WorldWideScience

Sample records for global radial structures

  1. Investigating the radial structure of axisymmetric fluctuations in the TCV tokamak with local and global gyrokinetic GENE simulations

    Merlo, G.; Brunner, S.; Huang, Z.; Coda, S.; Görler, T.; Villard, L.; Bañón Navarro, A.; Dominski, J.; Fontana, M.; Jenko, F.; Porte, L.; Told, D.

    2018-03-01

    Axisymmetric (n = 0) density fluctuations measured in the TCV tokamak are observed to possess a frequency f 0 which is either varying (radially dispersive oscillations) or a constant over a large fraction of the plasma minor radius (radially global oscillations) as reported in a companion paper (Z Huang et al, this issue). Given that f 0 scales with the sound speed and given the poloidal structure of density fluctuations, these oscillations were interpreted as Geodesic Acoustic Modes, even though f 0 is in fact smaller than the local linear GAM frequency {f}{GAM}. In this work we employ the Eulerian gyrokinetic code GENE to simulate TCV relevant conditions and investigate the nature and properties of these oscillations, in particular their relation to the safety factor profile. Local and global simulations are carried out and a good qualitative agreement is observed between experiments and simulations. By varying also the plasma temperature and density profiles, we conclude that a variation of the edge safety factor alone is not sufficient to induce a transition from global to radially inhomogeneous oscillations, as was initially suggested by experimental results. This transition appears instead to be the combined result of variations in the different plasma profiles, collisionality and finite machine size effects. Simulations also show that radially global GAM-like oscillations can be observed in all fluxes and fluctuation fields, suggesting that they are the result of a complex nonlinear process involving also finite toroidal mode numbers and not just linear global GAM eigenmodes.

  2. Global 3D radiation-hydrodynamics models of AGB stars. Effects of convection and radial pulsations on atmospheric structures

    Freytag, B.; Liljegren, S.; Höfner, S.

    2017-04-01

    Context. Observations of asymptotic giant branch (AGB) stars with increasing spatial resolution reveal new layers of complexity of atmospheric processes on a variety of scales. Aims: To analyze the physical mechanisms that cause asymmetries and surface structures in observed images, we use detailed 3D dynamical simulations of AGB stars; these simulations self-consistently describe convection and pulsations. Methods: We used the CO5BOLD radiation-hydrodynamics code to produce an exploratory grid of global "star-in-a-box" models of the outer convective envelope and the inner atmosphere of AGB stars to study convection, pulsations, and shock waves and their dependence on stellar and numerical parameters. Results: The model dynamics are governed by the interaction of long-lasting giant convection cells, short-lived surface granules, and strong, radial, fundamental-mode pulsations. Radial pulsations and shorter wavelength, traveling, acoustic waves induce shocks on various scales in the atmosphere. Convection, waves, and shocks all contribute to the dynamical pressure and, thus, to an increase of the stellar radius and to a levitation of material into layers where dust can form. Consequently, the resulting relation of pulsation period and stellar radius is shifted toward larger radii compared to that of non-linear 1D models. The dependence of pulsation period on luminosity agrees well with observed relations. The interaction of the pulsation mode with the non-stationary convective flow causes occasional amplitude changes and phase shifts. The regularity of the pulsations decreases with decreasing gravity as the relative size of convection cells increases. The model stars do not have a well-defined surface. Instead, the light is emitted from a very extended inhomogeneous atmosphere with a complex dynamic pattern of high-contrast features. Conclusions: Our models self-consistently describe convection, convectively generated acoustic noise, fundamental-mode radial

  3. Radial wave crystals: radially periodic structures from anisotropic metamaterials for engineering acoustic or electromagnetic waves.

    Torrent, Daniel; Sánchez-Dehesa, José

    2009-08-07

    We demonstrate that metamaterials with anisotropic properties can be used to develop a new class of periodic structures that has been named radial wave crystals. They can be sonic or photonic, and wave propagation along the radial directions is obtained through Bloch states like in usual sonic or photonic crystals. The band structure of the proposed structures can be tailored in a large amount to get exciting novel wave phenomena. For example, it is shown that acoustical cavities based on radial sonic crystals can be employed as passive devices for beam forming or dynamically orientated antennas for sound localization.

  4. Physical mechanism determining the radial electric field and its radial structure in a toroidal plasma

    Ida, Katsumi; Miura, Yukitoshi; Itoh, Sanae

    1994-10-01

    Radial structures of plasma rotation and radial electric field are experimentally studied in tokamak, heliotron/torsatron and stellarator devices. The perpendicular and parallel viscosities are measured. The parallel viscosity, which is dominant in determining the toroidal velocity in heliotron/torsatron and stellarator devices, is found to be neoclassical. On the other hand, the perpendicular viscosity, which is dominant in dictating the toroidal rotation in tokamaks, is anomalous. Even without external momentum input, both a plasma rotation and a radial electric field exist in tokamaks and heliotrons/torsatrons. The observed profiles of the radial electric field do not agree with the theoretical prediction based on neoclassical transport. This is mainly due to the existence of anomalous perpendicular viscosity. The shear of the radial electric field improves particle and heat transport both in bulk and edge plasma regimes of tokamaks. (author) 95 refs

  5. Global sensitivity analysis using a Gaussian Radial Basis Function metamodel

    Wu, Zeping; Wang, Donghui; Okolo N, Patrick; Hu, Fan; Zhang, Weihua

    2016-01-01

    Sensitivity analysis plays an important role in exploring the actual impact of adjustable parameters on response variables. Amongst the wide range of documented studies on sensitivity measures and analysis, Sobol' indices have received greater portion of attention due to the fact that they can provide accurate information for most models. In this paper, a novel analytical expression to compute the Sobol' indices is derived by introducing a method which uses the Gaussian Radial Basis Function to build metamodels of computationally expensive computer codes. Performance of the proposed method is validated against various analytical functions and also a structural simulation scenario. Results demonstrate that the proposed method is an efficient approach, requiring a computational cost of one to two orders of magnitude less when compared to the traditional Quasi Monte Carlo-based evaluation of Sobol' indices. - Highlights: • RBF based sensitivity analysis method is proposed. • Sobol' decomposition of Gaussian RBF metamodel is obtained. • Sobol' indices of Gaussian RBF metamodel are derived based on the decomposition. • The efficiency of proposed method is validated by some numerical examples.

  6. Radially global δf computation of neoclassical phenomena in a tokamak pedestal

    Landreman, Matt; Parra, Felix I; Catto, Peter J; Ernst, Darin R; Pusztai, Istvan

    2014-01-01

    Conventional radially-local neoclassical calculations become inadequate if the radial gradient scale lengths of the H-mode pedestal become as small as the poloidal ion gyroradius. Here, we describe a radially global δf continuum code that generalizes neoclassical calculations to allow for stronger gradients. As with conventional neoclassical calculations, the formulation is time-independent and requires only the solution of a single sparse linear system. We demonstrate precise agreement with an asymptotic analytic solution of the radially global kinetic equation in the appropriate limits of aspect ratio and collisionality. This agreement depends crucially on accurate treatment of finite orbit width effects. (paper)

  7. radial

    JOHN WILLIAM BRANCH

    2007-01-01

    Full Text Available La creación de modelos de objetos reales es una tarea compleja para la cual se ha visto que el uso de técnicas tradicionales de modelamiento tiene restricciones. Para resolver algunos de estos problemas, los sensores de rango basados en láser se usan con frecuencia para muestrear la superficie de un objeto desde varios puntos de vista, lo que resulta en un conjunto de imágenes de rango que son registradas e integradas en un modelo final triangulado. En la práctica, debido a las propiedades reflectivas de la superficie, las oclusiones, y limitaciones de acceso, ciertas áreas de la superficie del objeto usualmente no son muestreadas, dejando huecos que pueden crear efectos indeseables en el modelo integrado. En este trabajo, presentamos un nuevo algoritmo para el llenado de huecos a partir de modelos triangulados. El algoritmo comienza localizando la frontera de las regiones donde están los huecos. Un hueco consiste de un camino cerrado de bordes de los triángulos en la frontera que tienen al menos un borde que no es compartido con ningún otro triangulo. El borde del hueco es entonces adaptado mediante un B-Spline donde la variación promedio de la torsión del la aproximación del B-spline es calculada. Utilizando un simple umbral de la variación promedio a lo largo del borde, se puede clasificar automáticamente, entre huecos reales o generados por intervención humana. Siguiendo este proceso de clasificación, se usa entonces una versión automatizada del interpolador de funciones de base radial para llenar el interior del hueco usando los bordes vecinos.

  8. Radial mode structure of curvature-driven instabilities in EBT

    Spong, D.A.

    1983-01-01

    Viewgraphs describe the theoretical treatment of the radial mode structure of plasma instabilities in the Elmo Bumpy Torus. The calculation retains nonlocal structure of the modes, connects inner and outer ring regions together, uses a self-consistent finite β, includes the relativistic effects for the hot electron ring, and examines a wide range of parameters

  9. Investigations of radial electric field and global circulation layer in limiter tokamaks

    Zagorski, R.; Gerhauser, H.; Lehnen, M.; Loarer, T.

    2002-01-01

    An updated version of the 2D multifluid code TECXY is used to study the radial electric field structure and the appearance of a global circulation layer (GCL) inside the separatrix of the limiter tokamaks TEXTOR-94 and Tore-Supra-CIEL. The dependence of the driving forces on device geometry, limiter position, magnetic field orientation, impurity content and other parameters is investigated. The centrifugal force in the vicinity of the limiter head always determines the direction of the poloidal velocity in the GCL. There is good agreement with experimentally measured profiles of the poloidal velocity at the TEXTOR low field side. (orig.)

  10. Radial Structure Scaffolds Convolution Patterns of Developing Cerebral Cortex

    Mir Jalil Razavi

    2017-08-01

    Full Text Available Commonly-preserved radial convolution is a prominent characteristic of the mammalian cerebral cortex. Endeavors from multiple disciplines have been devoted for decades to explore the causes for this enigmatic structure. However, the underlying mechanisms that lead to consistent cortical convolution patterns still remain poorly understood. In this work, inspired by prior studies, we propose and evaluate a plausible theory that radial convolution during the early development of the brain is sculptured by radial structures consisting of radial glial cells (RGCs and maturing axons. Specifically, the regionally heterogeneous development and distribution of RGCs controlled by Trnp1 regulate the convex and concave convolution patterns (gyri and sulci in the radial direction, while the interplay of RGCs' effects on convolution and axons regulates the convex (gyral convolution patterns. This theory is assessed by observations and measurements in literature from multiple disciplines such as neurobiology, genetics, biomechanics, etc., at multiple scales to date. Particularly, this theory is further validated by multimodal imaging data analysis and computational simulations in this study. We offer a versatile and descriptive study model that can provide reasonable explanations of observations, experiments, and simulations of the characteristic mammalian cortical folding.

  11. Interactions between Radial Electric Field, Transport and Structure in Helical Plasmas

    Ida, Katsumi and others

    2006-01-01

    Control of the radial electric field is considered to be important in helical plasmas, because the radial electric field and its shear are expected to reduce neoclassical and anomalous transport, respectively. Particle and heat transport, that determines the radial structure of density and electron profiles, sensitive to the structure of radial electric field. On the other hand, the radial electric field itself is determined by the plasma parameters. In general, the sign of the radial electric field is determined by the plasma collisionality, while the magnitude of the radial electric field is determined by the temperature and/or density gradients. Therefore the structure of radial electric field and temperature and density are strongly coupled through the particle and heat transport and formation mechanism of radial electric field. Interactions between radial electric field, transport and structure in helical plasmas is discussed based on the experiments on Large Helical Device

  12. New constraints on Earth’s radial conductivity structure

    Püthe, C.; Kuvshinov, A.; Olsen, Nils

    2014-01-01

    We present a new model of Earth’s radial (1-D) conductivity structure at depths between 10 km and the core-mantle boundary. It is based on CM5, the latest version in the Comprehensive Model series that has been derived using 13 years (September 2000 to September 2013) of magnetic data collected...... method. The Hessian matrix of the misfit function, which is derived analytically, is used to estimate confidence limits for the conductivity of each layer. The resulting conductivity-depth profile is compared to 1-D conductivity models of Earth’s mantle recovered in previous studies....

  13. A Novel Integrated Structure with a Radial Displacement Sensor and a Permanent Magnet Biased Radial Magnetic Bearing

    Jinji Sun

    2014-01-01

    Full Text Available In this paper, a novel integrated structure is proposed in order to reduce the axial length of the high speed of a magnetically suspended motor (HSMSM to ensure the maximum speed, which combines radial displacement sensor probes and the permanent magnet biased radial magnetic bearing in HSMSM. The sensor probes are integrated in the magnetic bearing, and the sensor preamplifiers are placed in the control system of the HSMSM, separate from the sensor probes. The proposed integrated structure can save space in HSMSMs, improve the working frequency, reduce the influence of temperature on the sensor circuit, and improve the stability of HSMSMs.

  14. A new model of Earth's radial conductivity structure derived from over 10 yr of satellite and observatory magnetic data

    Püthe, Christoph; Kuvshinov, Alexey; Khan, Amir

    2015-01-01

    We present a newmodel of the radial (1-D) conductivity structure of Earth's mantle. This model is derived frommore than 10 yr of magnetic measurements from the satellites ørsted, CHAMP, SAC-C and the Swarm trio as well as the global network of geomagnetic observatories. After removal of core...

  15. Global and radial variations in the efficiency of massive star formation among galaxies

    Allen, L.E.; Young, J.S.

    1990-01-01

    In order to determine the regions within galaxies which give rise to the most efficient star formation and to test the hypothesis that galaxies with high infrared luminosities per unit molecular mass are efficiently producing high mass stars, researchers have undertaken an H alpha imaging survey in galaxies whose CO distributions have been measured as part of the Five College Radio Astronomy Observatory (FCRAO) Extragalactic CO Survey. From these images researchers have derived global H alpha fluxes and distributions for comparison with far infrared radiation (FIR) fluxes and CO fluxes and distributions. Here, researchers present results on the global massive star formation efficiency (SFE = L sub H sub alpha/M(H2)) as a function of morphological type and environment, and on the radial distribution of the SFE within both peculiar and isolated galaxies. On the basis of comparison of the global L sub H sub alpha/M(H2) and L sub FIR/M(H2) for 111 galaxies, researchers conclude that environment rather than morphological type has the strongest effect on the global efficiency of massive star formation. Based on their study of a small sample, they find that the largest radial gradients are observed in the interacting/peculiar galaxies, indicating that environment affects the star formation efficiency within galaxies as well

  16. A global numerical solution of the radial Schroedinger equation by second-order perturbation theory

    Adam, G.

    1979-01-01

    A global numerical method, which uses second-order perturbation theory, is described for the solution of the radial Schroedinger equation. The perturbative numerical (PN) solution is derived in two stages: first, the original potential is approximated by a piecewise continuous parabolic function, and second, the resulting Schroedinger equation is solved on each integration step by second-order perturbation theory, starting with a step function reference approximation for the parabolic potential. We get a manageable PN algorithm, which shows an order of accuracy equal to six in the solution of the original Schroedinger equation, and is very stable against round off errors. (author)

  17. Radial super-resolution in digital holographic microscopy using structured illumination with circular symmetry

    Yin, Yujian; Su, Ping; Ma, Jianshe

    2018-01-01

    A method to improve the radial resolution using special structured light is proposed in the field of digital holographic microscopy (DHM). A specimen is illuminated with circular symmetrical structured light that makes the spectrum have radial movement, so that high frequency components of the specimen are moved into the passband of the receiver to overcome the diffraction limit. In the DHM imaging system, Computer Generated Hologram (CGH) technology is used to generate the required structured light grating. Then the grating is loaded into a spatial light modulator (SLM) to obtain specific structured illumination. After recording the hologram, digital reconstruction, for the microstructure of a binary optical element that needs to observe radial distribution, the radial resolution of the specimen is improved experimentally compare it with the result of one-dimensional sinusoidal structured light imaging. And a method of designing structured light is presented.

  18. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Sun Jinji; Fang Jiancheng

    2011-01-01

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  19. A novel structure of permanent-magnet-biased radial hybrid magnetic bearing

    Sun Jinji, E-mail: sunjinji@aspe.buaa.edu.c [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China); Fang Jiancheng [Key Laboratory of Fundamental Science for National Defense, Novel Inertial Instrument and Navigation System Technology, School of Instrument Science and Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, 100191 (China)

    2011-01-15

    The paper proposes a novel structure for a permanent-magnet-biased radial hybrid magnetic bearing. Based on the air gap between the rotor and stator of traditional radial hybrid magnetic bearings, a subsidiary air gap is first constructed between the permanent magnets and the inner magnetic parts. Radial magnetic bearing makes X and Y magnetic fields independent of each other with separate stator poles, and the subsidiary air gap makes control flux to a close loop. As a result, magnetic field coupling of the X and Y channels is decreased significantly by the radial hybrid magnetic bearing and makes it easier to design control systems. Then an external rotor structure is designed into the radial hybrid magnetic bearing. The working principle of the radial hybrid magnetic bearing and its mathematical model is discussed. Finally, a non-linear magnetic network method is proposed to analyze the radial hybrid magnetic bearing. Simulation results indicate that magnetic fields in the two channels of the proposed radial hybrid magnetic bearing decouple well from each other.

  20. Nonlocality of plasma fluctuations and transport in magnetically confined plasmas nonlocal plasma transport and radial structural formation

    Toi, Kazuo

    2002-01-01

    Experimental evidence and underlying physical processes of nonlocal characters and structural formation in magnetically confined toroidal plasmas are reviewed. Radial profiles of the plasmas exhibit characteristic structures, depending on the various confinement regimes. Profile stiffness subjected to some global constraint and rapid plasma responses to applied plasma perturbation result from nonlocal transport. Once the plasma is free from the constraint, the plasma state can be changed to a new state exhibiting various types of prominent structural formation such as an internal transport barrier. (author)

  1. Global structure of spacetimes

    Geroch, R.; Horowitz, G.T.

    1979-01-01

    An extended introduction is followed by a section entitled: 'what is the topology of our universe', in which such topics are considered as the underlying manifold, the qualitative behaviour of the light-cones, causal structure, and determinism. In the next section - 'is our universe singular', the famous singularity theorems are discussed. Finally, under 'how noticeably singular is our universe', the issue of cosmic censorship is discussed, i.e. that of whether or not one expects in certain circumstances that surviving observers will be able to detect singular behaviour in spacetime. (U.K.)

  2. The structural and phase state formed in construction titanium alloy by radial forging

    Shlyakhova, Galina V.; Danilov, Vladimir I.; Orlova, Dina V.; Zuev, Lev B. [Institute of Strength Physics and Materials Science SB RAS, Tomsk (Russian Federation); Zavodchikov, Aleksandr S. [Perm State Technical University, Perm (Russian Federation)

    2011-07-01

    The feasibility of rod manufacture from construction titanium alloy using radial forging on a high duty machine SXK16 was investigated. The investigations were carried on for titanium rod samples using the methods of metallography, electron transmission microscophy and X-ray analysis. The results obtained are described herein. It is found that radial forging results in the formation of homogeneous fine-grained structure.Using radial forging process, high-quality items are produced. As-worked material has submicrocrystalline globular structure and an optimal α:β phase ratio. Besides, the technology is more cost-effective relative to conventional flow charts. Key words: forging, titanium alloy, fine-grain structure, substructure, pore size.

  3. Revisiting Earth's radial seismic structure using a Bayesian neural network approach

    de Wit, R.W.L.

    2015-01-01

    The gross features of seismic observations can be explained by relatively simple spherically symmetric (1-D) models of wave velocities, density and attenuation, which describe the Earth's average(radial) structure. 1-D earth models are often used as a reference for studies on Earth's thermo-chemical

  4. Structure of the radial electric field and toroidal/poloidal flow in high temperature toroidal plasma

    Ida, Katsumi

    2001-01-01

    The structure of the radial electric field and toroidal/poloidal flow is discussed for the high temperature plasma in toroidal systems, tokamak and Heliotron type magnetic configurations. The spontaneous toroidal and poloidal flows are observed in the plasma with improved confinement. The radial electric field is mainly determined by the poloidal flow, because the contribution of toroidal flow to the radial electric field is small. The jump of radial electric field and poloidal flow are commonly observed near the plasma edge in the so-called high confinement mode (H-mode) plasmas in tokamaks and electron root plasma in stellarators including Heliotrons. In general the toroidal flow is driven by the momentum input from neutral beam injected toroidally. There is toroidal flow not driven by neutral beam in the plasma and it will be more significant in the plasma with large electric field. The direction of these spontaneous toroidal flows depends on the symmetry of magnetic field. The spontaneous toroidal flow driven by the ion temperature gradient is in the direction to increase the negative radial electric field in tokamak. The direction of spontaneous toroidal flow in Heliotron plasmas is opposite to that in tokamak plasma because of the helicity of symmetry of the magnetic field configuration. (author)

  5. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    Nematzadeh, Fardin; Akbarpour, Mohammad Reza; Kokabi, Amir Hosein; Sadrnezhaad, Seyed Khatiboleslam

    2009-01-01

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.

  6. A theory of self-organized zonal flow with fine radial structure in tokamak

    Zhang, Y. Z.; Liu, Z. Y.; Xie, T.; Mahajan, S. M.; Liu, J.

    2017-12-01

    The (low frequency) zonal flow-ion temperature gradient (ITG) wave system, constructed on Braginskii's fluid model in tokamak, is shown to be a reaction-diffusion-advection system; it is derived by making use of a multiple spatiotemporal scale technique and two-dimensional (2D) ballooning theory. For real regular group velocities of ITG waves, two distinct temporal processes, sharing a very similar meso-scale radial structure, are identified in the nonlinear self-organized stage. The stationary and quasi-stationary structures reflect a particular feature of the poloidal group velocity. The equation set posed to be an initial value problem is numerically solved for JET low mode parameters; the results are presented in several figures and two movies that show the spatiotemporal evolutions as well as the spectrum analysis—frequency-wave number spectrum, auto power spectrum, and Lissajous diagram. This approach reveals that the zonal flow in tokamak is a local traveling wave. For the quasi-stationary process, the cycle of ITG wave energy is composed of two consecutive phases in distinct spatiotemporal structures: a pair of Cavitons growing and breathing slowly without long range propagation, followed by a sudden decay into many Instantons that carry negative wave energy rapidly into infinity. A spotlight onto the motion of Instantons for a given radial position reproduces a Blob-Hole temporal structure; the occurrence as well as the rapid decay of Caviton into Instantons is triggered by zero-crossing of radial group velocity. A sample of the radial profile of zonal flow contributed from 31 nonlinearly coupled rational surfaces near plasma edge is found to be very similar to that observed in the JET Ohmic phase [J. C. Hillesheim et al., Phys. Rev. Lett. 116, 165002 (2016)]. The theory predicts an interior asymmetric dipole structure associated with the zonal flow that is driven by the gradients of ITG turbulence intensity.

  7. Structure, Kinematics and Origin of Radial Faults: 3D Seismic Observations from the Santos Basin, offshore Brazil

    Coleman, Alexander; Jackson, Christopher A.-L.

    2017-04-01

    Salt stock growth is typically accompanied by the development of geometrically and kinematically complex fault networks in the surrounding country rock. The most common networks comprise radial faults; these are characterised by low displacement (stock into flanking strata. Radial faults are commonly observed in an arched, unpierced roof developed above a rising salt stock; in these cases, the faults are typically well-imaged seismically and likely form due to outer-arc extension during overburden stretching. Radial faults are also found at deeper structural levels, in strata flanking the diapir stem; in these cases, they are typically less well-imaged, thus their structure, kinematics and origin are less well understood. Furthermore, understanding the growth of radial faults may provide insights into hydrocarbon reservoir compartmentalisation and the evolution of neighbouring salt stocks. Here, we use high-quality 3D seismic reflection data from the Santos Basin, offshore Brazil to determine the structure and kinematics, and infer the likely origin of exceptionally well-imaged radial faults overlying and flanking a mature salt stock. Furthermore, we compare the geometric (e.g. throw, geometry, spacing, distribution etc.) and kinematic (e.g. timing of formation and duration of activity) characteristics of radial faults at both structural levels, allowing us to infer their temporal relationship and likely origins. We show that radial faults regardless of their structural level typically have aspect ratios of c. 1.8 - 2, are laterally-restricted in the vicinity of the salt, and have lengths of indices of c. 1, with low throw gradients of 0.05 - 0.1 at the upper tip indicate that radial faults were likely blind. Throws range from 5 - 80 ms, with throw-maxima within 1 - 2 radii of the salt diapir. However, we note that the position of the throw maxima is not at the same level for all radial faults. We propose that radial faults nucleate and initially grow as blind

  8. Phase diagram of structure of radial electric field in helical plasmas

    Toda, S.; Itoh, K.

    2002-01-01

    A set of transport equations in toroidal helical plasmas is analyzed, including the bifurcation of the radial electric field. Multiple solutions of E r for the ambipolar condition induces domains of different electric polarities. A structure of the domain interface is analyzed and a phase diagram is obtained in the space of the external control parameters. The region of the reduction of the anomalous transport is identified. (author)

  9. Dominance of free wall radial motion in global right ventricular function of heart transplant recipients.

    Lakatos, Bálint Károly; Tokodi, Márton; Assabiny, Alexandra; Tősér, Zoltán; Kosztin, Annamária; Doronina, Alexandra; Rácz, Kristóf; Koritsánszky, Kinga Bianka; Berzsenyi, Viktor; Németh, Endre; Sax, Balázs; Kovács, Attila; Merkely, Béla

    2018-03-01

    Assessment of right ventricular (RV) function using conventional echocardiography might be inadequate as the radial motion of the RV free wall is often neglected. Our aim was to quantify the longitudinal and the radial components of RV function using three-dimensional (3D) echocardiography in heart transplant (HTX) recipients. Fifty-one HTX patients in stable cardiovascular condition without history of relevant rejection episode or chronic allograft vasculopathy and 30 healthy volunteers were enrolled. RV end-diastolic (EDV) volume and total ejection fraction (TEF) were measured by 3D echocardiography. Furthermore, we quantified longitudinal (LEF) and radial ejection fraction (REF) by decomposing the motion of the RV using the ReVISION method. RV EDV did not differ between groups (HTX vs control; 96 ± 27 vs 97 ± 2 mL). In HTX patients, TEF was lower, however, tricuspid annular plane systolic excursion (TAPSE) decreased to a greater extent (TEF: 47 ± 7 vs 54 ± 4% [-13%], TAPSE: 11 ± 5 vs 21 ± 4 mm [-48%], P < .0001). In HTX patients, REF/TEF ratio was significantly higher compared to LEF/TEF (REF/TEF vs LEF/TEF: 0.58 ± 0.10 vs 0.27 ± 0.08, P < .0001), while in controls the REF/TEF and LEF/TEF ratio was similar (0.45 ± 0.07 vs 0.47 ± 0.07). Current results confirm the superiority of radial motion in determining RV function in HTX patients. Parameters incorporating the radial motion are recommended to assess RV function in HTX recipients. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Herrmann-Priesnitz, Benjamín; Torres, Diego A.; Calderón-Muñoz, Williams R.; Salas, Eduardo A.; Vargas-Uscategui, Alejandro; Duarte-Mermoud, Manuel A.

    2016-01-01

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U_o. Results show that boundary layers merge for Re > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U_o. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  11. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Calderón-Muñoz, Williams R. [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); Energy Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Salas, Eduardo A. [CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Vargas-Uscategui, Alejandro [Department of Mechanical Engineering, Universidad de Chile, Beauchef 851, Santiago (Chile); CSIRO-Chile International Centre of Excellence, Apoquindo 2827, Floor 12, Santiago (Chile); Duarte-Mermoud, Manuel A. [Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago (Chile); Department of Electrical Engineering, Universidad de Chile, Av. Tupper 2007, Santiago (Chile)

    2016-03-15

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of the boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.

  12. Global well-posedness for the radial defocusing cubic wave equation on $R^3$ and for rough data

    Tristan Roy

    2007-11-01

    Full Text Available We prove global well-posedness for the radial defocusing cubic wave equation $$displaylines{ partial_{tt} u - Delta u = -u^{3} cr u(0,x = u_{0}(x cr partial_{t} u(0,x = u_{1}(x }$$ with data $(u_0, u_1 in H^{s} imes H^{s-1}$, $1 > s >7/10$. The proof relies upon a Morawetz-Strauss-type inequality that allows us to control the growth of an almost conserved quantity.

  13. Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs

    Zhiyi Song

    2012-10-01

    Full Text Available The radial-radial flux compound-structure permanent-magnet synchronous machine (CS-PMSM, integrated by two concentrically arranged permanent-magnet electric machines, is an electromagnetic power-splitting device for hybrid electric vehicles (HEVs. As the two electric machines share a rotor as structural and magnetic common part, their magnetic paths are coupled, leading to possible mutual magnetic-field interference and complex control. In this paper, a design method to ensure magnetic decoupling with minimum yoke thickness of the common rotor is investigated. A prototype machine is designed based on the proposed method, and the feasibility of magnetic decoupling and independent control is validated by experimental tests of mutual influence. The CS-PMSM is tested by a designed driving cycle, and functions to act as starter motor, generator and to help the internal combustion engine (ICE operate at optimum efficiency are validated.

  14. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure.

    Wang, Chunhui; Chen, Xiong; Wang, Bin; Huang, Ming; Wang, Bo; Jiang, Yi; Ruoff, Rodney S

    2018-05-14

    We report the assembly of graphene oxide (G-O) building blocks into a vertical and radially aligned structure by a bidirectional freeze-casting approach. The crystallization of water to ice assembles the G-O sheets into a structure, a G-O aerogel whose local structure mimics turbine blades. The centimeter-scale radiating structure in this aerogel has many channels whose width increases with distance from the center. This was achieved by controlling the formation of the ice crystals in the aqueous G-O dispersion that grew radially in the shape of lamellae during freezing. Because the shape and size of ice crystals is influenced by the G-O sheets, different additives (ethanol, cellulose nanofibers, and chitosan) that can form hydrogen bonds with H 2 O were tested and found to affect the interaction between the G-O and formation of ice crystals, producing ice crystals with different shapes. A G-O/chitosan aerogel with a spiral pattern was also obtained. After chemical reduction of G-O, our aerogel exhibited elasticity and absorption capacity superior to that of graphene aerogels with "traditional" pore structures made by conventional freeze-casting. This methodology can be expanded to many other configurations and should widen the use of G-O (and reduced G-O and "graphenic") aerogels.

  15. Global tree network for computing structures enabling global processing operations

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  16. Voltage-controlled radial wrinkles of a trumpet-like dielectric elastomer structure

    Mao, Guoyong; Wu, Lei; Fu, Yimou; Liu, Junjie; Qu, Shaoxing

    2018-03-01

    Wrinkle is usually considered as one failure mode of membrane structure. However, it can also be harnessed in developing smart devices such as dry adhesion tape, diffraction grating, smart window, etc. In this paper, we present a method to generate voltage-controlled radial wrinkles, which are fast response and reversible, in a stretched circular dielectric elastomer (DE) membrane with boundary fixed. In the experiment, we bond a circular plate on the center of the circular membrane and then pull the DE membrane perpendicular to itself via the plate. The stretched DE membrane is a trumpet-like structure. When the stretched DE membrane is subjected to a certain voltage, wrinkles nucleate from the center of the DE membrane and propagate to the boundary as the voltage increases. We adopt a theoretical framework to analyze the nucleation of the wrinkles. A simple wavelength expression is achieved, which is only related to the geometry and the stretch of the DE membrane. Results show that the theory agrees well with the experiment. This work may help the future design of DE actuators in avoiding mechanical instability and provide a new method to generate controllable radial DE wrinkles.

  17. Structuring Successful Global Virtual Teams

    2015-01-01

    e.g., email) to a lot (e.g., video conferencing ). Finally, global teams can vary in their level of synchronicity, or the degree to which a team’s... electronic communication. Thus, we view these types of teams as analogous enough that they can be discussed together under the overarching term of “global...emergence. Balthazard, Waldman, and Warren (2009) found that communication media that mim- ics face-to-face interactions (e.g., video conferencing

  18. The Effect of Isometric Massage on Global Grip Strength after Conservative Treatment of Distal Radial Fractures. Pilot Study.

    Ratajczak, Karina; Płomiński, Janusz

    2015-01-01

    The most common fracture of the distal end of the radius is Colles' fracture. Treatment modalities available for use in hand rehabilitation after injury include massage. The aim of this study was to evaluate the effect of isometric massage on the recovery of hand function in patients with Colles fractures. For this purpose, the strength of the finger flexors was assessed as an objective criterion for the evaluation of hand function. The study involved 40 patients, randomly divided into Group A of 20 patients and Group B of 20 patients. All patients received physical therapy and exercised individually with a physiotherapist. Isometric massage was additionally used in Group A. Global grip strength was assessed using a pneumatic force meter on the first and last day of therapy. Statistical analysis was performed using STATISTICA. Statistical significance was defined as a P value of less than 0.05. In both groups, global grip strength increased significantly after the therapy. There was no statistically significant difference between the groups. The men and women in both groups equally improved grip strength. A statistically significant difference was demonstrated between younger and older patients, with younger patients achieving greater gains in global grip strength in both groups. The incorporation of isometric massage in the rehabilitation plan of patients after a distal radial fracture did not significantly contribute to faster recovery of hand function or improve their quality of life.

  19. Radial structure of curvature-driven instabilities in a hot-electron plasma

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1984-01-01

    A nonlocal analysis of curvature-driven instabilities for a hot-electron ring interacting with a warm background plasma has been made. Four different instability modes characteristic of hot-electron plasmas have been examined: the high-frequency hot-electron interchange (at frequencies larger than the ion-cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot-electron interchange (at frequencies below the ion-cyclotron frequency). The decoupling condition between core and hot-electron plasmas has also been examined, and its influence on the background and hot-electron interchange stability boundaries has been studied. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment. The calculations given here indicate the necessity of having core plasma outside the ring to prevent the destabilizing wave resonance of the precessional mode with a cold plasma

  20. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    Bai Xuening, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  1. Do the radial head prosthesis components fit with the anatomical structures of the proximal radioulnar joint?

    Wegmann, Kilian; Hain, Moritz K; Ries, Christian; Neiss, Wolfram F; Müller, Lars P; Burkhart, Klaus J

    2015-09-01

    The fitting accuracy of radial head components has been investigated in the capitulo-radial joint, and reduced contact after prosthetic replacement of the radial head has been observed. The kinematics of the proximal radioulnar joint (PRUJ) are affected by radial head arthroplasty as well, but have not yet been investigated in this regard. The elbow joints of 60 upper extremities of formalin-fixed body donors were disarticulated to obtain a good view of the PRUJ. Each specimen was mounted on the examining table and radial head position in the native PRUJ was assessed in neutral position, full pronation, and full supination. Measurements were repeated after implantation of mono- and bi-polar prostheses. Analysis of the distribution of the joint contacts in the compartments showed significant differences after radial head replacement. In comparison to the native joint, after bipolar and monopolar radial head replacement, the physiological shift of the proximal radius was altered. The physiological shift of the joint contact of the radial head from anterior to posterior during forearm rotation that was found in the native joint in our cadaver model was not observed after prosthetic replacement. With higher conformity and physiological kinematic of radial head prostheses, possibly lower shear forces and lower contact pressures would be generated. The tested radial head prostheses do not replicate the physiological kinematics of the radial head. Further development in the prosthesis design has to be made. The meticulous reconstruction of the annular ligament seems to be of importance to increase joint contact.

  2. A METHOD FOR DETERMINING THE RADIALLY-AVERAGED EFFECTIVE IMPACT AREA FOR AN AIRCRAFT CRASH INTO A STRUCTURE

    Walker, William C. [ORNL

    2018-02-01

    This report presents a methodology for deriving the equations which can be used for calculating the radially-averaged effective impact area for a theoretical aircraft crash into a structure. Conventionally, a maximum effective impact area has been used in calculating the probability of an aircraft crash into a structure. Whereas the maximum effective impact area is specific to a single direction of flight, the radially-averaged effective impact area takes into consideration the real life random nature of the direction of flight with respect to a structure. Since the radially-averaged effective impact area is less than the maximum effective impact area, the resulting calculated probability of an aircraft crash into a structure is reduced.

  3. Gap eigenmode of radially localized helicon waves in a periodic structure

    Chang, L; Hole, M J; Breizman, B N

    2013-01-01

    An ElectroMagnetic Solver (Chen et al 2006 Phys. Plasmas 13 123507) is employed to model a spectral gap and a gap eigenmode in a periodic structure in the whistler frequency range. A radially localized helicon mode (Breizman and Arefiev 2000 Phys. Rev. Lett. 84 3863) is considered. We demonstrate that the computed gap frequency and gap width agree well with a theoretical analysis, and find a discrete eigenmode inside the gap by introducing a defect to the system's periodicity. The axial wavelength of the gap eigenmode is close to twice the system's periodicity, which is consistent with Bragg's law. Such an eigenmode could be excited by energetic electrons, similar to the excitation of toroidal Alfvén eigenmodes by energetic ions in tokamaks. Experimental identification of this mode is conceivable on the large plasma device (Gekelman et al 1991 Rev. Sci. Instrum. 62 2875). (paper)

  4. Galaxy structure from multiple tracers - III. Radial variations in M87's IMF

    Oldham, Lindsay; Auger, Matthew

    2018-03-01

    We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.

  5. Global nuclear-structure calculations

    Moeller, P.; Nix, J.R.

    1990-01-01

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε 2 and ε 4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential

  6. Global model structures for ∗-modules

    Böhme, Benjamin

    2018-01-01

    We extend Schwede's work on the unstable global homotopy theory of orthogonal spaces and L-spaces to the category of ∗-modules (i.e., unstable S-modules). We prove a theorem which transports model structures and their properties from L-spaces to ∗-modules and show that the resulting global model...... structure for ∗-modules is monoidally Quillen equivalent to that of orthogonal spaces. As a consequence, there are induced Quillen equivalences between the associated model categories of monoids, which identify equivalent models for the global homotopy theory of A∞-spaces....

  7. Radial dependence of solar energetic particles derived from the 15 March 2013 solar energetic particle event and global MHD simulation

    Wu, Chin-Chun, E-mail: chin-chun.wu@nrl.navy.mil; Plunkett, Simon, E-mail: simon.plunkett@nrl.navy.mil [Naval Research Laboratory, Washington, DC 20375 (United States); Liou, Kan, E-mail: kan.liou@jhuapl.edu [Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland (United States); Wu, S. T., E-mail: wus@uah.edu [CSPAR, University of Alabama, Huntsville, Alabama (United States); Dryer, Murray, E-mail: murraydryer@msn.com [Emeritus, NOAA, Boulder, CO (United States)

    2016-03-25

    We study an unusual solar energetic particle (SEP) event that was associated with the coronal mass ejection (CME) on March 15, 2013. Enhancements of the SEP fluxes were first detected by the ACE spacecraft at 14:00 UT, ∼7 hours after the onset of the CME (07:00 UT), and the SEP’s peak intensities were recorded ∼36 hours after the onset of the CME. Our recent study showed that the CME-driven shock Mach number, based on a global three-dimensional (3-D) magnetohydrodynamic (MHD) simulation, is well correlated with the time-intensity of 10-30 MeV and 30-80 MeV protons. Here we focus on the radial dependence (r{sup −α}) of {sup 4}He (3.43-41.2 MeV/n) and O (7.30-89.8 MeV/n) energetic particles from ACE/SIS. It is found that the scaling factor (α) ranges between 2 and 4 for most of the energy channels. We also found that the correlation coefficients tend to increase with SEP energies.

  8. Higher‐order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    Zha, Hao [Department of Engineering Physics, Tsinghua University, Beijing CN-100086 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); The European Organization for Nuclear Research, Geneva CH-1211 (Switzerland); Shi, Jiaru, E-mail: shij@mail.tsinghua.edu.cn [Department of Engineering Physics, Tsinghua University, Beijing CN-100086 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China); The European Organization for Nuclear Research, Geneva CH-1211 (Switzerland); Wu, Xiaowei; Chen, Huaibi [Department of Engineering Physics, Tsinghua University, Beijing CN-100086 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing (China)

    2016-04-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  9. Higher‐order mode absorption measurement of X-band choke-mode cavities in a radial line structure

    Zha, Hao; Shi, Jiaru; Wu, Xiaowei; Chen, Huaibi

    2016-01-01

    An experiment is presented to study the higher-order mode (HOM) suppression of X-band choke-mode structures with a vector network analyzer (VNA). Specific radial line disks were built to test the reflection from the corresponding damping load and different choke geometries. The mismatch between the radial lines and the VNA was calibrated through a special multi-short-load calibration method. The measured reflections of different choke geometries showed good agreement with the theoretical calculations and verified the HOM absorption feature of each geometric design.

  10. TWO DIMENTIONAL STATIC MAGNETIC ANALYSIS OF RADIAL MAGNETIC BEARING SYSTEMS WITH DIFFERENT STRUCTURES

    Yusuf ÖNER

    2005-03-01

    Full Text Available The friction loss of electrical machines is an important problem as like in other rotary machines. In addition, the bearings, where the friction losses occur, also require lubrication at periodic intervals and need to be maintained. In this study, to minimize the friction loss of electrical motor, two dimentional static magnetic analysis of radial magnetic bearing systems with different structures are performed and compared with each other; also, magnetic bearing system with four-pole is realized and applied to an induction motor. In simulation, the forces applied to the rotor of induction motor from designed magnetic bearing system are calculated in a computer by using FEMM software package. In application, when comparing designed magnetic bearing system with mechanical bearings up to the revolution of 350 rpm, it was observed that the loss of no-load operating condition of induction motor is decreased about 15 % with magnetic bearing system. In addition to this, mechanical noisy of the motor is also decreased considerably.

  11. A ceramic radial insulation structure for a relativistic electron beam vacuum diode.

    Xun, Tao; Yang, Hanwu; Zhang, Jiande; Liu, Zhenxiang; Wang, Yong; Zhao, Yansong

    2008-06-01

    For one kind of a high current diode composed of a small disk-type alumina ceramic insulator water/vacuum interface, the insulation structure was designed and experimentally investigated. According to the theories of vacuum flashover and the rules for radial insulators, a "cone-column" anode outline and the cathode shielding rings were adopted. The electrostatic field along the insulator surface was obtained by finite element analysis simulating. By adjusting the outline of the anode and reshaping the shielding rings, the electric fields were well distributed and the field around the cathode triple junction was effectively controlled. Area weighted statistical method was applied to estimate the surface breakdown field. In addition, the operating process of an accelerator based on a spiral pulse forming line (PFL) was simulated through the PSPICE software to get the waveform of charging and diode voltage. The high voltage test was carried out on a water dielectric spiral PFL accelerator with long pulse duration, and results show that the diode can work stably in 420 kV, 200 ns conditions. The experimental results agree with the theoretical and simulated results.

  12. High spatial sampling global mode structure measurements via multichannel reflectometry in NSTX

    Crocker, N A; Peebles, W A; Kubota, S; Zhang, J [Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095-7099 (United States); Bell, R E; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Menard, J E; Podesta, M [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Sabbagh, S A [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Tritz, K [Johns Hopkins University, Baltimore, MD 21218 (United States); Yuh, H [Nova Photonics, Princeton, NJ 08540 (United States)

    2011-10-15

    Global modes-including kinks and tearing modes (f <{approx} 50 kHz), toroidicity-induced Alfven eigenmodes (TAE; f {approx} 50-250 kHz) and global and compressional Alfven eigenmodes (GAE and CAE; f >{approx} 400 kHz)-play critical roles in many aspects of plasma performance. Their investigation on NSTX is aided by an array of fixed-frequency quadrature reflectometers used to determine their radial density perturbation structure. The array has been recently upgraded to 16 channels spanning 30-75 GHz (n{sub cutoff} = (1.1-6.9) x 10{sup 19} m{sup -3} in O-mode), improving spatial sampling and access to the core of H-mode plasmas. The upgrade has yielded significant new results that advance the understanding of global modes in NSTX. The GAE and CAE structures have been measured for the first time in the core of an NSTX high-power (6 MW) beam-heated H-mode plasma. The CAE structure is strongly core-localized, which has important implications for electron thermal transport. The TAE structure has been measured with greatly improved spatial sampling, and measurements of the TAE phase, the first in NSTX, show strong radial variation near the midplane, indicating radial propagation caused by non-ideal MHD effects. Finally, the tearing mode structure measurements provide unambiguous evidence of coupling to an external kink.

  13. Global Electricity Trade Network: Structures and Implications

    Ji, Ling; Jia, Xiaoping; Chiu, Anthony S. F.; Xu, Ming

    2016-01-01

    Nations increasingly trade electricity, and understanding the structure of the global power grid can help identify nations that are critical for its reliability. This study examines the global grid as a network with nations as nodes and international electricity trade as links. We analyze the structure of the global electricity trade network and find that the network consists of four sub-networks, and provide a detailed analysis of the largest network, Eurasia. Russia, China, Ukraine, and Azerbaijan have high betweenness measures in the Eurasian sub-network, indicating the degrees of centrality of the positions they hold. The analysis reveals that the Eurasian sub-network consists of seven communities based on the network structure. We find that the communities do not fully align with geographical proximity, and that the present international electricity trade in the Eurasian sub-network causes an approximately 11 million additional tons of CO2 emissions. PMID:27504825

  14. The global structure of knowledge network

    Angelopoulos, Spyros; Lomi, Alessandro

    2017-01-01

    In this paper, we treat patent citations as knowledge networks connecting pieces of formalized knowledge and people, and focus on how ideas are connected, rather than how they are protected. We focus on the global structural properties of formalized knowledge network, and more specifically on the

  15. Global Cities, Ownership Structures, and Location Choice

    Geisler Asmussen, Christian; Nielsen, Bo Bernhard; Goerzen, Anthony

    2018-01-01

    Purpose: In this paper, we develop a more nuanced view of subnational location choice with a particular focus on global cities. We argue that multinational firms may use global cities to establish bridgeheads—subsidiaries at intermediate levels of the ownership chain that enable further internati......Purpose: In this paper, we develop a more nuanced view of subnational location choice with a particular focus on global cities. We argue that multinational firms may use global cities to establish bridgeheads—subsidiaries at intermediate levels of the ownership chain that enable further...... of these investments are associated with micro-location choices in a host country. Findings: We find that there are substantial differences between the types, roles, activities, and geographic origins of the firms locating in different areas, and in the ownership structures spanning them. We propose that this has...... managerial and theoretical implications which may be understood based on an organizing framework describing a tradeoff between the pursuit of global connectivity and local density on the one hand, and cost control on the other. Research limitations/implications: Empirical work on foreign location choices...

  16. The electronic structure of radial p-n junction silicon nanowires

    Chiou, Shan-Haw; Grossman, Jeffrey

    2007-03-01

    Silicon nanowires with radial p-n junctions have recently been suggested for photovoltaic applications because incident light can be absorbed along the entire length of the wire, while photogenerated carriers only need to diffuse a maximum of one radius to reach the p-n junction. If the differential of the potential is larger than the binding energy of the electron-hole pair and has a range larger than the Bohr radius of electron-hole pair, then the charge separation mechanism will be similar to traditional silicon solar cells. However, in the small-diameter limit, where quantum confinement effects are prominent, both the exciton binding energy and the potential drop will increase, and the p-n junction itself may have a dramatically different character. We present ab initio calculations based on the generalized gradient approximation (GGA) of silicon nanowires with 2-3 nm diameter in the [111] growth direction. A radial p-n junction was formed by symmetrically doping boron and phosphorous at the same vertical level along the axis of the nanowire. The competition between the slope and character of the radial electronic potential and the exciton binding energy will presented in the context of a charge separation mechanism.

  17. Global and Regional Gravity Field Determination from GOCE Kinematic Orbit by Means of Spherical Radial Basis Functions

    Bucha, B.; Bezděk, Aleš; Sebera, Josef; Janak, J.

    2015-01-01

    Roč. 36, č. 6 (2015), s. 773-801 ISSN 0169-3298 R&D Projects: GA ČR GA13-36843S Grant - others:SAV(SK) VEGA 1/0954/15 Institutional support: RVO:67985815 Keywords : spherical radial basis functions * spherical harmonics * geopotential Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 3.622, year: 2015

  18. Global plastic models for computerized structural analysis

    Roche, R.L.; Hoffmann, A.

    1977-01-01

    In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text

  19. Dynamical study of the radial structure of the fluctuations measured by a reciprocating Langmuir probe in Tore Supra

    Devynck, P.; Antar, G.; Wang, G.; Garbet, X.; Gunn, J.; Pascal, J.Y.

    1999-01-01

    The fluctuations in the Scrape Off Layer (S.O.L.) of Tore Supra are studied with a movable Langmuir probe biased to ion saturation current. The probe system consists of three probes separated poloidally (0.68 cm between two nearby probes). The probe has no magnetic connection to the mid plane limiter on which the plasma is leaning, but the radial profile of the ion saturation current fluctuations displays a dip at the limiter position. At the same location the ion saturation current displays a dip at the limiter position. At the same location the ion saturation current displays an inflexion point. A correlation analysis technique is developed to study the radial behaviour of the fluctuations. It reveals that this dip is associated with a reduction of the poloidal velocity of the fluctuations with no sign reversal. In the dip the mean poloidal correlation length of the fluctuations is also reduced. These observations are consistent with a reduction of the fluctuations by a shear of the radial electric field created at the limiter surface. The autocorrelation time is also calculated. It increases slightly in the dip and is found to be sensitive to both the convection time and lifetime of the turbulent structures, because these quantities are of the same order. (authors)

  20. Comment on "A note on generalized radial mesh generation for plasma electronic structure"

    Pain, J.-Ch.

    2011-12-01

    In a recent note, B.G. Wilson and V. Sonnad [1] proposed a very useful closed form expression for the efficient generation of analytic log-linear radial meshes. The central point of the note is an implicit equation for the parameter h, involving Lambert's function W[x]. The authors mention that they are unaware of any direct proof of this equation (they obtained it by re-summing the Taylor expansion of h[α] using high-order coefficients obtained by analytic differentiation of the implicit definition using symbolic manipulation). In the present comment, we propose a direct proof of that equation.

  1. Multiscale global identification of porous structures

    Hatłas, Marcin; Beluch, Witold

    2018-01-01

    The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.

  2. Global structure of the inflationary Universe

    Goncharov, A.S.; Linde, A.D.

    1987-01-01

    The global structure of the Universe is analyzed within the framework of the haotic inflation scenario. It is shown that under certain conditions inflation of the Universe in accordance with this scenario has no the end and may not have the beginning. Consequently, a large part of the physical volume of the Universe should always be in a state of inflation at a density of the order of the Planck density. During inflation the Universe separates into regions of exponentially large sizes. Within these regions all possible types of metastable vacuum states and all possible types of compactification, consistent with the presence of inflation are realized. The investigation is performed by employing the diffusion equation for a fluctuating scalar field in the inflationary Universe

  3. Chaos control and generalized projective synchronization of heavy symmetric chaotic gyroscope systems via Gaussian radial basis adaptive variable structure control

    Farivar, Faezeh; Aliyari Shoorehdeli, Mahdi; Nekoui, Mohammad Ali; Teshnehlab, Mohammad

    2012-01-01

    Highlights: ► A systematic procedure for GPS of unknown heavy chaotic gyroscope systems. ► Proposed methods are based on Lyapunov stability theory. ► Without calculating Lyapunov exponents and Eigen values of the Jacobian matrix. ► Capable to extend for a variety of chaotic systems. ► Useful for practical applications in the future. - Abstract: This paper proposes the chaos control and the generalized projective synchronization methods for heavy symmetric gyroscope systems via Gaussian radial basis adaptive variable structure control. Because of the nonlinear terms of the gyroscope system, the system exhibits chaotic motions. Occasionally, the extreme sensitivity to initial states in a system operating in chaotic mode can be very destructive to the system because of unpredictable behavior. In order to improve the performance of a dynamic system or avoid the chaotic phenomena, it is necessary to control a chaotic system with a periodic motion beneficial for working with a particular condition. As chaotic signals are usually broadband and noise like, synchronized chaotic systems can be used as cipher generators for secure communication. This paper presents chaos synchronization of two identical chaotic motions of symmetric gyroscopes. In this paper, the switching surfaces are adopted to ensure the stability of the error dynamics in variable structure control. Using the neural variable structure control technique, control laws are established which guarantees the chaos control and the generalized projective synchronization of unknown gyroscope systems. In the neural variable structure control, Gaussian radial basis functions are utilized to on-line estimate the system dynamic functions. Also, the adaptation laws of the on-line estimator are derived in the sense of Lyapunov function. Thus, the unknown gyro systems can be guaranteed to be asymptotically stable. Also, the proposed method can achieve the control objectives. Numerical simulations are presented to

  4. Multi objective Flower Pollination Algorithm for solving capacitor placement in radial distribution system using data structure load flow analysis

    Tamilselvan V.

    2016-06-01

    Full Text Available The radial distribution system is a rugged system, it is also the most commonly used system, which suffers by loss and low voltage at the end bus. This loss can be reduced by the use of a capacitor in the system, which injects reactive current and also improves the voltage magnitude in the buses. The real power loss in the distribution line is the I2R loss which depends on the current and resistance. The connection of the capacitor in the bus reduces the reactive current and losses. The loss reduction is equal to the increase in generation, necessary for the electric power provided by firms. For consumers, the quality of power supply depends on the voltage magnitude level, which is also considered and hence the objective of the problem becomes the multi objective of loss minimization and the minimization of voltage deviation. In this paper, the optimal location and size of the capacitor is found using a new computational intelligent algorithm called Flower Pollination Algorithm (FPA. To calculate the power flow and losses in the system, novel data structure load flow is introduced. In this, each bus is considered as a node with bus associated data. Links between the nodes are distribution lines and their own resistance and reactance. To validate the developed FPA solutions standard test cases, IEEE 33 and IEEE 69 radial distribution systems are considered.

  5. Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands.

    Simard, Sonia; Giovannelli, Alessio; Treydte, Kerstin; Traversi, Maria Laura; King, Gregory M; Frank, David; Fonti, Patrick

    2013-09-01

    The presence of soluble carbohydrates in the cambial zone, either from sugars recently produced during photosynthesis or from starch remobilized from storage organs, is necessary for radial tree growth. However, considerable uncertainties on carbohydrate dynamics and the consequences on tree productivity exist. This study aims to better understand the variation in different carbon pools at intra-annual resolution by quantifying how cambial zone sugar and starch concentrations fluctuate over the season and in relation to cambial phenology. A comparison between two physiologically different species growing at the same site, i.e., the evergreen Picea abies Karst. and the deciduous Larix decidua Mill., and between L. decidua from two contrasting elevations, is presented to identify mechanisms of growth limitation. Results indicate that the annual cycle of sugar concentration within the cambial zone is coupled to the process of wood formation. The highest sugar concentration is observed when the number of cells in secondary wall formation and lignification stages is at a maximum, subsequent to most radial growth. Starch disappears in winter, while other freeze-resistant non-structural carbohydrates (NSCs) increase. Slight differences in NSC concentration between species are consistent with the differing climate sensitivity of the evergreen and deciduous species investigated. The general absence of differences between elevations suggests that the cambial activity of trees growing at the treeline was not limited by the availability of carbohydrates at the cambial zone but instead by environmental controls on the growing season duration.

  6. Global plastic models for computerized structural analysis

    Roche, R.; Hoffmann, A.

    1977-01-01

    Two different global models are used in the CEASEMT system for structural analysis, one for the shells analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses choosed are the membrane forces Nsub(ij) and bending (including torsion) moments Msub(ij). There is only one yield condition for a normal (to the middle surface) and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is: bending moments, torsional moments, Hoop stress and tension stress. There is only a set of stresses for a cross section and non integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic fonction of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield fonctions used. Some examples of applications in structural analysis are added to the text [fr

  7. Nature of the many-particle potential in the monatomic liquid state: Radial and angular structure

    Clements, B.E.; Wallace, D.C.

    1999-01-01

    The atomic configurational order of random, symmetric, and crystalline states of sodium is investigated using molecular-dynamics simulations. Pair distribution functions are calculated for these states. Consistent with the liquid- and random-state energetics, we find that, by cooling, the liquid configurations evolve continuously to random-state structures. For sodium, the random pair distribution function has a split second peak characteristic of many amorphous materials and has the first subpeak exceeding the second subpeak. Experiments have shown this to be the case for amorphous Ni, Co, Cr, Fe, and Mn. A universal pair distribution function is identified for all random structures, as was hypothesized by liquid-dynamics theory. The peak widths of the random pair distribution function are considerably broader, even at very low temperatures, than those of the bcc and symmetric structures. No universal pair distribution function exists for symmetric structures. For low-temperature random, symmetric, and crystalline structures we determine average Voronoi coordination numbers, angular distributions between neighboring atomic triplets, and the number of Voronoi edges per face. Without exception the random and symmetric structures show very different trends for each of these properties. The universal nature of the random structures is also apparent in each property exhibited in the Voronoi polyhedra, unlike for the symmetric structures. Angles between neighboring Voronoi triplets common to random close-packing structures are favored by the random structures whereas those hinting at microcrystalline order are found for the symmetric structures. The distribution of Voronoi coordination numbers for both random and symmetric structures are peaked at 14 neighbors, but while the symmetric structures are essentially all 14, the random structures have nearly as many 13 and 15 neighbor polyhedra. The number of edges per face also shows a stark difference between the random and

  8. Measuring the Total-Factor Carbon Emission Performance of Industrial Land Use in China Based on the Global Directional Distance Function and Non-Radial Luenberger Productivity Index

    Wei Wang

    2016-04-01

    Full Text Available Industry is a major contributor to carbon emissions in China, and industrial land is an important input to industrial production. Therefore, a detailed analysis of the carbon emission performance of industrial land use is necessary for making reasonable carbon reduction policies that promote the sustainable use of industrial land. This paper aims to analyze the dynamic changes in the total-factor carbon emission performance of industrial land use (TCPIL in China by applying a global directional distance function (DDF and non-radial Luenberger productivity index. The empirical results show that the eastern region enjoys better TCPIL than the central and western regions, but the regional gaps in TCPIL are narrowing. The growth in NLCPILs (non-radial Luenberger carbon emission performance of industrial land use in the eastern and central regions is mainly driven by technological progress, whereas efficiency improvements contribute more to the growth of NLCPIL in the western region. The provinces in the eastern region have the most innovative and environmentally-friendly production technologies. The results of the analysis of the influencing factors show implications for improving the NLCPIL, including more investment in industrial research and development (R&D, the implementation of carbon emission reduction policies, reduction in the use of fossil energy, especially coal, in the process of industrial production, actively learning about foreign advanced technology, properly solving the problem of surplus labor in industry and the expansion of industrial development.

  9. Global transcriptomic profiling of aspen trees under elevated [CO2] to identify potential molecular mechanisms responsible for enhanced radial growth.

    Wei, Hairong; Gou, Jiqing; Yordanov, Yordan; Zhang, Huaxin; Thakur, Ramesh; Jones, Wendy; Burton, Andrew

    2013-03-01

    Aspen (Populus tremuloides) trees growing under elevated [CO(2)] at a free-air CO(2) enrichment (FACE) site produced significantly more biomass than control trees. We investigated the molecular mechanisms underlying the observed increase in biomass by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, and then performed a comparative study to identify significantly changed genes and pathways after 12 years exposure to elevated [CO(2)]. In leaves, elevated [CO(2)] enhanced expression of genes related to Calvin cycle activity and linked pathways. In the VCZ, the pathways involved in cell growth, cell division, hormone metabolism, and secondary cell wall formation were altered while auxin conjugation, ABA synthesis, and cytokinin glucosylation and degradation were inhibited. Similarly, the genes involved in hemicellulose and pectin biosynthesis were enhanced, but some genes that catalyze important steps in lignin biosynthesis pathway were inhibited. Evidence from systemic analysis supported the functioning of multiple molecular mechanisms that underpin the enhanced radial growth in response to elevated [CO(2)].

  10. Global Command and Control Management Structure

    1995-01-01

    This instruction establishes: responsibilities for the Joint Staff, Services, Defense agencies, combatant and functional unified commands, and other activities regarding management of Global Command and Control (GCC...

  11. Effective Energy Methods for Global Optimization for Biopolymer Structure Prediction

    Shalloway, David

    1998-01-01

    .... Its main strength is that it uncovers and exploits the intrinsic "hidden structures" of biopolymer energy landscapes to efficiently perform global minimization using a hierarchical search procedure...

  12. Wave structure in the radial film flow with a circular hydraulic jump

    Rao, A.; Arakeri, J. H.

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates.

  13. Wave structure in the radial film flow with a circular hydraulic jump

    Rao, A.; Arakeri, J.H. [Indian Inst. of Science, Bangalore (India). Dept. of Mechanical Engineering

    2001-11-01

    A circular hydraulic jump is commonly seen when a circular liquid jet impinges on a horizontal plate. Measurements of the film thickness, jump radius and the wave structure for various jet Reynolds numbers are reported. Film thickness measurements are made using an electrical contact method for regions both upstream and downstream of the jump over circular plates without a barrier at the edge. The jump radius and the separation bubble length are measured for various flow rates, plate edge conditions, and radii. Flow visualization using high-speed photography is used to study wave structure and transition. Waves on the jet amplify in the film region upstream of the jump. At high flow rates, the waves amplify enough to cause three-dimensional breakdown and what seems like transition to turbulence. This surface wave induced transition is different from the traditional route and can be exploited to enhance heat and mass transfer rates. (orig.)

  14. Radial dose distribution around an energetic heavy ion and an ion track structure model

    Furukawa, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Ohno, Shin-ichi; Namba, Hideki; Taguchi, Mitsumasa; Watanabe, Ritsuko

    1997-03-01

    Ionization currents produced in a small wall-less ionization chamber located at varying distance from the 200 MeV Ni{sup 12+} ion`path traversing Ar gas were measured and utilized to construct a track structure model. Using the LET value of 200 MeV Ni{sup 12+} and G(Fe{sup 3+}) in Fricke solutions (= 15.4) for fast electrons, we estimate G(Fe{sup 3+}) for this ion to be 5.0. (author)

  15. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Nguyen, Q H; Choi, S B; Lee, Y S; Han, M S

    2013-01-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption. (paper)

  16. Optimal design of high damping force engine mount featuring MR valve structure with both annular and radial flow paths

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-11-01

    This paper focuses on the optimal design of a compact and high damping force engine mount featuring magnetorheological fluid (MRF). In the mount, a MR valve structure with both annular and radial flows is employed to generate a high damping force. First, the configuration and working principle of the proposed MR mount is introduced. The MRF flows in the mount are then analyzed and the governing equations of the MR mount are derived based on the Bingham plastic behavior of the MRF. An optimal design of the MR mount is then performed to find the optimal structure of the MR valve to generate a maximum damping force with certain design constraints. In addition, the gap size of MRF ducts is empirically chosen considering the ‘lockup’ problem of the mount at high frequency. Performance of the optimized MR mount is then evaluated based on finite element analysis and discussions on performance results of the optimized MR mount are given. The effectiveness of the proposed MR engine mount is demonstrated via computer simulation by presenting damping force and power consumption.

  17. How social structure changes in Chinese global cities: Synthesizing globalization, migration and institutional factors in Beijing

    Shi, Q.; Liu, T.; Musterd, S.; Cao, G.

    2017-01-01

    Recent studies on the social structural change in global cities have recognized globalization, migration, and institutional factors as three main forces underlying this process. However, effects of these factors have rarely been synthetically examined and the social structure of emerging Chinese

  18. Effect of ion orbit loss on the structure in the H-mode tokamak edge pedestal profiles of rotation velocity, radial electric field, density, and temperature

    Stacey, Weston M.

    2013-01-01

    An investigation of the effect of ion orbit loss of thermal ions and the compensating return ion current directly on the radial ion flux flowing in the plasma, and thereby indirectly on the toroidal and poloidal rotation velocity profiles, the radial electric field, density, and temperature profiles, and the interpretation of diffusive and non-diffusive transport coefficients in the plasma edge, is described. Illustrative calculations for a high-confinement H-mode DIII-D [J. Luxon, Nucl. Fusion 42, 614 (2002)] plasma are presented and compared with experimental results. Taking into account, ion orbit loss of thermal ions and the compensating return ion current is found to have a significant effect on the structure of the radial profiles of these quantities in the edge plasma, indicating the necessity of taking ion orbit loss effects into account in interpreting or predicting these quantities

  19. Non Radial Oscillations in an Axisymmetric MHD Incompressible Fluid

    tribpo

    Abstract. It is well known from Helioseismology that the Sun exhibits oscillations on a global scale, most of which are non radial in nature. These oscillations help us to get a clear picture of the internal structure of the Sun as has been demonstrated by the theoretical and observational. (such as GONG) studies. In this study ...

  20. Globalization, financial capitalism, and corporate social responsibility: Structural tensions

    David Barbosa Ramírez; Christian Medina López; Myriam Vargas López

    2014-01-01

    Globalization and financial capitalism keep a synergy in a global context whose problems such as environmental degradation, social inequity, economic crises and corruption are intensified. Corporate Social Responsibility emerges as a mechanism that seeks to mitigate some of these problems, although its effectiveness and impact today are challenged. The system which globalization, financial capitalism and social responsibility are a part of, is currently facing a number of structural tensions ...

  1. Global structure of a polynomial autonomous system on the plane

    Nguyen Van Chau.

    1991-10-01

    This note is to study the global behaviour of a polynomial autonomous system on the plane with divergence non-positive outside a bounded set. It is shown that in some certain conditions the global structure of such system can be simple. The main result here can be seen as an improvement of the result of Olech and Meister concerning with the global asymptotical stable conjecture of Markur and Yamable and the Jacobian Conjecture. (author). 13 refs

  2. Reconstruction of Typhoon Structure Using 3-Dimensional Doppler Radar Radial Velocity Data with the Multigrid Analysis: A Case Study in an Idealized Simulation Context

    Hongli Fu

    2016-01-01

    Full Text Available Extracting multiple-scale observational information is critical for accurately reconstructing the structure of mesoscale circulation systems such as typhoon. The Space and Time Mesoscale Analysis System (STMAS with multigrid data assimilation developed in Earth System Research Laboratory (ESRL in National Oceanic and Atmospheric Administration (NOAA has addressed this issue. Previous studies have shown the capability of STMAS to retrieve multiscale information in 2-dimensional Doppler radar radial velocity observations. This study explores the application of 3-dimensional (3D Doppler radar radial velocities with STMAS for reconstructing a 3D typhoon structure. As for the first step, here, we use an idealized simulation framework. A two-scale simulated “typhoon” field is constructed and referred to as “truth,” from which randomly distributed conventional wind data and 3D Doppler radar radial wind data are generated. These data are used to reconstruct the synthetic 3D “typhoon” structure by the STMAS and the traditional 3D variational (3D-Var analysis. The degree by which the “truth” 3D typhoon structure is recovered is an assessment of the impact of the data type or analysis scheme being evaluated. We also examine the effects of weak constraint and strong constraint on STMAS analyses. Results show that while the STMAS is superior to the traditional 3D-Var for reconstructing the 3D typhoon structure, the strong constraint STMAS can produce better analyses on both horizontal and vertical velocities.

  3. Capital structure in the global shipping industry

    Paun Cristian

    2016-01-01

    Full Text Available The current economic crisis emerged from a particular financial crisis that started in the United States and being rapidly propagated all over the world. It did not affect a limited region or a limited economic sector. This crisis induced significant changes in all management areas, including financial management. This study is focused on financing strategies adopted by shipping companies during the crisis, analyzing relevant factors for a specific issue - the capital structure. The research methodology proposed for this analysis on relevant factors that could explain the capital structure of shipping is OLS regression applied on selected variables derived from the financial statements of the major shipping companies. The dependent variables reflecting capital structure are book value to total liabilities ratio and book value to total debt ratio. The explanatory variables are derived from the theory of capital structure. This study empirically illustrates the relevance of the capital structure theory for the studied economic sector and is a useful tool for the shipping companies, providing relevant information about the optimal capital structure adopted by shipping companies and about factors that influence this decision during a crisis period.

  4. Globalization, financial capitalism, and corporate social responsibility: Structural tensions

    David Barbosa Ramírez

    2014-12-01

    Full Text Available Globalization and financial capitalism keep a synergy in a global context whose problems such as environmental degradation, social inequity, economic crises and corruption are intensified. Corporate Social Responsibility emerges as a mechanism that seeks to mitigate some of these problems, although its effectiveness and impact today are challenged. The system which globalization, financial capitalism and social responsibility are a part of, is currently facing a number of structural tensions that contribute to the analysis, understanding and solving of the mentioned problems. This paper identifies and analyzes four of the aforementioned structural tensions.

  5. Globalization, structural change, and productivity growth:

    McMillan, Margaret; Rodrik, Dani

    2012-01-01

    Large gaps in labor productivity between the traditional and modern parts of the economy are a fundamental reality of developing societies. In this paper, we document these gaps and emphasize that labor flows from low-productivity activities to high-productivity activities are a key driver of development. Our results show that since 1990 structural change has been growth-reducing in both Africa and Latin America, with the most striking changes taking place in Latin America. The bulk of the di...

  6. Radial profiles of temperature and viscosity in the Earth's mantle inferred from the geoid and lateral seismic structure

    Cadek, O.; Berg, A.P. van den

    1998-01-01

    In the framework of dynamical modelling of the geoid, we have estimated basic features of the radial profile of temperature in the mantle. The applied parameterization of the geotherm directly characterizes thermal boundary layers and values of the thermal gradient in the upper and lower mantle.

  7. Detonation in supersonic radial outflow

    Kasimov, Aslan R.; Korneev, Svyatoslav

    2014-01-01

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations

  8. GLOBAL LINEARIZATION OF DIFFERENTIAL EQUATIONS WITH SPECIAL STRUCTURES

    2011-01-01

    This paper introduces the global linearization of the differential equations with special structures.The function in the differential equation is unbounded.We prove that the differential equation with unbounded function can be topologically linearlized if it has a special structure.

  9. Application of global elements to a reinforced concrete structure

    Morand, O.

    1994-01-01

    The dimensioning of nuclear facilities requires to take into account the possible risk of earthquakes. However such installations are generally complex structures with reinforced concrete poles, walls, beams and porches. In this study, a seismic analysis of such a structure is proposed. The use of the Castem 2000 global element code was attempted to dynamically simulate the behaviour of the reinforced concrete elements. However, no suitable modeling has been found for the storeys, the functioning of which being dominated by carrying walls. Concerning the porch-type storeys, monotonous static loads were simulated and provided information on the local and global behaviour of these structures. Thus, representative global elements could be realized for these structures. Results obtained are satisfactory for these storeys which essentially undergo a bending deformation. (J.S.)

  10. Structural Health Monitoring Based on Combined Structural Global and Local Frequencies

    Jilin Hou

    2014-01-01

    Full Text Available This paper presents a parameter estimation method for Structural Health Monitoring based on the combined measured structural global frequencies and structural local frequencies. First, the global test is experimented to obtain the low order modes which can reflect the global information of the structure. Secondly, the mass is added on the member of structure to increase the local dynamic characteristic and to make the member have local primary frequency, which belongs to structural local frequency and is sensitive to local parameters. Then the parameters of the structure can be optimized accurately using the combined structural global frequencies and structural local frequencies. The effectiveness and accuracy of the proposed method are verified by the experiment of a space truss.

  11. Radial nerve dysfunction

    Neuropathy - radial nerve; Radial nerve palsy; Mononeuropathy ... Damage to one nerve group, such as the radial nerve, is called mononeuropathy . Mononeuropathy means there is damage to a single nerve. Both ...

  12. Fluid-Thermal-Structural Coupled Analysis of a Radial Inflow Micro Gas Turbine Using Computational Fluid Dynamics and Computational Solid Mechanics

    Yonghui Xie

    2014-01-01

    Full Text Available A three-dimensional fluid-thermal-structural coupled analysis for a radial inflow micro gas turbine is conducted. First, a fluid-thermal coupled analysis of the flow and temperature fields of the nozzle passage and the blade passage is performed by using computational fluid dynamics (CFD. The flow and heat transfer characteristics of different sections are analyzed in detail. The thermal load and the aerodynamic load are then obtained from the temperature field and the pressure distribution. The stress distributions of the blade are finally studied by using computational solid mechanics (CSM considering three cases of loads: thermal load, aerodynamics load combined with centrifugal load, and all the three types of loads. The detailed parameters of the flow, temperature, and the stress are obtained and analyzed. The numerical results obtained provide a useful knowledge base for further exploration of radial gas turbine design.

  13. Global/local methods for probabilistic structural analysis

    Millwater, H. R.; Wu, Y.-T.

    1993-04-01

    A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.

  14. Structure and evolution of the global seafood trade network

    Gephart, Jessica A.; Pace, Michael L.

    2015-12-01

    The food production system is increasingly global and seafood is among the most highly traded commodities. Global trade can improve food security by providing access to a greater variety of foods, increasing wealth, buffering against local supply shocks, and benefit the environment by increasing overall use efficiency for some resources. However, global trade can also expose countries to external supply shocks and degrade the environment by increasing resource demand and loosening feedbacks between consumers and the impacts of food production. As a result, changes in global food trade can have important implications for both food security and the environmental impacts of production. Measurements of globalization and the environmental impacts of food production require data on both total trade and the origin and destination of traded goods (the network structure). While the global trade network of agricultural and livestock products has previously been studied, seafood products have been excluded. This study describes the structure and evolution of the global seafood trade network, including metrics quantifying the globalization of seafood, shifts in bilateral trade flows, changes in centrality and comparisons of seafood to agricultural and industrial trade networks. From 1994 to 2012 the number of countries trading in the network remained relatively constant, while the number of trade partnerships increased by over 65%. Over this same period, the total quantity of seafood traded increased by 58% and the value increased 85% in real terms. These changes signify the increasing globalization of seafood products. Additionally, the trade patterns in the network indicate: increased influence of Thailand and China, strengthened intraregional trade, and increased exports from South America and Asia. In addition to characterizing these network changes, this study identifies data needs in order to connect seafood trade with environmental impacts and food security outcomes.

  15. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Kovtyukh, Alexander S.

    2016-11-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2) periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ˜ 0.7 to ˜ 7 keV nT-1 at L ≈ 4.5-10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10-14μ-4.1L8.2 or DLL ≈ 1.3 × 105(EL)-4.1 or DLL ≈ 1.2 × 10-9fd-4.1, where fd is the drift frequency of the protons (in mHz), DLL is measured in s-1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  16. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    A. S. Kovtyukh

    2016-11-01

    Full Text Available From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α0 ≈ 90° during quiet and slightly disturbed (Kp ≤ 2 periods, I directly calculated the value DLL, which is a measure of the rate of radial transport (diffusion of trapped particles. This is done by successively solving the systems (chains of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun–Earth Explorer 1 (ISEE-1 for protons with an energy of 24 to 2081 keV at L = 2–10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2–5. Ionization losses of protons (Coulomb losses and charge exchange were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from  ∼ 0.7 to ∼ 7 keV nT−1 at L ≈ 4.5–10, the functions of DLL can be approximated by the following equivalent expressions: DLL ≈ 4.9 × 10−14μ−4.1L8.2 or DLL ≈ 1.3 × 105(EL−4.1 or DLL ≈ 1.2 × 10−9fd−4.1, where fd is the drift frequency of the protons (in mHz, DLL is measured in s−1, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms DLL increases, and the expressions for DLL obtained here can change completely.

  17. Deduction of the rates of radial diffusion of protons from the structure of the Earth's radiation belts

    Kovtyukh, Alexander S. [Moscow State Univ. (Russian Federation). Skobeltsyn Inst. of Nuclear Physics

    2016-07-01

    From the data on the fluxes and energy spectra of protons with an equatorial pitch angle of α{sub 0} ∼ 90 during quiet and slightly disturbed (Kp≤2) periods, I directly calculated the value D{sub LL}, which is a measure of the rate of radial transport (diffusion) of trapped particles. This is done by successively solving the systems (chains) of integrodifferential equations which describe the balance of radial transport/acceleration and ionization losses of low-energy protons of the stationary belt. This was done for the first time. For these calculations, I used data of International Sun-Earth Explorer 1 (ISEE-1) for protons with an energy of 24 to 2081 keV at L = 2-10 and data of Explorer-45 for protons with an energy of 78.6 to 872 keV at L = 2-5. Ionization losses of protons (Coulomb losses and charge exchange) were calculated on the basis of modern models of the plasmasphere and the exosphere. It is shown that for protons with μ from ∝0.7 to ∝7 keV nT{sup -1} at L ∼ 4.5-10, the functions of D{sub LL} can be approximated by the following equivalent expressions: D{sub LL} ∼ 4.9 x 10{sup -14}μ{sup -4.1}L{sup 8.2} or D{sub LL} ∼ 1.3 x 10{sup 5}(EL){sup -4.1} or D{sub LL} ∼ 1.2 x 10{sup -9}f{sub d}{sup -4.1}, where f{sub d} is the drift frequency of the protons (in mHz), D{sub LL} is measured in s{sup -1}, E is measured in kiloelectronvolt and μ is measured in kiloelectronvolt per nanotesla. These results are consistent with the radial diffusion of particles under the action of the electric field fluctuations (pulsations) in the range of Pc6 and contradict the mechanism of the radial diffusion of particles under the action of sudden impulses (SIs) of the magnetic field and also under the action of substorm impulses of the electric field. During magnetic storms D{sub LL} increases, and the expressions for D{sub LL} obtained here can change completely.

  18. Learning spatial orientation tasks in the radial-maze and structural variation in the hippocampus in inbred mice

    Schwegler Herbert

    2005-04-01

    Full Text Available Abstract In the present paper we review a series of experiments showing that heritable variations in the size of the hippocampal intra- and infrapyramidal mossy fiber (IIPMF terminal fields correlate with performance in spatial, but not non-spatial radial-maze tasks. Experimental manipulation of the size of this projection by means of early postnatal hyperthyroidism produces the effects predicted from the correlations obtained with inbred mouse strains. Although the physiological mechanisms behind these correlations are unknown as yet, several lines of evidence indicate that these correlations are causal.

  19. Capital Structure and Firm Performance During Global Financial Crisis

    Khodavandloo, Marzieh; Zakaria, Zukarnain; Nassir, Annuar Md.

    2017-01-01

    The relationship between capital structure and firm performance has been extensively investigated in the recent decades. However, only few studies investigate this relationship during financial crisis. Recent global financial crisis provides an opportunity to examine the effect of the crisis on the relationship between capital structure and firm performance. Therefore, this paper aims to investigate this relationship based on 45 listed companies involved in trading and services sector of the...

  20. Characterization and global analysis of a family of Poisson structures

    Hernandez-Bermejo, Benito

    2006-01-01

    A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given

  1. Characterization and global analysis of a family of Poisson structures

    Hernandez-Bermejo, Benito [Escuela Superior de Ciencias Experimentales y Tecnologia, Edificio Departamental II, Universidad Rey Juan Carlos, Calle Tulipan S/N, 28933 (Mostoles), Madrid (Spain)]. E-mail: benito.hernandez@urjc.es

    2006-06-26

    A three-dimensional family of solutions of the Jacobi equations for Poisson systems is characterized. In spite of its general form it is possible the explicit and global determination of its main features, such as the symplectic structure and the construction of the Darboux canonical form. Examples are given.

  2. Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(L-lactide) and ring banded supra-structures with radial periodic variation of thickness

    Huang, Shaoyong; Li, Hongfei; Wen, Huiying

    2014-01-01

    The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra-structure......The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra......-structures with radial periodic variation of thickness were obtained, which were induced by micro-evaporation of solvents and concentration gradient of PLLA. The ring banded morphologies consisted of multilayer lamellar crystals, which is a manifestation of alternating ridge and valley bands of periodic variation...

  3. Global models for studying the non linear behavior of structures. Application to reinforced concrete structures

    Millard, A.; Hoffmann, A.; Gauvain, J.; Nahas, G.

    1982-06-01

    The application of global methods to design reinforced concrete structures was investigated. The dynamic calculation of beam structures can be carried out very economically and with suitable accuracy by these methods. Moreover, one ideal application of global methods is design to failure, in order to estimate the safety margins of a given structure subject to accidental stresses, such as explosions, earthquakes, aircraft crash etc. In all cases, the global method combined with finite element programs serves to determine the failure automatically, and offers a good estimate of the failure load [fr

  4. TOWARDS CONSISTENT MAPPING OF URBAN STRUCTURESGLOBAL HUMAN SETTLEMENT LAYER AND LOCAL CLIMATE ZONES

    B. Bechtel

    2016-06-01

    Full Text Available Although more than half of the Earth’s population live in urban areas, we know remarkably little about most cities and what we do know is incomplete (lack of coverage and inconsistent (varying definitions and scale. While there have been considerable advances in the derivation of a global urban mask using satellite information, the complexity of urban structures, the heterogeneity of materials, and the multiplicity of spectral properties have impeded the derivation of universal urban structural types (UST. Further, the variety of UST typologies severely limits the comparability of such studies and although a common and generic description of urban structures is an essential requirement for the universal mapping of urban structures, such a standard scheme is still lacking. More recently, there have been two developments in urban mapping that have the potential for providing a standard approach: the Local Climate Zone (LCZ scheme (used by the World Urban Database and Access Portal Tools project and the Global Human Settlement Layer (GHSL methodology by JRC. In this paper the LCZ scheme and the GHSL LABEL product were compared for selected cities. The comparison between both datasets revealed a good agreement at city and coarse scale, while the contingency at pixel scale was limited due to the mismatch in grid resolution and typology. At a 1 km scale, built-up as well as open and compact classes showed very good agreement in terms of correlation coefficient and mean absolute distance, spatial pattern, and radial distribution as a function of distance from town, which indicates that a decomposition relevant for modelling applications could be derived from both. On the other hand, specific problems were found for both datasets, which are discussed along with their general advantages and disadvantages as a standard for UST classification in urban remote sensing.

  5. The scaling structure of the global road network.

    Strano, Emanuele; Giometto, Andrea; Shai, Saray; Bertuzzo, Enrico; Mucha, Peter J; Rinaldo, Andrea

    2017-10-01

    Because of increasing global urbanization and its immediate consequences, including changes in patterns of food demand, circulation and land use, the next century will witness a major increase in the extent of paved roads built worldwide. To model the effects of this increase, it is crucial to understand whether possible self-organized patterns are inherent in the global road network structure. Here, we use the largest updated database comprising all major roads on the Earth, together with global urban and cropland inventories, to suggest that road length distributions within croplands are indistinguishable from urban ones, once rescaled to account for the difference in mean road length. Such similarity extends to road length distributions within urban or agricultural domains of a given area. We find two distinct regimes for the scaling of the mean road length with the associated area, holding in general at small and at large values of the latter. In suitably large urban and cropland domains, we find that mean and total road lengths increase linearly with their domain area, differently from earlier suggestions. Scaling regimes suggest that simple and universal mechanisms regulate urban and cropland road expansion at the global scale. As such, our findings bear implications for global road infrastructure growth based on land-use change and for planning policies sustaining urban expansions.

  6. Structural analysis of a ship on global aspect using ANSYS

    Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana

    2017-12-01

    Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.

  7. Measuring capital market efficiency: Global and local correlations structure

    Krištoufek, Ladislav; Vošvrda, Miloslav

    2013-01-01

    Roč. 392, č. 1 (2013), s. 184-193 ISSN 0378-4371 R&D Projects: GA ČR(CZ) GBP402/12/G097 Institutional support: RVO:67985556 Keywords : Capital market efficiency * Fractal dimension * Long-range dependence * Short-range dependence Subject RIV: AH - Economics Impact factor: 1.722, year: 2013 http://library.utia.cas.cz/separaty/2012/E/kristoufek-measuring capital market efficiency global and local correlations structure.pdf

  8. Global search in photoelectron diffraction structure determination using genetic algorithms

    Viana, M L [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Muino, R Diez [Donostia International Physics Center DIPC, Paseo Manuel de Lardizabal 4, 20018 San Sebastian (Spain); Soares, E A [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil); Hove, M A Van [Department of Physics and Materials Science, City University of Hong Kong, Hong Kong (China); Carvalho, V E de [Departamento de Fisica, Icex, UFMG, Belo Horizonte, Minas Gerais (Brazil)

    2007-11-07

    Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 x 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.

  9. Global Analysis of RNA Secondary Structure in Two Metazoans

    Fan Li

    2012-01-01

    Full Text Available The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA] and unpaired (single-stranded RNA [ssRNA] components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.

  10. Structure and needs of global loss databases about natural disaster

    Steuer, Markus

    2010-05-01

    Global loss databases are used for trend analyses and statistics in scientific projects, studies for governmental and nongovernmental organizations and for the insurance and finance industry as well. At the moment three global data sets are established: EM-DAT (CRED), Sigma (Swiss Re) and NatCatSERVICE (Munich Re). Together with the Asian Disaster Reduction Center (ADRC) and United Nations Development Program (UNDP) started a collaborative initiative in 2007 with the aim to agreed on and implemented a common "Disaster Category Classification and Peril Terminology for Operational Databases". This common classification has been established through several technical meetings and working groups and represents a first and important step in the development of a standardized international classification of disasters and terminology of perils. This means concrete to set up a common hierarchy and terminology for all global and regional databases on natural disasters and establish a common and agreed definition of disaster groups, main types and sub-types of events. Also the theme of georeferencing, temporal aspects, methodology and sourcing were other issues that have been identified and will be discussed. The implementation of the new and defined structure for global loss databases is already set up for Munich Re NatCatSERVICE. In the following oral session we will show the structure of the global databases as defined and in addition to give more transparency of the data sets behind published statistics and analyses. The special focus will be on the catastrophe classification from a moderate loss event up to a great natural catastrophe, also to show the quality of sources and give inside information about the assessment of overall and insured losses. Keywords: disaster category classification, peril terminology, overall and insured losses, definition

  11. Repairing rabbit radial defects by combining bone marrow stroma stem cells with bone scaffold material comprising a core-cladding structure.

    Wu, H; Liu, G H; Wu, Q; Yu, B

    2015-10-05

    We prepared a bone scaffold material comprising a PLGA/β-TCP core and a Type I collagen cladding, and recombined it with bone marrow stroma stem cells (BMSCs) to evaluate its potential for use in bone tissue engineering by in vivo and in vitro experiments. PLGA/β-TCP without a cladding was used for comparison. The adherence rate of the BMSCs to the scaffold was determined by cell counting. Cell proliferation rate was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method. The osteogenic capability was evaluated by alkaline phosphatase activity. The scaffold materials were recombined with the BMSCs and implanted into a large segmental rabbit radial defect model to evaluate defect repair. Osteogenesis was assessed in the scaffold materials by histological and double immunofluorescence labeling, etc. The adherence number, proliferation number, and alkaline phosphatase expression of the cells on the bone scaffold material with core-cladding structure were significantly higher than the corresponding values in the PLGA/β-TCP composite scaffold material (P structure completely degraded at the bone defect site and bone formation was completed. The rabbit large sentimental radial defect was successfully repaired. The degradation and osteogenesis rates matched well. The bone scaffold with core-cladding structure exhibited better osteogenic activity and capacity to repair a large segmental bone defect compared to the PLGA/β-TCP composite scaffold. The bone scaffold with core-cladding structure has excellent physical properties and biocompatibility. It is an ideal scaffold material for bone tissue engineering.

  12. Stirling Engine With Radial Flow Heat Exchangers

    Vitale, N.; Yarr, George

    1993-01-01

    Conflict between thermodynamical and structural requirements resolved. In Stirling engine of new cylindrical configuration, regenerator and acceptor and rejector heat exchangers channel flow of working gas in radial direction. Isotherms in regenerator ideally concentric cylinders, and gradient of temperature across regenerator radial rather than axial. Acceptor and rejector heat exchangers located radially inward and outward of regenerator, respectively. Enables substantial increase in power of engine without corresponding increase in diameter of pressure vessel.

  13. Global structure of Deffayet (Dvali-Gabadadze-Porrati) cosmologies

    Lue, Arthur

    2003-01-01

    We detail the global structure of the five-dimensional bulk for the cosmological evolution of Dvali-Gabadadze-Porrati brane worlds. The picture articulated here provides a framework and intuition for understanding how metric perturbations leave (and possibly reenter) the brane universe. A bulk observer sees the brane world as a relativistically expanding bubble, viewed either from the interior (in the case of the Friedmann-Lemaitre-Robertson-Walker phase) or the exterior (the self-accelerating phase). Shortcuts through the bulk in the first phase can lead to an apparent brane causality violation and provide an opportunity for the evasion of the horizon problem found in conventional four-dimensional cosmologies. Features of the global geometry in the latter phase anticipate a depletion of power for linear metric perturbations on large scales

  14. On the causal structure between CO2 and global temperature

    Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San

    2016-01-01

    We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086

  15. Global structural optimizations of surface systems with a genetic algorithm

    Chuang, Feng-Chuan

    2005-01-01

    Global structural optimizations with a genetic algorithm were performed for atomic cluster and surface systems including aluminum atomic clusters, Si magic clusters on the Si(111) 7 x 7 surface, silicon high-index surfaces, and Ag-induced Si(111) reconstructions. First, the global structural optimizations of neutral aluminum clusters Al n (n up to 23) were performed using a genetic algorithm coupled with a tight-binding potential. Second, a genetic algorithm in combination with tight-binding and first-principles calculations were performed to study the structures of magic clusters on the Si(111) 7 x 7 surface. Extensive calculations show that the magic cluster observed in scanning tunneling microscopy (STM) experiments consist of eight Si atoms. Simulated STM images of the Si magic cluster exhibit a ring-like feature similar to STM experiments. Third, a genetic algorithm coupled with a highly optimized empirical potential were used to determine the lowest energy structure of high-index semiconductor surfaces. The lowest energy structures of Si(105) and Si(114) were determined successfully. The results of Si(105) and Si(114) are reported within the framework of highly optimized empirical potential and first-principles calculations. Finally, a genetic algorithm coupled with Si and Ag tight-binding potentials were used to search for Ag-induced Si(111) reconstructions at various Ag and Si coverages. The optimized structural models of √3 x √3, 3 x 1, and 5 x 2 phases were reported using first-principles calculations. A novel model is found to have lower surface energy than the proposed double-honeycomb chained (DHC) model both for Au/Si(111) 5 x 2 and Ag/Si(111) 5 x 2 systems

  16. Annual Variation and Global Structures of The DE3 Tide

    Ze-Yu, Chen; Da-Ren, Lu

    2008-01-01

    The SABER/TIMED temperatures taken in 2002–2006 are used to delineate the tidal signals in the middle and upper atmosphere. Then the Hough mode decomposition is applied with the DE3 tide, and the overall features of the seasonal variations and the complete global structures of the tide are observed. Investigation results show that the tide is most prominent at 110 km with the maximal amplitude of > 9K, and exhibits significant seasonal variation with its maximum amplitude always occurring in July every year. Results from the Hough mode decomposition reveal that the tide is composed primarily of two leading propagating Hough modes, i.e., the (−3,3) and the (−3,4) modes, thus is equatorially trapped. Estimation of the mean amplitude of the Hough modes show that the (−3,3) mode and (−3,4) mode exhibit maxima at 110km and 90 km, respectively. The (−3,3) mode plays a predominant role in shaping the global latitude-height structure of the tide, e.g., the vertical scale of > 50km at the equator, and the annual course. Significant influence of the (−3,4) mode is found below 90km, where the tide exhibits anti-symmetric structure about the equator; meanwhile the tide at northern tropical latitudes exhibits smaller vertical wavelength of about 30 km. (geophysics, astronomy, and astrophysics)

  17. Edge radial electric field structure in quiescent H-mode plasmas in the DIII-D tokamak

    Burrell, K H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); West, W P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Doyle, E J [University of California, Los Angeles, CA 90095-1597 (United States); Austin, M E [University of Texas at Austin, Austin, TX 78712 (United States); DeGrassie, J S [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Gohil, P [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Greenfield, C M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Groebner, R J [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Jayakumar, R [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); Kaplan, D H [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Lao, L L [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Leonard, A W [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Makowski, M A [Lawrence Livermore National Laboratory, Livermore, CA 94551-9900 (United States); McKee, G R [University of Wisconsin, Madison, WI 53706-1687 (United States); Solomon, W M [Princeton Plasma Physics Laboratory, Princeton, NJ 08543-0451 (United States); Thomas, D M [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States); Rhodes, T L [University of California, Los Angeles, CA 90095-1597 (United States); Wade, M R [Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Wang, G [University of California, Los Angeles, CA 90095-1597 (United States); Watkins, J G [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Zeng, L [University of California, Los Angeles, CA 90095-1597 (United States)

    2004-05-01

    H-mode operation is the choice for next step tokamak devices based on either conventional or advanced tokamak physics. This choice, however, comes at a significant cost for both the conventional and advanced tokamaks because of the effects of edge localized modes (ELMs). ELMs can produce significant erosion in the divertor and can affect the {beta} limit and reduced core transport regions needed for advanced tokamak operation. Experimental results from DIII-D over the past four years have demonstrated a new operating regime, the quiescent H-mode (QH-mode) regime, that solves these problems. QH-mode plasmas have now been run for over 4 s (>30 energy confinement times). Utilizing the steady-state nature of the QH-mode edge allows us to obtain unprecedented spatial resolution of the edge ion profiles and the edge radial electric field, E{sub r}, by sweeping the edge plasma slowly past the view points of the charge exchange spectroscopy system. We have investigated the effects of direct edge ion orbit loss on the creation and sustainment of the QH-mode. Direct loss of ions injected into the velocity-space loss cone at the plasma edge is not necessary for creation or sustainment of the QH-mode. The direct ion orbit loss has little effect on the edge E{sub r} well. The E{sub r} at the bottom of the well in these cases is about -100 kV m{sup -1} compared with -20 to -30 kV m{sup -1} in the standard H-mode. The well is about 1 cm wide, which is close to the diameter of the deuteron gyro-orbit. We also have investigated the effect of changing edge triangularity by changing the plasma shape from upwardly biased single null to magnetically balanced double null. We have now achieved the QH-mode in these double-null plasmas. The increased triangularity allows us to increase pedestal density in QH-mode plasmas by a factor of about 2.5 and overall pedestal pressure by a factor of 2. Pedestal {beta} and {nu}{sup *} values matching the values desired for ITER have been achieved. In

  18. Structural Design Feasibility Study for the Global Climate Experiment

    Lewin,K.F.; Nagy, J.

    2008-12-01

    Neon, Inc. is proposing to establish a Global Change Experiment (GCE) Facility to increase our understanding of how ecological systems differ in their vulnerability to changes in climate and other relevant global change drivers, as well as provide the mechanistic basis for forecasting ecological change in the future. The experimental design was initially envisioned to consist of two complementary components; (A) a multi-factor experiment manipulating CO{sub 2}, temperature and water availability and (B) a water balance experiment. As the design analysis and cost estimates progressed, it became clear that (1) the technical difficulties of obtaining tight temperature control and maintaining elevated atmospheric carbon dioxide levels within an enclosure were greater than had been expected and (2) the envisioned study would not fit into the expected budget envelope if this was done in a partially or completely enclosed structure. After discussions between NEON management, the GCE science team, and Keith Lewin, NEON, Inc. requested Keith Lewin to expand the scope of this design study to include open-field exposure systems. In order to develop the GCE design to the point where it can be presented within a proposal for funding, a feasibility study of climate manipulation structures must be conducted to determine design approaches and rough cost estimates, and to identify advantages and disadvantages of these approaches including the associated experimental artifacts. NEON, Inc requested this design study in order to develop concepts for the climate manipulation structures to support the NEON Global Climate Experiment. This study summarizes the design concepts considered for constructing and operating the GCE Facility and their associated construction, maintenance and operations costs. Comparisons and comments about experimental artifacts, construction challenges and operational uncertainties are provided to assist in selecting the final facility design. The overall goal

  19. Global population structure and demographic history of the grey seal

    Klimova, A.; Phillips, C. D.; Fietz, Katharina

    2014-01-01

    Although the grey seal Halichoerus grypus is one of the most familiar and intensively studied of all pinniped species, its global population structure remains to be elucidated. Little is also known about how the species as a whole may have historically responded to climate-driven changes in habitat...... a little over 10 000 years ago, consistent with the last proposed isolation of the Baltic Sea. Approximate Bayesian computation also identified genetic signals consistent with postglacial population expansion across much of the species range, suggesting that grey seals are highly responsive to changes...

  20. Fine structure of sprites and proposed global observations

    Mende, S.B; Frey, H.U.; Rairden, R.l.

    2002-01-01

    structures of columniform sprites (C sprites) consisted of slant directed, nearly vertically aligned columns of intense pinpoint like beads. The distance of the sprites from the observer was measured and the altitude and vertical spacing of the beads were estimated. The distribution of beads showed...... bore-sighted photometers. The imager will locate the sprites near the earth limb and make global synoptic measurements while the photometers will measure the spectral and temporal properties of sprites and other upper atmospheric luminous phenomena in a number of different wavelength regions...

  1. Detonation in supersonic radial outflow

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  2. The structure and infrastructure of the global nanotechnology literature

    Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G.Y.; Tolles, William M.

    2006-01-01

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office

  3. Global and local targeted immunization in networks with community structure

    Yan, Shu; Tang, Shaoting; Pei, Sen; Zheng, Zhiming; Fang, Wenyi

    2015-01-01

    Immunization plays an important role in the field of epidemic spreading in complex networks. In previous studies, targeted immunization has been proved to be an effective strategy. However, when extended to networks with community structure, it is unknown whether the superior strategy is to vaccinate the nodes who have the most connections in the entire network (global strategy), or those in the original community where epidemic starts to spread (local strategy). In this work, by using both analytic approaches and simulations, we observe that the answer depends on the closeness between communities. If communities are tied closely, the global strategy is superior to the local strategy. Otherwise, the local targeted immunization is advantageous. The existence of a transitional value of closeness implies that we should adopt different strategies. Furthermore, we extend our investigation from two-community networks to multi-community networks. We consider the mode of community connection and the location of community where epidemic starts to spread. Both simulation results and theoretical predictions show that local strategy is a better option for immunization in most cases. But if the epidemic begins from a core community, global strategy is superior in some cases. (paper)

  4. The structure and infrastructure of the global nanotechnology literature

    Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Stump, Jesse A. [Office of Naval Research (United States); Johnson, Dustin [Northrop Grumman TASC (United States); Murday, James S. [Naval Research Laboratory, Chemistry Division, Code 6100 (United States); Lau, Clifford G.Y. [Institute for Defense Analyses (United States); Tolles, William M

    2006-08-15

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office.

  5. Self-consistent radial sheath

    Hazeltine, R.D.

    1988-12-01

    The boundary layer arising in the radial vicinity of a tokamak limiter is examined, with special reference to the TEXT tokamak. It is shown that sheath structure depends upon the self-consistent effects of ion guiding-center orbit modification, as well as the radial variation of E /times/ B-induced toroidal rotation. Reasonable agreement with experiment is obtained from an idealized model which, however simplified, preserves such self-consistent effects. It is argued that the radial sheath, which occurs whenever confining magnetic field-lines lie in the plasma boundary surface, is an object of some intrinsic interest. It differs from the more familiar axial sheath because magnetized charges respond very differently to parallel and perpendicular electric fields. 11 refs., 1 fig

  6. Inferring global upper-mantle shear attenuation structure by waveform tomography using the spectral element method

    Karaoǧlu, Haydar; Romanowicz, Barbara

    2018-06-01

    We present a global upper-mantle shear wave attenuation model that is built through a hybrid full-waveform inversion algorithm applied to long-period waveforms, using the spectral element method for wavefield computations. Our inversion strategy is based on an iterative approach that involves the inversion for successive updates in the attenuation parameter (δ Q^{-1}_μ) and elastic parameters (isotropic velocity VS, and radial anisotropy parameter ξ) through a Gauss-Newton-type optimization scheme that employs envelope- and waveform-type misfit functionals for the two steps, respectively. We also include source and receiver terms in the inversion steps for attenuation structure. We conducted a total of eight iterations (six for attenuation and two for elastic structure), and one inversion for updates to source parameters. The starting model included the elastic part of the relatively high-resolution 3-D whole mantle seismic velocity model, SEMUCB-WM1, which served to account for elastic focusing effects. The data set is a subset of the three-component surface waveform data set, filtered between 400 and 60 s, that contributed to the construction of the whole-mantle tomographic model SEMUCB-WM1. We applied strict selection criteria to this data set for the attenuation iteration steps, and investigated the effect of attenuation crustal structure on the retrieved mantle attenuation structure. While a constant 1-D Qμ model with a constant value of 165 throughout the upper mantle was used as starting model for attenuation inversion, we were able to recover, in depth extent and strength, the high-attenuation zone present in the depth range 80-200 km. The final 3-D model, SEMUCB-UMQ, shows strong correlation with tectonic features down to 200-250 km depth, with low attenuation beneath the cratons, stable parts of continents and regions of old oceanic crust, and high attenuation along mid-ocean ridges and backarcs. Below 250 km, we observe strong attenuation in the

  7. Global structures of Alfven-ballooning modes in magnetospheric plasmas

    Vetoulis, G.; Chen, Liu.

    1994-03-01

    The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations

  8. Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive.

    Burley, Stephen K; Berman, Helen M; Kleywegt, Gerard J; Markley, John L; Nakamura, Haruki; Velankar, Sameer

    2017-01-01

    The Protein Data Bank (PDB)--the single global repository of experimentally determined 3D structures of biological macromolecules and their complexes--was established in 1971, becoming the first open-access digital resource in the biological sciences. The PDB archive currently houses ~130,000 entries (May 2017). It is managed by the Worldwide Protein Data Bank organization (wwPDB; wwpdb.org), which includes the RCSB Protein Data Bank (RCSB PDB; rcsb.org), the Protein Data Bank Japan (PDBj; pdbj.org), the Protein Data Bank in Europe (PDBe; pdbe.org), and BioMagResBank (BMRB; www.bmrb.wisc.edu). The four wwPDB partners operate a unified global software system that enforces community-agreed data standards and supports data Deposition, Biocuration, and Validation of ~11,000 new PDB entries annually (deposit.wwpdb.org). The RCSB PDB currently acts as the archive keeper, ensuring disaster recovery of PDB data and coordinating weekly updates. wwPDB partners disseminate the same archival data from multiple FTP sites, while operating complementary websites that provide their own views of PDB data with selected value-added information and links to related data resources. At present, the PDB archives experimental data, associated metadata, and 3D-atomic level structural models derived from three well-established methods: crystallography, nuclear magnetic resonance spectroscopy (NMR), and electron microscopy (3DEM). wwPDB partners are working closely with experts in related experimental areas (small-angle scattering, chemical cross-linking/mass spectrometry, Forster energy resonance transfer or FRET, etc.) to establish a federation of data resources that will support sustainable archiving and validation of 3D structural models and experimental data derived from integrative or hybrid methods.

  9. Diversity, structure and convergent evolution of the global sponge microbiome

    Thomas, Torsten; Moitinho-Silva, Lucas; Lurgi, Miguel; Björk, Johannes R.; Easson, Cole; Astudillo-García, Carmen; Olson, Julie B.; Erwin, Patrick M.; López-Legentil, Susanna; Luter, Heidi; Chaves-Fonnegra, Andia; Costa, Rodrigo; Schupp, Peter J.; Steindler, Laura; Erpenbeck, Dirk; Gilbert, Jack; Knight, Rob; Ackermann, Gail; Victor Lopez, Jose; Taylor, Michael W.; Thacker, Robert W.; Montoya, Jose M.; Hentschel, Ute; Webster, Nicole S.

    2016-01-01

    Sponges (phylum Porifera) are early-diverging metazoa renowned for establishing complex microbial symbioses. Here we present a global Porifera microbiome survey, set out to establish the ecological and evolutionary drivers of these host–microbe interactions. We show that sponges are a reservoir of exceptional microbial diversity and major contributors to the total microbial diversity of the world's oceans. Little commonality in species composition or structure is evident across the phylum, although symbiont communities are characterized by specialists and generalists rather than opportunists. Core sponge microbiomes are stable and characterized by generalist symbionts exhibiting amensal and/or commensal interactions. Symbionts that are phylogenetically unique to sponges do not disproportionally contribute to the core microbiome, and host phylogeny impacts complexity rather than composition of the symbiont community. Our findings support a model of independent assembly and evolution in symbiont communities across the entire host phylum, with convergent forces resulting in analogous community organization and interactions. PMID:27306690

  10. Naked singularity in the global structure of critical collapse spacetimes

    Frolov, Andrei V.; Pen, U.-L.

    2003-01-01

    We examine the global structure of scalar field critical collapse spacetimes using a characteristic double-null code. It can integrate past the horizon without any coordinate problems, due to the careful choice of constraint equations used in the evolution. The limiting sequence of sub- and supercritical spacetimes presents an apparent paradox in the expected Penrose diagrams, which we address in this paper. We argue that the limiting spacetime converges pointwise to a unique limit for all r>0, but not uniformly. The r=0 line is different in the two limits. We interpret that the two different Penrose diagrams differ by a discontinuous gauge transformation. We conclude that the limiting spacetime possesses a singular event, with a future removable naked singularity

  11. Ocean plankton. Structure and function of the global ocean microbiome.

    Sunagawa, Shinichi; Coelho, Luis Pedro; Chaffron, Samuel; Kultima, Jens Roat; Labadie, Karine; Salazar, Guillem; Djahanschiri, Bardya; Zeller, Georg; Mende, Daniel R; Alberti, Adriana; Cornejo-Castillo, Francisco M; Costea, Paul I; Cruaud, Corinne; d'Ovidio, Francesco; Engelen, Stefan; Ferrera, Isabel; Gasol, Josep M; Guidi, Lionel; Hildebrand, Falk; Kokoszka, Florian; Lepoivre, Cyrille; Lima-Mendez, Gipsi; Poulain, Julie; Poulos, Bonnie T; Royo-Llonch, Marta; Sarmento, Hugo; Vieira-Silva, Sara; Dimier, Céline; Picheral, Marc; Searson, Sarah; Kandels-Lewis, Stefanie; Bowler, Chris; de Vargas, Colomban; Gorsky, Gabriel; Grimsley, Nigel; Hingamp, Pascal; Iudicone, Daniele; Jaillon, Olivier; Not, Fabrice; Ogata, Hiroyuki; Pesant, Stephane; Speich, Sabrina; Stemmann, Lars; Sullivan, Matthew B; Weissenbach, Jean; Wincker, Patrick; Karsenti, Eric; Raes, Jeroen; Acinas, Silvia G; Bork, Peer

    2015-05-22

    Microbes are dominant drivers of biogeochemical processes, yet drawing a global picture of functional diversity, microbial community structure, and their ecological determinants remains a grand challenge. We analyzed 7.2 terabases of metagenomic data from 243 Tara Oceans samples from 68 locations in epipelagic and mesopelagic waters across the globe to generate an ocean microbial reference gene catalog with >40 million nonredundant, mostly novel sequences from viruses, prokaryotes, and picoeukaryotes. Using 139 prokaryote-enriched samples, containing >35,000 species, we show vertical stratification with epipelagic community composition mostly driven by temperature rather than other environmental factors or geography. We identify ocean microbial core functionality and reveal that >73% of its abundance is shared with the human gut microbiome despite the physicochemical differences between these two ecosystems. Copyright © 2015, American Association for the Advancement of Science.

  12. Radial pattern of nuclear decay processes

    Iskra, W.; Mueller, M.; Rotter, I.; Technische Univ. Dresden

    1994-05-01

    At high level density of nuclear states, a separation of different time scales is observed (trapping effect). We calculate the radial profile of partial widths in the framework of the continuum shell model for some 1 - resonances with 2p-2h nuclear structure in 16 O as a function of the coupling strength to the continuum. A correlation between the lifetime of a nuclear state and the radial profile of the corresponding decay process is observed. We conclude from our numerical results that the trapping effect creates structures in space and time characterized by a small radial extension and a short lifetime. (orig.)

  13. Box Tomography: first application to the imaging of upper-mantle shear velocity and radial anisotropy structure beneath the North American continent

    Clouzet, P.; Masson, Y.; Romanowicz, B.

    2018-06-01

    lithosphere and downwarping under tectonic regions, likely reflecting residual temperature anomalies. The radial anisotropy structure is less well resolved, but shows distinct signatures in highly deformed regions of the lithosphere.

  14. Radial distribution of ions in pores with a surface charge

    Stegen, J.H.G. van der; Görtzen, J.; Kuipers, J.A.M.; Hogendoorn, J.A.; Versteeg, G.F.

    2001-01-01

    A sorption model applicable to calculate the radial equilibrium concentrations of ions in the pores of ion-selective membranes with a pore structure is developed. The model is called the radial uptake model. Because the model is applied to a Nafion sulfonic layer with very small pores and the radial

  15. THE STRUCTURE OF PRE-TRANSITIONAL PROTOPLANETARY DISKS. II. AZIMUTHAL ASYMMETRIES, DIFFERENT RADIAL DISTRIBUTIONS OF LARGE AND SMALL DUST GRAINS IN PDS 70 {sup ,}

    Hashimoto, J.; Wisniewski, J. [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Tsukagoshi, T. [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Brown, J. M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Dong, R. [Astronomy Department, University of California, Berkeley, CA 94720 (United States); Muto, T. [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Zhu, Z. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Ohashi, N.; Kudo, T.; Egner, S.; Guyon, O. [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Kusakabe, N.; Akiyama, E. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Abe, L. [Laboratoire Hippolyte Fizeau, UMR6525, Universite de Nice Sophia-Antipolis, 28, avenue Valrose, F-06108 Nice Cedex 02 (France); Brandner, W.; Carson, J.; Feldt, M. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, T. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ (United States); Currie, T. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON (Canada); Grady, C. A., E-mail: jun.hashimoto@ou.edu [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); and others

    2015-01-20

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-μm size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and {sup 12}CO J = 2 → 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of ∼65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of ∼80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  16. The Structure of Pre-Transitional Protoplanetary Disks. II Azimuthal Asymmetries, Different Radial Distributions of Large and Small Dust Grains in PDS 70

    Hashimoto, J.; Tsukagoshi, T.; Brown, J. M.; Dong, R.; Muto, T.; Zhu, Z.; Wisniewski, J.; Ohashi, N.; Kudo, T.; Kusakabe, N.; hide

    2015-01-01

    The formation scenario of a gapped disk, i.e., transitional disk, and its asymmetry is still under debate. Proposed scenarios such as disk-planet interaction, photoevaporation, grain growth, anticyclonic vortex, eccentricity, and their combinations would result in different radial distributions of the gas and the small (sub-micron size) and large (millimeter size) dust grains as well as asymmetric structures in a disk. Optical/near-infrared (NIR) imaging observations and (sub-)millimeter interferometry can trace small and large dust grains, respectively; therefore multi-wavelength observations could help elucidate the origin of complicated structures of a disk. Here we report Submillimeter Array observations of the dust continuum at 1.3 mm and CO-12 J = 2 yields 1 line emission of the pre-transitional protoplanetary disk around the solar-mass star PDS 70. PDS 70, a weak-lined T Tauri star, exhibits a gap in the scattered light from its disk with a radius of approx. 65 AU at NIR wavelengths. However, we found a larger gap in the disk with a radius of approx. 80 AU at 1.3 mm. Emission from all three disk components (the gas and the small and large dust grains) in images exhibits a deficit in brightness in the central region of the disk, in particular, the dust disk in small and large dust grains has asymmetric brightness. The contrast ratio of the flux density in the dust continuum between the peak position to the opposite side of the disk reaches 1.4. We suggest the asymmetries and different gap radii of the disk around PDS 70 are potentially formed by several (unseen) accreting planets inducing dust filtration.

  17. Radial nerve dysfunction (image)

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  18. Technical structure of the global nanoscience and nanotechnology literature

    Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Koytcheff, Raymond G. [Office of Naval Research (United States); Lau, Clifford G. Y. [Institute for Defense Analyses (United States)

    2007-10-15

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The {approx}400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list.

  19. Global structure of exact scalar hairy dynamical black holes

    Fan, Zhong-Ying [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Chen, Bin [Center for High Energy Physics, Peking University,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Collaborative Innovation Center of Quantum Matter,No. 5 Yiheyuan Rd, Beijing, 100871 P.R. (China); Lü, H. [Center for Advanced Quantum Studies, Department of Physics, Beijing Normal University,Beijing, 100875 P.R. (China)

    2016-05-30

    We study the global structure of some exact scalar hairy dynamical black holes which were constructed in Einstein gravity either minimally or non-minimally coupled to a scalar field. We find that both the apparent horizon and the local event horizon (measured in luminosity coordinate) monotonically increase with the advanced time as well as the Vaidya mass. At late advanced times, the apparent horizon approaches the event horizon and gradually becomes future outer. Correspondingly, the space-time arrives at stationary black hole states with the relaxation time inversely proportional to the 1/(n−1) power of the final black hole mass, where n is the space-time dimension. These results strongly support the solutions describing the formation of black holes with scalar hair. We also obtain new charged dynamical solutions in the non-minimal theory by introducing an Maxwell field which is non-minimally coupled to the scalar. The presence of the electric charge strongly modifies the dynamical evolution of the space-time.

  20. Global network structure of dominance hierarchy of ant workers.

    Shimoji, Hiroyuki; Abe, Masato S; Tsuji, Kazuki; Masuda, Naoki

    2014-10-06

    Dominance hierarchy among animals is widespread in various species and believed to serve to regulate resource allocation within an animal group. Unlike small groups, however, detection and quantification of linear hierarchy in large groups of animals are a difficult task. Here, we analyse aggression-based dominance hierarchies formed by worker ants in Diacamma sp. as large directed networks. We show that the observed dominance networks are perfect or approximate directed acyclic graphs, which are consistent with perfect linear hierarchy. The observed networks are also sparse and random but significantly different from networks generated through thinning of the perfect linear tournament (i.e. all individuals are linearly ranked and dominance relationship exists between every pair of individuals). These results pertain to global structure of the networks, which contrasts with the previous studies inspecting frequencies of different types of triads. In addition, the distribution of the out-degree (i.e. number of workers that the focal worker attacks), not in-degree (i.e. number of workers that attack the focal worker), of each observed network is right-skewed. Those having excessively large out-degrees are located near the top, but not the top, of the hierarchy. We also discuss evolutionary implications of the discovered properties of dominance networks. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  1. Technical structure of the global nanoscience and nanotechnology literature

    Kostoff, Ronald N.; Koytcheff, Raymond G.; Lau, Clifford G. Y.

    2007-01-01

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The ∼400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list

  2. Forest restoration: a global dataset for biodiversity and vegetation structure.

    Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael

    2016-08-01

    Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the

  3. History, Structure and Agency in Global Health Governance Comment on "Global Health Governance Challenges 2016 - Are We Ready?"

    Gill, Stephen; Benatar, Solomon R

    2016-08-29

    Ilona Kickbusch's thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the "development of sustainability." © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  4. Turbulence simulations of blob formation and radial propagation in toroidally magnetized plasmas

    Garcia, O.E.; Naulin, V.; Nielsen, A.H.

    2006-01-01

    the presence of long- range correlations in the particle density fluctuations. Finally, conditional statistics of the particle flux demonstrates the intermittency of the turbulent plasma transport and the quasi-periodic apparency of blob structures due to bursting in the global turbulence level....... of particles and heat, which is coupled to a scrape-off layer with linear damping terms for all dependent variables corresponding to transport along open magnetic field lines. The formation of blob structures is related to profile variations caused by bursting in the global turbulence level, which is due...... to a dynamical regulation by self- sustained differential rotation of the plasma layer. Radial propagation of the blob structures follows from a vertical charge polarization due to magnetic guiding centre drifts in the toroidally magnetized plasma. Statistical analysis of the particle density, radial electric...

  5. Global/local methods research using a common structural analysis framework

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  6. Radial wedge flange clamp

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  7. China's Coal Methane: Actors, Structures, Strategies and their Global Impacts

    Chen, Ke; Charnoz, Olivier

    2012-12-01

    The need for China to alleviate its energy shortage, reduce its dependence on foreign sources and mitigate its climate impact is driving a dire quest for alternative fuels. Coal Mine Methane (CMM), in this context, holds significant potential. While the 11. Five-Year Plan aimed to capture and use 10 billion m"3 per year of CMM by 2010, the country achieved less than a quarter of this. This paper enquires into this puzzling outcome, which bears consequences for the world at large. China is indeed responsible for more than 40% of the world's total un-captured CMM emissions - which act as a greenhouse gas 21 times more potent than CO_2, and whose role in global warming is often underestimated, especially in short- and medium-term climate strategies. While the Chinese central government may have incentive to work towards promoting CMM, the benefits of such policies at the sub-national level are far from self-evident. National CMM policies can have significant economic and social costs at the local level, and thus their implementation can be jeopardized. Implementation of such policies is inherently ambiguous, conflicting, and as such, political. Current research on the Chinese CMM industry has largely focused on its techno-economic aspects, with little if any politico-institutional analyses. As for policy research on the larger Chinese energy sector, this seems sturdily to embody a top-down view: it mostly ends up blaming the country's decentralized governance structure and lack of a stringent implementation chain. Such top-down approaches do not help uncover 'the sinews of war': the range of less formal mechanisms, negotiations and agreements among the local actors, without which implementation does not in fact occur at the sub-national level. Nor do top-down research approaches facilitate inquiry into the way local stakeholders re-frame the meaning, content and impact of CMM policies. More generally, the top-down approaches fail to consider the significance of

  8. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  9. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  10. Evidences from long-term monitoring of Italian forests. Tree radial growth as response index to disturbances and its relations with the stand structure

    Bertini G

    2013-09-01

    Full Text Available The paper deals with the work undertaken since 1995 within the national level II network framed into the ICP-Forests ICP-IM programme. A synthesis of results from tree growth monitoring and relationships with stand structure and related parameters, are reported. Current changes in the growth medium, i.e. physics and chemistry of atmosphere and soil, (increase of average air temperature, rainfall shortage and drought, CO2 enrichment, ozone level, nitrogen fertilization, sulphate deposition drive today the soil-tree-atmosphere relationships. The overall result of these concurrent and counteracting factors is recorded along each growing seasons by radial stem growth, it providing a sensitive response. A few occurrences of disturbances to growth at regional and at case-study level, likely due to climate deviations, are discussed. Seasonal fluctuations and anomalous or extreme events are, as a matter of fact, the major evidences over the last decade. The heat wave 2003 is the main case occurred over a large part of Europe. Growth rate 2000-04 compared with 1997-2000, showed reductions up to 50% on plots located within the Southern continental border of the heat wave. These occurred more specifically at low elevations and for pre-determined early growth species (beech and oaks. Over the following time-window 2005-09, a significant growth decrease was vice versa detected within the coniferous spruce forests located at medium-high elevation in the Alps, where repeated seasonal anomalies both in air temperature and rainfall were recorded over the same time-span. The heavy effect of climate disturbance at a local scale is finally examined where two oak species with different auto-ecology grow together at the same site. Reasons why and awaited goals from protocols’ updating and the more intensive surveys applied to core-areas in 2009-10 under LIFE+FutMon, are reported. Perspectives at short to medium term of monitoring programme at national and European

  11. Sirenomelia with radial dysplasia.

    Kulkarni, M L; Abdul Manaf, K M; Prasannakumar, D G; Kulkarni, Preethi M

    2004-05-01

    Sirenomelia is a rare anomaly usually associated with other multiple malformations. In this communication the authors report a case of sirenomelia associated with multiple malformations, which include radial hypoplasia also. Though several theories have been proposed regarding the etiology of multiple malformation syndromes in the past, the recent theory of primary developmental defect during blastogenesis holds good in this case.

  12. Radially truncated galactic discs

    Grijs, R. de; Kregel, M.; Wesson, K H

    2000-01-01

    Abstract: We present the first results of a systematic analysis of radially truncatedexponential discs for four galaxies of a sample of disc-dominated edge-onspiral galaxies. Edge-on galaxies are very useful for the study of truncatedgalactic discs, since we can follow their light distributions out

  13. On the stochastic structure of globally supersymmetric field theories

    Flume, R.; Lechtenfeld, O.

    1983-09-01

    We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)

  14. Seismic travel-time tomography for detailed global mantle structure

    Bijwaard, H.

    1999-01-01

    The object of this thesis is to use travel-time tomography to focus and enhance the existing global image of the Earth's mantle and crust. This image is still rather blurred with respect to the considerably sharper pictures commonly obtained in regional studies. The improvement is basically

  15. Seismic travel-time tomography for detailed global mantle structure

    Bijwaard, H.

    1999-01-01

    The object of this thesis is to use travel-time tomography to focus and enhance the existing global image of the Earth's mantle and crust. This image is still rather blurred with respect to the considerably sharper pictures commonly obtained in regional studies. The improvement is basically obtained

  16. Mapping brain structure and function: cellular resolution, global perspective.

    Zupanc, Günther K H

    2017-04-01

    A comprehensive understanding of the brain requires analysis, although from a global perspective, with cellular, and even subcellular, resolution. An important step towards this goal involves the establishment of three-dimensional high-resolution brain maps, incorporating brain-wide information about the cells and their connections, as well as the chemical architecture. The progress made in such anatomical brain mapping in recent years has been paralleled by the development of physiological techniques that enable investigators to generate global neural activity maps, also with cellular resolution, while simultaneously recording the organism's behavioral activity. Combination of the high-resolution anatomical and physiological maps, followed by theoretical systems analysis of the deduced network, will offer unprecedented opportunities for a better understanding of how the brain, as a whole, processes sensory information and generates behavior.

  17. Topological properties and global structure of space-time

    Bergmann, P.G.; De Sabbata, V.

    1986-01-01

    This book presents information on the following topics: measurement of gravity and gauge fields using quantum mechanical probes; gravitation at spatial infinity; field theories on supermanifolds; supergravities and Kaluza-Klein theories; boundary conditions at spatial infinity; singularities - global and local aspects; matter at the horizon of the Schwarzschild black hole; introluction to string theories; cosmic censorship and the strengths of singularities; conformal quantisation in singular spacetimes; solar system tests in transition; integration and global aspects of supermanifolds; the space-time of the bimetric general relativity theory; gravitation without Lorentz invariance; a uniform static magnetic field in Kaluza-Klein theory; introduction to topological geons; and a simple model of a non-asymptotically flat Schwarzschild black hole

  18. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  19. Global assemblages and structural models of International Relations

    Corry, Olaf

    2014-01-01

    -category of assemblages – those constructed as malleable and governable which I call ‘governance-objects’ – is central to structure in international relations. The chapter begins with standard definitions of what structures are – patterns of interaction between elements – and briefly covers the range of models currently...... used to simplify different structures. Next the chapter points to the blindness of most structural theories of IR to the role of assemblages in general and governance-objects in particular. Thirdly, the idea that a polity is constituted precisely by the assemblage of a governance...

  20. Variable stator radial turbine

    Rogo, C.; Hajek, T.; Chen, A. G.

    1984-01-01

    A radial turbine stage with a variable area nozzle was investigated. A high work capacity turbine design with a known high performance base was modified to accept a fixed vane stagger angle moveable sidewall nozzle. The nozzle area was varied by moving the forward and rearward sidewalls. Diffusing and accelerating rotor inlet ramps were evaluated in combinations with hub and shroud rotor exit rings. Performance of contoured sidewalls and the location of the sidewall split line with respect to the rotor inlet was compared to the baseline. Performance and rotor exit survey data are presented for 31 different geometries. Detail survey data at the nozzle exit are given in contour plot format for five configurations. A data base is provided for a variable geometry concept that is a viable alternative to the more common pivoted vane variable geometry radial turbine.

  1. Estimation of Radial Runout

    Nilsson, Martin

    2007-01-01

    The demands for ride comfort quality in today's long haulage trucks are constantly growing. A part of the ride comfort problems are represented by internal vibrations caused by rotating mechanical parts. This thesis work focus on the vibrations generated from radial runout on the wheels. These long haulage trucks travel long distances on smooth highways, with a constant speed of 90 km/h resulting in a 7 Hz oscillation. This frequency creates vibrations in the cab, which can be found annoying....

  2. Radial Fuzzy Systems

    Coufal, David

    2017-01-01

    Roč. 319, 15 July (2017), s. 1-27 ISSN 0165-0114 R&D Projects: GA MŠk(CZ) LD13002 Institutional support: RVO:67985807 Keywords : fuzzy systems * radial functions * coherence Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) Impact factor: 2.718, year: 2016

  3. Radial Field Piezoelectric Diaphragms

    Bryant, R. G.; Effinger, R. T., IV; Copeland, B. M., Jr.

    2002-01-01

    A series of active piezoelectric diaphragms were fabricated and patterned with several geometrically defined Inter-Circulating Electrodes "ICE" and Interdigitated Ring Electrodes "ICE". When a voltage potential is applied to the electrodes, the result is a radially distributed electric field that mechanically strains the piezoceramic along the Z-axis (perpendicular to the applied electric field). Unlike other piezoelectric bender actuators, these Radial Field Diaphragms (RFDs) strain concentrically yet afford high displacements (several times that of the equivalent Unimorph) while maintaining a constant circumference. One of the more intriguing aspects is that the radial strain field reverses itself along the radius of the RFD while the tangential strain remains relatively constant. The result is a Z-deflection that has a conical profile. This paper covers the fabrication and characterization of the 5 cm. (2 in.) diaphragms as a function of poling field strength, ceramic thickness, electrode type and line spacing, as well as the surface topography, the resulting strain field and displacement as a function of applied voltage at low frequencies. The unique features of these RFDs include the ability to be clamped about their perimeter with little or no change in displacement, the environmentally insulated packaging, and a highly repeatable fabrication process that uses commodity materials.

  4. Perceived radial translation during centrifugation

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  5. Structure and dynamics of the global financial network

    Silva, Thiago Christiano; Rubens Stancato de Souza, Sergio; Tabak, Benjamin Miranda

    2016-01-01

    In this paper, we study the evolution of the network topology for the global financial market. We evaluate the level of diversification and participation of developed and emerging economies in cross-border exposures and find that the gross exposure network is dense, the vulnerability matrix is sparse, and the network’s fragility changes over time. Prior to the financial crisis in 2008, the network was relatively fragile, whereas it became more resilient afterwards, showing a reduction in financial institutions’ risk appetite. Our results suggest that financial regulators should track down the network evolution in their systemic risk assessment.

  6. Global patterns and drivers of phylogenetic structure in island floras

    Weigelt, P.; Kissling, W.D.; Kisel, Y.; Fritz, S.A.; Karger, D.N.; Kessler, A.; Lehtonen, S.; Svenning, J.-C.; Kreft, H.

    2015-01-01

    Islands are ideal for investigating processes that shape species assemblages because they are isolated and have discrete boundaries. Quantifying phylogenetic assemblage structure allows inferences about these processes, in particular dispersal, environmental filtering and in-situ speciation. Here,

  7. Industry structure and the performance of the Global System for ...

    telecommunication operators in Nigeria. ... This study investigates industry structure and its relationship with the performance of GSM network operators in Nigeria. A cross-sectional survey research design was adopted with the use of primary data, ...

  8. Global structure of mirror modes in the magnetosheath

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary

  9. Global structure of mirror modes in the magnetosheath

    Johnson, J.R.; Cheng, C.Z.

    1996-11-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary.

  10. Cold-induced alteration in the global structure of the male sex ...

    Cold-induced alteration in the global structure of the male sex ... dar et al. 1978). Chromosome preparated from a single pair of salivary glands show extremely puffy and diffuse ..... Akhtar A. 2003 Dosage compensation: an intertwined world of.

  11. Radial extension of drift waves in presence of velocity profiles

    Sen, S.; Weiland, J.

    1994-01-01

    The effect of a radially varying poloidal velocity field on the recently found radially extended toroidal drift waves is investigated analytically. The role of velocity curvature (υ φ '') is found to have robust effects on the radial model structure of the mode. For a positive value of the curvature (Usually found in the H-mode edges) the radial model envelope, similar to the sheared slab case, becomes fully outgoing. The mode is therefore stable. On the other hand, for a negative value of the curvature (usually observed in the L-mode edges) all the characteristics of conventional drift waves return back. The radial mode envelope reduces to a localized Gaussian shape and the mode is therefore unstable again for typical (magnetic) shear values in tokamaks. Velocity shear (υ φ ??) on the other hand is found to have rather insignificant role both in determining the radial model structure and stability

  12. Global stability-based design optimization of truss structures using ...

    Furthermore, a pure pareto-ranking based multi-objective optimization model is employed for the design optimization of the truss structure with multiple objectives. The computational performance of the optimization model is increased by implementing an island model into its evolutionary search mechanism. The proposed ...

  13. A possible global group structure for exotic states

    Li, Xue-Qian [Nankai University, School of Physics, Tianjin (China); Liu, Xiang [Lanzhou University, School of Physical Science and Technology, Lanzhou (China); Lanzhou University and Institute of Modern Physics of CAS, Research Center for Hadron and CSR Physics, Lanzhou (China)

    2014-12-01

    Based on the fact that the long expected pentaquark which possesses the exotic quantum numbers of B = 1 and S = 1 was not experimentally found, although exotic states of XY Z have been observed recently, we conjecture that the heavy flavors may play an important role in stabilizing the hadronic structures beyond the traditional q anti q and qqq composites. (orig.)

  14. Radial reflection diffraction tomography

    Lehman, Sean K.

    2012-12-18

    A wave-based tomographic imaging method and apparatus based upon one or more rotating radially outward oriented transmitting and receiving elements have been developed for non-destructive evaluation. At successive angular locations at a fixed radius, a predetermined transmitting element can launch a primary field and one or more predetermined receiving elements can collect the backscattered field in a "pitch/catch" operation. A Hilbert space inverse wave (HSIW) algorithm can construct images of the received scattered energy waves using operating modes chosen for a particular application. Applications include, improved intravascular imaging, bore hole tomography, and non-destructive evaluation (NDE) of parts having existing access holes.

  15. New Faces of Globalization: Market Integration, Production Disintegration, Genesis of New Global Organizational Structures for Production and Trade

    Sarmiza Pencea

    2010-07-01

    Full Text Available Due to trade liberalisation and ITC revolution, companies could imagine new and better ways of creating and delivering value. In search of higher efficiency, competitiveness and profits, they reorganise, choosing to focus on their core competencies and to globally outsource, or offshore non-core activities and functions. As a result, reorganisation and relocation became the new forces of change across economies, leading to the rise of new, more diverse and more efficient global organisational structures for investment, production and trade. A number of developing countries with adequate comparative advantages could better benefit from these processes, accelerating their own industralization and modernization, increasing their access to new technologies and managerial know-how and turning themselves into successful, high-rate growing, „ emerging” economies. The paper concludes that under such a global backdrop, taking part in global value chains (GVC and in international production networks (IPNs could be the best strategic option for both company strategies and governmental catch-up policies, provided that, or especially if companies enjoy high competences and tacit skills which make them capable of assuming complex tasks and of climbing further the technological ladder.

  16. Structure and relationships within global manufacturing virtual networks

    José Ramón Vilana

    2009-04-01

    Full Text Available Global Manufacturing Virtual Networks (GMVNs are dynamically changing organizations formed by Original Equipment Manufacturers (OEMs, Contract Manufacturers (CMs, turn-key and component suppliers, R+D centres and distributors. These networks establish a new type of vertical and horizontal relations between independent companies or even competitors where it is not needed to maintain internal manufacturing resources but to manage and share the network resources. The fluid relations that exist within the GMVNs allow them a very permeable organization easy to connect and disconnect from one to each other as well as to choose a set of partners with specific attributes. The result is a highly flexible system characterized by low barriers to entry and exit, geographic flexibility, low costs, rapid technological diffusion, high diversification through contract manufacturers and exceptional economies of scale. Anyhow, there are three major drawbacks in the GMVNs that should be considered at the beginning of this type of collaborations: 1 the risk of contract manufacturers to develop their own end-products in competition with their customers; 2 the technology transfer between competitors OEMs through other members of the GMVN and 3 the lose of process expertise by the OEMs the more they outsource manufacturing processes to the network.

  17. Radial interchange motions of plasma filaments

    Garcia, O.E.; Bian, N.H.; Fundamenski, W.

    2006-01-01

    on a biperiodic domain perpendicular to the magnetic field. It is demonstrated that a blob-like plasma structure develops dipolar vorticity and electrostatic potential fields, resulting in rapid radial acceleration and formation of a steep front and a trailing wake. While the dynamical evolution strongly depends...

  18. Plasma Signatures of Radial Field Power Dropouts

    Lucek, E.A.; Horbury, T.S.; Balogh, A.; McComas, D.J.

    1998-01-01

    A class of small scale structures, with a near-radial magnetic field and a drop in magnetic field fluctuation power, have recently been identified in the polar solar wind. An earlier study of 24 events, each lasting for 6 hours or more, identified no clear plasma signature. In an extension of that work, radial intervals lasting for 4 hours or more (89 in total), have been used to search for a statistically significant plasma signature. It was found that, despite considerable variations between intervals, there was a small but significant drop, on average, in plasma temperature, density and β during these events

  19. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  20. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  1. Formation of global energy minimim structures in the growth process of Lennard-Jones clusters

    Solov'yov, Ilia; Koshelev, Andrey; Shutovich, Andrey

    2003-01-01

    that in this way all known global minimum structures of the Lennard-Jones (LJ) clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic numbers sequence for the clusters of noble gases atoms and compare...

  2. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  3. Global Current Circuit Structure in a Resistive Pulsar Magnetosphere Model

    Kato, Yugo. E.

    2017-12-01

    Pulsar magnetospheres have strong magnetic fields and large amounts of plasma. The structures of these magnetospheres are studied using force-free electrodynamics. To understand pulsar magnetospheres, discussions must include their outer region. However, force-free electrodynamics is limited in it does not handle dissipation. Therefore, a resistive pulsar magnetic field model is needed. To break the ideal magnetohydrodynamic (MHD) condition E\\cdot B=0, Ohm’s law is used. This work introduces resistivity depending upon the distance from the star and obtain a self-consistent steady state by time integration. Poloidal current circuits form in the magnetosphere while the toroidal magnetic field region expands beyond the light cylinder and the Poynting flux radiation appears. High electric resistivity causes a large space scale poloidal current circuit and the magnetosphere radiates a larger Poynting flux than the linear increase outside of the light cylinder radius. The formed poloidal-current circuit has width, which grows with the electric conductivity. This result contributes to a more concrete dissipative pulsar magnetosphere model.

  4. ON THE GLOBAL STRUCTURE OF PULSAR FORCE-FREE MAGNETOSPHERE

    Petrova, S. A.

    2013-01-01

    The dipolar magnetic field structure of a neutron star is modified by the plasma originating in the pulsar magnetosphere. In the simplest case of a stationary axisymmetric force-free magnetosphere, a self-consistent description of the fields and currents is given by the well-known pulsar equation. Here we revise the commonly used boundary conditions of the problem in order to incorporate the plasma-producing gaps and to provide a framework for a truly self-consistent treatment of the pulsar magnetosphere. A generalized multipolar solution of the pulsar equation is found, which, as compared to the customary split monopole solution, is suggested to better represent the character of the dipolar force-free field at large distances. In particular, the outer gap location entirely inside the light cylinder implies that beyond the light cylinder the null and critical lines should be aligned and become parallel to the equator at a certain altitude. Our scheme of the pulsar force-free magnetosphere, which will hopefully be followed by extensive analytic and numerical studies, may have numerous implications for different fields of pulsar research.

  5. Global symplectic structure-preserving integrators for spinning compact binaries

    Zhong, Shuang-Ying; Wu, Xin; Liu, San-Qiu; Deng, Xin-Fa

    2010-12-01

    This paper deals mainly with the application of the second-order symplectic implicit midpoint rule and its symmetric compositions to a post-Newtonian Hamiltonian formulation with canonical spin variables in relativistic compact binaries. The midpoint rule, as a basic algorithm, is directly used to integrate the completely canonical Hamiltonian system. On the other hand, there are symmetric composite methods based on a splitting of the Hamiltonian into two parts: the Newtonian part associated with a Kepler motion, and a perturbation part involving the orbital post-Newtonian and spin contributions, where the Kepler flow has an analytic solution and the perturbation can be calculated by the midpoint rule. An example is the second-order mixed leapfrog symplectic integrator with one stage integration of the perturbation flow and two semistage computations of the Kepler flow at every integration step. Also, higher-order composite methods such as the Forest-Ruth fourth-order symplectic integrator and its optimized algorithm are applicable. Various numerical tests including simulations of chaotic orbits show that the mixed leapfrog integrator is always superior to the midpoint rule in energy accuracy, while both of them are almost equivalent in computational efficiency. Particularly, the optimized fourth-order algorithm compared with the mixed leapfrog scheme provides good precision and needs no expensive additional computational time. As a result, it is worth performing a more detailed and careful examination of the dynamical structure of chaos and order in the parameter windows and phase space of the binary system.

  6. Radial semiconductor drift chambers

    Rawlings, K.J.

    1987-01-01

    The conditions under which the energy resolution of a radial semiconductor drift chamber based detector system becomes dominated by the step noise from the detector dark current have been investigated. To minimise the drift chamber dark current attention should be paid to carrier generation at Si/SiO 2 interfaces. This consideration conflicts with the desire to reduce the signal risetime: a higher drift field for shorter signal pulses requires a larger area of SiO 2 . Calculations for the single shaping and pseudo Gaussian passive filters indicate that for the same degree of signal risetime sensitivity in a system dominated by the step noise from the detector dark current, the pseudo Gaussian filter gives only a 3% improvement in signal/noise and 12% improvement in rate capability compared with the single shaper performance. (orig.)

  7. ISR Radial Field Magnet

    1983-01-01

    There were 37 (normal) + 3 (special) Radial Field magnets in the ISR to adjust vertically the closed orbit. Gap heights and strengths were 200 mm and .12 Tm in the normal magnets, 220 mm and .18 Tm in the special ones. The core length was 430 mm in both types. Due to their small length as compared to the gap heights the end fringe field errors were very important and had to be compensated by suitably shaping the poles. In order to save on cables, as these magnets were located very far from their power supplies, the coils of the normal type magnets were formed by many turns of solid cpper conductor with some interleaved layers of hollow conductor directly cooled by circulating water

  8. The ARCS radial collimator

    Stone, M.B.; Abernathy, D.L.; Niedziela, J.L.; Overbay, M.A.

    2015-01-01

    We have designed, installed, and commissioned a scattered beam radial collimator for use at the ARCS Wide Angular Range Chopper Spectrometer at the Spallation Neutron Source. The collimator has been designed to work effectively for thermal and epithermal neutrons and with a range of sample environments. Other design considerations include the accommodation of working within a high vacuum environment and having the ability to quickly install and remove the collimator from the scattered beam. The collimator is composed of collimating blades (or septa). The septa are 12 micron thick Kapton foils coated on each side with 39 microns of enriched boron carbide ( 10 B 4 C with 10 B > 96%) in an ultra-high vacuum compatible binder. The collimator blades represent an additional 22 m 2 of surface area. In the article we present collimator's design and performance and methodologies for its effective use

  9. Global Justice: Building International and Supranational Structures on the Basis of Fundamental Rights

    Edgar Lammertse

    2017-01-01

    Full Text Available This article is intended to share a few thoughts, notions and questions about regulatory and governmental structures, both national and international, with regard to the development of global justice. It will highlight the issue whether or not local wisdom can contribute to global justice. In addition, this writing will discover legal problems that arise from the idea of global society and global justice by analyzing jurisdictional aspects and by explaining a little bit about dematerialization of crime, as it has been affected by the changing of communities’ behavior in global contexts after the era of computer and information and communication technology (ICT. Progressive development in Europe, especially regarding the European Union Law, will also be explored in order to describe the respect for fundamental rights in this region.

  10. Spiral Structure and Global Star Formation Processes in M 51

    Gruendl, Robert A.

    1994-12-01

    The nearby grand design spiral galaxy, M 51, is an obvious proving ground for studies of spiral structure and large scale star formation processes. New near--infrared observations of M 51 made with COB (Cryogenic Optical Bench) on the Kitt Peak 1.3m allow us to examine the stellar distribution and the young star formation regions as well as probe regions of high extinction such as dust lanes. We also present an analysis of the kinematics of the ionized gas observed with the Maryland--Caltech Imaging Fabry Perot. The color information we derive from the near--infrared bands provides a more accurate tracer of extinction than optical observations. We find that the dust extinction and CO emission in the arms are well correlated. Our kinematic data show unambiguously that these dense gas concentrations are associated with kinematic perturbations. In the inner disk, these perturbations are seen to be consistent with the streaming motions predicted by classical density wave theory. The dust lanes, and presumably the molecular arms, form a narrow ridge that matches these velocity perturbations wherever the viewing angle is appropriate. This interpretation requires that the corotation radius be inward of the outer tidal arms. The outer tidal arms however show streaming velocities of the sign that would be expected interior to the corotation point. This can be reconciled if the outer arms are part of a second spiral pattern, most likely due to the interaction with the companion NGC 5195. The near--infrared observations also show emission from the massive star forming regions. These observations are less affected by extinction than optical observations of H II regions and show clearly that the sites of massive star formation are correlated with but downstream from the concentrations of dense molecular material. This provides clear evidence that the ISM has been organized by the streaming motions which have in turn triggered massive star formation.

  11. The Role of Teams as Organizational Structures in a Global Organizational Context

    Zoltan Raluca

    2012-01-01

    The flexibility that modern companies must show in regard to global market entails the recourse to work teams which are multicultural adapted and aware of their role and place in the overall structure of the organization. The technological changes along with the customer needs diversification require the awareness of the influence of organizational structure on team members as well as the influence of teams on organizational structures and organizational context. The present paper aims to poi...

  12. Association of structural global brain network properties with intelligence in normal aging.

    Florian U Fischer

    Full Text Available Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60-85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience.

  13. Association of Structural Global Brain Network Properties with Intelligence in Normal Aging

    Fischer, Florian U.; Wolf, Dominik; Scheurich, Armin; Fellgiebel, Andreas

    2014-01-01

    Higher general intelligence attenuates age-associated cognitive decline and the risk of dementia. Thus, intelligence has been associated with cognitive reserve or resilience in normal aging. Neurophysiologically, intelligence is considered as a complex capacity that is dependent on a global cognitive network rather than isolated brain areas. An association of structural as well as functional brain network characteristics with intelligence has already been reported in young adults. We investigated the relationship between global structural brain network properties, general intelligence and age in a group of 43 cognitively healthy elderly, age 60–85 years. Individuals were assessed cross-sectionally using Wechsler Adult Intelligence Scale-Revised (WAIS-R) and diffusion-tensor imaging. Structural brain networks were reconstructed individually using deterministic tractography, global network properties (global efficiency, mean shortest path length, and clustering coefficient) were determined by graph theory and correlated to intelligence scores within both age groups. Network properties were significantly correlated to age, whereas no significant correlation to WAIS-R was observed. However, in a subgroup of 15 individuals aged 75 and above, the network properties were significantly correlated to WAIS-R. Our findings suggest that general intelligence and global properties of structural brain networks may not be generally associated in cognitively healthy elderly. However, we provide first evidence of an association between global structural brain network properties and general intelligence in advanced elderly. Intelligence might be affected by age-associated network deterioration only if a certain threshold of structural degeneration is exceeded. Thus, age-associated brain structural changes seem to be partially compensated by the network and the range of this compensation might be a surrogate of cognitive reserve or brain resilience. PMID:24465994

  14. Globalization processes of value chains in clothing industry in Portugal: implication in the working structures

    Moniz, António Brandão; V. Silva, Ana; Woll, Tobias; J. Sampaio, José

    2007-01-01

    International audience; Some of the phenomena where the “globalization” concept is applied include the internationalization of markets, globalization of culture, polítical hegemony of world by some states, or groups of states, the increasing power of supranational institutions, and the development of a global division of labour. A starting point to understand the global division of work is the study of how companies are re-structuring, once they are the key-actors in the decision on which wor...

  15. Antiproton compression and radial measurements

    Andresen, G B; Bowe, P D; Bray, C C; Butler, E; Cesar, C L; Chapman, S; Charlton, M; Fajans, J; Fujiwara, M C; Funakoshi, R; Gill, D R; Hangst, J S; Hardy, W N; Hayano, R S; Hayden, M E; Humphries, A J; Hydomako, R; Jenkins, M J; Jorgensen, L V; Kurchaninov, L; Lambo, R; Madsen, N; Nolan, P; Olchanski, K; Olin, A; Page R D; Povilus, A; Pusa, P; Robicheaux, F; Sarid, E; Seif El Nasr, S; Silveira, D M; Storey, J W; Thompson, R I; Van der Werf, D P; Wurtele, J S; Yamazaki, Y

    2008-01-01

    Control of the radial profile of trapped antiproton clouds is critical to trapping antihydrogen. We report detailed measurements of the radial manipulation of antiproton clouds, including areal density compressions by factors as large as ten, achieved by manipulating spatially overlapped electron plasmas. We show detailed measurements of the near-axis antiproton radial profile, and its relation to that of the electron plasma. We also measure the outer radial profile by ejecting antiprotons to the trap wall using an octupole magnet.

  16. Local-global alignment for finding 3D similarities in protein structures

    Zemla, Adam T [Brentwood, CA

    2011-09-20

    A method of finding 3D similarities in protein structures of a first molecule and a second molecule. The method comprises providing preselected information regarding the first molecule and the second molecule. Comparing the first molecule and the second molecule using Longest Continuous Segments (LCS) analysis. Comparing the first molecule and the second molecule using Global Distance Test (GDT) analysis. Comparing the first molecule and the second molecule using Local Global Alignment Scoring function (LGA_S) analysis. Verifying constructed alignment and repeating the steps to find the regions of 3D similarities in protein structures.

  17. Global structure of curves from generalized unitarity cut of three-loop diagrams

    Hauenstein, Jonathan D.; Huang, Rijun; Mehta, Dhagash; Zhang, Yang

    2015-01-01

    This paper studies the global structure of algebraic curves defined by generalized unitarity cut of four-dimensional three-loop diagrams with eleven propagators. The global structure is a topological invariant that is characterized by the geometric genus of the algebraic curve. We use the Riemann-Hurwitz formula to compute the geometric genus of algebraic curves with the help of techniques involving convex hull polytopes and numerical algebraic geometry. Some interesting properties of genus for arbitrary loop orders are also explored where computing the genus serves as an initial step for integral or integrand reduction of three-loop amplitudes via an algebraic geometric approach.

  18. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1997-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  19. Prediction of Global and Localized Damage and Future Reliability for RC Structures subject to Earthquakes

    Köyluoglu, H.U.; Nielsen, Søren R.K.; Cakmak, A.S.

    1994-01-01

    the arrival of the first earthquake from non-destructive vibration tests or via structural analysis. The previous excitation and displacement response time series is employed for the identification of the instantaneous softening using an ARMA model. The hysteresis parameters are updated after each earthquake....... The proposed model is next generalized for the MDOF system. Using the adapted models for the structure and the global damage state, the global damage in a future earthquake can then be estimated when a suitable earthquake model is applied. The performance of the model is illustrated on RC frames which were...

  20. Radial expansion and multifragmentation

    Angelique, J.C.; Bizard, G.; Bougault, R.; Brou, R.; Buta, A.; Colin, J.; Cussol, D.; Durand, D.; Kerambrun, A.; Le Brun, C.; Lecolley, J.F.; Lopez, O.; Louvel, M.; Meslin, C.; Nakagawa, T.; Patry, J.P.; Peter, J.; Popescu, R.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Yuasa-Nakagawa, K.; Wieloch, A.

    1998-01-01

    The light systems 36 Ar + 27 Al and 64 Zn + nat Ti were measured at several bombarding energies between ∼ 35 and 95 MeV/nucleon. It was found that the predominant part of the cross section is due to binary collisions. In this paper the focus is placed on the properties of the quasi-projectile nuclei. In the central collisions the excitation energies of the quasi-projectile reach values exceeding largely 10 MeV/nucleon. The slope of the high energy part of the distribution can give only an upper limit of the apparent temperature (the average temperature along the decay chain). The highly excited quasi-projectile may get rapidly fragmented rather than sequentially. The heavy fragments are excited and can emit light particles (n, p, d, t, 3 He, α,...) what perturbs additionally the spectrum of these particles. Concerning the expansion energy, one can determine the average kinetic energies of the product (in the quasi-projectile-framework) and compare with simulation values. To fit the experimental data an additional radial expansion energy is to be considered. The average expansion energy depends slightly on the impact parameter but it increases with E * / A, ranging from 0.4 to 1,2 MeV/nucleon for an excitation energy increasing from 7 to 10.5 MeV/nucleon. This collective radial energy seems to be independent of the fragment mass, what is possibly valid for the case of larger quasi-projectile masses. The origin of the expansion is to be determined. It may be due to a compression in the interaction zone at the initial stage of the collision, which propagates in the quasi-projectile and quasi-target, or else, may be due, simply, to the increase of thermal energy leading to a rapid fragment emission. The sequential de-excitation calculation overestimates light particle emission and consequently heavy residues, particularly, at higher excitation energies. This disagreement indicates that a sequential process can not account for the di-excitation of very hot nuclei

  1. Fast protein tertiary structure retrieval based on global surface shape similarity.

    Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke

    2008-09-01

    Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.

  2. Design of radial reinforcement for prestressed concrete containments

    Wang, Shen, E-mail: swang@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States); Munshi, Javeed A., E-mail: jamunshi@bechtel.com [Bechtel Power Corporation, 5275 Westview Drive, BP2-2C3, Frederick, MD 21703 (United States)

    2013-02-15

    Highlights: ► A rigorous formulae is proposed to calculate radial stress within prestressed concrete containments. ► The proposed method is validated by finite element analysis in an illustrative practical example. ► A partially prestressed condition is more critical than a fully prestressed condition for radial tension. ► Practical design consideration is provided for detailing of radial reinforcement. -- Abstract: Nuclear containments are critical components for safety of nuclear power plants. Failure can result in catastrophic safety consequences as a result of leakage of radiation. Prestressed concrete containments have been used in large nuclear power plants with significant design internal pressure. These containments are generally reinforced with prestressing tendons in the circumferential (hoop) and meridional (vertical) directions. The curvature effect of the tendons introduces radial tensile stresses in the concrete shell which are generally neglected in the design of such structures. It is assumed that such tensile radial stresses are small as such no radial reinforcement is provided for this purpose. But recent instances of significant delaminations in Crystal River Unit 3 in Florida have elevated the need for reevaluation of the radial tension issue in prestressed containment. Note that currently there are no well accepted industry standards for design and detailing of radial reinforcement. This paper discusses the issue of radial tension in prestressed cylindrical and dome shaped structures and proposes formulae to calculate radial stresses. A practical example is presented to illustrate the use of the proposed method which is then verified by using state of art finite element analysis. This paper also provides some practical design consideration for detailing of radial reinforcement in prestressed containments.

  3. Radial gas turbine design

    Krausche, S.; Ohlsson, Johan

    1998-04-01

    The objective of this work was to develop a program dealing with design point calculations of radial turbine machinery, including both compressor and turbine, with as few input data as possible. Some simple stress calculations and turbine metal blade temperatures were also included. This program was then implanted in a German thermodynamics program, Gasturb, a program calculating design and off-design performance of gas turbines. The calculations proceed with a lot of assumptions, necessary to finish the task, concerning pressure losses, velocity distribution, blockage, etc., and have been correlated with empirical data from VAT. Most of these values could have been input data, but to prevent the user of the program from drowning in input values, they are set as default values in the program code. The output data consist of geometry, Mach numbers, predicted component efficiency etc., and a number of graphical plots of geometry and velocity triangles. For the cases examined, the error in predicted efficiency level was within {+-} 1-2% points, and quite satisfactory errors in geometrical and thermodynamic conditions were obtained Examination paper. 18 refs, 36 figs

  4. Radial flow heat exchanger

    Valenzuela, Javier

    2001-01-01

    A radial flow heat exchanger (20) having a plurality of first passages (24) for transporting a first fluid (25) and a plurality of second passages (26) for transporting a second fluid (27). The first and second passages are arranged in stacked, alternating relationship, are separated from one another by relatively thin plates (30) and (32), and surround a central axis (22). The thickness of the first and second passages are selected so that the first and second fluids, respectively, are transported with laminar flow through the passages. To enhance thermal energy transfer between first and second passages, the latter are arranged so each first passage is in thermal communication with an associated second passage along substantially its entire length, and vice versa with respect to the second passages. The heat exchangers may be stacked to achieve a modular heat exchange assembly (300). Certain heat exchangers in the assembly may be designed slightly differently than other heat exchangers to address changes in fluid properties during transport through the heat exchanger, so as to enhance overall thermal effectiveness of the assembly.

  5. Stability of radial swirl flows

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  6. SGO: A fast engine for ab initio atomic structure global optimization by differential evolution

    Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang

    2017-10-01

    As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.

  7. Coordination Analysis Using Global Structural Constraints and Alignment-based Local Features

    Hara, Kazuo; Shimbo, Masashi; Matsumoto, Yuji

    We propose a hybrid approach to coordinate structure analysis that combines a simple grammar to ensure consistent global structure of coordinations in a sentence, and features based on sequence alignment to capture local symmetry of conjuncts. The weight of the alignment-based features, which in turn determines the score of coordinate structures, is optimized by perceptron training on a given corpus. A bottom-up chart parsing algorithm efficiently finds the best scoring structure, taking both nested or non-overlapping flat coordinations into account. We demonstrate that our approach outperforms existing parsers in coordination scope detection on the Genia corpus.

  8. Assessing the vertical structure of baroclinic tidal currents in a global model

    Timko, Patrick; Arbic, Brian; Scott, Robert

    2010-05-01

    Tidal forcing plays an important role in many aspects of oceanography. Mixing, transport of particulates and internal wave generation are just three examples of local phenomena that may depend on the strength of local tidal currents. Advances in satellite altimetry have made an assessment of the global barotropic tide possible. However, the vertical structure of the tide may only be observed by deployment of instruments throughout the water column. Typically these observations are conducted at pre-determined depths based upon the interest of the observer. The high cost of such observations often limits both the number and the length of the observations resulting in a limit to our knowledge of the vertical structure of tidal currents. One way to expand our insight into the baroclinic structure of the ocean is through the use of numerical models. We compare the vertical structure of the global baroclinic tidal velocities in 1/12 degree HYCOM (HYbrid Coordinate Ocean Model) to a global database of current meter records. The model output is a subset of a 5 year global simulation that resolves the eddying general circulation, barotropic tides and baroclinic tides using 32 vertical layers. The density structure within the simulation is both vertically and horizontally non-uniform. In addition to buoyancy forcing the model is forced by astronomical tides and winds. We estimate the dominant semi-diurnal (M2), and diurnal (K1) tidal constituents of the model data using classical harmonic analysis. In regions where current meter record coverage is adequate, the model skill in replicating the vertical structure of the dominant diurnal and semi-diurnal tidal currents is assessed based upon the strength, orientation and phase of the tidal ellipses. We also present a global estimate of the baroclinic tidal energy at fixed depths estimated from the model output.

  9. Compare local pocket and global protein structure models by small structure patterns

    Cui, Xuefeng; Kuwahara, Hiroyuki; Li, Shuai Cheng; Gao, Xin

    2015-01-01

    Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria

  10. GOSSIP: a method for fast and accurate global alignment of protein structures.

    Kifer, I; Nussinov, R; Wolfson, H J

    2011-04-01

    The database of known protein structures (PDB) is increasing rapidly. This results in a growing need for methods that can cope with the vast amount of structural data. To analyze the accumulating data, it is important to have a fast tool for identifying similar structures and clustering them by structural resemblance. Several excellent tools have been developed for the comparison of protein structures. These usually address the task of local structure alignment, an important yet computationally intensive problem due to its complexity. It is difficult to use such tools for comparing a large number of structures to each other at a reasonable time. Here we present GOSSIP, a novel method for a global all-against-all alignment of any set of protein structures. The method detects similarities between structures down to a certain cutoff (a parameter of the program), hence allowing it to detect similar structures at a much higher speed than local structure alignment methods. GOSSIP compares many structures in times which are several orders of magnitude faster than well-known available structure alignment servers, and it is also faster than a database scanning method. We evaluate GOSSIP both on a dataset of short structural fragments and on two large sequence-diverse structural benchmarks. Our conclusions are that for a threshold of 0.6 and above, the speed of GOSSIP is obtained with no compromise of the accuracy of the alignments or of the number of detected global similarities. A server, as well as an executable for download, are available at http://bioinfo3d.cs.tau.ac.il/gossip/.

  11. Sentence connexion and global text structures: a case study of a political text, English leader article

    Stein, Dieter; Mattei, Adriana

    1993-01-01

    The paper first gives a brief overview of the history and theoretical status of discourse analysis, or "text linguistics." The main body of the paper consists of a detailed analysis of sentence connexion, i.e. the logical relationship between sentences and larger chunks of text, performed on a newspaper leader article. The results of this local analysis are then related to the global organisation of text structure with components such as macro- and super-structure by way of int...

  12. Radial transfer effects for poloidal rotation

    Hallatschek, Klaus

    2010-11-01

    Radial transfer of energy or momentum is the principal agent responsible for radial structures of Geodesic Acoustic Modes (GAMs) or stationary Zonal Flows (ZF) generated by the turbulence. For the GAM, following a physical approach, it is possible to find useful expressions for the individual components of the Poynting flux or radial group velocity allowing predictions where a mathematical full analysis is unfeasible. Striking differences between up-down symmetric flux surfaces and asymmetric ones have been found. For divertor geometries, e.g., the direction of the propagation depends on the sign of the ion grad-B drift with respect to the X-point, reminiscent of a sensitive determinant of the H-mode threshold. In nonlocal turbulence computations it becomes obvious that the linear energy transfer terms can be completely overwhelmed by the action of the turbulence. In contrast, stationary ZFs are governed by the turbulent radial transfer of momentum. For sufficiently large systems, the Reynolds stress becomes a deterministic functional of the flows, which can be empirically determined from the stress response in computational turbulence studies. The functional allows predictions even on flow/turbulence states not readily obtainable from small amplitude noise, such as certain transport bifurcations or meta-stable states.

  13. Extracting 3D layout from a single image using global image structures.

    Lou, Zhongyu; Gevers, Theo; Hu, Ninghang

    2015-10-01

    Extracting the pixel-level 3D layout from a single image is important for different applications, such as object localization, image, and video categorization. Traditionally, the 3D layout is derived by solving a pixel-level classification problem. However, the image-level 3D structure can be very beneficial for extracting pixel-level 3D layout since it implies the way how pixels in the image are organized. In this paper, we propose an approach that first predicts the global image structure, and then we use the global structure for fine-grained pixel-level 3D layout extraction. In particular, image features are extracted based on multiple layout templates. We then learn a discriminative model for classifying the global layout at the image-level. Using latent variables, we implicitly model the sublevel semantics of the image, which enrich the expressiveness of our model. After the image-level structure is obtained, it is used as the prior knowledge to infer pixel-wise 3D layout. Experiments show that the results of our model outperform the state-of-the-art methods by 11.7% for 3D structure classification. Moreover, we show that employing the 3D structure prior information yields accurate 3D scene layout segmentation.

  14. Fast radial basis functions for engineering applications

    Biancolini, Marco Evangelos

    2017-01-01

    This book presents the first “How To” guide to the use of radial basis functions (RBF). It provides a clear vision of their potential, an overview of ready-for-use computational tools and precise guidelines to implement new engineering applications of RBF. Radial basis functions (RBF) are a mathematical tool mature enough for useful engineering applications. Their mathematical foundation is well established and the tool has proven to be effective in many fields, as the mathematical framework can be adapted in several ways. A candidate application can be faced considering the features of RBF:  multidimensional space (including 2D and 3D), numerous radial functions available, global and compact support, interpolation/regression. This great flexibility makes RBF attractive – and their great potential has only been partially discovered. This is because of the difficulty in taking a first step toward RBF as they are not commonly part of engineers’ cultural background, but also due to the numerical complex...

  15. Control of evaporation by geometry in capillary structures. From confined pillar arrays in a gap radial gradient to phyllotaxy-inspired geometry.

    Chen, Chen; Duru, Paul; Joseph, Pierre; Geoffroy, Sandrine; Prat, Marc

    2017-11-08

    Evaporation is a key phenomenon in the natural environment and in many technological systems involving capillary structures. Understanding the evaporation front dynamics enables the evaporation rate from microfluidic devices and porous media to be finely controlled. Of particular interest is the ability to control the position of the front through suitable design of the capillary structure. Here, we show how to design model capillary structures in microfluidic devices so as to control the drying kinetics. This is achieved by acting on the spatial organization of the constrictions that influence the invasion of the structure by the gas phase. Two types of control are demonstrated. The first is intended to control the sequence of primary invasions through the pore space, while the second aims to control the secondary liquid structures: films, bridges, etc., that can form in the region of pore space invaded by the gas phase. It is shown how the latter can be obtained from phyllotaxy-inspired geometry. Our study thus opens up a route toward the control of the evaporation kinetics by means of tailored capillary structures.

  16. Testing the performance of a Dynamic Global Ecosystem Model: Water balance, carbon balance, and vegetation structure

    Kucharik, Christopher J.; Foley, Jonathan A.; Delire, Christine; Fisher, Veronica A.; Coe, Michael T.; Lenters, John D.; Young-Molling, Christine; Ramankutty, Navin; Norman, John M.; Gower, Stith T.

    2000-09-01

    While a new class of Dynamic Global Ecosystem Models (DGEMs) has emerged in the past few years as an important tool for describing global biogeochemical cycles and atmosphere-biosphere interactions, these models are still largely untested. Here we analyze the behavior of a new DGEM and compare the results to global-scale observations of water balance, carbon balance, and vegetation structure. In this study, we use version 2 of the Integrated Biosphere Simulator (IBIS), which includes several major improvements and additions to the prototype model developed by Foley et al. [1996]. IBIS is designed to be a comprehensive model of the terrestrial biosphere; the model represents a wide range of processes, including land surface physics, canopy physiology, plant phenology, vegetation dynamics and competition, and carbon and nutrient cycling. The model generates global simulations of the surface water balance (e.g., runoff), the terrestrial carbon balance (e.g., net primary production, net ecosystem exchange, soil carbon, aboveground and belowground litter, and soil CO2 fluxes), and vegetation structure (e.g., biomass, leaf area index, and vegetation composition). In order to test the performance of the model, we have assembled a wide range of continental and global-scale data, including measurements of river discharge, net primary production, vegetation structure, root biomass, soil carbon, litter carbon, and soil CO2 flux. Using these field data and model results for the contemporary biosphere (1965-1994), our evaluation shows that simulated patterns of runoff, NPP, biomass, leaf area index, soil carbon, and total soil CO2 flux agree reasonably well with measurements that have been compiled from numerous ecosystems. These results also compare favorably to other global model results.

  17. Global efficiency of structural networks mediates cognitive control in Mild Cognitive Impairment

    Rok Berlot

    2016-12-01

    Full Text Available Background: Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. Objective: To determine the contribution of both localised white matter tract damage and disruption of global network architecture to cognitive control, in older age and Mild Cognitive Impairment (MCI.Methods: 25 patients with MCI and 20 age, sex and intelligence-matched healthy volunteers were investigated with 3 Tesla structural magnetic resonance imaging (MRI. Cognitive control and episodic memory were evaluated with established tests. Structural network graphs were constructed from diffusion MRI-based whole-brain tractography. Their global measures were calculated using graph theory. Regression models utilized both global network metrics and microstructure of specific connections, known to be critical for each domain, to predict cognitive scores. Results: Global efficiency and the mean clustering coefficient of networks were reduced in MCI. Cognitive control was associated with global network topology. Episodic memory, in contrast, correlated with individual temporal tracts only. Relationships between cognitive control and network topology were attenuated by addition of single tract measures to regression models, consistent with a partial mediation effect. The mediation effect was stronger in MCI than healthy volunteers, explaining 23-36% of the effect of cingulum microstructure on cognitive control performance. Network clustering was a significant mediator in the relationship between tract microstructure and cognitive control in both groups. Conclusions: The status of critical connections and large-scale network topology are both important for maintenance of cognitive control in MCI. Mediation via large-scale networks is more important in patients with MCI than healthy volunteers. This effect is domain-specific, and true for cognitive

  18. Evaluation of variability in high-resolution protein structures by global distance scoring

    Risa Anzai

    2018-01-01

    Full Text Available Systematic analysis of the statistical and dynamical properties of proteins is critical to understanding cellular events. Extraction of biologically relevant information from a set of high-resolution structures is important because it can provide mechanistic details behind the functional properties of protein families, enabling rational comparison between families. Most of the current structural comparisons are pairwise-based, which hampers the global analysis of increasing contents in the Protein Data Bank. Additionally, pairing of protein structures introduces uncertainty with respect to reproducibility because it frequently accompanies other settings for superimposition. This study introduces intramolecular distance scoring for the global analysis of proteins, for each of which at least several high-resolution structures are available. As a pilot study, we have tested 300 human proteins and showed that the method is comprehensively used to overview advances in each protein and protein family at the atomic level. This method, together with the interpretation of the model calculations, provide new criteria for understanding specific structural variation in a protein, enabling global comparison of the variability in proteins from different species.

  19. Evaluation of variability in high-resolution protein structures by global distance scoring.

    Anzai, Risa; Asami, Yoshiki; Inoue, Waka; Ueno, Hina; Yamada, Koya; Okada, Tetsuji

    2018-01-01

    Systematic analysis of the statistical and dynamical properties of proteins is critical to understanding cellular events. Extraction of biologically relevant information from a set of high-resolution structures is important because it can provide mechanistic details behind the functional properties of protein families, enabling rational comparison between families. Most of the current structural comparisons are pairwise-based, which hampers the global analysis of increasing contents in the Protein Data Bank. Additionally, pairing of protein structures introduces uncertainty with respect to reproducibility because it frequently accompanies other settings for superimposition. This study introduces intramolecular distance scoring for the global analysis of proteins, for each of which at least several high-resolution structures are available. As a pilot study, we have tested 300 human proteins and showed that the method is comprehensively used to overview advances in each protein and protein family at the atomic level. This method, together with the interpretation of the model calculations, provide new criteria for understanding specific structural variation in a protein, enabling global comparison of the variability in proteins from different species.

  20. Structural Changes of International Trade Flows under the Impact of Globalization

    Anca Dachin

    2006-08-01

    Full Text Available Structural changes of international trade flows indicate modifications in competitiveness of countries, in terms of production, technological upgrading and exports under the pressure of globalization. The paper aims to point out sources of competitive advantages especially in manufacturing exports of different groups of countries. The focus is on the shifts in the structure of manufacturing in the European Union and their effects on international rankings in export performances. An important issue refers to the opportunities given by the enlargement of the European Union and their impact on EU trade structures.

  1. Understanding Structures and Affordances of Extended Teams in Global Software Development

    Ali Babar, Muhammad; Zahedi, Mansooreh

    2013-01-01

    Growing popularity of Global Software Development (GSD) has resulted in an increasing number of cross-organizational teams that are formed according to Extended Team Model (ETM). There is little known about the structures (work, social, and communication) that may exist in ETM and what affordances...... in the studied team help deal with different GSD challenges, these structures appear to have certain challenges inherent in them and the affordances they provide. We make a few recommendations for improving the current structures to deal with the observed challenges. Our findings are expected to provide insights...

  2. Disorder structure of free-flow and global jams in the extended BML model

    Zhao Xiaomei; Xie Dongfan; Jia Bin; Jiang Rui; Gao Ziyou

    2011-01-01

    The original BML model is extended by introducing extended sites, which can hold several vehicles at each time-step. Unexpectedly, the flow in the extended model sharply transits from free-flow to global jams, but the transition is not one-order in original BML model. And congestion in the extended model appears more easily. This can ascribe to the mixture of vehicles from different directions in one site, leading to the drop-off of the capacity of the site. Furthermore, the typical configuration of free flowing and global jams in the extended models is disorder, different from the regular structure in the original model.

  3. The Emergence of Cambodian Civil Society within Global Educational Governance: A Morphogenetic Approach to Agency and Structure

    Edwards, D. Brent, Jr.; Brehm, William C.

    2015-01-01

    This paper uses Margaret Archer's morphogenetic approach to analyze the emergence of civil society within global educational governance. The purpose is to understand the intersection of historical structures with global actors and spaces that have accompanied the globalization of education. Based on findings from a study on the impact in Cambodia…

  4. Compare local pocket and global protein structure models by small structure patterns

    Cui, Xuefeng

    2015-09-09

    Researchers proposed several criteria to assess the quality of predicted protein structures because it is one of the essential tasks in the Critical Assessment of Techniques for Protein Structure Prediction (CASP) competitions. Popular criteria include root mean squared deviation (RMSD), MaxSub score, TM-score, GDT-TS and GDT-HA scores. All these criteria require calculation of rigid transformations to superimpose the the predicted protein structure to the native protein structure. Yet, how to obtain the rigid transformations is unknown or with high time complexity, and, hence, heuristic algorithms were proposed. In this work, we carefully design various small structure patterns, including the ones specifically tuned for local pockets. Such structure patterns are biologically meaningful, and address the issue of relying on a sufficient number of backbone residue fragments for existing methods. We sample the rigid transformations from these small structure patterns; and the optimal superpositions yield by these small structures are refined and reported. As a result, among 11; 669 pairs of predicted and native local protein pocket models from the CASP10 dataset, the GDT-TS scores calculated by our method are significantly higher than those calculated by LGA. Moreover, our program is computationally much more efficient. Source codes and executables are publicly available at http://www.cbrc.kaust.edu.sa/prosta/

  5. Radial retinotomy in the macula.

    Bovino, J A; Marcus, D F

    1984-01-01

    Radial retinotomy is an operative procedure usually performed in the peripheral or equatorial retina. To facilitate retinal attachment, the authors used intraocular scissors to perform radial retinotomy in the macula of two patients during vitrectomy surgery. In the first patient, a retinal detachment complicated by periretinal proliferation and macula hole formation was successfully reoperated with the aid of three radial cuts in the retina at the edges of the macular hole. In the second patient, an intraoperative retinal tear in the macula during diabetic vitrectomy was also successfully repaired with the aid of radial retinotomy. In both patients, retinotomy in the macula was required because epiretinal membranes, which could not be easily delaminated, were hindering retinal reattachment.

  6. Dedicated radial ventriculography pigtail catheter

    Vidovich, Mladen I., E-mail: miv@uic.edu

    2013-05-15

    A new dedicated cardiac ventriculography catheter was specifically designed for radial and upper arm arterial access approach. Two catheter configurations have been developed to facilitate retrograde crossing of the aortic valve and to conform to various subclavian, ascending aortic and left ventricular anatomies. The “short” dedicated radial ventriculography catheter is suited for horizontal ascending aortas, obese body habitus, short stature and small ventricular cavities. The “long” dedicated radial ventriculography catheter is suited for vertical ascending aortas, thin body habitus, tall stature and larger ventricular cavities. This new design allows for improved performance, faster and simpler insertion in the left ventricle which can reduce procedure time, radiation exposure and propensity for radial artery spasm due to excessive catheter manipulation. Two different catheter configurations allow for optimal catheter selection in a broad range of patient anatomies. The catheter is exceptionally stable during contrast power injection and provides equivalent cavity opacification to traditional femoral ventriculography catheter designs.

  7. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  8. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  9. Application of structured flowsheets to global evaluation of tank waste processing alternatives

    Jansen, G.; Knutson, B.J.; Niccoli, L.G.; Frank, D.D.

    1994-01-01

    Remediation of the Hanford waste tanks requires integration of chemical technologies and evaluation of alternatives from the perspective of the overall Hanford cleanup purpose. The use of Design/IDEF (R) logic to connect chemical process functions to the overall cleanup mission in the Hanford Strategic Analysis (HSA) and to Aspen Plus (R) process models can show the effect of each process step on global performance measures such as safety, cost, and public perception. This hybrid of chemical process analysis and systems engineering produces structured material balance flowsheets at any level of process aggregation within the HSA. Connectivity and consistent process and stream nomenclature are automatically transferred between detailed process models, the HSA top purpose, and the global material balance flowsheet evaluation. Applications to separation processes is demonstrated for a generic Truex-Sludge Wash flowsheet with many process options and for the aggregation of a Clean Option flowsheet from a detailed chemical process level to a global evaluation level

  10. Assessing the drivers shaping global patterns of urban vegetation landscape structure.

    Dobbs, C; Nitschke, C; Kendal, D

    2017-08-15

    Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Prediction of welding residual distortions of large structures using a local/global approach

    Duan, Y. G.; Bergheau, J. M.; Vincent, Y.; Boitour, F.; Leblond, J. B.

    2007-01-01

    Prediction of welding residual distortions is more difficult than that of the microstructure and residual stresses. On the one hand, a fine mesh (often 3D) has to be used in the heat affected zone for the sake of the sharp variations of thermal, metallurgical and mechanical fields in this region. On the other hand, the whole structure is required to be meshed for the calculation of residual distortions. But for large structures, a 3D mesh is inconceivable caused by the costs of the calculation. Numerous methods have been developed to reduce the size of models. A local/global approach has been proposed to determine the welding residual distortions of large structures. The plastic strains and the microstructure due to welding are supposed can be determined from a local 3D model which concerns only the weld and its vicinity. They are projected as initial strains into a global 3D model which consists of the whole structure and obviously much less fine in the welded zone than the local model. The residual distortions are then calculated using a simple elastic analysis, which makes this method particularly effective in an industrial context. The aim of this article is to present the principle of the local/global approach then show the capacity of this method in an industrial context and finally study the definition of the local model

  12. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  13. Oculoauriculovertebral spectrum with radial anomaly in child.

    Taksande, Amar; Vilhekar, Krishna

    2013-01-01

    Oculoauriculovertebral spectrum (OAVS) or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL) association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.

  14. Oculoauriculovertebral spectrum with radial anomaly in child

    Amar Taksande

    2013-01-01

    Full Text Available Oculoauriculovertebral spectrum (OAVS or Goldenhar syndrome is a wide spectrum of congenital anomalies that involves structures arising from the first and second branchial arches. It is characterized by a wide spectrum of symptoms and physical features. These abnormalities mainly involve the cheekbones, jaws, mouth, ears, eyes, or vertebrae. Other conditions with ear and/or radial involvement, such as, the Nager syndrome, Holt-Oram syndrome, Radial-renal syndrome, facioauriculoradial dysplasia, Fanconi anemia, and Vertebral, Anal atresia, Cardiac, Trachea, Esophageal, Renal, and Limb (VACTERL association should be considered for differential diagnosis. Here we report a child who had facial asymmetry, microsomia, microtia, congenital facial nerve palsy, conductive hearing loss, skin tags, iris coloboma, and preaxial polydactyly.

  15. Linear radial pulsation theory. Lecture 5

    Cox, A.N.

    1983-01-01

    We describe a method for getting an equilibrium stellar envelope model using as input the total mass, the envelope mass, the surface effective temperature, the total surface luminosity, and the composition of the envelope. Then wih the structure of the envelope model known, we present a method for obtaining the raidal pulsation periods and growth rates for low order modes. The large amplitude pulsations observed for the yellow and red giants and supergiants are always these radial models, but for the stars nearer the main sequence, as for all of our stars and for the white dwarfs, there frequently are nonradial modes occuring also. Application of linear theory radial pulsation theory is made to the giant star sigma Scuti variables, while the linear nonradial theory will be used for the B stars in later lectures

  16. SpicyNodes Radial Map Engine

    Douma, M.; Ligierko, G.; Angelov, I.

    2008-10-01

    The need for information has increased exponentially over the past decades. The current systems for constructing, exploring, classifying, organizing, and searching information face the growing challenge of enabling their users to operate efficiently and intuitively in knowledge-heavy environments. This paper presents SpicyNodes, an advanced user interface for difficult interaction contexts. It is based on an underlying structure known as a radial map, which allows users to manipulate and interact in a natural manner with entities called nodes. This technology overcomes certain limitations of existing solutions and solves the problem of browsing complex sets of linked information. SpicyNodes is also an organic system that projects users into a living space, stimulating exploratory behavior and fostering creative thought. Our interactive radial layout is used for educational purposes and has the potential for numerous other applications.

  17. Globalization and structural change in the U.S. forest sector: an evolving context for sustainable forest management

    Peter Ince; Albert Schuler; Henry Spelter; William Luppold

    2007-01-01

    This report examines economic implications for sustainable forest management of globalization and related structural changes in the forest sector of the United States. Globalization has accelerated structural change in the U.S. forest sector, favored survival of larger and more capital-intensive enterprises, and altered historical patterns of resource use.

  18. Vortex core structure and global properties of rapidly rotating Bose-Einstein condensates

    Baym, Gordon; Pethick, C.J.

    2004-01-01

    We develop an approach for calculating stationary states of rotating Bose-Einstein condensates in harmonic traps which is applicable for arbitrary ratios of the rotation frequency to the transverse frequency of the trap ω perpendicular . Assuming the number of vortices to be large, we write the condensate wave function as the product of a function that describes the structure of individual vortices times an envelope function varying slowly on the scale of the vortex spacing. By minimizing the energy, we derive Gross-Pitaevskii equations that determine the properties of individual vortices and the global structure of the cloud. For low rotation rates, the structure of a vortex is that of an isolated vortex in a uniform medium, while for rotation rates approaching the frequency of the trap (the mean-field lowest-Landau-level regime), the structure is that of the lowest p-wave state of a particle in a harmonic trap with frequency ω perpendicular . The global structure of the cloud is determined by minimizing the energy with respect to variations of the envelope function; for conditions appropriate to most experimental investigations to date, we predict that the transverse density profile of the cloud will be of the Thomas-Fermi form, rather than the Gaussian structure predicted on the assumption that the wave function consists only of components in the lowest Landau level for a regular array of vortices

  19. Towards the results of global analysis of data on nucleon electromagnetic structure

    Bilen'kaya, S.I.; Dubnicka, S.; Dubnickova, A.Z.; Strizenec, P.

    1991-01-01

    Peculiar features of the recent global analysis of data on the nucleon electromagnetic structure are discussed on the detail in order to reconsider reliability of the predicted result that the electron-positron annihilation into a neutron-antineutron cross-section is considerably larger that the cross-section of the electron-positron annihilation into a proton-antiproton pair. 14 refs.; 3 figs.; 3 tabs

  20. Goals and organisational structure of the movement for global mental health.

    Minas, Harry; Wright, Alexandra; Kakuma, Ritsuko

    2014-01-01

    The Movement for Global Mental Health (MGMH), established in 2008, is in a period of transition, as is the field of global mental health. The transfer of Secretariat functions from the Centre for International Mental Health to the Public Health Foundation of India was a suitable time to reflect on the goals of MGMH and on the form of organisational structure that would best serve the organisation in its efforts to achieve its goals. An online survey was sent to the 4,000 registered members of MGMH seeking the views of the membership on both the goals of MGMH and on the preferred form of organisational structure. There was near unanimous (95%) agreement with the MGMH goals as stated at the time of the survey. The current form of organisation of MGMH, a loose network of individuals and organisations registered through the MGMH website, was the least preferred (29.9%) form of organisation for the future of MGMH. More than two thirds (70.1%) of respondents would prefer a formal legal structure, with 60% of this group favouring a Charitable Organisation structure and 40% preferring an international Association structure. The response rate (7%) was too small and too skewed (predominantly academics and health professionals from high income countries) to allow any clear conclusions to be drawn from the survey. However, both the fact that responses were too few and skewed and the preferences expressed by respondents raise issues for careful consideration by the current MGMH Secretariat. The global mental health field and MGMH are in a time of transition. The move to the new secretariat is an opportunity for systematic consideration of the organisational structure and governance arrangements that will best serve the goals of MGMH.

  1. Risk Assessment Method for Offshore Structure Based on Global Sensitivity Analysis

    Zou Tao

    2012-01-01

    Full Text Available Based on global sensitivity analysis (GSA, this paper proposes a new risk assessment method for an offshore structure design. This method quantifies all the significances among random variables and their parameters at first. And by comparing the degree of importance, all minor factors would be negligible. Then, the global uncertainty analysis work would be simplified. Global uncertainty analysis (GUA is an effective way to study the complexity and randomness of natural events. Since field measured data and statistical results often have inevitable errors and uncertainties which lead to inaccurate prediction and analysis, the risk in the design stage of offshore structures caused by uncertainties in environmental loads, sea level, and marine corrosion must be taken into account. In this paper, the multivariate compound extreme value distribution model (MCEVD is applied to predict the extreme sea state of wave, current, and wind. The maximum structural stress and deformation of a Jacket platform are analyzed and compared with different design standards. The calculation result sufficiently demonstrates the new risk assessment method’s rationality and security.

  2. The global stability of a delayed predator-prey system with two stage-structure

    Wang Fengyan; Pang Guoping

    2009-01-01

    Based on the classical delayed stage-structured model and Lotka-Volterra predator-prey model, we introduce and study a delayed predator-prey system, where prey and predator have two stages, an immature stage and a mature stage. The time delays are the time lengths between the immature's birth and maturity of prey and predator species. Results on global asymptotic stability of nonnegative equilibria of the delay system are given, which generalize and suggest that good continuity exists between the predator-prey system and its corresponding stage-structured system.

  3. Applications of a global nuclear-structure model to studies of the heaviest elements

    Moeller, P.; Nix, J.R.

    1993-01-01

    We present some new results on heavy-element nuclear-structure properties calculated on the basis of the finite-range droplet model and folded-Yukawa single-particle potential. Specifically, we discuss calculations of nuclear ground-state masses and microscopic corrections, α-decay properties, β-decay properties, fission potential-energy surfaces, and spontaneous-fission half-lives. These results, obtained in a global nuclear-structure approach, are particularly reliable for describing the stability properties of the heaviest elements

  4. Bank Funding Structures and Risk; Evidence From the Global Financial Crisis

    Pablo Federico; Francisco F. Vazquez

    2012-01-01

    This paper analyzes the evolution of bank funding structures in the run up to the global financial crisis and studies the implications for financial stability, exploiting a bank-level dataset that covers about 11,000 banks in the U.S. and Europe during 2001?09. The results show that banks with weaker structural liquidity and higher leverage in the pre-crisis period were more likely to fail afterward. The likelihood of bank failure also increases with bank risk-taking. In the cross-section, th...

  5. Global control of colored moiré pattern in layered optical structures

    Li, Kunyang; Zhou, Yangui; Pan, Di; Ma, Xueyan; Ma, Hongqin; Liang, Haowen; Zhou, Jianying

    2018-05-01

    Accurate description of visual effect of colored moiré pattern caused by layered optical structures consisting of gratings and Fresnel lens is proposed in this work. The colored moiré arising from the periodic and quasi-periodic structures is numerically simulated and experimentally verified. It is found that the visibility of moiré pattern generated by refractive optical elements is related to not only the spatial structures of gratings but also the viewing angles. To effectively control the moiré visibility, two constituting gratings are slightly separated. Such scheme is proved to be effective to globally eliminate moiré pattern for displays containing refractive optical films with quasi-periodic structures.

  6. Radial lean direct injection burner

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  7. Radial cracks and fracture mechanism of radially oriented ring 2:17 type SmCo magnets

    Tian Jianjun; Pan Dean; Zhou Hao; Yin Fuzheng; Tao Siwu; Zhang Shengen; Qu Xuanhui

    2009-01-01

    Radially oriented ring 2:17 type SmCo magnets have different microstructure in the radial direction (easy magnetization) and axial direction (hard magnetization). The structure of the cross-section in radial direction is close-packed atomic plane, which shows cellular microstructure. The microstructure of the cross-section in axial direction consists of a mixture of rhombic microstructure and parallel lamella phases. So the magnets have obvious anisotropy of thermal expansion in different directions. The difference of the thermal expansion coefficients reaches the maximum value at 830-860 deg. C, which leads to radial cracks during quenching. The magnets have high brittlement because there are fewer slip systems in crystal structure. The fracture is brittle cleavage fracture.

  8. History, Structure and Agency in Global Health Governance; Comment on “Global Health Governance Challenges 2016 – Are We Ready?”

    Stephen Gill

    2017-04-01

    Full Text Available Ilona Kickbusch’s thought provoking editorial is criticized in this commentary, partly because she fails to refer to previous critical work on the global conditions and policies that sustain inequality, poverty, poor health and damage to the biosphere and, as a result, she misreads global power and elides consideration of the fundamental historical structures of political and material power that shape agency in global health governance. We also doubt that global health can be improved through structures and processes of multilateralism that are premised on the continued reproduction of the ecologically myopic and socially unsustainable market civilization model of capitalist development that currently prevails in the world economy. This model drives net financial flows from poor to rich countries and from the poor to the affluent and super wealthy individuals. By contrast, we suggest that significant progress in global health requires a profound and socially just restructuring of global power, greater global solidarity and the “development of sustainability.”

  9. Global Discontinuity Structure of the Mantle Transition Zone from Finite-Frequency Tomography of SS Precursors

    Guo, Z.; Zhou, Y.

    2017-12-01

    We report global structure of the 410-km and 660-km discontinuities from finite-frequency tomography using frequency-dependent traveltime measurements of SS precursors recorded at the Global Seismological Network (GSN). Finite-frequency sensitivity kernels for discontinuity depth perturbations are calculated in the framework of traveling-wave mode coupling. We parametrize the global discontinuities using a set of spherical triangular grid points and solve the tomographic inverse problem based on singular value decomposition. Our global 410-km and 660-km discontinuity models reveal distinctly different characteristics beneath the oceans and subduction zones. In general, oceanic regions are associated with a thinner mantle transition zone and depth perturbations of the 410-km and 660-km discontinuities are anti-correlated, in agreement with a thermal origin and an overall warm and dry mantle beneath the oceans. The perturbations are not uniform throughout the oceans but show strong small-scale variations, indicating complex processes in the mantle transition zone. In major subduction zones (except for South America where data coverage is sparse), depth perturbations of the 410-km and 660-km discontinuities are correlated, with both the 410-km and the 660-km discontinuities occurring at greater depths. The distributions of the anomalies are consistent with cold stagnant slabs just above the 660-km discontinuity and ascending return flows in a superadiabatic upper mantle.

  10. Protein structure modeling for CASP10 by multiple layers of global optimization.

    Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2014-02-01

    In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.

  11. Changes in residential, occupational and gender structure of the greater Bangkok in the globalization process

    Satoshi Nakagawa

    2004-12-01

    Full Text Available This study investigated recent changes in migration and population structure of the Greater Bangkok considering the impact of economic globalization. The spatial policy of the Thai government has lead newer investments for manufacturing to locate away from Bangkok Metropolis and thereby the industrial structure of Bangkok Metropolis has gradually turned into service-dominated, while the region surrounding Bangkok Metropolis has attracted factories mainly owned by foreign capital. Light industry and electronics industry are con-centrated in the adjacent provinces to Bangkok Metropolis and the heavy and petrochemical industry tends to be located in the outer zone of the surrounding region. The service sector and light industry as well as electronics industry prefer female workers and Bangkok met-ropolis and the adjoining provinces have become female-dominated population structure while male workers tend to gather in the outer zone attracted by heavy and petrochemical industry. It is possible to mention accordingly that the unbalanced spatial distribution of sex structure of population which might cause changes in the norm to the family formation in future is one of the consequences of economic globalization of Thailand, which the inves-tment promotion policy of the government did not assume.

  12. Coupled pulsating and cellular structure in the propagation of globally planar detonations in free space

    Han, Wenhu; Gao, Yang; Wang, Cheng; Law, Chung K.

    2015-01-01

    The globally planar detonation in free space is numerically simulated, with particular interest to understand and quantify the emergence and evolution of the one-dimensional pulsating instability and the two-dimensional cellular structure which is inherently also affected by pulsating instability. It is found that the pulsation includes three stages: rapid decay of the overdrive, approach to the Chapman-Jouguet state and emergence of weak pulsations, and the formation of strong pulsations; while evolution of the cellular structure also exhibits distinct behavior at these three stages: no cell formation, formation of small-scale, irregular cells, and formation of regular cells of a larger scale. Furthermore, the average shock pressure in the detonation front consists of fine-scale oscillations reflecting the collision dynamics of the triple-shock structure and large-scale oscillations affected by the global pulsation. The common stages of evolution between the cellular structure and the pulsating behavior, as well as the existence of shock-front pressure oscillation, suggest highly correlated mechanisms between them. Detonations with period doubling, period quadrupling, and chaotic amplitudes were also observed and studied for progressively increasing activation energies

  13. Towards Global Jihadism: Al-Qaeda's Strategic, Ideological and Structural Adaptations since 9/11

    Bill Braniff

    2011-05-01

    Full Text Available In recent years, Al-Qaeda has suffered a number of setbacks, but has also successfully spawned an expansionist global jihadist movement that will survive the death of Osama bin Laden. This article describes how the multifaceted threat posed by global jihadism has evolved over the last decade. It first recounts some of the more salient examples of Al-Qaeda’s post-9/11 strategic, ideological, and structural adaptations, and then offers a balance sheet of Al-Qaeda’s contemporary strengths and weaknesses. Al-Qaeda continues to enable the violence of others, orient that violence towards the United States and its allies in a distributed game of attrition warfare, and foster a dichotomous “us versus them” narrative between the Muslim world and the rest of the international community. Despite this overarching consistency, Al-Qaeda shepherds a different phenomenon than it did ten years ago. The aggregation of the movement’s strategic, ideological, and structural adaptations has fundamentally changed the nature of the jihadist threat to the West. This evolved threat is not inherently more dangerous, as counterterrorism efforts today focus on and disrupt capability earlier and more consistently than prior to September 2001. This multifaceted global jihad will, however, continue to produce greater numbers of attacks in more locations, from a more diverse cadre of individuals spanning a wider ideological spectrum.   

  14. From local pixel structure to global image super-resolution: a new face hallucination framework.

    Hu, Yu; Lam, Kin-Man; Qiu, Guoping; Shen, Tingzhi

    2011-02-01

    We have developed a new face hallucination framework termed from local pixel structure to global image super-resolution (LPS-GIS). Based on the assumption that two similar face images should have similar local pixel structures, the new framework first uses the input low-resolution (LR) face image to search a face database for similar example high-resolution (HR) faces in order to learn the local pixel structures for the target HR face. It then uses the input LR face and the learned pixel structures as priors to estimate the target HR face. We present a three-step implementation procedure for the framework. Step 1 searches the database for K example faces that are the most similar to the input, and then warps the K example images to the input using optical flow. Step 2 uses the warped HR version of the K example faces to learn the local pixel structures for the target HR face. An effective method for learning local pixel structures from an individual face, and an adaptive procedure for fusing the local pixel structures of different example faces to reduce the influence of warping errors, have been developed. Step 3 estimates the target HR face by solving a constrained optimization problem by means of an iterative procedure. Experimental results show that our new method can provide good performances for face hallucination, both in terms of reconstruction error and visual quality; and that it is competitive with existing state-of-the-art methods.

  15. Guiding automated NMR structure determination using a global optimization metric, the NMR DP score

    Huang, Yuanpeng Janet, E-mail: yphuang@cabm.rutgers.edu; Mao, Binchen; Xu, Fei; Montelione, Gaetano T., E-mail: gtm@rutgers.edu [Rutgers, The State University of New Jersey, Department of Molecular Biology and Biochemistry, Center for Advanced Biotechnology and Medicine, and Northeast Structural Genomics Consortium (United States)

    2015-08-15

    ASDP is an automated NMR NOE assignment program. It uses a distinct bottom-up topology-constrained network anchoring approach for NOE interpretation, with 2D, 3D and/or 4D NOESY peak lists and resonance assignments as input, and generates unambiguous NOE constraints for iterative structure calculations. ASDP is designed to function interactively with various structure determination programs that use distance restraints to generate molecular models. In the CASD–NMR project, ASDP was tested and further developed using blinded NMR data, including resonance assignments, either raw or manually-curated (refined) NOESY peak list data, and in some cases {sup 15}N–{sup 1}H residual dipolar coupling data. In these blinded tests, in which the reference structure was not available until after structures were generated, the fully-automated ASDP program performed very well on all targets using both the raw and refined NOESY peak list data. Improvements of ASDP relative to its predecessor program for automated NOESY peak assignments, AutoStructure, were driven by challenges provided by these CASD–NMR data. These algorithmic improvements include (1) using a global metric of structural accuracy, the discriminating power score, for guiding model selection during the iterative NOE interpretation process, and (2) identifying incorrect NOESY cross peak assignments caused by errors in the NMR resonance assignment list. These improvements provide a more robust automated NOESY analysis program, ASDP, with the unique capability of being utilized with alternative structure generation and refinement programs including CYANA, CNS, and/or Rosetta.

  16. Condition of damping of anomalous radial transport, determined by ordered convective electron dynamics

    Maslov, V.I.; Barchuk, S.V.; Lapshin, V.I.; Volkov, E.D.; Melentsov, Yu.V.

    2006-01-01

    It is shown, that at development of instability due to a radial gradient of density in the crossed electric and magnetic fields in nuclear fusion installations ordering convective cells can be excited. It provides anomalous particle transport. The spatial structures of these convective cells have been constructed. The radial dimensions of these convective cells depend on their amplitudes and on a radial gradient of density. The convective-diffusion equation for radial dynamics of the electrons has been derived. At the certain value of the universal controlling parameter, the convective cell excitation and the anomalous radial transport are suppressed. (author)

  17. Radial anisotropy of Northeast Asia inferred from Bayesian inversions of ambient noise data

    Lee, S. J.; Kim, S.; Rhie, J.

    2017-12-01

    The eastern margin of the Eurasia plate exhibits complex tectonic settings due to interactions with the subducting Pacific and Philippine Sea plates and the colliding India plate. Distributed extensional basins and intraplate volcanoes, and their heterogeneous features in the region are not easily explained with a simple mechanism. Observations of radial anisotropy in the entire lithosphere and the part of the asthenosphere provide the most effective evidence for the deformation of the lithosphere and the associated variation of the lithosphere-asthenosphere boundary (LAB). To infer anisotropic structures of crustal and upper-mantle in this region, radial anisotropy is measured using ambient noise data. In a continuation of previous Rayleigh wave tomography study in Northeast Asia, we conduct Love wave tomography to determine radial anisotropy using the Bayesian inversion techniques. Continuous seismic noise recordings of 237 broad-band seismic stations are used and more than 55,000 group and phase velocities of fundamental mode are measured for periods of 5-60 s. Total 8 different types of dispersion maps of Love wave from this study (period 10-60 s), Rayleigh wave from previous tomographic study (Kim et al., 2016; period 8-70 s) and longer period data (period 70-200 s) from a global model (Ekstrom, 2011) are jointly inverted using a hierarchical and transdimensional Bayesian technique. For each grid-node, boundary depths, velocities and anisotropy parameters of layers are sampled simultaneously on the assumption of the layered half-space model. The constructed 3-D radial anisotropy model provides much more details about the crust and upper mantle anisotropic structures, and about the complex undulation of the LAB.

  18. New Faces of Globalization: Market Integration, Production Disintegration, Genesis of New Global Organizational Structures for Production and Trade

    Sarmiza Pencea

    2010-01-01

    Due to trade liberalisation and ITC revolution, companies could imagine new and better ways of creating and delivering value. In search of higher efficiency, competitiveness and profits, they reorganise, choosing to focus on their core competencies and to globally outsource, or offshore non-core activities and functions. As a result, reorganisation and relocation became the new forces of change across economies, leading to the rise of new, more diverse and more efficient global organisational...

  19. Vortex Whistle in Radial Intake

    Tse, Man-Chun

    2004-01-01

    In a radial-to-axial intake with inlet guide vanes (IGV) at the entry, a strong flow circulation Gamma can be generated from the tangential flow components created by the IGVs when their setting exceed about halfclosing (approx. 45 deg...

  20. Global chromosomal structural instability in a subpopulation of starving Escherichia coli cells.

    Dongxu Lin

    2011-08-01

    Full Text Available Copy-number variations (CNVs constitute very common differences between individual humans and possibly all genomes and may therefore be important fuel for evolution, yet how they form remains elusive. In starving Escherichia coli, gene amplification is induced by stress, controlled by the general stress response. Amplification has been detected only encompassing genes that confer a growth advantage when amplified. We studied the structure of stress-induced gene amplification in starving cells in the Lac assay in Escherichia coli by array comparative genomic hybridization (aCGH, with polymerase chain reaction (pcr and DNA sequencing to establish the structures generated. About 10% of 300 amplified isolates carried other chromosomal structural change in addition to amplification. Most of these were inversions and duplications associated with the amplification event. This complexity supports a mechanism similar to that seen in human non-recurrent copy number variants. We interpret these complex events in terms of repeated template switching during DNA replication. Importantly, we found a significant occurrence (6 out of 300 of chromosomal structural changes that were apparently not involved in the amplification event. These secondary changes were absent from 240 samples derived from starved cells not carrying amplification, suggesting that amplification happens in a differentiated subpopulation of stressed cells licensed for global chromosomal structural change and genomic instability. These data imply that chromosomal structural changes occur in bursts or showers of instability that may have the potential to drive rapid evolution.

  1. A global fingerprint of macro-scale changes in urban structure from 1999 to 2009

    Frolking, Steve; Milliman, Tom; Seto, Karen C; Friedl, Mark A

    2013-01-01

    Urban population now exceeds rural population globally, and 60–80% of global energy consumption by households, businesses, transportation, and industry occurs in urban areas. There is growing evidence that built-up infrastructure contributes to carbon emissions inertia, and that investments in infrastructure today have delayed climate cost in the future. Although the United Nations statistics include data on urban population by country and select urban agglomerations, there are no empirical data on built-up infrastructure for a large sample of cities. Here we present the first study to examine changes in the structure of the world’s largest cities from 1999 to 2009. Combining data from two space-borne sensors—backscatter power (PR) from NASA’s SeaWinds microwave scatterometer, and nighttime lights (NL) from NOAA’s defense meteorological satellite program/operational linescan system (DMSP/OLS)—we report large increases in built-up infrastructure stock worldwide and show that cities are expanding both outward and upward. Our results reveal previously undocumented recent and rapid changes in urban areas worldwide that reflect pronounced shifts in the form and structure of cities. Increases in built-up infrastructure are highest in East Asian cities, with Chinese cities rapidly expanding their material infrastructure stock in both height and extent. In contrast, Indian cities are primarily building out and not increasing in verticality. This new dataset will help characterize the structure and form of cities, and ultimately improve our understanding of how cities affect regional-to-global energy use and greenhouse gas emissions. (letter)

  2. The population genomics of begomoviruses: global scale population structure and gene flow

    Prasanna HC

    2010-09-01

    Full Text Available Abstract Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could

  3. A stochastic global identification framework for aerospace structures operating under varying flight states

    Kopsaftopoulos, Fotis; Nardari, Raphael; Li, Yu-Hung; Chang, Fu-Kuo

    2018-01-01

    In this work, a novel data-based stochastic "global" identification framework is introduced for aerospace structures operating under varying flight states and uncertainty. In this context, the term "global" refers to the identification of a model that is capable of representing the structure under any admissible flight state based on data recorded from a sample of these states. The proposed framework is based on stochastic time-series models for representing the structural dynamics and aeroelastic response under multiple flight states, with each state characterized by several variables, such as the airspeed, angle of attack, altitude and temperature, forming a flight state vector. The method's cornerstone lies in the new class of Vector-dependent Functionally Pooled (VFP) models which allow the explicit analytical inclusion of the flight state vector into the model parameters and, hence, system dynamics. This is achieved via the use of functional data pooling techniques for optimally treating - as a single entity - the data records corresponding to the various flight states. In this proof-of-concept study the flight state vector is defined by two variables, namely the airspeed and angle of attack of the vehicle. The experimental evaluation and assessment is based on a prototype bio-inspired self-sensing composite wing that is subjected to a series of wind tunnel experiments under multiple flight states. Distributed micro-sensors in the form of stretchable sensor networks are embedded in the composite layup of the wing in order to provide the sensing capabilities. Experimental data collected from piezoelectric sensors are employed for the identification of a stochastic global VFP model via appropriate parameter estimation and model structure selection methods. The estimated VFP model parameters constitute two-dimensional functions of the flight state vector defined by the airspeed and angle of attack. The identified model is able to successfully represent the wing

  4. Global universe anisotropy probed by the alignment of structures in the cosmic microwave background.

    Wiaux, Y; Vielva, P; Martínez-González, E; Vandergheynst, P

    2006-04-21

    We question the global universe isotropy by probing the alignment of local structures in the cosmic microwave background (CMB) radiation. The original method proposed relies on a steerable wavelet decomposition of the CMB signal on the sphere. The analysis of the first-year Wilkinson Microwave Anisotropy Probe data identifies a mean preferred plane with a normal direction close to the CMB dipole axis, and a mean preferred direction in this plane, very close to the ecliptic poles axis. Previous statistical anisotropy results are thereby synthesized, but further analyses are still required to establish their origin.

  5. Beyond "the West as Method": Repositioning the Japanese Education Research Communities in/against the Global Structure of Academic Knowledge

    Takayama, Keita

    2016-01-01

    Drawing on the recent critiques of the global knowledge economy of social science research, this article explores possible ways in which the Japanese education research communities can reposition themselves in the wider international education research community. The premises of this discussion are that there exists a global structure of academic…

  6. Integral relations in complex space and the global analytic and monodromic structure of Green's functions in quantum field theory

    Bros, J.

    1980-01-01

    In this lecture, we present some of the ideas of a global consistent approach to the analytic and monodromic structure of Green's functions and scattering amplitudes of elementary particles on the basis of general quantum field theory. (orig.)

  7. Radial head dislocation during proximal radial shaft osteotomy.

    Hazel, Antony; Bindra, Randy R

    2014-03-01

    The following case report describes a 48-year-old female patient with a longstanding both-bone forearm malunion, who underwent osteotomies of both the radius and ulna to improve symptoms of pain and lack of rotation at the wrist. The osteotomies were templated preoperatively. During surgery, after performing the planned radial shaft osteotomy, the authors recognized that the radial head was subluxated. The osteotomy was then revised from an opening wedge to a closing wedge with improvement of alignment and rotation. The case report discusses the details of the operation, as well as ways in which to avoid similar shortcomings in the future. Copyright © 2014 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  8. Vascularised Fibular Graft for a Radial Defect following Tumour ...

    HP

    The mass was located on the radial aspect of the distal right ... modification, internal or external fixation with bone grafting, structural grafts of ... Our index case report demonstrates that free vascularized fibular graft transfer is a feasible option ... structural support, the potential for graft hypertrophy, relative resistance to ...

  9. Structure analysis of the global metabolic regulator Crc from Pseudomonas aeruginosa.

    Wei, Yong; Zhang, Heng; Gao, Zeng-Qiang; Xu, Jian-Hua; Liu, Quan-Sheng; Dong, Yu-Hui

    2013-01-01

    The global metabolic regulator catabolite repression control (Crc) has recently been found to modulate the susceptibility to antibiotics and virulence in the opportunistic pathogen Pseudomonas aeruginosa and been suggested as a nonlethal target for novel antimicrobials. In P. aeruginosa, Crc couples with the CA motifs from the small RNA CrcZ to form a post-transcriptional regulator system and is removed from the 5'-end of the target mRNAs. In this study, we first reported the crystal structure of Crc from P. aeruginosa refined to 2.20 Å. The structure showed that it consists of two halves with similar overall topology and there are 11 β strands surrounded by 13 helices, forming a four-layered α/β-sandwich. The circular dichroism spectroscopy revealed that it is thermostable in solution and shares similar characteristics to that in crystal. Comprehensive structural analysis and comparison with the homologies of Crc showed high similarity with several known nucleases and consequently may be classified into a member exodeoxyribonuclease III. However, it shows distinct substrate specificity (RNA as the preferred substrate) compared to these DNA endonucleases. Structural comparisons also revealed potential RNA recognition and binding region mainly consisting of five flexible loops. Our structure study provided the basis for the future application of Crc as a target to develop new antibiotics. Copyright © 2012 International Union of Biochemistry and Molecular Biology, Inc.

  10. Radial propagation of microturbulence in tokamaks

    Garbet, X.; Laurent, L.; Roubin, J.P.; Samain, A.

    1992-01-01

    Energy confinement time in tokamaks exhibits a clear dependence on global plasma parameters. This is not the case for transport coefficients; their dependence on local plasma parameters cannot be precisely established. The aim of the present paper is to give a possible explanation of this behaviour; turbulence propagates radially because of departure from cylindrical geometry. This implies that the turbulence level at a given point and hence transport coefficients are not only functions of local plasma parameters. A quantitative estimate of the propagation velocity is derived from a Lagrangian formalism. Two cases are considered: the effect of toroidicity and the effect of non linear mode-mode coupling. The consequences of this model are discussed. This process does not depend on the type of instability. For the sake of simplicity only electrostatic perturbations are considered

  11. Radial mixing of material in the asterodial zone

    Ruzmaikina, T.V.; Safronov, V.S.; Weidenschilling, S.J.

    1989-01-01

    The asteroid belt shows radial zoning of compositional structure. The most abundant types are successively S, C and P types from the inner to the outer parts of the main belt, and D type in the Trojan clouds. Boundaries between compositional zones are not sharp, but gradual transitions over scales ∼1 AU in semimajor axis. The authors examine processes for producing this structure before, during and after the accretion of asteroids. The initial structure is established by temperature and composition gradients in the turbulent solar nebula during the collapse of the presolar cloud. The radial scale of the zoning, comparable to the disk thickness, favors disk models with relatively low turbulent viscosity. Radial decay of solid bodies due to gas drag during settling to the central plane and planetesimal formation probably causes only a small degree of mixing, due to the systematic nature of drag-induced motions

  12. Improvement of training set structure in fusion data cleaning using Time-Domain Global Similarity method

    Liu, J.; Lan, T.; Qin, H.

    2017-01-01

    Traditional data cleaning identifies dirty data by classifying original data sequences, which is a class-imbalanced problem since the proportion of incorrect data is much less than the proportion of correct ones for most diagnostic systems in Magnetic Confinement Fusion (MCF) devices. When using machine learning algorithms to classify diagnostic data based on class-imbalanced training set, most classifiers are biased towards the major class and show very poor classification rates on the minor class. By transforming the direct classification problem about original data sequences into a classification problem about the physical similarity between data sequences, the class-balanced effect of Time-Domain Global Similarity (TDGS) method on training set structure is investigated in this paper. Meanwhile, the impact of improved training set structure on data cleaning performance of TDGS method is demonstrated with an application example in EAST POlarimetry-INTerferometry (POINT) system.

  13. New approach to a global description of the deuteron electromagnetic structure

    Dubnickova, A.Z.; Dubnicka, S.

    1991-07-01

    A new approach to a global description of the deuteron electro-magnetic (EM) structure is developed on the bases of a modification of the well known vector-meson-dominance (VMD) model of EM hadron interactions by incorporating the true deuteron form factor (FF) analytic properties, non-zero vector meson widths and the correct power asymptotic behaviour as predicted by QCD. As a result, the experimental data on elastic electron-deuteron scattering structure functions A(t) and B(t) are described quite well, the deuteron EM FF's in the space-like region are reproduced and their behaviour in the time- like region is predicted. At the same time the couplings of the ω-mesons to deuteron are evaluated and the total cross section of e + e - → dd-bar process is determined for the first time. (author). 47 refs, 5 figs

  14. Fast Gaussian kernel learning for classification tasks based on specially structured global optimization.

    Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen

    2014-09-01

    For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Global population structure of the spiny dogfish Squalus acanthias, a temperate shark with an antitropical distribution.

    Veríssimo, A; McDowell, J R; Graves, J E

    2010-04-01

    The spiny dogfish (Squalus acanthias) is a temperate, coastal squaloid shark with an antitropical distribution in the Atlantic and Pacific oceans. The global population structure of this species is poorly understood, although individuals are known to undergo extensive migrations within coastal waters and across ocean basins. In this study, an analysis of the global population structure of the spiny dogfish was conducted using eight polymorphic nuclear microsatellite markers and a 566-bp fragment of the mitochondrial ND2 gene region. A low level of genetic divergence was found among collections from the Atlantic and South Pacific basins, whereas a high level of genetic divergence was found among Pacific Ocean collections. Two genetically distinct groups were recovered by both marker classes: one exclusive to North Pacific collections, and one including collections from the South Pacific and Atlantic locations. The strong genetic break across the equatorial Pacific coincides with major regional differences in the life-history characters of spiny dogfish, suggesting that spiny dogfish in areas on either side of the Pacific equator have been evolving independently for a considerable time. Phylogeographic analyses indicate that spiny dogfish populations had a Pacific origin, and that the North Atlantic was colonized as a result of a recent range expansion from the South American coast. Finally, the available data strongly argue for the taxonomic separation of the North Pacific spiny dogfish from S. acanthias and a re-evaluation of the specific status of S. acanthias is warranted.

  16. Changes in residential, occupational and gender structure of the greater Bangkok in the globalization process

    Satoshi Nakagawa

    2004-01-01

    Full Text Available This study investigated recent changes in migration and population structure of the GreaterBangkok considering the impact of economic globalization. The spatial policy of the Thaigovernment has lead newer investments for manufacturing to locate away from BangkokMetropolis and thereby the industrial structure of Bangkok Metropolis has gradually turnedinto service-dominated, while the region surrounding Bangkok Metropolis has attractedfactories mainly owned by foreign capital. Light industry and electronics industry are concentratedin the adjacent provinces to Bangkok Metropolis and the heavy and petrochemicalindustry tends to be located in the outer zone of the surrounding region. The service sectorand light industry as well as electronics industry prefer female workers and Bangkok metropolisand the adjoining provinces have become female-dominated population structurewhile male workers tend to gather in the outer zone attracted by heavy and petrochemicalindustry. It is possible to mention accordingly that the unbalanced spatial distribution of sexstructure of population which might cause changes in the norm to the family formation infuture is one of the consequences of economic globalization of Thailand, which the investmentpromotion policy of the government did not assume.

  17. Imaging of radial wrist pain. I. Imaging modalities and anatomy

    Lee, Ryan Ka Lok; Griffith, James F.; Ng, Alex Wing Hung [The Chinese University of Hong Kong, Department of Imaging and Interventional Radiology, Prince of Wales Hospital, Hong Kong, Shatin (China); Wong, Clara Wing Yee [The Chinese University of Hong Kong, Department of Orthopedics and Traumatology, Shatin (China)

    2014-06-15

    Radial wrist pain is a common clinical complaint. The relatively complex anatomy in this region, combined with the small size of the anatomical structures and occasionally subtle imaging findings, can pose problems when trying to localize the exact cause of pain. To fully comprehend the underlying pathology, one needs a good understanding of both radial-sided wrist anatomy and the relative merits of the different imaging techniques used to assess these structures. In part I of this review, these aspects will be discussed. (orig.)

  18. RADIAL STABILITY IN STRATIFIED STARS

    Pereira, Jonas P.; Rueda, Jorge A.

    2015-01-01

    We formulate within a generalized distributional approach the treatment of the stability against radial perturbations for both neutral and charged stratified stars in Newtonian and Einstein's gravity. We obtain from this approach the boundary conditions connecting any two phases within a star and underline its relevance for realistic models of compact stars with phase transitions, owing to the modification of the star's set of eigenmodes with respect to the continuous case

  19. Automated global structure extraction for effective local building block processing in XCS.

    Butz, Martin V; Pelikan, Martin; Llorà, Xavier; Goldberg, David E

    2006-01-01

    Learning Classifier Systems (LCSs), such as the accuracy-based XCS, evolve distributed problem solutions represented by a population of rules. During evolution, features are specialized, propagated, and recombined to provide increasingly accurate subsolutions. Recently, it was shown that, as in conventional genetic algorithms (GAs), some problems require efficient processing of subsets of features to find problem solutions efficiently. In such problems, standard variation operators of genetic and evolutionary algorithms used in LCSs suffer from potential disruption of groups of interacting features, resulting in poor performance. This paper introduces efficient crossover operators to XCS by incorporating techniques derived from competent GAs: the extended compact GA (ECGA) and the Bayesian optimization algorithm (BOA). Instead of simple crossover operators such as uniform crossover or one-point crossover, ECGA or BOA-derived mechanisms are used to build a probabilistic model of the global population and to generate offspring classifiers locally using the model. Several offspring generation variations are introduced and evaluated. The results show that it is possible to achieve performance similar to runs with an informed crossover operator that is specifically designed to yield ideal problem-dependent exploration, exploiting provided problem structure information. Thus, we create the first competent LCSs, XCS/ECGA and XCS/BOA, that detect dependency structures online and propagate corresponding lower-level dependency structures effectively without any information about these structures given in advance.

  20. Velocidades radiales en Collinder 121

    Arnal, M.; Morrell, N.

    Se han llevado a cabo observaciones espectroscópicas de unas treinta estrellas que son posibles miembros del cúmulo abierto Collinder 121. Las mismas fueron realizadas con el telescopio de 2.15m del Complejo Astronómico El Leoncito (CASLEO). El análisis de las velocidades radiales derivadas del material obtenido, confirma la realidad de Collinder 121, al menos desde el punto de vista cinemático. La velocidad radial baricentral (LSR) del cúmulo es de +17 ± 3 km.s-1. Esta velocidad coincide, dentro de los errores, con la velocidad radial (LSR) de la nebulosa anillo S308, la cual es de ~20 ± 10 km.s-1. Como S308 se encuentra físicamente asociada a la estrella Wolf-Rayet HD~50896, es muy probable que esta última sea un miembro de Collinder 121. Desde un punto de vista cinemático, la supergigante roja HD~50877 (K3Iab) también pertenecería a Collinder 121. Basándonos en la pertenencia de HD~50896 a Collinder 121, y en la interacción encontrada entre el viento de esta estrella y el medio interestelar circundante a la misma, se estima para este cúmulo una distancia del orden de 1 kpc.

  1. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    Russo, Matthew; Thompson, Christopher

    2015-01-01

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B r ∼ (10 −4 –10 −2 )(r/ AU) −2 G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10 −8 M ⊙ yr −1 are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper

  2. RADIALLY MAGNETIZED PROTOPLANETARY DISK: VERTICAL PROFILE

    Russo, Matthew [Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7 (Canada); Thompson, Christopher [Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8 (Canada)

    2015-11-10

    This paper studies the response of a thin accretion disk to an external radial magnetic field. Our focus is on protoplanetary disks (PPDs), which are exposed during their later evolution to an intense, magnetized wind from the central star. A radial magnetic field is mixed into a thin surface layer, wound up by the disk shear, and pushed downward by a combination of turbulent mixing and ambipolar and ohmic drift. The toroidal field reaches much greater strengths than the seed vertical field that is usually invoked in PPD models, even becoming superthermal. Linear stability analysis indicates that the disk experiences the magnetorotational instability (MRI) at a higher magnetization than a vertically magnetized disk when both the effects of ambipolar and Hall drift are taken into account. Steady vertical profiles of density and magnetic field are obtained at several radii between 0.06 and 1 AU in response to a wind magnetic field B{sub r} ∼ (10{sup −4}–10{sup −2})(r/ AU){sup −2} G. Careful attention is given to the radial and vertical ionization structure resulting from irradiation by stellar X-rays. The disk is more strongly magnetized closer to the star, where it can support a higher rate of mass transfer. As a result, the inner ∼1 AU of a PPD is found to evolve toward lower surface density. Mass transfer rates around 10{sup −8} M{sub ⊙} yr{sup −1} are obtained under conservative assumptions about the MRI-generated stress. The evolution of the disk and the implications for planet migration are investigated in the accompanying paper.

  3. Protein structure modeling and refinement by global optimization in CASP12.

    Hong, Seung Hwan; Joung, InSuk; Flores-Canales, Jose C; Manavalan, Balachandran; Cheng, Qianyi; Heo, Seungryong; Kim, Jong Yun; Lee, Sun Young; Nam, Mikyung; Joo, Keehyoung; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung

    2018-03-01

    For protein structure modeling in the CASP12 experiment, we have developed a new protocol based on our previous CASP11 approach. The global optimization method of conformational space annealing (CSA) was applied to 3 stages of modeling: multiple sequence-structure alignment, three-dimensional (3D) chain building, and side-chain re-modeling. For better template selection and model selection, we updated our model quality assessment (QA) method with the newly developed SVMQA (support vector machine for quality assessment). For 3D chain building, we updated our energy function by including restraints generated from predicted residue-residue contacts. New energy terms for the predicted secondary structure and predicted solvent accessible surface area were also introduced. For difficult targets, we proposed a new method, LEEab, where the template term played a less significant role than it did in LEE, complemented by increased contributions from other terms such as the predicted contact term. For TBM (template-based modeling) targets, LEE performed better than LEEab, but for FM targets, LEEab was better. For model refinement, we modified our CASP11 molecular dynamics (MD) based protocol by using explicit solvents and tuning down restraint weights. Refinement results from MD simulations that used a new augmented statistical energy term in the force field were quite promising. Finally, when using inaccurate information (such as the predicted contacts), it was important to use the Lorentzian function for which the maximal penalty arising from wrong information is always bounded. © 2017 Wiley Periodicals, Inc.

  4. The Sustainability of Global Chain Governance: Network Structures and Local Supplier Upgrading in Thailand

    Sungchul Cho

    2016-09-01

    Full Text Available Although it has been widely accepted that insertion into global production networks may play a critical role in fostering local supplier upgrading, scholars have yet to fully incorporate heterogeneous configurations of buyer-supplier relationships within networks into empirical testing. Using a representative sample of manufacturing firms in Thailand, we propose a more nuanced empirical framework that asks which features of buyer-supplier relationships are related to which aspects of local supplier upgrading. Our findings, derived from latent class analysis, show that the ways value chains are governed can exert varying effects on different types of technological upgrading. Being a multinational corporation (MNC supplier was found to have positive effects on process and minor product upgrading, irrespective of the types of buyer-supplier networks. However, we found a more radical type of upgrading (i.e., the development of own brands to be negatively related to insertion into ‘quasi-hierarchical’ or ‘buyer-driven relationships’, whilst involvement in ‘cooperative networks’ was associated with a significantly higher tendency of product and brand upgrading. Understanding this inherent relationality provides a crucial balance to previous firm-level findings, suggesting that the sustainability of participation in global value chains depends on the relational structures in which local manufacturers are embedded.

  5. The New Normal in Russia and China: Between Past Embedded Structures and Future Global Dominance

    Solomon I. Cohen

    2017-12-01

    Full Text Available The new normal is a conceptual situation where economic and political agents are economically convinced and politically motivated to adapt to temporary austerity in economic growth and political participation. The concept entails a remarkable and rare mix of economics and politics. The alternative is to actively plan towards changing the underlying benchmark. Focusing on Russia and China, the paper draws on results from two studies that reflect on underlying weak and strong links in the two benchmark economies. One study examines the tendency and causes for slow growth and sticky distribution in Russia, when compared to China, making use of social accounting matrix multipliers. The Russian weak tendencies are partly due to structural imbalances inherited from the past economy with its state-led and parallel shadow counterparts. The other study looks forward into the future and examines Russian and Chinese prospects for leading roles and their relative influence potential in the global economy. The study makes use of a dominance index composed of the relative sizes of transforming agents (i.e. population and transformed value (i.e. GDP. Results for Russia suggest that in a few decades global marginalization is imminent, unless agents and production change course and actively link and substantially integrate with other world blocs.

  6. Light penetration structures the deep acoustic scattering layers in the global ocean.

    Aksnes, Dag L.

    2017-05-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  7. Light penetration structures the deep acoustic scattering layers in the global ocean.

    Aksnes, Dag L.; Rø stad, Anders; Kaartvedt, Stein; Martinez, Udane; Duarte, Carlos M.; Irigoien, Xabier

    2017-01-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna and contribute to the biological carbon pump through the active flux of organic carbon transported in their daily vertical migrations. They occupy depths from 200 to 1000 m at daytime and migrate to a varying degree into surface waters at nighttime. Their daytime depth, which determines the migration amplitude, varies across the global ocean in concert with water mass properties, in particular the oxygen regime, but the causal underpinning of these correlations has been unclear. We present evidence that the broad variability in the oceanic DSL daytime depth observed during the Malaspina 2010 Circumnavigation Expedition is governed by variation in light penetration. We find that the DSL depth distribution conforms to a common optical depth layer across the global ocean and that a correlation between dissolved oxygen and light penetration provides a parsimonious explanation for the association of shallow DSL distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web.

  8. Design and implementation of multichannel global active structural acoustic control for a device casing

    Mazur, Krzysztof; Wrona, Stanislaw; Pawelczyk, Marek

    2018-01-01

    The paper presents the idea and discussion on implementation of multichannel global active noise control systems. As a test plant an active casing is used. It has been developed by the authors to reduce device noise directly at the source by controlling vibration of its casing. To provide global acoustic effect in the whole environment, where the device operates, it requires a number of secondary sources and sensors for each casing wall, thus making the whole active control structure complicated, i.e. with a large number of interacting channels. The paper discloses all details concerning hardware setup and efficient implementation of control algorithms for the multichannel case. A new formulation is presented to introduce the distributed version of the Switched-error Filtered-reference Least Mean Squares (FXLMS) algorithm together with adaptation rate enhancement. The convergence rate of the proposed algorithm is compared with original Multiple-error FXLMS. A number of hints followed from many years of authors' experience on microprocessor control systems design and signal processing algorithms optimization are presented. They can be used for various active control and signal processing applications, both for academic research and commercialization.

  9. Polyhedral Lyapunov functions structurally ensure global asymptotic stability of dynamical networks iff the Jacobian is non-singular

    Blanchini, Franco; Giordano, G.

    2017-01-01

    For a vast class of dynamical networks, including chemical reaction networks (CRNs) with monotonic reaction rates, the existence of a polyhedral Lyapunov function (PLF) implies structural (i.e., parameter-free) local stability. Global structural stability is ensured under the additional

  10. On global structure of general solution of the Chew-Sow equations

    Gerdt, V.P.

    1981-01-01

    The Chew-Low equations for static p-wave πN-scattering are considered. The equations are formulated in the form of a system of three nonlinear difference equations of the first order which have the general solution depending on three arbitrary periodic functions. An approach to the global construction of the general solution is suggested which is based on the series expansion in powers of one of the arbitrary functions C(ω) determining the structure of the invariant curve for the Chew-Low equations. It is shown that the initial nonlinear problem is reduced to the linear one in every order in C(ω). By means of solving the linear problem the general solution is found in the first-order approximation in C(ω) [ru

  11. Sensitivity of global ocean biogeochemical dynamics to ecosystem structure in a future climate

    Manizza, Manfredi; Buitenhuis, Erik T.; Le Quéré, Corinne

    2010-07-01

    Terrestrial and oceanic ecosystem components of the Earth System models (ESMs) are key to predict the future behavior of the global carbon cycle. Ocean ecosystem models represent low complexity compared to terrestrial ecosystem models. In this study we use two ocean biogeochemical models based on the explicit representation of multiple planktonic functional types. We impose to the models the same future physical perturbation and compare the response of ecosystem dynamics, export production (EP) and ocean carbon uptake (OCU) to the same physical changes. Models comparison shows that: (1) EP changes directly translate into changes of OCU on decadal time scale, (2) the representation of ecosystem structure plays a pivotal role at linking OCU and EP, (3) OCU is highly sensitive to representation of ecosystem in the Equatorial Pacific and Southern Oceans.

  12. Business Organisational Structures of Global Companies: Use of the Territorial Model to Ensure Long-Term Growth

    Hana Stverkova

    2018-06-01

    Full Text Available In today’s turbulently expanding business environment, during the fourth industrial revolution, it is necessary to respond to market trends and to adapt strategy and organisational structure appropriately. The article is focused on the reorganisation and optimisation of the business organisation structure of global companies. The purpose of this paper is to analyse and evaluate the use of the territorial business structure, within the framework of a global company, based on experimental research. Experiences with the introduction of a territorial organisational structure in a corporate enterprise have proven to be highly effective long-term, with productivity and sales volumes increasing. This territorial setting can be considered as a competitive advantage, which matches predicted market trends and is suitable for global businesses.

  13. Does landscape connectivity shape local and global social network structure in white-tailed deer?

    Erin L Koen

    Full Text Available Intraspecific social behavior can be influenced by both intrinsic and extrinsic factors. While much research has focused on how characteristics of individuals influence their roles in social networks, we were interested in the role that landscape structure plays in animal sociality at both individual (local and population (global levels. We used female white-tailed deer (Odocoileus virginianus in Illinois, USA, to investigate the potential effect of landscape on social network structure by weighting the edges of seasonal social networks with association rate (based on proximity inferred from GPS collar data. At the local level, we found that sociality among female deer in neighboring social groups (n = 36 was mainly explained by their home range overlap, with two exceptions: 1 during fawning in an area of mixed forest and grassland, deer whose home ranges had low forest connectivity were more social than expected; and 2 during the rut in an area of intensive agriculture, deer inhabiting home ranges with high amount and connectedness of agriculture were more social than expected. At the global scale, we found that deer populations (n = 7 in areas with highly connected forest-agriculture edge, a high proportion of agriculture, and a low proportion of forest tended to have higher weighted network closeness, although low sample size precluded statistical significance. This result implies that infectious disease could spread faster in deer populations inhabiting such landscapes. Our work advances the general understanding of animal social networks, demonstrating how landscape features can underlie differences in social behavior both within and among wildlife social networks.

  14. International cooperation as a mechanism for the development of environmental management Theoretical approach to the Global Environmental Management Structure

    Miranda Morales, Paola Maria

    2011-01-01

    This work presents a theoretical study of a global environmental management structure. This structure can be made possible after a new Global Environmental Order (CID) is established. The new order should be supported by the international development politics. It also has to be funded in the understanding of the interaction dynamics: ecosystem- culture. The theoretical studies of this work on global environmental Management allowed identifying the main difficulties to be overcome by the CID in order to fulfill its role as a leading actor in the global environmental transformation. The first issue to be considered by the CID is related to the fact that the actual regulation and follow up politics are insufficient. A second difficulty has to do with the very few results obtained on guaranteeing fair exchange of information and technology between Northern and Southern countries.

  15. Exceptional circles of radial potentials

    Music, M; Perry, P; Siltanen, S

    2013-01-01

    A nonlinear scattering transform is studied for the two-dimensional Schrödinger equation at zero energy with a radial potential. Explicit examples are presented, both theoretically and computationally, of potentials with nontrivial singularities in the scattering transform. The singularities arise from non-uniqueness of the complex geometric optics solutions that define the scattering transform. The values of the complex spectral parameter at which the singularities appear are called exceptional points. The singularity formation is closely related to the fact that potentials of conductivity type are ‘critical’ in the sense of Murata. (paper)

  16. A global view of structure-function relationships in the tautomerase superfamily.

    Davidson, Rebecca; Baas, Bert-Jan; Akiva, Eyal; Holliday, Gemma L; Polacco, Benjamin J; LeVieux, Jake A; Pullara, Collin R; Zhang, Yan Jessie; Whitman, Christian P; Babbitt, Patricia C

    2018-02-16

    The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure-function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis -3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase-like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. The Challenges for the Multilateral Trading System Raised by the Ongoing Structural Transformations in the Global Economy

    Agnes Ghibuțiu

    2012-01-01

    Over the last decade, international trade has been growing faster than global production, steadily increasing interdependence among nations. Sustained trade growth has been accompanied by profound changes in the patterns of trade flows, reflecting new production structures emerging under the impact of rapid progress in the development of transport, communications and information technologies, major shifts in the patterns of demand, rapid expansion of global production networks, and increasing...

  18. International Trade Drives Global Resource Use: A Structural Decomposition Analysis of Raw Material Consumption from 1990-2010.

    Plank, Barbara; Eisenmenger, Nina; Schaffartzik, Anke; Wiedenhofer, Dominik

    2018-04-03

    Globalization led to an immense increase of international trade and the emergence of complex global value chains. At the same time, global resource use and pressures on the environment are increasing steadily. With these two processes in parallel, the question arises whether trade contributes positively to resource efficiency, or to the contrary is further driving resource use? In this article, the socioeconomic driving forces of increasing global raw material consumption (RMC) are investigated to assess the role of changing trade relations, extended supply chains and increasing consumption. We apply a structural decomposition analysis of changes in RMC from 1990 to 2010, utilizing the Eora multi-regional input-output (MRIO) model. We find that changes in international trade patterns significantly contributed to an increase of global RMC. Wealthy developed countries play a major role in driving global RMC growth through changes in their trade structures, as they shifted production processes increasingly to less material-efficient input suppliers. Even the dramatic increase in material consumption in the emerging economies has not diminished the role of industrialized countries as drivers of global RMC growth.

  19. Effects of Radial Electric Fields on ICRF Waves

    Phillips, C.K.; Hosea, J.C.; Ono, M.; Wilson, J.R.

    2001-01-01

    Equilibrium considerations infer that large localized radial electric fields are associated with internal transport barrier structures in tokamaks and other toroidal magnetic confinement configurations. In this paper, the effects of an equilibrium electric field on fast magnetosonic wave propagation are considered in the context of a cold plasma model

  20. Global shear speed structure of the upper mantle and transition zone

    Schaeffer, A. J.; Lebedev, S.

    2013-07-01

    The rapid expansion of broad-band seismic networks over the last decade has paved the way for a new generation of global tomographic models. Significantly improved resolution of global upper-mantle and crustal structure can now be achieved, provided that structural information is extracted effectively from both surface and body waves and that the effects of errors in the data are controlled and minimized. Here, we present a new global, vertically polarized shear speed model that yields considerable improvements in resolution, compared to previous ones, for a variety of features in the upper mantle and crust. The model, SL2013sv, is constrained by an unprecedentedly large set of waveform fits (˜3/4 of a million broad-band seismograms), computed in seismogram-dependent frequency bands, up to a maximum period range of 11-450 s. Automated multimode inversion of surface and S-wave forms was used to extract a set of linear equations with uncorrelated uncertainties from each seismogram. The equations described perturbations in elastic structure within approximate sensitivity volumes between sources and receivers. Going beyond ray theory, we calculated the phase of every mode at every frequency and its derivative with respect to S- and P-velocity perturbations by integration over a sensitivity area in a 3-D reference model; the (normally small) perturbations of the 3-D model required to fit the waveforms were then linearized using these accurate derivatives. The equations yielded by the waveform inversion of all the seismograms were simultaneously inverted for a 3-D model of shear and compressional speeds and azimuthal anisotropy within the crust and upper mantle. Elaborate outlier analysis was used to control the propagation of errors in the data (source parameters, timing at the stations, etc.). The selection of only the most mutually consistent equations exploited the data redundancy provided by our data set and strongly reduced the effect of the errors, increasing the

  1. Communication between radial nerve and medial cutaneous nerve of forearm

    R R Marathe

    2010-01-01

    Full Text Available Radial nerve is usually a branch of the posterior cord of the brachial plexus. It innervates triceps, anconeous, brachialis, brachioradialis, extensor carpi radialis longus muscles and gives the posterior cutaneous nerve of the arm, lower lateral cutaneous nerve of arm, posterior cutaneous nerve of forearm; without exhibiting any communication with the medial cutaneous nerve of forearm or any other nerve. We report communication between the radial nerve and medial cutaneous nerve of forearm on the left side in a 58-year-old male cadaver. The right sided structures were found to be normal. Neurosurgeons should keep such variations in mind while performing the surgeries of axilla and upper arm.

  2. Mode structure symmetry breaking of energetic particle driven beta-induced Alfvén eigenmode

    Lu, Z. X.; Wang, X.; Lauber, Ph.; Zonca, F.

    2018-01-01

    The mode structure symmetry breaking of energetic particle driven Beta-induced Alfvén Eigenmode (BAE) is studied based on global theory and simulation. The weak coupling formula gives a reasonable estimate of the local eigenvalue compared with global hybrid simulation using XHMGC. The non-perturbative effect of energetic particles on global mode structure symmetry breaking in radial and parallel (along B) directions is demonstrated. With the contribution from energetic particles, two dimensional (radial and poloidal) BAE mode structures with symmetric/asymmetric tails are produced using an analytical model. It is demonstrated that the symmetry breaking in radial and parallel directions is intimately connected. The effects of mode structure symmetry breaking on nonlinear physics, energetic particle transport, and the possible insight for experimental studies are discussed.

  3. The effect of radial migration on galactic disks

    Vera-Ciro, Carlos; D'Onghia, Elena; Navarro, Julio; Abadi, Mario

    2014-01-01

    We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (∼40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This 'provenance bias' for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

  4. Structure of Rot, a global regulator of virulence genes in Staphylococcus aureus.

    Zhu, Yuwei; Fan, Xiaojiao; Zhang, Xu; Jiang, Xuguang; Niu, Liwen; Teng, Maikun; Li, Xu

    2014-09-01

    Staphylococcus aureus is a highly versatile pathogen that can infect human tissue by producing a large arsenal of virulence factors that are tightly regulated by a complex regulatory network. Rot, which shares sequence similarity with SarA homologues, is a global regulator that regulates numerous virulence genes. However, the recognition model of Rot for the promoter region of target genes and the putative regulation mechanism remain elusive. In this study, the 1.77 Å resolution X-ray crystal structure of Rot is reported. The structure reveals that two Rot molecules form a compact homodimer, each of which contains a typical helix-turn-helix module and a β-hairpin motif connected by a flexible loop. Fluorescence polarization results indicate that Rot preferentially recognizes AT-rich dsDNA with ~30-base-pair nucleotides and that the conserved positively charged residues on the winged-helix motif are vital for binding to the AT-rich dsDNA. It is proposed that the DNA-recognition model of Rot may be similar to that of SarA, SarR and SarS, in which the helix-turn-helix motifs of each monomer interact with the major grooves of target dsDNA and the winged motifs contact the minor grooves. Interestingly, the structure shows that Rot adopts a novel dimerization model that differs from that of other SarA homologues. As expected, perturbation of the dimer interface abolishes the dsDNA-binding ability of Rot, suggesting that Rot functions as a dimer. In addition, the results have been further confirmed in vivo by measuring the transcriptional regulation of α-toxin, a major virulence factor produced by most S. aureus strains.

  5. Category structure determines the relative attractiveness of global versus local averages.

    Vogel, Tobias; Carr, Evan W; Davis, Tyler; Winkielman, Piotr

    2018-02-01

    Stimuli that capture the central tendency of presented exemplars are often preferred-a phenomenon also known as the classic beauty-in-averageness effect . However, recent studies have shown that this effect can reverse under certain conditions. We propose that a key variable for such ugliness-in-averageness effects is the category structure of the presented exemplars. When exemplars cluster into multiple subcategories, the global average should no longer reflect the underlying stimulus distributions, and will thereby become unattractive. In contrast, the subcategory averages (i.e., local averages) should better reflect the stimulus distributions, and become more attractive. In 3 studies, we presented participants with dot patterns belonging to 2 different subcategories. Importantly, across studies, we also manipulated the distinctiveness of the subcategories. We found that participants preferred the local averages over the global average when they first learned to classify the patterns into 2 different subcategories in a contrastive categorization paradigm (Experiment 1). Moreover, participants still preferred local averages when first classifying patterns into a single category (Experiment 2) or when not classifying patterns at all during incidental learning (Experiment 3), as long as the subcategories were sufficiently distinct. Finally, as a proof-of-concept, we mapped our empirical results onto predictions generated by a well-known computational model of category learning (the Generalized Context Model [GCM]). Overall, our findings emphasize the key role of categorization for understanding the nature of preferences, including any effects that emerge from stimulus averaging. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  6. Radial expansion for spinning conformal blocks

    Costa, Miguel S.; Penedones, João; Trevisani, Emilio

    2016-07-12

    This paper develops a method to compute any bosonic conformal block as a series expansion in the optimal radial coordinate introduced by Hogervorst and Rychkov. The method reduces to the known result when the external operators are all the same scalar operator, but it allows to compute conformal blocks for external operators with spin. Moreover, we explain how to write closed form recursion relations for the coefficients of the expansions. We study three examples of four point functions in detail: one vector and three scalars; two vectors and two scalars; two spin 2 tensors and two scalars. Finally, for the case of two external vectors, we also provide a more efficient way to generate the series expansion using the analytic structure of the blocks as a function of the scaling dimension of the exchanged operator.

  7. Estimating Outer Zone Radial Diffusion Coefficients from Drift Scale Fluctuations in Van Allen Particle Data

    O'Brien, T. P., III; Claudepierre, S. G.

    2017-12-01

    During geomagnetic storms, the Earth's outer radiation belt experiences enhanced radial transport. This transport occurs via phase-dependent radial displacements of particles, either by impulsive events or drift resonant waves. Because transport is phase dependent, it produces drift phase bunching, which can be observed with in situ particle detectors. We provide bounds on the radial diffusion coefficients derived from this drift phase structure as seen by NASA's Van Allen Probes. We compare these bounds to published radial diffusion coefficient models, particularly those derived independently from electromagnetic field observations.

  8. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness

  9. Effects of radial envelope modulations on the collisionless trapped-electron mode in tokamak plasmas

    Chen, Hao-Tian; Chen, Liu

    2018-05-01

    Adopting the ballooning-mode representation and including the effects of radial envelope modulations, we have derived the corresponding linear eigenmode equation for the collisionless trapped-electron mode in tokamak plasmas. Numerical solutions of the eigenmode equation indicate that finite radial envelope modulations can affect the linear stability properties both quantitatively and qualitatively via the significant modifications in the corresponding eigenmode structures.

  10. Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km

    Xing, Z.; Beghein, C.; Yuan, K.

    2012-12-01

    This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density

  11. RADIAL DISTRIBUTION OF STARS, GAS AND DUST IN SINGS GALAXIES. I. SURFACE PHOTOMETRY AND MORPHOLOGY

    Munoz-Mateos, J. C.; Gil de Paz, A.; Zamorano, J.

    2009-01-01

    We present ultraviolet through far-infrared (FIR) surface brightness profiles for the 75 galaxies in the Spitzer Infrared Nearby Galaxies Survey (SINGS). The imagery used to measure the profiles includes Galaxy Evolution Explorer UV data, optical images from Kitt Peak National Observatory, Cerro Tololo Inter-American Observatory, and Sloan Digital Sky Survey, near-IR data from Two Micron All Sky Survey, and mid- and FIR images from Spitzer. Along with the radial profiles, we also provide multi-wavelength asymptotic magnitudes and several nonparametric indicators of galaxy morphology: the concentration index (C 42 ), the asymmetry (A), the Gini coefficient (G), and the normalized second-order moment of the brightest 20% of the galaxy's flux (M-bar 20 ). In this paper, the first of a series, we describe the technical aspects regarding the surface photometry, and present a basic analysis of the global and structural properties of the SINGS galaxies at different wavelengths. The homogeneity in the acquisition, reduction, and analysis of the results presented here makes these data ideal for multiple unanticipated studies on the radial distribution of the properties of stars, dust, and gas in galaxies. Our radial profiles show a wide range of morphologies and multiple components (bulges, exponential disks, inner and outer disk truncations, etc.) that vary not only from galaxy to galaxy but also with wavelength for a given object. In the optical and near-IR, the SINGS galaxies occupy the same regions in the C 42 -A-G-M-bar 20 parameter space as other normal galaxies in previous studies. However, they appear much less centrally concentrated, more asymmetric, and with larger values of G when viewed in the UV (due to star-forming clumps scattered across the disk) and in the mid-IR (due to the emission of polycyclic aromatic hydrocarbons at 8.0 μm and very hot dust at 24 μm). In an accompanying paper by Munoz-Mateos et al., we focus on the radial distribution of dust

  12. Blending of Radial HF Radar Surface Current and Model Using ETKF Scheme For The Sunda Strait

    Mujiasih, Subekti; Riyadi, Mochammad; Wandono, Dr; Wayan Suardana, I.; Nyoman Gede Wiryajaya, I.; Nyoman Suarsa, I.; Hartanto, Dwi; Barth, Alexander; Beckers, Jean-Marie

    2017-04-01

    Preliminary study of data blending of surface current for Sunda Strait-Indonesia has been done using the analysis scheme of the Ensemble Transform Kalman Filter (ETKF). The method is utilized to combine radial velocity from HF Radar and u and v component of velocity from Global Copernicus - Marine environment monitoring service (CMEMS) model. The initial ensemble is based on the time variability of the CMEMS model result. Data tested are from 2 CODAR Seasonde radar sites in Sunda Strait and 2 dates such as 09 September 2013 and 08 February 2016 at 12.00 UTC. The radial HF Radar data has a hourly temporal resolution, 20-60 km of spatial range, 3 km of range resolution, 5 degree of angular resolution and spatial resolution and 11.5-14 MHz of frequency range. The u and v component of the model velocity represents a daily mean with 1/12 degree spatial resolution. The radial data from one HF radar site is analyzed and the result compared to the equivalent radial velocity from CMEMS for the second HF radar site. Error checking is calculated by root mean squared error (RMSE). Calculation of ensemble analysis and ensemble mean is using Sangoma software package. The tested R which represents observation error covariance matrix, is a diagonal matrix with diagonal elements equal 0.05, 0.5 or 1.0 m2/s2. The initial ensemble members comes from a model simulation spanning a month (September 2013 or February 2016), one year (2013) or 4 years (2013-2016). The spatial distribution of the radial current are analyzed and the RMSE values obtained from independent HF radar station are optimized. It was verified that the analysis reproduces well the structure included in the analyzed HF radar data. More importantly, the analysis was also improved relative to the second independent HF radar site. RMSE of the improved analysis is better than first HF Radar site Analysis. The best result of the blending exercise was obtained for observation error variance equal to 0.05 m2/s2. This study is

  13. Radial smoothing and closed orbit

    Burnod, L.; Cornacchia, M.; Wilson, E.

    1983-11-01

    A complete simulation leading to a description of one of the error curves must involve four phases: (1) random drawing of the six set-up points within a normal population having a standard deviation of 1.3 mm; (b) random drawing of the six vertices of the curve in the sextant mode within a normal population having a standard deviation of 1.2 mm. These vertices are to be set with respect to the axis of the error lunes, while this axis has as its origins the positions defined by the preceding drawing; (c) mathematical definition of six parabolic curves and their junctions. These latter may be curves with very slight curvatures, or segments of a straight line passing through the set-up point and having lengths no longer than one LSS. Thus one gets a mean curve for the absolute errors; (d) plotting of the actually observed radial positions with respect to the mean curve (results of smoothing)

  14. Waves on radial film flows

    Cholemari, Murali R.; Arakeri, Jaywant H.

    2005-08-01

    We study the stability of surface waves on the radial film flow created by a vertical cylindrical water jet striking a horizontal plate. In such flows, surface waves have been found to be unstable and can cause transition to turbulence. This surface-wave-induced transition is different from the well-known Tollmien-Schlichting wave-induced transition. The present study aims at understanding the instability and the transition process. We do a temporal stability analysis by assuming the flow to be locally two-dimensional but including spatial variations to first order in the basic flow. The waves are found to be dispersive, mostly unstable, and faster than the mean flow. Spatial variation is the major destabilizing factor. Experiments are done to test the results of the linear stability analysis and to document the wave breakup and transition. Comparison between theory and experiments is fairly good and indicates the adequacy of the model.

  15. Radial flow gas dynamic laser

    Damm, F.C.

    1975-01-01

    The unique gas dynamic laser provides outward radial supersonic flow from a toroidal shaped stacked array of a plurality of nozzles, through a diffuser having ring shaped and/or linear shaped vanes, and through a cavity which is cylindrical and concentric with the stacked array, with the resultant laser beam passing through the housing parallel to the central axis of the diffuser which is coincident with the axis of the gas dynamic laser. Therefore, greater beam extraction flexibility is attainable, because of fewer flow shock disturbances, as compared to the conventional unidirectional flow gas dynamic laser in which unidirectional supersonic flow sweeps through a rectangular cavity and is exhausted through a two-dimensional diffuser. (auth)

  16. Ulnar nerve entrapment complicating radial head excision

    Kevin Parfait Bienvenu Bouhelo-Pam

    Full Text Available Introduction: Several mechanisms are involved in ischemia or mechanical compression of ulnar nerve at the elbow. Presentation of case: We hereby present the case of a road accident victim, who received a radial head excision for an isolated fracture of the radial head and complicated by onset of cubital tunnel syndrome. This outcome could be the consequence of an iatrogenic valgus of the elbow due to excision of the radial head. Hitherto the surgical treatment of choice it is gradually been abandoned due to development of radial head implant arthroplasty. However, this management option is still being performed in some rural centers with low resources. Discussion: The radial head plays an important role in the stability of the elbow and his iatrogenic deformity can be complicated by cubital tunnel syndrome. Conclusion: An ulnar nerve release was performed with favorable outcome. Keywords: Cubital tunnel syndrome, Peripheral nerve palsy, Radial head excision, Elbow valgus

  17. Emissions embodied in global trade have plateaued due to structural changes in China

    Pan, Chen; Peters, Glen P.; Andrew, Robbie M.; Korsbakken, Jan Ivar; Li, Shantong; Zhou, Dequn; Zhou, Peng

    2017-09-01

    In the 2000s, the rapid growth of CO2 emitted in the production of exports from developing to developed countries, in which China accounted for the dominant share, led to concerns that climate polices had been undermined by international trade. Arguments on "carbon leakage" and "competitiveness"—which led to the refusal of the U.S. to ratify the Kyoto Protocol—put pressure on developing countries, especially China, to limit their emissions with Border Carbon Adjustments used as one threat. After strong growth in the early 2000s, emissions exported from developing to developed countries plateaued and could have even decreased since 2007. These changes were mainly due to China: In 2002-2007, China's exported emissions grew by 827 MtCO2, amounting to almost all the 892 MtCO2 total increase in emissions exported from developing to developed countries, while in 2007-2012, emissions exported from China decreased by 229 MtCO2, contributing to the total decrease of 172 MtCO2 exported from developing to developed countries. We apply Structural Decomposition Analysis to find that, in addition to the diminishing effects of the global financial crisis, the slowdown and eventual plateau was largely explained by several potentially permanent changes in China: Decline in export volume growth, improvements in CO2 intensity, and changes in production structure and the mix of exported products. We argue that growth in China's exported emissions will not return to the high levels during the 2000s, therefore the arguments for climate polices focused on embodied emissions such as Border Carbon Adjustments are now weakened.

  18. The impact of the global financial crisis on the structure of investment portfolios of insurance companies

    Kočović Jelena

    2011-01-01

    Full Text Available This article deals with the impact of the global financial crisis on the scale and structure of investment portfolios of insurance companies, with respect to their difference compared to other types of financial institution, which derives from the specific nature of insurance activities. The analysis includes insurance companies’ exhibited and expected patterns of behavior as investors in the period before, during, and after the crisis, considering both the markets of economically developed countries and the domestic financial market of Serbia. The direction of insurers’ investments in the post-crisis period should be very carefully examined in terms of their future implications for the insurance companies’ long-term financial health, and defined in a broader context of managing all risks to which they are exposed, taking into account the interdependence of these risks. Pertinent recommendations in this regard have arisen from research of relevant past experience and current trends, and also from an analysis and comparison of views on this subject presented by a number of authors.

  19. A global analysis approach for investigating structural resilience in urban drainage systems.

    Mugume, Seith N; Gomez, Diego E; Fu, Guangtao; Farmani, Raziyeh; Butler, David

    2015-09-15

    Building resilience in urban drainage systems requires consideration of a wide range of threats that contribute to urban flooding. Existing hydraulic reliability based approaches have focused on quantifying functional failure caused by extreme rainfall or increase in dry weather flows that lead to hydraulic overloading of the system. Such approaches however, do not fully explore the full system failure scenario space due to exclusion of crucial threats such as equipment malfunction, pipe collapse and blockage that can also lead to urban flooding. In this research, a new analytical approach based on global resilience analysis is investigated and applied to systematically evaluate the performance of an urban drainage system when subjected to a wide range of structural failure scenarios resulting from random cumulative link failure. Link failure envelopes, which represent the resulting loss of system functionality (impacts) are determined by computing the upper and lower limits of the simulation results for total flood volume (failure magnitude) and average flood duration (failure duration) at each link failure level. A new resilience index that combines the failure magnitude and duration into a single metric is applied to quantify system residual functionality at each considered link failure level. With this approach, resilience has been tested and characterised for an existing urban drainage system in Kampala city, Uganda. In addition, the effectiveness of potential adaptation strategies in enhancing its resilience to cumulative link failure has been tested. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    MAJUMDAR, APALA

    2011-09-06

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  1. The radial-hedgehog solution in Landau–de Gennes' theory for nematic liquid crystals

    MAJUMDAR, APALA

    2011-01-01

    We study the radial-hedgehog solution in a three-dimensional spherical droplet, with homeotropic boundary conditions, within the Landau-de Gennes theory for nematic liquid crystals. The radial-hedgehog solution is a candidate for a global Landau-de Gennes minimiser in this model framework and is also a prototype configuration for studying isolated point defects in condensed matter physics. The static properties of the radial-hedgehog solution are governed by a non-linear singular ordinary differential equation. We study the analogies between Ginzburg-Landau vortices and the radial-hedgehog solution and demonstrate a Ginzburg-Landau limit for the Landau-de Gennes theory. We prove that the radial-hedgehog solution is not the global Landau-de Gennes minimiser for droplets of finite radius and sufficiently low temperatures and prove the stability of the radial-hedgehog solution in other parameter regimes. These results contain quantitative information about the effect of geometry and temperature on the properties of the radial-hedgehog solution and the associated biaxial instabilities. © Copyright Cambridge University Press 2011.

  2. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  3. Lagged life cycle structures for food products: Their role in global marketing, their determinants and some problems in their estimation

    Baadsgaard, Allan; Gede, Mads Peter; Grunert, Klaus G.

    cycles for different product categories may be lagged (type II lag) because changes in economic and other factors will result in demands for different products. Identifying lagged life cycle structures major importance in global marketing of food products. The problems in arriving at such estimates...

  4. Radial tunnel syndrome. Findings and treatment in 17 patients

    Gustavo Alberto Breglia

    2015-05-01

    Full Text Available Backround Radial tunnel syndrome is a condition secondary to the intermittent entrapment of the posterior interosseous nerve between superficial and deep mass of short supinator adjacent structures, such as vessels and fascias. The purpose of this study was to identify the anatomical structures that produce the eventual compression, to establish and communicate the differences in the subjective pain perception before and after the release of the posterior interosseous nerve in the radial tunnel. Method Between 2009 and 2014, 17 patients underwent surgical treatment by posterior interosseous nerve release. We used the approach between the first external radial and brachioradialis. Patients were assessed by visual analogue scale for pain intensity before surgery and at week 6, and according to the Roles and Maudsley functional criteria. Results The causes of posterior interosseous nerve compression were fibrous band of short supinator (arcade of Frohse (7 cases, recurrent vessels (4 cases, compression by the mass of the superficial portion of the short supinator muscle (2 cases and secondary compression by extensor carpi radialis brevis tendon (4 cases. Results were excellent (4 patients, good (10 patients and fair (3 patients. Patients treated through the Labor Risk Insurance had worse outcomes than those who were not covered by this system. Conclusions Radial tunnel syndrome is a condition that must be taken into account when there is refractory lateral epicondylalgia. This disease has a marked effect in patients with labor conflict, which may bias the outcome of treatment.

  5. Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors

    Bentham, H. L. M.; Rost, S.; Thorne, M. S.

    2017-08-01

    Subduction zones are likely a major source of compositional heterogeneities in the mantle, which may preserve a record of the subduction history and mantle convection processes. The fine-scale structure associated with mantle heterogeneities can be studied using the scattered seismic wavefield that arrives as coda to or as energy preceding many body wave arrivals. In this study we analyse precursors to PP by creating stacks recorded at globally distributed stations. We create stacks aligned on the PP arrival in 5° distance bins (with range 70-120°) from 600 earthquakes recorded at 193 stations stacking a total of 7320 seismic records. As the energy trailing the direct P arrival, the P coda, interferes with the PP precursors, we suppress the P coda by subtracting a best fitting exponential curve to this energy. The resultant stacks show that PP precursors related to scattering from heterogeneities in the mantle are present for all distances. Lateral variations are explored by producing two regional stacks across the Atlantic and Pacific hemispheres, but we find only negligible differences in the precursory signature between these two regions. The similarity of these two regions suggests that well mixed subducted material can survive at upper and mid-mantle depth. To describe the scattered wavefield in the mantle, we compare the global stacks to synthetic seismograms generated using a Monte Carlo phonon scattering technique. We propose a best-fitting layered heterogeneity model, BRT2017, characterised by a three layer mantle with a background heterogeneity strength (ɛ = 0.8%) and a depth-interval of increased heterogeneity strength (ɛ = 1%) between 1000 km and 1800 km. The scalelength of heterogeneity is found to be 8 km throughout the mantle. Since mantle heterogeneity of 8 km scale may be linked to subducted oceanic crust, the detection of increased heterogeneity at mid-mantle depths could be associated with stalled slabs due to increases in viscosity

  6. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1. [First Global Atmospheric Research Program Global Experiment (FGGE); Special Observing Period (SOP)

    Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.

    1981-01-01

    By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.

  7. Radial head button holing: a cause of irreducible anterior radial head dislocation

    Shin, Su-Mi; Chai, Jee Won; You, Ja Yeon; Park, Jina [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Radiology, Seoul (Korea, Republic of); Bae, Kee Jeong [Seoul National University Seoul Metropolitan Government Boramae Medical Center, Department of Orthopedic Surgery, Seoul (Korea, Republic of)

    2016-10-15

    ''Buttonholing'' of the radial head through the anterior joint capsule is a known cause of irreducible anterior radial head dislocation associated with Monteggia injuries in pediatric patients. To the best of our knowledge, no report has described an injury consisting of buttonholing of the radial head through the annular ligament and a simultaneous radial head fracture in an adolescent. In the present case, the radiographic findings were a radial head fracture with anterior dislocation and lack of the anterior fat pad sign. Magnetic resonance imaging (MRI) clearly demonstrated anterior dislocation of the fractured radial head through the torn annular ligament. The anterior joint capsule and proximal portion of the annular ligament were interposed between the radial head and capitellum, preventing closed reduction of the radial head. Familiarity with this condition and imaging findings will aid clinicians to make a proper diagnosis and fast decision to perform an open reduction. (orig.)

  8. Structuring energy supply and demand networks in a general equilibrium model to simulate global warming control strategies

    Hamilton, S.; Veselka, T.D.; Cirillo, R.R.

    1991-01-01

    Global warming control strategies which mandate stringent caps on emissions of greenhouse forcing gases can substantially alter a country's demand, production, and imports of energy products. Although there is a large degree of uncertainty when attempting to estimate the potential impact of these strategies, insights into the problem can be acquired through computer model simulations. This paper presents one method of structuring a general equilibrium model, the ENergy and Power Evaluation Program/Global Climate Change (ENPEP/GCC), to simulate changes in a country's energy supply and demand balance in response to global warming control strategies. The equilibrium model presented in this study is based on the principle of decomposition, whereby a large complex problem is divided into a number of smaller submodules. Submodules simulate energy activities and conversion processes such as electricity production. These submodules are linked together to form an energy supply and demand network. Linkages identify energy and fuel flows among various activities. Since global warming control strategies can have wide reaching effects, a complex network was constructed. The network represents all energy production, conversion, transportation, distribution, and utilization activities. The structure of the network depicts interdependencies within and across economic sectors and was constructed such that energy prices and demand responses can be simulated. Global warming control alternatives represented in the network include: (1) conservation measures through increased efficiency; and (2) substitution of fuels that have high greenhouse gas emission rates with fuels that have lower emission rates. 6 refs., 4 figs., 4 tabs

  9. Radial optimization of a BWR fuel cell using genetic algorithms

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P.

    2006-01-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U 235 and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix the placement of

  10. Evaluation of a Structured Predeparture Orientation at the David Geffen School of Medicine's Global Health Education Programs.

    Herbst de Cortina, Sasha; Arora, Gitanjli; Wells, Traci; Hoffman, Risa M

    2016-03-01

    Given the lack of a standardized approach to medical student global health predeparture preparation, we evaluated an in-person, interactive predeparture orientation (PDO) at the University of California Los Angeles (UCLA) to understand program strengths, weaknesses, and areas for improvement. We administered anonymous surveys to assess the structure and content of the PDO and also surveyed a subset of students after travel on the utility of the PDO. We used Fisher's exact test to evaluate the association between prior global health experience and satisfaction with the PDO. One hundred and five students attended the PDO between 2010 and 2014 and completed the survey. One hundred and four students (99.0%) reported learning new information. Major strengths included faculty mentorship (N = 38, 19.7%), opportunities to interact with the UCLA global health community (N = 34, 17.6%), and sharing global health experiences (N = 32, 16.6%). Of students surveyed after their elective, 94.4% (N = 51) agreed or strongly agreed that the PDO provided effective preparation. Students with prior global health experience found the PDO to be as useful as students without experience (92.7% versus 94.4%, P = 1.0). On the basis of these findings, we believe that a well-composed PDO is beneficial for students participating in global health experiences and recommend further comparative studies of PDO content and delivery. © The American Society of Tropical Medicine and Hygiene.

  11. La Estructura en Empresas de Internacionalización Acelerada o Born Globals (Structure in accelerated internationalization or Born Global Companies

    Federico Quesada Chaves

    2012-11-01

    Full Text Available El descubrimiento de las empresas de internacionalizaciónacelerada ha generado una importante cantidad deinvestigaciones durante los últimos quince años. Los estudiosque se han ocupado de este tema han delimitado capacidadesorganizativas, sin embargo, no han profundizado en laestructura formal y las interrelaciones entre departamentos,por lo tanto, se aduce que todavía existe una “caja negra”con respecto a esta cuestión. Para responder a esta interrogante,se estudiaron sesenta y cuatro artículos relacionadoscon el tema. Mediante el enfoque de los recursos y capacidades,se propone que una estructura formal para born globales flexible y centralizada, se encuentra orientada hacia elaprendizaje organizativo y responde a las redes sociales dela empresa, orientándose hacia la innovación.   ABSTRACT The discovery of the existence of internationally acceleratedcompanies has generated an important amountof research in the last fifteen years. Research on this fieldhas defined organizational capabilities; however it has notdwelt in depth in formal structures and interdepartamentalrelations, as there is the belief that there is a “blackbox” around these matters. To answer this lack, 64 relatedpublished articles were studied. Through a resource andcapabilities approach, a formal structure for born global isproposed. It is flexible and centralized, is oriented towardsorganizational learning, and answers to social networkswithin the company, focusing in innovation.

  12. Crustal Structure of Active Deformation Zones in Africa: Implications for Global Crustal Processes

    Ebinger, C. J.; Keir, D.; Bastow, I. D.; Whaler, K.; Hammond, J. O. S.; Ayele, A.; Miller, M. S.; Tiberi, C.; Hautot, S.

    2017-12-01

    The Cenozoic East African rift (EAR), Cameroon Volcanic Line (CVL), and Atlas Mountains formed on the slow-moving African continent, which last experienced orogeny during the Pan-African. We synthesize primarily geophysical data to evaluate the role of magmatism in shaping Africa's crust. In young magmatic rift zones, melt and volatiles migrate from the asthenosphere to gas-rich magma reservoirs at the Moho, altering crustal composition and reducing strength. Within the southernmost Eastern rift, the crust comprises 20% new magmatic material ponded in the lower crust and intruded as sills and dikes at shallower depths. In the Main Ethiopian Rift, intrusions comprise 30% of the crust below axial zones of dike-dominated extension. In the incipient rupture zones of the Afar rift, magma intrusions fed from crustal magma chambers beneath segment centers create new columns of mafic crust, as along slow-spreading ridges. Our comparisons suggest that transitional crust, including seaward dipping sequences, is created as progressively smaller screens of continental crust are heated and weakened by magma intrusion into 15-20 km thick crust. In the 30 Ma Recent CVL, which lacks a hot spot age progression, extensional forces are small, inhibiting the creation and rise of magma into the crust. In the Atlas orogen, localized magmatism follows the strike of the Atlas Mountains from the Canary Islands hot spot toward the Alboran Sea. CVL and Atlas magmatism has had minimal impact on crustal structure. Our syntheses show that magma and volatiles are migrating from the asthenosphere through the plates, modifying rheology, and contributing significantly to global carbon and water fluxes.

  13. Jupiter Thermospheric General Circulation Model (JTGCM): Global Structure and Dynamics Driven by Auroral and Joule Heating

    Bougher, S. W.; J. Il. Waite, Jr.; Majeed, T.

    2005-01-01

    A growing multispectral database plus recent Galileo descent measurements are being used to construct a self-consistent picture of the Jupiter thermosphere/ionosphere system. The proper characterization of Jupiter s upper atmosphere, embedded ionosphere, and auroral features requires the examination of underlying processes, including the feedbacks of energetics, neutral-ion dynamics, composition, and magnetospheric coupling. A fully 3-D Jupiter Thermospheric General Circulation Model (JTGCM) has been developed and exercised to address global temperatures, three-component neutral winds, and neutral-ion species distributions. The domain of this JTGCM extends from 20-microbar (capturing hydrocarbon cooling) to 1.0 x 10(exp -4) nbar (including aurora/Joule heating processes). The resulting JTGCM has been fully spun-up and integrated for greater than or equal to40 Jupiter rotations. Results from three JTGCM cases incorporating moderate auroral heating, ion drag, and moderate to strong Joule heating processes are presented. The neutral horizontal winds at ionospheric heights vary from 0.5 km/s to 1.2 km/s, atomic hydrogen is transported equatorward, and auroral exospheric temperatures range from approx.1200-1300 K to above 3000 K, depending on the magnitude of Joule heating. The equatorial temperature profiles from the JTGCM are compared with the measured temperature structure from the Galileo AS1 data set. The best fit to the Galileo data implies that the major energy source for maintaining the equatorial temperatures is due to dynamical heating induced by the low-latitude convergence of the high-latitude-driven thermospheric circulation. Overall, the Jupiter thermosphere/ionosphere system is highly variable and is shown to be strongly dependent on magnetospheric coupling which regulates Joule heating.

  14. Photoelectric Radial Velocities, Paper XIX Additional Spectroscopic ...

    ian velocity curve that does justice to the measurements, but it cannot be expected to have much predictive power. Key words. Stars: late-type—stars: radial velocities—spectroscopic binaries—orbits. 0. Preamble. The 'Redman K stars' are a lot of seventh-magnitude K stars whose radial velocities were first observed by ...

  15. Radial velocities of RR Lyrae stars

    Hawley, S.L.; Barnes, T.G. III

    1985-01-01

    283 spectra of 57 RR Lyrae stars have been obtained using the 2.1-m telescope at McDonald Observatory. Radial velocities were determined using a software cross-correlation technique. New mean radial velocities were determined for 46 of the stars. 11 references

  16. Concepts of radial and angular kinetic energies

    Dahl, Jens Peder; Schleich, W.P.

    2002-01-01

    We consider a general central-field system in D dimensions and show that the division of the kinetic energy into radial and angular parts proceeds differently in the wave-function picture and the Weyl-Wigner phase-space picture, Thus, the radial and angular kinetic energies are different quantities...

  17. Shear-Velocity Structure and Azimuthal and Radial Anisotropy Beneath the Kaapvaal Craton From Bayesian Inversion of Surface-Wave Data: Inferences for the Architecture and Early Evolution of Cratons

    Lebedev, S.; Ravenna, M.; Adam, J.

    2017-12-01

    Seismic anisotropy provides essential information on the deformation of the lithosphere. Knowledge of anisotropy also allows us to isolate the isotropic-average seismic velocities, relatable to the lithospheric temperature and composition. We use Rayleigh and Love-wave phase velocities and their azimuthal anisotropy measured in broad period ranges across the footprint of the Southern Africa Seismic Experiment (SASE), from the Kaapvaal Craton to the Limpopo Belt. We invert the data using our recently developed, fully non-linear Markov Chain Monte Carlo method and determine, for the first time, both the isotropic-average S velocity and its radial and azimuthal anisotropy as a function of depth from the upper crust down to the asthenosphere. The probabilistic inversion provides a way to quantify non-uniqueness, using direct parameter-space sampling, and assess model uncertainties. The high-velocity anomaly indicative of the cold cratonic lithosphere bottoms at 200-250 km beneath the central and western Kaapvaal Craton, underlain by a low-velocity zone. Beneath northern Kaapvaal and Limpopo, by contrast, high velocities extend down to 300-350 km. Although this does not require a lithosphere that has maintained this thickness over a geologically long time, the data does require the mantle to be anomalously cold down to 300-350 km. Interestingly, topography correlates with the thickness of this high-velocity layer, with lower elevations where the lid is thicker. Radial shear-wave anisotropy is in the 2-5 percent range (Vsh > Vsv) from the lower crust down to 200 km, below which depth it decreases gradually. Radial variations in the amplitude of radial anisotropy show no clear relationship with those in the amplitude of azimuthal anisotropy or isotropic-average Vs anomalies. Azimuthal anisotropy changes the fast-propagation direction near the base of the lithosphere (200-300 km depth), from the laterally varying fast azimuths in the lower lithosphere to a spatially

  18. Polarized radial magnetic fields and outward plasma fluxes during shallow-reversal discharges in the ZT-40M reversed-field pinch

    Jacobson, A.R.; Rusbridge, M.G.; Burkhardt, L.C.

    1984-01-01

    The characteristics of edge-region electromagnetic disturbances and of pulsed radial fluxes of plasma to the liner as well as the detailed interrelationship among these processes have been studied on the ZT-40M reversed-field pinch in its normal, shallow-reversal operating regime. The dominant magnetic disturbances are spiky (pulsewidth approx.5--10 μs) low-amplitude (Vertical BarB/sub r//B/sub theta/Vertical Bar -2 )= poloidally symmetric radial-field structures intersecting the vacuum wall and precessing toroidally in the anti-I/sub phi/ sense. The effect of even slight toroidal-field reversal (Vertical BarB/sub phi/(a)Vertical Barroughly-equalB/sub theta/(a)/10) is to polarize these radial-field spikes preferentially positive (i.e., B/sub r/>0) and to increase the speed of the minority (B/sub r/ 0) spikes. Synchronous with the polarized B/sub r/ spikes are intense radially outward fluxes of plasma (instantaneously > or approx. =10 22 m -2 s -1 ) leading to recurrent, large amplitude (Vertical BarΔn/n> or approx. =25%) depletion of the density in the outer quarter of minor radius. The resulting time-averaged global loss-rate per particle is significant (approx.10 3 s -1 )

  19. Radial scars detected mammographically in a breast cancer screening programme

    Azavedo, E.; Svane, G.

    1992-01-01

    Radial scars are getting more and more common since implementation of mammography as diagnostic tool in screening women for breast cancer. At Karolinska Hospital, 18987 asymptomatic women, aged 50-69, were screened for breast cancer through mammography during August 1989-May 1991. A total of 735 (3.87%) were recalled for additional views after initial mammograms and 463 (2.44%) were assessed with help of cytology. In all 175 women (0.92%) were selected for surgery and 146 (0.77%) had histologically verified cancers. The remaining 29 (0.15%) had non- malignant lesions of which 11 (0.06%) were radial scars. All radial scars were diagnosed on mammograms and later confirmed with histology. The radiologic characteristics were found to be a) rather thick and long radiating structures accompanied by radiolucent linear structures parallel to some of the spicules, b) absence of calcifications, c) radiolucent areas in the body of the lesion, d) an average mean size of 6 mm and e) changing image in different views. Most of the lesions, 73% (8/11), were in moderately dense breasts and there was no specific relation to the right or left breast. A majority of radial scars, 64% (7/11), were found in the upper outer quadrants, 3/11 in the lower outer quadrants and 1/11 in the lower inner quadrant. Literature shows that histology uses many synonyms for radial scars and therefore team work between radiologists and pathologists is suggested for better conformity of the diagnosis. (author). 32 refs.; 1 fig

  20. Global Strategy

    Li, Peter Ping

    2013-01-01

    Global strategy differs from domestic strategy in terms of content and process as well as context and structure. The content of global strategy can contain five key elements, while the process of global strategy can have six major stages. These are expounded below. Global strategy is influenced...... by rich and complementary local contexts with diverse resource pools and game rules at the national level to form a broad ecosystem at the global level. Further, global strategy dictates the interaction or balance between different entry strategies at the levels of internal and external networks....

  1. Global Forest Ecosystem Structure and Function Data For Carbon Balance Research

    National Aeronautics and Space Administration — ABSTRACT: A comprehensive global database has been assembled to quantify CO2 fluxes and pathways across different levels of integration (from photosynthesis up to...

  2. Global Forest Ecosystem Structure and Function Data For Carbon Balance Research

    National Aeronautics and Space Administration — A comprehensive global database has been assembled to quantify CO2 fluxes and pathways across different levels of integration (from photosynthesis up to net...

  3. Impacts of Global Warming and Sea Level Rise on Service Life of Chloride-Exposed Concrete Structures

    Xiao-Jian Gao

    2017-03-01

    Full Text Available Global warming will increase the rate of chloride ingress and the rate of steel corrosion of concrete structures. Furthermore, in coastal (atmospheric marine zones, sea level rise will reduce the distance of concrete structures from the coast and increase the surface chloride content. This study proposes a probabilistic model for analyzing the effects of global warming and sea level rise on the service life of coastal concrete structures. First, in the corrosion initiation stage, an improved chloride diffusion model is proposed to determine chloride concentration. The Monte Carlo method is employed to calculate the service life in the corrosion initiation stage; Second, in the corrosion propagation stage, a numerical model is proposed to calculate the rate of corrosion, probability of corrosion cracking, and service life. Third, overall service life is determined as the sum of service life in the corrosion initiation and corrosion propagation stages. After considering the impacts of global warming and sea level rise, the analysis results show that for concrete structures having a service life of 50 years, the service life decreases by about 5%.

  4. Radial distributions of star populations in elliptical galaxies

    Angeletti, Lucio; Giannone, Pietro

    2010-01-01

    The dynamical structure of stars in low-ellipticity early-type galaxies has been approached in a conceptually simple manner by making use of the mass structure inferred from the radial surface brightness and the stellar metal abundance as derived from that of the contracting gas mass when the stars formed. Families of models depending on three parameters can be used to fit the surface radial profiles of spectro-photometric indices. In particular, the behavior of the spectral index Mg 2 is selected, and the observations for eleven galaxies are matched with models. With the fitting values of the free parameters, we have studied the spatial (within the galaxy) and projected (on the image of the galaxy) distributions of the metal abundances. We present the results for three chosen galaxies characterized by rather different values of the fitting parameters. Our results can be of interest for the formation of stellar populations and call attention to the need for more detailed observations.

  5. Acoustic resonances in two-dimensional radial sonic crystal shells

    Torrent, Daniel; Sanchez-Dehesa, Jose, E-mail: jsdehesa@upvnet.upv.e [Wave Phenomena Group, Departamento de Ingenieria Electronica, Universidad Politecnica de Valencia, C/Camino de Vera s.n., E-46022 Valencia (Spain)

    2010-07-15

    Radial sonic crystals (RSC) are fluidlike structures infinitely periodic along the radial direction that verify the Bloch theorem and are possible only if certain specially designed acoustic metamaterials with mass density anisotropy can be engineered (see Torrent and Sanchez-Dehesa 2009 Phys. Rev. Lett. 103 064301). A comprehensive analysis of two-dimensional (2D) RSC shells is reported here. A given shell is in fact a circular slab with a central cavity. These finite crystal structures contain Fabry-Perot-like resonances and modes strongly localized at the central cavity. Semi-analytical expressions are developed to obtain the quality factors of the different resonances, their symmetry features and their excitation properties. The results reported here are completely general and can be extended to equivalent 3D spherical shells and to their photonic counterparts.

  6. Population Structures in Russia: Optimality and Dependence on Parameters of Global Evolution

    Yuri Yegorov

    2016-07-01

    Full Text Available The paper is devoted to analytical investigation of the division of geographical space into urban and rural areas with application to Russia. Yegorov (2005, 2006, 2009 has suggested the role of population density on economics. A city has an attractive potential based on scale economies. The optimal city size depends on the balance between its attractive potential and the cost of living that can be approximated by equilibrium land rent and commuting cost. For moderate scale effects optimal population of a city depends negatively on transport costs that are related positively with energy price index. The optimal agricultural density of population can also be constructed. The larger is a land slot per peasant, the higher will be the output from one unit of his labour force applied to this slot. But at the same time, larger farm size results in increase of energy costs, related to land development, collecting the crop and bringing it to the market. In the last 10 years we have observed substantial rise of both food and energy prices at the world stock markets. However, the income of farmers did not grow as fast as food price index. This can shift optimal rural population density to lower level, causing migration to cities (and we observe this tendency globally. Any change in those prices results in suboptimality of existing spatial structures. If changes are slow, the optimal infrastructure can be adjusted by simple migration. If the shocks are high, adaptation may be impossible and shock will persist. This took place in early 1990es in the former USSR, where after transition to world price for oil in domestic markets existing spatial infrastructure became suboptimal and resulted in persistent crisis, leading to deterioration of both industry and agriculture. Russia is the largest country but this is also its problem. Having large resource endowment per capita, it is problematic to build sufficient infrastructure. Russia has too low population

  7. Propagation of a radial phased-locked Lorentz beam array in turbulent atmosphere.

    Zhou, Guoquan

    2011-11-21

    A radial phased-locked (PL) Lorentz beam array provides an appropriate theoretical model to describe a coherent diode laser array, which is an efficient radiation source for high-power beaming use. The propagation of a radial PL Lorentz beam array in turbulent atmosphere is investigated. Based on the extended Huygens-Fresnel integral and some mathematical techniques, analytical formulae for the average intensity and the effective beam size of a radial PL Lorentz beam array are derived in turbulent atmosphere. The average intensity distribution and the spreading properties of a radial PL Lorentz beam array in turbulent atmosphere are numerically calculated. The influences of the beam parameters and the structure constant of the atmospheric turbulence on the propagation of a radial PL Lorentz beam array in turbulent atmosphere are discussed in detail. © 2011 Optical Society of America

  8. Modeling of Global BEAM Structure for Evaluation of MMOD Impacts to Support Development of a Health Monitoring System

    Lyle, Karen H.; Vassilakos, Gregory J.

    2015-01-01

    This report summarizes the initial modeling of the global response of the Bigelow Expandable Activity Module (BEAM) to micrometeorite and orbital debris(MMOD) impacts using a structural, nonlinear, transient dynamic, finite element code. These models complement the on-orbit deployment of the Distributed Impact Detection System (DIDS) to support structural health monitoring studies. Two global models were developed. The first focused exclusively on impacts on the soft-goods (fabric-envelop) portion of BEAM. The second incorporates the bulkhead to support understanding of bulkhead impacts. These models were exercised for random impact locations and responses monitored at the on-orbit sensor locations. The report concludes with areas for future study.

  9. Rainbow refractometry on particles with radial refractive index gradients

    Saengkaew, Sawitree [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France); Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Charinpanitkul, Tawatchai; Vanisri, Hathaichanok; Tanthapanichakoon, Wiwut [Chulalongkorn University, Center of Excellence in Particle Technology, Faculty of Engineering, Bangkok (Thailand); Biscos, Yves; Garcia, Nicolas; Lavergne, Gerard [ONERA/DMAE, Toulouse (France); Mees, Loic; Gouesbet, Gerard; Grehan, Gerard [CNRS/Universite et INSA de Rouen, UMR 6614/CORIA, BP12, 76 800, Saint Etienne du Rouvray CEDEX (France)

    2007-10-15

    The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified. (orig.)

  10. Sequences of extremal radially excited rotating black holes.

    Blázquez-Salcedo, Jose Luis; Kunz, Jutta; Navarro-Lérida, Francisco; Radu, Eugen

    2014-01-10

    In the Einstein-Maxwell-Chern-Simons theory the extremal Reissner-Nordström solution is no longer the single extremal solution with vanishing angular momentum, when the Chern-Simons coupling constant reaches a critical value. Instead a whole sequence of rotating extremal J=0 solutions arises, labeled by the node number of the magnetic U(1) potential. Associated with the same near horizon solution, the mass of these radially excited extremal solutions converges to the mass of the extremal Reissner-Nordström solution. On the other hand, not all near horizon solutions are also realized as global solutions.

  11. Radial electric fields for improved tokamak performance

    Downum, W.B.

    1981-01-01

    The influence of externally-imposed radial electric fields on the fusion energy output, energy multiplication, and alpha-particle ash build-up in a TFTR-sized, fusing tokamak plasma is explored. In an idealized tokamak plasma, an externally-imposed radial electric field leads to plasma rotation, but no charge current flows across the magnetic fields. However, a realistically-low neutral density profile generates a non-zero cross-field conductivity and the species dependence of this conductivity allows the electric field to selectively alter radial particle transport

  12. Radial MR images of the knee

    Hewes, R.C.; Miller, T.R.

    1988-01-01

    To profile optimally each portion of the meniscus, the authors use the multiangle, multisection feature of a General Electric SIGNA 1.5-T imager to produce radial images centered on each meniscus. A total of 12-15 sections are imaged at 10 0 -15 0 intervals of each meniscus, yielding perpendicular images of the entire meniscus, comparable with the arthrographic tangential views. The authors review their technique and demonstrate correlation cases between the radial gradient recalled acquisition in a steady state sequences, sagittal and coronal MR images, and arthrograms. Radial images should be a routine part of knee MR imaging

  13. Prediction of Global Damage and Reliability Based Upon Sequential Identification and Updating of RC Structures Subject to Earthquakes

    Nielsen, Søren R.K.; Skjærbæk, P. S.; Köylüoglu, H. U.

    The paper deals with the prediction of global damage and future structural reliability with special emphasis on sensitivity, bias and uncertainty of these predictions dependent on the statistically equivalent realizations of the future earthquake. The predictions are based on a modified Clough......-Johnston single-degree-of-freedom (SDOF) oscillator with three parameters which are calibrated to fit the displacement response and the damage development in the past earthquake....

  14. Scaling laws for radial foil bearings

    Honavara Prasad, Srikanth

    The effects of fluid pressurization, structural deformation of the compliant members and heat generation in foil bearings make the design and analysis of foil bearings very complicated. The complex fluid-structural-thermal interactions in foil bearings also make modeling efforts challenging because these phenomena are governed by highly non-linear partial differential equations. Consequently, comparison of various bearing designs require detailed calculation of the flow fields (velocities, pressures), bump deflections (structural compliance) and heat transfer phenomena (viscous dissipation in the fluid, frictional heating, temperature profile etc.,) resulting in extensive computational effort (time/hardware). To obviate rigorous computations and aid in feasibility assessments of foil bearings of various sizes, NASA developed the "rule of thumb" design guidelines for estimation of journal bearing load capacity. The guidelines are based on extensive experimental data. The goal of the current work is the development of scaling laws for radial foil bearings to establish an analytical "rule of thumb" for bearing clearance and bump stiffness. The use of scale invariant Reynolds equation and experimentally observed NASA "rule of thumb" yield scale factors which can be deduced from first principles. Power-law relationships between: a. Bearing clearance and bearing radius, and b. bump stiffness and bearing radius, are obtained. The clearance and bump stiffness values obtained from scaling laws are used as inputs for Orbit simulation to study various cases. As the clearance of the bearing reaches the dimensions of the material surface roughness, asperity contact breaks the fluid film which results in wear. Similarly, as the rotor diameter increases (requiring larger bearing diameters), the load capacity of the fluid film should increase to prevent dry rubbing. This imposes limits on the size of the rotor diameter and consequently bearing diameter. Therefore, this thesis aims

  15. Towards large-scale mapping of urban three-dimensional structure using Landsat imagery and global elevation datasets

    Wang, P.; Huang, C.

    2017-12-01

    The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.

  16. Awareness structure of the people with opinion that nuclear power is effective for preventing global warming

    Fukae, Chiyokazu

    2006-01-01

    Most of people think that nuclear power generation is not effective for preventing global warming. In this research, the reason why people think so was investigated with using questionnaire survey. As a result, the misunderstanding, the thermal effluent and radioactive substance etc. produced from a nuclear plant promotes global warming, has influenced on this issue. People have negative image against nuclear power in the background of this idea. This negative image is a factor to decrease the evaluation that nuclear power is useful for preventing global warming regardless of the presence of the misunderstanding. By the fear that the accident of the nuclear plant brings the environmental destruction, people evaluate that nuclear power doesn't have the capabilities for environmental preservation. Especially young people have such awareness. It is necessary to learn energy and environmental issues including the merits and demerits of nuclear power objectively in the academic training. (author)

  17. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt

    2012-01-01

    Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi—microbial symbionts that play key roles in plant...... nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting...... with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM...

  18. THE OCCURRENCE OF THE RADIAL CLUB HAND IN CHILDREN WITH DIFFERENT SYNDROMES

    Sergey Ivanovich Golyana

    2013-03-01

    Full Text Available Radial club hand is a developmental anomaly of the upper extremity, being characterized as a longitudinal underdevelopment of a forearm and a hand on the radial surface, consisting in a hypo-/ aplazy radial bone and the thumb of various degree of expressiveness. Characteristic symptoms of this developmental anomaly are: shortening and bow-shaped curvature of a forearm, palmar and radial deviation of a hand, underdevelopment of the thumb from its proximal departments and structures, anomaly of development of three-phalanx fingers of a hand (is more often than the 2-4th, violation of a cosmetic condition and functionality of the affected segment. From 2000 for 2012 in FSI SRICO n.a. H.Turner examination and treatment of 23 children with various syndromes at which the radial club hand was revealed are conducted. The main syndromes at which it is revealed radial club hand - Holt-Orama syndrome, TAR- syndrome and VACTERL syndrome. Tactics and techniques of surgical treatment of a radial club hand it various syndromes most often don’t differ from treatment of other types of a radial club hand though demand an individual approach depending on severity and a type of deformation of the upper extremity.

  19. A Field Study of Structures, Affordances, and Coordination Mechanisms of a Cross-Organizational Extended Team in Global Software Development

    Zahedi, Mansooreh; Ali Babar, Muhammad

    Context: Growing popularity of Global Software Development (GSD) has resulted in an increasing number of cross-organizational teams that are formed according to Extended Team Model (ETM). There is little empirical body of knowledge about the structures (work, social, and communication) that may...... exist in these types of teams and the potential strengths and weaknesses of these structures in dealing with GSD challenges. Objective: This research has been motivated by the need of studying the types of work, communication and social structures designed and implemented for a cross...... interviews with both onshore and offshore team members. We applied qualitative data analysis approach called thematic analysis for finding the answers to our key research questions. Results: Our study has identified that the current work structure of ETM create several kinds of interdependencies for which...

  20. Radial pseudoaneurysm following diagnostic coronary angiography

    Shankar Laudari

    2015-06-01

    Full Text Available The radial artery access has gained popularity as a method of diagnostic coronary catheterization compared to femoral artery puncture in terms of vascular complications and early ambulation. However, very rare complication like radial artery pseudoaneurysm may occur following cardiac catheterization which may give rise to serious consequences. Here, we report a patient with radial pseudoaneurysm following diagnostic coronary angiography. Adequate and correct methodology of compression of radial artery following puncture for maintaining hemostasis is the key to prevention.DOI: http://dx.doi.org/10.3126/jcmsn.v10i3.12776 Journal of College of Medical Sciences-Nepal, 2014, Vol-10, No-3, 48-50

  1. World in transition: basic structure of global people-environment interactions. 1993 annual report

    1994-01-01

    In spring 1992, increasingly concerned about the preservation of the natural basis for the life and development of humanity, the Federal Government of Germany established the German Advisory Council on Global Change. In its 1993 Annual Report, the Council endeavours to provide a holistic analysis of the Earth System, whereby the central focus is directed at the principal interactions between nature and society. The aim here is to demonstrate the complexity of environmental problems, on the one hand, and to create, on the other, the analytical basis for assessing the impact of current trends (increased greenhouse effect, declining biodiversity, loss of fertile soils, population growth, etc.) on the system as a whole. In-depth treatment of core topics will be related back continually to this global perspective, and vice versa, in order to contribute towards continuous improvement of our understanding of the system. The Report begins with a circumscription of its subject, i.e. a definition of what is meant by ''global environmental change''. This leads inevitably to the issue of ''sustainable development'', which will be dealt with in one of the Reports to follow. The highly condensed description of the ecosphere and the anthroposphere, and an analysis of the linkages between the two spheres in the Earth System, is followed by the examination of the main components and the relevant trends of global environmental change. (orig./UA)

  2. Environmental and resource footprints in a global context: Europe's structural deficit in resource endowments

    Tukker, A.; Bulavskaya, T.; Giljum, S.; Koning, A. de; Lutter, S.; Simas, M.; Stadler, K.; Wood, R.

    2016-01-01

    The European Union (EU) has proposed in its Resource-efficiency roadmap a ‘dashboard of indicators’ consisting of four headline indicators for carbon, water, land and materials. The EU recognizes the need to use a consumption-based (or ‘footprint’) perspective to capture the global dimension of

  3. Do company strategies and structures converge in global markets? Evidence from the computer industry

    Duysters, G.M.; Hagedoorn, J.

    2001-01-01

    This note examines isomorphism and diversity in a global industry. We study how the ongoing internationalisation process has affected companies from various regions of the world. Empirical research is focussed on the international computer industry. We find that companies in this sector have become

  4. Two-dimensional structure of the MAAS-Global rating list for consultation skills of doctors

    van Es, Judy M.; Schrijver, Charles J. W.; Oberink, Riëtta H. H.; Visser, Mechteld R. M.

    2012-01-01

    Background: The MAAS-Global (MG) is widely used to assess doctor-patient communication skills. Reliability and validity have been investigated, but little is known about its dimensionality. Assuming physicians tend to adopt certain styles or preferences in their communication with patients, a

  5. Global-local Knowledge Coupling Approach to Support Airframe Structural Design

    Wang, H.

    2014-01-01

    The outsourcing that has taken place in the aircraft industry over the last few decades has created a globalized supply chain from and to a limited number of original equipment manufacturers (OEMs). This has led to multi-level design due to the shift from airframe subsystem design to suppliers.

  6. Radial transport with perturbed magnetic field

    Hazeltine, R. D. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-15

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order.

  7. Radial transport with perturbed magnetic field

    Hazeltine, R. D.

    2015-01-01

    It is pointed out that the viscosity coefficient describing radial transport of toroidal angular momentum is proportional to the second power of the gyro-radius—like the corresponding coefficients for particle and heat transport—regardless of any geometrical symmetry. The observation is widely appreciated, but worth emphasizing because some literature gives the misleading impression that asymmetry can allow radial moment transport in first-order

  8. Structural Uncertainty in Model-Simulated Trends of Global Gross Primary Production

    Zaichun Zhu

    2013-03-01

    Full Text Available Projected changes in the frequency and severity of droughts as a result of increase in greenhouse gases have a significant impact on the role of vegetation in regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production (GPP is usually modeled as a function of Vapor Pressure Deficit (VPD and/or soil moisture. Climate projections suggest a strong likelihood of increasing trend in VPD, while regional changes in precipitation are less certain. This difference in projections between VPD and precipitation can cause considerable discrepancies in the predictions of vegetation behavior depending on how ecosystem models represent the drought effect. In this study, we scrutinized the model responses to drought using the 30-year record of Global Inventory Modeling and Mapping Studies (GIMMS 3g Normalized Difference Vegetation Index (NDVI dataset. A diagnostic ecosystem model, Terrestrial Observation and Prediction System (TOPS, was used to estimate global GPP from 1982 to 2009 under nine different experimental simulations. The control run of global GPP increased until 2000, but stayed constant after 2000. Among the simulations with single climate constraint (temperature, VPD, rainfall and solar radiation, only the VPD-driven simulation showed a decrease in 2000s, while the other scenarios simulated an increase in GPP. The diverging responses in 2000s can be attributed to the difference in the representation of the impact of water stress on vegetation in models, i.e., using VPD and/or precipitation. Spatial map of trend in simulated GPP using GIMMS 3g data is consistent with the GPP driven by soil moisture than the GPP driven by VPD, confirming the need for a soil moisture constraint in modeling global GPP.

  9. Stability of radial and non-radial pulsation modes of massive ZAMS models

    Odell, A.P.; Pausenwein, A.; Weiss, W.W.; Hajek, A.

    1987-01-01

    The authors have computed non-adiabatic eigenvalues for radial and non-radial pulsation modes of star models between 80 and 120 M solar with composition of chi=0.70 and Z=0.02. The radial fundamental mode is unstable in models with mass greater than 95 M solar , but the first overtone mode is always stable. The non-radial modes are all stable for all models, but the iota=2 f-mode is the closest to being driven. The non-radial modes are progressively more stable with higher iota and with higher n (for both rho- and g-modes). Thus, their results indicate that radial pulsation limits the upper mass of a star

  10. 21 CFR 866.4800 - Radial immunodiffusion plate.

    2010-04-01

    ...) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Immunology Laboratory Equipment and Reagents § 866.4800 Radial immunodiffusion plate. (a) Identification. A radial immunodiffusion plate for clinical use...

  11. Dynamic radial distribution function from inelastic neutron scattering

    McQueeney, R.J.

    1998-01-01

    A real-space, local dynamic structure function g(r,ω) is defined from the dynamic structure function S(Q,ω), which can be measured using inelastic neutron scattering. At any particular frequency ω, S(Q,ω) contains Q-dependent intensity oscillations which reflect the spatial distribution and relative displacement directions for the atoms vibrating at that frequency. Information about local and dynamic atomic correlations is obtained from the Fourier transform of these oscillations g(r,ω) at the particular frequency. g(r,ω) can be formulated such that the elastic and frequency-summed limits correspond to the average and instantaneous radial distribution function, respectively, and is thus called the dynamic radial distribution function. As an example, the dynamic radial distribution function is calculated for fcc nickel in a model which considers only the harmonic atomic displacements due to phonons. The results of these calculations demonstrate that the magnitude of the atomic correlations can be quantified and g(r,ω) is a well-defined correlation function. This leads to a simple prescription for investigating local lattice dynamics. copyright 1998 The American Physical Society

  12. Digital feed back control for radial beam position

    Mestha, L.K.

    1989-09-01

    In the development of wide spread large scale distributed digital control systems, there is a requirement to automate small processes like radial beam control which will not only improve the beam quality but will also add local intelligence. Hence use is made here of digital control principles for such applications. The work concerned with the radial beam control discussed in this report has been developed for ISIS at RAL. The structure of the report is hence inclined more towards the local hardware system. The general feed back loop techniques can also be implemented for other control purpose. For instance, the author has successfully tested similar techniques to minimise the RF cavity tuning error, where the improvement in performance could not be matched by the analogue loop. A description of the RF cavity tuning programme and the associated experimental results will be published as a local paper for ISIS division. (author)

  13. Success of Anomia Treatment in Aphasia Is Associated With Preserved Architecture of Global and Left Temporal Lobe Structural Networks.

    Bonilha, Leonardo; Gleichgerrcht, Ezequiel; Nesland, Travis; Rorden, Chris; Fridriksson, Julius

    2016-03-01

    Targeted speech therapy can lead to substantial naming improvement in some subjects with anomia following dominant-hemisphere stroke. We investigated whether treatment-induced improvement in naming is associated with poststroke preservation of structural neural network architecture. Twenty-four patients with poststroke chronic aphasia underwent 30 hours of speech therapy over a 2-week period and were assessed at baseline and after therapy. Whole brain maps of neural architecture were constructed from pretreatment diffusion tensor magnetic resonance imaging to derive measures of global brain network architecture (network small-worldness) and regional network influence (nodal betweenness centrality). Their relationship with naming recovery was evaluated with multiple linear regressions. Treatment-induced improvement in correct naming was associated with poststroke preservation of global network small worldness and of betweenness centrality in temporal lobe cortical regions. Together with baseline aphasia severity, these measures explained 78% of the variability in treatment response. Preservation of global and left temporal structural connectivity broadly explains the variability in treatment-related naming improvement in aphasia. These findings corroborate and expand on previous classical lesion-symptom mapping studies by elucidating some of the mechanisms by which brain damage may relate to treated aphasia recovery. Favorable naming outcomes may result from the intact connections between spared cortical areas that are functionally responsive to treatment. © The Author(s) 2015.

  14. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global – disturbed local network organization

    Justina Sidlauskaite

    2015-01-01

    Full Text Available Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD. However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics — small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  15. Whole-brain structural topology in adult attention-deficit/hyperactivity disorder: Preserved global - disturbed local network organization.

    Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R

    2015-01-01

    Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.

  16. FROM INTERNATIONAL LAW TO GLOBAL GOVERNANCE: STRUCTURAL CHANGES IN THE TRANSNATIONAL SPACE

    Torelly, Marcelo

    2016-01-01

    The articles analyze the emergence of the concept of global governance arguing that social complexification leads to the emergence of new kinds of transnational regulation that challenge the traditional concept of international law articulated in the late XIX Century. It divides the historical development in three stages: an assembly moment, an executive moment, and judicial moment characterized by normative fragmentation and the emergence of self-contained regimes with constitutional-like fe...

  17. The Gulf Cooperation Council countries – economic structures, recent developments and role in the global economy

    Michael Sturm; Jan Strasky; Petra Adolf; Dominik Peschel

    2008-01-01

    In the wake of high and rising oil prices since 2003, the member states of the Gulf Cooperation Council (GCC) have seen dynamic economic development, enhancing their role in the global economy as investors and trade partners. Real GDP growth has been buoyant, with non-oil activity expanding faster than oil GDP. Macroeconomic developments have also been characterised by large fiscal and current account surpluses as a result of rising oil revenues, notwithstanding fiscal expansion and rapid imp...

  18. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Szederkenyi, Gabor; Hangos, Katalin M

    2004-04-26

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  19. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Szederkényi, Gábor; Hangos, Katalin M.

    2004-04-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.

  20. Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems

    Szederkenyi, Gabor; Hangos, Katalin M.

    2004-01-01

    We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities

  1. Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermochemical models

    Cammarano, Fabio; Tackley, Paul J.; Boschi, Lapo

    2011-01-01

    Mapping the thermal and compositional structure of the upper mantle requires a combined interpretation of geophysical and petrological observations. Based on current knowledge of material properties, we interpret available global seismic models for temperature assuming end-member compositional...... structures. In particular, we test the effects of modelling a depleted lithosphere, which accounts for petrological constraints on continents. Differences between seismicmodels translate into large temperature and density variations, respectively, up to 400K and 0.06 g cm-3 at 150 km depth. Introducing...... lateral compositional variations does not change significantly the thermal interpretation of seismic models, but gives a more realistic density structure. Modelling a petrological lithosphere gives cratonic temperatures at 150 km depth that are only 100 K hotter than those obtained assuming pyrolite...

  2. Research of long pulse high current diode radial insulation

    Tan Jie; Chang Anbi; Hu Kesong; Liu Qingxiang; Ma Qiaosheng; Liu Zhong

    2002-01-01

    A radial insulation structure which is used in long pulse high current diode is introduced. The theory of vacuum flashover and the idea of design are briefly introduced. In the research, cone-shaped insulator was used. The geometry structure parameters were optimized by simulating the static electrical field distribution. Experiment was done on a pulse power source with 200 ns pulse width. The maximum voltage 750 kV was obtained, and the average stand-off electrical field of insulator is about 50 kV/cm

  3. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  4. Role of the upper ocean structure in the response of ENSO-like SST variability to global warming

    Yeh, Sang-Wook [Hanyang University, Department of Environmental Marine Science, Ansan (Korea); Dewitte, Boris [Laboratoire d' Etude en Geophysique et Oceanographie Spatiale, Toulouse (France); Yim, Bo Young; Noh, Yign [Yonsei University, Department of Atmospheric Sciences, Global Environmental Laboratory, Seoul (Korea)

    2010-08-15

    The response of El Nino and Southern Oscillation (ENSO)-like variability to global warming varies comparatively between the two different climate system models, i.e., the Meteorological Research Institute (MRI) and Geophysical Fluid Dynamics Laboratory (GFDL) Coupled General Circulation Models (CGCMs). Here, we examine the role of the simulated upper ocean temperature structure in the different sensitivities of the simulated ENSO variability in the models based on the different level of CO{sub 2} concentrations. In the MRI model, the sea surface temperature (SST) undergoes a rather drastic modification, namely a tendency toward a permanent El Nino-like state. This is associated with an enhanced stratification which results in greater ENSO amplitude for the MRI model. On the other hand, the ENSO simulated by GFDL model is hardly modified although the mean temperature in the near surface layer increases. In order to understand the associated mechanisms we carry out a vertical mode decomposition of the mean equatorial stratification and a simplified heat balance analysis using an intermediate tropical Pacific model tuned from the CGCM outputs. It is found that in the MRI model the increased stratification is associated with an enhancement of the zonal advective feedback and the non-linear advection. In the GFDL model, on the other hand, the thermocline variability and associated anomalous vertical advection are reduced in the eastern equatorial Pacific under global warming, which erodes the thermocline feedback and explains why the ENSO amplitude is reduced in a warmer climate in this model. It is suggested that change in stratification associated with global warming impacts the equatorial wave dynamics in a way that enhances the second baroclinic mode over the gravest one, which leads to the change in feedback processes in the CGCMs. Our results illustrate that the upper ocean vertical structure simulated in the CGCMs is a key parameter of the sensitivity of ENSO

  5. On the energy-critical fractional Sch\\"odinger equation in the radial case

    Guo, Zihua; Sire, Yannick; Wang, Yuzhao; Zhao, Lifeng

    2013-01-01

    We consider the Cauchy problem for the energy-critical nonlinear Schr\\"odinger equation with fractional Laplacian (fNLS) in the radial case. We obtain global well-posedness and scattering in the energy space in the defocusing case, and in the focusing case with energy below the ground state.

  6. Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults.

    Kong, Feng; Ding, Ke; Yang, Zetian; Dang, Xiaobin; Hu, Siyuan; Song, Yiying; Liu, Jia

    2015-07-01

    Although much attention has been directed towards life satisfaction that refers to an individual's general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals' life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual's life satisfaction. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  7. Examining gray matter structures associated with individual differences in global life satisfaction in a large sample of young adults

    Kong, Feng; Ding, Ke; Yang, Zetian; Dang, Xiaobin; Hu, Siyuan; Song, Yiying

    2015-01-01

    Although much attention has been directed towards life satisfaction that refers to an individual’s general cognitive evaluations of his or her life as a whole, little is known about the neural basis underlying global life satisfaction. In this study, we used voxel-based morphometry to investigate the structural neural correlates of life satisfaction in a large sample of young healthy adults (n = 299). We showed that individuals’ life satisfaction was positively correlated with the regional gray matter volume (rGMV) in the right parahippocampal gyrus (PHG), and negatively correlated with the rGMV in the left precuneus and left ventromedial prefrontal cortex. This pattern of results remained significant even after controlling for the effect of general positive and negative affect, suggesting a unique structural correlates of life satisfaction. Furthermore, we found that self-esteem partially mediated the association between the PHG volume and life satisfaction as well as that between the precuneus volume and global life satisfaction. Taken together, we provide the first evidence for the structural neural basis of life satisfaction, and highlight that self-esteem might play a crucial role in cultivating an individual’s life satisfaction. PMID:25406366

  8. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1

    Paegle, J.; Kalnay, E.; Baker, W. E.

    1981-01-01

    The global scale structure of atmospheric flow is best documented on time scales longer than a few days. Theoretical and observational studies of ultralong waves have emphasized forcing due to global scale variations of topography and surface heat flux, possibly interacting with baroclinically unstable or vertically refracting basic flows. Analyses of SOP-1 data in terms of global scale spherical harmonics is documented with emphasis upon weekly transitions.

  9. Anomalies of radial and ulnar arteries

    Rajani Singh

    Full Text Available Abstract During dissection conducted in an anatomy department of the right upper limb of the cadaver of a 70-year-old male, both origin and course of the radial and ulnar arteries were found to be anomalous. After descending 5.5 cm from the lower border of the teres major, the brachial artery anomalously bifurcated into a radial artery medially and an ulnar artery laterally. In the arm, the ulnar artery lay lateral to the median nerve. It followed a normal course in the forearm. The radial artery was medial to the median nerve in the arm and then, at the level of the medial epicondyle, it crossed from the medial to the lateral side of the forearm, superficial to the flexor muscles. The course of the radial artery was superficial and tortuous throughout the arm and forearm. The variations of radial and ulnar arteries described above were associated with anomalous formation and course of the median nerve in the arm. Knowledge of neurovascular anomalies are important for vascular surgeons and radiologists.

  10. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    Zou, Zhichao [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Wang, Fujun, E-mail: wangfj@cau.edu.cn [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Yao, Zhifeng [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Tao, Ran [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Xiao, Ruofu [College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083 (China); Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083 (China); Li, Huaicheng [Shanghai Liancheng (Group) Co., Ltd., Shanghai 201812 (China)

    2016-12-15

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t{sub 0}) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t{sub 0}, the radial force is small (approaching zero). At 0.4–1.4t{sub 0}, the radial force increases rapidly. After 1.4t{sub 0}, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research

  11. Impeller radial force evolution in a large double-suction centrifugal pump during startup at the shut-off condition

    Zou, Zhichao; Wang, Fujun; Yao, Zhifeng; Tao, Ran; Xiao, Ruofu; Li, Huaicheng

    2016-01-01

    Highlights: • Conclude the characteristics of transient radial force in the startup process for a large double-suction centrifugal pump. • The overall direction of the radial force during startup process is also confirmed. • A formula used to calculate the transient radial force during startup process is proposed. • A relationship between radial force variation and axial vortex development in blade channel during the startup process is established. The mechanism of the radial force evolution is revealed. - Abstract: Double-suction centrifugal pumps play an important role in the main feedwater systems of nuclear power plant. The impeller radial force in a centrifugal pump varies dramatically during startup at the shut-off condition. In this study, the startup process of a large double-suction centrifugal pump is investigated using CFD. During testing, the impeller speed is accelerated from zero to its rated speed in 1.0 s (marked as t_0) and is then maintained at the rated speed. The results show that the radial force increase lags behind the impeller speed increase. At 0–0.4t_0, the radial force is small (approaching zero). At 0.4–1.4t_0, the radial force increases rapidly. After 1.4t_0, the average radial force stabilizes and reaches its maximum value of 55,619 N. The observed maximum radial force value during startup is approximately nine times as high as the radial force under rated condition. During startup, the overall radial force direction is proximate to the radial line located 25° from the volute tongue along circumferential direction. A transient radial force formula is proposed to evaluate the changes in radial force during startup. The streamline distribution in impeller passages and the impeller outlet pressure profile varying over time are produced. The relationship between radial force evolution and the varying axial-to-spiral vortex structure is analyzed. The radial force change mechanism is revealed. This research provides a scientific

  12. Attribution of global foodborne disease to specific foods: Findings from a World Health Organization structured expert elicitation

    Hoffmann, Sandra; Devleesschauwer, Brecht; Aspinall, Willy

    2017-01-01

    as exposure routes for key hazards is critical to preventing illness. This study reports the findings of a structured expert elicitation providing globally comparable food source attribution estimates for 11 major FBDs in each of 14 world subregions. Methods and findings We used Cooke’s Classical Model...... was of minor importance compared to eggs and poultry meat in the American and African subregions, whereas in the European and Western Pacific subregions the importance of these three food sources were quite similar. Our regional results broadly agree with estimates from earlier European and North American food...

  13. Tuning porosity and radial mechanical properties of DNA origami nanotubes via crossover design

    Ma, Zhipeng; Kawai, Kentaro; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2017-06-01

    DNA origami nanotubes are utilized as structural platforms for the fabrication of various micro/nanosystems for drug delivery, optical or biological sensing, and even nanoscale robots. Their radial structural and mechanical properties, which play a crucial role in the effective use of micro/nanosystems, have not been fully studied. In particular, the effects of crossovers, which are basic structures for rationally assembling double-stranded DNA (dsDNA) helices into a nanotube configuration, have not yet been characterized experimentally. To investigate the effects of crossovers on the porosity and the radial mechanical properties of DNA origami nanotubes, we fabricated a DNA origami nanotube with varied crossover designs along the nanotube axis. The radial geometry of the DNA origami nanotube is experimentally characterized by both atomic force microscopy (AFM) and electron cryomicroscopy (cryo-EM). Moreover, the radial mechanical properties of the DNA origami nanotube including the radial modulus are directly measured by force-distance-based AFM. These measurements reveal that the porosity and the radial modulus of DNA origami nanotubes can be tuned by adjusting the crossover design, which enables the optimal design and construction of DNA origami nanostructures for various applications.

  14. A novel integrated 4-DOF radial hybrid magnetic bearing for MSCMG

    Jinji, Sun; Ziyan, Ju [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China); Weitao, Han, E-mail: hanweitaotao@163.com [CRRC Qingdao Sifang CO., LTD, Qingdao 266111 (China); Gang, Liu [School of Instrumentation Science & Opto-electronics Engineering, Beijing University of Aeronautics and Astronautics, Science and Technology on Inertial Laboratory, Beijing 100191 (China)

    2017-01-01

    This paper proposes a novel integrated radial hybrid magnetic bearing (RHMB) for application with the small-sized magnetically suspended control moment gyroscope (MSCMG), which can control four degrees of freedom (4-DOFs), including two radial translational DOFs and two radial tilting DOFs, and provide the axial passive resilience. The configuration and working principle of the RHMB are introduced. Mathematical models of radial force, axial resilience and moment are established by using equivalent magnetic circuit method (EMCM), from which the radial force–radial displacement, radial force–current relationships are derived, as well as axial resilience–axial displacement, moment–tilting angle and moment–current. Finite element method (FEM) is also applied to analyze the performance and characteristics of the RHMB. The analysis results are in good agreement with that calculated by the EMCM, which is helpful in designing, optimizing and controlling the RHMB. The comparisons between the performances of the integrated 4-DOF RHMB and the traditional 4-DOF RHMB are made. The contrast results indicate that the proposed integrated 4-DOF RHMB possesses better performance compared to the traditional structure, such as copper loss, current stiffness, and tilting current stiffness. - Highlights: • An integrated 4-DOF RHMB is proposed for the small-sized MSCMG. • The 4-DOF RHMB has good linear force–displacement and force–current characteristics. • The RHMB has good linear moment–current and the moment–tilting angle characteristic.

  15. Variable surface composition and radial interface formation in self-assembled free, mixed Ar/Xe clusters

    Tchaplyguine, M.; Maartensson, N.; Lundwall, M.; Oehrwall, G.; Feifel, R.; Svensson, S.; Bjoerneholm, O.; Gisselbrecht, M.; Sorensen, S.

    2004-01-01

    Using photoelectron spectroscopy, we demonstrate how the self-assembling process of cluster formation in an adiabatic expansion leads to radial segregation and layering as well as to variable surface composition for binary Ar/Xe clusters. The radial structuring can be qualitatively understood from the different interatomic bonding strengths of the two components

  16. Modelling of radial electric field profile for different divertor configurations

    Rozhansky, V; Kaveeva, E; Voskoboynikov, S; Counsell, G; Kirk, A; Meyer, H; Coster, D; Conway, G; Schirmer, J; Schneider, R

    2006-01-01

    The impact of divertor configuration on the structure of the radial electric field has been simulated by the B2SOLPS5.0 transport fluid code. It is shown that the change in the parallel flows in the scrape-off layer, which are transported through the separatrix due to turbulent viscosity and diffusivity, should result in variation of the radial electric field and toroidal rotation in the separatrix vicinity. The modelling predictions are compared with the measurements of the radial electric field for the low field side equatorial mid-plane of ASDEX Upgrade in lower, upper and double-null (DN) divertor configurations. The parallel (toroidal) flows in the scrape-off layer and mechanisms for their formation are analysed for different geometries. It is demonstrated that a spike in the electric field exists at the high field side equatorial mid-plane in the connected DN divertor configuration. Its origin is connected with different potential drops between the separatrix vicinity and divertor plates in the two disconnected scrape-off layers, while the separatrix should be at almost the same potential. The spike might be important for additional turbulent suppression

  17. ION-SCALE TURBULENCE IN THE INNER HELIOSPHERE: RADIAL DEPENDENCE

    Comisel, H.; Motschmann, U.; Büchner, J.; Narita, Y.; Nariyuki, Y. [University of Toyama, Faculty of Human Development, 3190, Gofuku, Toyama, 930-8555 (Japan)

    2015-10-20

    The evolution of the ion-scale plasma turbulence in the inner heliosphere is studied by associating the plasma parameters for hybrid-code turbulence simulations to the radial distance from the Sun via a Solar wind model based mapping procedure. Using a mapping based on a one-dimensional solar wind expansion model, the resulting ion-kinetic scale turbulence is related to the solar wind distance from the Sun. For this purpose the mapping is carried out for various values of ion beta that correspond to the heliocentric distance. It is shown that the relevant normal modes such as ion cyclotron and ion Bernstein modes will occur first at radial distances of about 0.2–0.3 AU, i.e., near the Mercury orbit. This finding can be used as a reference, a prediction to guide the in situ measurements to be performed by the upcoming Solar Orbiter and Solar Probe Plus missions. Furthermore, a radial dependence of the wave-vector anisotropy was obtained. For astrophysical objects this means that the spatial scales of filamentary structures in interstellar media or astrophysical jets can be predicted for photometric observations.

  18. Global self-esteem and method effects: competing factor structures, longitudinal invariance, and response styles in adolescents.

    Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt

    2014-06-01

    The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for the RSES and to quantify and predict the method effects. This sample involves two waves (N =2,513 9th-grade and 2,370 10th-grade students) from five waves of a school-based longitudinal study. The RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained a large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style and found that being a girl and having a higher number of depressive symptoms were associated with both low self-esteem and negative response style, as measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents.

  19. Global self-esteem and method effects: competing factor structures, longitudinal invariance and response styles in adolescents

    Urbán, Róbert; Szigeti, Réka; Kökönyei, Gyöngyi; Demetrovics, Zsolt

    2013-01-01

    The Rosenberg Self-Esteem Scale (RSES) is a widely used measure for assessing self-esteem, but its factor structure is debated. Our goals were to compare 10 alternative models for RSES; and to quantify and predict the method effects. This sample involves two waves (N=2513 ninth-grade and 2370 tenth-grade students) from five waves of a school-based longitudinal study. RSES was administered in each wave. The global self-esteem factor with two latent method factors yielded the best fit to the data. The global factor explained large amount of the common variance (61% and 46%); however, a relatively large proportion of the common variance was attributed to the negative method factor (34 % and 41%), and a small proportion of the common variance was explained by the positive method factor (5% and 13%). We conceptualized the method effect as a response style, and found that being a girl and having higher number of depressive symptoms were associated with both low self-esteem and negative response style measured by the negative method factor. Our study supported the one global self-esteem construct and quantified the method effects in adolescents. PMID:24061931

  20. Manufacturing of Precision Forgings by Radial Forging

    Wallner, S.; Harrer, O.; Buchmayr, B.; Hofer, F.

    2011-01-01

    Radial forging is a multi purpose incremental forging process using four tools on the same plane. It is widely used for the forming of tool steels, super alloys as well as titanium- and refractory metals. The range of application goes from reducing the diameters of shafts, tubes, stepped shafts and axels, as well as for creating internal profiles for tubes in Near-Net-Shape and Net-Shape quality. Based on actual development of a weight optimized transmission input shaft, the specific features of radial forging technology is demonstrated. Also a Finite Element Model for the simulation of the process is shown which leads to reduced pre-processing effort and reduced computing time compared to other published simulation methods for radial forging. The finite element model can be applied to quantify the effects of different forging strategies.

  1. Radial Domany-Kinzel models with mutation and selection

    Lavrentovich, Maxim O.; Korolev, Kirill S.; Nelson, David R.

    2013-01-01

    We study the effect of spatial structure, genetic drift, mutation, and selective pressure on the evolutionary dynamics in a simplified model of asexual organisms colonizing a new territory. Under an appropriate coarse-graining, the evolutionary dynamics is related to the directed percolation processes that arise in voter models, the Domany-Kinzel (DK) model, contact process, and so on. We explore the differences between linear (flat front) expansions and the much less familiar radial (curved front) range expansions. For the radial expansion, we develop a generalized, off-lattice DK model that minimizes otherwise persistent lattice artifacts. With both simulations and analytical techniques, we study the survival probability of advantageous mutants, the spatial correlations between domains of neutral strains, and the dynamics of populations with deleterious mutations. “Inflation” at the frontier leads to striking differences between radial and linear expansions. For a colony with initial radius R0 expanding at velocity v, significant genetic demixing, caused by local genetic drift, occurs only up to a finite time t*=R0/v, after which portions of the colony become causally disconnected due to the inflating perimeter of the expanding front. As a result, the effect of a selective advantage is amplified relative to genetic drift, increasing the survival probability of advantageous mutants. Inflation also modifies the underlying directed percolation transition, introducing novel scaling functions and modifications similar to a finite-size effect. Finally, we consider radial range expansions with deflating perimeters, as might arise from colonization initiated along the shores of an island.

  2. The Challenges for the Multilateral Trading System Raised by the Ongoing Structural Transformations in the Global Economy

    Agnes Ghibuțiu

    2012-04-01

    Full Text Available Over the last decade, international trade has been growing faster than global production, steadily increasing interdependence among nations. Sustained trade growth has been accompanied by profound changes in the patterns of trade flows, reflecting new production structures emerging under the impact of rapid progress in the development of transport, communications and information technologies, major shifts in the patterns of demand, rapid expansion of global production networks, and increasing integration of developing countries into the world economy. While global trade relations experienced a dramatic transformation during the last decade, the multilateral trading system and the WTO – the venue for international trade cooperation – failed to keep pace with the rapidly changing trade environment. Consequently, the world trade rule-book that is currently guiding international trade relations as a result of the Uruguay Round (1986-1994 and the creation of the WTO (in 1995 is stuck in the requirements of 20st century trade. Improving and adjusting multilateral trade rules and disciplines ranked among the main objectives of the Doha Round launched in 2001. However, trade negotiations have been stalled since 2008. And with this impasse, the legislative function of the WTO responsible for the elaboration of new rules has been also blocked, hindering thus the process of adjustment. This paper addresses the main challenges confrunting the multilateral trading system both in the long and short-term in its endeavour to adjust to the new realities of 21st century trade. More specifically, it takes a look at the key problems arising for international cooperation in trade from: (1 the continually shifting weight of economic power and influence within the world economy; (2 the dynamic spread of global production networks operated by TNCs; and (3 the explosion of regionalism and preferential trade agreements. Finally, the paper highlights the vital

  3. Significance of uncertainties derived from settling tank model structure and parameters on predicting WWTP performance - A global sensitivity analysis study

    Ramin, Elham; Sin, Gürkan; Mikkelsen, Peter Steen

    2011-01-01

    Uncertainty derived from one of the process models – such as one-dimensional secondary settling tank (SST) models – can impact the output of the other process models, e.g., biokinetic (ASM1), as well as the integrated wastewater treatment plant (WWTP) models. The model structure and parameter...... and from the last aerobic bioreactor upstream to the SST (Garrett/hydraulic method). For model structure uncertainty, two one-dimensional secondary settling tank (1-D SST) models are assessed, including a first-order model (the widely used Takács-model), in which the feasibility of using measured...... uncertainty of settler models can therefore propagate, and add to the uncertainties in prediction of any plant performance criteria. Here we present an assessment of the relative significance of secondary settling model performance in WWTP simulations. We perform a global sensitivity analysis (GSA) based...

  4. Resolution of crystal structures by X-ray and neutrons powder diffraction using global optimisation methods; Resolution des structures cristallines par diffraction des rayons X et neutrons sur poudres en utilisant les methodes d'optimisation globale

    Palin, L

    2005-03-15

    We have shown in this work that X-ray diffraction on powder is a powerful tool to analyze crystal structure. The purpose of this thesis is the resolution of crystal structures by X-ray and neutrons diffraction on powder using global optimisation methods. We have studied 3 different topics. The first one is the order-disorder phenomena observed in some globular organic molecular solids. The second is the opiate family of neuropeptides. These neurotransmitters regulate sensory functions including pain and control of respiration in the central nervous system. The aim of our study was to try to determine the crystal structure of Leu-enkephalin and some of its sub-fragments. The determination of the crystal structures has been done performing Monte Carlo simulations. The third one is the location of benzene in a sodium-X zeolite. The zeolite framework was already known and the benzene has been localized by simulated annealing and by the use of maximum entropy maps.

  5. Effects of global financial crisis on network structure in a local stock market

    Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo

    2014-08-01

    This study considers the effects of the 2008 global financial crisis on threshold networks of a local Korean financial market around the time of the crisis. Prices of individual stocks belonging to KOSPI 200 (Korea Composite Stock Price Index 200) are considered for three time periods, namely before, during, and after the crisis. Threshold networks are constructed from fully connected cross-correlation networks, and thresholds of cross-correlation coefficients are assigned to obtain threshold networks. At the high threshold, only one large cluster consisting of firms in the financial sector, heavy industry, and construction is observed during the crisis. However, before and after the crisis, there are several fragmented clusters belonging to various sectors. The power law of the degree distribution in threshold networks is observed within the limited range of thresholds. Threshold networks are fatter during the crisis than before or after the crisis. The clustering coefficient of the threshold network follows the power law in the scaling range.

  6. Brazilian Network on Global Climate Change Research (Rede CLIMA: structure, scientific advances and future prospects

    Eduardo Moraes Arraut

    2013-01-01

    Full Text Available In order to create the necessary scientific knowledge for Brazil to understand and deal with the causes and consequences of climate change, the federal government created, in 2007, the Brazilian Network on Global Climate Change Research (Rede CLIMA. Rede CLIMA needs to discuss issues, pose questions, develop methodologies and technological products, find answers, and suggest solutions that are relevant to society. In its first phase, it focused mainly on providing infrastructure and consolidating the sub-networks. Several scientific advances were also achieved, a selection of which are presented in sections focusing on climate modelling, agriculture, energy and water, human development and mobility, biodiversity and ecosystem services, and human health. Now, in its second phase, the objective is to straighten collaboration between sub-networks by means of interdisciplinary projects. It is argued that in order to succeed the Network needs to foster research whose merit is measured not exclusively by academic production.

  7. The Matlab Radial Basis Function Toolbox

    Scott A. Sarra

    2017-03-01

    Full Text Available Radial Basis Function (RBF methods are important tools for scattered data interpolation and for the solution of Partial Differential Equations in complexly shaped domains. The most straight forward approach used to evaluate the methods involves solving a linear system which is typically poorly conditioned. The Matlab Radial Basis Function toolbox features a regularization method for the ill-conditioned system, extended precision floating point arithmetic, and symmetry exploitation for the purpose of reducing flop counts of the associated numerical linear algebra algorithms.

  8. Radial velocity observations of VB10

    Deshpande, R.; Martin, E.; Zapatero Osorio, M. R.; Del Burgo, C.; Rodler, F.; Montgomery, M. M.

    2011-07-01

    VB 10 is the smallest star known to harbor a planet according to the recent astrometric study of Pravdo & Shaklan [1]. Here we present near-infrared (J-band) radial velocity of VB 10 performed from high resolution (R~20,000) spectroscopy (NIRSPEC/KECK II). Our results [2] suggest radial velocity variability with amplitude of ~1 km/s, a result that is consistent with the presence of a massive planet companion around VB10 as found via long-term astrometric monitoring of the star by Pravdo & Shaklan. Employing an entirely different technique we verify the results of Pravdo & Shaklan.

  9. Reble, a radially converging electron beam accelerator

    Ramirez, J.J.; Prestwich, K.R.

    1976-01-01

    The Reble accelerator at Sandia Laboratories is described. This accelerator was developed to provide an experimental source for studying the relevant diode physics, beam propagation, beam energy deposition in a gas using a radially converging e-beam. The nominal parameters for Reble are 1 MV, 200 kA, 20 ns e-beam pulse. The anode and cathode are concentric cylinders with the anode as the inner cylinder. The radial beam can be propagated through the thin foil anode into the laser gas volume. The design and performance of the various components of the accelerator are presented

  10. Detailed assessment of global transport-energy models’ structures and projections

    Yeh, Sonia; Mishra, Gouri Shankar; Fulton, Lew; Kyle, Page; McCollum, David L.; Miller, Joshua; Cazzola, Pierpaolo; Teter, Jacob

    2017-08-01

    This paper focuses on comparing the frameworks and projections from four major global transportation models with considerable transportation technology and behavioral detail. We analyze and compare the modeling frameworks, underlying data, assumptions, intermediate parameters, and projections to identify the sources of divergence or consistency, as well as key knowledge gaps. We find that there are significant differences in the base-year data and key parameters for future projections, especially for developing countries. These include passenger and freight activity, mode shares, vehicle ownership rates, and even energy consumption by mode, particularly for shipping, aviation and trucking. This may be due in part to a lack of previous efforts to do such consistency-checking and “bench-marking.” We find that the four models differ in terms of the relative roles of various mitigation strategies to achieve a 2°C / 450 ppm CO2e target: the economics-based integrated assessment models favor the use of low carbon fuels as the primary mitigation option followed by efficiency improvements, whereas transport-only and expert-based models favor efficiency improvements of vehicles followed by mode shifts. We offer recommendations for future modeling improvements focusing on (1) reducing data gaps; (2) translating the findings from this study into relevant policy implications such as feasibility of current policy goals, additional policy targets needed, regional vs. global reductions, etc.; (3) modeling strata of demographic groups to improve understanding of vehicle ownership levels, travel behavior, and urban vs. rural considerations; and (4) conducting coordinated efforts in aligning input assumptions and historical data, policy analysis, and modeling insights.

  11. GLOBAL EPIDEMIOLOGY OF HIV AMONG FEMALE SEX WORKERS: INFLUENCE OF STRUCTURAL DETERMINANTS

    Shannon, K; Strathdee, SA; Goldenberg, SM; Duff, P; Mwangi, P; Rusakova, M; Reza-Paul, S; Lau, J; Deering, K; Pickles, M; Boily, M-C

    2014-01-01

    SUMMARY Female sex workers (FSWs) bear a disproportionately large burden of HIV infection worldwide. Despite decades of research and programme activity, the epidemiology of HIV and the role that structural determinants have in mitigating or potentiating HIV epidemics and access to care for FSWs is poorly understood. We reviewed available published data for HIV prevalence and incidence, condom use, and structural determinants among this group. Only 87 (43%) of 204 unique studies reviewed explicitly examined structural determinants of HIV. Most studies were from Asia, with few from areas with a heavy burden of HIV such as sub-Saharan Africa, Russia, and eastern Europe. To further explore the potential effect of structural determinants on the course of epidemics, we used a deterministic transmission model to simulate potential HIV infections averted through structural changes in regions with concentrated and generalised epidemics, and high HIV prevalence among FSWs. This modelling suggested that elimination of sexual violence alone could avert 17% of HIV infections in Kenya (95% uncertainty interval [UI] 1–31) and 20% in Canada (95% UI 3–39) through its immediate and sustained effect on non-condom use) among FSWs and their clients in the next decade. In Kenya, scaling up of access to antiretroviral therapy among FSWs and their clients to meet WHO eligibility of a CD4 cell count of less than 500 cells per μL could avert 34% (95% UI 25–42) of infections and even modest coverage of sex worker-led outreach could avert 20% (95% UI 8–36) of infections in the next decade. Decriminalisation of sex work would have the greatest effect on the course of HIV epidemics across all settings, averting 33–46% of HIV infections in the next decade. Multipronged structural and community-led interventions are crucial to increase access to prevention and treatment and to promote human rights for FSWs worldwide. PMID:25059947

  12. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback

    Jump, Alistair S.; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D.; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-01-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This

  13. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback.

    Jump, Alistair S; Ruiz-Benito, Paloma; Greenwood, Sarah; Allen, Craig D; Kitzberger, Thomas; Fensham, Rod; Martínez-Vilalta, Jordi; Lloret, Francisco

    2017-09-01

    Ongoing climate change poses significant threats to plant function and distribution. Increased temperatures and altered precipitation regimes amplify drought frequency and intensity, elevating plant stress and mortality. Large-scale forest mortality events will have far-reaching impacts on carbon and hydrological cycling, biodiversity, and ecosystem services. However, biogeographical theory and global vegetation models poorly represent recent forest die-off patterns. Furthermore, as trees are sessile and long-lived, their responses to climate extremes are substantially dependent on historical factors. We show that periods of favourable climatic and management conditions that facilitate abundant tree growth can lead to structural overshoot of aboveground tree biomass due to a subsequent temporal mismatch between water demand and availability. When environmental favourability declines, increases in water and temperature stress that are protracted, rapid, or both, drive a gradient of tree structural responses that can modify forest self-thinning relationships. Responses ranging from premature leaf senescence and partial canopy dieback to whole-tree mortality reduce canopy leaf area during the stress period and for a lagged recovery window thereafter. Such temporal mismatches of water requirements from availability can occur at local to regional scales throughout a species geographical range. As climate change projections predict large future fluctuations in both wet and dry conditions, we expect forests to become increasingly structurally mismatched to water availability and thus overbuilt during more stressful episodes. By accounting for the historical context of biomass development, our approach can explain previously problematic aspects of large-scale forest mortality, such as why it can occur throughout the range of a species and yet still be locally highly variable, and why some events seem readily attributable to an ongoing drought while others do not. This

  14. Mejoramiento de imágenes usando funciones de base radial Images improvement using radial basis functions

    Jaime Alberto Echeverri Arias

    2009-07-01

    Full Text Available La eliminación del ruido impulsivo es un problema clásico del procesado no lineal para el mejoramiento de imágenes y las funciones de base radial de soporte global son útiles para enfrentarlo. Este trabajo presenta una técnica de interpolación que disminuye eficientemente el ruido impulsivo en imágenes, mediante el uso de interpolante obtenido por funciones de base radial en el marco de la investigación enfocada en el desarrollo de un Sistema de recuperación de imágenes de recursos acuáticos amazónicos. Esta técnica primero etiqueta los píxeles de la imagen que son ruidosos y, mediante la interpolación, genera un valor de reconstrucción de dicho píxel usando sus vecinos. Los resultados obtenidos son comparables y muchas veces mejores que otras técnicas ya publicadas y reconocidas. Según el análisis de resultados, se puede aplicar a imágenes con altas tasas de ruido, manteniendo un bajo error de reconstrucción de los píxeles "ruidosos", así como la calidad visual.Global support radial base functions are effective in eliminating impulsive noise in non-linear processing. This paper introduces an interpolation technique which efficiently reduces image impulsive noise by means of an interpolant obtained through radial base functions. These functions have been used in a research project designed to develop a system for the recovery of images of Amazonian aquatic resources. This technique starts with the tagging by interpolation of noisy image pixels. Thus, a value of reconstruction for the noisy pixels is generated using neighboring pixels. The results obtained with this technique have proved comparable and often better than those obtained with previously known techniques. According to results analysis, this technique can be successfully applied on images with high noise levels. The results are low error in noisy pixel reconstruction and better visual quality.

  15. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  16. Features of the Institutional Structure of the Polish Stock Market under Conditions of Transformational Changes in the Global Financial Environment

    Goncharenko Nataliia I.

    2017-03-01

    Full Text Available Under modern conditions of transformational changes in the global financial environment, the international stock market acquires stable features of activization of investment activity, formation of a large network of professional participants in the stock market and its multi-level institutional structure, expansion of the range of trade in securities, access of economic entities of different countries to financial resources and diversification of mechanisms of concentration, etc. There conducted a study of peculiarities of the institutional structure of the Polish stock market in the context of transformational changes in the global economic system. The factors influencing the volume of capitalization of the Warsaw Stock Exchange are analyzed; the dependence of the capitalization of the Exchange on foreign portfolio investments in shares of Polish issuers is revealed. Based on the results of own calculations of multiple correlation coefficients, the level of dependence between capital stock market indicators and assets of such financial institutions in Poland as investment and open pension funds, insurance companies is determined, and a significant interconnection of assets of investment and open pension funds and insurance companies is revealed. The obtained results can become a basis for institutional investors in the process of making effective decisions on expanding the range of trading in securities.

  17. Global efficiency of structural networks mediates cognitive control in mild cognitive impairment

    Berlot, R. (Rok); Metzler-Baddeley, C. (Claudia); M.A. Ikram (Arfan); Jones, D.K. (Derek K.); O'Sullivan, M.J. (Michael J.)

    2016-01-01

    markdownabstract__Background:__ Cognitive control has been linked to both the microstructure of individual tracts and the structure of whole-brain networks, but their relative contributions in health and disease remain unclear. __Objective:__ To determine the contribution of both localized white

  18. What Does Global Migration Network Say about Recent Changes in the World System Structure?

    Zinkina, Julia; Korotayev, Andrey

    2014-01-01

    Purpose: The aim of this paper is to investigate whether the structure of the international migration system has remained stable through the recent turbulent changes in the world system. Design/methodology/approach: The methodology draws on the social network analysis framework--but with some noteworthy limitations stipulated by the specifics of…

  19. AN ANALYSIS OF THE ORGANIZATIONAL STRUCTURE AND THE PROCESS TO ADOPT GLOBAL SOURCING

    Moema Pereira Nunes

    2016-03-01

    Full Text Available This study analyze the adoption of GS by Brazilian companies in terms of organizational structure and process of GS in order to identify what is differencing the experience of these companies and the previously knowledge related with GS. A case-based qualitative research was developed. Four Brazilian companies were investigated. Data were collect interviews and a content analysis was made. Regarding the organizational structure, it was identified that the firm’s industry sector influence in the adoption of GS. It confirms the assumption that the environment plays an important role in emerging countries. The need of innovation and the geographic concentration in an industry sector were identified as influences in the organizational structure to adopt GS. The need of scale in the purchasing process was perceived as an influence in the process of GS. The investigated companies presented a non-structure process of GS, what reduce the opportunity to learn with GS as part of the process may not be monitored.

  20. A global analysis of the concentration and dynamics of non-structural carbohydrates in plants: does it matter under global change? (Invited)

    Sala, A.; Martínez-Vilalta, J.; Asencio, M.; Lloret, F.; Palacio, S.; Galiano, L.; Hoch, G.; Piper, F.

    2013-12-01

    Forests store significant amounts of C globally and recent reports of forest mortality world-wide have generated strong concern. Evidence suggests that increasing drought associated with climate change is a primary cause of tree stress and subsequent mortality. This has generated an urgent need to predict how forests will cope with increasing stress. Storage of non-structural C compounds (NSC, compounds not permanently invested in structural biomass that can later be used to support diverse plant functions) is critical for survival during periods when C assimilation does not meet demand. However, remarkable knowledge gaps exist to accurately predict plant growth and survival under climate change. Although trees accumulate relatively large pools of NSC, there is a strong debate on how these pools build up over time. On the one hand, it is frequently assumed that the build- up of NSC in trees occurs when supply via photosynthesis exceeds overall demands. If so, the abundant NSC pools in trees reflect an overabundance of C in the long term. An alternative explanation is that trees regulate NSC storage to maintain sufficient pools to cope with asynchronies between demand and supply and with stresses that long lived plants inevitably experience during their life time. However, our understanding of whether and how trees regulate storage in the long term is minimal. Here, we assembled a new global database to examine broad patterns of seasonal NSC variation across organs, life forms and biomes, and the degree to which NSC storage is depleted in plants under a wide range of natural conditions. We compiled seasonal data (at least three measurements over a minimum of four months) for ca. 200 wild species under natural conditions. On average, NSC account for ca. 8-10% of dry plant biomass. NSC and starch concentrations do not vary significantly with biome, but soluble sugars (SS) in plants from Mediterranean biomes are higher than in temperate or tropical biomes. On average

  1. Axial SPN and radial MOC coupled whole core transport calculation

    Cho, Jin-Young; Kim, Kang-Seog; Lee, Chung-Chan; Zee, Sung-Quun; Joo, Han-Gyu

    2007-01-01

    The Simplified P N (SP N ) method is applied to the axial solution of the two-dimensional (2-D) method of characteristics (MOC) solution based whole core transport calculation. A sub-plane scheme and the nodal expansion method (NEM) are employed for the solution of the one-dimensional (1-D) SP N equations involving a radial transverse leakage. The SP N solver replaces the axial diffusion solver of the DeCART direct whole core transport code to provide more accurate, transport theory based axial solutions. In the sub-plane scheme, the radial equivalent homogenization parameters generated by the local MOC for a thick plane are assigned to the multiple finer planes in the subsequent global three-dimensional (3-D) coarse mesh finite difference (CMFD) calculation in which the NEM is employed for the axial solution. The sub-plane scheme induces a much less nodal error while having little impact on the axial leakage representation of the radial MOC calculation. The performance of the sub-plane scheme and SP N nodal transport solver is examined by solving a set of demonstrative problems and the C5G7MOX 3-D extension benchmark problems. It is shown in the demonstrative problems that the nodal error reaching upto 1,400 pcm in a rodded case is reduced to 10 pcm by introducing 10 sub-planes per MOC plane and the transport error is reduced from about 150 pcm to 10 pcm by using SP 3 . Also it is observed, in the C5G7MOX rodded configuration B problem, that the eigenvalues and pin power errors of 180 pcm and 2.2% of the 10 sub-planes diffusion case are reduced to 40 pcm and 1.4%, respectively, for SP 3 with only about a 15% increase in the computing time. It is shown that the SP 5 case gives very similar results to the SP 3 case. (author)

  2. Radial electric field and transport near the rational surface and the magnetic island in LHD

    Ida, K.; Inagaki, S.; Tamura, N.

    2002-10-01

    The structure of the radial electric field and heat transport at the magnetic island in the Large Helical Device is investigated by measuring the radial profile of poloidal flow with charge exchange spectroscopy. The convective poloidal flow inside the island is observed when the n/m=1/1 external perturbation field becomes large enough to increase the magnetic island width above a critical value (15-20% of minor radius) in LHD. This convective poloidal flow results in a non-flat space potential inside the magnetic island. The sign of the curvature of the space potential depends on the radial electric field at the boundary of the magnetic island. The heat transport inside the magnetic island is studied with a cold pulse propagation technique. The experimental results show the existence of the radial electric field shear at the boundary of the magnetic island and a reduction of heat transport inside the magnetic island. (author)

  3. Application of the local-to-global approach to the study of infilled frame structures under seismic loading

    Combescure, D.

    2000-01-01

    The seismic performance of civil engineering structures may be estimated by using two levels of modelling. At the local level, each constituent has its own constitutive law and geometric finite element support. The main phenomena such as the cracking and the crushing of concrete and masonry could be reproduced by using the continuous damage or plasticity theories. However the cost of the computations does not allow extensive or dynamic studies and thus the global level - where the constitutive laws based on empirical rules reproduce the behaviour of the structural elements - represents the unique strategy for the analysis of complete civil engineering structures under seismic loading. The present paper aims at presenting the application of these two modelling levels in order to assess the seismic performance of masonry infilled R/C frame structures. The one-bay masonry infilled frames tested at Lisbon under cyclic loading and the four-storey building tested at ELSA have been used for the validation of the modelling approach. (orig.)

  4. Spatial correlation structure of the ionosphere predicted by geomagnetic indices and application to global field modelling

    Holschneider, M.; Ferrat, K.; Lesur, V.; Stolle, C.

    2017-12-01

    Ionospheric fields are modelled in terms of random structures taking into account a mean behaviour as well as random fluctuations which are described through two point correlation kernels. These kernels are estimated from long time series of numerical simulations from various models. These correlations are best expressed in SM system of coordinates. For the moment we limit ourselves to spatial correlations only in this coordinate system. We study the influence of various indices as possible predictor parameters for these correlations as well as seasonal effects. The various time series of ionospheric fields are stored in a HDF5 database which is accessible via a web interface. The obtained correlation structures serve as prior information to separate external and internal field components from observatory based measurements. We present a model that predicts the correlations as a function of time and some geomagnetic indices. First results of the inversion from observatory data are presented.

  5. Kinetic structures of quasi-perpendicular shocks in global particle-in-cell simulations

    Peng, Ivy Bo; Markidis, Stefano; Laure, Erwin; Johlander, Andreas; Vaivads, Andris; Khotyaintsev, Yuri; Henri, Pierre; Lapenta, Giovanni

    2015-01-01

    We carried out global Particle-in-Cell simulations of the interaction between the solar wind and a magnetosphere to study the kinetic collisionless physics in super-critical quasi-perpendicular shocks. After an initial simulation transient, a collisionless bow shock forms as a result of the interaction of the solar wind and a planet magnetic dipole. The shock ramp has a thickness of approximately one ion skin depth and is followed by a trailing wave train in the shock downstream. At the downstream edge of the bow shock, whistler waves propagate along the magnetic field lines and the presence of electron cyclotron waves has been identified. A small part of the solar wind ion population is specularly reflected by the shock while a larger part is deflected and heated by the shock. Solar wind ions and electrons are heated in the perpendicular directions. Ions are accelerated in the perpendicular direction in the trailing wave train region. This work is an initial effort to study the electron and ion kinetic effects developed near the bow shock in a realistic magnetic field configuration

  6. On helicon wave induced radial plasma transport

    Petrzilka, V.

    1993-04-01

    Estimates of helicon wave induced radial plasma transport are presented. The wave induced transport grows or decreases in dependence on the sign of the azimuthal wave number; these changes in transport may play an important role in helicon wave plasma sources. (author) 5 figs., 18 refs

  7. Revealing the radial modes in vortex beams

    Sephton, Bereneice C

    2016-10-01

    Full Text Available Light beams that carry orbital angular momentum are often approximated by modulating an initial beam, usually Gaussian, with an azimuthal phase variation to create a vortex beam. Such vortex beams are well defined azimuthally, but the radial profile...

  8. Measurement of Wear in Radial Journal Bearings

    Ligterink, D.J.; Ligterink, D.J.; de Gee, A.W.J.

    1996-01-01

    this article, the measurement of wear in radial journal bearings is discussed, where a distinction is made between stationary and non-stationary contact conditions. Starting with Holm/Archard's wear law, equations are derived for the calculation of the specific wear rate k of the bearing material as

  9. Spectral problem for the radial Schroedinger equation

    Vshivtsev, A.S.; Tatarintsev, A.V.; Prokopov, A.V.; Sorokin, V. N.

    1998-01-01

    For the first time, a procedure for determining spectra on the basis of generalized integral transformations is implemented for a wide class of radial Schroedinger equations. It is shown that this procedure works well for known types of potentials. Concurrently, this method makes it possible to obtain new analytic results for the Cornell potential. This may prove important for hadron physics

  10. Computing modal dispersion characteristics of radially Asymmetric ...

    We developed a matrix theory that applies to with non-circular/circular but concentric layers fibers. And we compute the dispersion characteristics of radially unconventional fiber, known as Asymmetric Bragg fiber. An attempt has been made to determine how the modal characteristics change as circular Bragg fiber is ...

  11. Acceleration of Meshfree Radial Point Interpolation Method on Graphics Hardware

    Nakata, Susumu

    2008-01-01

    This article describes a parallel computational technique to accelerate radial point interpolation method (RPIM)-based meshfree method using graphics hardware. RPIM is one of the meshfree partial differential equation solvers that do not require the mesh structure of the analysis targets. In this paper, a technique for accelerating RPIM using graphics hardware is presented. In the method, the computation process is divided into small processes suitable for processing on the parallel architecture of the graphics hardware in a single instruction multiple data manner.

  12. Weighted radial dimension: an improved fractal measurement for highway transportation networks distribution

    Feng, Yongjiu; Liu, Miaolong; Tong, Xiaohua

    2007-06-01

    An improved fractal measurement, the weighted radial dimension, is put forward for highway transportation networks distribution. The radial dimension (DL), originated from subway investigation in Stuttgart, is a fractal measurement for transportation systems under ideal assumption considering all the network lines to be homogeneous curves, ignoring the difference on spatial structure, quality and level, especially the highway networks. Considering these defects of radial dimension, an improved fractal measurement called weighted radial dimension (D WL) is introduced and the transportation system in Guangdong province is studied in detail using this novel method. Weighted radial dimensions are measured and calculated, and the spatial structure, intensity and connectivity of transportation networks are discussed in Guangdong province and the four sub-areas: the Pearl River Delta area, the East Costal area, the West Costal area and the Northern Guangdong area. In Guangdong province, the fractal spatial pattern characteristics of transportation system vary remarkably: it is the highest in the Pearl River Delta area, moderate in Costal area and lowest in the Northern Guangdong area. With the Pearl River Delta area as the centre, the weighted radial dimensions decrease with the distance increasing, while the decline level is smaller in the costal area and greater in the Northern Guangdong province. By analysis of the conic of highway density, it is recognized that the density decrease with the distance increasing from the calculation centre (Guangzhou), demonstrating the same trend as weighted radial dimensions shown. Evidently, the improved fractal measurement, weighted radial dimension, is an indictor describing the characteristics of highway transportation system more effectively and accurately.

  13. Variations in the usage and composition of a radial cocktail during radial access coronary angiography procedures.

    Pate, G

    2011-10-01

    A survey was conducted of medication administered during radial artery cannulation for coronary angiography in 2009 in Ireland; responses were obtained for 15 of 20 centres, in 5 of which no radial access procedures were undertaken. All 10 (100%) centres which provided data used heparin and one or more anti-spasmodics; verapamil in 9 (90%), nitrate in 1 (10%), both in 2 (20%). There were significant variations in the doses used. Further work needs to be done to determine the optimum cocktail to prevent radial artery injury following coronary angiography.

  14. Global Population Structure and Evolution of Bordetella pertussis and Their Relationship with Vaccination

    Bart, Marieke J.; Harris, Simon R.; Advani, Abdolreza; Arakawa, Yoshichika; Bottero, Daniela; Bouchez, Valérie; Cassiday, Pamela K.; Chiang, Chuen-Sheue; Dalby, Tine; Fry, Norman K.; Gaillard, María Emilia; van Gent, Marjolein; Guiso, Nicole; Hallander, Hans O.; Harvill, Eric T.; He, Qiushui; van der Heide, Han G. J.; Heuvelman, Kees; Hozbor, Daniela F.; Kamachi, Kazunari; Karataev, Gennady I.; Lan, Ruiting; Lutyńska, Anna; Maharjan, Ram P.; Mertsola, Jussi; Miyamura, Tatsuo; Octavia, Sophie; Preston, Andrew; Quail, Michael A.; Sintchenko, Vitali; Stefanelli, Paola; Tondella, M. Lucia; Tsang, Raymond S. W.; Xu, Yinghua; Yao, Shu-Man; Zhang, Shumin; Mooi, Frits R.

    2014-01-01

    ABSTRACT Bordetella pertussis causes pertussis, a respiratory disease that is most severe for infants. Vaccination was introduced in the 1950s, and in recent years, a resurgence of disease was observed worldwide, with significant mortality in infants. Possible causes for this include the switch from whole-cell vaccines (WCVs) to less effective acellular vaccines (ACVs), waning immunity, and pathogen adaptation. Pathogen adaptation is suggested by antigenic divergence between vaccine strains and circulating strains and by the emergence of strains with increased pertussis toxin production. We applied comparative genomics to a worldwide collection of 343 B. pertussis strains isolated between 1920 and 2010. The global phylogeny showed two deep branches; the largest of these contained 98% of all strains, and its expansion correlated temporally with the first descriptions of pertussis outbreaks in Europe in the 16th century. We found little evidence of recent geographical clustering of the strains within this lineage, suggesting rapid strain flow between countries. We observed that changes in genes encoding proteins implicated in protective immunity that are included in ACVs occurred after the introduction of WCVs but before the switch to ACVs. Furthermore, our analyses consistently suggested that virulence-associated genes and genes coding for surface-exposed proteins were involved in adaptation. However, many of the putative adaptive loci identified have a physiological role, and further studies of these loci may reveal less obvious ways in which B. pertussis and the host interact. This work provides insight into ways in which pathogens may adapt to vaccination and suggests ways to improve pertussis vaccines. PMID:24757216

  15. Electromagnetic and structural global model of the TF magnet system in ASDEX Upgrade

    Zammuto, I., E-mail: irene.zammuto@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85740 Garching (Germany); Streibl, B.; Giannone, L.; Herrmann, A.; Kallenbach, A.; Mertens, V. [Max-Planck-Institut für Plasmaphysik, EURATOM Association, D-85740 Garching (Germany)

    2013-10-15

    Highlights: ► An electromagnetic and structural FE 3D model is set up for ASDEX Upgrade. ► The model is benchmarked against the old design results, present displacement measurements. ► The benchmarked model is applied to the present plasma configurations, which have a different poloidal field distribution with respect to the design case. ► The different poloidal field influences the out-of-plane force distribution, thus requiring an update of the TF safety system. -- Abstract: The enhancements carried out in the tokamak ASDEX Upgrade (AUG) are oriented toward the preparation of the future physics-related activities of ITER and DEMO. To address the main ITER issues, plasma configurations with a wider operational limit (e.g. higher triangularity) are planned for the future experimental campaigns in AUG. To evaluate the mechanical impact on the toroidal field (TF) magnet system a combined electromagnetic and structural finite element model was set up. At first extensive benchmarks of the models are carried out against the AUG reference design configurations with respect to stress [1–3], lateral displacement measurements and poloidal flux pattern. The numerical model was then applied to a set of actual high triangularity (HT) configurations generated by a more favorable poloidal field (PF) current distribution made possible by an extension of the power supply system. The resulting change of the poloidal flux pattern and the lateral force distribution has consequences for the coil shear stress and vault stability. Both aspects are monitored by a safety system measuring the PF flux placed on top and bottom of the outer surface of two TF coils (TFCs) between vault and the TFC supporting structure, so called Turn Over Structure (TOS). The range of the new HT configurations has induced a modification of the flux pattern, so that an adaptation of safety system is required to protect the TFCs system. Following the same criteria of the old safety system [4,5], a new

  16. Light penetration structures the deep acoustic scattering layers in the global ocean

    Aksnes, Dag L.; Rostad, Anders; Kaartvedt, Stein

    2017-01-01

    The deep scattering layer (DSL) is a ubiquitous acoustic signature found across all oceans and arguably the dominant feature structuring the pelagic open ocean ecosystem. It is formed by mesopelagic fishes and pelagic invertebrates. The DSL animals are an important food source for marine megafauna...... distributions with hypoxic waters. In enhancing understanding of this phenomenon, our results should improve the ability to predict and model the dynamics of one of the largest animal biomass components on earth, with key roles in the oceanic biological carbon pump and food web....

  17. The global relationship between chromatin physical topology, fractal structure, and gene expression

    Almassalha, Luay M; Tiwari, A; Ruhoff, P T

    2017-01-01

    in an empty space, but in a highly complex, interrelated, and dense nanoenvironment that profoundly influences chemical interactions. We explored the relationship between the physical nanoenvironment of chromatin and gene transcription in vitro. We analytically show that changes in the fractal dimension, D...... show that the increased heterogeneity of physical structure of chromatin due to increase in fractal dimension correlates with increased heterogeneity of gene networks. These findings indicate that the higher order folding of chromatin topology may act as a molecular-pathway independent code regulating...

  18. Axisymmetric global structural analysis of BARC prestressed concrete containment model for beyond design pressure

    Singh, Tarvinder; Singh, R.K.; Ghosh, A.K.

    2008-10-01

    In order to check the adequacy of the Indian Pressurized Heavy Water Reactor (PHWR) containment structure to withstand severe accident induced internal pressure load, the ultimate load capacity assessment is required. Reactor Safety Division (RSD) of Bhabha Atomic Research Centre (BARC) has initiated an experimental program at BARC Tarapur Containment Test Facility to evaluate the ultimate load capacity of Indian PHWR containment. For this study, BARC Containment Model (BARCOM), which is 1:4 scale representation of Tarapur Atomic Power Station (TAPS) unit-3 and 4 540 MWe PHWR Inner Containment of Pre-stressed Concrete has been constructed. The model includes all the important major design features of the prototype containment and simulates Main Air Lock (MAL), Steam Generator (SG), Emergency Air Lock (EAL) and Fueling Machine Air Lock (FMAL) openings. The design pressure (Pd) of BARCOM is 1.44kg/cm 2 (g), which is same as the prototype. The pretest analysis of BARCOM has been performed with finite element axi-symmetric modeling. The objective of this simulation was to understand the behavior of containment model under internal pressure and find out the various failure modes and critical locations important for instrumentation during the experiment. The structural response of the containment model is assessed in terms of wall and dome displacement; cracking of concrete, longitudinal and hoop strains and stresses. Another objective of the analysis was to predict the various failure modes of BARCOM with regard to the concrete cracking, reinforcement yielding and tendon inelastic behavior along with the estimation of the ultimate load capacity of the containment model. It is noted that the BARCOM has an ultimate load capacity factor of 3.54 Pd. However, further analysis is needed to quantify the factor of safety with detail 3D model, which should account for the local structural behavior due to various openings. Meanwhile, this preliminary simplified analysis helps to

  19. Global mtDNA genetic structure and hypothesized invasion history of a major pest of citrus, Diaphorina citri (Hemiptera: Liviidae).

    Luo, Yufa; Agnarsson, Ingi

    2018-01-01

    The Asian citrus psyllid Diaphorina citri Kuwayama is a key pest of citrus as the vector of the bacterium causing the "huanglongbing" disease (HLB). To assess the global mtDNA population genetic structure, and possible dispersal history of the pest, we investigated genetic variation at the COI gene collating newly collected samples with all previously published data. Our dataset consists of 356 colonies from 106 geographic sites worldwide. High haplotype diversity (H-mean = 0.702 ± 0.017), low nucleotide diversity (π-mean = 0.003), and significant positive selection (Ka/Ks = 32.92) were observed. Forty-four haplotypes (Hap) were identified, clustered into two matrilines: Both occur in southeastern and southern Asia, North and South America, and Africa; lineages A and B also occur in eastern and western Asia, respectively. The most abundant haplotypes were Hap4 in lineage A (35.67%), and Hap9 in lineage B (41.29%). The haplotype network identified them as the ancestral haplotypes within their respective lineages. Analysis of molecular variance showed significant genetic structure ( F ST  = 0.62, p  analysis suggests geographic structuring. We hypothesize a southern and/or southeastern Asia origin, three dispersal routes, and parallel expansions of two lineages. The hypothesized first route involved the expansion of lineage B from southern Asia into North America via West Asia. The second, the expansion of some lineage A individuals from Southeast Asia into East Asia, and the third involved both lineages from Southeast Asia spreading westward into Africa and subsequently into South America. To test these hypotheses and gain a deeper understanding of the global history of D. citri , more data-rich approaches will be necessary from the ample toolkit of next-generation sequencing (NGS). However, this study may serve to guide such sampling and in the development of biological control programs against the global pest D. citri .

  20. SPICAM: studying the global structure and composition of the Martian atmosphere

    Bertaux, J.-L.; Fonteyn, D.; Korablev, O.; Chassefre, E.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Lefèvre, F.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quemerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    2004-08-01

    The SPICAM (SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars) instrument consists of two spectrometers. The UV spectrometer addresses key issues about ozone and its H2O coupling, aerosols, the atmospheric vertical temperature structure and the ionosphere. The IR spectrometer is aimed primarily at H2O and abundances and vertical profiling of H2O and aerosols. SPICAM's density/temperature profiles will aid the development of meteorological and dynamical atmospheric models from the surface up to 160 km altitude. UV observations of the upper atmosphere will study the ionosphere and its direct interaction with the solar wind. They will also allow a better understanding of escape mechanisms, crucial for insight into the long-term evolution of the atmosphere.

  1. Systematic Review on Global Epidemiology of Methicillin-Resistant Staphylococcus pseudintermedius: Inference of Population Structure from Multilocus Sequence Typing Data

    dos Santos, Teresa Pires; Damborg, Peter; Moodley, Arshnee

    2016-01-01

    Background and rationale: Methicillin-resistant Staphylococcus pseudintermedius (MRSP) is a major cause of infections in dogs, also posing a zoonotic risk to humans. This systematic review aimed to determine the global epidemiology of MRSP and provide new insights into the population structure...... the MLST database for this species. Analysis of MLST data was performed with eBURST and ClonalFrame, and the proportion of MRSP isolates resistant to selected antimicrobial drugs was determined for the most predominant clonal complexes. Results: Fifty-eight studies published over the last 10 years were....... In Europe, CC258, which is more frequently susceptible to enrofloxacin and aminoglycosides, and more frequently resistant to sulphonamides/trimethoprim than CC71, is increasingly reported in various countries. CC68, previously described as the epidemic North American clone, is frequently reported...

  2. Transient behavior of redox flow battery connected to circuit based on global phase structure

    Mannari, Toko; Hikihara, Takashi

    A Redox Flow Battery (RFB) is one of the promising energy storage systems in power grid. An RFB has many advantages such as a quick response, a large capacity, and a scalability. Due to these advantages, an RFB can operate in mixed time scale. Actually, it has been demonstrated that an RFB can be used for load leveling, compensating sag, and smoothing the output of the renewable sources. An analysis on transient behaviors of an RFB is a key issue for these applications. An RFB is governed by electrical, chemical, and fluid dynamics. The hybrid structure makes the analysis difficult. To analyze transient behaviors of an RFB, the exact model is necessary. In this paper, we focus on a change in a concentration of ions in the electrolyte, and simulate the change with a model which is mainly based on chemical kinetics. The simulation results introduces transient behaviors of an RFB in a response to a load variation. There are found three kinds of typical transient behaviors including oscillations. As results, it is clarified that the complex transient behaviors, due to slow and fast dynamics in the system, arise by the quick response to load.

  3. Global structure and composition of the martian atmosphere with SPICAM on Mars express

    Bertaux, Jean-Loup; Korablev, O.; Fonteyn, D.; Guibert, S.; Chassefière, E.; Lefèvre, F.; Dimarellis, E.; Dubois, J. P.; Hauchecorne, A.; Cabane, M.; Rannou, P.; Levasseur-Regourd, A. C.; Cernogora, G.; Quémerais, E.; Hermans, C.; Kockarts, G.; Lippens, C.; de Maziere, M.; Moreau, D.; Muller, C.; Neefs, E.; Simon, P. C.; Forget, F.; Hourdin, F.; Talagrand, O.; Moroz, V. I.; Rodin, A.; Sandel, B.; Stern, A.

    SPectroscopy for the Investigation of the Characteristics of the Atmosphere of Mars (SPICAM) Light, a light-weight (4.7 kg) UV-IR instrument to be flown on Mars Express orbiter, is dedicated to the study of the atmosphere and ionosphere of Mars. A UV spectrometer (118-320 nm, resolution 0.8 nm) is dedicated to nadir viewing, limb viewing and vertical profiling by stellar and solar occultation (3.8 kg). It addresses key issues about ozone, its coupling with H2O, aerosols, atmospheric vertical temperature structure and ionospheric studies. UV observations of the upper atmosphere will allow studies of the ionosphere through the emissions of CO, CO+, and CO2+, and its direct interaction with the solar wind. An IR spectrometer (1.0-1.7 μm, resolution 0.5-1.2 nm) is dedicated primarily to nadir measurements of H2O abundances simultaneously with ozone measured in the UV, and to vertical profiling during solar occultation of H2O, CO2, and aerosols. The SPICAM Light near-IR sensor employs a pioneering technology acousto-optical tunable filter (AOTF), leading to a compact and light design. Overall, SPICAM Light is an ideal candidate for future orbiter studies of Mars, after Mars Express, in order to study the interannual variability of martian atmospheric processes. The potential contribution to a Mars International Reference Atmosphere is clear.

  4. WWER radial reflector modeling by diffusion codes

    Petkov, P. T.; Mittag, S.

    2005-01-01

    The two commonly used approaches to describe the WWER radial reflectors in diffusion codes, by albedo on the core-reflector boundary and by a ring of diffusive assembly size nodes, are discussed. The advantages and disadvantages of the first approach are presented first, then the Koebke's equivalence theory is outlined and its implementation for the WWER radial reflectors is discussed. Results for the WWER-1000 reactor are presented. Then the boundary conditions on the outer reflector boundary are discussed. The possibility to divide the library into fuel assembly and reflector parts and to generate each library by a separate code package is discussed. Finally, the homogenization errors for rodded assemblies are presented and discussed (Author)

  5. Stability of a radial immiscible drive

    Bataille, J

    1968-11-01

    The stability of the displacement front between 2 immiscible fluids of radial flow between 2 parallel plates (Hele-Shaw model) is studied mathematically by superposing onto the circular displacement front a sinusoidal perturbation. The equations are reduced to dimensionless variables, and it is shown that the stable and unstable domains in a plot: dimensionless viscosity vs. dimensionless time are separated by a polygonal contour, each side of the contour being characterized by the (integer) number of perturbations along the circumference. There is a critical reduced time below which the perturbations are amortized but beyond which they are amplified. Experimental results have been in fair general agreement with theoretical results, the divergence between them being attributable to neglecting capillary phenomena, which may become very important at large radial distances. One test with miscible fluids has shown that even in this case, there is a critical time or an equivalent critical radius.

  6. RECONSTRUCCIÓN TRIDIMENSIONAL DE ROSTROS A PARTIR DE IMÁGENES DE RANGO POR MEDIO DE FUNCIONES DE BASE RADIAL DE SOPORTE COMPACTO TRI-DIMENSIONAL RECONSTRUCTION OF FACES FROM RANGE IMAGES THROUGH COMPACT SUPPORT RADIAL BASIS FUNCTIONS

    Jaime A. Echeverri A.

    2007-07-01

    Full Text Available En este trabajo se muestra la utilización de funciones de base radial de soporte compacto para la reconstrucción tridimensional de rostros. En trabajos anteriores se habían explorado diferentes técnicas y diferentes funciones de base radial para reconstrucción de superficies; ahora presentamos los algoritmos y los resultados de la utilización de funciones de base radial de soporte compacto las cuales presentan ventajas comparativas en términos del tiempo de construcción de un interpolante para la reconstrucción. Se presentan comparaciones con técnicas ampliamente utilizadas en este campo y se detalla el proceso global de reconstrucción de superficies.In previous works, we have explored several radial basis techniques and functions for the reconstruction of surfaces. We now present the use of compact support radial basis functions for the tri-dimensional reconstruction of human faces. Therefore, we present algorithms and results coming from the application of compact support radial basis functions which have revealed comparative advantages in terms of the amount of time needed for the construction of an interpolant to be used in the reconstruction. We are also presenting some comparisons with techniques widely used in this field and we explain in detail the global process for the surfaces reconstruction.

  7. Radial oxygen gradients over rat cortex arterioles

    Galler, Michael

    2011-01-01

    Purpose: We present the results of the visualisation of radial oxygen gradients in rats’ cortices and their use in neurocritical management. Methods: PO2 maps of the cortex of 10 wistar rats were obtained with a camera (SensiMOD, PCO, Kehlheim, Germany). Those pictures were analyzed and edited by a custom-made software. We chose a vessel for examination. A matrix, designed to evaluate the cortical O2 partial pressure, was placed vertically to the artery and afterwards multiple regio...

  8. Variational method for integrating radial gradient field

    Legarda-Saenz, Ricardo; Brito-Loeza, Carlos; Rivera, Mariano; Espinosa-Romero, Arturo

    2014-12-01

    We propose a variational method for integrating information obtained from circular fringe pattern. The proposed method is a suitable choice for objects with radial symmetry. First, we analyze the information contained in the fringe pattern captured by the experimental setup and then move to formulate the problem of recovering the wavefront using techniques from calculus of variations. The performance of the method is demonstrated by numerical experiments with both synthetic and real data.

  9. Moment approach to tandem mirror radial transport

    Siebert, K.D.; Callen, J.D.

    1986-02-01

    A moment approach is proposed for the study of tandem mirror radial transport in the resonant plateau regime. The salient features of the method are described with reference to axisymmetric tokamak transport theory. In particular, the importance of momentum conservation to the establishment of the azimuthal variations in the electrostatic potential is demonstrated. Also, an ad hoc drift kinetic equation is solved to determine parallel viscosity coefficients which are required to close the moment system

  10. Numerical simulation of radial compressor stage

    Syka, T.; Luňáček, O.

    2013-04-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  11. Numerical simulation of radial compressor stage

    Luňáček O.; Syka T.

    2013-01-01

    Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  12. Numerical simulation of radial compressor stage

    Luňáček O.

    2013-04-01

    Full Text Available Article describes numerical simulations of air flow in radial compressor stage in NUMECA CFD software. In simulations geometry variants with and without seals are used. During tasks evaluating was observed seals influence on flow field and performance parameters of compressor stage. Also is described CFDresults comparison with results from design software based on experimental measurements and monitoring of influence of seals construction on compressor stage efficiency.

  13. Radial excitations in nucleon-nucleon scattering

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1986-01-01

    In the non-relativistic constituent quark model, the role of the radial excitations of the nucleon is studied within a resonating group approach of the nucleon-nucleon scattering. It is shown that, rather than the inclusion of new channels, it is important to include mixed-symmetry spin-isospin components in the nucleon wave function. It is also found that during the collision there is no significant deformation of the nucleon. (orig.)

  14. Learning Methods for Radial Basis Functions Networks

    Neruda, Roman; Kudová, Petra

    2005-01-01

    Roč. 21, - (2005), s. 1131-1142 ISSN 0167-739X R&D Projects: GA ČR GP201/03/P163; GA ČR GA201/02/0428 Institutional research plan: CEZ:AV0Z10300504 Keywords : radial basis function networks * hybrid supervised learning * genetic algorithms * benchmarking Subject RIV: BA - General Mathematics Impact factor: 0.555, year: 2005

  15. Fuel radial design using Path Relinking

    Campos S, Y.

    2007-01-01

    The present work shows the obtained results when implementing the combinatory optimization technique well-known as Path Re linking (Re-linkage of Trajectories), to the problem of the radial design of nuclear fuel assemblies, for boiling water reactors (BWR Boiling Water Reactor by its initials in English), this type of reactors is those that are used in the Laguna Verde Nucleo electric Central, Veracruz. As in any other electric power generation plant of that make use of some fuel to produce heat and that it needs each certain time (from 12 to 14 months) to make a supply of the same one, because this it wears away or it burns, in the nucleolectric plants to this activity is denominated fuel reload. In this reload different activities intervene, among those which its highlight the radial and axial designs of fuel assemblies, the patterns of control rods and the multi cycles study, each one of these stages with their own complexity. This work was limited to study in independent form the radial design, without considering the other activities. These phases are basic for the fuel reload design and of reactor operation strategies. (Author)

  16. Development of a Radial Deconsolidation Method

    Helmreich, Grant W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Montgomery, Fred C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hunn, John D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    A series of experiments have been initiated to determine the retention or mobility of fission products* in AGR fuel compacts [Petti, et al. 2010]. This information is needed to refine fission product transport models. The AGR-3/4 irradiation test involved half-inch-long compacts that each contained twenty designed-to-fail (DTF) particles, with 20-μm thick carbon-coated kernels whose coatings were deliberately fabricated such that they would crack under irradiation, providing a known source of post-irradiation isotopes. The DTF particles in these compacts were axially distributed along the compact centerline so that the diffusion of fission products released from the DTF kernels would be radially symmetric [Hunn, et al. 2012; Hunn et al. 2011; Kercher, et al. 2011; Hunn, et al. 2007]. Compacts containing DTF particles were irradiated at Idaho National Laboratory (INL) at the Advanced Test Reactor (ATR) [Collin, 2015]. Analysis of the diffusion of these various post-irradiation isotopes through the compact requires a method to radially deconsolidate the compacts so that nested-annular volumes may be analyzed for post-irradiation isotope inventory in the compact matrix, TRISO outer pyrolytic carbon (OPyC), and DTF kernels. An effective radial deconsolidation method and apparatus appropriate to this application has been developed and parametrically characterized.

  17. Global change and landscape structure in Ukraine: Ecological and socio-economic implications

    Shvidenko, Anatoly; Lakyda, Petro; Schepaschenko, Dmitry; Vasylyshyn, Roman; Marchuk, Yuiry

    2013-04-01

    The current land cover of Ukraine is very heterogeneous. While on average forest covers 15.9% of its land, substantial part of the country is basically forestless. The agricultural potential of Ukraine is high. However, in spite of the fact that 68% of the arable land in Ukraine consists of the famous Ukrainian black soils (chernozems), the quality of the country's arable land (69.5% of the total land) is not satisfactory. The country has the highest over the globe share of the tilled land (~80% of the agricultural land in the country) and processes of soil erosion impact about one third of arable land. Air pollution, soil and water contamination are widespread. Substantial problems are generated by the Chernobyl disaster. Overall, about half of the country is in the critical and pre-critical ecological situation. Climatic predictions suppose that the country will live in much warmer and drier climate by end of this century. Taking into account that major pat of Ukraine lies in the xeric belt, the expected climatic change generates divers risks for both environment and vegetation ecosystems of the country, particularly for forests and agriculture. The presentation considers the role of forests and trees outside of forests in transition to integrated ecosystem management and sustainable structure of landscapes within two scenarios of socio-economic development for the next 20 yeas. The "business-as-usual" scenario prolongs tendencies of dynamics of the land-use and forest sectors during the last 20 years. This scenario leads to further deterioration of quality of land and environment in Ukraine. The "progressive" scenario is considered as a crucial initial step of adaptation to climatic change and includes a system of pressing measures which are needed to decrease destructive processes that are observed at the landscape level. It is shown that it would require development of 1.62 M ha of protective forests including 0.62 M ha on unstable elements of landscapes

  18. Cloud structure evolution of heavy rain events from the East-West Pacific Ocean: a combined global observation analysis

    Sekaranom, A. B.; Nurjani, E.; Pujiastuti, I.

    2018-04-01

    Heavy rain events are often associated with flood hazards as one of the most devastating events across the globe. It is therefore essential to identify the evolution of heavy rainfall cloud structures, primarily from global satellite observation, as a tool to provide better disaster early warning systems. To identify the mechanism of heavy rainfall systems and its relationship with cloud development, especially over The Pacific Ocean, we aim to study the westward evolution of the convective systems over this area. Several datasets from Tropical Rainfall Measuring Mission (TRMM), CloudSat GEOPROF product, and ECMWF-reanalysis (ERA) interim were utilized to characterize the evolution. Geolocation and orbital time-lag analysis of the three different datasets for more than 8 years (2006-2014) could provide information related to the evolution of cloud structures associated with heavy rain events. In the first step, a heavy rainfall database was generated from TRMM. The CloudSat coordinate and time position were then matched with TRMM coordinate and time position. All of the processes were programatically conducted in fortran programming language. The result shows a transition between East and West Pacific ocean for TMI data.

  19. Coastal ecosystems on a tipping point: global warming and parasitism combine to alter community structure and function.

    Mouritsen, Kim N; Sørensen, Mikkel M; Poulin, Robert; Fredensborg, Brian L

    2018-05-16

    Mounting evidence suggests that the transmission of certain parasites is facilitated by increasing temperatures, causing their host population to decline. However, no study has yet addressed how temperature and parasitism may combine to shape the functional structure of a whole host community in the face of global warming. Here, we apply an outdoor mesocosm approach supported by field surveys to elucidate this question in a diverse intertidal community of amphipods infected by the pathogenic microphallid trematode, Maritrema novaezealandensis. Under present temperature (17°C) and level of parasitism, the parasite had little impact on the host community. However, elevating the temperature to 21°C in presence of parasites induced massive structural changes: amphipod abundances decreased species-specifically, affecting epibenthic species but leaving infaunal species largely untouched. In effect, species diversity dropped significantly. In contrast, 4-degree higher temperatures in absence of parasitism had limited influence on the amphipod community. Further elevating temperatures (19-26°C) and parasitism, simulating a prolonged heat-wave scenario, resulted in an almost complete parasite-induced extermination of the amphipod community at 26°C. In addition, at 19°C, just two degrees above the present average, a similar temperature-parasite synergistic impact on community structure emerged as seen at 21°C under lower parasite pressure. The heat-wave temperature of 26°C per se affected the amphipod community in a comparable way: species diversity declined and the infaunal species were favoured at the expense of epibenthic species. Our experimental findings are corroborated by field data demonstrating a strong negative relationship between current amphipod species richness and the level of Maritrema parasitism across 12 sites. Hence, owing to the synergistic impact of temperature and parasitism, our study predicts that coastal amphipod communities will deteriorate

  20. The global distribution of giant radiating dike swarms on Venus: Implications for the global stress state

    Grosfils, Eric B.; Head, James W.

    1994-01-01

    Magellan radar data of Venus reveal 163 large radial lineament systems composed of graben, fissure, and fracture elements. On the basis of their structure, plan view geometry, and volcanic associations, at least 72% are interpreted to have formed primarily through subsurface dike swarm emplacement, the remainder through uplift or a combination of these two mechanisms. The population of swarms is used to determine regional and global stress orientation. The stress configuration recorded from 330-210 deg E (Aphrodite Terra) is best explained by isostatic compensation of existing long wavelength topography or coupling between mantle flow and the lithosphere. The rest are correlated with concentrations of rifting and volcanism in the Beta-Atla-Themis region. The global stress field on Venus is different than that of Earth, where plate boundary forces dominate.

  1. Linear theory radial and nonradial pulsations of DA dwarf stars

    Starrfield, S.; Cox, A.N.; Hodson, S.; Pesnell, W.D.

    1982-01-01

    The Los Alamos stellar envelope and radial linear non-adiabatic computer code, along with a new Los Alamos non-radial code are used to investigate the total hydrogen mass necessary to produce the non-radial instability of DA dwarfs

  2. EMPIRICAL RESEARCH ON THE STRUCTURE OF A SYSTEM FOR ASSESSMENT OF THE GLOBAL PERFORMANCE OF ECONOMIC ENTITIES

    Pintea Mirela-Oana

    2012-07-01

    Full Text Available Sustainable development and, therefore, globalization require new standards of performance that exceeds the economic field, both for domestic companies as well as international ones. So, these standards should be integrated into corporate strategy development to ensure sustainability of activities undertaken by harmonizing the economic, social and environmental objectives. For sustainable development of an entity, value creation can not be seen in strictly financial terms, therefore any strategies that are defined by entities concerns not only the quantitative aspects (economic-financial but also qualitative aspects (social and environmental. This study attempts to address the issue of building a set of indicators to assess overall performance and it stops at each of the three dimensions of performance, namely economic performance, social performance and environmental performance. In this scientific approach we try to stop on one of the priorities of economic research that is finding indicators that better reflect the three dimensions of performance. What indicators would best represent the overall performance?, What indicators would best represent the financial performance?, What indicators would best represent social performance?, What would be the best indicators of environmental performance? During this scientific approach will try to answer each of these questions through the empirical research conducted. To do this research we focused on statistical population consisting of the following categories of analysts: analysts from academic environment (Cluj-Napoca, Bucharest, Timisoara, Iasi, Craiova, Sibiu, Pitesti, Galati and financial analysts from the specific departments of the Financial Investment Services Company (Broker SA, BT Securities, Target Capital, Tradeville, Estinvest, Intercapital, KBC Securities, etc.. This distinction was made because we believe that in determining the optimal structure of such a model we need the views of

  3. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    Yoshimura, H.

    1975-01-01

    The dynamo equation which represents the longitudinally averaged magnetohydrodynamical action of the global convection influenced by the rotation in the solar convection zone is solved numerically to simulate the solar cycle as an initial boundary-value problem. The radial and latitudinal structure of the dynamo action is parametrized in accordance with the structure of the rotation, and of the global convection especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. A nonlinear process is included by assuming that part of the magnetic field energy is dissipated when the magnetic field strength exceeds some critical value; the formation of active regions and subsequent dissipations are thus simulated. By adjusting the parameters within a reasonable range, oscillatory solutions are obtained to simulate the solar cycle with the period of the right order of magnitude and with the patterns of evolution of the latitudinal distribution of the toroidal component of the magnetic field similar to the observed Butterfly Diagram of sunspots. The evolution of the latitudinal distribution of the radial component of the magnetic field shows patterns similar to the Butterfly Diagram, but having two branches of different polarity in each hemisphere. The development of the radial structure of the magnetic field associated with the solar cycle is presented. The importance of the poleward migrating branch of the Butterfly Diagram is emphasized in relation to the relative importance of the role of the latitudinal and radial shears of the differential rotation

  4. Global magnetohydrodynamic instabilities in the L-2M stellarator

    Mikhailov, M. I., E-mail: mikhaylov-mi@nrcki.ru [National Research Centre Kurchatov Institute (Russian Federation); Shchepetov, S. V., E-mail: shch@fpl.gpi.ru [Russian Academy of Sciences, Prokhorov General Physics Institute (Russian Federation); Nührenberg, C.; Nührenberg, J. [Max-Planck-Institut für Plasmaphysik (Germany)

    2015-12-15

    Analysis of global magnetohydrodynamic (MHD) instabilities in the L-2M stellarator (Prokhorov General Physics Institute, Russian Academy of Sciences) is presented. The properties of free-boundary equilibria states are outlined, the stability conditions for small-scale modes are briefly discussed, and the number of trapped particles is estimated. All the magnetic configurations under study are stable against ballooning modes. It is shown that global ideal internal MHD modes can be found reliably only in Mercier unstable plasmas. In plasma that is stable with respect to the Mercier criterion, global unstable modes that are localized in the vicinity of the free plasma boundary and are not associated with any rational magnetic surface inside the plasma (the so-called peeling modes) can be found. The radial structure of all perturbations under study is almost entirely determined by the poloidal coupling of harmonics. The results of calculations are compared with the available experimental data.

  5. CONSTRAINTS ON THE RADIAL VARIATION OF GRAIN GROWTH IN THE AS 209 CIRCUMSTELLAR DISK

    Pérez, Laura M.; Carpenter, John M.; Isella, Andrea; Ricci, Luca; Sargent, Anneila I.; Chandler, Claire J.; Andrews, Sean M.; Harris, Robert J.; Calvet, Nuria; Corder, Stuartt A.; Deller, Adam T.; Dullemond, Cornelis P.; Linz, Hendrik; Greaves, Jane S.; Henning, Thomas; Kwon, Woojin; Lazio, Joseph; Mundy, Lee G.; Storm, Shaye; Testi, Leonardo

    2012-01-01

    We present dust continuum observations of the protoplanetary disk surrounding the pre-main-sequence star AS 209, spanning more than an order of magnitude in wavelength from 0.88 to 9.8 mm. The disk was observed with subarcsecond angular resolution (0.''2-0.''5) to investigate radial variations in its dust properties. At longer wavelengths, the disk emission structure is notably more compact, providing model-independent evidence for changes in the grain properties across the disk. We find that physical models which reproduce the disk emission require a radial dependence of the dust opacity κ ν . Assuming that the observed wavelength-dependent structure can be attributed to radial variations in the dust opacity spectral index (β), we find that β(R) increases from β 1.5 for R ∼> 80 AU, inconsistent with a constant value of β across the disk (at the 10σ level). Furthermore, if radial variations of κ ν are caused by particle growth, we find that the maximum size of the particle-size distribution (a max ) increases from submillimeter-sized grains in the outer disk (R ∼> 70 AU) to millimeter- and centimeter-sized grains in the inner disk regions (R ∼ max (R) with predictions from physical models of dust evolution in protoplanetary disks. For the dust composition and particle-size distribution investigated here, our observational constraints on a max (R) are consistent with models where the maximum grain size is limited by radial drift.

  6. The large-scale structure of the halo of the Andromeda galaxy. I. Global stellar density, morphology and metallicity properties

    Ibata, Rodrigo A.; Martin, Nicolas F. [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de lUniversité, F-67000 Strasbourg (France); Lewis, Geraint F. [Institute of Astronomy, School of Physics A28, University of Sydney, NSW 2006 (Australia); McConnachie, Alan W. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Irwin, Michael J. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Ferguson, Annette M. N.; Bernard, Edouard J.; Peñarrubia, Jorge [Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Babul, Arif; Navarro, Julio [Department of Physics and Astronomy, University of Victoria, 3800 Finnerty Road, Victoria, British Columbia V8P 5C2 (Canada); Chapman, Scott C. [Department of Physics and Atmospheric Science, Dalhousie University, 6310 Coburg Road, Halifax NS B3H 4R2 (Canada); Collins, Michelle [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Fardal, Mark [University of Massachusetts, Department of Astronomy, LGRT 619-E, 710 North Pleasant Street, Amherst, MA 01003-9305 (United States); Mackey, A. D. [RSAA, The Australian National University, Mount Stromlo Observatory, Cotter Road, Weston Creek ACT 2611 (Australia); Rich, R. Michael [Department of Physics and Astronomy, University of California, Los Angeles, PAB, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States); Tanvir, Nial [Department of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH (United Kingdom); Widrow, Lawrence, E-mail: rodrigo.ibata@astro.unistra.fr [Department of Physics, Engineering Physics, and Astronomy Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2014-01-10

    We present an analysis of the large-scale structure of the halo of the Andromeda galaxy, based on the Pan-Andromeda Archeological Survey (PAndAS), currently the most complete map of resolved stellar populations in any galactic halo. Despite the presence of copious substructures, the global halo populations follow closely power-law profiles that become steeper with increasing metallicity. We divide the sample into stream-like populations and a smooth halo component (defined as the population that cannot be resolved into spatially distinct substructures with PAndAS). Fitting a three-dimensional halo model reveals that the most metal-poor populations ([Fe/H]<−1.7) are distributed approximately spherically (slightly prolate with ellipticity c/a = 1.09 ± 0.03), with only a relatively small fraction residing in discernible stream-like structures (f {sub stream} = 42%). The sphericity of the ancient smooth component strongly hints that the dark matter halo is also approximately spherical. More metal-rich populations contain higher fractions of stars in streams, with f {sub stream} becoming as high as 86% for [Fe/H]>−0.6. The space density of the smooth metal-poor component has a global power-law slope of γ = –3.08 ± 0.07, and a non-parametric fit shows that the slope remains nearly constant from 30 kpc to ∼300 kpc. The total stellar mass in the halo at distances beyond 2° is ∼1.1 × 10{sup 10} M {sub ☉}, while that of the smooth component is ∼3 × 10{sup 9} M {sub ☉}. Extrapolating into the inner galaxy, the total stellar mass of the smooth halo is plausibly ∼8 × 10{sup 9} M {sub ☉}. We detect a substantial metallicity gradient, which declines from ([Fe/H]) = –0.7 at R = 30 kpc to ([Fe/H]) = –1.5 at R = 150 kpc for the full sample, with the smooth halo being ∼0.2 dex more metal poor than the full sample at each radius. While qualitatively in line with expectations from cosmological simulations, these observations are of great importance as

  7. MORPHOLOGICAL ADJUSTMENTS OF THE RADIAL NERVE ARE INTENSITY-DEPENDENT

    Patrícia Oliva Carbone

    Full Text Available ABSTRACT Introduction: Peripheral nerve adaptation is critical for strength gains. However, information about intensity effects on nerve morphology is scarce. Objective: To compare the effects of different intensities of resistance training on radial nerve structures. Methods: Rats were divided into three groups: control (GC, training with 50% (GF1 and training 75% (GF2 of the animal’s body weight. The morphological analysis of the nerve was done by light and transmission electron microscopy. One-way ANOVA and the Tukey’s post hoc test were applied and the significance level was set at p≤0.05. Results: Training groups had an increase of strength compared to GC (p≤0.05. All measured nerve components (mean area and diameter of myelin fibers and axons, mean area and thickness of the myelin sheath, and of neurofilaments and microtubules were higher in GF2 compared to the other (p≤0.05. Conclusion: Results demonstrated greater morphological changes on radial nerve after heavier loads. This can be important for rehabilitation therapies, training, and progression.

  8. Methods and apparatus for radially compliant component mounting

    Bulman, David Edward [Cincinnati, OH; Darkins, Jr., Toby George; Stumpf, James Anthony [Columbus, IN; Schroder, Mark S [Greenville, SC; Lipinski, John Joseph [Simpsonville, SC

    2012-03-27

    Methods and apparatus for a mounting assembly for a liner of a gas turbine engine combustor are provided. The combustor includes a combustor liner and a radially outer annular flow sleeve. The mounting assembly includes an inner ring surrounding a radially outer surface of the liner and including a plurality of axially extending fingers. The mounting assembly also includes a radially outer ring coupled to the inner ring through a plurality of spacers that extend radially from a radially outer surface of the inner ring to the outer ring.

  9. A model of the solar cycle driven by the dynamo action of the global convection in the solar convection zone

    Yoshimura, H.

    1976-01-01

    Extensive numerical studies of the dynamo equations due to the global convection are presented to simulate the solar cycle and to open the way to study general stellar magnetic cycles. The dynamo equations which represent the longitudinally-averaged magnetohydrodynamical action (mean magnetohydrodynamics) of the global convection under the influence of the rotation in the solar convection zone are considered here as an initial boundary-value problem. The latitudinal and radial structure of the dynamo action consisting of a generation action due to the differential rotation and a regeneration action due to the global convection is parameterized in accordance with the structure of the rotation and of the global convection. This is done especially in such a way as to represent the presence of the two cells of the regeneration action in the radial direction in which the action has opposite signs, which is typical of the regeneration action of the global convection. The effects of the dynamics of the global convection (e.g., the effects of the stratification of the physical conditions in the solar convection zone) are presumed to be all included in those parameters used in the model and they are presumed not to alter the results drastically since these effects are only to change the structure of the regeneration action topologically. (Auth.)

  10. Radial fractional Laplace operators and Hessian inequalities

    Ferrari, Fausto; Verbitsky, Igor E.

    In this paper we deduce a formula for the fractional Laplace operator ( on radially symmetric functions useful for some applications. We give a criterion of subharmonicity associated with (, and apply it to a problem related to the Hessian inequality of Sobolev type: ∫Rn |(u| dx⩽C∫Rn -uFk[u] dx, where Fk is the k-Hessian operator on Rn, 1⩽kFerrari et al. [5] contains the extremal functions for the Hessian Sobolev inequality of X.-J. Wang (1994) [15]. This is proved using logarithmic convexity of the Gaussian ratio of hypergeometric functions which might be of independent interest.

  11. Convex and Radially Concave Contoured Distributions

    Wolf-Dieter Richter

    2015-01-01

    Full Text Available Integral representations of the locally defined star-generalized surface content measures on star spheres are derived for boundary spheres of balls being convex or radially concave with respect to a fan in Rn. As a result, the general geometric measure representation of star-shaped probability distributions and the general stochastic representation of the corresponding random vectors allow additional specific interpretations in the two mentioned cases. Applications to estimating and testing hypotheses on scaling parameters are presented, and two-dimensional sample clouds are simulated.

  12. On radial flow between parallel disks

    Wee, A Y L; Gorin, A

    2015-01-01

    Approximate analytical solutions are presented for converging flow in between two parallel non rotating disks. The static pressure distribution and radial component of the velocity are developed by averaging the inertial term across the gap in between parallel disks. The predicted results from the first approximation are favourable to experimental results as well as results presented by other authors. The second approximation shows that as the fluid approaches the center, the velocity at the mid channel slows down which is due to the struggle between the inertial term and the flowrate. (paper)

  13. Intraluminal milrinone for dilation of the radial artery graft.

    García-Rinaldi, R; Soltero, E R; Carballido, J; Mojica, J

    1999-01-01

    There is renewed interest in the use of the radial artery as a conduit for coronary artery bypass surgery. The radial artery is, however, a very muscular artery, prone to vasospasm. Milrinone, a potent vasodilator, has demonstrated vasodilatory properties superior to those of papaverine. In this report, we describe our technique of radial artery harvesting and the adjunctive use of intraluminal milrinone as a vasodilator in the preparation of this conduit for coronary artery bypass grafting. We have used these techniques in 25 patients who have undergone coronary artery bypass grafting using the radial artery. No hand ischemic complications have been observed in this group. Intraluminal milrinone appears to dilate and relax the radial artery, rendering this large conduit spasm free and very easy to use. We recommend the skeletonization technique for radial artery harvesting and the use of intraluminal milrinone as a radial artery vasodilator in routine myocardial revascularization. PMID:10524740

  14. Radial optimization of a BWR fuel cell using genetic algorithms; Optimizacion radial de una celda de combustible BWR usando algoritmos geneticos

    Martin del Campo M, C.; Carmona H, R.; Oropeza C, I.P. [UNAM, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)]. e-mail: cmcm@fi-b.unam.mx

    2006-07-01

    The development of the application of the Genetic Algorithms (GA) to the optimization of the radial distribution of enrichment in a cell of fuel of a BWR (Boiling Water Reactor) is presented. The optimization process it was ties to the HELIOS simulator, which is a transport code of neutron simulation of fuel cells that has been validated for the calculation of nuclear banks for BWRs. With heterogeneous radial designs can improve the radial distribution of the power, for what the radial design of fuel has a strong influence in the global design of fuel recharges. The optimum radial distribution of fuel bars is looked for with different enrichments of U{sup 235} and contents of consumable poison. For it is necessary to define the representation of the solution, the objective function and the implementation of the specific optimization process to the solution of the problem. The optimization process it was coded in 'C' language, it was automated the creation of the entrances to the simulator, the execution of the simulator and the extraction, in the exit of the simulator, of the parameters that intervene in the objective function. The objective function includes four parameters: average enrichment of the cell, average gadolinia concentration of the cell, peak factor of radial power and k-infinite multiplication factor. To be able to calculate the parameters that intervene in the objective function, the one evaluation process of GA was ties to the HELIOS code executed in a Compaq Alpha workstation. It was applied to the design of a fuel cell of 10 x 10 that it can be employee in the fuel assemble designs that are used at the moment in the Laguna Verde Nucleo electric Central. Its were considered 10 different fuel compositions which four contain gadolinia. Three heuristic rules that consist in prohibiting the placement of bars with gadolinia in the ends of the cell, to place the compositions with the smallest enrichment in the corners of the cell and to fix

  15. Body-size structure of Central Iberian mammal fauna reveals semidesertic conditions during the middle Miocene Global Cooling Event.

    Iris Menéndez

    Full Text Available We developed new quantitative palaeoclimatic inference models based on the body-size structure of mammal faunas from the Old World tropics and applied them to the Somosaguas fossil site (middle Miocene, central Iberian Peninsula. Twenty-six mammal species have been described at this site, including proboscideans, ungulates, carnivores, insectivores, lagomorphs and rodents. Our analyses were based on multivariate and bivariate regression models correlating climatic data and body-size structure of 63 modern mammal assemblages from Sub-Saharan Africa and the Indian subcontinent. The results showed an average temperature of the coldest month higher than 26°C for the Somosaguas fossil site, a mean annual thermal amplitude around 10°C, a drought length of 10 months, and an annual total precipitation greater than 200 mm per year, which are climate conditions typical of an ecotonal zone between the savanna and desert biomes. These results are congruent with the aridity peaks described over the middle Aragonian of Spain and particularly in the local biozone E, which includes Somosaguas. The aridity increase detected in this biozone is associated with the Middle Miocene Global Cooling Event. The environment of Somosaguas around 14 Ma was similar to the current environment in the Sahel region of North Africa, the Horn of Africa, the boundary area between the Kalahari and the Namib in Southern Africa, south-central Arabia, or eastern Pakistan and northwestern India. The distribution of modern vegetation in these regions follows a complex mosaic of plant communities, dominated by scattered xerophilous shrublands, semidesert grasslands, and vegetation linked to seasonal watercourses and ponds.

  16. Body-size structure of Central Iberian mammal fauna reveals semidesertic conditions during the middle Miocene Global Cooling Event.

    Menéndez, Iris; Gómez Cano, Ana R; García Yelo, Blanca A; Domingo, Laura; Domingo, M Soledad; Cantalapiedra, Juan L; Blanco, Fernando; Hernández Fernández, Manuel

    2017-01-01

    We developed new quantitative palaeoclimatic inference models based on the body-size structure of mammal faunas from the Old World tropics and applied them to the Somosaguas fossil site (middle Miocene, central Iberian Peninsula). Twenty-six mammal species have been described at this site, including proboscideans, ungulates, carnivores, insectivores, lagomorphs and rodents. Our analyses were based on multivariate and bivariate regression models correlating climatic data and body-size structure of 63 modern mammal assemblages from Sub-Saharan Africa and the Indian subcontinent. The results showed an average temperature of the coldest month higher than 26°C for the Somosaguas fossil site, a mean annual thermal amplitude around 10°C, a drought length of 10 months, and an annual total precipitation greater than 200 mm per year, which are climate conditions typical of an ecotonal zone between the savanna and desert biomes. These results are congruent with the aridity peaks described over the middle Aragonian of Spain and particularly in the local biozone E, which includes Somosaguas. The aridity increase detected in this biozone is associated with the Middle Miocene Global Cooling Event. The environment of Somosaguas around 14 Ma was similar to the current environment in the Sahel region of North Africa, the Horn of Africa, the boundary area between the Kalahari and the Namib in Southern Africa, south-central Arabia, or eastern Pakistan and northwestern India. The distribution of modern vegetation in these regions follows a complex mosaic of plant communities, dominated by scattered xerophilous shrublands, semidesert grasslands, and vegetation linked to seasonal watercourses and ponds.

  17. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization

    Turchin, Peter; Currie, Thomas E.; Whitehouse, Harvey; François, Pieter; Feeney, Kevin; Mullins, Daniel; Hoyer, Daniel; Collins, Christina; Grohmann, Stephanie; Mendel-Gleason, Gavin; Turner, Edward; Dupeyron, Agathe; Cioni, Enrico; Reddish, Jenny; Levine, Jill; Jordan, Greine; Brandl, Eva; Williams, Alice; Cesaretti, Rudolf; Krueger, Marta; Ceccarelli, Alessandro; Figliulo-Rosswurm, Joe; Tuan, Po-Ju; Peregrine, Peter; Marciniak, Arkadiusz; Preiser-Kapeller, Johannes; Kradin, Nikolay; Korotayev, Andrey; Palmisano, Alessio; Baker, David; Bidmead, Julye; Bol, Peter; Christian, David; Cook, Connie; Covey, Alan; Feinman, Gary; Júlíusson, Árni Daníel; Kristinsson, Axel; Miksic, John; Mostern, Ruth; Petrie, Cameron; Rudiak-Gould, Peter; ter Haar, Barend; Wallace, Vesna; Mair, Victor; Xie, Liye; Baines, John; Bridges, Elizabeth; Manning, Joseph; Lockhart, Bruce; Bogaard, Amy; Spencer, Charles

    2018-01-01

    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as “Seshat: Global History Databank.” We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history. PMID:29269395

  18. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  19. Apparent resistivity for transient electromagnetic induction logging and its correction in radial layer identification

    Meng, Qingxin; Hu, Xiangyun; Pan, Heping; Xi, Yufei

    2018-04-01

    We propose an algorithm for calculating all-time apparent resistivity from transient electromagnetic induction logging. The algorithm is based on the whole-space transient electric field expression of the uniform model and Halley's optimisation. In trial calculations for uniform models, the all-time algorithm is shown to have high accuracy. We use the finite-difference time-domain method to simulate the transient electromagnetic field in radial two-layer models without wall rock and convert the simulation results to apparent resistivity using the all-time algorithm. The time-varying apparent resistivity reflects the radially layered geoelectrical structure of the models and the apparent resistivity of the earliest time channel follows the true resistivity of the inner layer; however, the apparent resistivity at larger times reflects the comprehensive electrical characteristics of the inner and outer layers. To accurately identify the outer layer resistivity based on the series relationship model of the layered resistance, the apparent resistivity and diffusion depth of the different time channels are approximately replaced by related model parameters; that is, we propose an apparent resistivity correction algorithm. By correcting the time-varying apparent resistivity of radial two-layer models, we show that the correction results reflect the radially layered electrical structure and the corrected resistivities of the larger time channels follow the outer layer resistivity. The transient electromagnetic fields of radially layered models with wall rock are simulated to obtain the 2D time-varying profiles of the apparent resistivity and corrections. The results suggest that the time-varying apparent resistivity and correction results reflect the vertical and radial geoelectrical structures. For models with small wall-rock effect, the correction removes the effect of the low-resistance inner layer on the apparent resistivity of the larger time channels.

  20. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee

    2002-01-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis

  1. A simple reactivity feedback model accounting for radial core expansion effects in the liquid metal fast reactor

    Kwon, Young Min; Lee, Yong Bum; Chang, Won Pyo; Haha, Do Hee [KAERI, Taejon (Korea, Republic of)

    2002-10-01

    The radial core expansion due to the structure temperature rise is one of major negative reactivity insertion mechanisms in metallic fueled reactor. Thermal expansion is a result of both the laws of nature and the particular core design and it causes negative reactivity feedback by the combination of increased core volume captures and increased core surface leakage. The simple radial core expansion reactivity feedback model developed for the SSC-K code was evaluated by the code-to-code comparison analysis. From the comparison results, it can be stated that the radial core expansion reactivity feedback model employed into the SSC-K code may be reasonably accurate in the UTOP analysis.

  2. Electrostatic turbulence with finite parallel correlation length and radial electric field generation

    Vlad, M.; Spineanu, F.; Misguich, J.H.; Balescu, R.

    2001-01-01

    Particle diffusion in a given electrostatic turbulence with a finite correlation length along the confining magnetic field is studied in the test particle approach. An anomalous diffusion regime of amplified diffusion coefficients is found in the conditions when particle trapping in the structure of the stochastic potential is effective. The auto-generated radial electric field is calculated. (author)

  3. Regional modeling approach for analyzing harmonic stability in radial power electronics based power system

    Yoon, Changwoo; Bai, Haofeng; Wang, Xiongfei

    2015-01-01

    Stability analysis of distributed power generation system becomes complex when there are many numbers of grid inverters in the system. In order to analyze system stability, the overall network impedance will be lumped and needs to be analyzed one by one. However, using a unified bulky transfer-fu...... and then it is expanded for generalizing its concept to an overall radial structured network....

  4. Exponential Convergence for Numerical Solution of Integral Equations Using Radial Basis Functions

    Zakieh Avazzadeh

    2014-01-01

    Full Text Available We solve some different type of Urysohn integral equations by using the radial basis functions. These types include the linear and nonlinear Fredholm, Volterra, and mixed Volterra-Fredholm integral equations. Our main aim is to investigate the rate of convergence to solve these equations using the radial basis functions which have normic structure that utilize approximation in higher dimensions. Of course, the use of this method often leads to ill-posed systems. Thus we propose an algorithm to improve the results. Numerical results show that this method leads to the exponential convergence for solving integral equations as it was already confirmed for partial and ordinary differential equations.

  5. Spherical radial basis functions, theory and applications

    Hubbert, Simon; Morton, Tanya M

    2015-01-01

    This book is the first to be devoted to the theory and applications of spherical (radial) basis functions (SBFs), which is rapidly emerging as one of the most promising techniques for solving problems where approximations are needed on the surface of a sphere. The aim of the book is to provide enough theoretical and practical details for the reader to be able to implement the SBF methods to solve real world problems. The authors stress the close connection between the theory of SBFs and that of the more well-known family of radial basis functions (RBFs), which are well-established tools for solving approximation theory problems on more general domains. The unique solvability of the SBF interpolation method for data fitting problems is established and an in-depth investigation of its accuracy is provided. Two chapters are devoted to partial differential equations (PDEs). One deals with the practical implementation of an SBF-based solution to an elliptic PDE and another which describes an SBF approach for solvi...

  6. Asymptotic Solutions of Serial Radial Fuel Shuffling

    Xue-Nong Chen

    2015-12-01

    Full Text Available In this paper, the mechanism of traveling wave reactors (TWRs is investigated from the mathematical physics point of view, in which a stationary fission wave is formed by radial fuel drifting. A two dimensional cylindrically symmetric core is considered and the fuel is assumed to drift radially according to a continuous fuel shuffling scheme. A one-group diffusion equation with burn-up dependent macroscopic coefficients is set up. The burn-up dependent macroscopic coefficients were assumed to be known as functions of neutron fluence. By introducing the effective multiplication factor keff, a nonlinear eigenvalue problem is formulated. The 1-D stationary cylindrical coordinate problem can be solved successively by analytical and numerical integrations for associated eigenvalues keff. Two representative 1-D examples are shown for inward and outward fuel drifting motions, respectively. The inward fuel drifting has a higher keff than the outward one. The 2-D eigenvalue problem has to be solved by a more complicated method, namely a pseudo time stepping iteration scheme. Its 2-D asymptotic solutions are obtained together with certain eigenvalues keff for several fuel inward drifting speeds. Distributions of the neutron flux, the neutron fluence, the infinity multiplication factor kinf and the normalized power are presented for two different drifting speeds.

  7. Using a Social Science--Fictional Play to Teach about Global Capitalism and Macro-Structural Systems in Introduction to Sociology

    Pelak, Cynthia Fabrizio; Duncan, Stacey

    2017-01-01

    This article explores the use of a social science-fictional play to teach macro-structural concepts related to global capitalism and surplus labor in a small and large Introduction to Sociology course. Relying on a cross-disciplinary and critical pedagogical approach that combines theory and practice to empower students to develop a critical…

  8. [Comparison of chemical quality characteristics between radial striations and non-radial striations in tuberous root of Rehmannia glutinosa].

    Xie, Cai-Xia; Zhang, Miao; Li, Ya-Jing; Geng, Xiao-Tong; Wang, Feng-Qing; Zhang, Zhong-Yi

    2017-11-01

    An HPLC method was established to determine the contents of catalpol, acteoside, rehmaionoside A, rehmaionoside D, leonuride in three part of Rehmanni glutinosa in Beijing No.1 variety R. glutinosa during the growth period, This method, in combination with its HPLC fingerprint was used to evaluate its overall quality characteristics.The results showed that:① the content of main components of R. glutinosa varied in different growth stages ;② there was a great difference of the content of main components between theradial striations and the non-radial striations; ③ the two sections almost have the same content distribution of catalpol, acteoside and rehmaionoside D; ④the content of rehmaionoside A in non-radial striations was higher than that in radial striations,while the content of leonuride in radial striations was higher than that in non-radial striations.; ⑤the HPLC fingerprint of radial striations, non-radial striations and whole root tuber were basically identical, except for the big difference in the content of chemical components. The result of clustering displayed that the radial striations, non-radial striations, and whole root were divided into two groups. In conclusion, there was a significant difference in the quality characteristics of radial striations and non-radial striations of R. glutinosa. This research provides a reference for quality evaluation and geoherbalism of R. glutinosa. Copyright© by the Chinese Pharmaceutical Association.

  9. Tire-rim interface pressure of a commercial vehicle wheel under radial loads: theory and experiment

    Wan, Xiaofei; Shan, Yingchun; Liu, Xiandong; He, Tian; Wang, Jiegong

    2017-11-01

    The simulation of the radial fatigue test of a wheel has been a necessary tool to improve the design of the wheel and calculate its fatigue life. The simulation model, including the strong nonlinearity of the tire structure and material, may produce accurate results, but often leads to a divergence in calculation. Thus, a simplified simulation model in which the complicated tire model is replaced with a tire-wheel contact pressure model is used extensively in the industry. In this paper, a simplified tire-rim interface pressure model of a wheel under a radial load is established, and the pressure of the wheel under different radial loads is tested. The tire-rim contact behavior affected by the radial load is studied and analyzed according to the test result, and the tire-rim interface pressure extracted from the test result is used to evaluate the simplified pressure model and the traditional cosine function model. The results show that the proposed model may provide a more accurate prediction of the wheel radial fatigue life than the traditional cosine function model.

  10. Determination of the radial distribution function with the tomographic atom probe

    Heinrich, A.; Al-Kassab, T.

    2004-01-01

    Full text: An algorithm for the determination of the radial distribution function (RDF) and the partial radial distribution function from tomographic atom probe data is introduced and some examples for its application are discussed. Homogeneous distribution of atoms can easily be determined from measured data. Using our algorithm, the lattice of simple cubic structures may be estimated solely from TAP data. The results for bcc and fcc alloys and metals will be presented. By evaluating the vicinity of each atom, information about order phenomena in multi component alloy can be retrieved including short range order. The advantage of determining the (partial) radial distribution functions for any sample with our algorithm is that all data can be derived by one single experiment whereas all other methods of determining a pRDF require one experiment for each pRDF. (author)

  11. Radial Photonic Crystal for detection of frequency and position of radiation sources.

    Carbonell, J; Díaz-Rubio, A; Torrent, D; Cervera, F; Kirleis, M A; Piqué, A; Sánchez-Dehesa, J

    2012-01-01

    Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed.

  12. Diamond-anvil cell for radial x-ray diffraction

    Chesnut, G N; Schiferl, D; Streetman, B D; Anderson, W W

    2006-01-01

    We have designed a new diamond-anvil cell capable of radial x-ray diffraction to pressures of a few hundred GPa. The diffraction geometry allows access to multiple angles of Ψ, which is the angle between each reciprocal lattice vector g(hkl) and the compression axis of the cell. At the 'magic angle', Ψ∼54.7 0 , the effects of deviatoric stresses on the interplanar spacings, d(hkl), are significantly reduced. Because the systematic errors, which are different for each d(hkl), are significantly reduced, the crystal structures and the derived equations of state can be determined reliably. At other values of Ψ, the effects of deviatoric stresses on the diffraction pattern could eventually be used to determine elastic constants

  13. Plasmonic rainbow rings induced by white radial polarization.

    Lan, Tzu-Hsiang; Chung, Yi-Kuan; Li, Jie-En; Tien, Chung-Hao

    2012-04-01

    This Letter presents a scheme to embed both angular/spectral surface plasmon resonance (SPR) in a unique far-field rainbow feature by tightly focusing (effective NA=1.45) a polychromatic radially polarized beam on an Au (20 nm)/SiO2 (500 nm)/Au (20 nm) sandwich structure. Without the need for angular or spectral scanning, the virtual spectral probe snapshots a wide operation range (n=1-1.42; λ=400-700 nm) of SPR excitation in a locally nanosized region. Combined with the high-speed spectral analysis, a proof-of-concept scenario was given by monitoring the NaCl liquid concentration change in real time. The proposed scheme will certainly has a promising impact on the development of objective-based SPR sensor and biometric studies due to its rapidity and versatility.

  14. Radially resolved emission spectroscopy on ZT-40M

    Watt, R.G.

    1982-05-01

    Measurements of line integrated emission profiles of D/sub β/, OIII, OV, OVI, and CV line radiation have been performed in the ZT-40M device at Los Alamos National Laboratory. The behavior of these emission profiles will be presented for several operating currents, fill pressures, and current risetimes. The basic oxygen radial structures are seen to resemble an onion skin at any particular time, with OIII farthest out in radius and OVI nearest the axis, as one would expect in the absence of any anomalous heating mechanisms (such as thermal instabilities). The rate at which the various lines occur during several different current level discharges appears to be consistent with increased losses for increased I/sub phi/ during the early phases of heating (up to OVI), while the later stages are consistent with a much lower energy loss and a heating rate proportional to I 2 . Evidence of enhanced wall interaction in the latter stages of the discharge is presented

  15. Recent advances in radial basis function collocation methods

    Chen, Wen; Chen, C S

    2014-01-01

    This book surveys the latest advances in radial basis function (RBF) meshless collocation methods which emphasis on recent novel kernel RBFs and new numerical schemes for solving partial differential equations. The RBF collocation methods are inherently free of integration and mesh, and avoid tedious mesh generation involved in standard finite element and boundary element methods. This book focuses primarily on the numerical algorithms, engineering applications, and highlights a large class of novel boundary-type RBF meshless collocation methods. These methods have shown a clear edge over the traditional numerical techniques especially for problems involving infinite domain, moving boundary, thin-walled structures, and inverse problems. Due to the rapid development in RBF meshless collocation methods, there is a need to summarize all these new materials so that they are available to scientists, engineers, and graduate students who are interest to apply these newly developed methods for solving real world’s ...

  16. What velocities and eccentricities tell us about radial migration

    Schönrich R.

    2012-02-01

    Full Text Available This note attempts to interpret some of the recent findings about a downtrend in the mean azimuthal velocity of low [α/Fe] thin disc stars with increasing metallicity. The presence of such a trend was predicted in the model of [19], albeit with a slightly steeper slope. We show that in a simple picture a Galactic disc without mixing in angular momenta would display an exceedingly steep trend, while in the case of complete mixing of all stars the trend has to vanish. The difference between model and observational data can hence be interpreted as the consequence of the radial abundance gradient in the model being too high resulting in an underestimate of the migration strength. We shortly discuss the value of eccentricity distributions in constraining structure and history of the Galactic disc.

  17. Computer model analysis of the radial artery pressure waveform.

    Schwid, H A; Taylor, L A; Smith, N T

    1987-10-01

    Simultaneous measurements of aortic and radial artery pressures are reviewed, and a model of the cardiovascular system is presented. The model is based on resonant networks for the aorta and axillo-brachial-radial arterial system. The model chosen is a simple one, in order to make interpretation of the observed relationships clear. Despite its simplicity, the model produces realistic aortic and radial artery pressure waveforms. It demonstrates that the resonant properties of the arterial wall significantly alter the pressure waveform as it is propagated from the aorta to the radial artery. Although the mean and end-diastolic radial pressures are usually accurate estimates of the corresponding aortic pressures, the systolic pressure at the radial artery is often much higher than that of the aorta due to overshoot caused by the resonant behavior of the radial artery. The radial artery dicrotic notch is predominantly dependent on the axillo-brachial-radial arterial wall properties, rather than on the aortic valve or peripheral resistance. Hence the use of the radial artery dicrotic notch as an estimate of end systole is unreliable. The rate of systolic upstroke, dP/dt, of the radial artery waveform is a function of many factors, making it difficult to interpret. The radial artery waveform usually provides accurate estimates for mean and diastolic aortic pressures; for all other measurements it is an inadequate substitute for the aortic pressure waveform. In the presence of low forearm peripheral resistance the mean radial artery pressure may significantly underestimate the mean aortic pressure, as explained by a voltage divider model.

  18. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  19. Effect of boundary conditions on radial mode structure of whistlers

    Boswell, R.W.

    1983-01-01

    The dispersion of the radical eigen modes of a cylindrical m=1 whistler wave with Ωsub(i) << ω << Ωsub(e) << ωsub(pe) are investigated for both conducting and insulating boundaries, where Ωsub(e) and Ωsub(i) are the electron and ion gyro frequencies, Ωsub(pe) is the electron plasma frequency. The effects of electron inertia and resistivity on the modes are discussed

  20. The Radial Structure of Some Middle Egyptian Prepositions

    Nyord, Rune

    2010-01-01

    Prepositions are traditionally treated in dictionaries and grammars by giving a list of usages, often corresponding more or less to the way the preposition is translated in the language of the modern work. This paper suggests an alternative way of approaching prepositions, derived from cognitive...