposition is included in most terrestrial ecosystem models, the effect of N saturation is frequently overlooked. In this study, the IBIS (Integrated BIosphere Simulator) was used to simulate the global-scale effects of N saturation during the period 1961–2009. The results of this model indicate that N saturation reduced global NPP (Net Primary Productivity) and NEP (Net Ecosystem Productivity) by 0.26 and 0.03 Pg C yr−1, respectively. The negative effects of N saturation on carbon sequestration occurred primarily in temperate forests and grasslands. In response to elevated CO2 levels, global N turnover slowed due to increased biomass growth, resulting in a decline in soil mineral N. These changes in N cycling reduced the impact of N saturation on the global carbon budget. However, elevated N deposition in certain regions may further alter N saturation and C-N coupling.

  7. High spatial resolution radiation budget for Europe: derived from satellite data, validation of a regional model; Raeumlich hochaufgeloeste Strahlungsbilanz ueber Europa: Ableitung aus Satellitendaten, Validation eines regionalen Modells

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2000-07-01

    Since forty years instruments onboard satellites have been demonstrated their usefulness for many applications in the field of meteorology and oceanography. Several experiments, like ERBE, are dedicated to establish a climatology of the global Earth radiation budget at the top of the atmosphere. Now the focus has been changed to the regional scale, e.g. GEWEX with its regional sub-experiments like BALTEX. To obtain a regional radiation budget for Europe in the first part of the work the well calibrated measurements from ScaRaB (scanner for radiation budget) are used to derive a narrow-to-broadband conversion, which is applicable to the AVHRR (advanced very high resolution radiometer). It is shown, that the accuracy of the method is in the order of that from SCaRaB itself. In the second part of the work, results of REMO have been compared with measurements of ScaRaB and AVHRR for March 1994. The model reproduces the measurements overall well, but it is overestimating the cold areas and underestimating the warm areas in the longwave spectral domain. Similarly it is overestimating the dark areas and underestimating the bright areas in the solar spectral domain. (orig.)

  8. Nimbus-7 Earth radiation budget calibration history. Part 2: The Earth flux channels

    Science.gov (United States)

    Kyle, H. Lee; Hucek, Douglas Richard R.; Ardanuy, Philip E.; Hickey, John R.; Maschhoff, Robert H.; Penn, Lanning M.; Groveman, Brian S.; Vallette, Brenda J.

    1994-01-01

    Nine years (November 1978 to October 1987) of Nimbus-7 Earth radiation budget (ERB) products have shown that the global annual mean emitted longwave, absorbed shortwave, and net radiation were constant to within about + 0.5 W/sq m. Further, most of the small annual variations in the emitted longwave have been shown to be real. To obtain this measurement accuracy, the wide-field-of-view (WFOV) Earth-viewing channels 12 (0.2 to over 50 micrometers), 13 (0.2 to 3.8 micrometers), and 14 (0.7 to 2.8 micrometers) have been characterized in their satellite environment to account for signal variations not considered in the prelaunch calibration equations. Calibration adjustments have been derived for (1) extraterrestrial radiation incident on the detectors, (2) long-term degradation of the sensors, and (3) thermal perturbations within the ERB instrument. The first item is important in all the channels; the second, mainly in channels 13 and 14, and the third, only in channels 13 and 14. The Sun is used as a stable calibration source to monitor the long-term degradation of the various channels. Channel 12, which is reasonably stable to both thermal perturbations and sensor degradation, is used as a reference and calibration transfer agent for the drifting sensitivities of the filtered channels 13 and 14. Redundant calibration procedures were utilized. Laboratory studies complemented analyses of the satellite data. Two nearly independent models were derived to account for the thermal perturbations in channels 13 and 14. The global annual mean terrestrial shortwave and longwave signals proved stable enough to act as secondary calibration sources. Instantaneous measurements may still, at times, be in error by as much as a few Wm(exp -2), but the long-term averages are stable to within a fraction of a Wm(exp -2).

  9. On the spectral composition of global radiation

    Energy Technology Data Exchange (ETDEWEB)

    Major, G

    1983-01-01

    The global radiation is recorded at several stations on the Earth. The information about its spectral composition is poor. In this paper the spectral composition means the ratio of spectral global radiation measured by coloured glass filter domes to the total global radiation. From the measuements made by Klein and Goldberg it follows that the monthly ratios vary significantly from place to place, while the variations from month to month at one place are significant only at the station which lies near to the North Pole. The Budapest data proved the dominant effect of cloudiness on the spectral composition of global radiation. This effect is in good statistical relationship with the relative global radiation. The regression constant tabulated in this paper do not contain the error of zero point elevation which is due to the overheating of glass filters by the absorbed solar radiation.

  10. The carbon-budget approach to climate stabilization: Cost-effective subglobal versus global action

    OpenAIRE

    Eichner, Thomas; Pethig, Rüdiger

    2010-01-01

    Scientific expertise suggests that mitigating extreme world-wide climate change damages requires avoiding increases in the world mean temperature exceeding 2 degrees Celsius. To achieve the two degree target, the cumulated global emissions must not exceed some limit, the so-called global carbon budget. In a two-period two country general equilibrium model with a finite stock of fossil fuels we compare the cooperative cost-effective policy with the unilateral cost-effective policy of restricti...

  11. Urban Surface Radiative Energy Budgets Determined Using Aircraft Scanner Data

    Science.gov (United States)

    Luvall, Jeffrey C.; Quattrochi, Dale A.; Rickman, Doug L.; Estes, Maury G.; Arnold, James E. (Technical Monitor)

    2002-01-01

    the surface energy budget. Knowledge of it is important in any attempt to describe the radiative and mass fluxes which occur at the surface. Use of energy terms in modeling surface energy budgets allows the direct comparison of various land surfaces encountered in a urban landscape, from vegetated (forest and herbaceous) to non-vegetated (bare soil, roads, and buildings). These terms are also easily measured using remote sensing from aircraft or satellite platforms allowing one to examine the spacial variability. The partitioning of energy budget terms depends on the surface type. In natural landscapes, the partitioning is dependent on canopy biomass, leaf area index, aerodynamic roughness, and moisture status, all of which are influenced by the development stage of the ecosystem. In urban landscapes, coverage by man-made materials substantially alters the surface face energy budget. The remotely sensed data obtained from aircraft and satellites, when properly calibrated allows the measurement of important terms in the radiative surface energy budget a urban landscape scale.

  12. Estimation of diffuse from measured global solar radiation

    International Nuclear Information System (INIS)

    Moriarty, W.W.

    1991-01-01

    A data set of quality controlled radiation observations from stations scattered throughout Australia was formed and further screened to remove residual doubtful observations. It was then divided into groups by solar elevation, and used to find average relationships for each elevation group between relative global radiation (clearness index - the measured global radiation expressed as a proportion of the radiation on a horizontal surface at the top of the atmosphere) and relative diffuse radiation. Clear-cut relationships were found, which were then fitted by polynomial expressions giving the relative diffuse radiation as a function of relative global radiation and solar elevation. When these expressions were used to estimate the diffuse radiation from the global, the results had a slightly smaller spread of errors than those from an earlier technique given by Spencer. It was found that the errors were related to cloud amount, and further relationships were developed giving the errors as functions of global radiation, solar elevation, and the fraction of sky obscured by high cloud and by opaque (low and middle level) cloud. When these relationships were used to adjust the first estimates of diffuse radiation, there was a considerable reduction in the number of large errors

  13. Radiations in space and global environment

    International Nuclear Information System (INIS)

    Oguti, Takasi

    1994-01-01

    It has been well known that the global environment of the earth is basically determined by the radiation equilibrium of the earth atmosphere system embedded in the solar radiation. However, the surface temperature of about 15 degC on average is much higher than that determined by the radiation equilibrium. This is due to the so-called greenhouse gases in the atmosphere such as carbon dioxide, water vapor, methane and others. Also the global environment has evolved by interacting with the living things on the earth, for example, tree oxygen by photosynthesis, and a small amount of ozone protecting living things from the fetal damage due to solar ultraviolet radiation. The solar radiation of short wavelength, that is, ultraviolet to X-ray influences atmospheric constituents, and the thermal structure and dynamics of the atmosphere through chemical reaction. The solar energetic particles produced by solar flares precipitate in the polar regions, and the nitric oxides are produced by auroral X-ray. Auroral activities accelerate particles in the magnetosphere. All these radiations cause significant global changes. Human activities increase greenhouse gases rapidly and cause global warming, and atmospheric chloro-fluoro-carbon (CFC) makes the ozone hole. Now, human activities must be modified to match the natural cycle of materials. (K.I.)

  14. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    Science.gov (United States)

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  15. Organic carbon burial rates in mangrove sediments: Strengthening the global budget

    Science.gov (United States)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-09-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10-15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8-15% of all OC burial in marine settings occurs in mangrove systems.

  16. Radiation Budget Instrument (RBI) for JPSS-2

    Science.gov (United States)

    Georgieva, Elena; Priestley, Kory; Dunn, Barry; Cageao, Richard; Barki, Anum; Osmundsen, Jim; Turczynski, Craig; Abedin, Nurul

    2015-01-01

    Radiation Budget Instrument (RBI) will be one of five instruments flying aboard the JPSS-2 spacecraft, a polar-orbiting sun-synchronous satellite in Low Earth Orbit. RBI is a passive remote sensing instrument that will follow the successful legacy of the Clouds and Earth's Radiant Energy System (CERES) instruments to make measurement of Earth's short and longwave radiation budget. The goal of RBI is to provide an independent measurement of the broadband reflected solar radiance and Earth's emitted thermal radiance by using three spectral bands (Shortwave, Longwave, and Total) that will have the same overlapped point spread function (PSF) footprint on Earth. To ensure precise NIST-traceable calibration in space the RBI sensor is designed to use a visible calibration target (VCT), a solar calibration target (SCT), and an infrared calibration target (ICT) containing phase change cells (PCC) to enable on-board temperature calibration. The VCT is a thermally controlled integrating sphere with space grade Spectralon covering the inner surface. Two sides of the sphere will have fiber-coupled laser diodes in the UV to IR wavelength region. An electrical substitution radiometer on the integrating sphere will monitor the long term stability of the sources and the possible degradation of the Spectralon in space. In addition the radiometric calibration operations will use the Spectralon diffusers of the SCT to provide accurate measurements of Solar degradation. All those stable on-orbit references will ensure that calibration stability is maintained over the RBI sensor lifetime. For the preflight calibration the RBI will view five calibration sources - two integrating spheres and three CrIS (Cross-track Infrared Sounder ) -like blackbodies whose outputs will be validated with NIST calibration approach. Thermopile are the selected detectors for the RBI. The sensor has a requirement to perform lunar calibration in addition to solar calibration in space in a way similar to CERES

  17. Radiative transfer model for estimation of global solar radiation; Modelo de transferencia radiativa para la estimacion de la radiacion solar global

    Energy Technology Data Exchange (ETDEWEB)

    Pettazzi, A.; Sabon, C. S.; Souto, G. J. A.

    2004-07-01

    In this work, the efficiency of a radiative transfer model in estimating the annual solar global radiation has been evaluated, over different locations at Galicia, Spain, in clear sky periods. Due to its quantitative significance, special attention has been focused on the analysis of the influence of visibility over the global radiation. By comparison of both estimated and measured global solar radiation along year 2002, a typical annual visibility series was obtained over every location. These visibility values has been analysed in order to identify patterns and typical values, in order to be used to estimate the global solar radiation along a different year. Validation was done over the year 2003, obtaining an annual estimation less than 10 % different to the measured value. (Author)

  18. The radiation budget of stratocumulus clouds measured by tethered balloon instrumentation: Variability of flux measurements

    Science.gov (United States)

    Duda, David P.; Stephens, Graeme L.; Cox, Stephen K.

    1990-01-01

    Measurements of longwave and shortwave radiation were made using an instrument package on the NASA tethered balloon during the FIRE Marine Stratocumulus experiment. Radiation data from two pairs of pyranometers were used to obtain vertical profiles of the near-infrared and total solar fluxes through the boundary layer, while a pair of pyrgeometers supplied measurements of the longwave fluxes in the cloud layer. The radiation observations were analyzed to determine heating rates and to measure the radiative energy budget inside the stratocumulus clouds during several tethered balloon flights. The radiation fields in the cloud layer were also simulated by a two-stream radiative transfer model, which used cloud optical properties derived from microphysical measurements and Mie scattering theory.

  19. Commensurate comparisons of models with energy budget observations reveal consistent climate sensitivities

    Science.gov (United States)

    Armour, K.

    2017-12-01

    Global energy budget observations have been widely used to constrain the effective, or instantaneous climate sensitivity (ICS), producing median estimates around 2°C (Otto et al. 2013; Lewis & Curry 2015). A key question is whether the comprehensive climate models used to project future warming are consistent with these energy budget estimates of ICS. Yet, performing such comparisons has proven challenging. Within models, values of ICS robustly vary over time, as surface temperature patterns evolve with transient warming, and are generally smaller than the values of equilibrium climate sensitivity (ECS). Naively comparing values of ECS in CMIP5 models (median of about 3.4°C) to observation-based values of ICS has led to the suggestion that models are overly sensitive. This apparent discrepancy can partially be resolved by (i) comparing observation-based values of ICS to model values of ICS relevant for historical warming (Armour 2017; Proistosescu & Huybers 2017); (ii) taking into account the "efficacies" of non-CO2 radiative forcing agents (Marvel et al. 2015); and (iii) accounting for the sparseness of historical temperature observations and differences in sea-surface temperature and near-surface air temperature over the oceans (Richardson et al. 2016). Another potential source of discrepancy is a mismatch between observed and simulated surface temperature patterns over recent decades, due to either natural variability or model deficiencies in simulating historical warming patterns. The nature of the mismatch is such that simulated patterns can lead to more positive radiative feedbacks (higher ICS) relative to those engendered by observed patterns. The magnitude of this effect has not yet been addressed. Here we outline an approach to perform fully commensurate comparisons of climate models with global energy budget observations that take all of the above effects into account. We find that when apples-to-apples comparisons are made, values of ICS in models are

  20. Dose budget for exposure control

    International Nuclear Information System (INIS)

    Nair, P.S.

    1999-01-01

    Dose budget is an important management tool to effectively control the collective dose incurred in a nuclear facility. The budget represents a set of yardsticks or guidelines for use in controlling the internal activities, involving radiation exposure in the organisation. The management, through budget can evaluate the radiation protection performance at every level of the organisation where a number of independent functional groups work on routine and non-routine jobs. The discrepancy between the plan and the actual performance is high lighted through the budgets. The organisation may have to change the course of its operation in a particular area or revise its plan with due focus on appropriate protective measures. (author)

  1. Measurement of global solar radiation over Brunei Darussalam

    International Nuclear Information System (INIS)

    Malik, A.Q.; Ak Abd Malik Abd Raub Pg Ghani

    2006-01-01

    Measurements of global solar radiation on a horizontal surface were carried out for a period of 11 months starting from June 2001 to April 2002. The pyrano meter (Kipp and Zonen) was placed at the top of the library building of University of Brunei Darussalam, which affords optimum exposure to the instrument sensor without appreciable obstacle for incoming global radiation. The maximum and minimum monthly-averaged global irradiations of 553 W/m 2 and 433 W/m 2 were recorded for the months of March and October respectively. The variation of global solar radiation can be divided into two distinct groups - the low radiation values being associated with cloud and turbidity while the high values are associated with less turbid and cloudy periods

  2. User's guide: Nimbus-7 Earth radiation budget narrow-field-of-view products. Scene radiance tape products, sorting into angular bins products, and maximum likelihood cloud estimation products

    Science.gov (United States)

    Kyle, H. Lee; Hucek, Richard R.; Groveman, Brian; Frey, Richard

    1990-01-01

    The archived Earth radiation budget (ERB) products produced from the Nimbus-7 ERB narrow field-of-view scanner are described. The principal products are broadband outgoing longwave radiation (4.5 to 50 microns), reflected solar radiation (0.2 to 4.8 microns), and the net radiation. Daily and monthly averages are presented on a fixed global equal area (500 sq km), grid for the period May 1979 to May 1980. Two independent algorithms are used to estimate the outgoing fluxes from the observed radiances. The algorithms are described and the results compared. The products are divided into three subsets: the Scene Radiance Tapes (SRT) contain the calibrated radiances; the Sorting into Angular Bins (SAB) tape contains the SAB produced shortwave, longwave, and net radiation products; and the Maximum Likelihood Cloud Estimation (MLCE) tapes contain the MLCE products. The tape formats are described in detail.

  3. Toward Improving the Representation of Convection and Cloud-Radiation Interaction for Global Climate Simulations

    Science.gov (United States)

    Wu, X.; Song, X.; Deng, L.; Park, S.; Liang, X.; Zhang, G. J.

    2006-05-01

    Despite the significant progress made in developing general circulation models (GCMs), major uncertainties related to the parameterization of convection, cloud and radiation processes still remain. The current GCM credibility of seasonal-interannual climate predictions or climate change projections is limited. In particular, the following long-standing biases, common to most GCMs, need to be reduced: 1) over-prediction of high-level cloud amounts although GCMs realistically simulating the global radiation budget; 2) general failure to reproduce the seasonal variation and migration of the ITCZ precipitation; 3) incomplete representation of the Madden-Julian Oscillation (MJO); and 4) false production of an excessive cold tone of sea surface temperature across the Pacific basin and a double ITCZ structure in precipitation when the atmosphere and ocean are fully coupled. The development of cloud-resolving models (CRMs) provides a unique opportunity to address issues aimed to reduce these biases. The statistical analysis of CRM simulations together with the theoretical consideration of subgrid-scale processes will enable us to develop physically-based parameterization of convection, clouds, radiation and their interactions.

  4. NOAA-9 Earth Radiation Budget Experiment (ERBE) scanner offsets determination

    Science.gov (United States)

    Avis, Lee M.; Paden, Jack; Lee, Robert B., III; Pandey, Dhirendra K.; Stassi, Joseph C.; Wilson, Robert S.; Tolson, Carol J.; Bolden, William C.

    1994-01-01

    The Earth Radiation Budget Experiment (ERBE) instruments are designed to measure the components of the radiative exchange between the Sun, Earth and space. ERBE is comprised of three spacecraft, each carrying a nearly identical set of radiometers: a three-channel narrow-field-of-view scanner, a two-channel wide-field-of-view (limb-to-limb) non-scanning radiometer, a two-channel medium field-of view (1000 km) non-scanning radiometer, and a solar monitor. Ground testing showed the scanners to be susceptible to self-generated and externally generated electromagnetic noise. This paper describes the pre-launch corrective measures taken and the post-launch corrections to the NOAA-9 scanner data. The NOAA-9 scanner has met the mission objectives in accuracy and precision, in part because of the pre-launch reductions of and post-launch data corrections for the electromagnetic noise.

  5. Revisiting the contemporary sea-level budget on global and regional scales.

    Science.gov (United States)

    Rietbroek, Roelof; Brunnabend, Sandra-Esther; Kusche, Jürgen; Schröter, Jens; Dahle, Christoph

    2016-02-09

    Dividing the sea-level budget into contributions from ice sheets and glaciers, the water cycle, steric expansion, and crustal movement is challenging, especially on regional scales. Here, Gravity Recovery And Climate Experiment (GRACE) gravity observations and sea-level anomalies from altimetry are used in a joint inversion, ensuring a consistent decomposition of the global and regional sea-level rise budget. Over the years 2002-2014, we find a global mean steric trend of 1.38 ± 0.16 mm/y, compared with a total trend of 2.74 ± 0.58 mm/y. This is significantly larger than steric trends derived from in situ temperature/salinity profiles and models which range from 0.66 ± 0.2 to 0.94 ± 0.1 mm/y. Mass contributions from ice sheets and glaciers (1.37 ± 0.09 mm/y, accelerating with 0.03 ± 0.02 mm/y(2)) are offset by a negative hydrological component (-0.29 ± 0.26 mm/y). The combined mass rate (1.08 ± 0.3 mm/y) is smaller than previous GRACE estimates (up to 2 mm/y), but it is consistent with the sum of individual contributions (ice sheets, glaciers, and hydrology) found in literature. The altimetric sea-level budget is closed by coestimating a remaining component of 0.22 ± 0.26 mm/y. Well above average sea-level rise is found regionally near the Philippines (14.7 ± 4.39 mm/y) and Indonesia (8.3 ± 4.7 mm/y) which is dominated by steric components (11.2 ± 3.58 mm/y and 6.4 ± 3.18 mm/y, respectively). In contrast, in the central and Eastern part of the Pacific, negative steric trends (down to -2.8 ± 1.53 mm/y) are detected. Significant regional components are found, up to 5.3 ± 2.6 mm/y in the northwest Atlantic, which are likely due to ocean bottom pressure variations.

  6. Impacts of Climate Change and Land use Changes on Land Surface Radiation and Energy Budgets

    Science.gov (United States)

    Land surface radiation and energy budgets are critical to address a variety of scientific and application issues related to climate trends, weather predictions, hydrologic and biogeophysical modeling, and the monitoring of ecosystem health and agricultural crops. This is an introductory paper to t...

  7. Impact of biomass burning plume on radiation budget and atmospheric dynamics over the arctic

    Science.gov (United States)

    Lisok, Justyna; Pedersen, Jesper; Ritter, Christoph; Markowicz, Krzysztof M.; Malinowski, Szymon; Mazzola, Mauro; Udisti, Roberto; Stachlewska, Iwona S.

    2018-04-01

    The aim of the research was to determine the impact of July 2015 biomass burning event on radiative budget, atmospheric stratification and turbulence over the Arctic using information about the vertical structure of the aerosol load from the ground-based data. MODTRAN simulations indicated very high surface radiative cooling (forcing of -150 Wm-2) and a heating rate of up to 1.8 Kday-1 at 3 km. Regarding LES results, a turbulent layer at around 3 km was clearly seen after 48 h of simulation.

  8. Evaluation of global solar radiation models for Shanghai, China

    International Nuclear Information System (INIS)

    Yao, Wanxiang; Li, Zhengrong; Wang, Yuyan; Jiang, Fujian; Hu, Lingzhou

    2014-01-01

    Highlights: • 108 existing models are compared and analyzed by 42 years meteorological data. • Fitting models based on measured data are established according to 42 years data. • All models are compared by recently 10 years meteorological data. • The results show that polynomial models are the most accurate models. - Abstract: In this paper, 89 existing monthly average daily global solar radiation models and 19 existing daily global solar radiation models are compared and analyzed by 42 years meteorological data. The results show that for existing monthly average daily global solar radiation models, linear models and polynomial models have been able to estimate global solar radiation accurately, and complex equation types cannot obviously improve the precision. Considering direct parameters such as latitude, altitude, solar altitude and sunshine duration can help improve the accuracy of the models, but indirect parameters cannot. For existing daily global solar radiation models, multi-parameter models are more accurate than single-parameter models, polynomial models are more accurate than linear models. Then measured data fitting monthly average daily global solar radiation models (MADGSR models) and daily global solar radiation models (DGSR models) are established according to 42 years meteorological data. Finally, existing models and fitting models based on measured data are comparative analysis by recent 10 years meteorological data, and the results show that polynomial models (MADGSR model 2, DGSR model 2 and Maduekwe model 2) are the most accurate models

  9. Revisiting global mean sea level budget closure : Preliminary results from an integrative study within ESA's Climate Change Initiative -Sea level Budget Closure-Climate Change Initiative

    Science.gov (United States)

    Palanisamy, H.; Cazenave, A. A.

    2017-12-01

    The global mean sea level budget is revisited over two time periods: the entire altimetry era, 1993-2015 and the Argo/GRACE era, 2003-2015 using the version '0' of sea level components estimated by the SLBC-CCI teams. The SLBC-CCI is an European Space Agency's project on sea level budget closure using CCI products. Over the entire altimetry era, the sea level budget was performed as the sum of steric and mass components that include contributions from total land water storage, glaciers, ice sheets (Greenland and Antarctica) and total water vapor content. Over the Argo/GRACE era, it was performed as the sum of steric and GRACE based ocean mass. Preliminary budget analysis performed over the altimetry era (1993-2015) results in a trend value of 2.83 mm/yr. On comparison with the observed altimetry-based global mean sea level trend over the same period (3.03 ± 0.5 mm/yr), we obtain a residual of 0.2 mm/yr. In spite of a residual of 0.2 mm/yr, the sea level budget result obtained over the altimetry era is very promising as this has been performed using the version '0' of the sea level components. Furthermore, uncertainties are not yet included in this study as uncertainty estimation for each sea level component is currently underway. Over the Argo/GRACE era (2003-2015), the trend estimated from the sum of steric and GRACE ocean mass amounts to 2.63 mm/yr while that observed by satellite altimetry is 3.37 mm/yr, thereby leaving a residual of 0.7 mm/yr. Here an ensemble GRACE ocean mass data (mean of various available GRACE ocean mass data) was used for the estimation. Using individual GRACE data results in a residual range of 0.5 mm/yr -1.1 mm/yr. Investigations are under way to determine the cause of the vast difference between the observed sea level and the sea level obtained from steric and GRACE ocean mass. One main suspect is the impact of GRACE data gaps on sea level budget analysis due to lack of GRACE data over several months since 2011. The current action plan

  10. Measurements of integrated direct, diffuse and global ultraviolet-B radiation

    International Nuclear Information System (INIS)

    Utrillas, M.P.; Pedrós, R.; Gandía, S.; Gómez-Amo, J.L.; Estellés, V.; Martínez-Lozano, J.A.

    2015-01-01

    We present the first multiyear set of simultaneous measurements of the global ultraviolet-B radiation and its two components: direct and diffuse. The measurements have been taken with four YES-UVB-1 radiometers: two radiometers to measure the diffuse radiation, one provided with a shadow band and the other with a shadow disk on a Sun tracker; a radiometer to measure the global horizontal radiation; and a Sun-tracking radiometer to measure the direct radiation with an especially designed radiance collimator. The diffuse minute-values measured with both instruments agree within a coefficient correlation of 1.00. The diffuse component represents at least 50% of the global UVB (ultraviolet-B) radiation. The minute values of global UVB irradiance obtained by adding the direct and diffuse components concur with the measured global irradiance. Therefore, the measurement of the direct irradiance enables the estimation of the diffuse component, and gives an insight into the factors that affect its value, especially aerosols. - Highlights: • Simultaneous measurements of global, direct and diffuse UVB (ultraviolet-B) radiation. • The diffuse minute-values are at least 50% of the global ones. • The diffuse measurements are highly correlated to the aerosol load. • The sum of direct + diffuse radiation concur with the measured global.

  11. Solar Radiation and Cloud Radiative Forcing in the Pacific Warm Pool Estimated Using TOGA COARE Measurements

    Science.gov (United States)

    Chou, Ming-Dah; Chou, Shu-Hsien; Zhao, Wenzhong

    1999-01-01

    The energy budget of the tropical western Pacific (TWP) is particularly important because this is one of the most energetic convection regions on the Earth. Nearly half of the solar radiation incident at the top of atmosphere is absorbed at the surface and only about 22% absorbed in the atmosphere. A large portion of the excess heat absorbed at the surface is transferred to the atmosphere through evaporation, which provides energy and water for convection and precipitation. The western equatorial Pacific is characterized by the highest sea surface temperature (SST) and heaviest rainfall in the world ocean. A small variation of SST associated with the eastward shift of the warm pool during El-Nino/Souther Oscillation changes the atmospheric circulation pattern and affects the global climate. In a study of the TWP surface heat and momentum fluxes during the Tropical Ocean and Global Atmosphere Coupled Ocean-Atmosphere Response Experiment (TOGA COARE) Intensive observing period (IOP) from November 1992 to February have found that the solar radiation is the most important component of the surface energy budget, which undergoes significant temporal and spatial variation. The variations are influenced by the two 40-50 days Madden Julian Oscillations (MJOs) which propagated eastward from the Indian Ocean to the Central Pacific during the IOP. The TWP surface solar radiation during the COARE IOP was investigated by a number of studies. In addition, the effects of clouds on the solar heating of the atmosphere in the TWP was studied using energy budget analysis. In this study, we present some results of the TWP surface solar shortwave or SW radiation budget and the effect of clouds on the atmospheric solar heating using the surface radiation measurements and Japan's Geostationary Meteorological Satellite 4 radiance measurements during COARE IOP.

  12. The Influence of Anthropogenic Greenhouse Gases and Aerosols on the Surface Heat and Moisture Budgets.

    Science.gov (United States)

    Ramaswamy, V.; Freidenreich, S.; Ginoux, P. A.; Ming, Y.; Paynter, D.; Persad, G.; Schwarzkopf, M. D.

    2017-12-01

    Emissions of greenhouse gases and aerosols alter atmospheric composition and `force' major perturbations in the radiative fluxes at the top-of-the-atmosphere and surface. In this paper, we discuss the radiative changes caused by anthropogenic greenhouse gases and aerosols at the surface, and its importance in the context of effects on the global hydrologic cycle. An important characteristic of imbalances forced by radiative species is the tendency for responses to occur in the non-radiative components, in order for the surface energy and moisture budgets to re-establish equilibrium. Using the NOAA/ GFDL global climate models used in CMIP3 and CMIP5, and to be used in CMIP6, we investigate how the surface energy balance has evolved with time under the action of the emissions, and the manner of changes in the surface radiative, sensible and latent heat components. We diagnose the relative importance of the forcings on the global and continental scales, the differing mechanisms due to greenhouse gases and aerosols on surface heat and moisture budgets, and the relative roles of the atmospheric constituents on precipitation and evaporation. Scattering and absorbing properties of aerosols can have contrasting effects on precipitation, with the aerosol indirect effect presenting another complication owing to the uncertainty in its magnitude. We compare the modeled surface flux changes against observations made from multiple platforms over the 20th and the early period of the 21st centuries, and asses the models' strengths and weaknesses. We also explore the consequences for the surface balance and precipitation in the 21st century under various emission scenarios.

  13. The phase lag of temperature behind global solar radiation

    International Nuclear Information System (INIS)

    El Hussainy, F.M.

    1995-08-01

    This paper presented the relationship between the air temperature and the global solar radiation, which can be conveniently represented by the three characteristics: mean, amplitude and phase lag of the first harmonic of global radiation and air temperatures. A good correlation between the air temperature and the global solar radiation has been found when the phase lag between them is nearly of 30 days. (author). 4 refs, 9 figs, 1 tab

  14. The effect of clouds on the earth's solar and infrared radiation budgets

    Science.gov (United States)

    Herman, G. F.; Wu, M.-L. C.; Johnson, W. T.

    1980-01-01

    The effect of global cloudiness on the solar and infrared components of the earth's radiation balance is studied in general circulation model experiments. A wintertime simulation is conducted in which the cloud radiative transfer calculations use realistic cloud optical properties and are fully interactive with model-generated cloudiness. This simulation is compared to others in which the clouds are alternatively non-interactive with respect to the solar or thermal radiation calculations. Other cloud processes (formation, latent heat release, precipitation, vertical mixing) were accurately simulated in these experiments. It is concluded that on a global basis clouds increase the global radiation balance by 40 W/sq m by absorbing longwave radiation, but decrease it by 56 W/sq m by reflecting solar radiation to space. The net cloud effect is therefore a reduction of the radiation balance by 16 W/sq m, and is dominated by the cloud albedo effect. Changes in cloud frequency and distribution and in atmospheric and land temperatures are also reported for the control and for the non-interactive simulations. In general, removal of the clouds' infrared absorption cools the atmosphere and causes additional cloudiness to occur, while removal of the clouds' solar radiative properties warms the atmosphere and causes fewer clouds to form. It is suggested that layered clouds and convective clouds over water enter the climate system as positive feedback components, while convective clouds over land enter as negative components.

  15. Impact of biomass burning plume on radiation budget and atmospheric dynamics over the arctic

    Directory of Open Access Journals (Sweden)

    Lisok Justyna

    2018-01-01

    Full Text Available The aim of the research was to determine the impact of July 2015 biomass burning event on radiative budget, atmospheric stratification and turbulence over the Arctic using information about the vertical structure of the aerosol load from the ground–based data. MODTRAN simulations indicated very high surface radiative cooling (forcing of –150 Wm–2 and a heating rate of up to 1.8 Kday–1 at 3 km. Regarding LES results, a turbulent layer at around 3 km was clearly seen after 48 h of simulation.

  16. Joint Application of Concentrations and Isotopic Signatures to Investigate the Global Atmospheric Carbon Monoxide Budget: Inverse Modeling Approach

    Science.gov (United States)

    Park, K.; Mak, J. E.; Emmons, L. K.

    2008-12-01

    Carbon monoxide is not only an important component for determining the atmospheric oxidizing capacity but also a key trace gas in the atmospheric chemistry of the Earth's background environment. The global CO cycle and its change are closely related to both the change of CO mixing ratio and the change of source strength. Previously, to estimate the global CO budget, most top-down estimation techniques have been applied the concentrations of CO solely. Since CO from certain sources has a unique isotopic signature, its isotopes provide additional information to constrain its sources. Thus, coupling the concentration and isotope fraction information enables to tightly constrain CO flux by its sources and allows better estimations on the global CO budget. MOZART4 (Model for Ozone And Related chemical Tracers), a 3-D global chemical transport model developed at NCAR, MPI for meteorology and NOAA/GFDL and is used to simulate the global CO concentration and its isotopic signature. Also, a tracer version of MOZART4 which tagged for C16O and C18O from each region and each source was developed to see their contributions to the atmosphere efficiently. Based on the nine-year-simulation results we analyze the influences of each source of CO to the isotopic signature and the concentration. Especially, the evaluations are focused on the oxygen isotope of CO (δ18O), which has not been extensively studied yet. To validate the model performance, CO concentrations and isotopic signatures measured from MPI, NIWA and our lab are compared to the modeled results. The MOZART4 reproduced observational data fairly well; especially in mid to high latitude northern hemisphere. Bayesian inversion techniques have been used to estimate the global CO budget with combining observed and modeled CO concentration. However, previous studies show significant differences in their estimations on CO source strengths. Because, in addition to the CO mixing ratio, isotopic signatures are independent tracers

  17. Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets

    Science.gov (United States)

    Damon Matthews, H.; Zickfeld, Kirsten; Knutti, Reto; Allen, Myles R.

    2018-01-01

    The Environmental Research Letters focus issue on ‘Cumulative Emissions, Global Carbon Budgets and the Implications for Climate Mitigation Targets’ was launched in 2015 to highlight the emerging science of the climate response to cumulative emissions, and how this can inform efforts to decrease emissions fast enough to avoid dangerous climate impacts. The 22 research articles published represent a fantastic snapshot of the state-or-the-art in this field, covering both the science and policy aspects of cumulative emissions and carbon budget research. In this Review and Synthesis, we summarize the findings published in this focus issue, outline some suggestions for ongoing research needs, and present our assessment of the implications of this research for ongoing efforts to meet the goals of the Paris climate agreement.

  18. Hospital non-price competition under the Global Budget Payment and Prospective Payment Systems.

    Science.gov (United States)

    Chen, Wen-Yi; Lin, Yu-Hui

    2008-06-01

    This paper provides theoretical analyses of two alternative hospital payment systems for controlling medical cost: the Global Budget Payment System (GBPS) and the Prospective Payment System (PPS). The former method assigns a fixed total budget for all healthcare services over a given period with hospitals being paid on a fee-for-service basis. The latter method is usually connected with a fixed payment to hospitals within a Diagnosis-Related Group. Our results demonstrate that, given the same expenditure, the GBPS would approach optimal levels of quality and efficiency as well as the level of social welfare provided by the PPS, as long as market competition is sufficiently high; our results also demonstrate that the treadmill effect, modeling an inverse relationship between price and quantity under the GBPS, would be a quality-enhancing and efficiency-improving outcome due to market competition.

  19. The potential for collocated AGLP and ERBE data for fire, smoke, and radiation budget studies

    International Nuclear Information System (INIS)

    Christopher, S.A.; Chou, J.

    1997-01-01

    One month of the Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC) Land Pathfinder (AGLP) data from September 1985 are used to examine the spatial and temporal distribution of fires over four major ecosystems in South America. The Earth Radiation Budget Experiment (ERBE) scanner data are used to examine the top of atmosphere (TOA) shortwave and longwave fluxes over smoke generated from biomass burn- ing. The relationship between the AGLP-derived Normalized Difference Vegetation Index (NDVI) and the ERBE-estimated clear sky albedos are also examined as a function of the four ecosystems. This study shows that the grassland areas in South America have the highest number of fires for September 1985, and their corresponding NDVI values are smaller than the tropical rainforest region where the number of fires were comparatively small. Clear sky statistics accumulated during the days when smoke was not present show that clear sky albedos derived from ERBE are higher for grassland areas when compared to the tropical rainforest. The results show that the AGLP can be used to determine the spatial and temporal distribution of fires along with vegetation characteristics, while ERBE data can provide necessary information on broadband albedos and regional top of atmosphere radiative impacts of biomass burning aerosols. Since the AGLP data are available from 1981 to the present day, several climate-related issues can be addressed

  20. Effects of stratospheric perturbations on the solar radiation budget

    International Nuclear Information System (INIS)

    Luther, F.M.

    1978-04-01

    The changes in solar absorption and in local heating rates due to perturbations to O 3 and NO 2 concentrations caused by stratospheric injection of NO/sub x/ and CFM pollutants are assessed. The changes in species concentration profiles are derived from theoretical calculations using a transport-kinetics model. Because of significant changes in our understanding of stratospheric chemistry during the past year, the assessment of the effect of stratospheric perturbations on the solar radiation budget differs from previous assessments. Previously, a reduction in O 3 due to an NO/sub x/ injection caused a net decrease in the gaseous solar absorption;now the same perturbation leads to a net increase. The implication of these changes on the surface temperature is also discussed

  1. Conference on Atmospheric Radiation, 7th, San Francisco, CA, July 23-27, 1990, Preprints

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference on atmospheric radiation discusses the Cirrus experiment, cloud climatologies, the earth radiation budget, the surface radiation budget, remote sensing, radiative transfer, arctic clouds and aerosols, and clouds and radiation. Attention is given to the results of the FIRE Marine Stratocumulus Observations, cirrus cloud properties derived from satellite radiances during FIRE, the dimension of a cloud's boundary, and satellite observations of cirrus clouds. Topics addressed include the seasonal variation of the diurnal cycles of the earth's radiation budget determined from ERBE, estimation of the outgoing longwave flux from NOAA AVHRR satellite observations, a comparison of observed and modeled longwave radiances, and climate monitoring using radiative entropy from ERB observations. Also discussed are approximations to the diffuse radiative properties of cloud layers, the greenhouse potential of other trace gases relative to CO2, global surface albedos estimated from ERBE data, and the energy exchange in a tropical rain forest

  2. The Ozone Budget in the Upper Troposphere from Global Modeling Initiative (GMI)Simulations

    Science.gov (United States)

    Rodriquez, J.; Duncan, Bryan N.; Logan, Jennifer A.

    2006-01-01

    Ozone concentrations in the upper troposphere are influenced by in-situ production, long-range tropospheric transport, and influx of stratospheric ozone, as well as by photochemical removal. Since ozone is an important greenhouse gas in this region, it is particularly important to understand how it will respond to changes in anthropogenic emissions and changes in stratospheric ozone fluxes.. This response will be determined by the relative balance of the different production, loss and transport processes. Ozone concentrations calculated by models will differ depending on the adopted meteorological fields, their chemical scheme, anthropogenic emissions, and treatment of the stratospheric influx. We performed simulations using the chemical-transport model from the Global Modeling Initiative (GMI) with meteorological fields from (It)h e NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), (2) the atmospheric GCM from NASA's Global Modeling and Assimilation Office(GMAO), and (3) assimilated winds from GMAO . These simulations adopt the same chemical mechanism and emissions, and adopt the Synthetic Ozone (SYNOZ) approach for treating the influx of stratospheric ozone -. In addition, we also performed simulations for a coupled troposphere-stratosphere model with a subset of the same winds. Simulations were done for both 4degx5deg and 2degx2.5deg resolution. Model results are being tested through comparison with a suite of atmospheric observations. In this presentation, we diagnose the ozone budget in the upper troposphere utilizing the suite of GMI simulations, to address the sensitivity of this budget to: a) the different meteorological fields used; b) the adoption of the SYNOZ boundary condition versus inclusion of a full stratosphere; c) model horizontal resolution. Model results are compared to observations to determine biases in particular simulations; by examining these comparisons in conjunction with the derived budgets, we may pinpoint

  3. Impact of cloud microphysics on cloud-radiation interactions in the CSU general circulation model

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, L.D.; Randall, D.A.

    1995-04-01

    Our ability to study and quantify the impact of cloud-radiation interactions in studying global scale climate variations strongly relies upon the ability of general circulation models (GCMs) to simulate the coupling between the spatial and temporal variations of the model-generated cloudiness and atmospheric moisture budget components. In particular, the ability of GCMs to reproduce the geographical distribution of the sources and sinks of the planetary radiation balance depends upon their representation of the formation and dissipation of cloudiness in conjunction with cloud microphysics processes, and the fractional amount and optical characteristics of cloudiness in conjunction with the mass of condensate stored in the atmosphere. A cloud microphysics package which encompasses five prognostic variables for the mass of water vapor, cloud water, cloud ice, rain, and snow has been implemented in the Colorado State University General Circulation Model (CSU GCM) to simulate large-scale condensation processes. Convection interacts with the large-scale environment through the detrainment of cloud water and cloud ice at the top of cumulus towers. The cloud infrared emissivity and cloud optical depth of the model-generated cloudiness are interactive and depend upon the mass of cloud water and cloud ice suspended in the atmosphere. The global atmospheric moisture budget and planetary radiation budget of the CSU GCM obtained from a perpetual January simulation are discussed. Geographical distributions of the atmospheric moisture species are presented. Global maps of the top-of-atmosphere outgoing longwave radiation and planetary albedo are compared against Earth Radiation Budget Experiment (ERBE) satellite data.

  4. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  5. The utility of the historical record in assessing future carbon budgets

    Science.gov (United States)

    Millar, R.; Friedlingstein, P.; Allen, M. R.

    2017-12-01

    It has long been known that the cumulative emissions of carbon dioxide (CO2) is the most physically relevant determiner of long-lived anthropogenic climate change, with an approximately linear relationship between CO2-induced global mean surface warming and cumulative emissions. The historical observational record offers a way to constrain the relationship between cumulative carbon dioxide emission and global mean warming using observations to date. Here we show that simple regression analysis indicates that the 1.5°C carbon budget would be exhausted after nearly three decades of current emissions, substantially in excess of many estimates from Earth System Models. However, there are many reasons to be cautious about carbon budget assessments from the historical record alone. Accounting for the uncertainty in non-CO2 radiative forcing using a simple climate model and a standard optimal fingerprinting detection attribution technique gives substantial uncertainty in the contribution of CO2 warming to date, and hence the transient climate response to cumulative emissions. Additionally, the existing balance between CO2 and non-CO2 forcing may change in the future under ambitious mitigation scenarios as non-CO2 emissions become more (or less) important to global mean temperature changes. Natural unforced variability can also have a substantial impact on estimates of remaining carbon budgets. By examining all warmings of a given magnitude in both the historical record and past and future ESM simulations we quantify the impact unforced climate variability may have on estimates of remaining carbon budgets, derived as a function of estimated non-CO2 warming and future emission scenario. In summary, whilst the historical record can act as a useful test of climate models, uncertainties in the response to future cumulative emissions remain large and extrapolations of future carbon budgets from the historical record alone should be treated with caution.

  6. Global aspects of radiation memory

    International Nuclear Information System (INIS)

    Winicour, J

    2014-01-01

    Gravitational radiation has a memory effect represented by a net change in the relative positions of test particles. Both the linear and nonlinear sources proposed for this radiation memory are of the ‘electric’ type, or E mode, as characterized by the even parity of the polarization pattern. Although ‘magnetic’ type, or B mode, radiation memory is mathematically possible, no physically realistic source has been identified. There is an electromagnetic counterpart to radiation memory in which the velocity of charged test particles obtain a net ‘kick’. Again, the physically realistic sources of electromagnetic radiation memory that have been identified are of the electric type. In this paper, a global null cone description of the electromagnetic field is applied to establish the non-existence of B-mode radiation memory and the non-existence of E-mode radiation memory due to a bound charge distribution. (paper)

  7. Assessing Hydrological and Energy Budgets in Amazonia through Regional Downscaling, and Comparisons with Global Reanalysis Products

    Science.gov (United States)

    Nunes, A.; Ivanov, V. Y.

    2014-12-01

    Although current global reanalyses provide reasonably accurate large-scale features of the atmosphere, systematic errors are still found in the hydrological and energy budgets of such products. In the tropics, precipitation is particularly challenging to model, which is also adversely affected by the scarcity of hydrometeorological datasets in the region. With the goal of producing downscaled analyses that are appropriate for a climate assessment at regional scales, a regional spectral model has used a combination of precipitation assimilation with scale-selective bias correction. The latter is similar to the spectral nudging technique, which prevents the departure of the regional model's internal states from the large-scale forcing. The target area in this study is the Amazon region, where large errors are detected in reanalysis precipitation. To generate the downscaled analysis, the regional climate model used NCEP/DOE R2 global reanalysis as the initial and lateral boundary conditions, and assimilated NOAA's Climate Prediction Center (CPC) MORPHed precipitation (CMORPH), available at 0.25-degree resolution, every 3 hours. The regional model's precipitation was successfully brought closer to the observations, in comparison to the NCEP global reanalysis products, as a result of the impact of a precipitation assimilation scheme on cumulus-convection parameterization, and improved boundary forcing achieved through a new version of scale-selective bias correction. Water and energy budget terms were also evaluated against global reanalyses and other datasets.

  8. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Science.gov (United States)

    Lun, Fei; Liu, Junguo; Ciais, Philippe; Nesme, Thomas; Chang, Jinfeng; Wang, Rong; Goll, Daniel; Sardans, Jordi; Peñuelas, Josep; Obersteiner, Michael

    2018-01-01

    The application of phosphorus (P) fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  9. A transitioning Arctic surface energy budget: the impacts of solar zenith angle, surface albedo and cloud radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Sedlar, Joseph; Tjernstroem, Michael; Leck, Caroline [Stockholm University, Department of Meteorology, Stockholm (Sweden); Mauritsen, Thorsten [Max-Planck-Institute for Meteorology, Hamburg (Germany); Shupe, Matthew D.; Persson, P.O.G. [University of Colorado, NOAA-ESRL-PSD, Boulder, CO (United States); Brooks, Ian M.; Birch, Cathryn E. [University of Leeds, School of Earth and Environment, Leeds (United Kingdom); Sirevaag, Anders [University of Bergen, Bjerknes Center for Climate Research, Bergen (Norway); Nicolaus, Marcel [Norwegian Polar Institute, Tromsoe (Norway); Alfred Wegener Institute for Polar and Marine Research, Bremerhaven (Germany)

    2011-10-15

    Snow surface and sea-ice energy budgets were measured near 87.5 N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to -7 C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between -50 W m{sup -2} and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m{sup -2}, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area. (orig.)

  10. VAR—ANALYSIS OF GLOBAL FINANCIAL ECONOMIC CRISIS IMPACT ON PUBLIC BUDGET AND UNEMPLOYMENT: EVIDENCE FROM THE ECONOMY OF THE KYRGYZ REPUBLIC

    Directory of Open Access Journals (Sweden)

    Nargiza Bakytovna Alymkulova

    2016-12-01

    Full Text Available The Global financial crisis hit the economy of the Kyrgyz Republic by the third wave of its transmission in the early of 2009. The article examines the impact of the Global financial economic crisis on the public budget and unemployment of the Kyrgyz Republic. We analyzed the transmission of the crisis on the public budget firstly and its effect on unemployment level by using the vector autoregression approach (VAR and quarterly data for 2005–2013 within the framework of IS-LM model for small open economies with floating exchange rate. There is an inverse relationship between the public budget and remittances inflow, liquidity level, volume of deposits, and exchange rate. As a result of the study, the fall in remittances inflows, liquidity level of the banking system, depreciation of the national currency lead to an increase in public revenue. Therefore, the increase in public spending during the crisis period, with the aim of unemployment reduction, may be considered as a crucial policy. The study result allows to policy-makers to exactly know what channels of transmission mechanism transfer the Global crisis on the public budget and its effect on unemployment level of the republic in order to undertake anticrisis macroeconomic policy. The final result of the study indicates that the increase of unemployment level by 1 % requires the increase of public spending by 0.63 %.

  11. Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations

    Science.gov (United States)

    Hu, Lu; Jacob, Daniel J.; Liu, Xiong; Zhang, Yi; Zhang, Lin; Kim, Patrick S.; Sulprizio, Melissa P.; Yantosca, Robert M.

    2017-10-01

    The global budget of tropospheric ozone is governed by a complicated ensemble of coupled chemical and dynamical processes. Simulation of tropospheric ozone has been a major focus of the GEOS-Chem chemical transport model (CTM) over the past 20 years, and many developments over the years have affected the model representation of the ozone budget. Here we conduct a comprehensive evaluation of the standard version of GEOS-Chem (v10-01) with ozone observations from ozonesondes, the OMI satellite instrument, and MOZAIC-IAGOS commercial aircraft for 2012-2013. Global validation of the OMI 700-400 hPa data with ozonesondes shows that OMI maintained persistent high quality and no significant drift over the 2006-2013 period. GEOS-Chem shows no significant seasonal or latitudinal bias relative to OMI and strong correlations in all seasons on the 2° × 2.5° horizontal scale (r = 0.88-0.95), improving on previous model versions. The most pronounced model bias revealed by ozonesondes and MOZAIC-IAGOS is at high northern latitudes in winter-spring where the model is 10-20 ppbv too low. This appears to be due to insufficient stratosphere-troposphere exchange (STE). Model updates to lightning NOx, Asian anthropogenic emissions, bromine chemistry, isoprene chemistry, and meteorological fields over the past decade have overall led to gradual increase in the simulated global tropospheric ozone burden and more active ozone production and loss. From simulations with different versions of GEOS meteorological fields we find that tropospheric ozone in GEOS-Chem v10-01 has a global production rate of 4960-5530 Tg a-1, lifetime of 20.9-24.2 days, burden of 345-357 Tg, and STE of 325-492 Tg a-1. Change in the intensity of tropical deep convection between these different meteorological fields is a major factor driving differences in the ozone budget.

  12. A study of Monte Carlo radiative transfer through fractal clouds

    Energy Technology Data Exchange (ETDEWEB)

    Gautier, C.; Lavallec, D.; O`Hirok, W.; Ricchiazzi, P. [Univ. of California, Santa Barbara, CA (United States)] [and others

    1996-04-01

    An understanding of radiation transport (RT) through clouds is fundamental to studies of the earth`s radiation budget and climate dynamics. The transmission through horizontally homogeneous clouds has been studied thoroughly using accurate, discreet ordinates radiative transfer models. However, the applicability of these results to general problems of global radiation budget is limited by the plane parallel assumption and the fact that real clouds fields show variability, both vertically and horizontally, on all size scales. To understand how radiation interacts with realistic clouds, we have used a Monte Carlo radiative transfer model to compute the details of the photon-cloud interaction on synthetic cloud fields. Synthetic cloud fields, generated by a cascade model, reproduce the scaling behavior, as well as the cloud variability observed and estimated from cloud satellite data.

  13. Models for prediction of global solar radiation on horizontal surface ...

    African Journals Online (AJOL)

    The estimation of global solar radiation continues to play a fundamental role in solar engineering systems and applications. This paper compares various models for estimating the average monthly global solar radiation on horizontal surface for Akure, Nigeria, using solar radiation and sunshine duration data covering years ...

  14. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    Science.gov (United States)

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-20

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  15. Impacts of cloud overlap assumptions on radiative budgets and heating fields in convective regions

    Science.gov (United States)

    Wang, XiaoCong; Liu, YiMin; Bao, Qing

    2016-01-01

    Impacts of cloud overlap assumptions on radiative budgets and heating fields are explored with the aid of a cloud-resolving model (CRM), which provided cloud geometry as well as cloud micro and macro properties. Large-scale forcing data to drive the CRM are from TRMM Kwajalein Experiment and the Global Atmospheric Research Program's Atlantic Tropical Experiment field campaigns during which abundant convective systems were observed. The investigated overlap assumptions include those that were traditional and widely used in the past and the one that was recently addressed by Hogan and Illingworth (2000), in which the vertically projected cloud fraction is expressed by a linear combination of maximum and random overlap, with the weighting coefficient depending on the so-called decorrelation length Lcf. Results show that both shortwave and longwave cloud radiative forcings (SWCF/LWCF) are significantly underestimated under maximum (MO) and maximum-random (MRO) overlap assumptions, whereas remarkably overestimated under the random overlap (RO) assumption in comparison with that using CRM inherent cloud geometry. These biases can reach as high as 100 Wm- 2 for SWCF and 60 Wm- 2 for LWCF. By its very nature, the general overlap (GenO) assumption exhibits an encouraging performance on both SWCF and LWCF simulations, with the biases almost reduced by 3-fold compared with traditional overlap assumptions. The superiority of GenO assumption is also manifested in the simulation of shortwave and longwave radiative heating fields, which are either significantly overestimated or underestimated under traditional overlap assumptions. The study also pointed out the deficiency of constant assumption on Lcf in GenO assumption. Further examinations indicate that the CRM diagnostic Lcf varies among different cloud types and tends to be stratified in the vertical. The new parameterization that takes into account variation of Lcf in the vertical well reproduces such a relationship and

  16. New Temperature-based Models for Predicting Global Solar Radiation

    International Nuclear Information System (INIS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Mohamed, Zahraa E.; Ali, Mohamed A.; Hanafy, Ahmed A.

    2016-01-01

    Highlights: • New temperature-based models for estimating solar radiation are investigated. • The models are validated against 20-years measured data of global solar radiation. • The new temperature-based model shows the best performance for coastal sites. • The new temperature-based model is more accurate than the sunshine-based models. • The new model is highly applicable with weather temperature forecast techniques. - Abstract: This study presents new ambient-temperature-based models for estimating global solar radiation as alternatives to the widely used sunshine-based models owing to the unavailability of sunshine data at all locations around the world. Seventeen new temperature-based models are established, validated and compared with other three models proposed in the literature (the Annandale, Allen and Goodin models) to estimate the monthly average daily global solar radiation on a horizontal surface. These models are developed using a 20-year measured dataset of global solar radiation for the case study location (Lat. 30°51′N and long. 29°34′E), and then, the general formulae of the newly suggested models are examined for ten different locations around Egypt. Moreover, the local formulae for the models are established and validated for two coastal locations where the general formulae give inaccurate predictions. Mostly common statistical errors are utilized to evaluate the performance of these models and identify the most accurate model. The obtained results show that the local formula for the most accurate new model provides good predictions for global solar radiation at different locations, especially at coastal sites. Moreover, the local and general formulas of the most accurate temperature-based model also perform better than the two most accurate sunshine-based models from the literature. The quick and accurate estimations of the global solar radiation using this approach can be employed in the design and evaluation of performance for

  17. POLDER/Parasol L2 Radiation Budget subset along CloudSat track V001 (PARASOLRB_CPR) at GES DISC

    Data.gov (United States)

    National Aeronautics and Space Administration — This is the POLDER/Parasol Level-2 Radiation Budget Subset, collocated with the CloudSat track. The subset is processed at the A-Train Data Depot of the GES DISC,...

  18. Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency

    Directory of Open Access Journals (Sweden)

    F. Lun

    2018-01-01

    Full Text Available The application of phosphorus (P fertilizer to agricultural soils increased by 3.2 % annually from 2002 to 2010. We quantified in detail the P inputs and outputs of cropland and pasture and the P fluxes through human and livestock consumers of agricultural products on global, regional, and national scales from 2002 to 2010. Globally, half of the total P inputs into agricultural systems accumulated in agricultural soils during this period, with the rest lost to bodies of water through complex flows. Global P accumulation in agricultural soil increased from 2002 to 2010 despite decreases in 2008 and 2009, and the P accumulation occurred primarily in cropland. Despite the global increase in soil P, 32 % of the world's cropland and 43 % of the pasture had soil P deficits. Increasing soil P deficits were found for African cropland vs. increasing P accumulation in eastern Asia. European and North American pasture had a soil P deficit because the continuous removal of biomass P by grazing exceeded P inputs. International trade played a significant role in P redistribution among countries through the flows of P in fertilizer and food among countries. Based on country-scale budgets and trends we propose policy options to potentially mitigate regional P imbalances in agricultural soils, particularly by optimizing the use of phosphate fertilizer and the recycling of waste P. The trend of the increasing consumption of livestock products will require more P inputs to the agricultural system, implying a low P-use efficiency and aggravating P-stock scarcity in the future. The global and regional phosphorus budgets and their PUEs in agricultural systems are publicly available at https://doi.pangaea.de/10.1594/PANGAEA.875296.

  19. Use of a GCM to Explore Sampling Issues in Connection with Satellite Remote Sensing of the Earth Radiation Budget

    Science.gov (United States)

    Fowler, Laura D.; Wielicki, Bruce A.; Randall, David A.; Branson, Mark D.; Gibson, Gary G.; Denn, Fredrick M.

    2000-01-01

    Collocated in time and space, top-of-the-atmosphere measurements of the Earth radiation budget (ERB) and cloudiness from passive scanning radiometers, and lidar- and radar-in-space measurements of multilayered cloud systems, are the required combination to improve our understanding of the role of clouds and radiation in climate. Experiments to fly multiple satellites "in formation" to measure simultaneously the radiative and optical properties of overlapping cloud systems are being designed. Because satellites carrying ERB experiments and satellites carrying lidars- or radars-in space have different orbital characteristics, the number of simultaneous measurements of radiation and clouds is reduced relative to the number of measurements made by each satellite independently. Monthly averaged coincident observations of radiation and cloudiness are biased when compared against more frequently sampled observations due, in particular, to the undersampling of their diurnal cycle, Using the Colorado State University General Circulation Model (CSU GCM), the goal of this study is to measure the impact of using simultaneous observations from the Earth Observing System (EOS) platform and companion satellites flying lidars or radars on monthly averaged diagnostics of longwave radiation, cloudiness, and its cloud optical properties. To do so, the hourly varying geographical distributions of coincident locations between the afternoon EOS (EOS-PM) orbit and the orbit of the ICESAT satellite set to fly at the altitude of 600 km, and between the EOS PM orbit and the orbits of the PICASSO satellite proposed to fly at the altitudes of 485 km (PICA485) or 705 km (PICA705), are simulated in the CSU GCM for a 60-month time period starting at the idealistic July 1, 2001, launch date. Monthly averaged diagnostics of the top-of-the-atmosphere, atmospheric, and surface longwave radiation budgets and clouds accumulated over grid boxes corresponding to satellite overpasses are compared against

  20. Comparing a Carbon Budget for the Amazon Basin Derived from Aircraft Observations

    Science.gov (United States)

    Chow, V. Y.; Dayalu, A.; Wofsy, S. C.; Gerbig, C.

    2015-12-01

    We present and compare a carbon budget for the Brazilian Amazon Basin based on the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft program, which occurred in November 2008 & May 2009, to other published carbon budgets. In particular, we compare our budget and analysis to others also derived from aircraft observations. Using mesoscale meteorological fields from ECMWF and WRF, we drive the Stochastic Time-Inverted Lagrangian Transport (STILT) model and couple the footprint, or influence, to a biosphere model represented by the Vegetation Photosynthesis Respiration Model (VPRM). Since it is the main driver for the VPRM, we use observed shortwave radiation from towers in Brazil and French Guyana to examine the modeled shortwave radiation data from GL 1.2 (a global radiation model based on GOES 8 visible imagery), ECMWF, and WRF to determine if there are any biases in the modeled shortwave radiation output. We use WRF-STILT and ECMWF-STILT, GL 1.2 shortwave radiation, temperature, and vegetation maps (IGBP and SYNMAP) updated by landuse scenarios modeled by Sim Amazonia 2 and Sim Brazil, to compute hourly a priori CO2 fluxes by calculating Gross Ecosystem Exchange and Respiration for the 4 significant vegetation types across two (wet and dry) seasons as defined by 10-years of averaged TRIMM precipitation data. SF6 from stations and aircraft observations are used to determine the anthropogenic CO2 background and the lateral boundary conditions are taken from CarbonTracker2013B. The BARCA aircraft mixing ratios are then used as a top down constraint in an inversion framework that solves for the parameters controlling the fluxes for each vegetation type. The inversion provides scaling factors for GEE and R for each vegetation type in each season. From there, we derive a budget for the Basin and compare/contrast with other published basinwide CO2 fluxes.

  1. Contrails over the U.S. and their potential impact on the radiation budget

    Energy Technology Data Exchange (ETDEWEB)

    Minnis, P [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Ayers, J K; Doelling, D R [Analytical Services and Materials, Inc., Hampton, VA (United States)

    1998-12-31

    A methodology for assessing the contrail impact on the radiation budget is developed to use data characterizing the frequency, areal coverage, optical depth, particle size, and altitude of contrails with observations of cloud and surface properties. The method is tested using various scenarios over the United States to estimate contrail-induced albedo changes based on current aircraft fuel usage statistics. The technique can be used for estimating infrared effects and the impact of future fuel-use rates. (author) 11 refs.

  2. Contrails over the U.S. and their potential impact on the radiation budget

    Energy Technology Data Exchange (ETDEWEB)

    Minnis, P. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center; Ayers, J.K.; Doelling, D.R. [Analytical Services and Materials, Inc., Hampton, VA (United States)

    1997-12-31

    A methodology for assessing the contrail impact on the radiation budget is developed to use data characterizing the frequency, areal coverage, optical depth, particle size, and altitude of contrails with observations of cloud and surface properties. The method is tested using various scenarios over the United States to estimate contrail-induced albedo changes based on current aircraft fuel usage statistics. The technique can be used for estimating infrared effects and the impact of future fuel-use rates. (author) 11 refs.

  3. Experimental study of the ultraviolet global radiation in San Jose, Costa Rica

    International Nuclear Information System (INIS)

    Wright, J.

    1996-01-01

    The ultraviolet global radiation and the global solar radiation at San Jose, Costa Rica (latitude: 9 0 56', longitude: 84 0 54', altitude: 1.172 m.) during the period October 1993 to January 1995 were analyzed with respect to their seasonal variations and their independence. The dependence between the ultraviolet radiation and the clearness index of the skies was also investigated. A poor correlation was found between the quotient of the ultraviolet radiation (Hv/Hg) and between the global solar radiation and the extraterrestrial solar radiation (Hg/Ho). The correlation coefficient found between Hv/Hg and Hg/Ho was not greater than 0.25 for four categories of clearness index, i.e., covered skies, clear skies, and two intermediate conditions. This demonstrates that the ultraviolet radiation is not only associated with other atmospheric transmission conditions. A regression analysis between the hourly values of the ultraviolet and global radiation yielded a linear relationship with a determination coefficient greater than 98%. Thus a simple linear regression is reliable for the estimation of the ultraviolet in San Jose from global solar radiation data. (author) [es

  4. Atmospheric Radiation Measurement Program plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. The Atmospheric Radiation Measurement (ARM) Program will contribute to the Department of Energy goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. 19 refs., 4 figs., 2 tabs

  5. Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.

    Science.gov (United States)

    Garratt, J. R.; Prata, A. J.

    1996-03-01

    Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.

  6. An algorithm to provide UK global radiation for use with models

    International Nuclear Information System (INIS)

    Hamer, P.J.C.

    1999-01-01

    Decision support systems which include crop growth models require long-term average values of global radiation to simulate future expected growth. Global radiation is rarely available as there are relatively few meteorological stations with long-term records and so interpolation between sites is difficult. Global radiation data across a good geographical spread throughout the UK were obtained and sub-divided into ‘coastal’ and ‘inland’ sites. Monthly means of global radiation (S) were extracted and analysed in relation to irradiance in the absence of atmosphere (S o ) calculated from site latitude and the time of year. The ratio S/S o was fitted to the month of the year (t) and site latitude using a nonlinear fit function in which 90% of the variance was accounted for. An algorithm is presented which provides long-term daily values of global radiation from information on latitude, time of year and whether the site is inland or close to the coast. (author)

  7. Global Warming: Physics and Facts

    International Nuclear Information System (INIS)

    Levi, B.G.; Hafemeister, D.; Scribner, R.

    1992-01-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO 2 ; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment

  8. Evaluation of the Global Mean Sea Level Budget between 1993 and 2014

    DEFF Research Database (Denmark)

    Chambers, Don P.; Cazenave, Anny; Champollion, Nicolas

    2017-01-01

    Evaluating global mean sea level (GMSL) in terms of its components—mass and steric—is useful for both quantifying the accuracy of the measurements and understanding the processes that contribute to GMSL rise. In this paper, we review the GMSL budget over two periods—1993 to 2014 and 2005 to 2014......—using multiple data sets of both total GMSL and the components (mass and steric). In addition to comparing linear trends, we also compare the level of agreement of the time series. For the longer period (1993–2014), we find closure in terms of the long-term trend but not for year-to-year variations...

  9. Observation of The Top of The Atmosphere Outgoing Longwave Radiation Using The Geostationary Earth Radiation Budget Sensor

    Science.gov (United States)

    Spencer, G.; Llewellyn-Jones, D.

    In the summer of 2002 the Meteosat Second Generation (MSG) satellite is due to be launched. On board the MSG satellite is the Geostationary Earth Radiation Budget (GERB) sensor. This is a new radiometer that will be able to observe and measure the outgoing longwave radiation from the top of the atmosphere for the whole ob- served Earth disc, due to its unique position in geostationary orbit. Every 15 minutes the GERB sensor will make a full Earth disc observation, centred on the Greenwich meridian. Thus, the GERB sensor will provide unprecedented coupled temporal and spatial resolution of the outgoing longwave radiation (4.0 to 30.0 microns), by first measuring the broadband radiation (0.32 to 30.0 microns) and then subtracting the measured reflected shortwave solar radiation (0.32 to 4.0 microns), from the earth- atmosphere system. The GERB sensor is able to make measurements to within an accuracy of 1 W/sq. m. A forward model is being developed at Leicester to simulate the data from the GERB sensor for representative geophysical scenes and to investigate key parameters and processes that will affect the top of the atmosphere signal. At the heart of this model is a line-by-line radiative transfer model, the Oxford Reference Forward Model (RFM) that is to be used with model atmospheres generated from ECMWF analysis data. When MSG is launched, cloud data from the Spinning Enhanced Visible and Infrared Imager (SEVIRI), also on board, is to be used in conjunction with GERB data.

  10. The 'Alternative Quality Contract,' based on a global budget, lowered medical spending and improved quality.

    Science.gov (United States)

    Song, Zirui; Safran, Dana Gelb; Landon, Bruce E; Landrum, Mary Beth; He, Yulei; Mechanic, Robert E; Day, Matthew P; Chernew, Michael E

    2012-08-01

    Seven provider organizations in Massachusetts entered the Blue Cross Blue Shield Alternative Quality Contract in 2009, followed by four more organizations in 2010. This contract, based on a global budget and pay-for-performance for achieving certain quality benchmarks, places providers at risk for excessive spending and rewards them for quality, similar to the new Pioneer Accountable Care Organizations in Medicare. We analyzed changes in spending and quality associated with the Alternative Quality Contract and found that the rate of increase in spending slowed compared to control groups, more so in the second year than in the first. Overall, participation in the contract over two years led to savings of 2.8 percent (1.9 percent in year 1 and 3.3 percent in year 2) compared to spending in nonparticipating groups. Savings were accounted for by lower prices achieved through shifting procedures, imaging, and tests to facilities with lower fees, as well as reduced utilization among some groups. Quality of care also improved compared to control organizations, with chronic care management, adult preventive care, and pediatric care within the contracting groups improving more in year 2 than in year 1. These results suggest that global budgets with pay-for-performance can begin to slow underlying growth in medical spending while improving quality of care.

  11. Quasi-real-time monitoring of SW radiation budget using geostationary satellite for Climate study and Renewable energy. (Invited)

    Science.gov (United States)

    Takenaka, H.; Nakajima, T. Y.; Kuze, H.; Takamura, T.; Pinker, R. T.; Nakajima, T.

    2013-12-01

    Solar radiation is the only source of energy that drives the weather and climate of the Earth's surface. Earth is warmed by incoming solar radiation, and emitted energy to space by terrestrial radiation due to its temperature. It has been kept to the organisms viable environment by the effect of heating and cooling. Clouds can cool the Earth by reflecting solar radiation and also can keep the Earth warm by absorbing and emitting terrestrial radiation. They are important in the energy balance at the Earth surface and the Top of the Atmosphere (TOA) and are connected complicatedly into the Earth system as well as other climate feedback processes. Thus it is important to estimate Earth's radiation budget for better understanding of climate and environmental change. We have shared several topics related to climate change. Energy issues close to the climate change, it is an environmental problems. Photovoltaics is one of the power generation method to converts from solar radiation to electric power directly. It does not emit greenhouse gases during power generation. Similarly, drainage, exhaust, vibration does not emit. PV system can be distributed as a small power supply in urban areas and it can installed to near the power demand points. Also solar thermal is heat generator with high efficiency. Therefor it is an effective energy source that the solar power is expected as one of the mitigation of climate change (IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation). It is necessary to real-time-monitoring of the surface solar radiation for safety operation of electric power system. We introduce a fusion analysis of renewable energy and Quasi-real-time analysis of SW radiation budget. Sample of estimated PV power mapping using geostationary satellite.

  12. GCIP water and energy budget synthesis (WEBS)

    Science.gov (United States)

    Roads, J.; Lawford, R.; Bainto, E.; Berbery, E.; Chen, S.; Fekete, B.; Gallo, K.; Grundstein, A.; Higgins, W.; Kanamitsu, M.; Krajewski, W.; Lakshmi, V.; Leathers, D.; Lettenmaier, D.; Luo, L.; Maurer, E.; Meyers, T.; Miller, D.; Mitchell, Ken; Mote, T.; Pinker, R.; Reichler, T.; Robinson, D.; Robock, A.; Smith, J.; Srinivasan, G.; Verdin, K.; Vinnikov, K.; Vonder, Haar T.; Vorosmarty, C.; Williams, S.; Yarosh, E.

    2003-01-01

    As part of the World Climate Research Program's (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996-1999 fromthe "best available" observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or "close" budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets. Copyright 2003 by the American Geophysical Union.

  13. Spatial distribution of coefficients for determination of global radiation in Serbia

    Directory of Open Access Journals (Sweden)

    Nikolić Jugoslav L.

    2012-01-01

    Full Text Available The aim of this paper is a creation of the spatial distribution of the corresponding coefficients for the indirect determination of global radiation using all direct measurements data of this shortwave radiation balance component in Serbia in the standard climate period (1961-1990. Based on the global radiation direct measurements data recorded in the past and routine measurements/observations of cloudiness and sunshine duration, the spatial distribution coefficients maps required for calculation of global radiation were produced on the basis of sunshine/cloudiness in an arbitrary point on the territory of Serbia. Besides, a specific verification of the proposed empirical formula was performed. This paper contributes to a wide range of practical applications as direct measurements of global radiation are relatively rare, and are not carried out in Serbia today. Significant application is possible in the domain of renewable energy sources. The development of method for determination of the global radiation has an importance from the aspect of the environmental protection; however it also has an economic importance through applications in numerous commercial projects, as it does not require special measurements or additional financial investments.

  14. Global Solar Radiation in Spain from Satellite Images

    International Nuclear Information System (INIS)

    Ramirez, L.; Mora, L.; Sidrach de Cardona, M.; Navarro, A. A.; Varela, M.; Cruz, M. de la

    2003-01-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been reevaluated to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar, impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyrano metric measures in a concrete locality, but it provides a very valid indicator in places in which it is not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs

  15. Global warming without global mean precipitation increase?

    Science.gov (United States)

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  16. Evidence for Solar Cycle Influence on the Infrared Energy Budget and Radiative Cooling of the Thermosphere

    Science.gov (United States)

    Mlynczak, Martin G.; Martin-Torres, F. Javier; Marshall, B. Thomas; Thompson, R. Earl; Williams, Joshua; Turpin, TImothy; Kratz, D. P.; Russell, James M.; Woods, Tom; Gordley, Larry L.

    2007-01-01

    We present direct observational evidence for solar cycle influence on the infrared energy budget and radiative cooling of the thermosphere. By analyzing nearly five years of data from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument, we show that the annual mean infrared power radiated by the nitric oxide (NO) molecule at 5.3 m has decreased by a factor of 2.9. This decrease is correlated (r = 0.96) with the decrease in the annual mean F10.7 solar index. Despite the sharp decrease in radiated power (which is equivalent to a decrease in the vertical integrated radiative cooling rate), the variability of the power as given in the standard deviation of the annual means remains approximately constant. A simple relationship is shown to exist between the infrared power radiated by NO and the F10.7 index, thus providing a fundamental relationship between solar activity and the thermospheric cooling rate for use in thermospheric models. The change in NO radiated power is also consistent with changes in absorbed ultraviolet radiation over the same time period.

  17. Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty

    Science.gov (United States)

    Ballantyne, A. P.; Andres, R.; Houghton, R.; Stocker, B. D.; Wanninkhof, R.; Anderegg, W.; Cooper, L. A.; DeGrandpre, M.; Tans, P. P.; Miller, J. B.; Alden, C.; White, J. W. C.

    2015-04-01

    Over the last 5 decades monitoring systems have been developed to detect changes in the accumulation of carbon (C) in the atmosphere and ocean; however, our ability to detect changes in the behavior of the global C cycle is still hindered by measurement and estimate errors. Here we present a rigorous and flexible framework for assessing the temporal and spatial components of estimate errors and their impact on uncertainty in net C uptake by the biosphere. We present a novel approach for incorporating temporally correlated random error into the error structure of emission estimates. Based on this approach, we conclude that the 2σ uncertainties of the atmospheric growth rate have decreased from 1.2 Pg C yr-1 in the 1960s to 0.3 Pg C yr-1 in the 2000s due to an expansion of the atmospheric observation network. The 2σ uncertainties in fossil fuel emissions have increased from 0.3 Pg C yr-1 in the 1960s to almost 1.0 Pg C yr-1 during the 2000s due to differences in national reporting errors and differences in energy inventories. Lastly, while land use emissions have remained fairly constant, their errors still remain high and thus their global C uptake uncertainty is not trivial. Currently, the absolute errors in fossil fuel emissions rival the total emissions from land use, highlighting the extent to which fossil fuels dominate the global C budget. Because errors in the atmospheric growth rate have decreased faster than errors in total emissions have increased, a ~20% reduction in the overall uncertainty of net C global uptake has occurred. Given all the major sources of error in the global C budget that we could identify, we are 93% confident that terrestrial C uptake has increased and 97% confident that ocean C uptake has increased over the last 5 decades. Thus, it is clear that arguably one of the most vital ecosystem services currently provided by the biosphere is the continued removal of approximately half of atmospheric CO2 emissions from the atmosphere

  18. A mathematical correlation between variations in solar radiation parameters. 2. Global radiation, air temperature and specific humidity

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-06-01

    We derive from first principles, an equation which expresses global radiation as a function of specific humidity and air temperature at screen height. The practical validity of this equation is tested by using humidity, air temperature and global radiation data from Tanzania. It is shown that global radiation values calculated on the basis of the derived equation agree with measured radiation values to within ± 8% as long as the prevalent (horizontal) winds are either calm or light. It is noted that the equation is equally valid at times of strong horizontal winds provided that the temperature and humidity measuring site is sufficiently shielded from the winds. This implies that meteorological stations that are (for some unavoidable reasons) unable to stock pyranometers can still procure reasonable estimates of local global radiation as long as they can, at least, stock the relatively cheaper barometers and wet- and dry-bulb psychrometers. (author). 12 refs, 1 fig., 4 tabs

  19. Improved correlation of monthly mean daily and hourly diffuse radiation with the corresponding global radiation for Indian stations

    International Nuclear Information System (INIS)

    Garg, H.P.; Garg, S.N.

    1985-12-01

    Several existing correlations between radiation monthly mean ratios of global to extraterrestrial and diffuse to global were tried for four Indian stations and found inadequate. New correlations were established for these stations and it was shown that these correlations are highly climate dependent. Classical equation of Liu and Jordon was tried to find hourly diffuse and global radiation from daily sums of diffuse and global radiation respectively. It was suitably modified to suit the Indian data. Equations developed by Collares-Pereira and Rabl have shown excellent agreement with the observed values

  20. Forecasting the future reimbursement system of Korean National Health Insurance: a contemplation focusing on global budget and Neo-KDRG-based payment systems.

    Science.gov (United States)

    Kim, Yang-Kyun

    2012-05-01

    With the adoption of national health insurance in 1977, Korea has been utilizing fee-for-service payment with contract-based healthcare reimbursement system in 2000. Under the system, fee-for-service reimbursement has been accused of augmenting national healthcare expenditure by excessively increasing service volume. The researcher examined in this paper two major alternatives including diagnosis related group-based payment and global budget to contemplate the future of reimbursement system of Korean national health insurance. Various literature and preceding studies on pilot project and actual implementation of Neo-KDRG were reviewed. As a result, DRG-based payment was effective for healthcare cost control but low in administrative efficiency. Global budget may be adequate for cost control and improving the quality of healthcare and administrative efficiency. However, many healthcare providers disagree that excess care arising from fee-for-service payment alone has led to financial deterioration of national health insurance and healthcare institutions should take responsibility with global budget payment as an appropriate solution. Dissimilar payment systems may be applied to different types of institutions to reflect their unique attributes, and this process can be achieved step-by-step. Developing public sphere among the stakeholders and striving for consensus shall be kept as collateral to attain the desirable reimbursement system in the future.

  1. Global Carbon Budget 2016

    NARCIS (Netherlands)

    Quéré, Le Corinne; Andrew, Robbie M.; Canadell, Josep G.; Sitch, Stephen; Korsbakken, Jan Ivar; Peters, Glen P.; Manning, Andrew C.; Boden, Thomas A.; Tans, Pieter P.; Houghton, Richard A.; Keeling, Ralph F.; Alin, Simone; Andrews, Oliver D.; Anthoni, Peter; Barbero, Leticia; Bopp, Laurent; Chevallier, Frédéric; Chini, Louise P.; Ciais, Philippe; Currie, Kim; Delire, Christine; Doney, Scott C.; Friedlingstein, Pierre; Gkritzalis, Thanos; Harris, Ian; Hauck, Judith; Haverd, Vanessa; Hoppema, Mario; Klein Goldewijk, Kees; Jain, Atul K.; Kato, Etsushi; Körtzinger, Arne; Landschützer, Peter; Lefèvre, Nathalie; Lenton, Andrew; Lienert, Sebastian; Lombardozzi, Danica; Melton, Joe R.; Metzl, Nicolas; Millero, Frank; Monteiro, Pedro M.S.; Munro, David R.; Nabel, Julia E.M.S.; Nakaoka, S.; O'Brien, Kevin; Olsen, Are; Omar, Abdirahman M.; Ono, Tsuneo; Pierrot, Denis; Poulter, Benjamin; Rödenbeck, Christian; Salisbury, Joe; Schuster, Ute; Schwinger, Jörg; Séférian, Roland; Skjelvan, Ingunn; Stocker, Benjamin D.; Sutton, Adrienne J.; Takahashi, Taro; Tian, Hanqin; Tilbrook, Bronte; Laan-Luijkx, van der Ingrid T.; Werf, van der Guido R.; Viovy, Nicolas; Walker, Anthony P.; Wiltshire, Andrew J.; Zaehle, Sönke

    2016-01-01

    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project

  2. The role of boreal forests and forestry in the global carbon budget : a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fyles, I.H.; Shaw, C.H.; Apps, M.J.; Karjalainen, T.; Stocks, B.J.; Running, S.W.; Kurz, W.A.; Weyerhaeuser, G.Jr.; Jarvis, P.G.

    2002-10-01

    This paper provides a synthesis of all papers presented at the conference on the role of boreal forests in the global carbon budget. The scientific community is recognizing the critical links between boreal forest ecosystems, carbon dynamics and global climate change. This paper addresses the five main topics discussed at the conference including: (1) carbon stocks and fluxes, (2) the effects of natural disturbances on carbon dynamics, (3) effects of management practices on carbon dynamics, (4) afforestation and carbon sequestration, and (5) effects of climate change and elevated carbon dioxide concentration on carbon dynamics. Large-scale model simulations suggest that increased global temperatures will result in increased net ecosystem productivity (NEP). Several model simulations also indicate that net primary productivity (NPP) will increase. While most forest stands are currently carbon sinks, disturbances such as fire, insects and tree harvesting make forests susceptible to becoming a source of carbon. In contrast, some studies suggest that climate change will cause shifting vegetation patterns, increased soil carbon and higher forest productivity that may result in higher sequestration of carbon in the boreal forest. 84 refs.

  3. The use and re-use of unsustainably mined groundwater: A global budget

    Science.gov (United States)

    Grogan, D. S.; Prousevitch, A.; Wisser, D.; Lammers, R. B.; Frolking, S. E.

    2015-12-01

    Many of the world's major groundwater aquifers are rapidly depleting due to unsustainable groundwater pumping, while demand for food production - and therefore demand for irrigation water ­- is increasing. While it is likely that groundwater users will be impacted by the future's inevitable reduction in groundwater availability, there is a major gap in our understanding of potential impacts downstream of pumping sites. Due to inefficiencies in irrigation systems, significant amounts of abstracted groundwater become runoff, entering surface waters and flowing downstream to be re-abstracted and used again. In this study, we use a gridded water balance model to calculate the amount of unsustainably pumped groundwater that enters surface water systems by way of irrigation runoff, and quantify the additional irrigation water supplied by the re-use of this water. We assess the global budget of unsustainable groundwater sources and sinks, including downstream re-use, groundwater recharge, and flow to the oceans. Globally, we find that 80% of unsustainable groundwater is re-abstracted for irrigation either downstream or locally from groundwater recharge. This re-abstracted water contributes the water equivalent needed to irrigate 200,000 km2 of cropland globally. Including irrigation runoff reuse in an assessment of irrigation efficiency, we see that the traditional concept of irrigation efficiency (net irrigation/gross irrigation) significantly overestimates water "waste". We define a basin efficiency for unsustainable groundwater use that includes re-use, and see that while global irrigation efficiency is often estimated at 50%, global average unsustainable water use efficiency is > 60%. Losing this re-use resource by increasing irrigation efficiency does little to alleviate unsustainable groundwater demands.

  4. Evaluation and reconstruction of global radiation at Bílý Kříž (the Czech Republic)

    International Nuclear Information System (INIS)

    Marková, I.; Rožnovský, J.; Janouš, D.

    2003-01-01

    Evaluation of global radiation was performed at the study site of Bílý Kříž (the Moravian-Silesian Beskids Mts, the Czech Republic) during the growing seasons (May-October) in 1991-2000. Radiation conditions were characterized by daily and monthly sums of global radiation. Detailed analysis of global radiation daily sums revealed that they vary considerably with time. Average value of global radiation daily sums calculated after the whole period of seasons 1991-2000 was 13.49 MJ per square m. While seasonal course of monthly averages of global radiation daily sums corresponded to the changes of sun elevation, the average monthly sums of global radiation did not. Average seasonal sum of global radiation at the study site in 1991-2000 was 2483 +/- 141 MJ per square m. Relationship between global radiation daily sums at the Bily Kriz study site and sunshine duration at the nearby site of Lysa hora was described and linear relationship between these two characteristics was confirmed. On the basis of this determined relationship it was possible to reconstruct global radiation daily sums at the study site for a period of forty years (1961-2000). Average of global radiation daily sums calculated for the whole period of seasons from 1961 to 2000 was 9.11 MJ per square m. The highest monthly averages of global radiation daily sums were found in June and July, the lowest in October. It was confirmed that average monthly sums of global radiation did not correspond to the sun elevation even for the long period of 1961-2000. Average seasonal sum of global radiation was 2415 ñ 152 MJ.m-2 in 1961-2000. On average, 40% of extra-terrestrial solar radiation reached the study site during the growing season in 1961-2000

  5. Global radiative effects of solid fuel cookstove aerosol emissions

    Science.gov (United States)

    Huang, Yaoxian; Unger, Nadine; Storelvmo, Trude; Harper, Kandice; Zheng, Yiqi; Heyes, Chris

    2018-04-01

    We apply the NCAR CAM5-Chem global aerosol-climate model to quantify the net global radiative effects of black and organic carbon aerosols from global and Indian solid fuel cookstove emissions for the year 2010. Our assessment accounts for the direct radiative effects, changes to cloud albedo and lifetime (aerosol indirect effect, AIE), impacts on clouds via the vertical temperature profile (semi-direct effect, SDE) and changes in the surface albedo of snow and ice (surface albedo effect). In addition, we provide the first estimate of household solid fuel black carbon emission effects on ice clouds. Anthropogenic emissions are from the IIASA GAINS ECLIPSE V5a inventory. A global dataset of black carbon (BC) and organic aerosol (OA) measurements from surface sites and aerosol optical depth (AOD) from AERONET is used to evaluate the model skill. Compared with observations, the model successfully reproduces the spatial patterns of atmospheric BC and OA concentrations, and agrees with measurements to within a factor of 2. Globally, the simulated AOD agrees well with observations, with a normalized mean bias close to zero. However, the model tends to underestimate AOD over India and China by ˜ 19 ± 4 % but overestimate it over Africa by ˜ 25 ± 11 % (± represents modeled temporal standard deviations for n = 5 run years). Without BC serving as ice nuclei (IN), global and Indian solid fuel cookstove aerosol emissions have net global cooling radiative effects of -141 ± 4 mW m-2 and -12 ± 4 mW m-2, respectively (± represents modeled temporal standard deviations for n = 5 run years). The net radiative impacts are dominated by the AIE and SDE mechanisms, which originate from enhanced cloud condensation nuclei concentrations for the formation of liquid and mixed-phase clouds, and a suppression of convective transport of water vapor from the lower troposphere to the upper troposphere/lower stratosphere that in turn leads to reduced ice cloud formation. When BC is allowed

  6. Using probabilistic finite automata to simulate hourly series of global radiation

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Lopez, L. [Universidad de Malaga (Spain). Dpto. Lenguajes y Computacion; Sidrach-de-Cardona, M. [Universidad de Malaga (Spain). Dpto. Fisica Aplicada II

    2003-03-01

    A model to generate synthetic series of hourly exposure of global radiation is proposed. This model has been constructed using a machine learning approach. It is based on the use of a subclass of probabilistic finite automata which can be used for variable-order Markov processes. This model allows us to represent the different relationships and the representative information observed in the hourly series of global radiation; the variable-order Markov process can be used as a natural way to represent different types of days, and to take into account the ''variable memory'' of cloudiness. A method to generate new series of hourly global radiation, which incorporates the randomness observed in recorded series, is also proposed. As input data this method only uses the mean monthly value of the daily solar global radiation. We examine if the recorded and simulated series are similar. It can be concluded that both series have the same statistical properties. (author)

  7. An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean

    NARCIS (Netherlands)

    Lana, A.; Bell, T. G.; Simo, R.; Vallina, S. M.; Ballabrera-Poy, J.; Kettle, A. J.; Dachs, J.; Bopp, L.; Saltzman, E. S.; Stefels, J.; Johnson, J. E.; Liss, P. S.

    2011-01-01

    The potentially significant role of the biogenic trace gas dimethylsulfide (DMS) in determining the Earth's radiation budget makes it necessary to accurately reproduce seawater DMS distribution and quantify its global flux across the sea/air interface. Following a threefold increase of data (from

  8. Global levels of radiation exposure: Latest international findings

    International Nuclear Information System (INIS)

    Gonzalez, A.J.

    1993-01-01

    The radiation exposure of the world's population has recently been reviewed by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). UNSCEAR has reconfirmed that the normal operation of all peaceful nuclear installations contributes insignificantly to the global exposure to radiation. Even taking into account all the nuclear accidents to date (including Chernobyl), the additional exposure would be equivalent to only about 20 days of natural exposure. Military uses of nuclear energy have committed the world to most of the radiation exposure caused by human activities

  9. Prediction of monthly average global solar radiation based on statistical distribution of clearness index

    International Nuclear Information System (INIS)

    Ayodele, T.R.; Ogunjuyigbe, A.S.O.

    2015-01-01

    In this paper, probability distribution of clearness index is proposed for the prediction of global solar radiation. First, the clearness index is obtained from the past data of global solar radiation, then, the parameters of the appropriate distribution that best fit the clearness index are determined. The global solar radiation is thereafter predicted from the clearness index using inverse transformation of the cumulative distribution function. To validate the proposed method, eight years global solar radiation data (2000–2007) of Ibadan, Nigeria are used to determine the parameters of appropriate probability distribution for clearness index. The calculated parameters are then used to predict the future monthly average global solar radiation for the following year (2008). The predicted values are compared with the measured values using four statistical tests: the Root Mean Square Error (RMSE), MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and the coefficient of determination (R"2). The proposed method is also compared to the existing regression models. The results show that logistic distribution provides the best fit for clearness index of Ibadan and the proposed method is effective in predicting the monthly average global solar radiation with overall RMSE of 0.383 MJ/m"2/day, MAE of 0.295 MJ/m"2/day, MAPE of 2% and R"2 of 0.967. - Highlights: • Distribution of clearnes index is proposed for prediction of global solar radiation. • The clearness index is obtained from the past data of global solar radiation. • The parameters of distribution that best fit the clearness index are determined. • Solar radiation is predicted from the clearness index using inverse transformation. • The method is effective in predicting the monthly average global solar radiation.

  10. Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.

    Science.gov (United States)

    Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S

    2015-05-15

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.

  11. Radiative effects of global MODIS cloud regimes

    Science.gov (United States)

    Oreopoulos, Lazaros; Cho, Nayeong; Lee, Dongmin; Kato, Seiji

    2018-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations. PMID:29619289

  12. Radiative Effects of Global MODIS Cloud Regimes

    Science.gov (United States)

    Oraiopoulos, Lazaros; Cho, Nayeong; Lee, Dong Min; Kato, Seiji

    2016-01-01

    We update previously published MODIS global cloud regimes (CRs) using the latest MODIS cloud retrievals in the Collection 6 dataset. We implement a slightly different derivation method, investigate the composition of the regimes, and then proceed to examine several aspects of CR radiative appearance with the aid of various radiative flux datasets. Our results clearly show the CRs are radiatively distinct in terms of shortwave, longwave and their combined (total) cloud radiative effect. We show that we can clearly distinguish regimes based on whether they radiatively cool or warm the atmosphere, and thanks to radiative heating profiles to discern the vertical distribution of cooling and warming. Terra and Aqua comparisons provide information about the degree to which morning and afternoon occurrences of regimes affect the symmetry of CR radiative contribution. We examine how the radiative discrepancies among multiple irradiance datasets suffering from imperfect spatiotemporal matching depend on CR, and whether they are therefore related to the complexity of cloud structure, its interpretation by different observational systems, and its subsequent representation in radiative transfer calculations.

  13. Radiation dose to the global flying population

    International Nuclear Information System (INIS)

    Alvarez, Luis E; Eastham, Sebastian D; Barrett, Steven R H

    2016-01-01

    Civil airliner passengers and crew are exposed to elevated levels of radiation relative to being at sea level. Previous studies have assessed the radiation dose received in particular cases or for cohort studies. Here we present the first estimate of the total radiation dose received by the worldwide civilian flying population. We simulated flights globally from 2000 to 2013 using schedule data, applying a radiation propagation code to estimate the dose associated with each flight. Passengers flying in Europe and North America exceed the International Commission on Radiological Protection annual dose limits at an annual average of 510 or 420 flight hours per year, respectively. However, this falls to 160 or 120 h on specific routes under maximum exposure conditions. (paper)

  14. A hybrid computational approach to estimate solar global radiation: An empirical evidence from Iran

    International Nuclear Information System (INIS)

    Mostafavi, Elham Sadat; Ramiyani, Sara Saeidi; Sarvar, Rahim; Moud, Hashem Izadi; Mousavi, Seyyed Mohammad

    2013-01-01

    This paper presents an innovative hybrid approach for the estimation of the solar global radiation. New prediction equations were developed for the global radiation using an integrated search method of genetic programming (GP) and simulated annealing (SA), called GP/SA. The solar radiation was formulated in terms of several climatological and meteorological parameters. Comprehensive databases containing monthly data collected for 6 years in two cities of Iran were used to develop GP/SA-based models. Separate models were established for each city. The generalization of the models was verified using a separate testing database. A sensitivity analysis was conducted to investigate the contribution of the parameters affecting the solar radiation. The derived models make accurate predictions of the solar global radiation and notably outperform the existing models. -- Highlights: ► A hybrid approach is presented for the estimation of the solar global radiation. ► The proposed method integrates the capabilities of GP and SA. ► Several climatological and meteorological parameters are included in the analysis. ► The GP/SA models make accurate predictions of the solar global radiation.

  15. Changes of global terrestrial carbon budget and major drivers in recent 30 years simulated using the remote sensing driven BEPS model

    Science.gov (United States)

    Ju, W.; Chen, J.; Liu, R.; Liu, Y.

    2013-12-01

    The process-based Boreal Ecosystem Productivity Simulator (BEPS) model was employed in conjunction with spatially distributed leaf area index (LAI), land cover, soil, and climate data to simulate the carbon budget of global terrestrial ecosystems during the period from 1981 to 2008. The BEPS model was first calibrated and validated using gross primary productivity (GPP), net primary productivity (NPP), and net ecosystem productivity (NEP) measured in different ecosystems across the word. Then, four global simulations were conducted at daily time steps and a spatial resolution of 8 km to quantify the global terrestrial carbon budget and to identify the relative contributions of changes in climate, atmospheric CO2 concentration, and LAI to the global terrestrial carbon sink. The long term LAI data used to drive the model was generated through fusing Moderate Resolution Imaging Spectroradiometer (MODIS) and historical Advanced Very High Resolution Radiometer (AVHRR) data pixel by pixel. The meteorological fields were interpolated from the 0.5° global daily meteorological dataset produced by the land surface hydrological research group at Princeton University. The results show that the BEPS model was able to simulate carbon fluxes in different ecosystems. Simulated GPP, NPP, and NEP values and their temporal trends exhibited distinguishable spatial patterns. During the period from 1981 to 2008, global terrestrial ecosystems acted as a carbon sink. The averaged global totals of GPP NPP, and NEP were 122.70 Pg C yr-1, 56.89 Pg C yr-1, and 2.76 Pg C yr-1, respectively. The global totals of GPP and NPP increased greatly, at rates of 0.43 Pg C yr-2 (R2=0.728) and 0.26 Pg C yr-2 (R2=0.709), respectively. Global total NEP did not show an apparent increasing trend (R2= 0.036), averaged 2.26 Pg C yr-1, 3.21 Pg C yr-1, and 2.72 Pg C yr-1 for the periods from 1981 to 1989, from 1990 to 1999, and from 2000 to 2008, respectively. The magnitude and temporal trend of global

  16. An integrated artificial neural networks approach for predicting global radiation

    International Nuclear Information System (INIS)

    Azadeh, A.; Maghsoudi, A.; Sohrabkhani, S.

    2009-01-01

    This article presents an integrated artificial neural network (ANN) approach for predicting solar global radiation by climatological variables. The integrated ANN trains and tests data with multi layer perceptron (MLP) approach which has the lowest mean absolute percentage error (MAPE). The proposed approach is particularly useful for locations where no available measurement equipment. Also, it considers all related climatological and meteorological parameters as input variables. To show the applicability and superiority of the integrated ANN approach, monthly data were collected for 6 years (1995-2000) in six nominal cities in Iran. Separate model for each city is considered and the quantity of solar global radiation in each city is calculated. Furthermore an integrated ANN model has been introduced for prediction of solar global radiation. The acquired results of the integrated model have shown high accuracy of about 94%. The results of the integrated model have been compared with traditional angstrom's model to show its considerable accuracy. Therefore, the proposed approach can be used as an efficient tool for prediction of solar radiation in the remote and rural locations with no direct measurement equipment.

  17. Using global warming potential to compare methane and CO2 emissions

    International Nuclear Information System (INIS)

    Dufresne, J.L.

    2009-01-01

    Greenhouse gases affect the planetary heat budget. Any change of their concentration affects this budget and therefore the global mean surface temperature of the Earth. These gases have different radiative properties and different lifetimes in the atmosphere, which prevents any direct comparison of the consequences of their emissions on global warming. Almost twenty years ago, the Intergovernmental Panel on Climate Change (IPCC) proposed the global warming potential (GWP) as an index to compare the emissions of the various greenhouse gases. In a recent paper, it has been stated that the use of GWP leads to strongly underestimating the global warming due to constant methane emissions compared to that of constant CO 2 emissions. Here we show that it is not really the case. The GWP enables comparisons of global warming due to constant emissions for any prescribed period, 100 years being often used. But this comparison is not universal. For instance, the impact of methane is underestimated at the beginning of the chosen period while the impact of CO 2 is underestimated after this period

  18. The sea ice mass budget of the Arctic and its future change as simulated by coupled climate models

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Marika M. [National Center for Atmospheric Research, Boulder, CO (United States); Serreze, Mark C.; Stroeve, Julienne [University of Colorado, National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences, Boulder, CO (United States)

    2010-02-15

    Arctic sea ice mass budgets for the twentieth century and projected changes through the twenty-first century are assessed from 14 coupled global climate models. Large inter-model scatter in contemporary mass budgets is strongly related to variations in absorbed solar radiation, due in large part to differences in the surface albedo simulation. Over the twenty-first century, all models simulate a decrease in ice volume resulting from increased annual net melt (melt minus growth), partially compensated by reduced transport to lower latitudes. Despite this general agreement, the models vary considerably regarding the magnitude of ice volume loss and the relative roles of changing melt and growth in driving it. Projected changes in sea ice mass budgets depend in part on the initial (mid twentieth century) ice conditions; models with thicker initial ice generally exhibit larger volume losses. Pointing to the importance of evolving surface albedo and cloud properties, inter-model scatter in changing net ice melt is significantly related to changes in downwelling longwave and absorbed shortwave radiation. These factors, along with the simulated mean and spatial distribution of ice thickness, contribute to a large inter-model scatter in the projected onset of seasonally ice-free conditions. (orig.)

  19. The global assessment of medical radiation exposures

    International Nuclear Information System (INIS)

    Shannoun, F.

    2010-01-01

    World Health Organization (WHO) is the United Nations specialized agency which acts as a coordinating authority on international public health. It was established in 1948. It has 147 Country Offices, 6 Regional Offices and 193 Member States Ministries of Health Its headquarters is in Geneva. The World Health Assembly (WHA) requested WHO to s tudy the optimum use of ionizing radiation in medicine and the risks to health of excessive or improper use . (WHA, 1971) International Basic Safety Standards BSS) The (BSS) mark the culmination of efforts towards global harmonization of radiation safety requirements. However, the involvement of the health sector in the BSS implementation is still weak and scant. There is a need to mobilize the health sector towards safer and effective use of radiation in medicine. Radiation in Health Care The use of radiation in health care is by far the largest contributor to the exposure of the general population from artificial sources. Annually worldwide there are 3,600 million X-ray exams (> 300 million in children), 37 million nuclear medicine procedures and 7.5 million radiation oncology treatments [UNSCEAR Report 2008]. WHO Global Initiative on Radiation Safety in Health Care Settings Was launched in December 2008 It involved the following:- There was involvement of international organizations and professionals bodies, national health and radiation protection authorities, etc. Its aim is to improve the protection of patients and health care workers through better implementation of the BSS. It complements the International Action Plan for Radiological Protection of Patients established by the IAEA 7 UNSCEAR's medical exposure survey Objectives of UNSCEAR's survey were to facilitate evaluation of: - Global estimates of frequency and levels of exposures, with break-downs by medical procedure, age, sex, health care level, and country; - Trends in practice (including those relatively fast-changing); with supporting contextual

  20. Determination of atmospheric parameters to estimate global radiation in areas of complex topography: Generation of global irradiation map

    Energy Technology Data Exchange (ETDEWEB)

    Batlles, F.J.; Bosch, J.L. [Dpto. Fisica Aplicada, Universidad de Almeria, 04120 Almeria (Spain); Tovar-Pescador, J. [Dpto. Fisica, Universidad de Jaen, 23071 Jaen (Spain); Martinez-Durban, M. [Dpto. Ingenieria Lenguajes y Computacion, Universidad de Almeria, 04120 Almeria (Spain); Ortega, R. [Dpto. Edafologia y Quimica Agricola, Universidad de Almeria, 04120 Almeria (Spain); Miralles, I. [Dpto. Edafologia y Quimica Agricola, Universidad de Granada, 28071 Granada (Spain)

    2008-02-15

    Incoming shortwave solar radiation is an important parameter in environmental applications. A detailed spatial and temporal analysis of global solar radiation on the earth surface is needed in many applications, ranging from solar energy uses to the study of agricultural, forest and biological processes. At local scales, the topography is the most important factor in the distribution of solar radiation on the surface. The variability of the elevation, the surface orientation and the obstructions due to elevations are a source of great local differences in insolation and, consequently, in other variables as ground temperature. For this reason, several models based on GIS techniques have been recently developed, integrating topography to obtain the solar radiation on the surface. In this work, global radiation is analyzed with the Solar Analyst, a model implemented on ArcView, that computes the topographic parameters: altitude, latitude, slope and orientation (azimuth) and shadow effects. Solar Analyst uses as input parameters the diffuse fraction and the transmittance. These parameters are not usually available in radiometric networks in mountainous areas. In this work, a method to obtain both parameters from global radiation is proposed. Global radiation data obtained in two networks of radiometric stations is used: one located in Sierra Magina Natural Park (Spain) with 11 stations and another one located on the surroundings of Sierra Nevada Natural Park (Spain) with 14 stations. Daily solar irradiation is calculated from a digital terrain model (DTM), the daily diffuse fraction, K, and daily atmospheric transmittivity, {tau}. Results provided by the model have been compared with measured values. An overestimation for high elevations is observed, whereas low altitudes present underestimation. The best performance was also reported during summer months, and the worst results were obtained during winter. Finally, a yearly global solar irradiation map has been

  1. Global solar radiation estimation in Lavras region, Minas Gerais

    International Nuclear Information System (INIS)

    Dantas, A.A.A.; Carvalho, L.G. de; Ferreira, E.

    2003-01-01

    The objective of this work was the determination of the ''a'' and '' b'' constants of the Angstrom linear model in order to estimate the global solar radiation in Lavras, MG. The work was carried out in the Climatological Station of Lavras (ECP/INMET/UFLA), at the Federal University of Lavras, from December 2001 to November 2002, through insolation daily data and global solar radiation daily records. The ''a'' and '' b'' constants, that express the atmospheric transmitance, were obtained by regression analysis of those data. The obtained equation, Qg/Qt = 0,23 + 0,49 presented a determination coefficient of 0,89. The results are smaller than those suggested by the recommendations that uses the local latitude. According to the results, its possible to indicate the values of 0,23 and 0,49 to be used as the ''a'' and '' b'' constants on the Angstrom equation to estimate the global solar radiation in Lavras, MG. (author) [pt

  2. Evaluation of Applicability of Global Solar Radiation Prediction Models for Kocaeli

    Directory of Open Access Journals (Sweden)

    Nurullah ARSLANOĞLU

    2016-04-01

    Full Text Available Design and analyses of solar energy systems needs value of global solar radiation falling on the surface of the earth. In this study,  thirty relative sunshine duration based regression models in the literature for determining the monthly average daily global solar radiation on a horizontal surface for Kocaeli were investigated. To indicate the performance of the models, the following statistical test methods are used: mean absolute bias error (MABE, mean bias error (MBE, mean absolute percent error (MAPE, mean percent error (MPE, root mean square error (RMSE. According to the statistical performance, Lewis model (Model 23, Model-18 (Jin et al. and Model 8 (Bahel et al. showed the best estimation of the global solar radiation on a horizontal surface for Kocaeli.

  3. Performance of Sayigh's universal formula in the estimation of global solar radiation in Ghana

    International Nuclear Information System (INIS)

    Oduro Afriyie, K.

    1995-10-01

    The performance of Sayigh's universal formula for the estimation of global solar radiation is tested against that of Angstrom-Black model for 13 stations in Ghana, using monthly mean daily global solar radiation averaged over the years 1957-1981. Sayigh's model is found not to perform as credibility as the Angstrom-Black model in the estimation of monthly global solar radiation in Ghana. Of the 156 values of monthly global solar radiation estimated by Sayigh's model, 123 (or 78.8%) had discrepancies of more than 10% with the measured values. The corresponding value for the Angstrom-Black model was 7 (or 4.5%). (author). 5 refs

  4. Global crystallographic textures obtained by neutron and synchrotron radiation

    International Nuclear Information System (INIS)

    Brokmeier, Heinz-Guenter

    2006-01-01

    Global crystallographic textures belong to the main characteristic parameters of engineering materials. The global crystallographic texture is always the average texture of a well-defined sample volume which is representative to solve practical engineering problems. Thus a beam having a high penetration power is needed available as neutron or high energetic X-ray radiation. Texture type and texture sharpness are of great importance for materials properties such as the deep drawing behaviour, one of the basic techniques in many industries. Advantages and disadvantages of both radiations make them complementary for measuring crystallographic textures in a wide range of materials

  5. Global DNA methylation responses to low dose radiation exposure

    International Nuclear Information System (INIS)

    Newman, M.R.; Ormsby, R.J.; Blyth, B.J.; Sykes, P.J.; Bezak, E.

    2011-01-01

    Full text: High radiation doses cause breaks in the DNA which are considered the critical lesions in initiation of radiation-induced cancer. However, at very low radiation doses relevant for the general public, the induction of such breaks will be rare, and other changes to the DNA such as DNA methylation which affects gene expression may playa role in radiation responses. We are studying global DNA methylation after low dose radiation exposure to determine if low dose radiation has short- and/or long-term effects on chromatin structure. We developed a sensitive high resolution melt assay to measure the levels of DNA methylation across the mouse genome by analysing a stretch of DNA sequence within Long Interspersed Nuclear Elements-I (LINE I) that comprise a very large proportion of the mouse and human genomes. Our initial results suggest no significant short-term or longterm) changes in global NA methylation after low dose whole-body X-radiation of 10 J1Gyor 10 mGy, with a significant transient increase in NA methylation observed I day after a high dose of I Gy. If the low radiation doses tested are inducing changes in bal DNA methylation, these would appear to be smaller than the variation observed between the sexes and following the general stress of the sham-irradiation procedure itself. This research was funded by the Low Dose Radiation Research Program, Biological and Environmental Research, US DOE, Grant DE-FG02-05ER64104 and MN is the recipient of the FMCF/BHP Dose Radiation Research Scholarship.

  6. A Stable U Isotopic Perspective on the U Budget and Global Extent of Modern Anoxia in the Ocean.

    Science.gov (United States)

    Tissot, F.; Dauphas, N.

    2015-12-01

    Isotopic fractionation between U4+ and U6+makes U stable isotopes potential tracers of global paleoredox conditions. In this work [1], we put the U-proxy up to a test against a highly constrained system: the modern ocean. We measured a large number of seawater samples from geographically diverse locations and found that the open ocean has a homogenous isotopic composition at δ238USW= -0.392 ± 0.005 ‰ (rel. to CRM-112a). From our measurement of rock samples (n=64) and compilations of literature data (n=380), we then estimated the U isotopic compositions of the various reservoirs involved in the modern oceanic U budget, as well as the fractionation factors associated with U incorporation into those reservoirs. Using a steady-state model, we compared the isotopic composition of the seawater predicted by the four most recent U oceanic budgets [2-5] to the modern seawater value we measured. Three of these budgets [2-4] predict a seawater isotopic composition in very good agreement with the observed δ238USW, which strengthens our confidence in the isotopic fractionation factors associated with each deposition environment and the fact that U is at steady-state in the modern ocean. The U oceanic budget of Henderson and Anderson (2003) does not reproduce the observed seawater composition because the U flux to anoxic/euxinic sediments relative to the total U flux out of the ocean is high in their model, which our analysis shows cannot be correct. The U isotopic composition of seawater is used to constrain the extent of anoxia in the modern ocean (% of seafloor covered by anoxic/euxinic sediments), which is 0.21 ± 0.09 %. This work demonstrates that stable isotopes of U can indeed trace the extent of anoxia in the modern global ocean, thereby validating the application of U isotope measurements to paleoredox reconstructions. Based on the above work, we will present the best estimate of the modern oceanic U budget. [1] Tissot F.L.H., Dauphas N. (2015) Geochim Cosmochim

  7. Evaluation of long-term global radiation measurements in Denmark and Sweden

    DEFF Research Database (Denmark)

    Skalík, Lukáš; Lulkovičová, Otília; Furbo, Simon

    The climate, especially global radiation is one of the key factors influencing the energy yield of solar energy systems. In connection with planning and optimization of energy efficient buildings and solar energy systems it is important to know the climate data of the area where the buildings...... of the atmosphere, increased duration of periods without clouds and/or combination of both these effects. Twenty years of measurements from a climate station in Lyngby, Denmark show that the global radiation increase is almost 3.5 kWh/m2 per year, corresponding to a growth of 7 % for the last 20 years. The global....../systems are located. This study is based on yearly and monthly values of global radiation based on measurements from a climate station placed on the roof of building 119 at Technical University of Denmark in Kgs. Lyngby, from different Danish climate stations runned by Danish Meteorological Institute and from...

  8. Global environment and radiation exposure

    International Nuclear Information System (INIS)

    Okamoto, Kazuto

    1991-01-01

    The present status of investigation of acid rain, stratospheric ozone depletion and greenhouse effect and their relations to radiation exposure are reported. Soil acidification increases transfer rates of radioactivities to plants which increases the population dose. There are two types of ozone depletion, conventional type and ozone hole type and the latter is much more serious than the former. In the greenhouse effect, although there are large uncertainties both in theoretical and observational sides, present predictions about the global warming will not be very far from reality. Environmental effects are wide-ranging and serious. Radon and thoron exhalation rates are affected by the global warming. The influence of the greenhouse effect on ozone depletion is to suppress depletion for conventional type and enhance depletion for ozone hole type. (author) 65 refs

  9. Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy

    Science.gov (United States)

    Artemyev, A.V.; Agapitov, O.V.; Mourenas, D.; Krasnoselskikh, V.V.; Mozer, F.S.

    2015-01-01

    Whistler-mode emissions are important electromagnetic waves pervasive in the Earth’s magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth’s magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave–particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth’s radiation belts, controlled by solar activity. PMID:25975615

  10. Provider Behavior Under Global Budgeting and Policy Responses

    Directory of Open Access Journals (Sweden)

    Chao-Kai Chang MD, PhD

    2015-08-01

    Full Text Available Third-party payer systems are consistently associated with health care cost escalation. Taiwan’s single-payer, universal coverage National Health Insurance (NHI adopted global budgeting (GB to achieve cost control. This study captures ophthalmologists’ response to GB, specifically service volume changes and service substitution between low-revenue and high-revenue services following GB implementation, the subsequent Bureau of NHI policy response, and the policy impact. De-identified eye clinic claims data for the years 2000, 2005, and 2007 were analyzed to study the changes in Simple Claim Form (SCF claims versus Special Case Claims (SCCs. The 3 study years represent the pre-GB period, post-GB but prior to region-wise service cap implementation period, and the post-service cap period, respectively. Repeated measures multilevel regression analysis was used to study the changes adjusting for clinic characteristics and competition within each health care market. SCF service volume (low-revenue, fixed-price patient visits remained constant throughout the study period, but SCCs (covering services involving variable provider effort and resource use with flexibility for discretionary billing increased in 2005 with no further change in 2007. The latter is attributable to a 30% cap negotiated by the NHI Bureau with the ophthalmology association and enforced by the association. This study demonstrates that GB deployed with ongoing monitoring and timely policy responses that are designed in collaboration with professional stakeholders can contain costs in a health insurance–financed health care system.

  11. Global atmospheric budget of simple monocyclic aromatic compounds

    Directory of Open Access Journals (Sweden)

    D. Cabrera-Perez

    2016-06-01

    Full Text Available The global atmospheric budget and distribution of monocyclic aromatic compounds is estimated, using an atmospheric chemistry general circulation model. Simulation results are evaluated with an ensemble of surface and aircraft observations with the goal of understanding emission, production and removal of these compounds.Anthropogenic emissions provided by the RCP database represent the largest source of aromatics in the model (≃ 23 TgC year−1 and biomass burning from the GFAS inventory the second largest (≃ 5 TgC year−1. The simulated chemical production of aromatics accounts for  ≃ 5 TgC year−1. The atmospheric burden of aromatics sums up to 0.3 TgC. The main removal process of aromatics is photochemical decomposition (≃ 27 TgC  year−1, while wet and dry deposition are responsible for a removal of  ≃ 4 TgC year−1.Simulated mixing ratios at the surface and elsewhere in the troposphere show good spatial and temporal agreement with the observations for benzene, although the model generally underestimates mixing ratios. Toluene is generally well reproduced by the model at the surface, but mixing ratios in the free troposphere are underestimated. Finally, larger discrepancies are found for xylenes: surface mixing ratios are not only overestimated but also a low temporal correlation is found with respect to in situ observations.

  12. The ‘Alternative Quality Contract’ in Massachusetts, Based on Global Budgets, Lowered Medical Spending and Improved Quality

    Science.gov (United States)

    Song, Zirui; Safran, Dana Gelb; Landon, Bruce E.; Landrum, Mary Beth; He, Yulei; Mechanic, Robert E.; Day, Matthew P.; Chernew, Michael E.

    2012-01-01

    Seven provider organizations in Massachusetts entered the Blue Cross Blue Shield Alternative Quality Contract in 2009, followed by four more organizations in 2010. This contract, based on a global budget and pay-for-performance for achieving certain quality benchmarks, places providers at risk for excessive spending and rewards them for quality, similar to the new Pioneer Accountable Care Organizations in Medicare. We analyzed changes in spending and quality associated with the Alternative Quality Contract and found that the rate of increase in spending slowed compared to control groups. Overall, participation in the contract over two years led to a savings of 3.3% (1.9% in year-1, 3.3% in year-2) compared to spending in groups not participating in the contract. The savings were even higher for groups whose previous experience had been only in fee-for-service contracting. Such groups’ quarterly savings over two years averaged 8.2% (6.3% in year-1, 9.9% in year-2). Quality of care also improved within organizations participating in the Alternative Quality Contract compared to control organizations in both years. Chronic care management, adult preventive care, and pediatric care improved from year 1 to year 2 within the contracting groups. These results suggest that global budgets coupled with pay-for-performance can begin to slow the underlying growth in medical spending while improving quality. PMID:22786651

  13. Methane bubbling from northern lakes: present and future contributions to the global methane budget.

    Science.gov (United States)

    Walter, Katey M; Smith, Laurence C; Chapin, F Stuart

    2007-07-15

    Large uncertainties in the budget of atmospheric methane (CH4) limit the accuracy of climate change projections. Here we describe and quantify an important source of CH4 -- point-source ebullition (bubbling) from northern lakes -- that has not been incorporated in previous regional or global methane budgets. Employing a method recently introduced to measure ebullition more accurately by taking into account its spatial patchiness in lakes, we estimate point-source ebullition for 16 lakes in Alaska and Siberia that represent several common northern lake types: glacial, alluvial floodplain, peatland and thermokarst (thaw) lakes. Extrapolation of measured fluxes from these 16 sites to all lakes north of 45 degrees N using circumpolar databases of lake and permafrost distributions suggests that northern lakes are a globally significant source of atmospheric CH4, emitting approximately 24.2+/-10.5Tg CH4yr(-1). Thermokarst lakes have particularly high emissions because they release CH4 produced from organic matter previously sequestered in permafrost. A carbon mass balance calculation of CH4 release from thermokarst lakes on the Siberian yedoma ice complex suggests that these lakes alone would emit as much as approximately 49000Tg CH4 if this ice complex was to thaw completely. Using a space-for-time substitution based on the current lake distributions in permafrost-dominated and permafrost-free terrains, we estimate that lake emissions would be reduced by approximately 12% in a more probable transitional permafrost scenario and by approximately 53% in a 'permafrost-free' Northern Hemisphere. Long-term decline in CH4 ebullition from lakes due to lake area loss and permafrost thaw would occur only after the large release of CH4 associated thermokarst lake development in the zone of continuous permafrost.

  14. GERMON. Global Environmental Radiation Monitoring Network

    International Nuclear Information System (INIS)

    1992-01-01

    Between 15-18 December 1987, a meeting of experts of WHO/UNEP met at Le Vesinet, France, to develop the basic principles of a global environmental radiation monitoring network (GERMON) which would have the function of reporting on a regular basis environmental radiation levels, and be positioned to provide rapid and reliable radiation measurements in the event of a major radiation release. To date, some 58 countries have indicated their willingness to become part of GERMON. About 40 of these have technical staff and equipment to meet the minimum requirements for joining the network, and about 30 have designated appropriate organizations within their country to serve as national Liaison Institutions for GERMON. Sixteen countries are now providing data on a regular basis to the CCC at SCPRI in Le Vesinet, France. Thirty-two countries responded to the request of WHO for readiness to take part in a IAEA radiation emergency exercise. The present meeting has been held in Montgomery, Alabama, USA at the National Air and Radiation Environmental Laboratory between 27 April 1992 and 30 April 1992, with the purpose of reviewing GERMON. One important topic considered was the implementation of GERMON in the Americas. Particular attention was given to the need for better coordination with IAEA in responding to the Convention on Early Notification, to the role of the CCC, to forms of data transmission, etc

  15. Prediction of Global Solar Radiation in India Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Rajiv Gupta

    2016-06-01

    Full Text Available Increasing global warming and decreasing fossil fuel reserves has necessitated the use of renewable energy resources like solar energy in India. To maximize return on a solar farm, it had to be set up at a place with high solar radiation. The solar radiation values are available only for a small number of places and must be interpolated for the rest. This paper utilizes Artificial Neural Network in interpolation, by obtaining a function with input as combinations of 7 geographical and meteorological parameters affecting radiation, and output as global solar radiation. Data considered was of past 9 years for 13 Indian cities. Low error values and high coefficient of determination values thus obtained, verified that the results were accurate in terms of the original solar radiation data known. Thus, artificial neural network can be used to interpolate the solar radiation for the places of interest depending on the availability of the data.

  16. Atmospheric water budget over the South Asian summer monsoon region

    Science.gov (United States)

    Unnikrishnan, C. K.; Rajeevan, M.

    2018-04-01

    High resolution hybrid atmospheric water budget over the South Asian monsoon region is examined. The regional characteristics, variability, regional controlling factors and the interrelations of the atmospheric water budget components are investigated. The surface evapotranspiration was created using the High Resolution Land Data Assimilation System (HRLDAS) with the satellite-observed rainfall and vegetation fraction. HRLDAS evapotranspiration shows significant similarity with in situ observations and MODIS satellite-observed evapotranspiration. Result highlights the fundamental importance of evapotranspiration over northwest and southeast India on atmospheric water balance. The investigation shows that the surface net radiation controls the annual evapotranspiration over those regions, where the surface evapotranspiration is lower than 550 mm. The rainfall and evapotranspiration show a linear relation over the low-rainfall regions (forcing (like surface net radiation). The lead and lag correlation of water budget components show that the water budget anomalies are interrelated in the monsoon season even up to 4 months lead. These results show the important regional interrelation of water budget anomalies on south Asian monsoon.

  17. Radiation effects on man health, environment, safety, security. Global Chernobyl mapping

    International Nuclear Information System (INIS)

    Bebeshko, V.; Bazyka, D.; Volovik, S.; Loganovsky, K.; Sushko, V.; Siedow, J.; Cohen, H.; Ginsburg, G.; Chao, N.; Chute, J.

    2007-01-01

    Complete text of publication follows. Objectives: Ionizing radiation is a primordial terrestrial and extraterrestrial background and archetypal environmental stress-factor for life origin, evolution, and existence. We all live in radiation world inevitably involving nuclear energy production, nuclear weapon, nuclear navy, radioactive waste, pertinent medical diagnostics and treatment, etc with connected certain probability of relevant accidents and terrorist attack, space and jet travels, high natural background radiation, etc - actual and potential sources of radiation exposures and effects. State-of- the art integral fundamental research on radiation effects on man health, environment, safety, and security (REMHESS) is nowadays paramount necessity and challenge. Methods and results: In given generalized conceptual framework unique 20 years Chernobyl multidimensional research and databases for radiation effects on man's all organism systems represent invaluable original basis and resources for mapping Chernobyl data and REMHESS challenge. Granted by DOE brand new Chernobyl Research and Service Project based on 'Sarcophagus-II' (Object 'Shelter') workers only one in radiation history baseline cohort, corresponding biorepository prospective dynamic data, integrated conceptual database system, and 'state of the art' 'omics' (genomics, proteomics, metabolomics) analysis is designed specifically for coherent addressing global REMHESS problems. In this connection 'Sarcophagus-II' is only one unique universal model. Conclusions: The fundamental goals of novel strategic Project and global Chernobyl mapping are to determine specific 'omics' signatures of radiation for man depending of exposure peculiarity to understand ultimate molecular mechanisms of radiation effects, gene environment interactions, etiology of organisms systems disorders and diseases, and to develop new biomarkers and countermeasures to protect man health in the framework of global REMHESS challenge

  18. Spatio-temporal distribution of global solar radiation for Mexico using GOES data

    Science.gov (United States)

    Bonifaz, R.; Cuahutle, M.; Valdes, M.; Riveros, D.

    2013-05-01

    Increased need of sustainable and renewable energies around the world requires studies about the amount and distribution of such types of energies. Global solar radiation distribution in space and time is a key component on order to know the availability of the energy for different applications. Using GOES hourly data, the heliosat model was implemented for Mexico. Details about the model and its components are discussed step by stem an once obtained the global solar radiation images, different time datasets (hourly, daily, monthly and seasonal) were built in order to know the spatio-temporal behavior of this type of energy. Preliminary maps of the available solar global radiation energy for Mexico are presented, the amount and variation of the solar radiation by regions are analyzed and discussed. Future work includes a better parametrization of the model using calibrated ground stations data and more use of more complex models for better results.

  19. A study of the radiative forcing and global warming potentials of hydrofluorocarbons

    International Nuclear Information System (INIS)

    Zhang Hua; Wu Jinxiu; Lu Peng

    2011-01-01

    We developed a new radiation parameterization of hydrofluorocarbons (HFCs), using the correlated k-distribution method and the high-resolution transmission molecular absorption (HITRAN) 2004 database. We examined the instantaneous and stratospheric adjusted radiative efficiencies of HFCs for clear-sky and all-sky conditions. We also calculated the radiative forcing of HFCs from preindustrial times to the present and for future scenarios given by the Intergovernmental Panel on Climate Change Special Report on Emission Scenarios (SRES, in short). Global warming potential and global temperature potential were then examined and compared on the basis of the calculated radiative efficiencies. Finally, we discuss surface temperature changes due to various HFC emissions.

  20. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-01

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  1. Use of Atmospheric Budget to Reduce Uncertainty in Estimated Water Availability over South Asia from Different Reanalyses.

    Science.gov (United States)

    Sebastian, Dawn Emil; Pathak, Amey; Ghosh, Subimal

    2016-07-08

    Disagreements across different reanalyses over South Asia result into uncertainty in assessment of water availability, which is computed as the difference between Precipitation and Evapotranspiration (P-E). Here, we compute P-E directly from atmospheric budget with divergence of moisture flux for different reanalyses and find improved correlation with observed values of P-E, acquired from station and satellite data. We also find reduced closure terms for water cycle computed with atmospheric budget, analysed over South Asian landmass, when compared to that obtained with individual values of P and E. The P-E value derived with atmospheric budget is more consistent with energy budget, when we use top-of-atmosphere radiation for the same. For analysing water cycle, we use runoff from Global Land Data Assimilation System, and water storage from Gravity Recovery and Climate Experiment. We find improvements in agreements across different reanalyses, in terms of inter-annual cross correlation when atmospheric budget is used to estimate P-E and hence, emphasize to use the same for estimations of water availability in South Asia to reduce uncertainty. Our results on water availability with reduced uncertainty over highly populated monsoon driven South Asia will be useful for water management and agricultural decision making.

  2. Evaluation of different models to estimate the global solar radiation on inclined surface

    Science.gov (United States)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  3. A model for calculating hourly global solar radiation from satellite data in the tropics

    International Nuclear Information System (INIS)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J.

    2009-01-01

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country.

  4. A model for calculating hourly global solar radiation from satellite data in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Janjai, S.; Pankaew, P.; Laksanaboonsong, J. [Solar Energy Research Laboratory, Department of Physics, Faculty of Science, Silpakorn University, Nakhon Pathom 73000 (Thailand)

    2009-09-15

    A model for calculating global solar radiation from geostationary satellite data is presented. The model is designed to calculate the monthly average hourly global radiation in the tropics with high aerosol load. This model represents a physical relation between the earth-atmospheric albedo derived from GMS5 satellite data and the absorption and scattering coefficients of various atmospheric constituents. The absorption of solar radiation by water vapour which is important for the tropics, was calculated from ambient temperature and relative humidity. The relationship between the visibility and solar radiation depletion due to aerosols was developed for a high aerosol load environment. This relationship was used to calculate solar radiation depletion by aerosols in the model. The total column ozone from TOMS/EP satellite was employed for the determination of solar radiation absorbed by ozone. Solar radiation from four pyranometer stations was used to formulate the relationship between the satellite band earth-atmospheric albedo and broadband earth-atmospheric albedo required by the model. To test its performance, the model was used to compute the monthly average hourly global radiation at 25 solar radiation monitoring stations in tropical areas in Thailand. It was found that the values of monthly average of hourly global radiations calculated from the model were in good agreement with those obtained from the measurements, with the root mean square difference of 10%. After the validation the model was employed to generate hourly solar radiation maps of Thailand. These maps reveal the diurnal and season variation of solar radiation over the country. (author)

  5. Inter-comparison of different models for estimating clear sky solar global radiation for the Negev region of Israel

    International Nuclear Information System (INIS)

    Ianetz, Amiran; Lyubansky, Vera; Setter, Ilan; Kriheli, Boris; Evseev, Efim G.; Kudish, Avraham I.

    2007-01-01

    Solar global radiation is a function of solar altitude, site altitude, albedo, atmospheric transparency and cloudiness, whereas solar global radiation on a clear day is defined such that it is a function of all the abovementioned parameters except cloudiness. Consequently, analysis of the relative magnitudes of solar global radiation and solar global radiation on a clear day provides a platform for studying the influence of cloudiness on solar global radiation. The Iqbal filter for determining the day type has been utilized to calculate the monthly average clear day solar global radiation at three sites in the Negev region of Israel. An inter-comparison between four models for estimating clear sky solar global radiation at the three sites was made. The relative accuracy of the four models was determined by comparing the monthly average daily clear sky solar global radiation to that determined using the Iqbal filter. The analysis was performed on databases consisting of measurements made during the time interval of January 1991 to December 2004. The monthly average daily clear sky solar global radiation determined by the Berlynd model was found to give the best agreement with that determined using the Iqbal filter. The Berlynd model was then utilized to calculate a daily clear day index, K c , which is defined as the ratio of the daily solar global radiation to the daily clear day solar global radiation. It is suggested that this index be used as an indication of the degree of cloudiness. Linear regression analysis was performed on the individual monthly databases for each site to determine the correlation between the daily clear day index and the daily clearness index, K T

  6. Climate change and the federal budget. CBO memorandum

    International Nuclear Information System (INIS)

    1998-08-01

    This Congressional Budget Office (CBO) memorandum was prepared at the request of the Senate Committee on the Budget to document current US efforts in the area of global climate change and to review current federal spending programs and tax policies that relate to climate change. The memorandum also describes proposals contained in the President's 1999 budget for funding for those programs and several new tax policies. It should be helpful to policymakers as they consider options to respond to international proposals for reducing the threat of climate change

  7. Ozone and carbon monoxide budgets over the Eastern Mediterranean

    NARCIS (Netherlands)

    Myriokefalitakis, S.; Daskalakis, N.; Fanourgakis, G.S.; Voulgarakis, A.; Krol, M.C.; Brugh, Aan de J.M.J.; Kanakidou, M.

    2016-01-01

    The importance of the long-range transport (LRT) on O3 and CO budgets over the Eastern Mediterranean has been investigated using the state-of-the-art 3-dimensional global chemistry-transport model TM4-ECPL. A 3-D budget analysis has been performed separating the Eastern from the

  8. Estimation of global solar radiation on horizontal surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Ghamdi, A.A.; Al-Hazmi, F.S.; Faidah, Adel S.

    2009-01-01

    The measured data of global solar radiation on a horizontal surface, as well as the number of sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover, for Jeddah (latitude 21 deg. 42'37''N, longitude 39 deg. 11'12''E), Saudi Arabia for the period 1996-2006 are analyzed. The data are divided into two sets. The sub-data set 1 (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and various meteorological parameters. The nonlinear Angstroem type model developed by Sen and the trigonometric function model proposed by Bulut and Bueyuekalaca are also evaluated. New empirical constants for these two models have been obtained for Jeddah. The sub-data set 2 (2005, 2006) are then used to evaluate the derived correlations. Comparisons between measured and calculated values of H have been performed. It is indicated that, the Sen and Bulut and Bueyuekalaca models satisfactorily describe the horizontal global solar radiation for Jeddah. All the proposed correlations are found to be able to predict the annual average of daily global solar radiation with excellent accuracy. Therefore, the long term performance of solar energy devices can be estimated.

  9. NASA/GEWEX Surface Radiation Budget: Integrated Data Product With Reprocessed Radiance, Cloud, and Meteorology Inputs, and New Surface Albedo Treatment

    Science.gov (United States)

    Cox, Stephen J.; Stackhouse, Paul W., Jr.; Gupta, Shashi K.; Mikovitz, J. Colleen; Zhang, Taiping

    2016-01-01

    The NASA/GEWEX Surface Radiation Budget (SRB) project produces shortwave and longwave surface and top of atmosphere radiative fluxes for the 1983-near present time period. Spatial resolution is 1 degree. The current release 3.0 (available at gewex-srb.larc.nasa.gov) uses the International Satellite Cloud Climatology Project (ISCCP) DX product for pixel level radiance and cloud information. This product is subsampled to 30 km. ISCCP is currently recalibrating and recomputing their entire data series, to be released as the H product, at 10km resolution. The ninefold increase in pixel number will allow SRB a higher resolution gridded product (e.g. 0.5 degree), as well as the production of pixel-level fluxes. In addition to the input data improvements, several important algorithm improvements have been made. Most notable has been the adaptation of Angular Distribution Models (ADMs) from CERES to improve the initial calculation of shortwave TOA fluxes, from which the surface flux calculations follow. Other key input improvements include a detailed aerosol history using the Max Planck Institut Aerosol Climatology (MAC), temperature and moisture profiles from HIRS, and new topography, surface type, and snow/ice. Here we present results for the improved GEWEX Shortwave and Longwave algorithm (GSW and GLW) with new ISCCP data, the various other improved input data sets and the incorporation of many additional internal SRB model improvements. As of the time of abstract submission, results from 2007 have been produced with ISCCP H availability the limiting factor. More SRB data will be produced as ISCCP reprocessing continues. The SRB data produced will be released as part of the Release 4.0 Integrated Product, recognizing the interdependence of the radiative fluxes with other GEWEX products providing estimates of the Earth's global water and energy cycle (I.e., ISCCP, SeaFlux, LandFlux, NVAP, etc.).

  10. Ocean heat content and ocean energy budget: make better use of historical global subsurface temperature dataset

    Science.gov (United States)

    Cheng, L.; Zhu, J.

    2016-02-01

    Ocean heat content (OHC) change contributes substantially to global sea level rise, also is a key metric of the ocean/global energy budget, so it is a vital task for the climate research community to estimate historical OHC. While there are large uncertainties regarding its value, here we review the OHC calculation by using the historical global subsurface temperature dataset, and discuss the sources of its uncertainty. The presentation briefly introduces how to correct to the systematic biases in expendable bathythermograph (XBT) data, a alternative way of filling data gaps (which is main focus of this talk), and how to choose a proper climatology. A new reconstruction of historical upper (0-700 m) OHC change will be presented, which is the Institute of Atmospheric Physics (IAP) version of historical upper OHC assessment. The authors also want to highlight the impact of observation system change on OHC calculation, which could lead to bias in OHC estimates. Furthermore, we will compare the updated observational-based estimates on ocean heat content change since 1970s with CMIP5 results. This comparison shows good agreement, increasing the confidence of the climate models in representing the climate history.

  11. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Science.gov (United States)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  12. EDITORIAL: The Earth radiation balance as driver of the global hydrological cycle

    Science.gov (United States)

    Wild, Martin; Liepert, Beate

    2010-06-01

    National Laboratory is supported by the Office of Science, US Department of Energy. References Allan R P 2007 Improved simulation of water vapour and clear-sky radiation using 24-hour forecasts from ERA40 Tellus A 59 336-43 Allan R P and Soden B J 2007 Large discrepancy between observed and simulated precipitation trends Geophys. Res. Lett. 34 L18705 Allan R P and Soden B J 2008 Precipitation extremes and the amplification of atmospheric warming Science 321 1481-4 Allen M R and Ingram W 2002 Constraints on future changes in climate and the hydrologic cycle Nature 419 224-32 Andrews T, Forster P M and Gregory J M 2009 A surface energy perspective on climate change J. Climate 22 2557-70 Baumgartner A and Reichel E 1975 The World Water Balance: Mean Annual Global, Continental and Maritime Precipitation, Evaporation and Runoff (Amsterdam: Elsevier) 179 pp Bodas-Salcedo A, Ringer M A and Jones A 2008 Evaluation of the surface radiation budget in the atmospheric component of the Hadley Centre Global Environmental Model (HadGEM1) J. Climate 21 4723-48 Gilgen H, Wild M and Ohmura A 1998 Means and trends of shortwave irradiance at the surface estimated from GEBA J. Climate 11 2042-61 Hansen J et al 2005 Earth's energy imbalance: confirmation and implications Science 308 1431-5 IPCC 2007 Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change ed S Solomon, D Qin, M Manning, Z Chen, M Marquis, K B Averyt, M Tignor and H L Miller (Cambridge: Cambridge University Press) 996 pp Jonkman S N 2005 Global perspectives on loss of human life caused by floods Natural Hazards 34 151-75 Lambert F H and Webb M J 2008 Dependency of global mean precipitation on surface temperature Geophys. Res. Lett. 35 L16706 Liepert B G 2002 Observed reductions of surface solar radiation at sites in the United States and worldwide from 1961 to 1990 Geophy. Res. Lett. 29 1421 Liepert B G 2010 The physical

  13. BUDGET PLANNING IN FINANCIAL MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Nataliya Melnichuk

    2015-11-01

    Full Text Available The purpose of the paper is to determine the nature, targets, functions, principles and methods of budget planning and development of classifications due to its types. The essence of budget planning presented by various authors, is own interpretation (the process of developing a plan of formation, distribution and redistribution of financial funds according to budget system units during the reporting period based on budgetary purposes and targets defined by socio-economic development strategy is proposed. Methodology. The following methods such as cognition, induction, deduction, analysis and synthesis have been used in the process of survey. Results of the survey proves that budget planning plays an essential role in the financial management. On condition business environment changing even the best management system can become obsolete. The immediate reaction to the new trends in the financial system as a whole, in the industry is possible with budget planning as well. It also allows to make appropriate adjustments to the plans. Adjustment of long-term, medium-term and short-term plans makes it possible, without changing goals, to change ways of their achievement and thus to raise the level of efficiency of budget funds formation and use. It is necessary to revise the whole system plans, including their mission and goals in the case of global changes in the external and internal environment. Practical implications. The proposed approach to the classification of budget planning types allows to cope with the shortcomings of modern planning in the public sector (the development of the targets according to the state budget expenditures in Ukraine remains a formality and it rarely complies with realities. Value/originality is specified in the proposed interpretation which differs from existing ones that provides clarification of budget planning purpose in financial management; classification of budget planning principles, which differs from previous

  14. New horizontal global solar radiation estimation models for Turkey based on robust coplot supported genetic programming technique

    International Nuclear Information System (INIS)

    Demirhan, Haydar; Kayhan Atilgan, Yasemin

    2015-01-01

    Highlights: • Precise horizontal global solar radiation estimation models are proposed for Turkey. • Genetic programming technique is used to construct the models. • Robust coplot analysis is applied to reduce the impact of outlier observations. • Better estimation and prediction properties are observed for the models. - Abstract: Renewable energy sources have been attracting more and more attention of researchers due to the diminishing and harmful nature of fossil energy sources. Because of the importance of solar energy as a renewable energy source, an accurate determination of significant covariates and their relationships with the amount of global solar radiation reaching the Earth is a critical research problem. There are numerous meteorological and terrestrial covariates that can be used in the analysis of horizontal global solar radiation. Some of these covariates are highly correlated with each other. It is possible to find a large variety of linear or non-linear models to explain the amount of horizontal global solar radiation. However, models that explain the amount of global solar radiation with the smallest set of covariates should be obtained. In this study, use of the robust coplot technique to reduce the number of covariates before going forward with advanced modelling techniques is considered. After reducing the dimensionality of model space, yearly and monthly mean daily horizontal global solar radiation estimation models for Turkey are built by using the genetic programming technique. It is observed that application of robust coplot analysis is helpful for building precise models that explain the amount of global solar radiation with the minimum number of covariates without suffering from outlier observations and the multicollinearity problem. Consequently, over a dataset of Turkey, precise yearly and monthly mean daily global solar radiation estimation models are introduced using the model spaces obtained by robust coplot technique and

  15. A critical review on the estimation of daily global solar radiation from sunshine duration

    International Nuclear Information System (INIS)

    Yorukoglu, Mehmet; Celik, Ali Naci

    2006-01-01

    Models such as the Angstroem-Prescott equation are used to estimate global solar radiation from sunshine duration. In the literature, researchers investigate either the goodness of the model itself or the goodness of the estimation of global solar radiation based on a set of statistical parameters such as R 2 , RMSE, MBE, MABE, MPE and MAPE. If the former is the objective, then the statistical analysis should naturally be based on H/H o - S/S o (the ratio of daily solar radiation to extraterrestrial daily solar radiation vs. the ratio of sunshine duration to day length). If the latter is investigated, then the statistical analysis should be based on H c - H m (calculated daily solar radiation vs. measured daily solar radiation). A literature survey undertaken in the present article showed that these two data sets are apt to be confused, drawing the statistical parameters to be used in assessment of the estimation model from the latter data set or the vice versa set. The statistical parameters are clearly derived from the basics for both of the data sets, and the inconsistencies caused by this confusion and other factors are exposed. A case study of the estimation models and global solar radiation estimation from sunshine duration is presented using five different models (linear, quadratic, cubic, logarithmic and exponential), which are the most common models used in the literature, based on 6 years long measured hourly global solar radiation data

  16. Modern Estimates of Global Water Cycle Fluxes

    Science.gov (United States)

    Rodell, M.; Beaudoing, H. K.; L'Ecuyer, T. S.; Olson, W. S.

    2014-12-01

    The goal of the first phase of the NASA Energy and Water Cycle Study (NEWS) Water and Energy Cycle Climatology project was to develop "state of the global water cycle" and "state of the global energy cycle" assessments based on data from modern ground and space based observing systems and data integrating models. Here we describe results of the water cycle assessment, including mean annual and monthly fluxes over continents and ocean basins during the first decade of the millennium. To the extent possible, the water flux estimates are based on (1) satellite measurements and (2) data-integrating models. A careful accounting of uncertainty in each flux was applied within a routine that enforced multiple water and energy budget constraints simultaneously in a variational framework, in order to produce objectively-determined, optimized estimates. Simultaneous closure of the water and energy budgets caused the ocean evaporation and precipitation terms to increase by about 10% and 5% relative to the original estimates, mainly because the energy budget required turbulent heat fluxes to be substantially larger in order to balance net radiation. In the majority of cases, the observed annual, surface and atmospheric water budgets over the continents and oceans close with much less than 10% residual. Observed residuals and optimized uncertainty estimates are considerably larger for monthly surface and atmospheric water budget closure, often nearing or exceeding 20% in North America, Eurasia, Australia and neighboring islands, and the Arctic and South Atlantic Oceans. The residuals in South America and Africa tend to be smaller, possibly because cold land processes are a non-issue. Fluxes are poorly observed over the Arctic Ocean, certain seas, Antarctica, and the Australasian and Indonesian Islands, leading to reliance on atmospheric analysis estimates. Other details of the study and future directions will be discussed.

  17. The potential of global solar radiation in the Silesia region as a renewable source of energy

    Directory of Open Access Journals (Sweden)

    Waniek Katarzyna

    2016-12-01

    Full Text Available Historically, Silesia has been at the centre of the Polish coal industry for many years and thus has experienced poorer air quality compared to other voivodeships. However, in recent years strong economic transformation in the area has led to a considerable reduction in coal production. This study aimed to assess the variability of global solar radiation at selected stations within the Silesian voivodeship, in order to re-evaluate the resources of renewable solar energy during the period 1994–2013. The theoretical potential of solar radiation was calculated based on a three-dimensional terrain model. The data on global solar radiation from 13 stations within the Silesia region, covering the period 1994–2013, were obtained from the Regional Inspectorate of Environmental Protection in Katowice. The most favourable conditions for the use of solar energy were found at the cities Sosnowiec and Cieszyn. The largest increase in global radiation over the research period was observed in Zabrze. The average annual global radiation ranged between 600–1300 kWh·m−2. Digital Elevation Models (DEM for selected districts of the Silesia region were used to calculate the theoretical potential of global solar radiation. The highest theoretical potential of global radiation was found in the district of Cieszyn, located at the highest altitude.

  18. Establishing a Global Radiation Oncology Collaboration in Education (GRaCE)

    DEFF Research Database (Denmark)

    Turner, Sandra; Eriksen, Jesper G; Trotter, Theresa

    2015-01-01

    Representatives from countries and regions world-wide who have implemented modern competency-based radiation- or clinical oncology curricula for training medical specialists, met to determine the feasibility and value of an ongoing international collaboration. In this forum, educational leaders...... with similar goals, would provide a valuable vehicle to ensure training program currency, through sharing of resources and expertise, and enhance high quality radiation oncology education. Potential projects for the Global Radiation Oncology Collaboration in Education (GRaCE) were agreed upon...

  19. Agency problems of global budget system in Taiwan's National Health Insurance.

    Science.gov (United States)

    Yan, Yu-Hua; Yang, Chen-Wei; Fang, Shih-Chieh

    2014-05-01

    The main purpose of this study was to investigate the agency problem presented by the global budget system followed by hospitals in Taiwan. In this study, we examine empirically the interaction between the principal: Bureau of National Health Insurance (BNHI) and agency: medical service providers (hospitals); we also describe actual medical service provider and hospital governance conditions from a agency theory perspective. This study identified a positive correlation between aversion to agency hazard (self-interest behavior, asymmetric information, and risk hedging) and agency problem risks (disregard of medical ethics, pursuit of extra-contract profit, disregard of professionalism, and cost orientation). Agency costs refer to BNHI auditing and monitoring expenditures used to prevent hospitals from deviating from NHI policy goals. This study also found agency costs negatively moderate the relationship between agency hazards and agency problems The main contribution of this study is its use of agency theory to clarify agency problems and several potential factors caused by the NHI system. This study also contributes to the field of health policy study by clarifying the nature and importance of agency problems in the health care sector. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Mapping Global Ocean Surface Albedo from Satellite Observations: Models, Algorithms, and Datasets

    Science.gov (United States)

    Li, X.; Fan, X.; Yan, H.; Li, A.; Wang, M.; Qu, Y.

    2018-04-01

    Ocean surface albedo (OSA) is one of the important parameters in surface radiation budget (SRB). It is usually considered as a controlling factor of the heat exchange among the atmosphere and ocean. The temporal and spatial dynamics of OSA determine the energy absorption of upper level ocean water, and have influences on the oceanic currents, atmospheric circulations, and transportation of material and energy of hydrosphere. Therefore, various parameterizations and models have been developed for describing the dynamics of OSA. However, it has been demonstrated that the currently available OSA datasets cannot full fill the requirement of global climate change studies. In this study, we present a literature review on mapping global OSA from satellite observations. The models (parameterizations, the coupled ocean-atmosphere radiative transfer (COART), and the three component ocean water albedo (TCOWA)), algorithms (the estimation method based on reanalysis data, and the direct-estimation algorithm), and datasets (the cloud, albedo and radiation (CLARA) surface albedo product, dataset derived by the TCOWA model, and the global land surface satellite (GLASS) phase-2 surface broadband albedo product) of OSA have been discussed, separately.

  1. GLOBAL SOLAR RADIATION INTERCEPTION BY GRAPEVINES TRAINED TO A VERTICAL TRELLIS SYSTEM

    Directory of Open Access Journals (Sweden)

    CLAUDIA GUIMARÃES CAMARGO CAMPOS

    2016-01-01

    Full Text Available ABSTRACT In this paper we assess the utilization of radiant energy in the growing of grapevines (Cabernet Sauvignon trained to a vertical trellis system, and estimate the global solar radiation interception taking into account the physical characteristics of the training system at different phenological stages. The experiment was based on daily measurements of global solar radiation made by an automatic weather station placed at the vineyard of a winery located in the municipality of São Joaquim, in the southern Brazilian State of Santa Catarina (Villa Francioni winery, 28º 15’ 14” S, 49º 57’ 02” W, 1294m a.s.l.. Growth and phenological development of the shoots were evaluated. The global solar radiation is intercepted by the canopy (trained to a vertical trellis system in different orientations and the accumulated total is slightly greater on the east than on the west face of the canopy, especially after flowering. The daily variability of global solar radiation intercepted by the canopy is greater after flowering. The accumulated solar energy incident on the canopy increases until the onset of ripening. From the results, vineyards trained to a vertical trellis system in the north-south direction provide favorable sunlight exposure to leaves and fruits and are promising in quality and productivity.

  2. Environmental and Health Benefits and Risks of a Global Hydrogen Economy

    Science.gov (United States)

    Dubey, M.; Horowitz, L. W.; Rahn, T. A.; Kinnison, D. E.

    2003-12-01

    Rapid development in hydrogen fuel-cell technologies will create a strong impetus for a massive hydrogen supply and distribution infrastructure in the coming decades. Hydrogen provides an efficient energy carrier that promises to enhance urban and regional air quality that will benefit human health. It could also reduce risks of climate change if large-scale hydrogen production by renewable or nuclear energy sources becomes viable. While it is well known that the byproduct of energy produced from hydrogen is water vapor, it is not well known that the storage and transfer of hydrogen is inevitably accompanied by measurable leakage of hydrogen. Unintended consequences of hydrogen leakage include reduction in global oxidative capacity, changes in tropospheric ozone, and increase in stratospheric water that would exacerbate halogen induced ozone losses as well as impact the earth's radiation budget and climate. Stratospheric ozone depletion would increase exposure to harmful ultraviolet radiation and increased risk to melanoma. We construct plausible global hydrogen energy use and leak scenarios and assess their impacts using global 3-D simulations by the Model for Ozone And Related Trace species (MOZART). The hydrogen fluxes and photochemistry in our model successfully reproduce the contemporary hydrogen cycle as observed by a network of remote global stations. Our intent is to determine environmentally tolerable leak rates and also facilitate a gradual phasing in of a hydrogen economy over the next several decades as the elimination of the use of halocarbons gradually reduces halogen induced stratospheric ozone loss rates. We stress that the future evolution of microbial soil sink of hydrogen that determines its current lifetime (about 2 years) is the principal source of uncertainty in our assessment. We propose global monitoring of hydrogen and its deuterium content to define a baseline and track its budget to responsibly prepare for a global hydrogen economy.

  3. Frequency-independent radiation modes of interior sound radiation: Experimental study and global active control

    Science.gov (United States)

    Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.

    2017-08-01

    Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.

  4. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  5. Importance of representing optical depth variability for estimates of global line-shaped contrail radiative forcing.

    Science.gov (United States)

    Kärcher, Bernd; Burkhardt, Ulrike; Ponater, Michael; Frömming, Christine

    2010-11-09

    Estimates of the global radiative forcing by line-shaped contrails differ mainly due to the large uncertainty in contrail optical depth. Most contrails are optically thin so that their radiative forcing is roughly proportional to their optical depth and increases with contrail coverage. In recent assessments, the best estimate of mean contrail radiative forcing was significantly reduced, because global climate model simulations pointed at lower optical depth values than earlier studies. We revise these estimates by comparing the probability distribution of contrail optical depth diagnosed with a climate model with the distribution derived from a microphysical, cloud-scale model constrained by satellite observations over the United States. By assuming that the optical depth distribution from the cloud model is more realistic than that from the climate model, and by taking the difference between the observed and simulated optical depth over the United States as globally representative, we quantify uncertainties in the climate model's diagnostic contrail parameterization. Revising the climate model results accordingly increases the global mean radiative forcing estimate for line-shaped contrails by a factor of 3.3, from 3.5 mW/m(2) to 11.6 mW/m(2) for the year 1992. Furthermore, the satellite observations and the cloud model point at higher global mean optical depth of detectable contrails than often assumed in radiative transfer (off-line) studies. Therefore, we correct estimates of contrail radiative forcing from off-line studies as well. We suggest that the global net radiative forcing of line-shaped persistent contrails is in the range 8-20 mW/m(2) for the air traffic in the year 2000.

  6. Applicability of empirical correlations for estimating global solar radiation

    International Nuclear Information System (INIS)

    Gopinathan, K.K.; Baholo, M.

    1987-01-01

    Three empirical models suggested by different investigators, for estimating monthly mean daily global radiation on a horizontal surface, are compared statistically to test their universal applicability. The models thus compared are those suggested by Rietveld, Glover and McCulloch and Gopinathan. The models are compared by calculating the root mean square error, mean bias error and mean relative percentage error values. The model suggested by Gopinathan yields the best results in terms of root mean square, mean bias and mean percentage errors. The model by Rietveld is the second best and the model by Glover and McCulloch comes at third place. However, the differences in the magnitude of errors among the three models are very small and all the three models can be considered to be accurate for global radiation estimation for any location in the world

  7. An overview of global solar radiation measurements in Ghardaia area, south Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Gairaa, Kacem; Bakelli, Yahia [Applied Research Unit for Renewables Energies, Ouargla Road, Ghardaia (Algeria)

    2011-07-01

    This paper presents an overview of actual solar radiation data measurements in Ghardaia site (32.360 N, 3.810 W, 450 m above MSL). Global solar radiation and surface temperatures were measured and analyzed for one complete year from 1 January-31December 2005. The data thus recorded are compared with corresponding data of the 22-year average of NASA's surface meteorology and solar energy-model. Hourly, daily and monthly solar radiation was made from five-minute recorded by EKO Pyranometer. The highest measured daily and monthly mean solar radiation was found to be 369 and 326 (W/m2), and the highest five minute averaged solar radiation values up to 1268 (W/m2) were observed in the summer season from May to September, and the yearly average daily energy input was 21.83 (MJ/m2/day). Besides the global solar radiation, the daily and monthly average temperature variations are discussed. The collected data indicate that Ghardaia has a strong potential for solar energy applications.

  8. Preparing for budget-based payment methodologies: global payment and episode-based payment.

    Science.gov (United States)

    Hudson, Mark E

    2015-10-01

    Use of budget-based payment methodologies (capitation and episode-based bundled payment) has been demonstrated to drive value in healthcare delivery. With a focus on high-volume, high-cost surgical procedures, inclusion of anaesthesiology services in these methodologies is likely. This review provides a summary of budget-based payment methodologies and practical information necessary for anaesthesiologists to prepare for participation in these programmes. Although few examples of anaesthesiologists' participation in these models exist, an understanding of the structure of these programmes and opportunities for participation are available. Prospective preparation in developing anaesthesiology-specific bundled payment profiles and early participation in pathway development associated with selected episodes of care are essential for successful participation as a gainsharing partner. With significant opportunity to contribute to care coordination and cost management, anaesthesiology can play an important role in budget-based payment programmes and should expect to participate as full gainsharing partners. Precise costing methodologies and accurate economic modelling, along with identification of quality management and cost control opportunities, will help identify participation opportunities and appropriate payment and gainsharing agreements. Anaesthesiology-specific examples with budget-based payment models are needed to help guide increased participation in these programmes.

  9. Use of selected ambulatory dental services in Taiwan before and after global budgeting: a longitudinal study to identify trends in hospital and clinic-based services

    Directory of Open Access Journals (Sweden)

    Lin Chienhung

    2012-09-01

    Full Text Available Abstract Background The Taiwan government adopted National Health Insurance (NHI in 1995, providing universal health care to all citizens. It was financed by mandatory premium contributions made by employers, employees, and the government. Since then, the government has faced increasing challenges to control NHI expenditures. The aim of this study was to determine trends in the provision of dental services in Taiwan after the implementation of global budgeting in 1998 and to identify areas of possible concern. Methods This longitudinal before/after study was based on data from the National Health Insurance Research Database from 1996 to 2001. These data were subjected to logistic regression analysis. Linear regression analysis was used to examine changes in delivery of specific services after global budgeting implementation. Utilization of hospital and clinic services was compared. Results Reimbursement for dental services increased significantly while the number of visits per patient remained steady in both hospitals and clinics. In hospitals, visits for root canal procedures, ionomer restoration, tooth extraction and tooth scaling increased significantly. In dental clinics, visits for amalgam restoration decreased significantly while those for ionomer restoration, tooth extraction, and tooth scaling increased significantly. After the adoption of global budgeting, expenditures for dental services increased dramatically while the number of visits per patient did not, indicating a possible shift in patients to hospital facilities that received additional National Health Insurance funding. Conclusions The identified trends indicate increased utilization of dental services and uneven distribution of care and dentists. These trends may be compromising the quality of dental care delivered in Taiwan.

  10. Global trends in radiation processing

    International Nuclear Information System (INIS)

    Defalco, Gerry

    2002-01-01

    A global leader in radioisotope technology with three business units: - Nuclear Medicine supplies about two-thirds of the world requirements for molybdenum-99 and other isotopes used to diagnose disease - Radiation Therapy business unit supplied more than over 2,300 cobalt cancer treatment machines and is a leader in treatment planning - Ion Technologies is the world's leading supplier of cobalt 60 and innovative gamma irradiation systems About Ion Technologies · Supply over 70% of world's cobalt-60 sources · Custom-designed and built irradiation systems · Comprehensive engineering, physics, logistics, installation and marketing services · Canadian Irradiation Center for unique 'hands on' training, R and D product irradiation

  11. Probabilistic estimates of 1.5-degree carbon budgets based on uncertainty in transient climate response and aerosol forcing

    Science.gov (United States)

    Partanen, A. I.; Mengis, N.; Jalbert, J.; Matthews, D.

    2017-12-01

    Nations agreed to limit the increase in global mean surface temperature relative to the preindustrial era below 2 degrees Celsius and pursue efforts to a more ambitious goal of 1.5 degrees Celsius. To achieve these goals, it is necessary to assess the amount of cumulative carbon emissions compatible with these temperature targets, i.e. so called carbon budgets. In this work, we use the intermediate complexity University of Victoria Earth System Climate Model (UVic ESCM) to assess how uncertainty in aerosol forcing and transient climate response transfers to uncertainty in future carbon budgets for burning fossil fuels. We create a perturbed parameter ensemble of model simulations by scaling aerosol forcing and transient climate response, and assess the likelihood of each simulation by comparing the simulated historical cumulative carbon emissions, CO2 concentration and radiative balance to observations. By weighting the results of each simulation with the likelihood of the simulation, the preliminary results give a carbon budget of 48 Pg C to reach 1.5 degree Celsius temperature increase. The small weighted mean is due to large fraction of simulations with strong aerosol forcing and transient climate response giving negative carbon budgets for this time period. The probability of the carbon budget being over 100 Pg C was 38% and 23% for over 200 Pg carbon budget. The carbon budgets after temperature stabilization at 1.5 degrees are even smaller with a weighted mean of -100 Pg C until the year 2200. The main reason for the negative carbon budgets after temperature stabilization is an assumed strong decrease in aerosol forcing in the 21st century. Conversely, simulations with weak aerosol forcing and transient climate response give positive carbon budgets. Our results highlight both the importance of reducing uncertainty in aerosol forcing and transient climate response, and of taking the non-CO2 forcers into account when estimating carbon budgets.

  12. The Global Character of the Flux of Downward Longwave Radiation

    Science.gov (United States)

    Stephens, Graeme L.; Wild, Martin; Stackhouse, Paul W., Jr.; L'Ecuyer, Tristan; Kato, Seiji; Henderson, David S.

    2012-01-01

    Four different types of estimates of the surface downwelling longwave radiative flux (DLR) are reviewed. One group of estimates synthesizes global cloud, aerosol, and other information in a radiation model that is used to calculate fluxes. Because these synthesis fluxes have been assessed against observations, the global-mean values of these fluxes are deemed to be the most credible of the four different categories reviewed. The global, annual mean DLR lies between approximately 344 and 350 W/sq m with an error of approximately +/-10 W/sq m that arises mostly from the uncertainty in atmospheric state that governs the estimation of the clear-sky emission. The authors conclude that the DLR derived from global climate models are biased low by approximately 10 W/sq m and even larger differences are found with respect to reanalysis climate data. The DLR inferred from a surface energy balance closure is also substantially smaller that the range found from synthesis products suggesting that current depictions of surface energy balance also require revision. The effect of clouds on the DLR, largely facilitated by the new cloud base information from the CloudSat radar, is estimated to lie in the range from 24 to 34 W/sq m for the global cloud radiative effect (all-sky minus clear-sky DLR). This effect is strongly modulated by the underlying water vapor that gives rise to a maximum sensitivity of the DLR to cloud occurring in the colder drier regions of the planet. The bottom of atmosphere (BOA) cloud effect directly contrast the effect of clouds on the top of atmosphere (TOA) fluxes that is maximum in regions of deepest and coldest clouds in the moist tropics.

  13. [Comparison of three daily global solar radiation models].

    Science.gov (United States)

    Yang, Jin-Ming; Fan, Wen-Yi; Zhao, Ying-Hui

    2014-08-01

    Three daily global solar radiation estimation models ( Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al.) were analyzed and compared using data of 13 weather stations from 1982 to 2012 from three northeastern provinces and eastern Inner Mongolia. After cross-validation analysis, the result showed that mean absolute error (MAE) for each model was 1.71, 2.83 and 1.68 MJ x m(-2) x d(-1) respectively, showing that Å-P model and model provided by Liu Ke-qun et al. which used percentage of sunshine had an advantage over Thornton-Running model which didn't use percentage of sunshine. Model provided by Liu Ke-qun et al. played a good effect on the situation of non-sunshine, and its MAE and bias percentage were 18.5% and 33.8% smaller than those of Å-P model, respectively. High precision results could be obtained by using the simple linear model of Å-P. Å-P model, Thornton-Running model and model provided by Liu Ke-qun et al. overvalued daily global solar radiation by 12.2%, 19.2% and 9.9% respectively. MAE for each station varied little with the spatial change of location, and annual MAE decreased with the advance of years. The reason for this might be that the change of observation accuracy caused by the replacement of radiation instrument in 1993. MAEs for rainy days, non-sunshine days and warm seasons of the three models were greater than those for days without rain, sunshine days and cold seasons respectively, showing that different methods should be used for different weather conditions on estimating solar radiation with meteorological elements.

  14. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  15. Assessment of global solar radiation to examine the best locations to install a PV system in Tunisia

    Science.gov (United States)

    Belkilani, Kaouther; Ben Othman, Afef; Besbes, Mongi

    2018-02-01

    The study of the solar radiation is the starting point of any investigation for a new energy, to study and search the best location to install a PV system. A very important factor in the assessment of solar potential is the availability of data for global solar radiation that must be coherent and of high quality. In this paper, we analyze the estimation result of the monthly global solar radiation for three different locations, Bizerte in Northern Tunisia, Kairouan in Middle Eastern Tunisia, and Tozeur in Southern Tunisia, measured on the surface by the National Institute of Meteorology and the meteorological year irradiation based on satellite imagery result PVGIS radiation databases. To get the right measurements with minimum error, we propose a numerical model used to calculate the global solar radiation in the indicated three sites. The results show that the model can estimate the global solar radiation (kWh/m²) at a specific station and over most area of Tunisia. The model gives a good estimation for solar radiation where error between the measured values and those calculated are negligible.

  16. Projected Impact of Climate Change on the Energy Budget of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.; Hansen, James E. (Technical Monitor)

    2001-01-01

    The annual energy budget of the Arctic Ocean is characterized by a net heat loss at the air-sea interface that is balanced by oceanic heat transport into the Arctic. The energy loss at the air-sea interface is due to the combined effects of radiative, sensible, and latent heat fluxes. The inflow of heat by the ocean can be divided into two components: the transport of water masses of different temperatures between the Arctic and the Atlantic and Pacific Oceans and the export of sea ice, primarily through Fram Strait. Two 150-year simulations (1950-2099) of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. One is a control simulation for the present climate with constant 1950 atmospheric composition, and the other is a transient experiment with observed GHGs from 1950 to 1990 and 0.5% annual compounded increases of CO2 after 1990. For the present climate the model agrees well with observations of radiative fluxes at the top of the atmosphere, atmospheric advective energy transport into the Arctic, and surface air temperature. It also simulates the seasonal cycle and summer increase of cloud cover and the seasonal cycle of sea-ice cover. In addition, the changes in high-latitude surface air temperature and sea-ice cover in the GHG experiment are consistent with observed changes during the last 40 and 20 years, respectively. Relative to the control, the last 50-year period of the GHG experiment indicates that even though the net annual incident solar radiation at the surface decreases by 4.6 W(per square meters) (because of greater cloud cover and increased cloud optical depth), the absorbed solar radiation increases by 2.8 W(per square meters) (because of less sea ice). Increased cloud cover and warmer air also cause increased downward thermal radiation at the surface so that the net radiation into the ocean increases by 5.0 Wm-2. The annual increase in radiation into the ocean, however, is

  17. 7 CFR 3402.14 - Budget and budget narrative.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Budget and budget narrative. 3402.14 Section 3402.14... GRADUATE AND POSTGRADUATE FELLOWSHIP GRANTS PROGRAM Preparation of an Application § 3402.14 Budget and budget narrative. Applicants must prepare the Budget, Form CSREES-2004, and a budget narrative...

  18. The Global Environment Radiation Monitoring Network (GERMON)

    International Nuclear Information System (INIS)

    Zakheim, B.J.; Goellner, D.A.

    1994-01-01

    Following the Chernobyl accident in 1986, a group of experts from the World Health Organization (WHO) and the United Nations Environment Program (UNEP) met in France to discuss and develop the basic principles of a global environmental radiation monitoring network (GERMON). The basic functions of this network were to provide regular reports on environmental radiation levels and to be in a position to provide reliable and accurate radiation measurements on a quick and accurate radiation measurements on a quick turnaround basis in the event of a major radiation release. By 1992, although 58 countries had indicated an interest in becoming a part of the GERMON system, only 16 were providing data on a regular basis. This paper traces the history of GERMON from its inception in 1987 through its activities during 1993-4. It details the objectives of the network, describes functions, lists its participants, and presents obstacles in the current network. The paper examines the data requirements for radiological emergency preparedness and offers suggestions for the current system. The paper also describes the growing need for such a network. To add a domestic perspective, the authors present a summary of the environmental monitoring information system that was used by the NRC in 1986 in its analyses of the Chernobyl incident. Then we will use this 1986 experience to propose a method for the use of GERMON should a similar occasion arise in the future

  19. Upward revision of global fossil fuel methane emissions based on isotope database.

    Science.gov (United States)

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  20. Global Solar radiation in Spain from Satellite Images; Radiacion Solar Global en la Espana Peninsular a partir de images de satelite

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez Santigosa, L.; Mora Lopez, L.; Sidrach de Cardona Ortin, M.; Navarro Fernandez, A. A.; Varela conde, M.; Cruz Echeandia, M. de la

    2003-07-01

    In the context of the present work a series of algorithms of calculation of the solar radiation from satellite images has been developed. These models, have been applied to three years of images of the Meteosat satellite and the results of the treatment have been extrapolated to long term. For the development of the models of solar radiation registered in ground stations have been used, corresponding all of them to localities of peninsular Spain and the Balearic ones. The maximum periods of data available have been used, supposing in most of the cases periods of between 6 and 9 years. From the results has a year type of images of global solar radiation on horizontal surface. The original resolution of the image of 7x7 km in the study latitudes, has been revaluate to 5x5 km. This supposes to have a value of the typical radiation for every day of the year, each 5x5 km in the study territory. This information, supposes an important advance as far as the knowledge of the space distribution of the radiation solar,impossible to reach about alternative methods. Doubtlessly, the precision of the provided values is not comparable with pyranometric measures in a concrete localise, but it provides a very valid indicator in places in which, it not had previous information. In addition to the radiation maps, tables of the global solar radiation have been prepared on different inclinations, from the global radiation on horizontal surface calculated for every day of the year and in each pixel of the image. (Author) 24 refs.

  1. Global distributions of cloud properties for CERES

    Science.gov (United States)

    Sun-Mack, S.; Minnis, P.; Heck, P.; Young, D.

    2003-04-01

    The microphysical and macrophysical properties of clouds play a crucial role in the earth's radiation budget. Simultaneous measurement of the radiation and cloud fields on a global basis has long been recognized as a key component in understanding and modeling the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. With the implementation of the NASA Clouds and Earth's Radiant Energy System (CERES) in 1998, this need is being met. Broadband shortwave and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth from the TRMM Visible Infrared Scanner and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. The combined cloud-radiation product has already been used for developing new, highly accurate anisotropic directional models for converting broadband radiances to flux. They also provide a consistent measure of cloud properties at different times of day over the globe since January 1998. These data will be valuable for determining the indirect effects of aerosols and for linking cloud water to cloud radiation. This paper provides an overview of the CERES cloud products from the three satellites including the retrieval methodology, validation, and global distributions. Availability and access to the datasets will also be discussed.

  2. A Linear Regression Model for Global Solar Radiation on Horizontal Surfaces at Warri, Nigeria

    Directory of Open Access Journals (Sweden)

    Michael S. Okundamiya

    2013-10-01

    Full Text Available The growing anxiety on the negative effects of fossil fuels on the environment and the global emission reduction targets call for a more extensive use of renewable energy alternatives. Efficient solar energy utilization is an essential solution to the high atmospheric pollution caused by fossil fuel combustion. Global solar radiation (GSR data, which are useful for the design and evaluation of solar energy conversion system, are not measured at the forty-five meteorological stations in Nigeria. The dearth of the measured solar radiation data calls for accurate estimation. This study proposed a temperature-based linear regression, for predicting the monthly average daily GSR on horizontal surfaces, at Warri (latitude 5.020N and longitude 7.880E an oil city located in the south-south geopolitical zone, in Nigeria. The proposed model is analyzed based on five statistical indicators (coefficient of correlation, coefficient of determination, mean bias error, root mean square error, and t-statistic, and compared with the existing sunshine-based model for the same study. The results indicate that the proposed temperature-based linear regression model could replace the existing sunshine-based model for generating global solar radiation data. Keywords: air temperature; empirical model; global solar radiation; regression analysis; renewable energy; Warri

  3. The RAVAN CubeSat Mission: A Pathfinder for a New Measurement of Earth's Radiation Budget

    Science.gov (United States)

    Swartz, W.; Lorentz, S. R.; Huang, P. M.; Smith, A. W.; Deglau, D.; Reynolds, E.; Carvo, J.; Papadakis, S.; Wu, D. L.; Wiscombe, W. J.; Dyrud, L. P.

    2016-12-01

    The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat is a pathfinder for a constellation to measure the Earth's radiation imbalance (ERI), which is the single most important quantity for predicting the course of climate change over the next century. RAVAN demonstrates a small, accurate radiometer that measures top-of-the-atmosphere Earth-leaving fluxes of total and solar-reflected radiation. Coupled with knowledge of the incoming radiation from the Sun, a constellation of such measurements would aim to determine ERI directly. Our objective with RAVAN is to establish that a compact radiometer that is absolutely calibrated to climate accuracy can be built and operated in space for low cost. The radiometer, hosted on a 3U CubeSat, relies on two key technologies. The first is the use of vertically aligned carbon nanotubes (VACNTs) as the radiometer absorber. VACNT forests are some of the blackest materials known and have an extremely flat spectral response over a wide wavelength range. The second key technology is a gallium fixed-point blackbody calibration source, embedded in RAVAN's sensor head contamination cover, that serves as a stable and repeatable reference to track the long-term degradation of the sensor. Absolute calibration is also maintained by regular solar and deep space views. We present the scientific motivation for the NASA-funded mission, design and characterization of the spacecraft, and mission operations concept. Pending a successful launch in fall 2016, we will also present the first results on-orbit. RAVAN will help enable the development of an Earth radiation budget constellation mission that can provide the measurements needed for superior predictions of future climate change.

  4. CO2 and solar radiation: cause of global warming?

    International Nuclear Information System (INIS)

    Bayona Gabriel; Garcia, Yuri C.; Sarmiento Heiner R

    2010-01-01

    A cause-effect relationship between global temperature as a climatic change indicator and some of the main forcing mechanisms (Atmospheric CO 2 concentration, solar radiation and volcanic activity) are analyzed in this paper through time series analysis for the 1610-1990 AD period comparing trends and variability for the frequency spectrums. Temperature seems to fit the CO 2 trend for the last century, but we found no cause-effect relationship for this interval. The frequency analysis shows a correlation between radiation and temperature for a period of 22 years. Volcanism presents an inverse relationship with temperature better seen at a decadal scale.

  5. Seasonal and annual heat budgets offshore the Hanko Peninsula, Gulf of Finland

    Energy Technology Data Exchange (ETDEWEB)

    Merkouriadi, I.; Lepparanta, M. [Helsinki Univ. (Finland). Dept. of Physics], Email: ioanna.merkouriadi@helsinki.fi; Shirasawa, K. [Hokkaido Univ., Sapporo (Japan). Pan-Okhotsk Research Center, Inst. of Low Temperature Science

    2013-06-01

    A joint Finnish-Japanese sea-ice experiment 'Hanko-9012' carried out offshore the Hanko Peninsula included seasonal monitoring and intensive field campaigns. Ice, oceanographic and meteorological data were collected to examine the structure and properties of the Baltic Sea brackish ice, heat budget and solar radiation transfer through the ice cover. Here, the data from two years (2000 and 2001) are used for the estimation of the seasonal and annual heat budgets. Results present the surface heat balance, and the heat budget of the ice sheet and the waterbody. The ice cover acted as a good control measure of the net surface heat exchange. Solar radiation had a strong seasonal cycle with a monthly maximum at 160 and a minimum below 10 W m{sup -2}, while net terrestrial radiation was mostly between -40 and -60 W m{sup -2}. Latent heat exchange was much more important than sensible heat exchange, similar the net terrestrial radiation values in summer and autumn. A comparison between the latent heat flux released or absorbed by the ice and the net surface heat fluxes showed similar patterns, with a clearly better fit in 2001. The differences can be partly explained by the oceanic heat flux to the lower ice boundary. (orig.)

  6. New technique for global solar radiation forecasting by simulated annealing and genetic algorithms using

    International Nuclear Information System (INIS)

    Tolabi, H.B.; Ayob, S.M.

    2014-01-01

    In this paper, a novel approach based on simulated annealing algorithm as a meta-heuristic method is implemented in MATLAB software to estimate the monthly average daily global solar radiation on a horizontal surface for six different climate cities of Iran. A search method based on genetic algorithm is applied to accelerate problem solving. Results show that simulated annealing based on genetic algorithm search is a suitable method to find the global solar radiation. (author)

  7. Market segmentation and the changing budget hotel industry in urban South Africa

    OpenAIRE

    Market segmentation and the changing budget hotel industry in urban South Africa

    2013-01-01

    Market segmentation is a critical driver of change in the hotel industry, resulting in the appearance of differentiated forms of hotel property developments, including budget hotels. International research on budget hotels is mainly limited to North America and Europe, with some more recent studies on emerging economies. This article examines the role of budget hotels within the wider restructuring of the South African hotel industry following the country’s re-entry into the global tourism ec...

  8. A fuzzy regression with support vector machine approach to the estimation of horizontal global solar radiation

    International Nuclear Information System (INIS)

    Baser, Furkan; Demirhan, Haydar

    2017-01-01

    Accurate estimation of the amount of horizontal global solar radiation for a particular field is an important input for decision processes in solar radiation investments. In this article, we focus on the estimation of yearly mean daily horizontal global solar radiation by using an approach that utilizes fuzzy regression functions with support vector machine (FRF-SVM). This approach is not seriously affected by outlier observations and does not suffer from the over-fitting problem. To demonstrate the utility of the FRF-SVM approach in the estimation of horizontal global solar radiation, we conduct an empirical study over a dataset collected in Turkey and applied the FRF-SVM approach with several kernel functions. Then, we compare the estimation accuracy of the FRF-SVM approach to an adaptive neuro-fuzzy system and a coplot supported-genetic programming approach. We observe that the FRF-SVM approach with a Gaussian kernel function is not affected by both outliers and over-fitting problem and gives the most accurate estimates of horizontal global solar radiation among the applied approaches. Consequently, the use of hybrid fuzzy functions and support vector machine approaches is found beneficial in long-term forecasting of horizontal global solar radiation over a region with complex climatic and terrestrial characteristics. - Highlights: • A fuzzy regression functions with support vector machines approach is proposed. • The approach is robust against outlier observations and over-fitting problem. • Estimation accuracy of the model is superior to several existent alternatives. • A new solar radiation estimation model is proposed for the region of Turkey. • The model is useful under complex terrestrial and climatic conditions.

  9. Performance analysis of tracked panel according to predicted global radiation

    International Nuclear Information System (INIS)

    Chang, T.P.

    2009-01-01

    In this paper, the performance of a south facing single-axis tracked panel was analyzed according to global radiation predicted by empirical model. Mathematic expressions appropriate for single-axis tracking system were derived to calculate the radiation on it. Instantaneous increments of solar energy collected by the tracked panel relative to fixed panel are illustrated. The validity of the empirical model to Taiwan area will also be examined with the actual irradiation data observed in Taipei. The results are summarized as follows: the gains made by the tracked panel relative to a fixed panel are between 20.0% and 33.9% for four specified days of year, between 20.9% and 33.2% for the four seasons and 27.6% over the entire year. For latitudes below 65 deg., the yearly optimal tilt angle of a fixed panel is close to 0.8 times latitude, the irradiation ratio of the tracked panel to the fixed panel is about 1.3, which are smaller than the corresponding values calculated from extraterrestrial radiation, suggesting us that the installation angle should be adjusted toward a flatter angle and that the gain of the tracked panel will reduce while it works in cloudy climate or in air pollution environment. Although the captured radiation increases with the maximal rotation angle of panel, but the benefit on the global radiation case is still not so good as that on extraterrestrial radiation case. The irradiation data observed is much less than the data predicted by the empirical model, however the trend of fitting curve to the observed data is somewhat in agreement with that to the predicted one; the yearly gain is 14.3% when a tracked panel is employed throughout the year.

  10. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  11. The early summertime Saharan heat low: sensitivity of the radiation budget and atmospheric heating to water vapour and dust aerosol

    Science.gov (United States)

    Alamirew, Netsanet K.; Todd, Martin C.; Ryder, Claire L.; Marsham, John H.; Wang, Yi

    2018-01-01

    The Saharan heat low (SHL) is a key component of the west African climate system and an important driver of the west African monsoon across a range of timescales of variability. The physical mechanisms driving the variability in the SHL remain uncertain, although water vapour has been implicated as of primary importance. Here, we quantify the independent effects of variability in dust and water vapour on the radiation budget and atmospheric heating of the region using a radiative transfer model configured with observational input data from the Fennec field campaign at the location of Bordj Badji Mokhtar (BBM) in southern Algeria (21.4° N, 0.9° E), close to the SHL core for June 2011. Overall, we find dust aerosol and water vapour to be of similar importance in driving variability in the top-of-atmosphere (TOA) radiation budget and therefore the column-integrated heating over the SHL (˜ 7 W m-2 per standard deviation of dust aerosol optical depth - AOD). As such, we infer that SHL intensity is likely to be similarly enhanced by the effects of dust and water vapour surge events. However, the details of the processes differ. Dust generates substantial radiative cooling at the surface (˜ 11 W m-2 per standard deviation of dust AOD), presumably leading to reduced sensible heat flux in the boundary layer, which is more than compensated by direct radiative heating from shortwave (SW) absorption by dust in the dusty boundary layer. In contrast, water vapour invokes a radiative warming at the surface of ˜ 6 W m-2 per standard deviation of column-integrated water vapour in kg m-2. Net effects involve a pronounced net atmospheric radiative convergence with heating rates on average of 0.5 K day-1 and up to 6 K day-1 during synoptic/mesoscale dust events from monsoon surges and convective cold-pool outflows (haboobs). On this basis, we make inferences on the processes driving variability in the SHL associated with radiative and advective heating/cooling. Depending on the

  12. Atmospheric Radiation Measurement Program Plan

    International Nuclear Information System (INIS)

    1990-02-01

    In order to understand energy's role in anthropogenic global climate change, significant reliance is being placed on General Circulation Models (GCMs). A major goal of the Department is to foster the development of GCMs capable of predicting the timing and magnitude of greenhouse gas-induced global warming and the regional effects of such warming. DOE research has revealed that cloud radiative feedback is the single most important effect determining the magnitude of possible climate responses to human activity. However, cloud radiative forcing and feedbacks are not understood at the levels needed for reliable climate prediction. The Atmospheric Radiation Measurement (ARM) Program will contribute to the DOE goal by improving the treatment of cloud radiative forcing and feedbacks in GCMs. Two issues will be addressed: the radiation budget and its spectral dependence and the radiative and other properties of clouds. Understanding cloud properties and how to predict them is critical because cloud properties may very well change as climate changes. The experimental objective of the ARM Program is to characterize empirically the radiative processes in the Earth's atmosphere with improved resolution and accuracy. A key to this characterization is the effective treatment of cloud formation and cloud properties in GCMs. Through this characterization of radiative properties, it will be possible to understand both the forcing and feedback effects. GCM modelers will then be able to better identify the best approaches to improved parameterizations of radiative transfer effects. This is expected to greatly improve the accuracy of long-term, GCM predictions and the efficacy of those predictions at the important regional scale, as the research community and DOE attempt to understand the effects of greenhouse gas emissions on the Earth's climate. 153 refs., 24 figs., 6 tabs

  13. A synthesis of the impact of Russian forests on the global carbon budget for 1961-1998

    International Nuclear Information System (INIS)

    Shvidenko, Anatoly; Nilsson, Sten

    2003-01-01

    An attempt is made to synthesize the current understanding of the impact of Russian forests on the global carbon (C) budget for the period 1961-1998 (37 years), based on a detailed inventory of pools and fluxes in 1988-1992, and a historical reconstruction of a full forest carbon budget for 1961-1998. All major intermediate indicators of the budget (phytomass, net primary production, impact of disturbances, soil respiration, etc.) were independently estimated and compared with earlier reported results. During the entire period, the C pools of Russian forest land (FL, 882.0 106 ha in 1998) increased by 433 Tg C/yr, of which 153 Tg C/yr are accumulated in live biomass, 57 Tg C/yr in above- and below-ground dead wood, and 223 Tg C/yr are sequestered in soil. A significant part of this increase deals with land-cover changes. The annual average C uptake by the FL from the atmosphere, defined by a flux-based method, is estimated to be 322 Tg C/yr for 1961-1998. The lateral transport to the lithosphere and hydrosphere comprised 47 Tg C/yr (including charcoal), which is considered part of the 'missing C sink.' The uncertainties (excluding unrecognized biases) of averages for the entire period are estimated to be in the range of ±5-8% and ±24% for major fluxes out/into the atmosphere and for net ecosystem exchange, respectively (a priori confidential probability of 0.9). If the impact of land-cover change is excluded, the average annual sink in 1961-1998, estimated by both pool- and flux-based methods, was 268 ± 94 and 272 ± 68 Tg C/yr, respectively. The reported results are in line with recent estimates for Northern Eurasia made by inverse modeling at the continental scale, if land classes other than forests contribute to the total sink of terrestrial vegetation

  14. Global solar energy radiation in relation with electricity supply in Romania

    International Nuclear Information System (INIS)

    Zoran, Maria

    2001-01-01

    Solar energy is one of the most viable source of renewable energy being both clean and nonpolluting. Spiraling energy use and other human activities have led to measurable effects upon the global environment and climatic changes. There is increasing international concern particularly in the areas of global warming owing to the increase of carbon dioxide (CO 2 ) in the atmosphere and of other greenhouse gases as sulfur dioxide (SO 2 ), oxides of nitrogen (NOx), hydrogen sulfide H 2 S, diethyl sulfide (DMS), chlorofluorocarbons (CFCs), methane CH 4 , as well in the effect of depletion of ozone (O 3 ) layer in the stratosphere. Climatological and global solar radiation analysis for some Romanian zones with great solar energy potential are presented. Remote sensing data provided by satellites are used for radiative fluxes monitoring and solar energy mapping as well as for solar energy use assessment. The realistic technical potential for solar energy applications in Romania is substantial, over 40000 TJyear -1 . As average energy global solar radiation in horizontal plane lies between 1100 and 1300 kWhm -2 year -1 , solar energy using for electrical power supply being a reliable alternative. More than one half of Romania's area has a range of insolation period between 1200 and 1500 hours year -1 , at an overall average daily irradiation of 1000 - 1200 kWh m -2 . The most favorable area in Romania is the North - Western part of Black Sea coast with an insolation period above 2300 hours year -1 . A small part 140 TJyear -1 are used profitably and almost 10% of the installed 10 6 m 2 of collector area, is still in operation. (author)

  15. A New Approach in Public Budgeting: Citizens' Budget

    Science.gov (United States)

    Bilge, Semih

    2015-01-01

    Change and transformation in the understanding and definition of citizenship has led to the emergence of citizen-oriented public service approach. This approach also raised a new term and concept in the field of public budgeting because of the transformation in the processes of public budgeting: citizens' budget. The citizens' budget which seeks…

  16. Empirical Models for the Estimation of Global Solar Radiation in ...

    African Journals Online (AJOL)

    Empirical Models for the Estimation of Global Solar Radiation in Yola, Nigeria. ... and average daily wind speed (WS) for the interval of three years (2010 – 2012) measured using various instruments for Yola of recorded data collected from the Center for Atmospheric Research (CAR), Anyigba are presented and analyzed.

  17. FY 1996 Congressional budget request: Budget highlights

    Energy Technology Data Exchange (ETDEWEB)

    1995-02-01

    The FY 1996 budget presentation is organized by the Department`s major business lines. An accompanying chart displays the request for new budget authority. The report compares the budget request for FY 1996 with the appropriated FY 1995 funding levels displayed on a comparable basis. The FY 1996 budget represents the first year of a five year plan in which the Department will reduce its spending by $15.8 billion in budget authority and by $14.1 billion in outlays. FY 1996 is a transition year as the Department embarks on its multiyear effort to do more with less. The Budget Highlights are presented by business line; however, the fifth business line, Economic Productivity, which is described in the Policy Overview section, cuts across multiple organizational missions, funding levels and activities and is therefore included in the discussion of the other four business lines.

  18. Happiness, Leisure and Tourism vs Household Budget in Iran

    Directory of Open Access Journals (Sweden)

    Dr. Mohammad Taghi Sheykhi

    2014-06-01

    Full Text Available The paper aims to explore how happiness, leisure and tourism play role in modern life, and how they are related to household budget. While in the past household budget was totally allotted to the necessities of food, clothing and shelter, nowadays, some portion of the household budget needs to be allotted to leisure and tourism activities ___ leading to happiness. While in the West it is done so, in the developing countries, there is still a long way to go, to achieve that goal. However, tourism has become a popular global happiness and leisure activity. As reported, in 2011, there were over 983 million international tourist arrivals worldwide (UNTWO, 2012. Tourism as a way to happiness is important and vital in some cases. It brings large amount of income in payment for goods and services available. The present paper partly investigates happiness, leisure and tourism in Tehran, Iran through assessing household budget. In that, 623 households were empirically studied to find out happiness, leisure and tourism vs household budget in Iran.

  19. Entropy budget of the earth,atmosphere and ocean system

    Institute of Scientific and Technical Information of China (English)

    GAN Zijun; YAN Youfangand; QI Yiquan

    2004-01-01

    The energy budget in the system of the earth, atmosphere and ocean conforms to the first law of thermodynamics, namely the law of conservation of energy, and it is balanced when the system is in a steady-state condition. However, the entropy budget following the second law of thermodynamics is unbalanced. In this paper, we deduce the expressions of entropy flux and re-estimate the earth, atmosphere and ocean annual mean entropy budget with the updated climatologically global mean energy budget and the climatologically air-sea flux data. The calculated results show that the earth system obtains a net influx of negative entropy (-1179.3 mWm-2K-1) from its surroundings, and the atmosphere and the ocean systems obtain a net input of negative entropy at about -537.4 mWm-2K-1 and -555.6 mWm-2K-1, respectively. Calculations of the entropy budget can provide some guidance for further understanding the spatial-temporal change of the local entropy flux, and the entropy production resulting from all kinds of irreversible processes inside these systems.

  20. Global existence of a generalized solution for the radiative transfer equations

    International Nuclear Information System (INIS)

    Golse, F.; Perthame, B.

    1984-01-01

    We prove global existence of a generalized solution of the radiative transfer equations, extending Mercier's result to the case of a layer with an initially cold area. Our Theorem relies on the results of Crandall and Ligett [fr

  1. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    Science.gov (United States)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  2. Global Performance of a Fast Parameterization Scheme for Estimating Surface Solar Radiation from MODIS data

    Science.gov (United States)

    Tang, W.; Yang, K.; Sun, Z.; Qin, J.; Niu, X.

    2016-12-01

    A fast parameterization scheme named SUNFLUX is used in this study to estimate instantaneous surface solar radiation (SSR) based on products from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor onboard both Terra and Aqua platforms. The scheme mainly takes into account the absorption and scattering processes due to clouds, aerosols and gas in the atmosphere. The estimated instantaneous SSR is evaluated against surface observations obtained from seven stations of the Surface Radiation Budget Network (SURFRAD), four stations in the North China Plain (NCP) and 40 stations of the Baseline Surface Radiation Network (BSRN). The statistical results for evaluation against these three datasets show that the relative root-mean-square error (RMSE) values of SUNFLUX are less than 15%, 16% and 17%, respectively. Daily SSR is derived through temporal upscaling from the MODIS-based instantaneous SSR estimates, and is validated against surface observations. The relative RMSE values for daily SSR estimates are about 16% at the seven SURFRAD stations, four NCP stations, 40 BSRN stations and 90 China Meteorological Administration (CMA) radiation stations.

  3. Accounting for radiative forcing from albedo change in future global land-use scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Andrew D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Calvin, Katherine V. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Collins, William D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Univ. of California, Berkeley, CA (United States); Edmonds, James A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic within each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm–2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.

  4. Capital budgeting practices in Indian companies

    Directory of Open Access Journals (Sweden)

    Roopali Batra

    2017-03-01

    Full Text Available The volatility of the global economy, changing business practices, and academic developments have created a need to re-examine Indian corporate capital budgeting practices. Our research is based on a sample of 77 Indian companies listed on the Bombay Stock Exchange. Results reveal that corporate practitioners largely follow the capital budgeting practices proposed by academic theory. Discounted cash flow techniques of net present value and internal rate of return and risk adjusted sensitivity analysis are most popular. Weighted average cost of capital as cost of capital is most favoured. Nevertheless, the theory-practice gap remains in adoption of specialised techniques of real options, modified internal rate of return (MIRR, and simulation. Non-financial criteria are also given due consideration in project selection.

  5. Radiation losses and global power balance of JT-60 plasmas

    International Nuclear Information System (INIS)

    Nishitani, T.; Itami, K.; Nagashima, K.; Tsuji, S.; Hosogane, N.; Yoshida, H.; Ando, T.; Kubo, H.; Takeuchi, H.

    1990-01-01

    The radiation losses and the global power balance for Ohmic and neutral beam heated plasmas have been investigated in different JT-60 configurations. Discharges with a TiC coated molybdenum wall and with a graphite wall, with limiter, outer and lower X-point configurations have been studied by bolometric measurements, thermocouples and an infrared TV camera. In neutral beam heated outer X-point discharges with a TiC coated molybdenum first wall, the radiation loss of the main plasma was very low (10% of the absorbed power). The radiation loss due to oxygen was dominant in this case. On the contrary, in discharges with TiC coated molybdenum limiters the radiation loss was very high (>60% of the absorbed power). In the discharges with a graphite wall the radiated power from the main plasma was 20-25% for both limiter and lower X-point configurations. In lower X-point discharges the main contributor to the radiation loss was oxygen, whereas in limiter discharges the loss due to carbon was equal to the loss due to oxygen. The radiation loss from the lower X-point divertor increased with increasing electron density of the main plasma. (author). 33 refs, 14 figs, 1 tab

  6. Under Secretary of Defense (Comptroller) > Budget Materials > Budget1998

    Science.gov (United States)

    functionalStatements OUSD(C) History FMR Budget Materials Budget Execution Financial Management Improving Financial Performance Reports Regulations banner DoD Budget Request 2019 | 2018 | 2017 |2016 | 2015 | 2014 | 2013 | 2012 President's Budget request for the Department of Defense sustains the President's commitment to invest in

  7. Radiation and global environment. Consideration for the influence on ecosystems

    International Nuclear Information System (INIS)

    Muramatsu, Yasuyuki; Doi, Masahiro; Yoshida, Satoshi

    2003-09-01

    This book is based on presentations at the National Institute of Radiological Sciences (NIRS) symposium of the same title held by the NIRS Research Center for Radiation Safety in December, 2002, is edited with somehow enlightening intention as well, and is composed from 6 parts of; 1. Reasons for concern for influence on ecosystems, 2. Behavior of substances in ecosystems, 3. Changes of global environments and life, 4. Various environmental stresses and living/eco-systems, 5. New development of evaluation studies on radiation effects, and 6. For the radiation protection of environments. The 1st part involves 3 chapters concerning studies on effects on ecosystems and radiation protection of environments; 2nd part, 4 chapters concerning behavior of radioactive and/or stable cesium and iodine in forest and environmental microorganisms, and behavior and effects of acidic substances; 3rd part, 2 chapters concerning terrestrial history and evolution/adaptation of livings; 4th part, 5 chapters concerning radiation stress, active oxygen, radiodurance/radio-resistant microorganisms, ultraviolet, and environmental hormones; 5th part, 6 chapters concerning effects on cells of environmental toxic substance and radiation, environmental stress evaluation by DNA micro-array, effects on taxis, use of microcosm, simulation of computational model ecosystem, and aquatic ecosystems; 6th part, 5 chapters concerning environmental radioecology, safety measures in high-level radioactive waste disposal under the ground, radiation protection of environments from radiation biology aspect, effects of chemicals, and aspect and strategy for radiation effects on environments. (N.I.)

  8. Market segmentation and the changing budget hotel industry in urban South Africa

    Directory of Open Access Journals (Sweden)

    Market segmentation and the changing budget hotel industry in urban South Africa

    2013-01-01

    Full Text Available Market segmentation is a critical driver of change in the hotel industry, resulting in the appearance of differentiated forms of hotel property developments, including budget hotels. International research on budget hotels is mainly limited to North America and Europe, with some more recent studies on emerging economies. This article examines the role of budget hotels within the wider restructuring of the South African hotel industry following the country’s re-entry into the global tourism economy after its democratic transition. Historically, the South African hotel industry became dominated by one- and two-star budget accommodation as a result of the country’s liquor legislation. With the reconfiguration of the hotel industry after 1990 to target the growing international tourism market, the role of budget hotels changed. This analysis examines the diminished role of budget hotels in South Africa’s hotel economy, the shifting nature of the budget hotel and location patterns of budget hotels from 1990 to the present. It shows that post-1990 budget hotels are mainly concentrated in large cities and secondary centres of South Africa, and that in small towns the former liquor-focused budget hotel has been replaced by other forms of accommodation.

  9. Sunshine-based estimation of global solar radiation on horizontal surface at Lake Van region (Turkey)

    International Nuclear Information System (INIS)

    Duzen, Hacer; Aydin, Harun

    2012-01-01

    Highlights: ► The global solar radiation at Lake Van region is estimated. ► This study is unique for the Lake Van region. ► Solar radiation around Lake Van has the highest value at the east-southeast region. ► The annual average solar energy potential is obtained as 750–2458 kWh/m 2 . ► Results can be used to estimate evaporation. - Abstract: In this study several sunshine-based regression models have been evaluated to estimate monthly average daily global solar radiation on horizontal surface of Lake Van region in the Eastern Anatolia region in Turkey by using data obtained from seven different meteorological stations. These models are derived from Angström–Prescott linear regression model and its derivatives such as quadratic, cubic, logarithmic and exponential. The performance of this regression models were evaluated by comparing the calculated clearness index and the measured clearness index. Several statistical tests were used to control the validation and goodness of the regression models in terms of the coefficient of determination, mean percent error, mean absolute percent error, mean biased error, mean absolute biased error, root mean square error and t-statistic. The results of all the regression models are within acceptable limits according to the statistical tests. However, the best performances are obtained by cubic regression model for Bitlis, Gevaş, Hakkari, Muş stations and by quadratic regression model for Malazgirt, Tatvan and Van stations to predict global solar radiation. The spatial distributions of the monthly average daily global solar radiation around the Lake Van region were obtained with interpolation of calculated solar radiation data that acquired from best fit models of the stations. The annual average solar energy potential for Lake Van region is obtained between 750 kWh/m 2 and 2485 kWh/m 2 with annual average of 1610 kWh/m 2 .

  10. Future Flight Opportunities and Calibration Protocols for CERES: Continuation of Observations in Support of the Long-Term Earth Radiation Budget Climate Data Record

    Science.gov (United States)

    Priestley, Kory J.; Smith, George L.

    2010-01-01

    The goal of the Clouds and the Earth s Radiant Energy System (CERES) project is to provide a long-term record of radiation budget at the top-of-atmosphere (TOA), within the atmosphere, and at the surface with consistent cloud and aerosol properties at climate accuracy. CERES consists of an integrated instrument-algorithm validation science team that provides development of higher-level products (Levels 1-3) and investigations. It involves a high level of data fusion, merging inputs from 25 unique input data sources to produce 18 CERES data products. Over 90% of the CERES data product volume involves two or more instruments. Continuation of the Earth Radiation Budget (ERB) Climate Data Record (CDR) has been identified as critical in the 2007 NRC Decadal Survey, the Global Climate Observing System WCRP report, and in an assessment titled Impacts of NPOESS Nunn-McCurdy Certification on Joint NASA-NOAA Climate Goals . Five CERES instruments have flown on three different spacecraft: TRMM, EOS-Terra and EOS-Aqua. In response, NASA, NOAA and NPOESS have agreed to fly the existing CERES Flight Model (FM-5) on the NPP spacecraft in 2011 and to procure an additional CERES Sensor with modest upgrades for flight on the JPSS C1 spacecraft in 2014, followed by a CERES follow-on sensor for flight in 2018. CERES is a scanning broadband radiometer that measures filtered radiance in the SW (0.3-5 m), total (TOT) (0.3-200 m) and WN (8-12 m) regions. Pre-launch calibration is performed on each Flight Model to meet accuracy requirements of 1% for SW and 0.5% for outgoing LW observations. Ground to flight or in-flight changes are monitored using protocols employing onboard and vicarious calibration sources. Studies of flight data show that SW response can change dramatically due to optical contamination. with greatest impact in blue-to UV radiance, where tungsten lamps are largely devoid of output. While science goals remain unchanged for ERB Climate Data Record, it is now understood

  11. Temperature differences within the detector of the Robertson-Berger sunburn meter, model 500, compared to global radiation

    Science.gov (United States)

    Kjeldstad, Berit; Grandum, Oddbjorn

    1993-11-01

    The Robertson-Berger sunburn meter, model 500, has no temperature compensation, and the effect of temperature on the instrument response has been investigated and discussed in several reports. It is recommended to control the temperature of the detector or at least measure it. The temperature sensor is recommended to be positioned within the detector unit. We have measured the temperature at three different positions in the detector: At the edge of the green filter where the phosphor layer is placed; at the glass tube covering the cathode; and, finally, the air temperature inside the instrument. These measurements have been performed outdoors since July 1991, with corresponding measurements of the global and direct solar radiation. There was no difference between the temperature of the glasstube covering the cathode and the air inside the instrument, at any radiation level. However, there was a difference between the green filter and the two others. The difference is linearly dependent on the amount of global radiation. The temperature difference, (Delta) T (temperature between the green filter and the air inside the sensor), increased 0.8 degree(s)C when the global irradiation increased by 100 W/m2. At maximum global radiation in Trondheim (latitude 63.4 degree(s)N) (Delta) T was approximately 5 - 6 K when the global radiation was about 700 W/m2. This was valid for temperatures between 7 degree(s)C and 30 degree(s)C. Only clear days were evaluated.

  12. Planning research on the next strategical project through the trend analysis on radiation fusion technology, industry and policy

    International Nuclear Information System (INIS)

    Kim, Dong Sub; Choi, Jae Hak; Kim, Tak Hyun

    2013-01-01

    Ο The planning research for establish a detailed implementation strategy to serve as small, but a strong institution leading national radiation research and resolving the pending issues related to using radiation - Now is a time when it needs a implementation strategy to achieve it's unique mission as the sole radiation-specialized research institute leading to promote the radiation industry. Ο The main background of this study is to build the planning of a new paradigm for research and development to cope with the changing domestic and international environment for sustainable growth - As the domestic regional radiation field is getting more competitive and the cooperative group expands, it needs to adapt to the global trend such as technology convergence and acceleration etc.. - The need for establish basic database to make a new strategy in order to narrow the technology gap in the radiation fusion technology comparing to the developed country and cope with emerging country's advancement in technology Ο The use to build basic database to spearhead the project and set aside a budget effectively - It's to be used as a reference to set aside a budget through planning strategy industry field to forecast the industrial demand and variation of the future policy and create blue ocean and niche markets

  13. Participation of the radiation hygiene laboratories to the WHO/UNEP global environmental radiation network

    International Nuclear Information System (INIS)

    Milu, C.; Gheorghe, R.

    2003-01-01

    In December 1987, a WHO-UNEP meeting held at SCPRI (Service Central de protection canter Les Rayonnements Ionisantes - Le Vesinet, France) set up the basis of the international network GERMON (Global Environmental Radiation Monitoring Network) as an extension of existing network 'Global Environment Monitoring Systems' (GEMS). The accident from Chernobyl certainly was the important nuclear event influencing this decision. The aim of the GERMON network is to initiate programmes for the routine monitoring of the environmental radioactivity and to ensure a quick interchange of credible data in case of major accidental radioactive releases, as well as the development of intervention devices in the member states running such programmes. The responsibility of the Co-ordinating Collaborating Centre (CCC) has been given to the French Service Central de Protection Centre les Rayonnements Ionisants (SCPRI). In 1994, this Service became the Office de Protection Centre les Rayonnements Ionisants (OPRI). The Ministry of Health has a national network consisting of 23 radiation hygiene laboratories; 19 of these are included in the framework of county divisions of public health , and the other 4 are compartments of the regional institutes of public health. WHO designated the Institute of Public Health from Bucharest as National Contact Centre, in charge with communicating the results obtained by the national laboratories on the indicators of environmental radioactivity, according to the established methodologies. The main indicators considered are: ambient gamma dose, radioactivity of the air, of the precipitation, and of the milk. Following the measurement and transmission protocols of the CCC, the Radiation Hygiene Laboratory from the Institute of Public Health has established a methodology to be followed by the laboratories of the national network. (authors)

  14. Radiative effects of clouds and cryosphere in the Antarctic

    Directory of Open Access Journals (Sweden)

    Takashi Yamanouchi

    1997-03-01

    Full Text Available Examination of the effects of clouds, ice sheet and sea ice on the radiation budget in the Antarctic using Earth Radiation Budget Experiment (ERBE data were reported. The continental ice sheet affects not only the albedo, but also the surface temperature because of elevation, and hence the OLR. Sea ice, which is a critical climate feedback factor, appears to have less impact on radiation than do clouds. However, these surfaces lie underneath clouds, and it was found that the independent effect of sea ice is as large as that of clouds, and clouds are masking the radiative effect of sea ice by more than half. The radiation budget at the top of the atmosphere from satellite observation and that at the surface from the surface radiation measurements at Syowa and South Pole Stations were compared. Cloud radiative forcing at both stations for the surface, atmosphere and top of the atmosphere was derived.

  15. Shortwave and longwave radiative contributions to global warming under increasing CO2

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C.; Pendergrass, Angeline G.; Battisti, David S.

    2014-01-01

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR. PMID:25385628

  16. Shortwave and longwave radiative contributions to global warming under increasing CO2.

    Science.gov (United States)

    Donohoe, Aaron; Armour, Kyle C; Pendergrass, Angeline G; Battisti, David S

    2014-11-25

    In response to increasing concentrations of atmospheric CO2, high-end general circulation models (GCMs) simulate an accumulation of energy at the top of the atmosphere not through a reduction in outgoing longwave radiation (OLR)—as one might expect from greenhouse gas forcing—but through an enhancement of net absorbed solar radiation (ASR). A simple linear radiative feedback framework is used to explain this counterintuitive behavior. It is found that the timescale over which OLR returns to its initial value after a CO2 perturbation depends sensitively on the magnitude of shortwave (SW) feedbacks. If SW feedbacks are sufficiently positive, OLR recovers within merely several decades, and any subsequent global energy accumulation is because of enhanced ASR only. In the GCM mean, this OLR recovery timescale is only 20 y because of robust SW water vapor and surface albedo feedbacks. However, a large spread in the net SW feedback across models (because of clouds) produces a range of OLR responses; in those few models with a weak SW feedback, OLR takes centuries to recover, and energy accumulation is dominated by reduced OLR. Observational constraints of radiative feedbacks—from satellite radiation and surface temperature data—suggest an OLR recovery timescale of decades or less, consistent with the majority of GCMs. Altogether, these results suggest that, although greenhouse gas forcing predominantly acts to reduce OLR, the resulting global warming is likely caused by enhanced ASR.

  17. Large differences in the diabatic heat budget of the tropical UTLS in reanalyses

    Science.gov (United States)

    Wright, J. S.; Fueglistaler, S.

    2013-04-01

    We present the time mean heat budgets of the tropical upper troposphere (UT) and lower stratosphere (LS) as simulated by five reanalysis models: MERRA, ERA-Interim, CFSR, JRA-25/JCDAS, and NCEP/NCAR. The simulated diabatic heat budget in the tropical UTLS differs significantly from model to model, with substantial implications for representations of transport and mixing. Large differences are apparent both in the net heat budget and in all comparable individual components, including latent heating, heating due to radiative transfer, and heating due to parameterised vertical mixing. We describe and discuss the most pronounced differences. Although they may be expected given difficulties in representing moist convection in models, the discrepancies in latent heating are still disturbing. We pay particular attention to discrepancies in radiative heating (which may be surprising given the strength of observational constraints on temperature and tropospheric water vapour) and discrepancies in heating due to turbulent mixing (which have received comparatively little attention).

  18. Basic principles of the WHO/UNEP global environmental radiation network

    International Nuclear Information System (INIS)

    1988-01-01

    After the accident at Chernobyl, attempts were made to improve radiation monitoring capabilities and the exchange of information at both national and international levels. As part of these efforts it is proposed to establish a Global Environmental Radiation Monitoring Network (GERMON). This report contains an overview of existing national and international programmes, and makes suggestions about the structure and operational requirements of GERMON. Annexes present the existing WHO environmental radioactivity monitoring network; give the measured CS-137 activities in milk samples in France, Sweden, Canada and the USA from 1974 to 1985; and reproduce the text of the Convention on Early Notification of a Nuclear Accident

  19. Budget Options

    National Research Council Canada - National Science Library

    2000-01-01

    This volume-part of the Congressional Budget Office's (CBO's) annual report to the House and Senate Committees on the Budget-is intended to help inform policymakers about options for the federal budget...

  20. A new simple parameterization of daily clear-sky global solar radiation including horizon effects

    International Nuclear Information System (INIS)

    Lopez, Gabriel; Javier Batlles, F.; Tovar-Pescador, Joaquin

    2007-01-01

    Estimation of clear-sky global solar radiation is usually an important previous stage for calculating global solar radiation under all sky conditions. This is, for instance, a common procedure to derive incoming solar radiation from remote sensing or by using digital elevation models. In this work, we present a new model to calculate daily values of clear-sky global solar irradiation. The main goal is the simple parameterization in terms of atmospheric temperature and relative humidity, Angstroem's turbidity coefficient, ground albedo and site elevation, including a factor to take into account horizon obstructions. This allows us to obtain estimates even though a free horizon is not present as is the case of mountainous locations. Comparisons of calculated daily values with measured data show that this model is able to provide a good level of accurate estimates using either daily or mean monthly values of the input parameters. This new model has also been shown to improve daily estimates against those obtained using the clear-sky model from the European Solar Radiation Atlas and other accurate parameterized daily irradiation models. The introduction of Angstroem's turbidity coefficient and ground albedo should allow us to use the increasing worldwide aerosol information available and to consider those sites affected by snow covers in an easy and fast way. In addition, the proposed model is intended to be a useful tool to select clear-sky conditions

  1. The impact of Earth system feedbacks on carbon budgets and climate response

    Science.gov (United States)

    Lowe, Jason A.; Bernie, Daniel

    2018-05-01

    A number of studies have examined the size of the allowable global cumulative carbon budget compatible with limiting twenty-first century global average temperature rise to below 2°C and below 1.5°C relative to pre-industrial levels. These estimates of cumulative emissions have a number of uncertainties including those associated with the climate sensitivity and the global carbon cycle. Although the IPCC fifth assessment report contained information on a range of Earth system feedbacks, such as carbon released by thawing of permafrost or methane production by wetlands as a result of climate change, the impact of many of these Earth system processes on the allowable carbon budgets remains to be quantified. Here, we make initial estimates to show that the combined impact from typically unrepresented Earth system processes may be important for the achievability of limiting warming to 1.5°C or 2°C above pre-industrial levels. The size of the effects range up to around a 350 GtCO2 budget reduction for a 1.5°C warming limit and around a 500 GtCO2 reduction for achieving a warming limit of 2°C. Median estimates for the extra Earth system forcing lead to around 100 GtCO2 and 150 GtCO2, respectively, for the two warming limits. Our estimates are equivalent to several years of anthropogenic carbon dioxide emissions at present rates. In addition to the likely reduction of the allowable global carbon budgets, the extra feedbacks also bring forward the date at which a given warming threshold is likely to be exceeded for a particular emission pathway. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.

  2. The impact of Earth system feedbacks on carbon budgets and climate response.

    Science.gov (United States)

    Lowe, Jason A; Bernie, Daniel

    2018-05-13

    A number of studies have examined the size of the allowable global cumulative carbon budget compatible with limiting twenty-first century global average temperature rise to below 2°C and below 1.5°C relative to pre-industrial levels. These estimates of cumulative emissions have a number of uncertainties including those associated with the climate sensitivity and the global carbon cycle. Although the IPCC fifth assessment report contained information on a range of Earth system feedbacks, such as carbon released by thawing of permafrost or methane production by wetlands as a result of climate change, the impact of many of these Earth system processes on the allowable carbon budgets remains to be quantified. Here, we make initial estimates to show that the combined impact from typically unrepresented Earth system processes may be important for the achievability of limiting warming to 1.5°C or 2°C above pre-industrial levels. The size of the effects range up to around a 350 GtCO 2 budget reduction for a 1.5°C warming limit and around a 500 GtCO 2 reduction for achieving a warming limit of 2°C. Median estimates for the extra Earth system forcing lead to around 100 GtCO 2 and 150 GtCO 2 , respectively, for the two warming limits. Our estimates are equivalent to several years of anthropogenic carbon dioxide emissions at present rates. In addition to the likely reduction of the allowable global carbon budgets, the extra feedbacks also bring forward the date at which a given warming threshold is likely to be exceeded for a particular emission pathway.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Author(s).

  3. Global nitrogen budgets in cereals: A 50-year assessment for maize, rice, and wheat production systems.

    Science.gov (United States)

    Ladha, J K; Tirol-Padre, A; Reddy, C K; Cassman, K G; Verma, Sudhir; Powlson, D S; van Kessel, C; de B Richter, Daniel; Chakraborty, Debashis; Pathak, Himanshu

    2016-01-18

    Industrially produced N-fertilizer is essential to the production of cereals that supports current and projected human populations. We constructed a top-down global N budget for maize, rice, and wheat for a 50-year period (1961 to 2010). Cereals harvested a total of 1551 Tg of N, of which 48% was supplied through fertilizer-N and 4% came from net soil depletion. An estimated 48% (737 Tg) of crop N, equal to 29, 38, and 25 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively, is contributed by sources other than fertilizer- or soil-N. Non-symbiotic N2 fixation appears to be the major source of this N, which is 370 Tg or 24% of total N in the crop, corresponding to 13, 22, and 13 kg ha(-1) yr(-1) for maize, rice, and wheat, respectively. Manure (217 Tg or 14%) and atmospheric deposition (96 Tg or 6%) are the other sources of N. Crop residues and seed contribute marginally. Our scaling-down approach to estimate the contribution of non-symbiotic N2 fixation is robust because it focuses on global quantities of N in sources and sinks that are easier to estimate, in contrast to estimating N losses per se, because losses are highly soil-, climate-, and crop-specific.

  4. 1981 research programme and budget of Hahn-Meitner-Institut fuer Kernforschung Berlin

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Hahn-Meitner-Institut fuer Kernforschung Berlin (HMI) is one of the twelve large research centers of the Federal Republic of Germany; like the other centers, it has to present a combined research programme and budget (programme budget) every year. In these programme budgets, as in the medium-term financial planning in the federal budget, planning for the current year is combined with a medium-term plan for the three next years. For the year 1981, the budget of HMI includes a total expenditure of about DM 85 million, DM 71.2 million of which are direct R + D expenditures. This R + D programme is carried by 396 of the total staff of 705. Research is done in the following fields (approximate figures): Heavy ion physics DM 23.0 million. Radiation- and photochemistry DM 11.4 million. Solid state research DM 20.9 million. Nuclear chemistry DM 8.9 million. Data processing/electronics DM 7.0 million. (orig./UA) [de

  5. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    Science.gov (United States)

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain hidden in representations of the global carbon budget. Despite being confined to a narrow belt around the shoreline of the world's oceans, where they cover less than 7 million km2, vegetated coastal habitats support about 1 to 10 % of the global marine net primary production and generate a large organic carbon surplus of about 40 % of their net primary production (NPP), which is either buried in sediments within these habitats or exported away. Large, 10-fold uncertainties in the area covered by vegetated coastal habitats, along with variability about carbon flux estimates, result in a 10-fold bracket around the estimates of their contribution to organic carbon sequestration in sediments and the deep sea from 73 to 866 Tg C yr-1, representing between 3 % and 1/3 of oceanic CO2 uptake. Up to 1/2 of this carbon sequestration occurs in sink reservoirs (sediments or the deep sea) beyond these habitats. The organic carbon exported that does not reach depositional sites subsidizes the metabolism of heterotrophic organisms. In addition to a significant contribution to organic carbon production and sequestration, vegetated coastal habitats contribute as much to carbonate accumulation as coral reefs do. While globally relevant, the magnitude of global carbon fluxes supported by salt-marsh, mangrove, seagrass and macroalgal habitats is declining due to rapid habitat loss, contributing to loss of CO2 sequestration, storage capacity and carbon subsidies. Incorporating the carbon fluxes' vegetated coastal habitats' support into depictions of the carbon budget of the global ocean and its perturbations will improve current representations of the carbon budget of the global ocean.

  6. The Budget as a Management Tool: Zero Base Budgeting, Panacea ...

    African Journals Online (AJOL)

    Nigeria has been experiencing difficulties in Budget implementation. The objective of this article is to present alternative forms of budgeting and after exposition on them, to recommend one that could mitigate budget implementation problem for Nigeria. Two types of budgeting addressed are incremental and zero-base.

  7. Defining a Leader Role curriculum for radiation oncology: A global Delphi consensus study.

    Science.gov (United States)

    Turner, Sandra; Seel, Matthew; Trotter, Theresa; Giuliani, Meredith; Benstead, Kim; Eriksen, Jesper G; Poortmans, Philip; Verfaillie, Christine; Westerveld, Henrike; Cross, Shamira; Chan, Ming-Ka; Shaw, Timothy

    2017-05-01

    The need for radiation oncologists and other radiation oncology (RO) professionals to lead quality improvement activities and contribute to shaping the future of our specialty is self-evident. Leadership knowledge, skills and behaviours, like other competencies, can be learned (Blumenthal et al., 2012). The objective of this study was to define a globally applicable competency set specific to radiation oncology for the CanMEDS Leader Role (Frank et al., 2015). A modified Delphi consensus process delivering two rounds of on-line surveys was used. Participants included trainees, radiation/clinical oncologists and other RO team members (radiation therapists, physicists, and nurses), professional educators and patients. 72 of 95 (76%) invitees from nine countries completed the Round 1 (R1) survey. Of the 72 respondents to RI, 70 completed Round 2 (R2) (97%). In R1, 35 items were deemed for 'inclusion' and 21 for 'exclusion', leaving 41 'undetermined'. After review of items, informed by participant comments, 14 competencies from the 'inclusion' group went into the final curriculum; 12 from the 'undetermined' group went to R2. In R2, 6 items reached consensus for inclusion. This process resulted in 20 RO Leader Role competencies with apparent global applicability. This is the first step towards developing learning, teaching and assessment tools for this important area of training. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Measurement of small antenna reflector losses for radiometer calibration budget

    DEFF Research Database (Denmark)

    Skou, Niels

    1997-01-01

    Antenna reflector losses play an important role in the calibration budget for a microwave radiometer. If the losses are small, they are difficult to measure by traditional means. However, they can be assessed directly by radiometric means using the sky brightness temperature as incident radiation...

  9. Do budget balance rules anchor budget balance expectations? -- Some international evidence

    OpenAIRE

    Rülke, Jan-Christoph; Frenkel, Michael; Lis, Eliza

    2013-01-01

    This is the first study that analyzes whether budget balance expectations are anchored and whether budget balance rules effectively anchor expectations. To this end, we use a unique data set which covers budget balance expectations in 17 countries that implemented a budget balance rules. While our results are mixed concerning the general impact of budget balance rules on anchoring expectations, we do find that specific features of budget balance rules are important to successfully anchor budg...

  10. Building global and diffuse solar radiation series and assessing decadal trends in Girona (NE Iberian Peninsula)

    Science.gov (United States)

    Calbó, Josep; González, Josep-Abel; Sanchez-Lorenzo, Arturo

    2017-08-01

    Measurement of solar radiation was initiated in Girona, northeast of the Iberian Peninsula, in the late 1980s. Initially, two pyranometers were installed, one of them equipped with a shadowband for measuring the diffuse component. Two other pyranometers currently exist, both ventilated and one of them shadowed, with a sphere, and a pyrheliometer for measuring direct radiation. Additional instruments for other shortwave and longwave components, clouds, and atmospheric aerosols have been installed in recent years. The station is subject to daily inspection, data are saved at high temporal resolution, and instruments are periodically calibrated, all in accordance with the directions of the Baseline Surface Radiation Network. The present paper describes how the entire series of global solar radiation (1987-2014) and diffuse radiation (1994-2014) were built, including the quality control process. Appropriate corrections to the diffuse component were made when a shadowband was employed to make measurements. Analysis of the series reveals that annual mean global irradiance presents a statistically significant increase of 2.5 W m-2 (1.4 %) decade-1 (1988-2014 period), mainly due to what occurs in summer (5.6 W m-2 decade-1). These results constitute the first assessment of solar radiation trends for the northeastern region of the Iberian Peninsula and are consistent with trends observed in the regional surroundings and also by satellite platforms, in agreement with the global brightening phenomenon. Diffuse radiation has decreased at -1.3 W m-2 (-2 %) decade-1 (1994-2014 period), which is a further indication of the reduced cloudiness and/or aerosol load causing the changes.

  11. Campbell-Bristow development Model for Estimating Global Solar radiation in the Region of Junin, Perú

    Directory of Open Access Journals (Sweden)

    Dr. Becquer Frauberth Camayo-Lapa

    2015-11-01

    Full Text Available In order to have a tool to estimate the monthly and annual solar radiation on the horizontal surface in Junín region, in which is not available with this information, adapted Bristow-Campbell (1984 model for estimating global solar radiation monthly average.   To develop the model of Bristow-Campbell that estimates the average daily global solar radiation monthly modeling technique proposed by Espinoza (2010, were recorded daily maximum and minimum temperatures of 19 weather stations and the equations proposed  by the Solar High Peru 2003 was adapted to this model.  The Bristow-Campbell model was developed with data recorded in stations: Santa Ana, Tarma and Satipo belonging to Sierra and Selva, respectively. The performance of applications calculated solar radiation was determined by considering the OLADE (1992 that solar radiation over 4,0 kWh/m2/day are profitable and 5,0 kWh/m2/day very profitable. The results indicate that the monthly average global solar radiation in Junín  region is 5,3  kWh/m2/day corresponding to the  4,2 Forest and the Sierra 5,6 kWh/m2/day kWh/m2/day. Profitability is determined for the less profitable Selva and Sierra is very profitable. In addition, the operating model is simple and available to all users. We conclude that application of the Bristow-Campbell model adapted, it is an instrument of great utility to generate a comprehensive database of available solar radiation in Junín region.

  12. Numbers game : using aluminum helps Global Heat Transfer develop new frac radiators

    Energy Technology Data Exchange (ETDEWEB)

    Marsters, S.

    2009-11-15

    Aluminum is thought to be a beneficial new option for the construction of frac radiators. This article discussed how aluminum has been used to help Global Heat Transfer Ltd. (GHT) develop new frac radiators. The company developed the Jumbotron, an all-aluminum frac radiator that achieved 3,000 horsepower, but with less weight than a typical 2,250 horsepower package. The article provided information on Jumbotron, including how it was conceptualized, its features, applications, and other details. Background information on GHT was also presented. GHT focuses on the oil and gas and mining sectors and has over 500 employees worldwide in 15 locations. The aluminum parts for the Jumbotron frac radiator are produced at one of GHT's China facilities and brought to Canada for final assembly. 1 fig.

  13. Surface Radiation Budget (SURFRAD) Network 1-Hour Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation measurements at SURFRAD stations cover the range of the electromagnetic spectrum that affects the earth/atmosphere system. Direct solar radiation is...

  14. Is Zero-Based Budgeting Different from Planning--Programming--Budgeting Systems?

    Science.gov (United States)

    Hentschke, Guilbert C.

    1977-01-01

    Successful adoption of zero-base budgeting (ZBB) will be greater than that of planning-programming-budgeting-systems (PPBS) because perceived problems inherent in PPBS are largely missing in ZBB; ZBB appears to fit current school district budgeting behavior; and ZBB seems to improve communication about the need for budget reform. (Author/IRT)

  15. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    International Nuclear Information System (INIS)

    Jaffray, D.

    2015-01-01

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  16. MO-FG-BRB-02: Uniform Access to Radiation Therapy by 2035: Global Task Force on Radiotherapy for Cancer Control

    Energy Technology Data Exchange (ETDEWEB)

    Jaffray, D. [Princess Margaret Cancer Centre (Canada)

    2015-06-15

    The global burden of cancer is growing rapidly with an estimated 15 million new cases per year worldwide in 2015, growing to 19 million by 2025 and 24 million by 2035. The largest component of this growth will occur in low-to-middle income countries (LMICs). About half of these cases will require radiation treatment. The gap for available cancer treatment, including radiation therapy, between high-income countries (HICs) and LMICs is enormous. Accurate data and quantitative models to project the needs and the benefits of cancer treatment are a critical first step in closing the large cancer divide between LMICs and HICs. In this context, the Union for International Cancer Control (UICC) has developed a Global Task Force on Radiotherapy for Cancer Control (GTFRCC) with a charge to answer the question as to what it will take to close the gap between what exists today and reasonable access to radiation therapy globally by 2035 and what the potential clinical and economic benefits are for doing this. The Task Force has determined the projections of cancer incidence and the infrastructure required to provide access to radiation therapy globally. Furthermore it has shown that appropriate investment not only yields improved clinical outcomes for millions of patients but that it also provides an overall economic gain throughout all the income settings where this investment is made. This symposium will summarize the facets associated with this global cancer challenge by reviewing the cancer burden, looking at the requirements for radiation therapy, reviewing the benefits of providing such therapy both from a clinical and economic perspective and finally by looking at what approaches can be used to aid in the alleviation of this global cancer challenge. The speakers are world renowned experts in global public health issues (R. Atun), medical physics (D. Jaffray) and radiation oncology (N. Coleman). Learning Objectives: To describe the global cancer challenge and the

  17. Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation

    International Nuclear Information System (INIS)

    Voyant, Cyril; Muselli, Marc; Paoli, Christophe; Nivet, Marie-Laure

    2012-01-01

    We propose in this paper an original technique to predict global radiation using a hybrid ARMA/ANN model and data issued from a numerical weather prediction model (NWP). We particularly look at the multi-layer perceptron (MLP). After optimizing our architecture with NWP and endogenous data previously made stationary and using an innovative pre-input layer selection method, we combined it to an ARMA model from a rule based on the analysis of hourly data series. This model has been used to forecast the hourly global radiation for five places in Mediterranean area. Our technique outperforms classical models for all the places. The nRMSE for our hybrid model MLP/ARMA is 14.9% compared to 26.2% for the naïve persistence predictor. Note that in the standalone ANN case the nRMSE is 18.4%. Finally, in order to discuss the reliability of the forecaster outputs, a complementary study concerning the confidence interval of each prediction is proposed. -- Highlights: ► Time series forecasting with hybrid method based on the use of ALADIN numerical weather model, ANN and ARMA. ► Innovative pre-input layer selection method. ► Combination of optimized MLP and ARMA model obtained from a rule based on the analysis of hourly data series. ► Stationarity process (method and control) for the global radiation time series.

  18. Global Methane Biogeochemistry

    Science.gov (United States)

    Reeburgh, W. S.

    2003-12-01

    Methane (CH4) has been studied as an atmospheric constituent for over 200 years. A 1776 letter from Alessandro Volta to Father Campi described the first experiments on flammable "air" released by shallow sediments in Lake Maggiore (Wolfe, 1996; King, 1992). The first quantitative measurements of CH4, both involving combustion and gravimetric determination of trapped oxidation products, were reported in French by Boussingault and Boussingault, 1864 and Gautier (1901), who reported CH4 concentrations of 10 ppmv and 0.28 ppmv (seashore) and 95 ppmv (Paris), respectively. The first modern measurements of atmospheric CH4 were the infrared absorption measurements of Migeotte (1948), who estimated an atmospheric concentration of 2.0 ppmv. Development of gas chromatography and the flame ionization detector in the 1950s led to observations of vertical CH4 distributions in the troposphere and stratosphere, and to establishment of time-series sampling programs in the late 1970s. Results from these sampling programs led to suggestions that the concentration of CH4, as that of CO2, was increasing in the atmosphere. The possible role of CH4 as a greenhouse gas stimulated further research on CH4 sources and sinks. Methane has also been of interest to microbiologists, but findings from microbiology have entered the larger context of the global CH4 budget only recently.Methane is the most abundant hydrocarbon in the atmosphere. It plays important roles in atmospheric chemistry and the radiative balance of the Earth. Stratospheric oxidation of CH4 provides a means of introducing water vapor above the tropopause. Methane reacts with atomic chlorine in the stratosphere, forming HCl, a reservoir species for chlorine. Some 90% of the CH4 entering the atmosphere is oxidized through reactions initiated by the OH radical. These reactions are discussed in more detail by Wofsy (1976) and Cicerone and Oremland (1988), and are important in controlling the oxidation state of the atmosphere

  19. The increased use of radiation requires enhanced activities regarding radiation safety control

    International Nuclear Information System (INIS)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong

    2015-01-01

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience

  20. The increased use of radiation requires enhanced activities regarding radiation safety control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yun Jong; Lee, Jin Woo; Jeong, Gyo Seong [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2015-05-15

    More recently, companies that have obtained permission to use radioactive materials or radiation device and registered radiation workers have increased by 10% and 4% respectively. The increased use of radiation could have an effect on radiation safety control. However, there is not nearly enough manpower and budget compared to the number of workers and facilities. This paper will suggest a counteroffer thought analyzing pending issues. The results of this paper indicate that there are 47 and 31.3 workers per radiation protection officer in educational and research institutes, respectively. There are 20.1 persons per RPO in hospitals, even though there are 2 RPOs appointed. Those with a special license as a radioisotope handler were ruled out as possible managers because medical doctors who have a special license for radioisotope handling normally have no experience with radiation safety. The number of staff members and budget have been insufficient for safety control at most educational and research institutes. It is necessary to build an optimized safety control system for effective Radiation Safety Control. This will reduce the risk factor of safety, and a few RPOs can be supplied for efficiency and convenience.

  1. Temperature-based estimation of global solar radiation using soft computing methodologies

    Science.gov (United States)

    Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak

    2016-07-01

    Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.

  2. Diffuse radiation increases global ecosystem-level water-use efficiency

    Science.gov (United States)

    Moffat, A. M.; Reichstein, M.; Cescatti, A.; Knohl, A.; Zaehle, S.

    2012-12-01

    Current environmental changes lead not only to rising atmospheric CO2 levels and air temperature but also to changes in air pollution and thus the light quality of the solar radiation reaching the land-surface. While rising CO2 levels are thought to enhance photosynthesis and closure of stomata, thus leading to relative water savings, the effect of diffuse radiation on transpiration by plants is less clear. It has been speculated that the stimulation of photosynthesis by increased levels of diffuse light may be counteracted by higher transpiration and consequently water depletion and drought stress. Ultimately, in water co-limited systems, the overall effect of diffuse radiation will depend on the sensitivity of canopy transpiration versus photosynthesis to diffuse light, i.e. whether water-use efficiency changes with relative levels of diffuse light. Our study shows that water-use efficiency increases significantly with higher fractions of diffuse light. It uses the ecosystem-atmosphere gas-exchange observations obtained with the eddy covariance method at 29 flux tower sites. In contrast to previous global studies, the analysis is based directly on measurements of diffuse radiation. Its effect on water-use efficiency was derived by analyzing the multivariate response of carbon and water fluxes to radiation and air humidity using a purely empirical approach based on artificial neural networks. We infer that per unit change of diffuse fraction the water-use efficiency increases up to 40% depending on diffuse fraction levels and ecosystem type. Hence, in regions with increasing diffuse radiation positive effects on primary production are expected even under conditions where water is co-limiting productivity.

  3. Home - House Budget Committee

    Science.gov (United States)

    Initiatives Hearings Full Menu About Toggle Links Members History Staff Rules & Budget Law News Toggle Links Press Releases Budget Digests HBC Publications Op-Eds Speeches & Statements Budgets Toggle Links FY 2018 Budget FY 2017 Budget FY 2017 Reconciliation FY 2016 Budget FY 2016 Reconciliation FY 2015

  4. Late Budgets

    DEFF Research Database (Denmark)

    Andersen, Asger Lau; Lassen, David Dreyer; Nielsen, Lasse Holbøll Westh

    are negative rather than positive; and when there is divided government. We test the hypotheses of the model using a unique data set of late budgets for US state governments, based on dates of budget approval collected from news reports and a survey of state budget o¢ cers for the period 1988...

  5. Correlations during the day of diffuse solar radiation to the global solar radiation in Vigo (Spain); Correlaciones minutarias, horarias y diarias de la radiacion solar difusa a la radiacion solar global en Vigo

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez, M.; Santos, J.

    2004-07-01

    In the Solar Energy Lab of the University of Vigo a weather station has been in operation since October 2001. Two Kipp and Zonen pyranometers, one of them with a shade ring, have been measuring global and diffuse solar radiation. From these data of the years 2002 and 2003, the diffuse-to-global minute, hourly and daily correlations are obtained and shown in graphs. These correlations are also plotted together with other correlations referred in the literature for comparison. The graphs show the effect of the clear-cloudy behaviour of the solar radiation for short periods of time, effect that is not seen for larger periods of time as daily periods. (Author)

  6. Zero-based budgeting: Pathway to sustainable budget implementation in Nigeria

    Directory of Open Access Journals (Sweden)

    Udeh Francis Nnoli

    2017-10-01

    Full Text Available This paper investigates the application of Zero-Based Budgeting (ZBB system to budget implementation by the Federal Government of Nigeria by ascertaining among others, the relationship between ZBB approach and budget performance indices in Nigeria. To achieve the above, primary data were obtained through questionnaires that were specifically designed for this study. The data obtained were analysed with the SPSS version 21. The statistical tools employed were Analysis of Variance (ANOVA and Pearson Correlation Coefficiant (PCC. The Cronbach’s Alpha reliability test was used to test the internal consistency/reliability of the instrument used for the study. On the basis of the analysis, we found that there is significant difference in the effectiveness of ZBB in terms of budget implementation compared to the Traditional Budgeting System (TBS. It was also found that the application of ZBB tend to be performance-driven and is able to detect the redundant programmes/projects and staff, thereby recommending either realignment, discharge, transfer or redeployment of projects or resources. The study therefore, recommends among others that ZBB should be encouraged as a good means of budget implementation and also close monitoring of budget execution should be enshrined in work ethics at every stage of budget preparation and implementation in the country. This is believed would go a long way to strengthen measures aimed at mitigating poor budget implementation in the country.

  7. Global radiation damage at 300 and 260 K with dose rates approaching 1 MGy s{sup −1}

    Energy Technology Data Exchange (ETDEWEB)

    Warkentin, Matthew; Badeau, Ryan; Hopkins, Jesse B. [Cornell University, Ithaca, NY 14853 (United States); Mulichak, Anne M.; Keefe, Lisa J. [Argonne National Laboratory, Argonne, IL 60439 (United States); Thorne, Robert E., E-mail: ret6@cornell.edu [Cornell University, Ithaca, NY 14853 (United States)

    2012-02-01

    Approximately half of global radiation damage to thaumatin crystals can be outrun at 260 K if data are collected in less than 1 s. Global radiation damage to 19 thaumatin crystals has been measured using dose rates from 3 to 680 kGy s{sup −1}. At room temperature damage per unit dose appears to be roughly independent of dose rate, suggesting that the timescales for important damage processes are less than ∼1 s. However, at T = 260 K approximately half of the global damage manifested at dose rates of ∼10 kGy s{sup −1} can be outrun by collecting data at 680 kGy s{sup −1}. Appreciable sample-to-sample variability in global radiation sensitivity at fixed dose rate is observed. This variability cannot be accounted for by errors in dose calculation, crystal slippage or the size of the data sets in the assay.

  8. Daily global solar radiation modelling using multi-layer perceptron neural networks in semi-arid region

    Directory of Open Access Journals (Sweden)

    Mawloud GUERMOUI

    2016-07-01

    Full Text Available Accurate estimation of Daily Global Solar Radiation (DGSR has been a major goal for solar energy application. However, solar radiation measurements are not a simple task for several reasons. In the cases where data are not available, it is very common the use of computational models to estimate the missing data, which are based mainly of the search for relationships between weather variables, such as temperature, humidity, sunshine duration, etc. In this respect, the present study focuses on the development of artificial neural network (ANN model for estimation of daily global solar radiation on horizontal surface in Ghardaia city (South Algeria. In this analysis back-propagation algorithm is applied. Daily mean air temperature, relative humidity and sunshine duration was used as climatic inputs parameters, while the daily global solar radiation (DGSR was the only output of the ANN. We have evaluated Multi-Layer Perceptron (MLP models to estimate DGSR using three year of measurement (2005-2008. It was found that MLP-model based on sunshine duration and mean air temperature give accurate results in term of Mean Absolute Bias Error, Root Mean Square Error, Relative Square Error and Correlation Coefficient. The obtained values of these indicators are 0.67 MJ/m², 1.28 MJ/m², 6.12%and 98.18%, respectively which shows that MLP is highly qualified for DGSR estimation in semi-arid climates.

  9. California Budget Simulation

    Science.gov (United States)

    Mallinson, Daniel J.

    2018-01-01

    The California Budget Challenge produced by Next10 provides a useful and intuitive tool for instructors to introduce students to public budgeting. Students will reason through a series of budgeting decisions using information provided on the fiscal and practical implications of their choices. The Challenge is updated with each budget cycle, so it…

  10. Budgeting for School Media Centers.

    Science.gov (United States)

    Drott, M. Carl

    1978-01-01

    Describes various forms of budgets and discusses concepts in budgeting useful to supervisors of school media centers: line item budgets, capital budgets, creating budgets, the budget calendar, innovations, PPBS (Planning, Programing, Budgeting System), zero-based budgeting, cost-benefit analysis, benefits, benefit guidelines, and budgeting for the…

  11. Bomb radiocarbon: imbalance in the budget

    International Nuclear Information System (INIS)

    Joos, Fortunat

    1994-01-01

    An improved understanding of the global carbon cycle is crucial to global climate change research. The uncertainties surrounding the level of oceanic carbon uptake are discussed. A revision downwards of 25% in the currently accepted figure is suggested by authors who base their estimates on a new analysis of the oceanic uptake of radiocarbon released in the atomic bomb tests of the late 1950s and early 1960s. The reduction in uptake level is required to take account of a global imbalance in the bomb-radiocarbon budget in the post test-ban period which emerges from recent carbon-cycle models. Large uncertainties exist in the estimate of the imbalance, however, and bomb-radiocarbon and anthropogenic CO 2 do not behave identically. Any revision of CO 2 uptake estimates may be substantially smaller than the 25% put forward for the bomb-radiocarbon inventory. (UK)

  12. TRANSPARENCY OF LOCAL BUDGETS IN THE NORTH-WEST REGION OF ROMANIA

    Directory of Open Access Journals (Sweden)

    Pintea Mirela-Oana

    2013-07-01

    Full Text Available The central researched element in our paper is the local budgets, the basic component of local public finances. Local budgets, like any other budgets, are the most important tool for the management (of local governments planning, forecasting, implementing and monitoring the results of administrative-territorial units activity, also being an appropriate tool for enhancing performance. A budget is the government's plan regarding the use of public resources to meet the citizens' needs. The aim of this paper is to realize a research on budget transparency in local governments from the Nord-West Region of Romania, regarding the availability of the budget information on the websites of the county councils and the county residences. The key element of good governance in today global economic environment is transparency that can be defined as the openness of public authorities (central and local regarding their policy intention, formulation and implementation. For local governments budget transparency is an important issue, due to the growing role of administrative-territorial units, confirmed over time by the economic reality. The importance of local budgets has increased in recent years due to the need to improve management efficiency and accounting al the level of local governments. Not only policy makers but also the citizens need information regarding local government current activities, expenditures, development projects and policies. In this context of a growing need for information, the transparency of local budgets is a mandatory condition for any local government. The combination of budget transparency and public participation in budget processes has the potential to combat corruption, foster public accountability of government agencies and contribute to judicious use of public funds. In this context, budget transparency represents the mean through which ordinary citizens and civil society organizations can access information about the

  13. Generation of global hourly radiation sequences using a Transition Markov matrix for Madrid. Generacion de secuencias horarias de radiacion global utilizando matrices de transicion de Markov, para la localidad de Madrid

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Ll

    1989-11-01

    The aim of this work is the generation of sequences of hourly global radiation which have similar statistically characteristics of real sequences for the city of Madrid (Spain). For this generation, a first order Markov model has been proposed. The input parameters of simulation method are the following: The maximum value of hourly radiation and the average monthly value of the transparency normalized index. The maximum value of hourly radiation has been calculated as a function of the solar height by an empirical expression. The transparency normalized index has been defined as the ratio among the measured hourly global radiation to the maximum value for the corresponding solar height. The method is based on the following observations: -The transparency normalized index shows a significant correlation only for two consecutive hours. -The months with the same average transparency normalized indies have similar probability density function. Global solar radiation, time series, simulation, Markov transition matrix, solar energy.

  14. Global payment for health services as a solution in the financial crisis in Europe.

    Science.gov (United States)

    Schrijvers, Guus

    2012-10-01

    In these financial difficult years many European governments used global ceilings to control costs of health services. Two scenarios are thinkable. The first is that all individual providers get a budget for their own costs: general practitioners, specialists, hospitals, nursing homes and mental health institutes. The second scenario is to work with global budgets for health care providers servicing a total population. Scientists and policy makers in Europe, North America and Asia need time to design new payment systems based on the idea of global budgeting, bundled payment and shared savings.

  15. Nimbus-7 Earth radiation budget calibration history. Part 1: The solar channels

    Science.gov (United States)

    Kyle, H. Lee; Hoyt, Douglas V.; Hickey, John R.; Maschhoff, Robert H.; Vallette, Brenda J.

    1993-01-01

    The Earth Radiation Budget (ERB) experiment on the Nimbus-7 satellite measured the total solar irradiance plus broadband spectral components on a nearly daily basis from 16 Nov. 1978, until 16 June 1992. Months of additional observations were taken in late 1992 and in 1993. The emphasis is on the electrically self calibrating cavity radiometer, channel 10c, which recorded accurate total solar irradiance measurements over the whole period. The spectral channels did not have inflight calibration adjustment capabilities. These channels can, with some additional corrections, be used for short-term studies (one or two solar rotations - 27 to 60 days), but not for long-term trend analysis. For channel 10c, changing radiometer pointing, the zero offsets, the stability of the gain, the temperature sensitivity, and the influences of other platform instruments are all examined and their effects on the measurements considered. Only the question of relative accuracy (not absolute) is examined. The final channel 10c product is also compared with solar measurements made by independent experiments on other satellites. The Nimbus experiment showed that the mean solar energy was about 0.1 percent (1.4 W/sqm) higher in the excited Sun years of 1979 and 1991 than in the quiet Sun years of 1985 and 1986. The error analysis indicated that the measured long-term trends may be as accurate as +/- 0.005 percent. The worse-case error estimate is +/- 0.03 percent.

  16. Evaluating cloudiness in an AGCM with Cloud Vertical Structure classes and their radiative effects

    Science.gov (United States)

    Lee, D.; Cho, N.; Oreopoulos, L.; Barahona, D.

    2017-12-01

    Clouds are recognized not only as the main modulator of Earth's Radiation Budget but also as the atmospheric constituent carrying the largest uncertainty in future climate projections. The presentation will showcase a new framework for evaluating clouds and their radiative effects in Atmospheric Global Climate Models (AGCMs) using Cloud Vertical Structure (CVS) classes. We take advantage of a new CVS reference dataset recently created from CloudSat's 2B-CLDCLASS-LIDAR product and which assigns observed cloud vertical configurations to nine simplified CVS classes based on cloud co-occurrence in three standard atmospheric layers. These CVS classes can also be emulated in GEOS-5 using the subcolumn cloud generator currently paired with the RRTMG radiation package as an implementation of the McICA scheme. Comparisons between the observed and modeled climatologies of the frequency of occurrence of the various CVS classes provide a new vantage point for assessing the realism of GEOS-5 clouds. Furthermore, a comparison between observed and modeled cloud radiative effects according to their CVS is also possible thanks to the availability of CloudSat's 2B-FLXHR-LIDAR product and our ability to composite radiative fluxes by CVS class - both in the observed and modeled realm. This latter effort enables an investigation of whether the contribution of the various CVS classes to the Earth's radiation budget is represented realistically in GEOS-5. Making this new pathway of cloud evaluation available to the community is a major step towards the improved representation of clouds in climate models.

  17. Entropy Budget for Hawking Evaporation

    Directory of Open Access Journals (Sweden)

    Ana Alonso-Serrano

    2017-07-01

    Full Text Available Blackbody radiation, emitted from a furnace and described by a Planck spectrum, contains (on average an entropy of 3 . 9 ± 2 . 5 bits per photon. Since normal physical burning is a unitary process, this amount of entropy is compensated by the same amount of “hidden information” in correlations between the photons. The importance of this result lies in the posterior extension of this argument to the Hawking radiation from black holes, demonstrating that the assumption of unitarity leads to a perfectly reasonable entropy/information budget for the evaporation process. In order to carry out this calculation, we adopt a variant of the “average subsystem” approach, but consider a tripartite pure system that includes the influence of the rest of the universe, and which allows “young” black holes to still have a non-zero entropy; which we identify with the standard Bekenstein entropy.

  18. BUDGET IN DANGER : OUR LETTER TO THE MINISTERS

    CERN Multimedia

    STAFF ASSOCIATION

    2010-01-01

    In edition no. 104 of Echo we told you about the Finance Committee meeting which took place on Wednesday 16 June and the tense atmosphere that reigned during this meeting. Echoing the alarming news from most of our countries (budget cuts, restrictions, reforms), CERN’s global budget is indeed under pressure. This is extremely serious. How can we carry out our mission if our Member States do not give us the means? Basic research cannot progress with budget cuts. The Management tried to make this understood at the meeting, however, most delegations could not or would not see reason. Refusing to sit idly by, the Staff Association decided to act immediately. It sent a letter to all ministers in the twenty Member States concerned by CERN and its financing. A copy was also sent to all Finance Committee and Council delegates. We thus hope to help convince all our Member States that it is essential that they continue to invest in basic research, a breeding ground for new ideas and at the roo...

  19. Global research and development budget

    Energy Technology Data Exchange (ETDEWEB)

    Norman, C

    1980-03-01

    The future political and economic relationships between industrial countries and between the industrial and developing countries will be influenced by the investments now being made for research and development (R and D). There is little public understanding of this $150 billion global investment, 25 percent of which is spent on military programs, 15 percent on basic research, and nearly 10 percent on space exploration, while the most-pressing world problems are receiving relatively little attention. A breakdown of geographic distribution of research and a comparison of government expenditures for different areas of R and D reveals a situation that could be corrected. National and corporate priorities need to be revised and political and institutional barriers must give way to new international and cooperative arrangements. 3 tables, 27 references. (DCK)

  20. DCS Budget Tracking System

    Data.gov (United States)

    Social Security Administration — DCS Budget Tracking System database contains budget information for the Information Technology budget and the 'Other Objects' budget. This data allows for monitoring...

  1. Estimating Evapotranspiration Using an Observation Based Terrestrial Water Budget

    Science.gov (United States)

    Rodell, Matthew; McWilliams, Eric B.; Famiglietti, James S.; Beaudoing, Hiroko K.; Nigro, Joseph

    2011-01-01

    Evapotranspiration (ET) is difficult to measure at the scales of climate models and climate variability. While satellite retrieval algorithms do exist, their accuracy is limited by the sparseness of in situ observations available for calibration and validation, which themselves may be unrepresentative of 500m and larger scale satellite footprints and grid pixels. Here, we use a combination of satellite and ground-based observations to close the water budgets of seven continental scale river basins (Mackenzie, Fraser, Nelson, Mississippi, Tocantins, Danube, and Ubangi), estimating mean ET as a residual. For any river basin, ET must equal total precipitation minus net runoff minus the change in total terrestrial water storage (TWS), in order for mass to be conserved. We make use of precipitation from two global observation-based products, archived runoff data, and TWS changes from the Gravity Recovery and Climate Experiment satellite mission. We demonstrate that while uncertainty in the water budget-based estimates of monthly ET is often too large for those estimates to be useful, the uncertainty in the mean annual cycle is small enough that it is practical for evaluating other ET products. Here, we evaluate five land surface model simulations, two operational atmospheric analyses, and a recent global reanalysis product based on our results. An important outcome is that the water budget-based ET time series in two tropical river basins, one in Brazil and the other in central Africa, exhibit a weak annual cycle, which may help to resolve debate about the strength of the annual cycle of ET in such regions and how ET is constrained throughout the year. The methods described will be useful for water and energy budget studies, weather and climate model assessments, and satellite-based ET retrieval optimization.

  2. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    International Nuclear Information System (INIS)

    Taylor, M.; Kosmopoulos, P.G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C.T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) “off-grid” random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min. - Highlights: • Neural network radiative transfer solvers for generation of solar irradiance spectra. • Sensitivity analysis of irradiance spectra with respect to aerosol and cloud parameters. • Regional maps of total global horizontal irradiance for cloudy sky conditions. • Regional solar radiation maps produced directly from MSG3/SEVIRI satellite inputs.

  3. The effect of motivation profile and participative budgeting on budget goal commitment

    DEFF Research Database (Denmark)

    Sandalgaard, Niels; Bukh, Per Nikolaj; Poulsen, Carsten Stig

    2009-01-01

    The effect of participative budgeting on motivation is often considered in management accounting research. In this study we focus on dispositional factors of motivation rooted in personality that affect budgeting. Especially we focus on the effect of personality traits in the form of achievement......, power and affiliation motives on budget goal commitment in interaction with participative budgeting. The study is based on a survey among bank managers at different organizational levels of a Scandinavian regional bank and the results indicate that the effect of participative budgeting on budget goal...... commitment is moderated by the implicit power motivation of the bank manager....

  4. Air temperature, radiation budget and area changes of Quisoquipina glacier in the Cordillera Vilcanota (Peru)

    Science.gov (United States)

    Suarez, Wilson; Macedo, Nicolás; Montoya, Nilton; Arias, Sandro; Schauwecker, Simone; Huggel, Christian; Rohrer, Mario; Condom, Thomas

    2015-04-01

    The Peruvian Andes host about 71% of all tropical glaciers. Although several studies have focused on glaciers of the largest glaciered mountain range (Cordillera Blanca), other regions have received little attention to date. In 2011, a new program has been initiated with the aim of monitoring glaciers in the centre and south of Peru. The monitoring program is managed by the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) and it is a joint project together with the Universidad San Antonio Abad de Cusco (UNSAAC) and the Autoridad Nacional del Agua (ANA). In Southern Peru, the Quisoquipina glacier has been selected due to its representativeness for glaciers in the Cordillera Vilcanota considering area, length and orientation. The Cordillera Vilcanota is the second largest mountain range in Peru with a glaciated area of approximately 279 km2 in 2009. Melt water from glaciers in this region is partly used for hydropower in the dry season and for animal breeding during the entire year. Using Landsat 5 images, we could estimate that the area of Quisoquipina glacier has decreased by approximately 11% from 3.66 km2 in 1990 to 3.26 km2 in 2010. This strong decrease is comparable to observations of other tropical glaciers. In 2011, a meteorological station has been installed on the glacier at 5180 m asl., measuring air temperature, wind speed, relative humidity, net short and longwave radiation and atmospheric pressure. Here, we present a first analysis of air temperature and the radiation budget at the Quisoquipina glacier for the first three years of measurements. Additionally, we compare the results from Quisoquipina glacier to results obtained by the Institut de recherche pour le développement (IRD) for Zongo glacier (Bolivia) and Antizana glacier (Ecuador). For both, Quisoquipina and Zongo glacier, net shortwave radiation may be the most important energy source, thus indicating the important role of albedo in the energy balance of the glacier

  5. The Global Statistical Response of the Outer Radiation Belt During Geomagnetic Storms

    Science.gov (United States)

    Murphy, K. R.; Watt, C. E. J.; Mann, I. R.; Jonathan Rae, I.; Sibeck, D. G.; Boyd, A. J.; Forsyth, C. F.; Turner, D. L.; Claudepierre, S. G.; Baker, D. N.; Spence, H. E.; Reeves, G. D.; Blake, J. B.; Fennell, J.

    2018-05-01

    Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initial phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. The time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.

  6. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air–sea flux

    Directory of Open Access Journals (Sweden)

    J.-E. Tesdal

    2016-09-01

    Full Text Available Dimethylsulfide (DMS is a well-known marine trace gas that is emitted from the ocean and subsequently oxidizes to sulfate in the atmosphere. Sulfate aerosols in the atmosphere have direct and indirect effects on the amount of solar radiation reaching the Earth's surface. Thus, as a potential source of sulfate, ocean efflux of DMS needs to be accounted for in climate studies. Seawater concentration of DMS is highly variable in space and time, which in turn leads to high spatial and temporal variability in ocean DMS emissions. Because of sparse sampling (in both space and time, large uncertainties remain regarding ocean DMS concentration. In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1 and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global-mean radiative effect of sulfate is approximately linearly proportional to the global-mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation budget. The effect of the spatial structure, however, generates statistically significant changes in the global-mean concentrations of some aerosol species. The effect of seasonality on the net radiative effect is larger than that of spatial distribution and is significant at global scale.

  7. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    Science.gov (United States)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  8. Insights into the diurnal cycle of global Earth outgoing radiation using a numerical weather prediction model

    Science.gov (United States)

    Gristey, Jake J.; Chiu, J. Christine; Gurney, Robert J.; Morcrette, Cyril J.; Hill, Peter G.; Russell, Jacqueline E.; Brindley, Helen E.

    2018-04-01

    A globally complete, high temporal resolution and multiple-variable approach is employed to analyse the diurnal cycle of Earth's outgoing energy flows. This is made possible via the use of Met Office model output for September 2010 that is assessed alongside regional satellite observations throughout. Principal component analysis applied to the long-wave component of modelled outgoing radiation reveals dominant diurnal patterns related to land surface heating and convective cloud development, respectively explaining 68.5 and 16.0 % of the variance at the global scale. The total variance explained by these first two patterns is markedly less than previous regional estimates from observations, and this analysis suggests that around half of the difference relates to the lack of global coverage in the observations. The first pattern is strongly and simultaneously coupled to the land surface temperature diurnal variations. The second pattern is strongly coupled to the cloud water content and height diurnal variations, but lags the cloud variations by several hours. We suggest that the mechanism controlling the delay is a moistening of the upper troposphere due to the evaporation of anvil cloud. The short-wave component of modelled outgoing radiation, analysed in terms of albedo, exhibits a very dominant pattern explaining 88.4 % of the variance that is related to the angle of incoming solar radiation, and a second pattern explaining 6.7 % of the variance that is related to compensating effects from convective cloud development and marine stratocumulus cloud dissipation. Similar patterns are found in regional satellite observations, but with slightly different timings due to known model biases. The first pattern is controlled by changes in surface and cloud albedo, and Rayleigh and aerosol scattering. The second pattern is strongly coupled to the diurnal variations in both cloud water content and height in convective regions but only cloud water content in marine

  9. Our changing planet: the FY 1993 U.S. Global Change Research Program. A report by the Committee on Earth and Environmental Sciences. A supplement to the U.S. President's Fiscal Year 1993 Budget

    International Nuclear Information System (INIS)

    1992-01-01

    The USGCRP was established as a Presidential initiative in the FY 1990 Budget to help develop sound national and international policies related to global environmental issues, particularly global climate change. The USGCRP is implemented through a priority-driven scientific research agenda that is designed to be integrated, comprehensive, and multidisciplinary. It is designed explicitly to address scientific uncertainties in such areas as climate change, ozone depletion, changes in terrestrial and marine productivity, global water and energy cycles, sea level changes, the impact of global changes on human health and activities, and the impact of anthropogenic activities on the Earth system. The USGCRP addresses three parallel but interconnected streams of activity: documenting global change (observations); enhancing understanding of key processes (process research); and predicting global and regional environmental change (integrated modeling and prediction)

  10. Energy budget of the volcano Stromboli, Italy

    Science.gov (United States)

    Mcgetchin, T. R.; Chouet, B. A.

    1979-01-01

    The results of the analyses of movies of eruptions at Stromboli, Italy, and other available data are used to discuss the question of its energy partitioning among various energy transport mechanisms. Energy is transported to the surface from active volcanoes in at least eight modes, viz. conduction (and convection) of the heat through the surface, radiative heat transfer from the vent, acoustical radiation in blast and jet noise, seismic radiation, thermal energy of ejected particles, kinetic energy of ejected particles, thermal energy of ejected gas, and kinetic energy of ejected gas. Estimated values of energy flux from Stromboli by these eight mechanisms are tabulated. The energy budget of Stromboli in its normal mode of activity appears to be dominated by heat conduction (and convection) through the ground surface. Heat carried by eruption gases is the most important of the other energy transfer modes. Radiated heat from the open vent and heat carried by ejected lava particles also contribute to the total flux, while seismic energy accounts for about 0.5% of the total. All other modes are trivial by comparison.

  11. The Budget Deficit in the System of the Financial and Credit Development of Economy

    Directory of Open Access Journals (Sweden)

    Kucher Galyna V.

    2017-11-01

    Full Text Available Scientific approaches to the role, influence and peculiarities of usage of budget deficit as an instrument for ensuring social development both in Ukraine and in the EU countries have been disclosed. Influence of certain types of budget deficit on the economic system has been explained and expediency of considering the fluctuations of exchange rate, along with conditions of attraction of credit resources for definition of the operational budget deficit, has been substantiated. The practical results include the analysis of budget deficit indicators in Ukraine and in the EU countries, as well as the factors that determined their change. Both the national and the international experience, cyclical economic development, crisis events in the economy have demonstrated that the budget deficit is an important instrument of financial policy. Its usage helps to reduce the negative impact and to ensure a way out of the economic crisis. The budget deficit is an effective lever for macroeconomic management, which should be actively used to accelerate economic growth in the developing countries in the context of globalization.

  12. Estimation of clear sky hourly global solar radiation in Iraq

    Energy Technology Data Exchange (ETDEWEB)

    Al-Jumaily, Kais J.; Al-Zuhairi, Munya F.; Mahdi, Zahraa S. [Department of Atmospheric Sciences, College of Science, Al-Mustansiriyah University, Baghdad (Iraq)

    2012-07-01

    The availability of hourly solar radiation data is very important for applications utilizing solar energy and for climate and environmental aspects. The aim of this work is to use a simple model for estimating hourly global solar radiation under clear sky condition in Iraq. Calculations were compared with measurements obtained from local station in Baghdad city and from Meteosat satellite data for different locations in Iraq. The statistical test methods of the mean bias error (MBE), root mean square error (RMSE) and t-test were used to evaluate the performance of the model. Results indicated that a fairly good agreement exists between calculated and measured values for all locations in Iraq. Since the model is independent of any meteorological variable, it would be of a practical use for rural areas where no meteorological data are available.

  13. BEYOND BUDGETING

    Directory of Open Access Journals (Sweden)

    Edo Cvrkalj

    2015-12-01

    Full Text Available Traditional budgeting principles, with strictly defined business goals, have been, since 1998, slowly growing into more sophisticated and organization-adjusted alternative budgeting concepts. One of those alternative concepts is the “Beyond budgeting” model with an implemented performance effects measuring process. In order for the model to be practicable, budget planning and control has to be reoriented to the “bottom up” planning and control approach. In today’s modern business surroundings one has to take both present and future opportunities and threats into consideration, by valorizing them in a budget which would allow a company to realize a whole pallet of advantages over the traditional budgeting principles which are presented later in the article. It is essential to emphasize the importance of successfully implementing the new budgeting principles within an organization. If the implementation has been lacking and done without a higher goal in mind, it is easily possible that the process has been implemented without coordination, planning and control framework within the organization itself. Further in the article we present an overview of managerial techniques and instruments within the “Beyond budgeting” model such as balanced scorecard, rolling forecast, dashboard, KPI and other supporting instruments. Lastly we define seven steps for implementing the “Beyond budgeting” model and offer a comparison of “Beyond budgeting” model against traditional budgeting principles which lists twelve reasons why “Beyond budgeting” is better suited to modern and market-oriented organizations. Each company faces those challenges in their own characteristic way but implementing new dynamic planning models will soon become essential for surviving in the market.

  14. Elucidation of the fluctuation history of cosmic radiation and global environmental using AMS

    International Nuclear Information System (INIS)

    Horiuchi, Kazuho

    2008-01-01

    Recently, accuracy of AMS has further been raised in trace amounts of sample. Besides application of 14 C to the age estimation, it has been able to restore in detail the past fluctuation of cosmic radiation strength using the other radioactive isotopes ( 10 Be, 36 Cl etc) in environmental samples and to elucidate the correlation of this with the fluctuation of climate and environment. In this report, the attempts to elucidate the fluctuation history of cosmic radiation and global environment with ice cores using AMS are presented. (M.H.)

  15. Public Budgeting: The Compromises Among the Sound Budgeting Principles in Contingency Funding

    Science.gov (United States)

    2017-06-01

    funding for major aircraft using supplemental appropriations in place of incremental funding as intended for normal budgeting practices. This was a prime... incrementally funded on an annual basis. This change in budgeting practices lacked predictability because it allowed last-minute budget requests with low...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release. Distribution is unlimited. PUBLIC BUDGETING

  16. Verification of Global Radiation Forecasts from the Ensemble Prediction System at DMI

    DEFF Research Database (Denmark)

    Lundholm, Sisse Camilla

    To comply with an increasing demand for sustainable energy sources, a solar heating unit is being developed at the Technical University of Denmark. To make optimal use — environmentally and economically —, this heating unit is equipped with an intelligent control system using forecasts of the heat...... consumption of the house and the amount of available solar energy. In order to make the most of this solar heating unit, accurate forecasts of the available solar radiation are esstential. However, because of its sensitivity to local meteorological conditions, the solar radiation received at the surface...... of the Earth can be highly fluctuating and challenging to forecast accurately. To comply with the accuracy requirements to forecasts of both global, direct, and diffuse radiation, the uncertainty of these forecasts is of interest. Forecast uncertainties can become accessible by running an ensemble of forecasts...

  17. Understanding the Budget Process

    Directory of Open Access Journals (Sweden)

    Mesut Yalvaç

    2000-03-01

    Full Text Available Many different budgeting techniques can be used in libraries, and some combination of these will be appropriate for almost any individual situation. Li-ne-item, program, performance, formula, variable, and zero-base budgets all have features that may prove beneficial in the preparation of a budget. Budgets also serve a variety of functions, providing for short-term and long-term financial planning as well as for cash management over a period of time. Short-term plans are reflected in the operating budget, while long-term plans are reflected in the capital budget. Since the time when cash is available to an organization does not usually coincide with the time that disbursements must be made, it is also important to carefully plan for the inflow and outflow of funds by means of a cash budget.      During the budget process an organization selects its programs and activities by providing the necessary funding; the library, along with others in the organization, must justify its requests. Because of the cyclical nature of the budget process, it is possible continually to gather information and evaluate alternatives for the next budget period so that the library may achieve its maximum potential for service to its patrons.

  18. Radiation losses and global energy balance for Ohmically heated discharges in ASDEX

    International Nuclear Information System (INIS)

    Mueller, E.R.; Behringer, K.; Niedermeyer, H.

    1982-01-01

    Global energy balance, radiation profiles and dominant impurity radiation sources are compared for Ohmically heated limiter and divertor discharges in the ASDEX tokamak. In discharges with a poloidal stainless-steel limiter, total radiation from the plasma is the dominant energy loss channel. The axisymmetric divertor reduces this volume-integrated radiation to 30-35% of the heating power and additional Ti-gettering halves it again to 10-15%. Local radiation losses in the plasma centre, which are mainly due to the presence of iron impurity ions, are reduced by about one order of magnitude. In high-current (Isub(p) = 400 kA) and high-density (nsub(e)-bar = 6 x 10 13 cm -3 ) ungettered divertor discharges, up to 55% of the heating power is dumped into a cold-gas target inside the divertor chambers. The bolometrically detected volume power losses in the chambers can mainly be attributed to neutral hydrogen atoms with kinetic energies of a few eV. In this parameter range, the divertor plasma is dominated by inelastic molecular and atomic processes, the main process being Franck-Condon dissociation of H 2 molecules. (author)

  19. Assessing Dutch Governmental Accountability by Means of the Open Budget Index

    NARCIS (Netherlands)

    Faber, A.S.C.; Budding, G.

    2017-01-01

    With the globally increasing interest in accountability in central government and the search for innovative and fruitful forms of its building blocks, such as the state budget, international comparisons are getting much attention. These can have the form of country-to-country studies, as well as

  20. Greenhouse gases, radiative forcing, global warming potential and waste management – an introduction

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter; Gentil, Emmanuel

    2009-01-01

    forcing (RF) and global warming potential (GWP). This paper provides a general introduction of the factors that define a GHG and explains the scientific background for estimating RF and GWP, thereby exposing the lay reader to a brief overview of the methods for calculating the effects of GHGs on climate......Management of post-consumer solid waste contributes to emission of greenhouse gases (GHGs) representing about 3% of global anthropogenic GHG emissions. Most GHG reporting initiatives around the world utilize two metrics proposed by the Intergovernmental Panel on Climate Change (IPCC): radiative...

  1. CORRECTION OF GLOBAL AND REFLEX RADIATION VALUES MEASURED ABOVE THE LAKE BALATON

    Directory of Open Access Journals (Sweden)

    Laszlo Menyhart

    2014-03-01

    Full Text Available Albedo measurements have been carried out since 2007 above the Lake Balaton near Keszthely and Siofok. It turned out that a systematic offset error was superposed to both the global and the reflex radiation. The value of this systematic error was approximately constant per pyranometer within a year but on the other hand it varied from year to year and from pyranometer to pyranometer. In this paper the values of this systematic errors were determined with two different methods. The difference between the values measured at night-time and the intrinsic thermal offset error of pyranometers were examined with both methods. The base of the first method is the empirical observation, that the values measured at night-time by a global radiometer are typically negative whereas by a reflex radiometer are typically positive. The substance of the second method is utilizing the air temperature measured within 1 as well as 5 hours before the radiation measuring to +select the fully overcast nights, when the thermal offset error of the global radiometer is zero. In addition, the cases where the thermal offset error of the reflex radiometer is zero were selected on the basis of the difference between water and air temperature. When the thermal offset error is zero the measured value is equal to the systematic error. Comparing the results of the two methods showed that the systematic error of the global radiometer were determined with uncertainty of 1 Wm–2, whereas that of the reflex radiometer with uncertainty of 2 Wm–2. The calibration constants were recalculated from the values being in the calibration reports taking the systematic errors into account.

  2. Library Budget Primer.

    Science.gov (United States)

    Warner, Alice Sizer

    1993-01-01

    Discusses the advantages and disadvantages of six types of budgets commonly used by many different kinds of libraries. The budget types covered are lump-sum; formula; line or line-item; program; performance or function; and zero-based. Accompanying figures demonstrate the differences between four of the budget types. (three references) (KRN)

  3. The Agency's budget

    International Nuclear Information System (INIS)

    1964-01-01

    A total Agency Budget of $10 406 000 for 1965 was approved by the General Conference at its session of September 1964; the Budget for the year 1964 amounted to $9 812 000. The consolidated Budget figures are shown in the table at the end of this article. The Budget falls into two parts - the Regular Budget and the Operational Budget. The Regular Budget provides for the ordinary administrative expenses of the Agency, and for expert panels, special missions, symposia and conferences, distribution of information, and scientific and technical services. In conformity with the Agency's Statute, these expenses are met by contributions made according to Voluntary contributions are paid initially into a General Fund established for this purpose, and money for operations is transferred to the respective Operating Funds as appropriate, and as approved by the Board of Governors. The scale of assessments for 1965 is based on the United Nations scale for 1964. The assessments are estimated to yield $7 713 000 - an increase of 6.8 per cent; however, more than three quarters of this increase will be offset by credits which Member States will receive as a result of a cash surplus brought forward. The Operational Budget is financed by voluntary contributions and is divided into two parts - Operating Fund I, devoted to certain laboratory and research projects, and Operating Fund II, for technical assistance, training and research contracts.

  4. Estimativa da radiação solar global a partir dos dados de insolação, para Santa Maria - RS Estimation of global radiation from insolation data for Santa Maria, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Galileo Adeli Buriol

    2012-09-01

    Full Text Available Foram determinados os coeficientes a e b da equação de Angströn-Prescott para a estimativa da radiação solar global para Santa Maria, RS. Utilizaram-se os dados diários da intensidade de fluxo de radiação solar global e de insolação (brilho solar registrados na Estação Meteorológica pertencente ao 8° Distrito de Meteorologia, localizada no Campus da Universidade Federal de Santa Maria - UFSM, período 2002-2008. Os dados foram copiados no banco de dados do 8° Distrito de Meteorologia - 8° DISME, em Porto Alegre, e calculados os valores diários de radiação solar global no topo da atmosfera e de insolação máxima possível, considerando a latitude local. Com esses dados, foram determinadas as equações mensais e estacionais de regressão para a estimativa da radiação solar global em função da insolação. Constatou-se que existe alta correlação entre os dados de radiação solar global com aqueles de insolação, sendo, assim, possível estimar a radiação solar global em função da insolação.Coefficients a and b of the Angströn - Prescott equation to estimate global solar radiation for Santa Maria, RS were determined. Daily data of global solar radiation and sunshine, were obtained from the Meteorological Station which belongs to the 8th District of Meteorology, located on the campus of the Federal University of Santa Maria - UFSM, period from 2002 to 2008. The mentioned data were copied from the database of the 8th District of Meteorology - 8th DISME in Porto Alegre. Top of atmosphere radiation and possible maximum sunshine were calculated considering local latitude. With such elements, monthly regression equations were determined for the estimation of solar radiation as a function of insolation. We found a high correlation between insolation and global solar radiation and it's possible to estimate the solar radiation depending on the measured insolation.

  5. Empirical models for the estimation of global solar radiation with sunshine hours on horizontal surface in various cities of Pakistan

    International Nuclear Information System (INIS)

    Gadiwala, M.S.; Usman, A.; Akhtar, M.; Jamil, K.

    2013-01-01

    In developing countries like Pakistan the global solar radiation and its components is not available for all locations due to which there is a requirement of using different models for the estimation of global solar radiation that use climatological parameters of the locations. Only five long-period locations data of solar radiation data is available in Pakistan (Karachi, Quetta, Lahore, Multan and Peshawar). These locations almost encompass the different geographical features of Pakistan. For this reason in this study the Mean monthly global solar radiation has been estimated using empirical models of Angstrom, FAO, Glover Mc-Culloch, Sangeeta & Tiwari for the diversity of approach and use of climatic and geographical parameters. Empirical constants for these models have been estimated and the results obtained by these models have been tested statistically. The results show encouraging agreement between estimated and measured values. The outcome of these empirical models will assist the researchers working on solar energy estimation of the location having similar conditions

  6. Agency problems in hospitals participating in self-management project under global budget system in Taiwan.

    Science.gov (United States)

    Yan, Yu-Hua; Hsu, Shuofen; Yang, Chen-Wei; Fang, Shih-Chieh

    2010-02-01

    The main purposes of this study are to clarify the agency problems in the hospitals participating in self-management project within the context of Global Budgeting Payment System regulated by Taiwan government, and also to provide some suggestions for hospital administrator and health policy maker in reducing the waste of healthcare resources resulting from agency problems. For the purposes above, this study examines the relationships between two agency problems (ex ante moral hazard and ex post moral hazard) aroused among the hospitals and Bureau of National Health Insurance in Taiwan's health care sector. This study empirically tested the theoretical model at organization level. The findings suggest that the hospital's ex ante moral hazards before participating the self-management project do have some influence on its ex post moral hazards after participating the self-management project. This study concludes that the goal conflict between the agents and the principal certainly exist. The principal tries hard to control the expenditure escalation and keep the financial balance, but the agents have to subsist within limited healthcare resources. Therefore, the agency cost would definitely occur due to the conflicts between both parties. According to the results of the research, some suggestions and related management concepts were proposed at the end of the paper.

  7. Budget Analysis: Review of the Governor's Proposed Budget, 1999-00.

    Science.gov (United States)

    New York State Office of the Comptroller, Albany.

    This report provides an overview of the 1999-2000 executive budget for New York State. The budget calls for $72.7 billion in all funds spending and proposes that a $1.8 billion surplus from the 1998-99 fiscal year be used to fill budget gaps in fiscal years 2000-01 and 2001-02. The report focuses on spending for education, health and social…

  8. Plan Your Advertising Budget.

    Science.gov (United States)

    Britt, Steuart-Henderson

    1979-01-01

    Methods for establishing an advertising budget are reviewed. They include methods based on percentage of sales or profits, unit of sales, and objective and task. Also discussed are ways to allocate a promotional budget. The most common breakdowns are: departmental budgets, total budget, calendar periods, media, and sales area. (JMD)

  9. Relationships Between Tropical Deep Convection, Tropospheric Mean Temperature and Cloud-Induced Radiative Fluxes on Intraseasonal Time Scales

    Science.gov (United States)

    Ramey, Holly S.; Robertson, Franklin R.

    2010-01-01

    Intraseasonal variability of deep convection represents a fundamental mode of variability in the organization of tropical convection. While most studies of intraseasonal oscillations (ISOs) have focused on the spatial propagation and dynamics of convectively coupled circulations, we examine the projection of ISOs on the tropically-averaged temperature and energy budget. The area of interest is the global oceans between 20degN/S. Our analysis then focuses on these questions: (i) How is tropospheric temperature related to tropical deep convection and the associated ice cloud fractional amount (ICF) and ice water path (IWP)? (ii) What is the source of moisture sustaining the convection and what role does deep convection play in mediating the PBL - free atmospheric temperature equilibration? (iii) What affect do convectively generated upper-tropospheric clouds have on the TOA radiation budget? Our methodology is similar to that of Spencer et al., (2007) with some modifications and some additional diagnostics of both clouds and boundary layer thermodynamics. A composite ISO time series of cloud, precipitation and radiation quantities built from nearly 40 events during a six-year period is referenced to the atmospheric temperature signal. The increase of convective precipitation cannot be sustained by evaporation within the domain, implying strong moisture transports into the tropical ocean area. While there is a decrease in net TOA radiation that develops after the peak in deep convective rainfall, there seems little evidence that an "Infrared Iris"- like mechanism is dominant. Rather, the cloud-induced OLR increase seems largely produced by weakened convection with warmer cloud tops. Tropical ISO events offer an accessible target for studying ISOs not just in terms of propagation mechanisms, but on their global signals of heat, moisture and radiative flux feedback processes.

  10. Artificial neural network optimisation for monthly average daily global solar radiation prediction

    International Nuclear Information System (INIS)

    Alsina, Emanuel Federico; Bortolini, Marco; Gamberi, Mauro; Regattieri, Alberto

    2016-01-01

    Highlights: • Prediction of the monthly average daily global solar radiation over Italy. • Multi-location Artificial Neural Network (ANN) model: 45 locations considered. • Optimal ANN configuration with 7 input climatologic/geographical parameters. • Statistical indicators: MAPE, NRMSE, MPBE. - Abstract: The availability of reliable climatologic data is essential for multiple purposes in a wide set of anthropic activities and operative sectors. Frequently direct measures present spatial and temporal lacks so that predictive approaches become of interest. This paper focuses on the prediction of the Monthly Average Daily Global Solar Radiation (MADGSR) over Italy using Artificial Neural Networks (ANNs). Data from 45 locations compose the multi-location ANN training and testing sets. For each location, 13 input parameters are considered, including the geographical coordinates and the monthly values for the most frequently adopted climatologic parameters. A subset of 17 locations is used for ANN training, while the testing step is against data from the remaining 28 locations. Furthermore, the Automatic Relevance Determination method (ARD) is used to point out the most relevant input for the accurate MADGSR prediction. The ANN best configuration includes 7 parameters, only, i.e. Top of Atmosphere (TOA) radiation, day length, number of rainy days and average rainfall, latitude and altitude. The correlation performances, expressed through statistical indicators as the Mean Absolute Percentage Error (MAPE), range between 1.67% and 4.25%, depending on the number and type of the chosen input, representing a good solution compared to the current standards.

  11. Budgeting and Beyond

    DEFF Research Database (Denmark)

    Rohde, Carsten

    Budgets and budget control has been known since the early 19th century1. However the use of budget control was until the beginning of the 1920ies in US primarily related to governmental units and states and to a minor extent to business units in practice. At that time James McKinsey describes...

  12. Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case

    International Nuclear Information System (INIS)

    Voyant, Cyril; Notton, Gilles; Darras, Christophe; Fouilloy, Alexis; Motte, Fabrice

    2017-01-01

    As global solar radiation forecasting is a very important challenge, several methods are devoted to this goal with different levels of accuracy and confidence. In this study we propose to better understand how the uncertainty is propagated in the context of global radiation time series forecasting using machine learning. Indeed we propose to decompose the error considering four kinds of uncertainties: the error due to the measurement, the variability of time series, the machine learning uncertainty and the error related to the horizon. All these components of the error allow to determinate a global uncertainty generating prediction bands related to the prediction efficiency. We also have defined a reliability index which could be very interesting for the grid manager in order to estimate the validity of predictions. We have experimented this method on a multilayer perceptron which is a popular machine learning technique. We have shown that the global error and its components are essential to quantify in order to estimate the reliability of the model outputs. The described method has been successfully applied to four meteorological stations in Mediterranean area. - Highlights: • Solar irradiation predictions require confidence bands. • There are a lot of kinds of uncertainties to take into account in order to propose prediction bands. • the ranking of different kinds of uncertainties is essential to propose an operational tool for the grid managers.

  13. Recent reversal in loss of global terrestrial biomass

    KAUST Repository

    Liu, Yi Y.; Van Dijk, Albert I J M; De Jeu, Richard A M; Canadell., Josep G.; McCabe, Matthew; Evans, Jason P.; Wang, Guojie

    2015-01-01

    Vegetation change plays a critical role in the Earth's carbon (C) budget and its associated radiative forcing in response to anthropogenic and natural climate change. Existing global estimates of aboveground biomass carbon (ABC) based on field survey data provide brief snapshots that are mainly limited to forest ecosystems. Here we use an entirely new remote sensing approach to derive global ABC estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations. We estimate a global average ABC of 362 PgC over the period 1998-2002, of which 65% is in forests and 17% in savannahs. Over the period 1993-2012, an estimated '0.07 PgC yr '1 ABC was lost globally, mostly resulting from the loss of tropical forests ('0.26 PgC yr '1) and net gains in mixed forests over boreal and temperate regions (+0.13 PgC yr '1) and tropical savannahs and shrublands (+0.05 PgC yr '1). Interannual ABC patterns are greatly influenced by the strong response of water-limited ecosystems to rainfall variability, particularly savannahs. From 2003 onwards, forest in Russia and China expanded and tropical deforestation declined. Increased ABC associated with wetter conditions in the savannahs of northern Australia and southern Africa reversed global ABC loss, leading to an overall gain, consistent with trends in the global carbon sink reported in recent studies. © 2015 Macmillan Publishers Limited. All rights reserved.

  14. Recent reversal in loss of global terrestrial biomass

    KAUST Repository

    Liu, Yi Y.

    2015-03-30

    Vegetation change plays a critical role in the Earth\\'s carbon (C) budget and its associated radiative forcing in response to anthropogenic and natural climate change. Existing global estimates of aboveground biomass carbon (ABC) based on field survey data provide brief snapshots that are mainly limited to forest ecosystems. Here we use an entirely new remote sensing approach to derive global ABC estimates for both forest and non-forest biomes during the past two decades from satellite passive microwave observations. We estimate a global average ABC of 362 PgC over the period 1998-2002, of which 65% is in forests and 17% in savannahs. Over the period 1993-2012, an estimated \\'0.07 PgC yr \\'1 ABC was lost globally, mostly resulting from the loss of tropical forests (\\'0.26 PgC yr \\'1) and net gains in mixed forests over boreal and temperate regions (+0.13 PgC yr \\'1) and tropical savannahs and shrublands (+0.05 PgC yr \\'1). Interannual ABC patterns are greatly influenced by the strong response of water-limited ecosystems to rainfall variability, particularly savannahs. From 2003 onwards, forest in Russia and China expanded and tropical deforestation declined. Increased ABC associated with wetter conditions in the savannahs of northern Australia and southern Africa reversed global ABC loss, leading to an overall gain, consistent with trends in the global carbon sink reported in recent studies. © 2015 Macmillan Publishers Limited. All rights reserved.

  15. AGU testifies on NASA Budget

    Science.gov (United States)

    Simarski, Lynn Teo

    Witnesses from outside the U.S. government—including Frank Eden, representing AGU—testified about the National Aeronautics and Space Administration's budget on March 12 before the House Science Committee's subcommittee on space. One major topic of the hearing was familiar: what should NASA's top priority be, space science or human exploration of space.“Obviously this committee has a huge job of trying to set priorities—consistent with the budget restraints—that will end up giving the American taxpayer the most bang for his buck, as well as providing direction for our space program,” said F. James Sensenbrenner, Jr. (R-Wis.), the subcommittee's ranking Republican. Another recurring topic, cited by the subcommittee's new chairman, Ralph M. Hall (D-Tex.), as well as by other committee members, was how to translate NASA-developed technologies into commercial gain for the U.S. in the global marketplace. Hall and others also posed a number of questions on a topic the chairman called a special concern of his: whether it would be economically and scientifically plausible for the U.S. to use the Soviet space station Mir for certain activities, such as medical applications.

  16. Influence of crystal shapes on radiative fluxes in visible wavelength: ice crystals randomly oriented in space

    Directory of Open Access Journals (Sweden)

    P. Chervet

    1996-08-01

    Full Text Available Radiative properties of cirrus clouds are one of the major unsolved problems in climate studies and global radiation budget. These clouds are generally composed of various ice-crystal shapes, so we tried to evaluate effects of the ice-crystal shape on radiative fluxes. We calculated radiative fluxes of cirrus clouds with a constant geometrical depth, composed of ice crystals with different shapes (hexagonal columns, bullets, bullet-rosettes, sizes and various concentrations. We considered ice particles randomly oriented in space (3D case and their scattering phase functions were calculated by a ray-tracing method. We calculated radiative fluxes for cirrus layers for different microphysical characteristics by using a discrete-ordinate radiative code. Results showed that the foremost effect of the ice-crystal shape on radiative properties of cirrus clouds was that on the optical thickness, while the variation of the scattering phase function with the ice shape remained less than 3% for our computations. The ice-water content may be a better choice to parameterize the optical properties of cirrus, but the shape effect must be included.

  17. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    Energy Technology Data Exchange (ETDEWEB)

    Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Helmholtz Centre for Ocean Research Kiel (GEOMAR), Kiel (Germany); Vichi, Marcello; Masina, Simona [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia (INGV), Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    2012-10-15

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall {approx}0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  18. Global response to solar radiation absorbed by phytoplankton in a coupled climate model

    International Nuclear Information System (INIS)

    Patara, Lavinia; Vichi, Marcello; Masina, Simona; Fogli, Pier Giuseppe; Manzini, Elisa

    2012-01-01

    The global climate response to solar radiation absorbed by phytoplankton is investigated by performing multi-century simulations with a coupled ocean-atmosphere-biogeochemistry model. The absorption of solar radiation by phytoplankton increases radiative heating in the near-surface ocean and raises sea surface temperature (SST) by overall ∼0.5 C. The resulting increase in evaporation enhances specific atmospheric humidity by 2-5%, thereby increasing the Earth's greenhouse effect and the atmospheric temperatures. The Hadley Cell exhibits a weakening and poleward expansion, therefore reducing cloudiness at subtropical-middle latitudes and increasing it at tropical latitudes except near the Equator. Higher SST at polar latitudes reduces sea ice cover and albedo, thereby increasing the high-latitude ocean absorption of solar radiation. Changes in the atmospheric baroclinicity cause a poleward intensification of mid-latitude westerly winds in both hemispheres. As a result, the North Atlantic Ocean meridional overturning circulation extends more northward, and the equatorward Ekman transport is enhanced in the Southern Ocean. The combination of local and dynamical processes decreases upper-ocean heat content in the Tropics and in the subpolar Southern Ocean, and increases it at middle latitudes. This study highlights the relevance of coupled ocean-atmosphere processes in the global climate response to phytoplankton solar absorption. Given that simulated impacts of phytoplankton on physical climate are within the range of natural climate variability, this study suggests the importance of phytoplankton as an internal constituent of the Earth's climate and its potential role in participating in its long-term climate adjustments. (orig.)

  19. Global source attribution of sulfate aerosol and its radiative forcing

    Science.gov (United States)

    Yang, Y.; Wang, H.; Smith, S.; Easter, R. C.; Ma, P. L.; Qian, Y.; Li, C.; Yu, H.; Rasch, P. J.

    2017-12-01

    Sulfate is an important aerosol that poses health risks and influences climate. Due to long-range atmospheric transport, local sulfate pollution could result from intercontinental influences, making domestic efforts of improving air quality inefficient. Accurate understanding of source attribution of sulfate and its radiative forcing is important for both regional air quality improvement and global climate mitigation. In this study, for the first time, a sulfur source-tagging capability is implemented in the Community Atmosphere Model (CAM5) to quantify the global source-receptor relationships of sulfate and its direct and indirect radiative forcing (DRF and IRF). Near-surface sulfate concentrations are mostly contributed by local emissions in regions with high emissions, while over regions with relatively low SO2 emissions, the near-surface sulfate is primarily attributed to non-local sources from long-range transport. The export of SO2 and sulfate from Europe contributes 20% of sulfate concentrations over North Africa, Russia and Central Asia. Sources from the Middle East account for 20% of sulfate over North Africa, Southern Africa and Central Asia in winter and autumn, and 20% over South Asia in spring. East Asia accounts for about 50% of sulfate over Southeast Asia in winter and autumn, 15% over Russia in summer, and 10% over North America in spring. South Asia contributes to 25% of sulfate over Southeast Asia in spring. Lifetime of aerosols, together with regional export, is found to determine regional air quality. The simulated global total sulfate DRF is -0.42 W m-2, with 75% contributed by anthropogenic sulfate and 25% contributed by natural sulfate. In the Southern Hemisphere tropics, dimethyl sulfide (DMS) contributes the most to the total DRF. East Asia has the largest contribution of 20-30% over the Northern Hemisphere mid- and high-latitudes. A 20% perturbation of sulfate and its precursor emissions gives a sulfate IRF of -0.44 W m-2. DMS has the

  20. Budgeting Approaches in Community Colleges

    Science.gov (United States)

    Palmer, James C.

    2014-01-01

    Several budgeting approaches have been initiated as alternatives to the traditional, incremental process. These include formula budgeting; zero-base budgeting; planning, programming, and budgeting systems; and responsibility center budgeting. Each is premised on assumptions about how organizations might best make resource allocation decisions.…

  1. Zero-based budgeting: Pathway to sustainable budget implementation in Nigeria

    OpenAIRE

    Udeh Francis Nnoli; Sopekan Sam Adeyemi; Oraka Azubuike Onuora

    2017-01-01

    This paper investigates the application of Zero-Based Budgeting (ZBB) system to budget implementation by the Federal Government of Nigeria by ascertaining among others, the relationship between ZBB approach and budget performance indices in Nigeria. To achieve the above, primary data were obtained through questionnaires that were specifically designed for this study. The data obtained were analysed with the SPSS version 21. The statistical tools employed were Analysis of Variance (ANOVA) and ...

  2. Influence which masses of clouds have on the global solar radiation at Salamanca (Spain)

    International Nuclear Information System (INIS)

    Pablo-Davila, F. de; Labajo, J.L.; Tomas-Sanchez, C.

    1991-01-01

    It has been shown the influence which masses of clouds, (and more specifically for each group of cloud types: high, middle and low clauds), has on the global solar radiation recorded at Matacan (Salamanca), within the period 1977-1985. For this purpose, cloud observation were made every three hours; daily records of sunshine and solar radiation were continually taken too. It has also been, both graphically and numerically, the influence of each cloud type for monthly and seasonal periods. Futhermore, different statistical parameters have been presented in order to describe the method developed. Finally, the results have been analysed and evaluated. They have been explaines according to the composition, structure and radiative properties of clouds.(Author)

  3. Global Horizontal Control Network of Shanghai Synchrotron Radiation Facility

    International Nuclear Information System (INIS)

    Yu Chenghao; Ke Ming; Du Hanwen; Yin Lixin; Zhao Zhentang; Dong Lan; Huang Kaixi

    2009-01-01

    As a national big scientific engineering, Shanghai Synchrotron Radiation Facility (SSRF) has rigid requirement to the components with sub-millimeter accuracy. In the process of survey and positioning global control network is a connecting link, which determines the position relationship between building and accelerator devices, and provides high accuracy datum to local control network. Within the designing process, building and devices are very restrict. While among observation, it's hard to be observed and abound with disadvantages. With continuous optimization and careful operation, super-high accuracy of 0.3 mm within 400 m circumference was achieved and slab's periodic movement could be seen through 3 times measurement. (authors)

  4. Budgeting Time to Teach about the School Budget

    Science.gov (United States)

    Weiss, Dale

    2011-01-01

    As a teacher in the Milwaukee Public Schools (MPS) for the past 16 years, the author has grown used to dismal budget cut news arriving each February. Although cuts are always frustrating and their results burdensome, the school has been able to "hang on" reasonably well. This year, however, the budget cuts were extreme. In this article,…

  5. STATE BUDGET APPROPRIATION MANAGERS AS THE SUBJECTS OF BUDGET PLANNING IN THE REPUBLIC OF LITHUANIA

    Directory of Open Access Journals (Sweden)

    Bronius Sudavicius

    2017-01-01

    Full Text Available The subject. The article deals with the problem of legal status of the state budget appropriation managers in the process of budget planning in the Republic of Lithuania.The purpose of the article is evaluation of state budget appropriation managers’ role in the process of budget planning in the Republic of Lithuania.The methodology of research is the analysis of the budgetary legislation of the Republic of Lithuania and the scientific literature, using the methods of logical and systematic analysis and other methods of scientific researchMain results, and scope of it’s application. The legal definition and the system of state budget appropriation managers is analyzed in the article. Particular attention is given to the question of role of state budget appropriation managers in the process of budget framework. The role of the Government and Parliament, as well as a special body of management of public finances (in the Republic of Lithuania, the Ministry of Finance – legislative and executive authorities – is emphasized in the scientific literature. But it is often not mentioned what an important place in this process other participants of budgetary relations – state budget appropriation managers – takes. The main participation of state budget appropriation managers in the budget planning process related to the planning of the budget expenditures.Preparation of strategic plans and programmes of budgetary funds by state budget appropriation managers can be considered part of governance activities in general. For budget planning drawn up draft budgets of the programs by state budget appropriation managers is particularly important.Conclusions. The efficiency of the use of state funds depends on the spending of funds, the quality and validity of the developed programmes of activities led by their agencies. State budget appropriation managers are involved, along with other entities, on each stage of the budget planning. They provide the

  6. Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015

    Science.gov (United States)

    Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.

    2018-02-01

    The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.

  7. Unraveling the global microRNAome responses to ionizing radiation in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Mykyta V Sokolov

    Full Text Available MicroRNAs (miRNA comprise a group of short ribonucleic acid molecules implicated in regulation of key biological processes and functions at the post-transcriptional level. Ionizing radiation (IR causes DNA damage and generally triggers cellular stress response. However, the role of miRNAs in IR-induced response in human embryonic stem cells (hESC has not been defined yet. Here, by using system biology approaches, we show for the first time, that miRNAome undergoes global alterations in hESC (H1 and H9 lines after IR. Interrogation of expression levels of 1,090 miRNA species in irradiated hESC showed statistically significant changes in 54 genes following 1 Gy of X-ray exposures; global miRNAome alterations were found to be highly temporally and cell line--dependent in hESC. Time-course studies showed that the 16 hr miRNAome radiation response of hESC is much more robust compared to 2 hr-response signature (only eight genes, and may be involved in regulating the cell cycle. Quantitative real-time PCR performed on some miRNA species confirms the robustness of our miRNA microarray platform. Positive regulation of differentiation-, cell cycle-, ion transport- and endomembrane system-related processes were predicted to be negatively affected by miRNAome changes in irradiated hESC. Our findings reveal a fundamental role of miRNAome in modulating the radiation response, and identify novel molecular targets of radiation in hESC.

  8. Developing an Earth system Inverse model for the Earth's energy and water budgets.

    Science.gov (United States)

    Haines, K.; Thomas, C.; Liu, C.; Allan, R. P.; Carneiro, D. M.

    2017-12-01

    The CONCEPT-Heat project aims at developing a consistent energy budget for the Earth system in order to better understand and quantify global change. We advocate a variational "Earth system inverse" solution as the best methodology to bring the necessary expertise from different disciplines together. L'Ecuyer et al (2015) and Rodell et al (2015) first used a variational approach to adjust multiple satellite data products for air-sea-land vertical fluxes of heat and freshwater, achieving closed budgets on a regional and global scale. However their treatment of horizontal energy and water redistribution and its uncertainties was limited. Following the recent work of Liu et al (2015, 2017) which used atmospheric reanalysis convergences to derive a new total surface heat flux product from top of atmosphere fluxes, we have revisited the variational budget approach introducing a more extensive analysis of the role of horizontal transports of heat and freshwater, using multiple atmospheric and ocean reanalysis products. We find considerable improvements in fluxes in regions such as the North Atlantic and Arctic, for example requiring higher atmospheric heat and water convergences over the Arctic than given by ERA-Interim, thereby allowing lower and more realistic oceanic transports. We explore using the variational uncertainty analysis to produce lower resolution corrections to higher resolution flux products and test these against in situ flux data. We also explore the covariance errors implied between component fluxes that are imposed by the regional budget constraints. Finally we propose this as a valuable methodology for developing consistent observational constraints on the energy and water budgets in climate models. We take a first look at the same regional budget quantities in CMIP5 models and consider the implications of the differences for the processes and biases active in the models. Many further avenues of investigation are possible focused on better valuing

  9. A Comprehensive Radial Velocity Error Budget for Next Generation Doppler Spectrometers

    Science.gov (United States)

    Halverson, Samuel; Ryan, Terrien; Mahadevan, Suvrath; Roy, Arpita; Bender, Chad; Stefansson, Guomundur Kari; Monson, Andrew; Levi, Eric; Hearty, Fred; Blake, Cullen; hide

    2016-01-01

    We describe a detailed radial velocity error budget for the NASA-NSF Extreme Precision Doppler Spectrometer instrument concept NEID (NN-explore Exoplanet Investigations with Doppler spectroscopy). Such an instrument performance budget is a necessity for both identifying the variety of noise sources currently limiting Doppler measurements, and estimating the achievable performance of next generation exoplanet hunting Doppler spectrometers. For these instruments, no single source of instrumental error is expected to set the overall measurement floor. Rather, the overall instrumental measurement precision is set by the contribution of many individual error sources. We use a combination of numerical simulations, educated estimates based on published materials, extrapolations of physical models, results from laboratory measurements of spectroscopic subsystems, and informed upper limits for a variety of error sources to identify likely sources of systematic error and construct our global instrument performance error budget. While natively focused on the performance of the NEID instrument, this modular performance budget is immediately adaptable to a number of current and future instruments. Such an approach is an important step in charting a path towards improving Doppler measurement precisions to the levels necessary for discovering Earth-like planets.

  10. Public Budget Database - Budget Authority and offsetting receipts 1976-Current

    Data.gov (United States)

    Executive Office of the President — This file contains historical budget authority and offsetting receipts for 1976 through the current budget year, as well as four years of projections. It can be used...

  11. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX radiation panel

    OpenAIRE

    Stubenrauch , C.J.; Rossow , W.B.; Kinne , S.; Ackerman , S.; Cesana , G.; Chepfer , H.; Di Girolamo , L.; Getzewich , B.; Guignard , A.; Heidinger , A.; Maddux , B.C.; Menzel , W.P.; Minnis , P.; Pearl , C.; Platnick , S.

    2013-01-01

    International audience; The Global Energy and Water Cycle Experiment (GEWEX) Radiation Panel initiated the GEWEX Cloud Assessment in 2005 to compare available, global, long-term cloud data products with the International Satellite Cloud Climatology Project (ISCCP). The GEWEX Cloud Assessment database included cloud properties retrieved from different satellite sensor measurements, taken at various local times and over various time periods. The relevant passive satellite sensors measured radia...

  12. Automated Budget System -

    Data.gov (United States)

    Department of Transportation — The Automated Budget System (ABS) automates management and planning of the Mike Monroney Aeronautical Center (MMAC) budget by providing enhanced capability to plan,...

  13. Thermal Orbital Environmental Parameter Study on the Propulsive Small Expendable Deployer System (ProSEDS) Using Earth Radiation Budget Experiment (ERBE) Data

    Science.gov (United States)

    Sharp, John R.; McConnaughey, Paul K. (Technical Monitor)

    2002-01-01

    The natural thermal environmental parameters used on the Space Station Program (SSP 30425) were generated by the Space Environmental Effects Branch at NASA's Marshall Space Flight Center (MSFC) utilizing extensive data from the Earth Radiation Budget Experiment (ERBE), a series of satellites which measured low earth orbit (LEO) albedo and outgoing long-wave radiation. Later, this temporal data was presented as a function of averaging times and orbital inclination for use by thermal engineers in NASA Technical Memorandum TM 4527. The data was not presented in a fashion readily usable by thermal engineering modeling tools and required knowledge of the thermal time constants and infrared versus solar spectrum sensitivity of the hardware being analyzed to be used properly. Another TM was recently issued as a guideline for utilizing these environments (NASA/TM-2001-211221) with more insight into the utilization by thermal analysts. This paper gives a top-level overview of the environmental parameters presented in the TM and a study of the effects of implementing these environments on an ongoing MSFC project, the Propulsive Small Expendable Deployer System (ProSEDS), compared to conventional orbital parameters that had been historically used.

  14. Comparison of 37 months global net radiation flux derived from PICARD-BOS over the same period observations of CERES and ARGO

    Science.gov (United States)

    Zhu, Ping; Wild, Martin

    2016-04-01

    The absolute level of the global net radiation flux (NRF) is fixed at the level of [0.5-1.0] Wm-2 based on the ocean heat content measurements [1]. The space derived global NRF is at the same order of magnitude than the ocean [2]. Considering the atmosphere has a negligible effects on the global NRF determination, the surface global NRF is consistent with the values determined from space [3]. Instead of studying the absolute level of the global NRF, we focus on the interannual variation of global net radiation flux, which were derived from the PICARD-BOS experiment and its comparison with values over the same period but obtained from the NASA-CERES system and inferred from the ocean heat content survey by ARGO network. [1] Allan, Richard P., Chunlei Liu, Norman G. Loeb, Matthew D. Palmer, Malcolm Roberts, Doug Smith, and Pier-Luigi Vidale (2014), Changes in global net radiative imbalance 1985-2012, Geophysical Research Letters, 41 (no.15), 5588-5597. [2] Loeb, Norman G., John M. Lyman, Gregory C. Johnson, Richard P. Allan, David R. Doelling, Takmeng Wong, Brian J. Soden, and Graeme L. Stephens (2012), Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty, Nature Geoscience, 5 (no.2), 110-113. [3] Wild, Martin, Doris Folini, Maria Z. Hakuba, Christoph Schar, Sonia I. Seneviratne, Seiji Kato, David Rutan, Christof Ammann, Eric F. Wood, and Gert Konig-Langlo (2015), the energy balance over land and oceans: an assessment based on direct observations and CMIP5 climate models, Climate Dynamics, 44 (no.11-12), 3393-3429.

  15. Tropical Ocean Evaporation/SST Sensitivity and It's Link to Water and Energy Budget Variations During ENSO

    Science.gov (United States)

    Robertson, Franklin R.; Marshall, Susan; Oglesby, Robert; Roads, John; Sohn, Byung-Ju; Arnold, James E. (Technical Monitor)

    2001-01-01

    use the da Silva ocean flux data to identify composite structure of departures of latent heat flux from climatology. We also show how these patterns arise out of associated wind and humidity anomaly distributions. Our preliminary work shows that evaporation sensitivity estimates from the da Silva / COADS data, computed for the tropical oceans (30 degrees N/S) are in the neighborhood of 5 to 6 W/square m K. Model estimates are also quite close to this figure. This rate is only slightly less than a rate corresponding to constant relative humidity; however, substantial regional departures from constant relative humidity are present. These patterns are robust and we relate the associated wind and humidity fluctuations noted in previous investigations to the derived evaporation anomalies. Finally, these results are interpreted with other data from the Earth radiation Budget Experiment (ERBE), Global Precipitation Climatology Project (GPCP) and NASA's Surface Radiation Budget (SRB) data set to characterize the tropical energetics of ENSO-related climate variability.

  16. An intercomparison and validation of satellite-based surface radiative energy flux estimates over the Arctic

    Science.gov (United States)

    Riihelä, Aku; Key, Jeffrey R.; Meirink, Jan Fokke; Kuipers Munneke, Peter; Palo, Timo; Karlsson, Karl-Göran

    2017-05-01

    Accurate determination of radiative energy fluxes over the Arctic is of crucial importance for understanding atmosphere-surface interactions, melt and refreezing cycles of the snow and ice cover, and the role of the Arctic in the global energy budget. Satellite-based estimates can provide comprehensive spatiotemporal coverage, but the accuracy and comparability of the existing data sets must be ascertained to facilitate their use. Here we compare radiative flux estimates from Clouds and the Earth's Radiant Energy System (CERES) Synoptic 1-degree (SYN1deg)/Energy Balanced and Filled, Global Energy and Water Cycle Experiment (GEWEX) surface energy budget, and our own experimental FluxNet / Satellite Application Facility on Climate Monitoring cLoud, Albedo and RAdiation (CLARA) data against in situ observations over Arctic sea ice and the Greenland Ice Sheet during summer of 2007. In general, CERES SYN1deg flux estimates agree best with in situ measurements, although with two particular limitations: (1) over sea ice the upwelling shortwave flux in CERES SYN1deg appears to be underestimated because of an underestimated surface albedo and (2) the CERES SYN1deg upwelling longwave flux over sea ice saturates during midsummer. The Advanced Very High Resolution Radiometer-based GEWEX and FluxNet-CLARA flux estimates generally show a larger range in retrieval errors relative to CERES, with contrasting tendencies relative to each other. The largest source of retrieval error in the FluxNet-CLARA downwelling shortwave flux is shown to be an overestimated cloud optical thickness. The results illustrate that satellite-based flux estimates over the Arctic are not yet homogeneous and that further efforts are necessary to investigate the differences in the surface and cloud properties which lead to disagreements in flux retrievals.

  17. Forecasting Foreign Currency Exchange Rates for Air Force Budgeting

    Science.gov (United States)

    2015-03-26

    recommends using the settlement price of the average option contract in October to decrease the median APE by 3.475% and avoiding a $36 million opportunity...29  Table 8 OECD Long Term Interest Rates, Percent Per Annum Example ........................ 30  Table 9 Global Insight 1 Year, 2...Budget Process The federal government receives tariffs, taxes , fees, and other collections throughout the fiscal year (1 October – 30 September). The

  18. The influence of non-CO2 forcings on cumulative carbon emissions budgets

    Science.gov (United States)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Arora, Vivek K.; Lee, Warren G.; Zickfeld, Kirsten

    2018-03-01

    Carbon budgets provide a useful tool for policymakers to help meet the global climate targets, as they specify total allowable carbon emissions consistent with limiting warming to a given temperature threshold. Non-CO2 forcings have a net warming effect in the Representative Concentration Pathways (RCP) scenarios, leading to reductions in remaining carbon budgets based on CO2 forcing alone. Carbon budgets consistent with limiting warming to below 2.0 °C, with and without accounting for the effects of non-CO2 forcings, were assessed in inconsistent ways by the Intergovernmental Panel on Climate Change (IPCC), making the effects of non-CO2 forcings hard to identify. Here we use a consistent approach to compare 1.5 °C and 2.0 °C carbon budgets with and without accounting for the effects of non-CO2 forcings, using CO2-only and RCP8.5 simulations. The median allowable carbon budgets for 1.5 °C and 2.0 °C warming are reduced by 257 PgC and 418 PgC, respectively, and the uncertainty ranges on the budgets are reduced by more than a factor of two when accounting for the net warming effects of non-CO2 forcings. While our overall results are consistent with IPCC, we use a more robust methodology, and explain the narrower uncertainty ranges of carbon budgets when non-CO2 forcings are included. We demonstrate that most of the reduction in carbon budgets is a result of the direct warming effect of the non-CO2 forcings, with a secondary contribution from the influence of the non-CO2 forcings on the carbon cycle. Such carbon budgets are expected to play an increasingly important role in climate change mitigation, thus understanding the influence of non-CO2 forcings on these budgets and their uncertainties is critical.

  19. THE POSITION BUDGETS OF ADMINISTRATIVE AND TERRITORIAL UNITS IN GENERAL CONSOLIDATED BUDGET

    Directory of Open Access Journals (Sweden)

    CHIRCULESCU MARIA FELICIA

    2017-12-01

    Full Text Available The budget is a tool of territorial administrative units of financial and budgetary policy in which the state intervenes in the economy at the local level, having a major impact on general government.Through the decentralization processes that are increasingly debated and applied, the paper aims to highlight the importance of the territorial administrative unit budgets in the consolidated budget in Romania.Thus, the work comprises both theoretical notions concerning the presentation of the consolidated state budget and the budget of the territorial administrative units. The relevance of the work lies in the importance of general government in the regulation of macroeconomic balances by sizing or macroeconomic imbalances, with modern methods that analyze the possibilities and effects of new types of deficits or surpluses in the public sector.

  20. Operational budgeting using fuzzy goal programming

    OpenAIRE

    Saeed Mohammadi; Kamran Feizi; Ali Khatami Firouz Abadi

    2013-01-01

    Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate oper...

  1. Teaching the Federal Budget, National Debt, and Budget Deficit: Findings from High School Teachers

    Science.gov (United States)

    Marri, Anand R.; Ahn, Meesuk; Crocco, Margaret Smith; Grolnick, Maureen; Gaudelli, William; Walker, Erica N.

    2011-01-01

    The issues surrounding the federal budget, national debt, and budget deficit are complex, but not beyond the reach of young students. This study finds scant treatment of the federal budget, national debt, and budget deficit in high schools today. It is hardly surprising that high school teachers spend so little time discussing these topics in…

  2. Intelligent optimization models based on hard-ridge penalty and RBF for forecasting global solar radiation

    International Nuclear Information System (INIS)

    Jiang, He; Dong, Yao; Wang, Jianzhou; Li, Yuqin

    2015-01-01

    Highlights: • CS-hard-ridge-RBF and DE-hard-ridge-RBF are proposed to forecast solar radiation. • Pearson and Apriori algorithm are used to analyze correlations between the data. • Hard-ridge penalty is added to reduce the number of nodes in the hidden layer. • CS algorithm and DE algorithm are used to determine the optimal parameters. • Proposed two models have higher forecasting accuracy than RBF and hard-ridge-RBF. - Abstract: Due to the scarcity of equipment and the high costs of maintenance, far fewer observations of solar radiation are made than observations of temperature, precipitation and other weather factors. Therefore, it is increasingly important to study several relevant meteorological factors to accurately forecast solar radiation. For this research, monthly average global solar radiation and 12 meteorological parameters from 1998 to 2010 at four sites in the United States were collected. Pearson correlation coefficients and Apriori association rules were successfully used to analyze correlations between the data, which provided a basis for these relative parameters as input variables. Two effective and innovative methods were developed to forecast monthly average global solar radiation by converting a RBF neural network into a multiple linear regression problem, adding a hard-ridge penalty to reduce the number of nodes in the hidden layer, and applying intelligent optimization algorithms, such as the cuckoo search algorithm (CS) and differential evolution (DE), to determine the optimal center and scale parameters. The experimental results show that the proposed models produce much more accurate forecasts than other models

  3. Money Talks: Gender Budgeting in the University of Iceland

    Directory of Open Access Journals (Sweden)

    Finnborg S. Jónasdóttir

    2016-06-01

    Full Text Available The article addresses the financial framework, decision-making and budgeting processes of the University of Iceland from a gender perspective. The newly appointed rector of the University of Iceland (elected 2015 together with the university council is currently revising the UI system of the distribution formula of budget allocation. This provides an opportunity to examine the system which is inspired by New Public Management, with emphasis on global competition and performance based indicators. The aim of the article is to scrutinize the current system of budget allocation and distribution and its significance when it comes to gender. We ask how the, allegedly gender neutral, system plays out for different schools and disciplines and for academics in different ranks, when the gender dimension is taken into account. We draw on empirical data collected as part of the GARCIA research project, Gendering the Academy and Research combating Career Instability and Asymmetries, which is supported by the 7th Framework Programme of the European Union. To shed a light on the process we focus on the male-dominated School of Engineering and Natural Sciences (SENS and the more feminised School of Social Sciences (SSS. The exploration shows that the financial framework, decision-making and budgeting processes at the University of Iceland are rather non-transparent, and biased in favour of the natural sciences. This applies to funding from the state; third party funding; the allocation of funding in the teaching part of the budgeting, as well as the research part. From the article it can be concluded that the current system contains an internal, though unintended, gender bias that needs to be corrected.

  4. Projected Impact of Climate Change on the Water and Salt Budgets of the Arctic Ocean by a Global Climate Model

    Science.gov (United States)

    Miller, James R.; Russell, Gary L.

    1996-01-01

    The annual flux of freshwater into the Arctic Ocean by the atmosphere and rivers is balanced by the export of sea ice and oceanic freshwater. Two 150-year simulations of a global climate model are used to examine how this balance might change if atmospheric greenhouse gases (GHGs) increase. Relative to the control, the last 50-year period of the GHG experiment indicates that the total inflow of water from the atmosphere and rivers increases by 10% primarily due to an increase in river discharge, the annual sea-ice export decreases by about half, the oceanic liquid water export increases, salinity decreases, sea-ice cover decreases, and the total mass and sea-surface height of the Arctic Ocean increase. The closed, compact, and multi-phased nature of the hydrologic cycle in the Arctic Ocean makes it an ideal test of water budgets that could be included in model intercomparisons.

  5. Preparing the operating budget.

    Science.gov (United States)

    Williams, R B

    1983-12-01

    The process of preparing a hospital pharmacy budget is presented. The desired characteristics of a budget and the process by which it is developed and approved are described. Fixed, flexible, and zero-based budget types are explained, as are the major components of a well-developed budget: expense, workload, productivity, revenue, and capital equipment and other expenditures. Specific methods for projecting expenses and revenues, based on historical data, are presented along with a discussion of variables that must be considered in order to achieve an accurate and useful budget. The current shift in emphasis away from revenue capture toward critical analysis of pharmacy costs underscores the importance of budgetary analysis for hospital pharmacy managers.

  6. Between Bedside and Budget

    NARCIS (Netherlands)

    J.L.T. Blank; E. Eggink

    1998-01-01

    Original title: Tussen bed en budget. The report Between bedside and budget (Tussen bed en budget) describes an extensive empirical study of the efficiency of general and university hospitals in the Netherlands. A policy summary recaps the main findings of the study. Those findings

  7. Operational budgeting using fuzzy goal programming

    Directory of Open Access Journals (Sweden)

    Saeed Mohammadi

    2013-10-01

    Full Text Available Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate operational budget. The proposed model uses fuzzy triangular as well as interval number to estimate budgeting expenses. The proposed study of this paper is implemented for a real-world case study in province of Qom, Iran and the results are analyzed.

  8. Faith & Globalization:the Challenge for Higher Education

    Science.gov (United States)

    Blair, Tony; Bardsley, Craig

    2013-01-01

    Globalization continues to transform how universities work: the students and subjects they teach, and the way they conduct and disseminate research. With tight budgets everywhere in the wake of the global economic downturn, universities are under increasing pressure to demonstrate value for money to the wider public from their research and…

  9. Understanding the Budget Process

    OpenAIRE

    Mesut Yalvaç

    2000-01-01

    Many different budgeting techniques can be used in libraries, and some combination of these will be appropriate for almost any individual situation. Li-ne-item, program, performance, formula, variable, and zero-base budgets all have features that may prove beneficial in the preparation of a budget. Budgets also serve a variety of functions, providing for short-term and long-term financial planning as well as for cash management over a period of time. Short-term plans are reflected in the oper...

  10. Compatibility of different measurement techniques. Long-term global solar radiation observations at Izaña Observatory [Discussion paper

    OpenAIRE

    García Cabrera, Rosa Delia; Cuevas Agulló, Emilio; García Rodríguez, Omaira Elena; Ramos López, Ramón; Romero Campos, Pedro Miguel; Ory Ajamil, Fernando de; Cachorro, Victoria E.; Frutos, Ángel M. de

    2016-01-01

    A 1-year intercomparison of classical and modern radiation and sunshine duration instruments has been performed at Izaña Atmospheric Observatory. We compare global solar radiation (GSR) records measured with a Kipp & Zonen CM-21 pyranometer, taken in the framework of the Baseline Surface Radiation Network, with those measured with a multifilter rotating shadowband radiometer and a bimetallic pyranometer, and with GSR estimated from sunshine duration performed with a CS sunshine recorder.

  11. An aerosol optical depth climatology for NOAA's national surface radiation budget network (SURFRAD)

    Science.gov (United States)

    Augustine, John A.; Hodges, Gary B.; Dutton, Ellsworth G.; Michalsky, Joseph J.; Cornwall, Christopher R.

    2008-06-01

    A series of algorithms developed to process spectral solar measurements for aerosol optical depth (AOD) for the National Oceanic and Atmospheric Administration's (NOAA) national surface radiation budget network (SURFRAD) is summarized, and decadal results are presented. AOD is a measure of the extinction of the Sun's beam due to aerosols. Daily files of AOD for five spectral measurements in the visible and near-infrared have been produced for 1997-2006. Comparisons of SURFRAD daily AOD averages to NASA's Aerosol Robotic Network product at two of the stations were generally good. An AOD climatology for each SURFRAD station is presented as an annual time series of composite monthly means that represents a typical intra-annual AOD variation. Results are similar to previous U.S. climatologies in that the highest AOD magnitude and greatest variability occur in summer, the lowest AOD levels are in winter, and geographically, the highest-magnitude AOD is in the eastern United States. Springtime Asian dust intrusions show up as a secondary maximum at the western stations. A time series of nationwide annual means shows that 500-nm AOD has decreased over the United States by about 0.02 AOD units over the 10-year period. However, this decline is not statistically significant nor geographically consistent within the country. The eastern U.S. stations and westernmost station at Desert Rock, Nevada, show decreasing AOD, whereas the other two western stations show an increase that is attributed to an upsurge in wildfire activity in the last half of the decade.

  12. Actual global problems of radiation protection

    International Nuclear Information System (INIS)

    Ninkovic, M.

    1995-01-01

    Personal views on some actual problems in radiation protection are given in this paper. Among these problems are: evolution methodology used in radiation protection regulations; radiation protection, nuclear energy and safety, and new approaches to the process of the hazardous substances management. An interesting fact relating to the X-ray, radiation protection and Nikola Tesla are given also. (author)

  13. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-01

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  14. Reviews and syntheses: Hidden forests, the role of vegetated coastal habitats in the ocean carbon budget

    KAUST Repository

    Duarte, Carlos M.

    2017-01-23

    Vegetated coastal habitats, including seagrass and macroalgal beds, mangrove forests and salt marshes, form highly productive ecosystems, but their contribution to the global carbon budget remains overlooked, and these forests remain

  15. The earth's radiation budget and its relation to atmospheric hydrology. I - Observations of the clear sky greenhouse effect. II - Observations of cloud effects

    Science.gov (United States)

    Stephens, Graeme L.; Greenwald, Thomas J.

    1991-01-01

    The clear-sky components of the earth's radiation budget (ERB), the relationship of these components to the sea surface temperature (SST), and microwave-derived water-vapor amount are analyzed in an observational study along with the relationship between the cloudy-sky components of ERB and space/time coincident observations of SST, microwave-derived cloud liquid water, and cloud cover. The purpose of the study is to use these observations for establishing an understanding of the couplings between radiation and the atmosphere that are important to understanding climate feedback. A strategy for studying the greenhouse effect of earth by analyzing the emitted clear-sky longwave flux over the ocean is proposed. It is concluded that the largest observed influence of clouds on ERB is more consistent with macrophysical properties of clouds as opposed to microphysical properties. The analysis for clouds and the greenhouse effect of clouds is compared quantitatively with the clear sky results. Land-ocean differences and tropical-midlatitude differences are shown and explained in terms of the cloud macrostructure.

  16. Penetrating Shortwave Radiation and Sea Ice Algae feedbacks using the Community Earth System Model

    Science.gov (United States)

    Arntsen, A. E.; Perovich, D. K.; Bailey, D. A.; Holland, M. M.

    2017-12-01

    Transmittance of solar radiation through the sea ice cover determines energy transfer to the upper ocean in the form of heat as well as photosynthetically active radiation (PAR) available for the growth of under ice phytoplankton and bottom ice algal communities. A thinning ice cover, increased pond coverage, and earlier melt onset has increased light availability to the upper ocean in contemporary Arctic ice-covered waters. To investigate seasonal and spatial variability of solar shortwave irradiance penetrating the ice cover in the Beaufort and Chukchi Sea regions, we use the fully coupled Community Earth System Model (CESM) in conjunction with a multistream radiative transfer model constrained and initiated by in situ observations. Results inform the importance of light attenuation by ice-based algal pigments within large scale global climate models. We demonstrate the presence of bio-optical feedbacks related to a younger ice cover and examine how these relationships are impacting the trajectory of under ice blooms and the energy budget of the ice-ocean system.

  17. System Budgets

    DEFF Research Database (Denmark)

    Jeppesen, Palle

    1996-01-01

    The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers.......The lecture note is aimed at introducing system budgets for optical communication systems. It treats optical fiber communication systems (six generations), system design, bandwidth effects, other system impairments and optical amplifiers....

  18. The 'People's Budget' and Budget Effectiveness:The Case of Local ...

    African Journals Online (AJOL)

    All over the world, participatory budgeting is being advocated. This is based on the belief that stakeholders' participation in the budgeting process improves transparency, accountability and service delivery. Using evidence from 105 Civil Society Organisations (CSOs) in Kabalore and Kamwenge district local governments ...

  19. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  20. 42 CFR 457.140 - Budget.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 4 2010-10-01 2010-10-01 false Budget. 457.140 Section 457.140 Public Health... Child Health Insurance Programs and Outreach Strategies § 457.140 Budget. The State plan, or plan amendment that has a significant impact on the approved budget, must include a budget that describes the...

  1. Short Wave Part of Earth's Energy Budget at Top of Atmosphere During 2009-2017 from Radiometer IKOR-M Data

    Science.gov (United States)

    Cherviakov, M.; Spiryakhina, A.; Surkova, Y.; Kulkova, E.; Shishkina, E.

    2017-12-01

    This report describes Earth's energy budget IKOR-M satellite program which has been started in Russia. The first satellite "Meteor-M" No 1 of this project was put into orbit in 2009. The IKOR-M radiometer is a satellite instrument which can measure reflected shortwave radiation (0.3-4.0 µm). It was created in Saratov University and installed on Russian meteorological satellites "Meteor-M" No 1 and No 2. IKOR-M designed for satellite monitoring of the outgoing short-wave radiation at top-of-atmosphere (TOA), which is one of the components of Earth's energy budget. Such measurements can be used to derive albedo and absorbed solar radiation at TOA. The basic products of data processing are given in the form of global maps of distribution outgoing short-wave radiation, albedo and absorbed solar radiation (ASR). Such maps were made for each month during observation period. The IKOR-M product archive is available online at all times. A searchable catalogue of data products is continually updated and users may search and download data products via the Earth radiation balance components research laboratory website (www.sgu.ru/structure/geographic/metclim/balans) as soon as they become available. Two series of measurements from two different IKOR-M are available. The first radiometer had worked from October 2009 to August 2014 and second - from August 2014 to the present. Therefore, there is a period when both radiometers work at the same time. Top-of-atmosphere fluxes deduced from the "Meteor-M" No 1 measurements in August 2014 show very good agreement with the fluxes determined from "Meteor-M" No 2. It was shown that the albedo and ASR data received from the radiometer IKOR-M can be used to detect El Nino in the Pacific Ocean. During the radiometer operation, there were two significant El Nino events. Spatial-temporal distribution of the albedo in the equatorial part of the Pacific Ocean was analyzed. Region with high albedo values of 35-40 % is formed in the region 180E

  2. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  3. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    Science.gov (United States)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  4. Effects of UVB radiation on net community production in the upper global ocean

    KAUST Repository

    Garcia-Corral, Lara S.

    2016-08-31

    Aim Erosion of the stratospheric ozone layer together with oligotrophication of the subtropical ocean is leading to enhanced exposure to ultraviolet B (UVB) radiation in ocean surface waters. The impact of increased exposure to UVB on planktonic primary producers and heterotrophs is uncertain. Here we test the null hypothesis that net community production (NCP) of plankton communities in surface waters of the tropical and subtropical ocean is not affected by ambient UVB radiation and extend this test to the global ocean, including the polar oceans and the Mediterranean Sea using previous results. Location We conducted experiments with 131 surface communities sampled during a circumnavigation cruise along the tropical and subtropical ocean and combined these results with 89 previous reports encompassing the Atlantic, Pacific, Arctic and Southern Oceans and the Mediterranean Sea. Methods The use of quartz (transparent to UVB radiation) and borosilicate glass materials (opaque to most UVB) for incubations allowed us to compare NCP between communities where UVB is excluded and those receiving natural UVB radiation. Results We found that NCP varies when exposed to natural UVB radiation compared to those where UVB was removed. NCP of autotrophic communities tended to decrease under natural UVB radiation, whereas the NCP of heterotrophic communities tended to increase. However, these variations showed the opposite trend under higher levels of UVB radiation. Main conclusions Our results suggest that earlier estimates of NCP for surface communities, which were hitherto derived using materials blocking UVB radiation were biased, with the direction and magnitude of this bias depending on the metabolic status of the communities and the underwater penetration of UVB radiation.

  5. Global solar radiation: Multiple on-site assessments in Abu Dhabi, UAE

    Energy Technology Data Exchange (ETDEWEB)

    El Chaar, Lana; Lamont, Lisa A. [Petroleum Institute, Electrical Engineering Department, P.O. Box 2533, Abu Dhabi (United Arab Emirates)

    2010-07-15

    Renewable energy technology and in particular solar energy is being considered worldwide due to the fluctuations in oil prices, global warming and the growing demand for energy supply. This paper investigates the climate conditions available in the United Arab Emirates (UAE) in particular Abu Dhabi to implement Photovoltaic (PV) technology. Measured solar radiation was analyzed for five different geographical locations to ensure the suitability of this region. Hourly, daily and monthly global horizontal irradiation (GHI) were collected and processed. Statistical methods were used to evaluate the computed GHI and showed high values especially during the summer period. Moreover, clearness index was calculated to investigate the frequency of cloudy sky days and results have shown a high percentage of clear days during the year. This paper highlights a promising future for Abu Dhabi in the solar energy sector and in particular Photovoltaic (PV) technology. (author)

  6. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    International Nuclear Information System (INIS)

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  7. Environmental budget and policy goal

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sang Hwan [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    The assigned budget for environmental sector is quite insufficient to meet enormous environmental demand. Under this circumstance, there is only one way to solve environmental problems efficiently, i.e. to use a given budget efficiently. Therefore, the study on efficient utilization of a given environmental invested finance is needed by customizing a diagnosis of present condition on the operation of environmental budget and environmental investment analysis. In this respect, an entire national budget of 1999 and environmental budget were analyzed in this study. By analyzing economic efficiency of sewage disposal program, integrated septic tank system, VOC regulation, incinerator construction program, food waste disposal program, and recycling program, an efficient budget policy was presented. 19 refs., 18 figs., 169 tabs.

  8. Baseline budgeting for continuous improvement.

    Science.gov (United States)

    Kilty, G L

    1999-05-01

    This article is designed to introduce the techniques used to convert traditionally maintained department budgets to baseline budgets. This entails identifying key activities, evaluating for value-added, and implementing continuous improvement opportunities. Baseline Budgeting for Continuous Improvement was created as a result of a newly named company president's request to implement zero-based budgeting. The president was frustrated with the mind-set of the organization, namely, "Next year's budget should be 10 to 15 percent more than this year's spending." Zero-based budgeting was not the answer, but combining the principles of activity-based costing and the Just-in-Time philosophy of eliminating waste and continuous improvement did provide a solution to the problem.

  9. Law 15.809 National budget of ressources and expenditure, it approve for the actually government period

    International Nuclear Information System (INIS)

    1986-01-01

    The articles 340,341,342,343 of the budget law 115.809 treat the following topics: creation of the National Commission of Atomic Energy with the National Direction of Nuclear Technology in the Uruguay,duties, radiation protection taxs

  10. Global 3-D modeling of atmospheric ozone in the free troposphere and the stratosphere with emphasis on midlatitude regions. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brasseur, G.; Tie, X.; Walters, S.

    1999-03-01

    The authors have used several global chemical/transport models (1) to study the contribution of various physical, chemical, and dynamical processes to the budget of mid-latitude ozone in the stratosphere and troposphere; (2) to analyze the potential mechanisms which are responsible for the observed ozone perturbations at mid-latitudes of the lower stratosphere and in the upper troposphere; (3) to calculate potential changes in atmospheric ozone response to anthropogenic changes (e.g., emission of industrially manufactured CFCs, CO, and NO{sub x}) and to natural perturbations (e.g., volcanic eruptions and biomass burning); and (4) to estimate the impact of these changes on the radiative forcing to the climate system and on the level of UV-B radiation at the surface.

  11. Comparative assessment of Japan's long-term carbon budget under different effort-sharing principles

    NARCIS (Netherlands)

    Kuramochi, Takeshi; Asuka, Jusen; Fekete, Hanna; Tamura, Kentaro; Höhne, Niklas

    2016-01-01

    This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2 °C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay

  12. Top-down assessment of the Asian carbon budget since the mid 1990s

    NARCIS (Netherlands)

    Thompson, R.L.; Patra, P.K.; Chevallier, F.; Maksyutov, S.; Law, R.M.; Ziehn, T.; Laan-Luijkx, Van Der I.T.; Peters, W.; Ganshin, A.; Zhuravlev, R.; Maki, T.; Nakamura, T.; Shirai, T.; Ishizawa, M.; Saeki, T.; Machida, T.; Poulter, B.; Canadell, J.G.; Ciais, P.

    2016-01-01

    Increasing atmospheric carbon dioxide (CO2) is the principal driver of anthropogenic climate change. Asia is an important region for the global carbon budget, with 4 of the world's 10 largest national emitters of CO2. Using an ensemble of seven atmospheric inverse systems,

  13. A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects

    Directory of Open Access Journals (Sweden)

    P. Trisolino

    2018-06-01

    Full Text Available Measurements of global and diffuse photosynthetically active radiation (PAR have been carried out on the island of Lampedusa, in the central Mediterranean Sea, since 2002. PAR is derived from observations made with multi-filter rotating shadowband radiometers (MFRSRs by comparison with a freshly calibrated PAR sensor and by relying on the on-site Langley plots. In this way, a long-term calibrated record covering the period 2002–2016 is obtained and is presented in this work. The monthly mean global PAR peaks in June, with about 160 W m−2, while the diffuse PAR reaches 60 W m−2 in spring or summer. The global PAR displays a clear annual cycle with a semi amplitude of about 52 W m−2. The diffuse PAR annual cycle has a semi amplitude of about 12 W m−2. A simple method to retrieve the cloud-free PAR global and diffuse irradiances in days characterized by partly cloudy conditions has been implemented and applied to the dataset. This method allows retrieval of the cloud-free evolution of PAR and calculation of the cloud radiative effect, CRE, for downwelling PAR. The cloud-free monthly mean global PAR reaches 175 W m−2 in summer, while the diffuse PAR peaks at about 40 W m−2. The cloud radiative effect, CRE, on global and diffuse PAR is calculated as the difference between all-sky and cloud-free measurements. The annual average CRE is about −14.7 W m−2 for the global PAR and +8.1 W m−2 for the diffuse PAR. The smallest CRE is observed in July, due to the high cloud-free condition frequency. Maxima (negative for the global, and positive for the diffuse component occur in March–April and in October, due to the combination of elevated PAR irradiances and high occurrence of cloudy conditions. Summer clouds appear to be characterized by a low frequency of occurrence, low altitude, and low optical thickness, possibly linked to the peculiar marine boundary layer structure. These properties also contribute

  14. Budget institutions and taxation

    DEFF Research Database (Denmark)

    Aaskoven, Lasse

    2018-01-01

    While a number of different studies have explored the effects of budgetary procedures and the centralization of the budget process on government debt, deficits and spending, few of them have explored whether such fiscal institutions matter for public revenue. This article argues that centralizing...... the budget process raises the levels of taxation by limiting the ability of individual government officials to veto tax increases in line with common-pool-problem arguments regarding public finances. Using detailed data on budgetary procedures from 15 EU countries, the empirical analysis shows that greater...... centralization of the budget process increases taxation as a share of GDP and that both the type of budget centralization and level of government fractionalization matter for the size of this effect. The results suggest that further centralizing the budget process limits government debt and deficits...

  15. A Kalman Filter-Based Method for Reconstructing GMS-5 Global Solar Radiation by Introduction of In Situ Data

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2013-06-01

    Full Text Available Solar radiation is an important input for various land-surface energy balance models. Global solar radiation data retrieved from the Japanese Geostationary Meteorological Satellite 5 (GMS-5/Visible and Infrared Spin Scan Radiometer (VISSR has been widely used in recent years. However, due to the impact of clouds, aerosols, solar elevation angle and bidirectional reflection, spatial or temporal deficiencies often exist in solar radiation datasets that are derived from satellite remote sensing, which can seriously affect the accuracy of application models of land-surface energy balance. The goal of reconstructing radiation data is to simulate the seasonal variation patterns of solar radiation, using various statistical and numerical analysis methods to interpolate the missing observations and optimize the whole time-series dataset. In the current study, a reconstruction method based on data assimilation is proposed. Using a Kalman filter as the assimilation algorithm, the retrieved radiation values are corrected through the continuous introduction of local in-situ global solar radiation (GSR provided by the China Meteorological Data Sharing Service System (Daily radiation dataset_Version 3 which were collected from 122 radiation data collection stations over China. A complete and optimal set of time-series data is ultimately obtained. This method is applied and verified in China’s northern agricultural areas (humid regions, semi-humid regions and semi-arid regions in a warm temperate zone. The results show that the mean value and standard deviation of the reconstructed solar radiation data series are significantly improved, with greater consistency with ground-based observations than the series before reconstruction. The method implemented in this study provides a new solution for the time-series reconstruction of surface energy parameters, which can provide more reliable data for scientific research and regional renewable-energy planning.

  16. Simulated seasonal and interannual variability of mixed layer heat budget in the northern Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    DeBoyer Montegut, C.; Vialard, J.; Shenoi, S.S.C.; Shankar, D.; Durand, F.; Ethe, C.; Madec, G.

    A global Ocean General Circulation Model (OGCM) is used to investigate the mixed layer heat budget of the Northern Indian Ocean (NIO). The model is validated against observations and shows a fairly good agreement with mixed layer depth data...

  17. ‘FLEXIBLE’ BUDGETS ARE ALREADY BUDGETING PROCESS ANALYSIS OF PRODUCTION COSTS FOR OIL AND FAT ENTERPRISES

    Directory of Open Access Journals (Sweden)

    V. Shvetz’

    2013-10-01

    Full Text Available The problems of methodological fundamentals of managerial accounting of manufacturing costs in information provision for budgeting, not only at the enterprise level, but also as it is required by current conditions of advanced control, in the context of structural production units of “responsibility centers” using “flexible” budgets, which are prepared during the manufacturing process are examined. Unlike a simple comparison of the regular budgets (scheduled amount of work divided by regulatory costs per unit, “flexible” budget makes adjustments to the planned budget because it represents the actual amount of work divided by regulatory costs, which is included with the comparison of the amount of work that are not fulfilled, or carried to a greater or lesser extent compared with the expected budget. Thus, “Flexible” budgets reveal the actual extent of the changes compared with the expected budget.

  18. Power spectral density and scaling exponent of high frequency global solar radiation sequences

    Science.gov (United States)

    Calif, Rudy; Schmitt, François G.; Huang, Yongxiang

    2013-04-01

    The part of the solar power production from photovlotaïcs systems is constantly increasing in the electric grids. Solar energy converter devices such as photovoltaic cells are very sensitive to instantaneous solar radiation fluctuations. Thus rapid variation of solar radiation due to changes in the local meteorological condition can induce large amplitude fluctuations of the produced electrical power and reduce the overall efficiency of the system. When large amount of photovoltaic electricity is send into a weak or small electricity network such as island network, the electric grid security can be in jeopardy due to these power fluctuations. The integration of this energy in the electrical network remains a major challenge, due to the high variability of solar radiation in time and space. To palliate these difficulties, it is essential to identify the characteristic of these fluctuations in order to anticipate the eventuality of power shortage or power surge. The objective of this study is to present an approach based on Empirical Mode Decomposition (EMD) and Hilbert-Huang Transform (HHT) to highlight the scaling properties of global solar irradiance data G(t). The scale of invariance is detected on this dataset using the Empirical Mode Decomposition in association with arbitrary-order Hilbert spectral analysis, a generalization of (HHT) or Hilbert Spectral Analysis (HSA). The first step is the EMD, consists in decomposing the normalized global solar radiation data G'(t) into several Intrinsic Mode Functions (IMF) Ci(t) without giving an a priori basis. Consequently, the normalized original solar radiation sequence G'(t) can be written as a sum of Ci(t) with a residual rn. From all IMF modes, a joint PDF P(f,A) of locally and instantaneous frequency f and amplitude A, is estimated. To characterize the scaling behavior in amplitude-frequency space, an arbitrary-order Hilbert marginal spectrum is defined to: Iq(f) = 0 P (f,A)A dA (1) with q × 0 In case of scale

  19. Atmospheric components of the surface energy budget over young sea ice: Results from the N-ICE2015 campaign

    Science.gov (United States)

    Walden, Von P.; Hudson, Stephen R.; Cohen, Lana; Murphy, Sarah Y.; Granskog, Mats A.

    2017-08-01

    The Norwegian young sea ice campaign obtained the first measurements of the surface energy budget over young, thin Arctic sea ice through the seasonal transition from winter to summer. This campaign was the first of its kind in the North Atlantic sector of the Arctic. This study describes the atmospheric and surface conditions and the radiative and turbulent heat fluxes over young, thin sea ice. The shortwave albedo of the snow surface ranged from about 0.85 in winter to 0.72-0.80 in early summer. The near-surface atmosphere was typically stable in winter, unstable in spring, and near neutral in summer once the surface skin temperature reached 0°C. The daily average radiative and turbulent heat fluxes typically sum to negative values (-40 to 0 W m-2) in winter but then transition toward positive values of up to nearly +60 W m-2 as solar radiation contributes significantly to the surface energy budget. The sensible heat flux typically ranges from +20-30 W m-2 in winter (into the surface) to negative values between 0 and -20 W m-2 in spring and summer. A winter case study highlights the significant effect of synoptic storms and demonstrates the complex interplay of wind, clouds, and heat and moisture advection on the surface energy components over sea ice in winter. A spring case study contrasts a rare period of 24 h of clear-sky conditions with typical overcast conditions and highlights the impact of clouds on the surface radiation and energy budgets over young, thin sea ice.

  20. Penetration of UV-visible solar radiation in the global oceans: Insights from ocean color remote sensing

    Science.gov (United States)

    Lee, Zhongping; Hu, Chuanmin; Shang, Shaoling; Du, Keping; Lewis, Marlon; Arnone, Robert; Brewin, Robert

    2013-09-01

    Penetration of solar radiation in the ocean is determined by the attenuation coefficient (Kd(λ)). Following radiative transfer theory, Kd is a function of angular distribution of incident light and water's absorption and backscattering coefficients. Because these optical products are now generated routinely from satellite measurements, it is logical to evolve the empirical Kd to a semianalytical Kd that is not only spectrally flexible, but also the sun-angle effect is accounted for explicitly. Here, the semianalytical model developed in Lee et al. (2005b) is revised to account for the shift of phase function between molecular and particulate scattering from the short to long wavelengths. Further, using field data collected independently from oligotrophic ocean to coastal waters covering >99% of the Kd range for the global oceans, the semianalytically derived Kd was evaluated and found to agree with measured data within ˜7-26%. The updated processing system was applied to MODIS measurements to reveal the penetration of UVA-visible radiation in the global oceans, where an empirical procedure to correct Raman effect was also included. The results indicated that the penetration of the blue-green radiation for most oceanic waters is ˜30-40% deeper than the commonly used euphotic zone depth; and confirmed that at a depth of 50-70 m there is still ˜10% of the surface UVA radiation (at 360 nm) in most oligotrophic waters. The results suggest a necessity to modify or expand the light attenuation product from satellite ocean-color measurements in order to be more applicable for studies of ocean physics and biogeochemistry.

  1. Global Budgets and Technology-Intensive Medical Services.

    Science.gov (United States)

    Song, Zirui; Fendrick, A Mark; Safran, Dana Gelb; Landon, Bruce; Chernew, Michael E

    2013-06-01

    In 2009-2010, Blue Cross Blue Shield of Massachusetts entered into global payment contracts (the Alternative Quality contract, AQC) with 11 provider organizations. We evaluated the impact of the AQC on spending and utilization of several categories of medical technologies, including one considered high value (colonoscopies) and three that include services that may be overused in some situations (cardiovascular, imaging, and orthopedic services). Approximately 420,000 unique enrollees in 2009 and 180,000 in 2010 were linked to primary care physicians whose organizations joined the AQC. Using three years of pre-intervention data and a large control group, we analyzed changes in utilization and spending associated with the AQC with a propensity-weighted difference-in-differences approach adjusting for enrollee demographics, health status, secular trends, and cost-sharing. In the 2009 AQC cohort, total volume of colonoscopies increased 5.2 percent (p=0.04) in the first two years of the contract relative to control. The contract was associated with varied changes in volume for cardiovascular and imaging services, but total spending on cardiovascular services in the first two years decreased by 7.4% (p=0.02) while total spending on imaging services decreased by 6.1% (pservices, these decreases were also attributable to shifting care to lower-priced providers. No effect was found in orthopedics. As one example of a large-scale global payment initiative, the AQC was associated with higher use of colonoscopies. Among several categories of services whose value may be controversial, the contract generally shifted volume to lower-priced facilities or services.

  2. Ecosystem carbon and radiative fluxes: a global synthesis based on the FLUXNET network.

    Science.gov (United States)

    Cescatti, A.

    2009-04-01

    Solar radiation is the most important environmental factor driving the temporal and spatial variability of the gross primary productivity (GPP) in terrestrial ecosystems. At the ecosystem scale, the light use efficiency (LUE) depends not only on radiation quantity but also on radiation "quality" both in terms of spectral composition and angular distribution. The day-to-day variations in LUE are largely determined by changes in the ratio of diffuse to total radiation. The relative importance of the concurrent variation in total incoming radiation and in LUE is essential to estimate the sign and the magnitude of the GPP sensitivity to radiation. Despite the scientific relevance of this issue, a global assessment on the sensitivity of GPP to the variations of Phar is still missing. Such an analysis is needed to improve our understanding of the current and future impacts of aerosols and cloud cover on the spatio-temporal variability of GPP. The current availability of ecosystem carbon fluxes, together with separate measurements of incoming direct and diffuse Phar at a large number of flux sites, offers the unique opportunity to extend the previous investigation, both in terms of ecosystem, spatial and climate coverage, and to address questions about the internal (e.g. leaf area index, canopy structure) and external (e.g. cloudiness, covarying meteorology) factors affecting the ecosystem sensitivity to radiation geometry. For this purpose half-hourly measurements of carbon fluxes and radiation have been analyzed at about 220 flux sites for a total of about 660 site-years. This analysis demonstrates that the sensitivity of GPP to incoming radiation varies across the different plant functional types and is correlated with the leaf area index and the local climatology. In particular, the sensitivity of GPP to changes in incoming diffuse light maximizes for the broadleaved forests of the Northern Hemisphere.

  3. Radiation closure and diurnal cycle of the clear-sky dust instantaneous direct radiative forcing over Arabian Peninsula

    KAUST Repository

    Osipov, Sergey; Stenchikov, Georgiy L.; Brindley,  Helen; Banks,  Jamie

    2015-01-01

    Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth. Results are compared with Geostationary Earth Radiation Budget (GERB) derived top of the atmosphere climatological forcing over the Red Sea.

  4. Computing diffuse fraction of global horizontal solar radiation: A model comparison.

    Science.gov (United States)

    Dervishi, Sokol; Mahdavi, Ardeshir

    2012-06-01

    For simulation-based prediction of buildings' energy use or expected gains from building-integrated solar energy systems, information on both direct and diffuse component of solar radiation is necessary. Available measured data are, however, typically restricted to global horizontal irradiance. There have been thus many efforts in the past to develop algorithms for the derivation of the diffuse fraction of solar irradiance. In this context, the present paper compares eight models for estimating diffuse fraction of irradiance based on a database of measured irradiance from Vienna, Austria. These models generally involve mathematical formulations with multiple coefficients whose values are typically valid for a specific location. Subsequent to a first comparison of these eight models, three better performing models were selected for a more detailed analysis. Thereby, the coefficients of the models were modified to account for Vienna data. The results suggest that some models can provide relatively reliable estimations of the diffuse fractions of the global irradiance. The calibration procedure could only slightly improve the models' performance.

  5. Inter-comparison of the solar UVB, UVA and global radiation clearness and UV indices for Beer Sheva and Neve Zohar (Dead Sea), Israel

    International Nuclear Information System (INIS)

    Kudish, A.I.; Lyubansky, V.; Evseev, E.G.; Ianetz, A.

    2005-01-01

    An inter-comparison of the clearness indices for the solar UVB, UVA and global radiation for Beer Sheva and Neve Zohar (Dead Sea) are presented utilizing radiation data measured from January 1995 through December 2001 for which there is a one-to-one correspondence between the measurements, viz., any day for which a hourly value for one of the sites was missing is rejected and not included in the analysis for that particular radiation type. Beer Sheva is located ca. 65 km to the west and is approximately 700 m above Neve Zohar, which is located on the western shore of the Dead Sea. The Dead Sea is the lowest terrestrial point on the earth, approximately 400 m below mean sea level. The relative magnitudes of the global, UVB and UVA radiation intensities at the two sites can be attributed to the enhanced scattering at the Dead Sea due to the longer optical path length the solar radiation must traverse at the Dead Sea. The degree of attenuation due to scattering phenomena is inversely proportional to the wavelength raised to some power and, consequently, it is greatest for UVB and very small for global radiation. The UVB and UVA solar constants were determined from the extraterrestrial radiation values tabulated by Froehlich and Wehrli [Spectral distribution of solar irradiance from 25000 nm to 250nm, in: M. Iqbal, An introduction to solar radiation, Academic Press, New York, 1981, Appendix C, pp. 380-381]. The clearness indices for global and UVA radiation were of similar magnitude, whereas those for UVB radiation were of two orders of magnitude smaller. In addition, the monthly average hourly UV Index at both sites has also been determined and an inter-comparison of the values has been performed for all available hourly values from January 1995 through August 2002 for both sites. It is observed that the monthly average hourly UV Index values at the Dead Sea are never in the extreme range

  6. Zero-Base Budgeting:; An Institutional Experience.

    Science.gov (United States)

    Alexander, Donald L.; Anderson, Roger C.

    Zero-base budgeting as it is used at Allegany College is described. Zero-based budgeting is defined as a budgeting and planning approach that requires the examination of every item in a budget request as if the request were being proposed for the first time. Budgets (decision packages) are first made up for decision units (i.e., a course for the…

  7. Development of models for thermal infrared radiation above and within plant canopies

    Science.gov (United States)

    Paw u, Kyaw T.

    1992-01-01

    Any significant angular dependence of the emitted longwave radiation could result in errors in remotely estimated energy budgets or evapotranspiration. Empirical data and thermal infrared radiation models are reviewed in reference to anisotropic emissions from the plant canopy. The biometeorological aspects of linking longwave models with plant canopy energy budgets and micrometeorology are discussed. A new soil plant atmosphere model applied to anisotropic longwave emissions from a canopy is presented. Time variation of thermal infrared emission measurements is discussed.

  8. Uranium isotopic compositions of the crust and ocean: Age corrections, U budget and global extent of modern anoxia

    Science.gov (United States)

    Tissot, François L. H.; Dauphas, Nicolas

    2015-10-01

    the variability of the 238U/235U ratio on Pb-Pb and U-Pb ages and provide analytical formulas to calculate age corrections as a function of the age and isotopic composition of the sample. The crustal ratio may be used in calculation of Pb-Pb and U-Pb ages of continental crust rocks and minerals when the U isotopic composition is unknown. In cosmochemistry, the search for 247Cm (t1/2 = 15.6 Myr), an extinct short-lived radionuclide that decays into 235U, is important for understanding how r-process nuclides were synthesized in stars and learning about the astrophysical context of solar system formation (Chen and Wasserburg, 1981; Wasserburg et al., 1996; Nittler and Dauphas, 2006; Brennecka et al., 2010b; Tissot et al., 2015). In both terrestrial and extraterrestrial samples, variations in the 238U/235U ratio affect Pb-Pb ages (and depending on the analytical protocols, U-Pb ages). Therefore, samples dated by these techniques need to have their U isotopic compositions measured (Stirling et al., 2005, 2006; Weyer et al., 2008; Amelin et al., 2010; Brennecka et al., 2010b; Brennecka and Wadhwa, 2012; Connelly et al., 2012; Goldmann et al., 2015) or uncertainties on the U isotopic composition should be propagated into age calculations. In low temperature aqueous geochemistry, U isotopic fractionation between U4+ and U6+ (driven in part by nuclear field shift effects; Bigeleisen, 1996; Schauble, 2007; Abe et al., 2008), makes U isotopes potential tracers of paleoredox conditions (Montoya-Pino et al., 2010; Brennecka et al., 2011a; Kendall et al., 2013, 2015; Asael et al., 2013; Andersen et al., 2014; Dahl et al., 2014; Goto et al., 2014; Noordmann et al., 2015). The present paper aims at constraining some aspects of the global budget of uranium in the modern oceans using 238U/235U isotope variations, which involves characterizing the U isotopic composition of seawater and several reservoirs involved in the uranium oceanic budget. Uranium can exist in two oxidation states

  9. Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia

    International Nuclear Information System (INIS)

    El-Sebaii, A.A.; Al-Hazmi, F.S.; Al-Ghamdi, A.A.; Yaghmour, S.J.

    2010-01-01

    The measured data of global and diffuse solar radiation on a horizontal surface, the number of bright sunshine hours, mean daily ambient temperature, maximum and minimum ambient temperatures, relative humidity and amount of cloud cover for Jeddah (lat. 21 o 42'37''N, long. 39 o 11'12''E), Saudi Arabia, during the period (1996-2007) are analyzed. The monthly averages of daily values for these meteorological variables have been calculated. The data are then divided into two sets. The sub-data set I (1996-2004) are employed to develop empirical correlations between the monthly average of daily global solar radiation fraction (H/H 0 ) and the various weather parameters. The sub-data set II (2005-2007) are then used to evaluate the derived correlations. Furthermore, the total solar radiation on horizontal surfaces is separated into the beam and diffuses components. Empirical correlations for estimating the diffuse solar radiation incident on horizontal surfaces have been proposed. The total solar radiation incident on a tilted surface facing south H t with different tilt angles is then calculated using both Liu and Jordan isotropic model and Klucher's anisotropic model. It is inferred that the isotropic model is able to estimate H t more accurate than the anisotropic one. At the optimum tilt angle, the maximum value of H t is obtained as ∼36 (MJ/m 2 day) during January. Comparisons with 22 years average data of NASA SSE Model showed that the proposed correlations are able to predict the total annual energy on horizontal and tilted surfaces in Jeddah with a reasonable accuracy. It is also found that at Jeddah, the solar energy devices have to be tilted to face south with a tilt angle equals the latitude of the place in order to achieve the best performance all year round.

  10. Revisiting the radiative vertical velocity paradigm in the TTL

    Science.gov (United States)

    Bolot, Maximilien; Moyer, Elisabeth

    2015-04-01

    We demonstrate that uplift rates in the TTL (tropical tropopause layer) may be commonly overestimated. The mass balance of any tracer in the TTL depends on the vertical speed of large-scale uplift and the rate of convective detrainment from overshoots. Generally, uplift velocity is retrieved from the conservation of energy, assuming that the only significant factor is radiative heating.1,2 The detrainment rate is then computed from the convergence of the uplift flux, with the assumption that detrainment dominates over entrainment in the TTL. We show that this commonly calculated 'radiative vertical velocity' and the associated rate of detrainment are necessarily flawed for either of two mutually exclusive reasons. If radiative heating is the sole diabatic term in the energy budget, then significant convective entrainment must occur at TTL levels. If detrainment dominates over entrainment, then the heat budget must include the cooling rate from the export of sensible heat deficit in overshooting convection. We illustrate the calculations using tropical values of radiative heating rates and large-scale divergence fluxes from ERA-Interim reanalysis. For undilute convection, the export of heat deficit in detrained overshoots would substantially offset radiative heating, lowering the resulting assumed vertical velocity at 16 km by a factor of three. The computed detrainment rate at this altitude also increases significantly, by a factor of five. Because these changes would alter interpretation of tracer profiles, it is important to include all terms in the heat budget in tracer studies. Conversely, tracer transport properties can be used to help constrain the impact of convection on the TTL heat budget.3 [1] Folkins, I. et al., J. Geophys. Res., 111, D23304, (2006). [2] Read, W. G. et al., Atmos. Chem. Phys., 8, 6051-6067, (2008). [3] Kuang, Z. and Bretherton, C. S., J. Atmos. Sci., 61, 2919-2927, (2004)

  11. Under Secretary of Defense (Comptroller) > Budget

    Science.gov (United States)

    functionalStatements OUSD(C) History FMR Budget Materials Budget Execution Financial Management Improving Financial Performance Reports Regulations Press Release | Budget Briefing | Transcripts: David L. Norquist, Under PDF document. Click on Excel icon for Excel document Overview - FY2019 Defense Budget Performance

  12. Budget goal commitment, clinical managers' use of budget information and performance.

    Science.gov (United States)

    Macinati, Manuela S; Rizzo, Marco G

    2014-08-01

    Despite the importance placed on accounting as a means to influence performance in public healthcare, there is still a lot to be learned about the role of management accounting in clinical managers' work behavior and their link with organizational performance. The article aims at analyzing the motivational role of budgetary participation and the intervening role of individuals' mental states and behaviors in influencing the relationship between budgetary participation and performance. According to the goal-setting theory, SEM technique was used to test the relationships among variables. The data were collected by a survey conducted in an Italian hospital. The results show that: (i) budgetary participation does not directly influence the use of budget information, but the latter is encouraged by the level of budget goal commitment which, as a result, is influenced by the positive motivational consequences of participative budgeting; (ii) budget goal commitment does not directly influence performance, but the relationship is mediated by the use of budget information. This study contributes to health policy and management accounting literature and has significant policy implications. Mainly, the findings prove that the introduction of business-like techniques in the healthcare sector can improve performance if attitudinal and behavioral variables are adequately stimulated. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. A simple formula for determining globally clear skies

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.N.; George, A.T.; Mace, G.G. [Penn State Univ., University Park, PA (United States)] [and others

    1996-04-01

    Surface measurements to serve as {open_quotes}ground truth{close_quotes} are of primary importance in the development of retrieval algorithms using satellite measurements to predict surface irradiance. The most basic algorithms of this type deal with clear sky (i.e., cloudless) top-to-surface shortwave (SW) transfer, serving as a necessary prerequisite towards treating both clear and cloudy conditions. Recently, atmosphere SW cloud forcing to infer the possibility of excess atmospheric absorption (compared with model results) in cloudy atmospheres. The surface component of this ratio relies on inferring the expected clear sky SW irradiance to determine the effects of clouds on the SW energy budget. Solar renewable energy applications make use of clear and cloud fraction climatologies to assess solar radiation resources. All of the above depend to some extent on the identification of globally clear sky conditions and the attendant measurements of downwelling SW irradiance.

  14. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

  15. Comment on 'Current Budget of the Atmospheric Electric Global Circuit'

    Science.gov (United States)

    Driscoll, Kevin T.; Blakeslee, Richard J.

    1996-01-01

    In this paper, three major issues relevant to Kasemir's new model will be addressed. The first concerns Kasemir's assertion that there are significant differences between the potentials associated with the new model and the conventional model. A recalculation of these potentials reveals that both models provide equivalent results for the potential difference between the Earth and ionosphere. The second issue to be addressed is Kasemir's assertion that discrepancies in the electric potentials associated with both models can be attributed to modeling the Earth as a sphere, instead of as a planar surface. A simple analytical comparison will demonstrate that differences in the equations for the potentials of the atmosphere derived with a spherical and a planar Earth are negligible for applications to global current flow. Finally, the third issue to be discussed is Kasemir's claim that numerous aspects of the conventional model are incorrect, including the role of the ionosphere in global current flow as well as the significance of cloud-to-ground lightning in supplying charge to the global circuit. In order to refute these misconceptions, it will be shown that these aspects related to the flow of charge in the atmosphere are accurately described by the conventional model of the global circuit.

  16. Study of solar radiation prediction and modeling of relationships between solar radiation and meteorological variables

    International Nuclear Information System (INIS)

    Sun, Huaiwei; Zhao, Na; Zeng, Xiaofan; Yan, Dong

    2015-01-01

    Highlights: • We investigate relationships between solar radiation and meteorological variables. • A strong relationship exists between solar radiation and sunshine duration. • Daily global radiation can be estimated accurately with ARMAX–GARCH models. • MGARCH model was applied to investigate time-varying relationships. - Abstract: The traditional approaches that employ the correlations between solar radiation and other measured meteorological variables are commonly utilized in studies. It is important to investigate the time-varying relationships between meteorological variables and solar radiation to determine which variables have the strongest correlations with solar radiation. In this study, the nonlinear autoregressive moving average with exogenous variable–generalized autoregressive conditional heteroscedasticity (ARMAX–GARCH) and multivariate GARCH (MGARCH) time-series approaches were applied to investigate the associations between solar radiation and several meteorological variables. For these investigations, the long-term daily global solar radiation series measured at three stations from January 1, 2004 until December 31, 2007 were used in this study. Stronger relationships were observed to exist between global solar radiation and sunshine duration than between solar radiation and temperature difference. The results show that 82–88% of the temporal variations of the global solar radiation were captured by the sunshine-duration-based ARMAX–GARCH models and 55–68% of daily variations were captured by the temperature-difference-based ARMAX–GARCH models. The advantages of the ARMAX–GARCH models were also confirmed by comparison of Auto-Regressive and Moving Average (ARMA) and neutral network (ANN) models in the estimation of daily global solar radiation. The strong heteroscedastic persistency of the global solar radiation series was revealed by the AutoRegressive Conditional Heteroscedasticity (ARCH) and Generalized Auto

  17. Comparison and evaluation of gridded radiation products across northern Eurasia

    International Nuclear Information System (INIS)

    Troy, T J; Wood, E F

    2009-01-01

    Northern Eurasia is a region experiencing documented changes in temperature and large-scale streamflow, yet little attention has been focused on the large-scale energy budgets over the region. We compare station data and gridded radiation products from reanalysis and remote sensing to evaluate the radiative fluxes across northern Eurasia. On annual timescales, we find that the downward shortwave radiation products, with the exception of those of the NCEP/NCAR reanalysis, compare well with long-term station observations, but that this agreement breaks down with smaller timescales and for downward longwave and upward shortwave and longwave radiation. Of the six gridded products, the Surface Radiation Budget data set performs the best as compared to observations. Differences in radiative fluxes are on the order of 15-20 W m -2 on seasonal timescales, averaged across the region, with larger variations spatially and at smaller timescales. The resulting uncertainty in net radiation has implications for climate and hydrologic analyses that seek to understand changes in northern Eurasia climate and its hydrologic cycle.

  18. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    Science.gov (United States)

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  19. Pilot Institute on Global Change on Trace Gases and the Biosphere, 1988

    Science.gov (United States)

    Eddy, J. A.; Moore, B.

    1998-01-01

    Table of Contents: Summary; Background; General Framework for a Series of Institutes on Global Change; The 1988 Pilot Institute on Global Changes: Trace Gases and the Biosphere; Budget; List of Acronyms; and Attachments.

  20. Scientific and theoretical principles of personnel costs’ budgeting

    Directory of Open Access Journals (Sweden)

    O.P. Gutsal

    2015-06-01

    Full Text Available The object of this article is to determine the main purpose of company’s budgeting, to study its functions in terms of personnel management, to identify the main advantages and disadvantages of budgeting and to determine the stages of realization budgeting in the company. There have been considered the purpose and aim of budgeting. The main functions of budgeting, which include such ones as: planning, forecasting, information and analysis function, motivational, coordinative, control and involvement function have been identified (determined. In terms of defined functions of budgeting their essence in budgeting personnel costs has been outlined. The main advantages and disadvantages of budgeting have been found. There has been determined the implementing and realization company’s budgeting. The process of budgeting is realized according to the following consecutive stages: preparatory and analytical stage; definition of budget constraints; drafting up the budget; discussion and adjustment of budget indicators; adoption of budget; analysis and control of the budget. There also has been considered budget organization structure which includes budget committee, budget planning and analysis department, financial responsibility center.

  1. THE BUDGETING PROCESS IN ROMANIA

    Directory of Open Access Journals (Sweden)

    TURCIN MARIUS CATALIN

    2015-08-01

    Full Text Available This paper presents the stages of the budgeting process in Romania and the institutions involved in its carry out, having regard to the recent legislative amendments in the field. The study describes the importance of some state institutions in achieving the economic and social policy objectives. According to practice, the institution specializing in drafting the budget bill is the Government, who submits the budget bill annually to the Parliament for adopting the national budget, accompanied by the explanatory statement, annexes and interpretative calculations. The preparatory works are fulfilled by the Ministry of Public Finance and in parallel, by the ministries, authorities, local administrations or other public institutions to prepare their own drafts budget.

  2. Fiscal Year 2015 Budget

    Data.gov (United States)

    Montgomery County of Maryland — This dataset includes the Fiscal Year 2015 Council-approved operating budget for Montgomery County. The dataset does not include revenues and detailed agency budget...

  3. Soft Budget Constraints in Public Hospitals.

    Science.gov (United States)

    Wright, Donald J

    2016-05-01

    A soft budget constraint arises when a government is unable to commit to not 'bailout' a public hospital if the public hospital exhausts its budget before the end of the budget period. It is shown that if the political costs of a 'bailout' are relatively small, then the public hospital exhausts the welfare-maximising budget before the end of the budget period and a 'bailout' occurs. In anticipation, the government offers a budget to the public hospital that may be greater than or less than the welfare-maximising budget. In either case, the public hospital treats 'too many' elective patients before the 'bailout' and 'too few' after. The introduction of a private hospital reduces the size of any 'bailout' and increases welfare. Copyright © 2015 John Wiley & Sons, Ltd.

  4. Cycle-Based Budgeting Toolkit: A Primer

    Science.gov (United States)

    Yan, Bo

    2016-01-01

    At the core, budgeting is about distributing and redistributing limited financial resources for continuous improvement. Incremental budgeting is limited in achieving the goal due to lack of connection between outcomes and budget decisions. Zero-based budgeting fills the gap, but is cumbersome to implement, especially for large urban school…

  5. Optical and radiative properties of aerosols over Abu Dhabi in the ...

    Indian Academy of Sciences (India)

    Introduction. Atmospheric aerosols strongly influence the radiation budget of ... the radiative balance of the earth–atmosphere sys- tem due to ... resources modelling for photo voltaic (PV) and .... scene information (e.g., cloud and aerosol prop-.

  6. The prevalence of Beyond Budgeting in Denmark

    DEFF Research Database (Denmark)

    Sandalgaard, Niels

      The annual budget has been criticised in recent years. The critics claim, among other things, that the annual budget is not suitable for today's business environment, that annual budgets stimulate dysfunctional behaviour and furthermore that the use of budgets is too costly. This paper examines...... this critique as well as the current status of the traditional annual budget in a contingency perspective by using data from a survey among the largest Danish companies. The conclusion is that only 4% of the companies claim to have abandoned the traditional, annual budget, 2% have decided or are in the process...... of doing so and 11% are considering abandoning it. These "Beyond Budgeting" companies are more critical towards the traditional budget than other companies. The study also shows that the critical attitude towards annual budgets as well as the decision of abandoning the budget cannot be associated...

  7. 7 CFR 906.33 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 906.33 Section 906.33 Agriculture Regulations... GRANDE VALLEY IN TEXAS Order Regulating Handling Expenses and Assessments § 906.33 Budget. At the... budget of income and expenditures necessary for the administration of this part. The committee shall...

  8. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    International Nuclear Information System (INIS)

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  9. A simple formula for estimating global solar radiation in central arid deserts of Iran

    International Nuclear Information System (INIS)

    Sabziparvar, Ali A.

    2008-01-01

    Over the last two decades, using simple radiation models has been an interesting task to estimate daily solar radiation in arid and semi-arid deserts such as those in Iran, where the number of solar observation sites is poor. In Iran, most of the models used so far, have been validated for a few specific locations based on short-term solar observations. In this work, three different radiation models (Sabbagh, Paltridge, Daneshyar) have been revised to predict the climatology of monthly average daily solar radiation on horizontal surfaces in various cities in central arid deserts of Iran. The modifications are made by the inclusion of altitude, monthly total number of dusty days and seasonal variation of Sun-Earth distance. A new height-dependent formula is proposed based on MBE, MABE, MPE and RMSE statistical analysis. It is shown that the revised Sabbagh method can be a good estimator for the prediction of global solar radiation in arid and semi-arid deserts with an average error of less than 2%, that performs a more accurate prediction than those in the previous studies. The required data for the suggested method are usually available in most meteorological sites. For the locations, where some of the input data are not reported, an alternative approach is presented. (author)

  10. Coastal polynyas in the southern Weddell Sea: Variability of the surface energy budget

    Science.gov (United States)

    Renfrew, Ian A.; King, John C.; Markus, Thorsten

    2002-06-01

    The surface energy budget of coastal polynyas in the southern Weddell Sea has been evaluated for the period 1992-1998 using a combination of satellite observations, meteorological data, and simple physical models. The study focuses on polynyas that habitually form off the Ronne Ice Shelf. The coastal polynya areal data are derived from an advanced multichannel polynya detection algorithm applied to passive microwave brightness temperatures. The surface sensible and latent heat fluxes are calculated via a fetch-dependent model of the convective-thermal internal boundary layer. The radiative fluxes are calculated using well-established empirical formulae and an innovative cloud model. Standard meteorological variables that are required for the flux calculations are taken from automatic weather stations and from the National Centers for Environmental Production/National Center for Atmospheric Research reanalyses. The 7 year surface energy budget shows an overall oceanic warming due to the presence of coastal polynyas. For most of the period the summertime oceanic warming, due to the absorption of shortwave radiation, is approximately in balance with the wintertime oceanic cooling. However, the anomalously large summertime polynya of 1997-1998 allowed a large oceanic warming of the region. Wintertime freezing seasons are characterized by episodes of high heat fluxes interspersed with more quiescent periods and controlled by coastal polynya dynamics. The high heat fluxes are primarily due to the sensible heat flux component, with smaller complementary latent and radiative flux components. The average freezing season area-integrated energy exchange is 3.48 × 1019 J, with contributions of 63, 22, and 15% from the sensible, latent, and radiative components, respectively. The average melting season area-integrated energy exchange is -5.31 × 1019 J, almost entirely due to the radiative component. There is considerable interannual variability in the surface energy budget

  11. Impact of climate change on tropospheric ozone and its global budgets

    Directory of Open Access Journals (Sweden)

    G. Zeng

    2008-01-01

    Full Text Available We present the chemistry-climate model UMCAM in which a relatively detailed tropospheric chemical module has been incorporated into the UK Met Office's Unified Model version 4.5. We obtain good agreements between the modelled ozone/nitrogen species and a range of observations including surface ozone measurements, ozone sonde data, and some aircraft campaigns.

    Four 2100 calculations assess model responses to projected changes of anthropogenic emissions (SRES A2, climate change (due to doubling CO2, and idealised climate change-associated changes in biogenic emissions (i.e. 50% increase of isoprene emission and doubling emissions of soil-NOx. The global tropospheric ozone burden increases significantly for all the 2100 A2 simulations, with the largest response caused by the increase of anthropogenic emissions. Climate change has diverse impacts on O3 and its budgets through changes in circulation and meteorological variables. Increased water vapour causes a substantial ozone reduction especially in the tropical lower troposphere (>10 ppbv reduction over the tropical ocean. On the other hand, an enhanced stratosphere-troposphere exchange of ozone, which increases by 80% due to doubling CO2, contributes to ozone increases in the extratropical free troposphere which subsequently propagate to the surface. Projected higher temperatures favour ozone chemical production and PAN decomposition which lead to high surface ozone levels in certain regions. Enhanced convection transports ozone precursors more rapidly out of the boundary layer resulting in an increase of ozone production in the free troposphere. Lightning-produced NOx increases by about 22% in the doubled CO2 climate and contributes to ozone production.

    The response to the increase of isoprene emissions shows that the change of ozone is largely determined by background NOx levels: high

  12. 7 CFR 1744.64 - Budget adjustment.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 11 2010-01-01 2010-01-01 false Budget adjustment. 1744.64 Section 1744.64... Disbursement of Funds § 1744.64 Budget adjustment. (a) If more funds are required than are available in a budget account, the borrower may request RUS's approval of a budget adjustment to use funds from another...

  13. Calculating the diffuse solar radiation in regions without solar radiation measurements

    International Nuclear Information System (INIS)

    Li, Huashan; Bu, Xianbiao; Long, Zhen; Zhao, Liang; Ma, Weibin

    2012-01-01

    Correlations for calculating diffuse solar radiation can be classified into models with global solar radiation (H-based method) and without it (Non-H method). The objective of the present study is to compare the performance of H-based and Non-H methods for calculating the diffuse solar radiation in regions without solar radiation measurements. The comparison is carried out at eight meteorological stations in China focusing on the monthly average daily diffuse solar radiation. Based on statistical error tests, the results show that the Non-H method that includes other readily available meteorological elements gives better estimates. Therefore, it can be concluded that the Non-H method is more appropriate than the H-based one for calculating the diffuse solar radiation in regions without solar radiation measurements. -- Highlights: ► Methods for calculating diffuse solar radiation in regions without solar radiation measurements are investigated. ► Diffuse solar radiation models can be classified into two groups according to global solar radiation. ► Two approaches are compared at the eight meteorological stations in China. ► The method without global solar radiation is recommended.

  14. A trait based dynamic energy budget approach to explore emergent microalgal community structure

    Science.gov (United States)

    Cheng, Y.; Bouskill, N.; Karaoz, U.; Geng, H.; Lane, T.; Pett-Ridge, J.; Mayali, X.; Brodie, E.

    2015-12-01

    Microalgae play important roles in the global carbon budget. Phytoplankton, including microalgae, are responsible for around 50% of global primary production, and also hold promise as a viable renewable biofuel source. Research has been underway for decades to realize the full potential of algal biofuels at the commercial scale, however, uni-algal ponds are typically threatened by collapse due to microalgal grazing and parasite invasions. Recently, it has been proposed that functionally diverse microalgal-bacterial communities can achieve high biomass and/or lipid yields, and are more stable (less susceptible to invasion) than a monoculture. Similar positive diversity-productivity relationships have been observed in a wide range of ecosystem studies, but the purposeful maintenance of a diverse microbiome is less common in managed systems. In our work, a trait based dynamic energy budget model was developed to explore emergent microalgal community structure under various environmental (e.g. light, temperature, nutrient availability) conditions. The complex algal community can be reduced into functional groups (guilds). Each guild (algae or bacteria) is characterized by distinct physiological traits (e.g. nutrient requirement, growth rate, substrate affinity, lipid production) constrained by biochemical trade-offs. These trait values are derived from literature and information encoded in genomic data. Metabolism of the algae and the bacterial species (symbiotic or non-symbiotic) are described within a dynamic energy budget framework. The model offers a mechanistic framework to predict the optimal microalgal community assemblage towards high productivity and resistance to invasion under prevailing environmental conditions.

  15. 7 CFR 956.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 956.41 Section 956.41 Agriculture Regulations... OF SOUTHEAST WASHINGTON AND NORTHEAST OREGON Expenses and Assessments § 956.41 Budget. Prior to each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of...

  16. 7 CFR 945.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 945.41 Section 945.41 Agriculture Regulations... COUNTIES IN IDAHO, AND MALHEUR COUNTY, OREGON Order Regulating Handling Budget, Expenses and Assessments § 945.41 Budget. At the beginning of each fiscal period, and as may be necessary thereafter, the...

  17. 7 CFR 958.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 958.41 Section 958.41 Agriculture Regulations... Budget. Prior to each fiscal period, and as may be necessary thereafter the committee shall prepare a budget of estimated income and expenditures necessary for the administration of this part. The committee...

  18. 7 CFR 966.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 966.41 Section 966.41 Agriculture Regulations... Handling Expenses and Assessments § 966.41 Budget. At the beginning of each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of income and expenditures necessary...

  19. 7 CFR 948.76 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 948.76 Section 948.76 Agriculture Regulations... Regulating Handling Expenses and Assessments § 948.76 Budget. As soon as practicable after the beginning of... budget of income and expenditures necessary for its administration of this part. Each area committee may...

  20. 7 CFR 959.41 - Budget.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Budget. 959.41 Section 959.41 Agriculture Regulations... Handling Expenses and Assessments § 959.41 Budget. As soon as practicable after the beginning of each fiscal period and as may be necessary thereafter, the committee shall prepare an estimated budget of...

  1. Motivation in Beyond Budgeting: A Motivational Paradox?

    DEFF Research Database (Denmark)

    Sandalgaard, Niels; Bukh, Per Nikolaj

    In this paper we discuss the role of motivation in relation to budgeting and we analyse how the Beyond Budgeting model functions compared with traditional budgeting. In the paper we focus on budget related motivation (and motivation in general) and conclude that the Beyond Budgeting model...

  2. PEPFAR Investments In Governance And Health Systems Were One-Fifth Of Countries' Budgeted Funds, 2004-14.

    Science.gov (United States)

    Moucheraud, Corrina; Sparkes, Susan; Nakamura, Yoriko; Gage, Anna; Atun, Rifat; Bossert, Thomas J

    2016-05-01

    Launched in 2003, the US President's Emergency Plan for AIDS Relief (PEPFAR) is the largest disease-focused assistance program in the world. We analyzed PEPFAR budgets for governance and systems for the period 2004-14 to ascertain whether PEPFAR's stated emphasis on strengthening health systems has been manifested financially. The main outcome variable in our analysis, the first of its kind using these data, was the share of PEPFAR's total annual budget for a country that was designated for governance and systems. The share of planned PEPFAR funding for governance and systems increased from 14.9 percent, on average, in 2004 to 27.5 percent in 2013, but it declined in 2014 to 20.8 percent. This study shows that the size of a country's PEPFAR budget was negatively associated with the share allocated for governance and systems (compared with other budget program areas); it also shows that there was no significant relationship between budgets for governance and systems and HIV prevalence. It is crucial for the global health policy community to better understand how such investments are allocated and used for health systems strengthening. Project HOPE—The People-to-People Health Foundation, Inc.

  3. Simulations of the effect of intensive biomass burning in July 2015 on Arctic radiative budget

    Science.gov (United States)

    Markowicz, K. M.; Lisok, J.; Xian, P.

    2017-12-01

    The impact of biomass burning (BB) on aerosol optical properties and radiative budget in the polar region following an intense boreal fire event in North America in July 2015 is explored in this paper. Presented data are obtained from the Navy Aerosol Analysis and Prediction System (NAAPS) reanalysis and the Fu-Liou radiative transfer model. NAAPS provides particle concentrations and aerosol optical depth (AOD) at 1° x 1° spatial and 6-hourly temporal resolution, its AOD and vertical profiles were validated with field measurements for this event. Direct aerosol radiative forcings (ARF) at the surface, the top of the atmosphere (TOA) and within the atmosphere are calculated for clear-sky and all-sky conditions, with the surface albedo and cloud properties constrained by satellite retrievals. The mean ARFs at the surface, the TOA, and within the atmosphere averaged for the north pole region (latitudes north of 75.5N) and the study period (July 5-15, 2015) are -13.1 ± 2.7, 0.3 ± 2.1, and 13.4 ± 2.7 W/m2 for clear-sky and -7.3 ± 1.8, 5.0 ± 2.6, and 12.3 ± 1.6 W/m2 for all-sky conditions respectively. Local ARFs can be a several times larger e.g. the clear-sky surface and TOA ARF reach over Alaska -85 and -30 W/m2 and over Svalbard -41 and -20 W/m2 respectively. The ARF is found negative at the surface (almost zero over high albedo region though) with the maximum forcing over the BB source region, and weaker forcing under all-sky conditions compared to the clear-sky conditions. Unlike the ARFs at the surface and within the atmosphere, which have consistent forcing signs all over the polar region, the ARF at the TOA changes signs from negative (cooling) over the source region (Alaska) to positive (heating) over bright surfaces (e.g., Greenland) because of strong surface albedo effect. NAAPS simulations also show that the transported BB particle over the Arctic are in the low-to-middle troposphere and above low-level clouds, resulting in little difference in ARFs

  4. BUDGET AND PUBLIC DEBT

    Directory of Open Access Journals (Sweden)

    Morar Ioan Dan

    2014-12-01

    Full Text Available The issue of public budgeting is an important issue for public policy of the state, for the simple reason that no money from the state budget can not promote public policy. Budgetary policy is official government Doctrine vision mirror and also represents a starting point for other public policies, which in turn are financed by the public budget. Fiscal policy instruments at its disposal handles the public sector in its structure, and the private sector. Tools such as grant, budgetary allocation, tax, welfare under various forms, direct investments and not least the state aid is used by the state through their budgetary policies to directly and indirectly infuence sector, and the private. Fiscal policies can be grouped according to the structure of the public sector in these components, namely fiscal policy, budgeting and resource allocation policies for financing the budget deficit. An important issue is the financing of the budget deficit budgetary policies. There are two funding possibilities, namely, the higher taxes or more axles site and enter the second call to public loans. Both options involve extra effort from taxpayers in the current fiscal year when they pay higher taxes or a future period when public loans will be repaid. We know that by virtue of "fiscal pact" structural deficits of the member countries of the EU are limited by the European Commission, according to the macro structural stability and budget of each Member State. This problem tempers to some extent the governments of the Member States budgetary appetite, but does not solve the problem of chronic budget deficits. Another issue addressed in this paper is related to the public debt, the absolute amount of its relative level of public datoriri, about the size of GDP, public debt financing and its repayment sources. Sources of public debt issuance and monetary impact on the budget and monetary stability are variables that must underpin the justification of budgetary

  5. 24 CFR 968.225 - Budget revisions.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 4 2010-04-01 2010-04-01 false Budget revisions. 968.225 Section... Fewer Than 250 Units) § 968.225 Budget revisions. (a) A PHA shall not incur any modernization cost in excess of the total HUD-approved CIAP budget. A PHA shall submit a budget revision, in a form prescribed...

  6. Sensitivity of regional meteorology and atmospheric composition during the DISCOVER-AQ period to subgrid-scale cloud-radiation interactions

    Science.gov (United States)

    Huang, X.; Allen, D. J.; Herwehe, J. A.; Alapaty, K. V.; Loughner, C.; Pickering, K. E.

    2014-12-01

    Subgrid-scale cloudiness directly influences global and regional atmospheric radiation budgets by attenuating shortwave radiation, leading to suppressed convection, decreased surface precipitation as well as other meteorological parameter changes. We use the latest version of WRF (v3.6, Apr 2014), which incorporates the Kain-Fritsch (KF) convective parameterization to provide subgrid-scale cloud fraction and condensate feedback to the rapid radiative transfer model-global (RRTMG) shortwave and longwave radiation schemes. We apply the KF scheme to simulate the DISCOVER-AQ Maryland field campaign (July 2011), and compare the sensitivity of meteorological parameters to the control run that does not include subgrid cloudiness. Furthermore, we will examine the chemical impact from subgrid cloudiness using a regional chemical transport model (CMAQ). There are several meteorological parameters influenced by subgrid cumulus clouds that are very important to air quality modeling, including changes in surface temperature that impact biogenic emission rates; changes in PBL depth that affect pollutant concentrations; and changes in surface humidity levels that impact peroxide-related reactions. Additionally, subgrid cumulus clouds directly impact air pollutant concentrations by modulating photochemistry and vertical mixing. Finally, we will compare with DISCOVER-AQ flight observation data and evaluate how well this off-line CMAQ simulation driven by WRF with the KF scheme simulates the effects of regional convection on atmospheric composition.

  7. Global temperature definition affects achievement of long-term climate goals

    Science.gov (United States)

    Richardson, Mark; Cowtan, Kevin; Millar, Richard J.

    2018-05-01

    The Paris Agreement on climate change aims to limit ‘global average temperature’ rise to ‘well below 2 °C’ but reported temperature depends on choices about how to blend air and water temperature data, handle changes in sea ice and account for regions with missing data. Here we use CMIP5 climate model simulations to estimate how these choices affect reported warming and carbon budgets consistent with the Paris Agreement. By the 2090s, under a low-emissions scenario, modelled global near-surface air temperature rise is 15% higher (5%–95% range 6%–21%) than that estimated by an approach similar to the HadCRUT4 observational record. The difference reduces to 8% with global data coverage, or 4% with additional removal of a bias associated with changing sea-ice cover. Comparison of observational datasets with different data sources or infilling techniques supports our model results regarding incomplete coverage. From high-emission simulations, we find that a HadCRUT4 like definition means higher carbon budgets and later exceedance of temperature thresholds, relative to global near-surface air temperature. 2 °C warming is delayed by seven years on average, to 2048 (2035–2060), and CO2 emissions budget for a >50% chance of <2 °C warming increases by 67 GtC (246 GtCO2).

  8. Climate change and global warming potentials

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    Climate change and the global budgets of the two main energy consumption related greenhouse gases, CO 2 and CH 4 , are discussed. The global warming potential (GWP) of the non-CO 2 greenhouse gases is defined and the large range of GWPs of CH 4 in the literature is discussed. GWPs are expected to play an important role in energy policies and negotiations concerning lowering greenhouse gas emissions. (author). 20 refs, 4 figs, 4 tabs

  9. FLEXIBLE BUDGET OF SPORT COMPETITIONS

    Directory of Open Access Journals (Sweden)

    Dragan Vukasović

    2009-11-01

    Full Text Available Manager of sport competition has right to decide and also to take responsibility for costs, income and financial results. From economic point of wiev flexible budget and planning cost calculations is top management base for analyzing success level of sport competition. Flexible budget is made before sport competition with few output level, where one is always from static plan-master plan. At the end of competition when we have results, we make report of plan executing and we also analyzing plan variances. Results of comparation between achieved and planning level of static budget can be acceptable if achieved level is approximate to budget level or if we analyzing results from gross or net income. Flexible budget become very important in case of world eco- nomic crises

  10. The impact of cloud inhomogeneities on the Earth radiation budget: the 14 October 1989 I.C.E. convective cloud case study

    Directory of Open Access Journals (Sweden)

    F. Parol

    1994-01-01

    Full Text Available Through their multiple interactions with radiation, clouds have an important impact on the climate. Nonetheless, the simulation of clouds in climate models is still coarse. The present evolution of modeling tends to a more realistic representation of the liquid water content; thus the problem of its subgrid scale distribution is crucial. For a convective cloud field observed during ICE 89, Landsat TM data (resolution: 30m have been analyzed in order to quantify the respective influences of both the horizontal distribution of liquid water content and cloud shape on the Earth radiation budget. The cloud field was found to be rather well-represented by a stochastic distribution of hemi-ellipsoidal clouds whose horizontal aspect ratio is close to 2 and whose vertical aspect ratio decreases as the cloud cell area increases. For that particula