Global QCD Analysis of the Nucleon Tensor Charge with Lattice QCD Constraints
Shows, Harvey, III; Melnitchouk, Wally; Sato, Nobuo
2017-09-01
By studying the parton distribution functions (PDFs) of a nucleon, we probe the partonic scale of nature, exploring what it means to be a nucleon. In this study, we are interested in the transversity PDF-the least studied of the three collinear PDFs. By conducting a global analysis on experimental data from semi-inclusive deep inelastic scattering (SIDIS), as well as single-inclusive e+e- annihilation (SIA), we extract the fit parameters needed to describe the transverse moment dependent (TMD) transversity PDF, as well as the Collins fragmentation function. Once the collinear transversity PDF is obtained by integrating the extracted TMD PDF, we wish to resolve discrepancies between lattice QCD calculations and phenomenological extractions of the tensor charge from data. Here we show our results for the transversity distribution and tensor charge. Using our method of iterative Monte Carlo, we now have a more robust understanding of the transversity PDF. With these results we are able to progress in our understanding of TMD PDFs, as well as testify to the efficacy of current lattice QCD calculations. This work is made possible through support from NSF award 1659177 to Old Dominion University.
Determination of s(x) and anti s(x) from a global QCD analysis
Energy Technology Data Exchange (ETDEWEB)
Zomer, F
1999-10-01
A new global QCD analysis of DIS data is presented. The {nu}Fe and {nu}-bar Fe differential cross-section data are included to constrain the strange component of the nucleon sea. As a result we found a hard strangeness at high-x and some evidence for an asymmetry between xs(x) and xs-bar(x). (author)
First Monte Carlo Global Analysis of Nucleon Transversity with Lattice QCD Constraints
Lin, H.-W.; Melnitchouk, W.; Prokudin, A.; Sato, N.; Shows, H.; Jefferson Lab Angular Momentum JAM Collaboration
2018-04-01
We report on the first global QCD analysis of the quark transversity distributions in the nucleon from semi-inclusive deep-inelastic scattering (SIDIS), using a new Monte Carlo method based on nested sampling and constraints on the isovector tensor charge gT from lattice QCD. A simultaneous fit to the available SIDIS Collins asymmetry data is compatible with gT values extracted from a comprehensive reanalysis of existing lattice simulations, in contrast to previous analyses, which found significantly smaller gT values. The contributions to the nucleon tensor charge from u and d quarks are found to be δ u =0.3 (2 ) and δ d =-0.7 (2 ) at a scale Q2=2 GeV2.
International Nuclear Information System (INIS)
Horvath, Ivan
2005-01-01
The structure of QCD vacuum can be studied from first principles using lattice-regularized theory. This line of research entered a qualitatively new phase recently, wherein the space-time structure (at least for some quantities) can be directly observed in configurations dominating the QCD path integral, i.e., without any subjective processing of typical configurations. This approach to QCD vacuum structure does not rely on any proposed picture of QCD vacuum but rather attempts to characterize this structure in a model-independent manner, so that a coherent physical picture of the vacuum can emerge when such unbiased numerical information accumulates to a sufficient degree. An important part of this program is to develop a set of suitable quantitative characteristics describing the space-time structure in a meaningful and physically relevant manner. One of the basic pertinent issues here is whether QCD vacuum dynamics can be understood in terms of localized vacuum objects, or whether such objects behave as inherently global entities. The first direct studies of vacuum structure strongly support the latter. In this paper, we develop a formal framework which allows to answer this question in a quantitative manner. We discuss in detail how to apply this approach to Dirac eigenmodes and to basic scalar and pseudoscalar composites of gauge fields (action density and topological charge density). The approach is illustrated numerically on overlap Dirac zero modes and near-zero modes. This illustrative data provides direct quantitative evidence supporting our earlier arguments for the global nature of QCD Dirac eigenmodes
A QCD analysis of ZEUS diffractive data
Energy Technology Data Exchange (ETDEWEB)
Chekanov, S.; Derrick, M.; Magill, S. [Argonne National Laboratory, Argonne, IL (US)] (and others)
2009-11-15
ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)
A QCD analysis of ZEUS diffractive data
International Nuclear Information System (INIS)
Chekanov, S.; Derrick, M.; Magill, S.
2009-11-01
ZEUS inclusive diffractive cross-section measurements have been used in a DGLAP next-to-leading-order QCD analysis to extract the diffractive parton distribution functions. Data on diffractive dijet production in deep inelastic scattering have also been included to constrain the gluon density. Predictions based on the extracted parton densities are compared to diffractive charm and dijet photoproduction data. (orig.)
Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.
2000-01-01
We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.
Lattice QCD inputs to the CKM unitarity triangle analysis
International Nuclear Information System (INIS)
Laiho, Jack; Lunghi, E.; Van de Water, Ruth S.
2010-01-01
We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner: whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex K , |V cb |, and |V ub |/|V cb |. We find a (2-3)σ tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V cb |. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.
1999-01-01
Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions
A Bayesian analysis of QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2011-01-01
A new technique has recently been developed, in which the Maximum Entropy Method is used to analyze QCD sum rules. This approach has the virtue of being able to directly generate the spectral function of a given operator, without the need of making an assumption about its specific functional form. To investigate whether useful results can be extracted within this method, we have first studied the vector meson channel, where QCD sum rules are traditionally known to provide a valid description of the spectral function. Our results show a significant peak in the region of the experimentally observed ρ-meson mass, which is in agreement with earlier QCD sum rules studies and suggests that the Maximum Entropy Method is a strong tool for analyzing QCD sum rules.
QCD analysis of structure functions in terms of Jacobi polynomials
International Nuclear Information System (INIS)
Krivokhizhin, V.G.; Kurlovich, S.P.; Savin, I.A.; Sidorov, A.V.; Skachkov, N.B.; Sanadze, V.V.
1987-01-01
A new method of QCD-analysis of singlet and nonsinglet structure functions based on their expansion in orthogonal Jacobi polynomials is proposed. An accuracy of the method is studied and its application is demonstrated using the structure function F 2 (x,Q 2 ) obtained by the EMC Collaboration from measurements with an iron target. (orig.)
'Fixed point' QCD analysis of the CCFR data on deep inelastic neutrino-nucleon scattering
International Nuclear Information System (INIS)
Sidorov, A.V.; Stamenov, D.B.
1995-01-01
The results of LO Fixed point QCD (FP-QCD) analysis of the CCFR data for the nucleon structure function xF 3 (x,Q 2 ) are presented. The predictions of FP-QCD, in which α S (Q 2 ) tends to a nonzero coupling constant α 0 as Q 2 → ∞, are in good agreement with the data. The description of the data is even better than that in the case of LO QCD. The FP-QCD parameter α 0 is determined with a good accuracy: α 0 0.198 ± 0.009. Having in mind the recent QCD fits to the same data we conclude that unlike the high precision and large (x,Q 2 ) kinematic range of the CCFR data they cannot discriminate between QCD and FP-QCD predictions for xF 3 (x,Q 2 ). 11 refs., 1 tab
Determination of resonance parameters in QCD by functional analysis methods
International Nuclear Information System (INIS)
Ciulli, S.; Geniet, F.; Papadopoulos, N.A.; Schilcher, K.
1988-01-01
A mathematically rigorous method based on functional analysis is used to determine resonance parameters of an amplitude from its given asymptotic expression in the space-like region. This method is checked on a model amplitude where both the asymptotic expression and the exact function are known. This method is then applied to the determination of the mass and the width of the ρ-meson from the corresponding space-like asymptotic QCD expression. (orig.)
Critical slowing down and error analysis in lattice QCD simulations
International Nuclear Information System (INIS)
Virotta, Francesco
2012-01-01
In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as τ exp (a)∝a -5 , where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10)τ exp . This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N f =2 simulations using the Kaon decay constant f K as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
Critical slowing down and error analysis in lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Sommer, Rainer; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-09-15
We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)
Critical slowing down and error analysis in lattice QCD simulations
International Nuclear Information System (INIS)
Schaefer, Stefan; Sommer, Rainer; Virotta, Francesco
2010-09-01
We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)
QCD analysis of polarized deep inelastic scattering data
International Nuclear Information System (INIS)
Bluemlein, Johannes; Boettcher, Helmut
2010-05-01
A QCD analysis of the world data on polarized deep inelastic scattering is presented in next-to-leading order, including the heavy flavor Wilson coefficient in leading order in the fixed flavor number scheme. New parameterizations are derived for the quark and gluon distributions and the value of α s (M z 2 ) is determined. The impact of the variation of both the renormalization and factorization scales on the distributions and the value of α s is studied. We obtain α s NLO (M Z 2 )=0.1132 -0.0095 +0.0056 . The first moments of the polarized twist-2 parton distribution functions are calculated with correlated errors to allow for comparisons with results from lattice QCD simulations. Potential higher twist contributions to the structure function g 1 (x,Q 2 ) are determined and found to be compatible with zero both for proton and deuteron targets. (orig.)
Super-leading logarithms in non-global observables in QCD colour basis independent calculation
Forshaw, J R; Seymour, M H
2008-01-01
In a previous paper we reported the discovery of super-leading logarithmic terms in a non-global QCD observable. In this short update we recalculate the first super-leading logarithmic contribution to the 'gaps between jets' cross-section using a colour basis independent notation. This sheds light on the structure and origin of the super-leading terms and allows them to be calculated for gluon scattering processes for the first time.
Charm production and QCD analysis at HERA and LHC
International Nuclear Information System (INIS)
Zenaiev, Oleksandr
2015-03-01
In this thesis the study of charm production in ep and pp collisions is presented. The heavy-quark masses provide a hard scale, allowing the application of perturbative QCD. A measurement of D + -meson production in deep inelastic scattering with the ZEUS detector at HERA is presented. The analysis was performed using a data sample with an integrated luminosity of 354 pb -1 . Differential cross sections were measured as a function of virtuality Q 2 , inelasticity y, transverse momentum and pseudorapidity of the D + mesons. Lifetime information was used to reduce the combinatorial background significantly. Next-to-leading-order QCD predictions in the fixed-flavour-number scheme were compared to the data. This measurement was combined with other H1 and ZEUS measurements of charm production. The combination was performed at inclusive level for the reduced charm cross sections, which were obtained from the measured visible cross sections, extrapolated to the full phase space using the shape of the theoretical predictions in the fixed-flavour-number scheme. The combination method accounts for the correlations of the systematic uncertainties among the different datasets, thus allowing cross calibration of different measurements. The combined charm data were compared to QCD predictions in various heavy-flavour schemes and used together with the inclusive production data at HERA as input for QCD analyses to determine the charm running mass in the MS renormalisation scheme and the optimal values of the charm-quark mass parameters in other heavy-flavour schemes. An additional combination of the H1 and ZEUS D *+ visible cross sections was performed to provide the combined cross sections without theory-related uncertainties from the extrapolation procedure. This combination also provides differential cross sections as a function of the D *+ kinematic variables. Next-to-leading-order QCD predictions in the fixed-flavour-number scheme were compared to the combined D *+ cross
Critical slowing down and error analysis in lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Virotta, Francesco
2012-02-21
In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as {tau}{sub exp}(a){proportional_to}a{sup -5}, where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10){tau}{sub exp}. This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N{sub f}=2 simulations using the Kaon decay constant f{sub K} as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
Impact parameter analysis and soft QCD dynamics
International Nuclear Information System (INIS)
Carvalho, P.A.S.; Martini, A.F.; Menon, M.J.
2002-01-01
In a recent paper, based on the hypothesis of light-cone dipole representation for gluon Bremsstrahlung, Kopeliovich et al. developed a dynamical model for the elastic hadronic amplitude. The model has been applied to pp and p (bar) p scattering and the effects of unitarity and peripheral interactions have been investigated in the impact parameter representation. In this communication, making use of a model independent extraction of the scattering amplitude in the impact parameter space (early developed), we represent a comparative study between the predictions from the dynamical model and the impact parameter analysis. (author)
International Nuclear Information System (INIS)
Gaillard, M.K.
1979-01-01
Selected topics in QCD phenomenology are reviewed: the development of an effective jet perturbation series with applications to factorization, energy flow analysis and photon physics; implications of non-perturbative phenomena for hard scattering processes and the pseudoscalar mass spectrum; resonance properties as extracted from the combined technologies of perturbative and non-perturbative QCD. (orig.)
Charm Production and QCD Analysis at HERA and LHC
Zenaiev, Oleksandr; Foster, Brian; McNulty, Ronan
2015-01-01
In this thesis the study of charm production in ep and pp collisions is presented. The heavy- quark masses provide a hard scale, allowing the application of perturbative QCD. A measurement of D + -meson production in deep inelastic scattering with the ZEUS detector at HERA is presented. The analysis was performed using a data sample with an integrated luminosity of 354 pb-1. Di erential cross sections were measured as a function of virtuality Q 2 , inelasticity y , transverse momentum and pseudorapidity of the D + mesons. Lifetime infor- mation was used to reduce the combinatorial background significantly. Next-to-leading-order QCD predictions in the fixed-flavour-number scheme were compared to the data. This measurement was combined with other H1 and ZEUS measurements of charm produc- tion. The combination was performed at inclusive level for the reduced charm cross sections, which were obtained from the measured visible cross sections, extrapolated to the full phase space using the shape of the theoretical ...
Current issues and challenges in global analysis of parton distributions
International Nuclear Information System (INIS)
Tung, Wu-Ki
2007-01-01
A new implementation of precise perturbative QCD calculation of deep inelastic scattering structure functions and cross sections, incorporating heavy quark mass effects, is applied to the global analysis of the full HERA I data sets on NC and CC cross sections, in conjunction with other experiments. Improved agreement between the NLO QCD theory and the global data sets are obtained. Comparison of the new results to that of previous analysis based on conventional zero-mass parton formalism is made. Exploratory work on implications of new fixed-target neutrino scattering and Drell-Yan data on global analysis is also discussed. (author)
International Nuclear Information System (INIS)
Radyushkin, A.V.; Slepchenko, L.A.
1983-01-01
Analysis of experimental status of quantum chromodynamics (QCD) has been carried out. A short introduction into QCD is given. QCD sum rules are considered. Jets in e + e - annihilation and inclusive processes of lepton-hadron and hadron-hadron scattering are considered. Effect of QCD corrections to perturbation theory on quark count is analyzed
Combined QCD and electroweak analysis of HERA data
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max-Planck-Institute for Physics, Munich (Germany); Abt, I. [Max-Planck-Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science; Collaboration: ZEUS Collaboration; and others
2016-03-15
A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.
A Bayesian analysis of the nucleon QCD sum rules
International Nuclear Information System (INIS)
Ohtani, Keisuke; Gubler, Philipp; Oka, Makoto
2011-01-01
QCD sum rules of the nucleon channel are reanalyzed, using the maximum-entropy method (MEM). This new approach, based on the Bayesian probability theory, does not restrict the spectral function to the usual ''pole + continuum'' form, allowing a more flexible investigation of the nucleon spectral function. Making use of this flexibility, we are able to investigate the spectral functions of various interpolating fields, finding that the nucleon ground state mainly couples to an operator containing a scalar diquark. Moreover, we formulate the Gaussian sum rule for the nucleon channel and find that it is more suitable for the MEM analysis to extract the nucleon pole in the region of its experimental value, while the Borel sum rule does not contain enough information to clearly separate the nucleon pole from the continuum. (orig.)
Scheme-scale ambiguity in analysis of QCD observable
International Nuclear Information System (INIS)
Mirjalili, A.; Kniehl, B.A.
2010-01-01
The scheme-scale ambiguity that has plagued perturbative analysis in QCD remains on obstacle to making precise tests of the theory. Many attempts have been done to resolve the scale ambiguity. In this regard the BLM, EC, PMS and CORGI approaches are more distinct. We try to employ these methods to fix the scale ambiguity at NLO, NNLO and even in more higher order approximations. By optimizing the renormalization scale, there will be a possibility to predicate higher order terms. We present general results for predicted terms at any order, using different optimization methods. Some observable as specific examples will be used to indicate the validity of scale fixing to predicate the higher order terms. (authors)
Combined QCD and electroweak analysis of HERA data
International Nuclear Information System (INIS)
Abramowicz, H.; Abt, I.; Adamczyk, L.
2016-03-01
A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.
Combined QCD and electroweak analysis of HERA data
Abramowicz, H; Adamczyk, L; Adamus, M; Antonelli, S; Aushev, V; Behnke, O; Behrens, U; Bertolin, A; Bloch, I; Boos, EG; Brock, I; Brook, NH; Brugnera, R; Bruni, A; Bussey, PJ; Caldwell, A; Capua, M; Catterall, CD; Chwastowski, J; Ciborowski, J; Ciesielski, R; Cooper-Sarkar, AM; Corradi, M; Dementiev, RK; Devenish, RCE; Dusini, S; Foster, B; Gach, G; Gallo, E; Garfagnini, A; Geiser, A; Gizhko, A; Gladilin, LK; Golubkov, Yu A; Grzelak, G; Guzik, M; Hain, W; Hochman, D; Hori, R; Ibrahim, ZA; Iga, Y; Ishitsuka, M; Januschek, F; Jomhari, NZ; Kadenko, I; Kananov, S; Karshon, U; Kaur, P; Kisielewska, D; Klanner, R; Klein, U; Korzhavina, IA; Kotański, A; Kötz, U; Kovalchuk, N; Kowalski, H; Krupa, B; Kuprash, O; Kuze, M; Levchenko, BB; Levy, A; Limentani, S; Lisovyi, M; Lobodzinska, E; Löhr, B; Lohrmann, E; Longhin, A; Lontkovskyi, D; Lukina, OYu; Makarenko, I; Malka, J; Mohamad Idris, F; Mohammad Nasir, N; Myronenko, V; Nagano, K; Nobe, T; Nowak, RJ; Onishchuk, Yu; Paul, E; Perlański, W; Pokrovskiy, NS; Przybycien, M; Roloff, P; Ruspa, M; Saxon, DH; Schioppa, M; Schneekloth, U; Schörner-Sadenius, T; Shcheglova, LM; Shevchenko, R; Shkola, O; Shyrma, Yu; Singh, I; Skillicorn, IO; Słomiński, W; Solano, A; Stanco, L; Stefaniuk, N; Stern, A; Stopa, P; Sztuk-Dambietz, J; Tassi, E; Tokushuku, K; Tomaszewska, J; Tsurugai, T; Turcato, M; Turkot, O; Tymieniecka, T; Verbytskyi, A; Wan Abdullah, WAT; Wichmann, K; Wing, M; Yamada, S; Yamazaki, Y; Zakharchuk, N; Żarnecki, AF; Zawiejski, L; Zenaiev, O; Zhautykov, BO; Zotkin, DS; Bhadra, S; Gwenlan, C; Hlushchenko, O; Polini, A; Mastroberardino, A
2016-05-03
A simultaneous fit of parton distribution functions (PDFs) and electroweak parameters to HERA data on deep inelastic scattering is presented. The input data are the neutral current and charged current inclusive cross sections which were previously used in the QCD analysis leading to the HERAPDF2.0 PDFs. In addition, the polarisation of the electron beam was taken into account for the ZEUS data recorded between 2004 and 2007. Results on the vector and axial-vector couplings of the Z boson to u- and d-type quarks, on the value of the electroweak mixing angle and the mass of the W boson are presented. The values obtained for the electroweak parameters are in agreement with Standard Model predictions.
A consistent analysis for the quark condensate in QCD
International Nuclear Information System (INIS)
Huang Zheng; Huang Tao
1988-08-01
The dynamical symmetry breaking in QCD is analysed based on the vacuum condensates. A self-consistent equation for the quark condensate (φ φ) is derived. A nontrivial solution for (φ φ) ≠ 0 is given in terms of the QCD scale parameter A
The Pomeron and hadrons through infra-red analysis of QCD
International Nuclear Information System (INIS)
White, A.R.
1981-01-01
Infra-red analysis of QCD in the Regge limit is argued to lead to confinement with chiral symmetry breaking. The resulting Pomeron depends strongly on the centre of the gauge group with SU(3) colour producing uniquely the experimentally observed even signature, factorizing, Pomeron. The critical Pomeron (asymptotic rising cross-sections) occurs when QCD is saturated with quarks. New calculations are reviewed showing strong evidence for the emergence of the critical Pomeron diffraction peak at present accelerator energies. This leads to exciting predictions for diffraction scattering at p antip collider energies which could become the most precise experimental confirmation of QCD
When semantics turns to substance: reformulating QCD analysis of F2{γ}(x,Q2)}
International Nuclear Information System (INIS)
Chyla, J.
2000-01-01
QCD analysis of F 2 {γ} (x,Q 2 ) is revisited. It is emphasized that the presence of the inhomogeneous term in the evolution equations for quark distribution functions of the photon implies important difference in the way factorization mechanism works in photon-hadron and photon-photon collisions as compared to the hadronic ones. Moreover, a careful definitions of the very concepts of the ''leading order'' and ''next-to-leading order'' QCD analysis of F 2 {γ} are needed in order to separate genuine QCD effects from those of pure QED origin. After presenting such definitions, I show that all existing allegedly LO, as well as NLO analyses of F 2 {γ} (x,Q 2 ) are incomplete. The source of this incompleteness of the conventional approach is traced back to the lack of clear identification of QCD effects and to the misinterpretation of the behaviour of q {γ} (x,M) as a function of /α s (M). Complete LO and NLO QCD analyses of F 2 {γ} (x,Q 2 ) are shown to differ substantially from the conventional ones. Whereas complete NLO analysis requires the knowledge of two so far uncalculated quantities, a complete LO one is currently possible, but compared to the conventional formulation requires the inclusion of four known, but in the existing LO analyses unused quantities. The arguments recently advanced in favour of the conventional approach are analyzed and shown to contain a serious flaw. If corrected, they actually lend support to my claim. (author)
A QCD analysis of the 2sub(T)> behaviour observed in recent semi-inclusive neutrino data
International Nuclear Information System (INIS)
Mazzanti, P.; Odorico, R.; Roberto, V.
1979-01-01
A comparison of QCD predictions with recent semi-inclusive data from the BEBC neutrino experiment on neon is presented. It is found, in particular, that the invariant hadronic mass, W, is a much more convenient variable than Q 2 to put in evidence the variations of the hadron 2 sub(T)> predicted by QCD. The results of the analysis are mildly encouraging for QCD. There are points, though, which need further clarification from experiments. (Auth.)
Some Remarks on Methods of QCD Analysis of Polarized DIS Data
Leader, Elliot; Stamenov, Dimiter B
2009-01-01
The results on polarized parton densities (PDFs) obtained using different methods of QCD analysis of the present polarized DIS data are discussed. Their dependence on the method used in the analysis, accounting or not for the kinematic and dynamic 1/Q^2 corrections to spin structure function g_1, is demonstrated. It is pointed out that the precise data in the preasymptotic region require a more careful matching of the QCD predictions to the data in this region in order to determine the polarized PDFs correctly.
Jet analysis in lepton-hadron scattering from QCD
International Nuclear Information System (INIS)
Ranft, J.; Ranft, G.
1978-10-01
For deep inelastic lepton-hadron scattering the cross sections dσ/dT and dσ/dS are deduced from QCD perturbation theory in terms of the collective jet variables thrust T and spherocity S. It is found that the shape of these cross sections depends mainly on the total hadronic energy W. While present data are consistent with the cross sections calculated they do not yet prove or disprove the presence of three-jet contributions. It is predicted that these contributions will be clearly visible for W greater than approximately 12 to 15 GeV. (author)
Second-order QCD analysis of the photon structure function
International Nuclear Information System (INIS)
Antoniadis, I.; Grunberg, G.
1983-01-01
The QCD predictions for the photon structure function are reexamined with particular emphasis on the small-x behavior. A simple parametrization of the real photon structure function, free of 1/x singularity, is derived. The structure function is found to be sensitive at small x to the non-perturbatively calculable constant term in the n=2 moment, and we show that the problem of a negative structure function can be solved on the basis of the knowledge of this single non-perturbative parameter. (orig.)
International Nuclear Information System (INIS)
Kovacs, E.
1996-02-01
We present results for the inclusive jet cross section and the dijet mass distribution. The inclusive cross section and dijet mass both exhibit significant deviations from the predictions of NLO QCD for jets with E T >200 GeV, or dijet masses > 400 GeV/c 2 . We show that it is possible, within a global QCD analysis that includes the CDF inclusive jet data, to modify the gluon distribution at high x. The resulting increase in the jet cross-section predictions is 25-35%. Owing to the presence of k T smearing effects, the direct photon data does not provide as strong a constraint on the gluon distribution as previously thought. A comparison of the CDF and UA2 jet data, which have a common range in x, is plagued by theoretical and experimental uncertainties, and cannot at present confirm the CDF excess or the modified gluon distribution
Measurement and QCD analysis of diffractive jet cross sections in deep inelastic scattering at HERA
Energy Technology Data Exchange (ETDEWEB)
Mozer, M.U.
2006-07-24
Differential cross sections for the production of two jets in diffractive deep inelastic scattering (DIS) at HERA are presented. The process studied is of the type ep{yields}eXY, where the central hadronic system X contains at least two jets and is separated from the system Y by a gap in rapidity. The forward system Y consists of an elastically scattered proton or a low mass dissociation system. The data were taken with the H1 detector during the years of 1999 and 2000 and correspond to an integrated luminosity of 51.5 pb{sup -1}. The measured cross sections are compared to fixed order NLO QCD predictions, that use diffractive parton densities which have previously been determined by a NLO QCD analysis of inclusive diffractive DIS at H1. The prediction and the data show significant differences. However, the dijet cross section is dominated by the diffractive gluon density, which can be extracted by the above mentioned analysis only with considerable uncertainty. Hence a combined QCD analysis of the previously published inclusive diffractive data and the dijet data is performed. This combined fit analysis allows the determination of diffractive quark and gluon densities with comparable precision. The common description of inclusive diffractive data and the dijet data confirms QCD factorization. (orig.)
Charm production and QCD analysis at HERA and LHC
Energy Technology Data Exchange (ETDEWEB)
Zenaiev, O.
2017-02-15
This review is devoted to the study of charm production in ep and pp collisions. The total set of measurements obtained by the two collaborations H1 and ZEUS from HERA and their combination is outlined, as well as complementary data obtained by the LHCb collaboration at the LHC. After fitting the parton distribution functions the charm production cross sections are predicted within perturbative QCD at next-to-leading order using the fixed-flavour-number scheme. Agreement with the data is found. The combined HERA charm data are sensitive to the c-quark mass and enabled its accurate determination. The predictions crucially depend upon the knowledge of the gluon distribution function. It is shown that the shape of the gluon distribution based on the HERA data is considerably improved by adding the measurements from LHCb and applicable down to values x of about 10{sup -6}, where x is the proton momentum fraction carried by a parton.
Charm production and QCD analysis at HERA and LHC
International Nuclear Information System (INIS)
Zenaiev, O.
2017-02-01
This review is devoted to the study of charm production in ep and pp collisions. The total set of measurements obtained by the two collaborations H1 and ZEUS from HERA and their combination is outlined, as well as complementary data obtained by the LHCb collaboration at the LHC. After fitting the parton distribution functions the charm production cross sections are predicted within perturbative QCD at next-to-leading order using the fixed-flavour-number scheme. Agreement with the data is found. The combined HERA charm data are sensitive to the c-quark mass and enabled its accurate determination. The predictions crucially depend upon the knowledge of the gluon distribution function. It is shown that the shape of the gluon distribution based on the HERA data is considerably improved by adding the measurements from LHCb and applicable down to values x of about 10"-"6, where x is the proton momentum fraction carried by a parton.
Charm production and QCD analysis at HERA and LHC
Energy Technology Data Exchange (ETDEWEB)
Zenaiev, O. [DESY, Hamburg (Germany)
2017-03-15
This review is devoted to the study of charm production in ep and pp collisions. The total set of measurements obtained by the two collaborations H1 and ZEUS from HERA and their combination is outlined, as well as complementary data obtained by the LHCb Collaboration at the LHC. After fitting the parton distribution functions the charm-production cross sections are predicted within perturbative QCD at next-to-leading order using the fixed-flavour-number scheme. Agreement with the data is found. The combined HERA charm data are sensitive to the c-quark mass and enabled its accurate determination. The predictions crucially depend upon the knowledge of the gluon distribution function. It is shown that the shape of the gluon distribution based on the HERA data is considerably improved by adding the measurements from LHCb and applicable down to values x of about 10{sup -6}, where x is the proton momentum fraction carried by a parton. (orig.)
Analysis of QCD sum rule based on the maximum entropy method
International Nuclear Information System (INIS)
Gubler, Philipp
2012-01-01
QCD sum rule was developed about thirty years ago and has been used up to the present to calculate various physical quantities like hadrons. It has been, however, needed to assume 'pole + continuum' for the spectral function in the conventional analyses. Application of this method therefore came across with difficulties when the above assumption is not satisfied. In order to avoid this difficulty, analysis to make use of the maximum entropy method (MEM) has been developed by the present author. It is reported here how far this new method can be successfully applied. In the first section, the general feature of the QCD sum rule is introduced. In section 2, it is discussed why the analysis by the QCD sum rule based on the MEM is so effective. In section 3, the MEM analysis process is described, and in the subsection 3.1 likelihood function and prior probability are considered then in subsection 3.2 numerical analyses are picked up. In section 4, some cases of applications are described starting with ρ mesons, then charmoniums in the finite temperature and finally recent developments. Some figures of the spectral functions are shown. In section 5, summing up of the present analysis method and future view are given. (S. Funahashi)
A next-to-leading order QCD analysis of the spin structure function $g_1$
AUTHOR|(CDS)2067425; Arik, E; Badelek, B; Bardin, G; Baum, G; Berglund, P; Betev, L; Birsa, R; De Botton, N R; Bradamante, Franco; Bravar, A; Bressan, A; Bültmann, S; Burtin, E; Crabb, D; Cranshaw, J; Çuhadar-Dönszelmann, T; Dalla Torre, S; Van Dantzig, R; Derro, B R; Deshpande, A A; Dhawan, S K; Dulya, C M; Eichblatt, S; Fasching, D; Feinstein, F; Fernández, C; Forthmann, S; Frois, Bernard; Gallas, A; Garzón, J A; Gilly, H; Giorgi, M A; von Goeler, E; Görtz, S; Gracia, G; De Groot, N; Grosse-Perdekamp, M; Haft, K; Von Harrach, D; Hasegawa, T; Hautle, P; Hayashi, N; Heusch, C A; Horikawa, N; Hughes, V W; Igo, G; Ishimoto, S; Iwata, T; Kabuss, E M; Kageya, T; Karev, A G; Kessler, H J; Ketel, T; Kiryluk, J; Kiselev, Yu F; Krämer, Dietrich; Krivokhizhin, V G; Kröger, W; Kukhtin, V V; Kurek, K; Kyynäräinen, J; Lamanna, M; Landgraf, U; Le Goff, J M; Lehár, F; de Lesquen, A; Lichtenstadt, J; Litmaath, M; Magnon, A; Mallot, G K; Marie, F; Martin, A; Martino, J; Matsuda, T; Mayes, B W; McCarthy, J S; Medved, K S; Meyer, W T; Van Middelkoop, G; Miller, D; Miyachi, Y; Mori, K; Moromisato, J H; Nassalski, J P; Naumann, Lutz; Niinikoski, T O; Oberski, J; Ogawa, A; Ozben, C; Pereira, H; Perrot-Kunne, F; Peshekhonov, V D; Piegia, R; Pinsky, L; Platchkov, S K; Pló, M; Pose, D; Postma, H; Pretz, J; Puntaferro, R; Rädel, G; Rijllart, A; Reicherz, G; Roberts, J; Rodríguez, M; Rondio, Ewa; Sabo, I; Saborido, J; Sandacz, A; Savin, I A; Schiavon, R P; Schiller, A; Sichtermann, E P; Simeoni, F; Smirnov, G I; Staude, A; Steinmetz, A; Stiegler, U; Stuhrmann, H B; Szleper, M; Tessarotto, F; Thers, D; Tlaczala, W; Tripet, A; Ünel, G; Velasco, M; Vogt, J; Voss, Rüdiger; Whitten, C; Windmolders, R; Willumeit, R; Wislicki, W; Witzmann, A; Ylöstalo, J; Zanetti, A M; Zaremba, K; Zhao, J
1998-01-01
We present a next-to-leading order QCD analysis of the presently available data on the spin structure function $g_1$ including the final data from the Spin Muon Collaboration (SMC). We present resu lts for the first moments of the proton, deuteron and neutron structure functions, and determine singlet and non-singlet parton distributions in two factorization schemes. We also test the Bjor ken sum rule and find agreement with the theoretical prediction at the level of 10\\%.
DEFF Research Database (Denmark)
Sannino, Francesco
2009-01-01
We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...
QCD Analysis of Polarized Scattering Data and New Polarized Parton Distributions
International Nuclear Information System (INIS)
Bluemlein, J.; Boettcher, H.
2002-01-01
In this talk results from a new QCD analysis in Leading (LO) and Next-to-Leading (NLO) Order are presented. New parametrizations of the polarized quark and gluon densities are derived together with parametrizations of their fully correlated 1σ error bands. Furthermore the value of α s (M 2 Z ) is determined. Finally a number of low moments of the polarized parton densities are compared with results from lattice simulations. All details of the analysis are given in J. Bluemlein, H. Boettcher, Nucl. Phys. B636, 225 (2002). (author)
QCD bosonization and the meson effective action
International Nuclear Information System (INIS)
Praschifka, J.; Roberts, C.D.; Cahill, R.T.
1987-01-01
A bosonization of quantum chromodynamics (QCD) is employed to derive a meson effective action, thus providing a direct link between QCD and meson phenomenology. As an example of this approach expressions are obtained for the meson parameters associated with the analysis of ω→3π decay. The bosonization also directly motivates a divergence-free, global color-symmetry model for mesons, which is seen to be a generalization of various phenomenological models. Good estimates are obtained for the values of several of the meson parameters
Melting the diquark condensate in two-color QCD: A renormalization group analysis
International Nuclear Information System (INIS)
Wirstam, J.; Lenaghan, J.T.; Splittorff, K.
2003-01-01
We use a Landau theory and the ε expansion to study the superfluid phase transition of two-color QCD at a nonzero temperature T and baryonic chemical potential μ. At low T, and for N f flavors of massless quarks, the global SU(N f )xSU(N f )xU(1) symmetry is spontaneously broken by a diquark condensate down to Sp(N f )xSp(N f ) for any μ>0. As the temperature increases, the diquark condensate melts, and at sufficiently large T the symmetry is restored. Using renormalization group arguments, we find that in the presence of the chiral anomaly term there can be a second order phase transition when N f =2 or N f ≥6, while the transition is first order for N f =4. We discuss the relevance of these results for the emergence of a tricritical point recently observed in lattice simulations
Kim, Jihn E.; Nam, Soonkeon; Semetzidis, Yannis K.
2018-01-01
Pseudoscalars appearing in particle physics are reviewed systematically. From the fundamental point of view at an ultraviolet completed theory, they can be light if they are realized as pseudo-Goldstone bosons of some spontaneously broken global symmetries. The spontaneous breaking scale is parametrized by the decay constant f. The global symmetry is defined by the lowest order terms allowed in the effective theory consistent with the gauge symmetry in question. Since any global symmetry is known to be broken at least by quantum gravitational effects, all pseudoscalars should be massive. The mass scale is determined by f and the explicit breaking terms ΔV in the effective potential and also anomaly terms ΔΛG4 for some non-Abelian gauge groups G. The well-known example by non-Abelian gauge group breaking is the potential for the “invisible” QCD axion, via the Peccei-Quinn symmetry, which constitutes a major part of this review. Even if there is no breaking terms from gauge anomalies, there can be explicit breaking terms ΔV in the potential in which case the leading term suppressed by f determines the pseudoscalar mass scale. If the breaking term is extremely small and the decay constant is trans-Planckian, the corresponding pseudoscalar can be a candidate for a “quintessential axion.” In general, (ΔV )1/4 is considered to be smaller than f, and hence the pseudo-Goldstone boson mass scales are considered to be smaller than the decay constants. In such a case, the potential of the pseudo-Goldstone boson at the grand unification scale is sufficiently flat near the top of the potential that it can be a good candidate for an inflationary model, which is known as “natural inflation.” We review all these ideas in the bosonic collective motion framework.
Energy Technology Data Exchange (ETDEWEB)
Pirumov, Hayk
2013-11-15
A QCD analysis of the inclusive deep inelastic ep scattering cross section measured by the H1 experiment at HERA is presented. The data correspond to a total integrated luminosity of about 0.5 fb{sup -1} and covers a kinematic range of 0.5 GeV{sup 2} - 30000 GeV{sup 2} in the negative four-momentum transfer Q{sup 2} and 3 . 10{sup -5} - 0.65 in Bjorken x. The performed QCD analysis of the double differential neutral and charged current cross sections results in a set of parton distribution functions H1PDF 2012. The precise data from HERA II period in the kinematic region of high Q{sup 2} considerably improve the accuracy of the PDFs at the high x. In addition a search for signs of new physics using single differential neutral current cross section measurements at high Q{sup 2} is performed. The observed good agreement of the analysed data with the Standard Model predictions allows to set constraints on various new physics models within the framework of contact interactions. Limits are derived on the compositeness scale for general contact interactions, on the ratio of mass to the Yukawa coupling for heavy leptoquark models, on the effective Plank-mass scale in the large extra dimension models and on the quark radius.
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nucleon structure from lattice QCD
International Nuclear Information System (INIS)
Dinter, Simon
2012-01-01
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a 2 ) discretization effects.
International Nuclear Information System (INIS)
Neubert, Matthias
2001-01-01
The QCD factorization approach provides the theoretical basis for a systematic analysis of nonleptonic decay amplitudes of B mesons in the heavy-quark limit. After recalling the basic ideas underlying this formalism, several tests of QCD factorization in the decays B→D (*) L, B→K * γ, and B→πK, ππ are discussed. It is then illustrated how factorization can be used to obtain new constraints on the parameters of the unitarity triangle
International Nuclear Information System (INIS)
Kwiecinski, J.
1989-01-01
Recent results concerning the small x limit of parton distributions in perturbative QCD are reviewed. This includes in particular discussion of the bare Pomeron in perturbative QCD and of shadowing corrections. The minijet production processes and possible manifestation of semihard interactions in high energy pp-bar elastic scattering are also discussed. 46 refs., 8 figs. (author)
Quark condensates in nuclear matter in the global color symmetry model of QCD
International Nuclear Information System (INIS)
Liu Yuxin; Gao Dongfeng; Guo Hua
2003-01-01
With the global color symmetry model being extended to finite chemical potential, we study the density dependence of the local and nonlocal scalar quark condensates in nuclear matter. The calculated results indicate that the quark condensates increase smoothly with the increasing of nuclear matter density before the critical value (about 12ρ 0 ) is reached. It also manifests that the chiral symmetry is restored suddenly as the density of nuclear matter reaches its critical value. Meanwhile, the nonlocal quark condensate in nuclear matter changes nonmonotonously against the space-time distance among the quarks
Parton distributions and lattice QCD calculations: A community white paper
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James
2018-05-01
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.
Unified chiral analysis of the vector meson spectrum from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Wes Armour; Chris Allton; Derek Leinweber; Anthony Thomas; Ross Young
2005-10-13
The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of $M_\\rho$ in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.
An analysis of the nucleon spectrum from lattice partially-quenched QCD
Energy Technology Data Exchange (ETDEWEB)
Armour, W. [Swansea University, Swansea, SA2 8PP, Wales, U.K.; Allton, C. R. [Swansea University, Swansea, SA2 8PP, Wales, U.K.; Leinweber, Derek B. [Univ. of Adelaide, SA (Australia); Thomas, Anthony W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Young, Ross D. [Argonne National Lab. (ANL), Argonne, IL (United States)
2010-09-01
The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.
Combined Measurement and QCD Analysis of the Inclusive ep Scattering Cross Sections at HERA
Aaron, F.D.; Abt, I.; Adamczyk, L.; Adamus, M.; Aldaya Martin, M.; Alexa, C.; Andreev, V.; Antonelli, S.; Antonioli, P.; Antonov, A.; Antunovic, B.; Arneodo, M.; Aushev, V.; Bachynska, O.; Backovic, S.; Baghdasaryan, A.; Bamberger, A.; Barakbaev, A.N.; Barbagli, G.; Bari, G.; Barreiro, F.; Barrelet, E.; Bartel, W.; Bartsch, D.; Basile, M.; Begzsuren, K.; Behnke, O.; Behr, J.; Behrens, U.; Bellagamba, L.; Belousov, A.; Bertolin, A.; Bhadra, S.; Bindi, M.; Bizot, J.C.; Blohm, C.; Bold, T.; Boos, E.G.; Borodin, M.; Borras, K.; Boscherini, D.; Bot, D.; Boudry, V.; Boutle, S.K.; Bozovic-Jelisavcic, I.; Bracinik, J.; Brandt, G.; Brinkmann, M.; Brisson, V.; Brock, I.; Brownson, E.; Brugnera, R.; Brummer, N.; Bruncko, D.; Bruni, A.; Bruni, G.; Brzozowska, B.; Bunyatyan, A.; Buschhorn, G.; Bussey, P.J.; Butterworth, J.M.; Bylsma, B.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Carlin, R.; Catterall, C.D.; Cerny, K.; Cerny, V.; Chekanov, S.; Chekelian, V.; Cholewa, A.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Cifarelli, L.; Cindolo, F.; Contin, A.; Contreras, J.G.; Cooper-Sarkar, A.M.; Coppola, N.; Corradi, M.; Corriveau, F.; Costa, M.; Coughlan, J.A.; Cozzika, G.; Cvach, J.; D'Agostini, G.; Dainton, J.B.; Dal Corso, F.; Daum, K.; Deak, M.; de Favereau, J.; Delcourt, B.; del Peso, J.; Delvax, J.; Dementiev, R.K.; De Pasquale, S.; Derrick, M.; Devenish, R.C.E.; De Wolf, E.A.; Diaconu, C.; Dobur, D.; Dodonov, V.; Dolgoshein, B.A.; Dossanov, A.; Doyle, A.T.; Drugakov, V.; Dubak, A.; Durkin, L.S.; Dusini, S.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eisenberg, Y.; Eliseev, A.; Elsen, E.; Ermolov, P.F.; Eskreys, A.; Falkiewicz, A.; Fang, S.; Favart, L.; Fazio, S.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Ferrando, J.; Ferrero, M.I.; Figiel, J.; Fischer, D.J.; Fleischer, M.; Fomenko, A.; Forrest, M.; Foster, B.; Fourletov, S.; Gabathuler, E.; Galas, A.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gialas, I.; Gladilin, L.K.; Gladkov, D.; Glasman, C.; Glazov, A.; Glushkov, I.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu.A.; Gottlicher, P.; Gouzevitch, M.; Grab, C.; Grabowska-Bold, I.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grell, B.R.; Grigorescu, G.; Grindhammer, G.; Grzelak, G.; Gwenlan, C.; Haas, T.; Habib, S.; Haidt, D.; Hain, W.; Hamatsu, R.; Hart, J.C.; Hartmann, H.; Hartner, G.; Helebrant, C.; Henderson, R.C.W.; Hennekemper, E.; Henschel, H.; Herbst, M.; Herrera, G.; Hildebrandt, M.; Hilger, E.; Hiller, K.H.; Hochman, D.; Hoffmann, D.; Holm, U.; Hori, R.; Horisberger, R.; Horton, K.; Hreus, T.; Huttmann, A.; Iacobucci, G.; Ibrahim, Z.A.; Iga, Y.; Ingbir, R.; Ishitsuka, M.; Jacquet, M.; Jakob, H.P.; Janssen, X.; Januschek, F.; Jimenez, M.; Jones, T.W.; Jonsson, L.; Jung, A.W.; Jung, H.; Jungst, M.; Kadenko, I.; Kahle, B.; Kamaluddin, B.; Kananov, S.; Kanno, T.; Kapichine, M.; Karshon, U.; Karstens, F.; Katkov, I.I.; Katzy, J.; Kaur, M.; Kaur, P.; Kenyon, I.R.; Keramidas, A.; Khein, L.A.; Kiesling, C.; Kim, J.Y.; Kisielewska, D.; Kitamura, S.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kluge, T.; Knutsson, A.; Koffeman, E.; Kogler, R.; Kollar, D.; Kooijman, P.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kowalski, H.; Kraemer, M.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Kulinski, P.; Kuprash, O.; Kutak, K.; Kuze, M.; Kuzmin, V.A.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Lee, A.; Lendermann, V.; Levchenko, B.B.; Levonian, S.; Levy, A.; Li, G.; Libov, V.; Limentani, S.; Ling, T.Y.; Lipka, K.; Liptaj, A.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lohmann, W.; Lohr, B.; Lohrmann, E.; Loizides, J.H.; Loktionova, N.; Long, K.R.; Longhin, A.; Lontkovskyi, D.; Lopez-Fernandez, R.; Lubimov, V.; Lukasik, J.; Lukina, O.Yu.; Luzniak, P.; Maeda, J.; Magill, S.; Makankine, A.; Makarenko, I.; Malinovski, E.; Malka, J.; Mankel, R.; Marage, P.; Margotti, A.; Marini, G.; Marti, Ll.; Martin, J.F.; Martyn, H.U.; Mastroberardino, A.; Matsumoto, T.; Mattingly, M.C.K.; Maxfield, S.J.; Mehta, A.; Melzer-Pellmann, I.A.; Meyer, A.B.; Meyer, H.; Meyer, H.; Meyer, J.; Miglioranzi, S.; Mikocki, S.; Milcewicz-Mika, I.; Mohamad Idris, F.; Monaco, V.; Montanari, A.; Moreau, F.; Morozov, A.; Morris, J.D.; Morris, J.V.; Mozer, M.U.; Mudrinic, M.; Muller, K.; Murin, P.; Musgrave, B.; Nagano, K.; Namsoo, T.; Nania, R.; Naumann, Th.; Newman, P.R.; Nicholass, D.; Niebuhr, C.; Nigro, A.; Nikiforov, A.; Nikitin, D.; Ning, Y.; Noor, U.; Notz, D.; Nowak, G.; Nowak, K.; Nowak, R.J.; Nuncio-Quiroz, A.E.; Oh, B.Y.; Okazaki, N.; Oliver, K.; Olkiewicz, K.; Olsson, J.E.; Onishchuk, Yu.; Osman, S.; Ota, O.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Pandurovic, M.; Papadopoulou, Th.; Papageorgiu, K.; Parenti, A.; Pascaud, C.; Patel, G.D.; Paul, E.; Pawlak, J.M.; Pawlik, B.; Pejchal, O.; Pelfer, P.G.; Pellegrino, A.; Perez, E.; Perlanski, W.; Perrey, H.; Petrukhin, A.; Picuric, I.; Piec, S.; Piotrzkowski, K.; Pitzl, D.; Placakyte, R.; Plucinski, P.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Polini, A.; Povh, B.; Proskuryakov, A.S.; Przybycien, M.; Radescu, V.; Rahmat, A.J.; Raicevic, N.; Raspiareza, A.; Raval, A.; Ravdandorj, T.; Reeder, D.D.; Reimer, P.; Reisert, B.; Ren, Z.; Repond, J.; Ri, Y.D.; Rizvi, E.; Robertson, A.; Robmann, P.; Roland, B.; Roloff, P.; Ron, E.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Ruiz Tabasco, J.E.; Rusakov, S.; Ruspa, M.; Sacchi, R.; Salek, D.; Salii, A.; Samson, U.; Sankey, D.P.C.; Sartorelli, G.; Sauter, M.; Sauvan, E.; Savin, A.A.; Saxon, D.H.; Schioppa, M.; Schlenstedt, S.; Schleper, P.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schonberg, V.; Schoning, A.; Schorner-Sadenius, T.; Schultz-Coulon, H.C.; Schwartz, J.; Sciulli, F.; Sefkow, F.; Shaw-West, R.N.; Shcheglova, L.M.; Shehzadi, R.; Shimizu, S.; Shtarkov, L.N.; Shushkevich, S.; Singh, I.; Skillicorn, I.O.; Sloan, T.; Slominski, W.; Smiljanic, I.; Smith, W.H.; Sola, V.; Solano, A.; Soloviev, Y.; Son, D.; Sopicki, P.; Sorokin, Iu.; Sosnovtsev, V.; South, D.; Spaskov, V.; Specka, A.; Spiridonov, A.; Stadie, H.; Stanco, L.; Staykova, Z.; Steder, M.; Stella, B.; Stern, A.; Stewart, T.P.; Stifutkin, A.; Stoicea, G.; Stopa, P.; Straumann, U.; Suchkov, S.; Sunar, D.; Susinno, G.; Suszycki, L.; Sykora, T.; Sztuk, J.; Szuba, D.; Szuba, J.; Tapper, A.D.; Tassi, E.; Tchoulakov, V.; Terron, J.; Theedt, T.; Thompson, G.; Thompson, P.D.; Tiecke, H.; Tokushuku, K.; Toll, T.; Tomasz, F.; Tomaszewska, J.; Tran, T.H.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turnau, J.; Tymieniecka, T.; Urban, K.; Uribe-Estrada, C.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Vazquez, M.; Verbytskyi, A.; Viazlo, V.; Vinokurova, S.; Vlasov, N.N.; Volchinski, V.; Volynets, O.; von den Driesch, M.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Whitmore, J.J.; Whyte, J.; Wiggers, L.; Wing, M.; Wissing, Ch.; Wlasenko, M.; Wolf, G.; Wolfe, H.; Wrona, K.; Wunsch, E.; Yagues-Molina, A.G.; Yamada, S.; Yamazaki, Y.; Yoshida, R.; Youngman, C.; Zacek, J.; Zalesak, J.; Zarnecki, A.F.; Zawiejski, L.; Zeniaev, O.; Zeuner, W.; Zhang, Z.; Zhautykov, B.O.; Zhokin, A.; Zhou, C.; Zichichi, A.; Zimmermann, T.; Zohrabyan, H.; Zolko, M.; Zomer, F.; Zotkin, D.S.
2010-01-01
A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised ep scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q^2, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result.
Global Analysis of Nonlinear Dynamics
Luo, Albert
2012-01-01
Global Analysis of Nonlinear Dynamics collects chapters on recent developments in global analysis of non-linear dynamical systems with a particular emphasis on cell mapping methods developed by Professor C.S. Hsu of the University of California, Berkeley. This collection of contributions prepared by a diverse group of internationally recognized researchers is intended to stimulate interests in global analysis of complex and high-dimensional nonlinear dynamical systems, whose global properties are largely unexplored at this time. This book also: Presents recent developments in global analysis of non-linear dynamical systems Provides in-depth considerations and extensions of cell mapping methods Adopts an inclusive style accessible to non-specialists and graduate students Global Analysis of Nonlinear Dynamics is an ideal reference for the community of nonlinear dynamics in different disciplines including engineering, applied mathematics, meteorology, life science, computational science, and medicine.
International Nuclear Information System (INIS)
Hasenfratz, P.
1983-01-01
The author presents a general introduction to lattice gauge theories and discusses non-perturbative methods in the gauge sector. He then shows how the lattice works in obtaining the string tension in SU(2). Lattice QCD at finite physical temperature is discussed. Universality tests in SU(2) lattice QCD are presented. SU(3) pure gauge theory is briefly dealt with. Finally, fermions on the lattice are considered. (Auth.)
Measurement and QCD Analysis of the Diffractive Deep-Inelastic Scattering Cross Section at HERA
Aktas, A.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J.C.; Boenig, M.O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J.G.; Coughlan, J.A.; Coppens, Y.R.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B.R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R.C.W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K.H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.L.; Johnson, D.P.; Jung, A.W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I.R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Kruger, K.; Landon, M.P.J.; Lange, W.; Lastovicka-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J.V.; Mozer, M.U.; Muller, K.; Murin, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J.E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G.D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Placakyte, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A.J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Schilling, F.P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schoning, A.; Schultz-Coulon, H.C.; Sefkow, F.; Shaw-West, R.N.; Sheviakov, I.; Shtarkov, L.N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P.D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T.N.; Truol, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wunsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y.C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2006-01-01
A detailed analysis is presented of the diffractive deep-inelastic scattering process $ep\\to eXY$, where $Y$ is a proton or a low mass proton excitation carrying a fraction $1 - \\xpom > 0.95$ of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies $|t|<1 {\\rm GeV^2}$. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range $3.5 \\leq Q^2 \\leq 1600 \\rm GeV^2$, triple differentially in $\\xpom$, $Q^2$ and $\\beta = x / \\xpom$, where $x$ is the Bjorken scaling variable. At low $\\xpom$, the data are consistent with a factorisable $\\xpom$ dependence, which can be described by the exchange of an effective pomeron trajectory with intercept $\\alphapom(0)= 1.118 \\pm 0.008 {\\rm (exp.)} ^{+0.029}_{-0.010} {\\rm (model)}$. Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the $Q^2$ and $\\beta$ dependences of the cross section. The res...
Measurement and QCD Analysis of Neutral and Charged Current Cross Sections at HERA
Adloff, C.; Andrieu, B.; Anthonis, T.; Astvatsatourov, A.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Baumgartner, S.; Becker, J.; Beckingham, M.; Beglarian, A.; Behnke, O.; Belousov, A.; Berger, C.; Berndt, T.; Bizot, J.C.; Bohme, J.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruncko, D.; Busser, F.W.; Bunyatyan, A.; Burrage, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A.J.; Cao, Jun; Caron, S.; Cassol-Brunner, F.; Chekelian, V.; Clarke, D.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dingfelder, J.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Dubak, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleischmann, P.; Fleming, Y.H.; Flucke, G.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Franke, G.; Frising, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Gerlich, C.; Ghazaryan, Samvel; Goerlich, L.; Gogitidze, N.; Grab, C.; Grabski, V.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Haidt, D.; Hajduk, L.; Haller, J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Henshaw, O.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, C.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Katzy, J.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kiesling, Christian M.; Kjellberg, P.; Klein, M.; Kleinwort, C.; Kluge, T.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Koutouev, R.; Koutov, A.; Kroseberg, J.; Kruger, K.; Kuhr, T.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Laycock, P.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Malden, N.; Malinovski, E.; Mangano, S.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Meer, D.; Mehta, A.; Meier, K.; Meyer, A.B.; Meyer, H.; Meyer, J.; Michine, S.; Mikocki, S.; Milstead, D.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Newman, Paul R.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nozicka, M.; Olivier, B.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Peez, M.; Perez, E.; Petrukhin, A.; Phillips, J.P.; Pitzl, D.; Portheault, B.; Poschl, R.; Potachnikova, I.; Povh, B.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Sauvan, E.; Schatzel, S.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmidt, S.; Schmitt, S.; Schneider, M.; Schoeffel, L.; Schoning, A.; Schoerner-Sadenius, Thomas; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Sheviakov, I.; Shtarkov, L.N.; Sirois, Y.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Stella, B.; Stiewe, J.; Strauch, I.; Straumann, U.; Tchetchelnitski, S.; Thompson, Graham; Thompson, P.D.; Tomasz, F.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Uraev, A.; Urban, Marcel; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vargas Trevino, A.; Vassiliev, S.; Vazdik, Y.; Veelken, C.; Vest, A.; Vichnevski, A.; Volchinski, V.; Wacker, K.; Wagner, J.; Wallny, R.; Waugh, B.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Werner, N.; Wessels, M.; Wiesand, S.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Woehrling, E.E.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; zur Nedden, M.
2003-01-01
The inclusive e^+ p single and double differential cross sections for neutral and charged current processes are measured with the H1 detector at HERA. The data were taken in 1999 and 2000 at a centre-of-mass energy of \\sqrt{s} = 319 GeV and correspond to an integrated luminosity of 65.2 pb^-1. The cross sections are measured in the range of four-momentum transfer squared Q^2 between 100 and 30000 GeV^2 and Bjorken x between 0.0013 and 0.65. The neutral current analysis for the new e^+ p data and the earlier e^- p data taken in 1998 and 1999 is extended to small energies of the scattered electron and therefore to higher values of inelasticity y, allowing a determination of the longitudinal structure function F_L at high Q^2 (110 - 700 GeV^2). A new measurement of the structure function x F_3 is obtained using the new e^+ p and previously published e^\\pm p neutral current cross section data at high Q^2. These data together with H1 low Q^2 precision data are further used to perform new next-to-leading order QCD ...
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Introduction to global analysis
Kahn, Donald W
2007-01-01
This text introduces the methods of mathematical analysis as applied to manifolds, including the roles of differentiation and integration, infinite dimensions, Morse theory, Lie groups, and dynamical systems. 1980 edition.
QCD analysis of first b cross section data at 1.96 TeV
International Nuclear Information System (INIS)
Cacciari, M.; Frixione, S.; Nason, P.; Ridolfi, G.; Mangano, M.L.
2004-01-01
The first data on bottom quark production in pp-bar collisions at 1.96 TeV have recently been obtained by the CDF collaboration. These data probe the region of p T ∼ 0, providing a new invaluable input on the issue of the compatibility between next-to-leading-order (NLO) QCD and data. We reconsider the evaluation of the b cross section, in view of recent theoretical developments, and of the latest inputs on structure function fits. We show that the new CDF measurements are in good agreement with NLO QCD. If CDF preliminary data are confirmed, a long-standing discrepancy between NLO QCD predictions and hadron-collider data can be settled. (author)
QCD analysis of first b cross section data at 1.96 TeV
Cacciari, M; Mangano, Michelangelo L; Nason, P; Ridolfi, G
2004-01-01
The first data on bottom quark production in p-pbar collisions at 1.96 TeV have recently been obtained by the CDF collaboration. These data probe the region of pt~0, providing a new invaluable input on the issue of the compatibility between next-to-leading-order (NLO) QCD and data. We reconsider the evaluation of the $b$ cross section, in view of recent theoretical developments, and of the latest inputs on structure function fits. We show that the new CDF measurements are in good agreement with NLO QCD. If CDF preliminary data are confirmed, a long-standing discrepancy between NLO QCD predictions and hadron-collider data can be settled.
International Nuclear Information System (INIS)
Furmanski, W.
1981-08-01
The effects of scaling violation in QCD are discussed in the perturbative scheme, based on the factorization of mass singularities in the light-like gauge. Some recent applications including the next-to-leading corrections are presented (large psub(T) scattering, numerical analysis of the leptoproduction data). A proposal is made for extending the method on the higher twist sector. (author)
Simultaneous analysis in renormalization and factorization scheme dependences in perturbative QCD
International Nuclear Information System (INIS)
Nakkagawa, Hisao; Niegawa, Akira.
1983-01-01
Combined and thorough investigations of both the factorization and the renormalization scheme dependences of perturbative QCD calculations are given. Our findings are that (i) by introducing a multiscale-dependent coupling the simultaneous parametrization of both scheme-dependences can be accomplished, (ii) Stevenson's optimization method works quite well so that it gives a remarkable prediction which forces us to exponentiate ''everything'' with uncorrected subprocess cross sections, and (iii) the perturbation series in QCD may converge when Stevenson's principle of minimal sensitivity is taken into account at each order of perturbative approximation. (author)
Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA
International Nuclear Information System (INIS)
Aktas, A.; Andreev, V.; Anthonis, T.
2006-05-01
A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-x P >0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies t 2 . Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5 ≤Q 2 ≤1600 GeV 2 , triple differentially in x P , Q 2 and β=x/x P , where x is the Bjorken scaling variable. At low x P , the data are consistent with a factorisable x P dependence, which can be described by the exchange of an effective pomeron trajectory with intercept α P (0)=1.118 ±0.008(exp.) +0.029 -0.010 (model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q 2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q 2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e + p → anti ν e XY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q 2 at fixed x P and x or on x at fixed Q 2 and β. (Orig.)
Measurement and QCD analysis of the diffractive deep-inelastic scattering cross section at HERA
Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; Baranov, P.; Barrelet, E.; Bartel, W.; Baudrand, S.; Baumgartner, S.; Beckingham, M.; Behnke, O.; Behrendt, O.; Belousov, A.; Berger, N.; Bizot, J. C.; Boenig, M.-O.; Boudry, V.; Bracinik, J.; Brandt, G.; Brisson, V.; Bruncko, D.; Büsser, F. W.; Bunyatyan, A.; Buschhorn, G.; Bystritskaya, L.; Campbell, A. J.; Cassol-Brunner, F.; Cerny, K.; Cerny, V.; Chekelian, V.; Contreras, J. G.; Coughlan, J. A.; Coppens, Y. R.; Cox, B. E.; Cozzika, G.; Cvach, J.; Dainton, J. B.; Dau, W. D.; Daum, K.; de Boer, Y.; Delcourt, B.; Del Degan, M.; de Roeck, A.; de Wolf, E. A.; Diaconu, C.; Dodonov, V.; Dubak, A.; Eckerlin, G.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eliseev, A.; Elsen, E.; Essenov, S.; Falkewicz, A.; Faulkner, P. J. W.; Favart, L.; Fedotov, A.; Felst, R.; Feltesse, J.; Ferencei, J.; Finke, L.; Fleischer, M.; Flucke, G.; Fomenko, A.; Franke, G.; Frisson, T.; Gabathuler, E.; Garutti, E.; Gayler, J.; Gerlich, C.; Ghazaryan, S.; Ginzburgskaya, S.; Glazov, A.; Glushkov, I.; Goerlich, L.; Goettlich, M.; Gogitidze, N.; Gorbounov, S.; Grab, C.; Greenshaw, T.; Gregori, M.; Grell, B. R.; Grindhammer, G.; Gwilliam, C.; Haidt, D.; Hansson, M.; Heinzelmann, G.; Henderson, R. C. W.; Henschel, H.; Herrera, G.; Hildebrandt, M.; Hiller, K. H.; Hoffmann, D.; Horisberger, R.; Hovhannisyan, A.; Hreus, T.; Hussain, S.; Ibbotson, M.; Ismail, M.; Jacquet, M.; Janssen, X.; Jemanov, V.; Jönsson, L.; Johnson, C. L.; Johnson, D. P.; Jung, A. W.; Jung, H.; Kapichine, M.; Katzy, J.; Kenyon, I. R.; Kiesling, C.; Klein, M.; Kleinwort, C.; Klimkovich, T.; Kluge, T.; Knies, G.; Knutsson, A.; Korbel, V.; Kostka, P.; Krastev, K.; Kretzschmar, J.; Kropivnitskaya, A.; Krüger, K.; Landon, M. P. J.; Lange, W.; Laštovička-Medin, G.; Laycock, P.; Lebedev, A.; Leibenguth, G.; Lendermann, V.; Levonian, S.; Lindfeld, L.; Lipka, K.; Liptaj, A.; List, B.; List, J.; Lobodzinska, E.; Loktionova, N.; Lopez-Fernandez, R.; Lubimov, V.; Lucaci-Timoce, A.-I.; Lueders, H.; Lux, T.; Lytkin, L.; Makankine, A.; Malden, N.; Malinovski, E.; Marage, P.; Marshall, R.; Marti, L.; Martisikova, M.; Martyn, H.-U.; Maxfield, S. J.; Mehta, A.; Meier, K.; Meyer, A. B.; Meyer, H.; Meyer, J.; Michels, V.; Mikocki, S.; Milcewicz-Mika, I.; Milstead, D.; Mladenov, D.; Mohamed, A.; Moreau, F.; Morozov, A.; Morris, J. V.; Mozer, M. U.; Müller, K.; Murín, P.; Nankov, K.; Naroska, B.; Naumann, T.; Newman, P. R.; Niebuhr, C.; Nikiforov, A.; Nowak, G.; Nowak, K.; Nozicka, M.; Oganezov, R.; Olivier, B.; Olsson, J. E.; Osman, S.; Ozerov, D.; Palichik, V.; Panagoulias, I.; Papadopoulou, T.; Pascaud, C.; Patel, G. D.; Peng, H.; Perez, E.; Perez-Astudillo, D.; Perieanu, A.; Petrukhin, A.; Pitzl, D.; Plačakytė, R.; Portheault, B.; Povh, B.; Prideaux, P.; Rahmat, A. J.; Raicevic, N.; Reimer, P.; Rimmer, A.; Risler, C.; Rizvi, E.; Robmann, P.; Roland, B.; Roosen, R.; Rostovtsev, A.; Rurikova, Z.; Rusakov, S.; Salvaire, F.; Sankey, D. P. C.; Sauter, M.; Sauvan, E.; Schilling, F.-P.; Schmidt, S.; Schmitt, S.; Schmitz, C.; Schoeffel, L.; Schöning, A.; Schultz-Coulon, H.-C.; Sefkow, F.; Shaw-West, R. N.; Sheviakov, I.; Shtarkov, L. N.; Sloan, T.; Smirnov, P.; Soloviev, Y.; South, D.; Spaskov, V.; Specka, A.; Steder, M.; Stella, B.; Stiewe, J.; Stoilov, A.; Straumann, U.; Sunar, D.; Tchoulakov, V.; Thompson, G.; Thompson, P. D.; Toll, T.; Tomasz, F.; Traynor, D.; Trinh, T. N.; Truöl, P.; Tsakov, I.; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Tzamariudaki, E.; Urban, K.; Urban, M.; Usik, A.; Utkin, D.; Valkárová, A.; Vallée, C.; van Mechelen, P.; Vargas Trevino, A.; Vazdik, Y.; Veelken, C.; Vinokurova, S.; Volchinski, V.; Wacker, K.; Weber, G.; Weber, R.; Wegener, D.; Werner, C.; Wessels, M.; Wessling, B.; Wissing, C.; Wolf, R.; Wünsch, E.; Xella, S.; Yan, W.; Yeganov, V.; Žáček, J.; Zálešák, J.; Zhang, Z.; Zhelezov, A.; Zhokin, A.; Zhu, Y. C.; Zimmermann, J.; Zimmermann, T.; Zohrabyan, H.; Zomer, F.
2006-12-01
A detailed analysis is presented of the diffractive deep-inelastic scattering process ep→eXY, where Y is a proton or a low mass proton excitation carrying a fraction 1-xIP>0.95 of the incident proton longitudinal momentum and the squared four-momentum transfer at the proton vertex satisfies |t|<1 GeV2. Using data taken by the H1 experiment, the cross section is measured for photon virtualities in the range 3.5≤Q2≤1600 GeV2, triple differentially in xIP, Q2 and β=x/xIP, where x is the Bjorken scaling variable. At low xIP, the data are consistent with a factorisable xIP dependence, which can be described by the exchange of an effective pomeron trajectory with intercept αIP(0)=1.118±0.008(exp.)+0.029 -0.010(model). Diffractive parton distribution functions and their uncertainties are determined from a next-to-leading order DGLAP QCD analysis of the Q2 and β dependences of the cross section. The resulting gluon distribution carries an integrated fraction of around 70% of the exchanged momentum in the Q2 range studied. Total and differential cross sections are also measured for the diffractive charged current process e+p→ν¯eXY and are found to be well described by predictions based on the diffractive parton distributions. The ratio of the diffractive to the inclusive neutral current ep cross sections is studied. Over most of the kinematic range, this ratio shows no significant dependence on Q2 at fixed xIP and x or on x at fixed Q2 and β.
QCD analysis of dijet production at low Q2 at HERA
International Nuclear Information System (INIS)
Chyla, J.; Cvach, J.; Sedlak, K.; Tasevsky, M.
2005-01-01
Recent H1 data on triple differential dijet cross sections in e ± p interactions in the region of low photon virtualities are shown to be in reasonable agreement with the predictions of the NLO QCD calculations obtained using the program NLOJET++. The implications of this observation for the phenomenological relevance of the concept of resolved virtual photon are discussed. (orig.)
A momentum space analysis of the Triple Pomeron Vertex in pQCD
International Nuclear Information System (INIS)
Bartels, J.
2007-10-01
We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations. (orig.)
A momentum space analysis of the Triple Pomeron Vertex in pQCD
Energy Technology Data Exchange (ETDEWEB)
Bartels, J. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kutak, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Instytut Fizyki Jadrowej Polskiej Akademii Nauk, Krakow (Poland)
2007-10-15
We study properties of the momentum space Triple Pomeron Vertex in perturbative QCD. Particular attention is given to the collinear limit where transverse momenta on one side of the vertex are much larger than on the other side. We also comment on the kernels in nonlinear evolution equations. (orig.)
Global optimization and sensitivity analysis
International Nuclear Information System (INIS)
Cacuci, D.G.
1990-01-01
A new direction for the analysis of nonlinear models of nuclear systems is suggested to overcome fundamental limitations of sensitivity analysis and optimization methods currently prevalent in nuclear engineering usage. This direction is toward a global analysis of the behavior of the respective system as its design parameters are allowed to vary over their respective design ranges. Presented is a methodology for global analysis that unifies and extends the current scopes of sensitivity analysis and optimization by identifying all the critical points (maxima, minima) and solution bifurcation points together with corresponding sensitivities at any design point of interest. The potential applicability of this methodology is illustrated with test problems involving multiple critical points and bifurcations and comprising both equality and inequality constraints
Global analysis studies and applications
Gliklikh, Yuri; Vershik, A
1992-01-01
This volume (a sequel to LNM 1108, 1214, 1334 and 1453) continues the presentation to English speaking readers of the Voronezh University press series on Global Analysis and Its Applications. The papers are selected fromtwo Russian issues entitled "Algebraic questions of Analysis and Topology" and "Nonlinear Operators in Global Analysis". CONTENTS: YuE. Gliklikh: Stochastic analysis, groups of diffeomorphisms and Lagrangian description of viscous incompressible fluid.- A.Ya. Helemskii: From topological homology: algebras with different properties of homological triviality.- V.V. Lychagin, L.V. Zil'bergleit: Duality in stable Spencer cohomologies.- O.R. Musin: On some problems of computational geometry and topology.- V.E. Nazaikinskii, B.Yu. Sternin, V.E.Shatalov: Introduction to Maslov's operational method (non-commutative analysis and differential equations).- Yu.B. Rudyak: The problem of realization of homology classes from Poincare up to the present.- V.G. Zvyagin, N.M. Ratiner: Oriented degree of Fredholm...
International Nuclear Information System (INIS)
Cahill, R.T.
1992-01-01
A review is given of progress in deriving the effective action for hadronic physics, S[π, ρ, ω, .., anti N, N, ..], from the fundamental defining action of QCD, S[anti q, q, A μ a ]. This is a problem in quantum field theory and the most success so far has been achieved using functional integral calculus (FIC) techniques. This formulates the problem as an exercise in changing the variables of integration in the functional integrals, from those of the quark and gluon fields to those of the (bare) meson and baryon fields. The appropriate variables are determined by the dynamics of QCD, and the final hadronic variables (essentially the 'normal modes' of QCD) are local fields describing the 'centre-of-mass' motion of extended bound states of quarks. The quarks are extensively dressed by the gluons, and the detailed aspects of the hidden chiral symmetry emerge naturally from the formalism. Particular attention is given to covariant integral equations which determine bare nucleon structure (i.e. in the quenched approximation). These equations, which arise from the closed double-helix diagrams of the FIC analysis, describe the baryons in terms of quark-diquark structure, in the form of Faddeev equations. This hadronisation of QCD also generates the dressing of these baryons by the pions, and the non-local πNN coupling. (orig.)
Charmonium spectrum at finite temperature from a Bayesian analysis of QCD sum rules
Directory of Open Access Journals (Sweden)
Morita Kenji
2012-02-01
Full Text Available Making use of a recently developed method of analyzing QCD sum rules, we investigate charmonium spectral functions at finite temperature. This method employs the Maximum Entropy Method, which makes it possible to directly obtain the spectral function from the sum rules, without having to introduce any strong assumption about its functional form. Finite temperature effects are incorporated into the sum rules by the change of the various gluonic condensates that appear in the operator product expansion. These changes depend on the energy density and pressure at finite temperature, which are extracted from lattice QCD. As a result, J/ψ and ηc dissolve into the continuum already at temperatures around 1.0 ~ 1.1 Tc.
Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules
International Nuclear Information System (INIS)
Wang, Zhi-Gang
2012-01-01
In this article, we study the doubly heavy baryon states Ξ cc , Ω cc , Ξ bb and Ω bb in the nuclear matter using the QCD sum rules, and derive three coupled QCD sum rules for the masses, vector self-energies and pole residues. The predictions for the mass-shifts in the nuclear matter ΔM Ξ cc =-1.11simGeV, ΔM Ω cc =-0.33∝GeV, ΔM Ξ bb =-3.37∝GeV and ΔM Ω bb =-1.05∝GeV can be confronted with experimental data in the future. (orig.)
Analysis of the scalar doubly charmed hexaquark state with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2017-09-15
In this article, we study the scalar-diquark-scalar-diquark-scalar-diquark type hexaquark state with the QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension 16. We obtain a lowest hexaquark mass of 6.60{sup +0.12}{sub -0.09} GeV, which can be confronted with the experimental data in the future. (orig.)
Convex analysis and global optimization
Tuy, Hoang
2016-01-01
This book presents state-of-the-art results and methodologies in modern global optimization, and has been a staple reference for researchers, engineers, advanced students (also in applied mathematics), and practitioners in various fields of engineering. The second edition has been brought up to date and continues to develop a coherent and rigorous theory of deterministic global optimization, highlighting the essential role of convex analysis. The text has been revised and expanded to meet the needs of research, education, and applications for many years to come. Updates for this new edition include: · Discussion of modern approaches to minimax, fixed point, and equilibrium theorems, and to nonconvex optimization; · Increased focus on dealing more efficiently with ill-posed problems of global optimization, particularly those with hard constraints;
QCD sum-rules analysis of vector (1-) heavy quarkonium meson-hybrid mixing
Palameta, A.; Ho, J.; Harnett, D.; Steele, T. G.
2018-02-01
We use QCD Laplace sum rules to study meson-hybrid mixing in vector (1-) heavy quarkonium. We compute the QCD cross-correlator between a heavy meson current and a heavy hybrid current within the operator product expansion. In addition to leading-order perturbation theory, we include four- and six-dimensional gluon condensate contributions as well as a six-dimensional quark condensate contribution. We construct several single and multiresonance models that take known hadron masses as inputs. We investigate which resonances couple to both currents and so exhibit meson-hybrid mixing. Compared to single resonance models that include only the ground state, we find that models that also include excited states lead to significantly improved agreement between QCD and experiment. In the charmonium sector, we find that meson-hybrid mixing is consistent with a two-resonance model consisting of the J /ψ and a 4.3 GeV resonance. In the bottomonium sector, we find evidence for meson-hybrid mixing in the ϒ (1 S ) , ϒ (2 S ), ϒ (3 S ), and ϒ (4 S ).
13. international QCD conference (QCD 06)
International Nuclear Information System (INIS)
2006-01-01
This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations
13. international QCD conference (QCD 06)
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.
Flows method in global analysis
International Nuclear Information System (INIS)
Duong Minh Duc.
1994-12-01
We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs
International Nuclear Information System (INIS)
Sidorov, A.V.
1996-01-01
The simultaneous QCD analysis of the xF 3 structure function measured in deep-inelastic scattering by several collaborations is done up to 3-loop order of QCD. The x dependence of the higher-twist contribution is evaluated and turns out to be in a qualitative agreement with the results of 'old' CCFR data analysis and with renormalon approach predictions. The Gross-Llewellyn Smith sum rule and its higher-twist corrections are evaluated. 32 refs., 1 figs., 1 tab
International Nuclear Information System (INIS)
Sidorov, A.V.; Tokarev, M.V.
1997-01-01
A detailed NNLO QCD analysis of new CCFR data on xF 3 structure function including the target mass, higher twist and nuclear corrections was performed and parametrizations of the perturbative and power terms of the structure function were constructed. The results of QCD analysis of the structure function were used to study the Q 2 -dependence of the Gross-Llewellyn Smith sum rule. The α S /π-expansion of S GLS (Q 2 ) was studied and parameters of the expansion were found to be s 1 =2.74±0.01, s 2 =-2.22±0.23, s 3 =-7.86±1.74 which are in good agreement with the perturbative QCD predictions for the Gross-Llewellyn Smith sum rule in the next-to-leading and next-to-next-to-leading order
ALEPH Tau Spectral Functions and QCD
Davier, M; Zhang, Z; Davier, Michel; Hoecker, Andreas; Zhang, Zhiqing
2007-01-01
Hadronic $\\tau$ decays provide a clean laboratory for the precise study of quantum chromodynamics (QCD). Observables based on the spectral functions of hadronic $\\tau$ decays can be related to QCD quark-level calculations to determine fundamental quantities like the strong coupling constant, quark and gluon condensates. Using the ALEPH spectral functions and branching ratios, complemented by some other available measurements, and a revisited analysis of the theoretical framework, the value $\\asm = 0.345 \\pm 0.004_{\\rm exp} \\pm 0.009_{\\rm th}$ is obtained. Taken together with the determination of \\asZ from the global electroweak fit, this result leads to the most accurate test of asymptotic freedom: the value of the logarithmic slope of $\\alpha_s^{-1}(s)$ is found to agree with QCD at a precision of 4%. The value of \\asZ obtained from $\\tau$ decays is $\\asZ = 0.1215 \\pm 0.0004_{\\rm exp} \\pm 0.0010_{\\rm th} \\pm 0.0005_{\\rm evol} = 0.1215 \\pm 0.0012$.
International Nuclear Information System (INIS)
Fiebig, H. Rudolf
2002-01-01
We study various aspects of extracting spectral information from time correlation functions of lattice QCD by means of Bayesian inference with an entropic prior, the maximum entropy method (MEM). Correlator functions of a heavy-light meson-meson system serve as a repository for lattice data with diverse statistical quality. Attention is given to spectral mass density functions, inferred from the data, and their dependence on the parameters of the MEM. We propose to employ simulated annealing, or cooling, to solve the Bayesian inference problem, and discuss the practical issues of the approach
ChPT calculations for the analysis of lattice QCD data
International Nuclear Information System (INIS)
Greil, Ludwig
2014-01-01
We present calculations within the framework of three-flavor chiral perturbation theory (ChPT) for several observables (first moments of parton distributions, baryon octet masses and vector meson masses including phi-omega-mixing). We use lattice QCD data to determine the local couplings appearing in this chosen effective theory and we use these extrapolations to study the convergence of the chiral expansion around the symmetric point where all light quark masses have the same value. We also comment on the various benefits that stem from an expansion around the symmetric point.
Random matrix analysis of the QCD sign problem for general topology
International Nuclear Information System (INIS)
Bloch, Jacques; Wettig, Tilo
2009-01-01
Motivated by the important role played by the phase of the fermion determinant in the investigation of the sign problem in lattice QCD at nonzero baryon density, we derive an analytical formula for the average phase factor of the fermion determinant for general topology in the microscopic limit of chiral random matrix theory at nonzero chemical potential, for both the quenched and the unquenched case. The formula is a nontrivial extension of the expression for zero topology derived earlier by Splittorff and Verbaarschot. Our analytical predictions are verified by detailed numerical random matrix simulations of the quenched theory.
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang; Yan, Ze-Hui [North China Electric Power University, Department of Physics, Baoding (China)
2018-01-15
In this article, we construct the axialvector-diquark-axialvector-antidiquark type currents to interpolate the scalar, axialvector, vector, tensor doubly charmed tetraquark states, and study them with QCD sum rules systematically by carrying out the operator product expansion up to the vacuum condensates of dimension 10 in a consistent way, the predicted masses can be confronted with the experimental data in the future. We can search for those doubly charmed tetraquark states in the Okubo-Zweig-Iizuka super-allowed strong decays to the charmed-meson pairs. (orig.)
Narison, Stephan
2007-07-01
About Stephan Narison; Outline of the book; Preface; Acknowledgements; Part I. General Introduction: 1. A short flash on particle physics; 2. The pre-QCD era; 3. The QCD story; 4. Field theory ingredients; Part II. QCD Gauge Theory: 5. Lagrangian and gauge invariance; 6. Quantization using path integral; 7. QCD and its global invariance; Part III. MS scheme for QCD and QED: Introduction; 8. Dimensional regularization; 9. The MS renormalization scheme; 10. Renormalization of operators using the background field method; 11. The renormalization group; 12. Other renormalization schemes; 13. MS scheme for QED; 14. High-precision low-energy QED tests; Part IV. Deep Inelastic Scattering at Hadron Colliders: 15. OPE for deep inelastic scattering; 16. Unpolarized lepton-hadron scattering; 17. The Altarelli-Parisi equation; 18. More on unpolarized deep inelastic scatterings; 19. Polarized deep-inelastic processes; 20. Drell-Yan process; 21. One 'prompt photon' inclusive production; Part V. Hard Processes in e+e- Collisions: Introduction; 22. One hadron inclusive production; 23. gg scatterings and the 'spin' of the photon; 24. QCD jets; 25. Total inclusive hadron productions; Part VI. Summary of QCD Tests and as Measurements; Part VII. Power Corrections in QCD: 26. Introduction; 27. The SVZ expansion; 28. Technologies for evaluating Wilson coefficients; 29. Renormalons; 30. Beyond the SVZ expansion; Part VIII. QCD Two-Point Functions: 31. References guide to original works; 32. (Pseudo)scalar correlators; 33. (Axial-)vector two-point functions; 34. Tensor-quark correlator; 35. Baryonic correlators; 36. Four-quark correlators; 37. Gluonia correlators; 38. Hybrid correlators; 39. Correlators in x-space; Part IX. QCD Non-Perturbative Methods: 40. Introduction; 41. Lattice gauge theory; 42. Chiral perturbation theory; 43. Models of the QCD effective action; 44. Heavy quark effective theory; 45. Potential approaches to quarkonia; 46. On monopole and confinement; Part X. QCD
QCD phenomenology of parton distribution functions at small x
International Nuclear Information System (INIS)
Tung, Wu-Ki
1990-09-01
The small x behavior of parton distributions is studied phenomenologically by examining in detail a series of QCD-evolved distribution sets obtained in a new global analysis of deep inelastic scattering and lepton-pair production experiments. The importance of 2-loop evolution is discussed. The main features and results of the global analysis are described. The range of small x behavior consistent with next-to-leading order QCD and current data is delineated. The extrapolated small x behavior is parameterized by effective Q-dependent power- and logarithmic-law parameters. Intriguing features of the evolution of these parameters with Q are presented. Alternative parametrizations based on the analytic solution for small x is also explored. 20 refs., 6 figs., 1 tab
Analysis of the mass and width of the X*(3860) with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2017-10-15
In this article, we tentatively assign the X*(3860) to be the Cγ{sub 5} x γ{sub 5}C-type scalar tetraquark state and study its mass and width with the QCD sum rules; special attention is paid to calculating the hadronic coupling constants G{sub Xη{sub cπ}} and G{sub XDD} concerning the tetraquark state. We obtain the values M{sub X} = 3.86 ± 0.09 GeV and Γ{sub X} = 202 ± 146 MeV, which are consistent with the experimental data. The numerical result supports assigning the X*(3860) to be the Cγ{sub 5} x γ{sub 5}C-type scalar tetraquark state. (orig.)
The running coupling from the QCD Schrödinger functional a one-loop analysis
Sint, S; Sint, Stefan; Sommer, Rainer
1996-01-01
Starting from the Schr\\"odinger functional, we give a non-perturbative definition of the running coupling constant in QCD. The spatial boundary conditions for the quark fields are chosen such that the massless Dirac operator in the classical background field has a large smallest eigenvalue. At one-loop order of perturbation theory, we determine the matching coefficient to the \\MSbar-scheme and discuss the quark mass effects in the \\beta-function. To this order, we also compute the Symanzik improvement coefficient necessary to remove the \\Oa lattice artefacts originating from the boundaries. For reasonable lattice resolutions and the standard Wilson action, lattice artefacts are found to be only weakly dependent on the lattice spacing a, while they vanish quickly with the improved action of Sheikholeslami and Wohlert.
International Nuclear Information System (INIS)
Ilgenfritz, E.M.; Leinweber, D.; Moran, P.; Koller, K.; Weinberg, V.; Freie Univ. Berlin
2008-01-01
A detailed comparison is made between the topological structure of quenched QCD as revealed by the recently proposed over-improved stout-link smearing in conjunction with an improved gluonic definition of the topological density on one hand and a similar analysis made possible by the overlap-fermionic topological charge density both with and without variable ultraviolet cutoff λ cut . The matching is twofold, provided by fitting the density-density two-point functions on one hand and by a point-by-point fitting of the topological densities according to the two methods. We point out the similar cluster structure of the topological density for moderate smearing and 200 MeV cut <600 MeV, respectively. We demonstrate the relation of the gluonic topological density for extensive smearing to the location of the overlap zero modes and the lowest overlap non-zero mode as found for the unsmeared configurations. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Aaron, F.D. [National Inst. for Physics and Nuclear Engineering (NIPNE), Bucharest (Romania); Bucharest Univ. (Romania). Faculty of Physics; Abramowicz, H. [Tel Aviv Univ. (Israel). Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics; Max-Planck-Institute, Muenchen (Germany); Abt, I. [Max-Planck-Institut fuer Physik, Muenchen (DE)] (and others)
2009-10-15
A combination is presented of the inclusive deep inelastic cross sections measured by the H1 and ZEUS Collaborations in neutral and charged current unpolarised e{sup {+-}}p scattering at HERA during the period 1994-2000. The data span six orders of magnitude in negative four-momentum-transfer squared, Q{sup 2}, and in Bjorken x. The combination method used takes the correlations of systematic uncertainties into account, resulting in an improved accuracy. The combined data are the sole input in a NLO QCD analysis which determines a new set of parton distributions HERAPDF1.0 with small experimental uncertainties. This set includes an estimate of the model and parametrisation uncertainties of the fit result. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ilgenfritz, E.M.; Leinweber, D.; Moran, P. [Adelaide Univ., SA (AU). Special Research Centre for the Subatomic Structure of Matter (CSSM); Koller, K. [Muenchen Univ. (Germany). Sektion Physik; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Weinberg, V. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Freie Univ. Berlin (Germany). Inst. fuer Theoretische Physik
2008-01-11
A detailed comparison is made between the topological structure of quenched QCD as revealed by the recently proposed over-improved stout-link smearing in conjunction with an improved gluonic definition of the topological density on one hand and a similar analysis made possible by the overlap-fermionic topological charge density both with and without variable ultraviolet cutoff {lambda}{sub cut}. The matching is twofold, provided by fitting the density-density two-point functions on one hand and by a point-by-point fitting of the topological densities according to the two methods. We point out the similar cluster structure of the topological density for moderate smearing and 200 MeV<{lambda}{sub cut}<600 MeV, respectively. We demonstrate the relation of the gluonic topological density for extensive smearing to the location of the overlap zero modes and the lowest overlap non-zero mode as found for the unsmeared configurations. (orig.)
International Nuclear Information System (INIS)
Yun, J.C.
1990-01-01
In this paper we report recent QCD analysis with the new data taken from CDF detector. CDF recorded an integrated luminosity of 4.4 nb -1 during the 1988--1989 run at center of mass system (CMS) energy of 1.8 TeV. The major topics of this report are inclusive jet, dijet, trijet and direct photon analysis. These measurements are compared of QCD predictions. For the inclusive jet an dijet analysis, tests of quark compositeness are emphasized. 11 refs., 6 figs
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
This paper focuses on some issues about condensates and renormalization in AdS/QCD models. In particular we consider the consistency of the AdS/QCD approach for scale dependent quantities as the chiral condensate questioned in some recent papers and the 4D meaning of the 5D cosmological constant...... in a model in which the QCD is dual to a 5D gravity theory. We will be able to give some arguments that the cosmological constant is related to the QCD gluon condensate....
HERA results on QCD and EW physics
International Nuclear Information System (INIS)
Zarnecki, A.F.
1997-01-01
Selected HERA results on QCD and EW interactions are presented. They include the measurement of the proton structure function and its analysis in terms of the QCD evolution, as well as results concerning deep inelastic scattering at very low and very high Q 2 . Selected HERA limits on new physics and parameters which extend the standard model are also presented. (author)
CT14 intrinsic charm parton distribution functions from CTEQ-TEA global analysis
Hou, Tie-Jiun; Dulat, Sayipjamal; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Schmidt, Carl; Winter, Jan; Xie, Keping; Yuan, C.-P.
2018-02-01
We investigate the possibility of a (sizable) nonperturbative contribution to the charm parton distribution function (PDF) in a nucleon, theoretical issues arising in its interpretation, and its potential impact on LHC scattering processes. The "fitted charm" PDF obtained in various QCD analyses contains a process-dependent component that is partly traced to power-suppressed radiative contributions in DIS and is generally different at the LHC. We discuss separation of the universal component of the nonperturbative charm from the rest of the radiative contributions and estimate its magnitude in the CT14 global QCD analysis at the next-to-next-to leading order in the QCD coupling strength, including the latest experimental data from HERA and the Large Hadron Collider. Models for the nonperturbative charm PDF are examined as a function of the charm quark mass and other parameters. The prospects for testing these models in the associated production of a Z boson and a charm jet at the LHC are studied under realistic assumptions, including effects of the final-state parton showering.
Analysis of the QQ anti Q anti Q tetraquark states with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2017-07-15
In this article, we study the J{sup PC} = 0{sup ++} and 2{sup ++} QQ anti Q anti Q tetraquark states with the QCD sum rules, and we obtain the predictions M{sub X(cc} {sub anti} {sub c} {sub anti} {sub c,0}{sup {sub +}{sub +)}} =5.99 ± 0.08 GeV, M{sub X(cc} {sub anti} {sub c} {sub anti} {sub c,2}{sup {sub +}{sub +)}} = 6.09 ± 0.08 GeV, M{sub X(bb} {sub anti} {sub b} {sub anti} {sub b,0}{sup {sub +}{sub +)}} = 18.84 ± 0.09 GeV and M{sub X(bb} {sub anti} {sub b} {sub anti} {sub b,2}{sup {sub +}{sub +)}} = 18.85 ± 0.09 GeV, which can be confronted to the experimental data in the future. Furthermore, we illustrate that the diquark-antidiquark type tetraquark state can be taken as a special superposition of a series of meson-meson pairs and that it embodies the net effects. (orig.)
International Nuclear Information System (INIS)
Shirkov, D.V.
1982-01-01
In this paper recent studies of invariant QCD coupling anti asub(s)(Qsup(2)) in the 2-loop approximation with account of fermionic mass effects are summarized. The main results are: An explicit expression for anti asub(s)(Qsup(2)) in the 2-loop approximation with accurate account of heavy quark masses. A quantitative analysis on the basis of the above-mentioned expression for anti asub(s)(Qsup(2)) of the energy dependence of the scale QCD parameter ν and the conclusion about its inadequacy in the modern energy range
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1990-01-01
This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
Tests of hard and soft QCD with $e^{+}e^{-}$ Annihilation Data
Kluth, S
2002-01-01
Experimental tests of QCD predictions for event shape distributions combining contributions from hard and soft processes are discussed. The hard processes are predicted by perturbative QCD calculations. The soft processes cannot be calculated directly using perturbative QCD, they are treated by a power correction model based on the analysis of infrared renormalons. Furthermore, an analysis of the gauge structure of QCD is presented using fits of the colour factors within the same combined QCD predictions.
Two flavor QCD and Confinement
DEFF Research Database (Denmark)
D'Elia, M.; Di Giacomo, A.; Pica, Claudio
2005-01-01
We argue that the order of the chiral transition for N_f=2 is a sensitive probe of the QCD vacuum, in particular of the mechanism of color confinement. A strategy is developed to investigate the order of the transition by use of finite size scaling analysis. An in-depth numerical investigation is...
International Nuclear Information System (INIS)
Sidorov, A.V.; Tokarev, M.V.
1997-01-01
A detailed NNLO QCD analysis of new CCFR data on xF 3 structure function including the target mass, higher twist and nuclear corrections was performed and parametrizations of the perturbative and power terms of the structure function were constructed. The results of QDC analysis of the structure function were used to study the Q 2 -dependence of the Gross-Llewellyn-Smith sum rule. The α s /π-expansion of S GLS (Q 2 ) was studied and parameters of the expansion were found to be s 1 =2.74±0.01, s 2 =-2.22±0.23, s 3 =-7.86±1.74 which are in good agreement with the perturbative QCD predictions for the Gross-Llewellyn-Smith sum rule in the next-to-leading and next-to-next-leading order
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science] [and others; Collaboration: H1 and ZEUS Collaboration
2012-10-15
Measurements of open charm production cross sections in deep-inelastic ep scattering at HERA from the H1 and ZEUS Collaborations are combined. Reduced cross sections {sigma}{sup c} {sup anti} {sup c}{sub red} for charm production are obtained in the kinematic range of photon virtuality 2.5 {<=} Q{sup 2} {<=} 2000 GeV{sup 2} and Bjorken scaling variable 3.10{sup -5}{<=}x{<=}5.10{sup -2}. The combination method accounts for the correlations of the systematic uncertainties among the different data sets. The combined charm data together with the combined inclusive deepinelastic scattering cross sections from HERA are used as input for a detailed NLO QCD analysis to study the influence of different heavy flavour schemes on the parton distribution functions. The optimal values of the charm mass as a parameter in these different schemes are obtained. The implications on the NLO predictions for W{sup {+-}} and Z production cross sections at the LHC are investigated. Using the fixed flavour number scheme, the running mass of the charm quark is determined.
International Nuclear Information System (INIS)
Morfin, J.G.
1990-08-01
Following is a brief summary of the results of an analysis of experimental data performed to extract the patron distribution functions. In contrast to other global analyses, this study investigated how the fit results depend on: Experimental Systematic Errors; Kinematic Cuts on the Analyzed Data and Choice of Initial Functional Forms, with a prime goal being a close look at the range of low-x behavior allowed by data. This is crucial for predictions for the SSC/LHC, HERA, and even at Tevatron Collider energies. Since all details can be found in the just released Fermilab preprint Parton Distributions from a Global QCD Analysis of Deep Inelastic Scattering and Lepton-Pair Production by J. G. M. and Wu-Ki Tung, this summary will be only a brief outline of major results. 11 refs., 13 figs
Non-perturbative Aspects of QCD and Parameterized Quark Propagator
Institute of Scientific and Technical Information of China (English)
HAN Ding-An; ZHOU Li-Juan; ZENG Ya-Guang; GU Yun-Ting; CAO Hui; MA Wei-Xing; MENG Cheng-Ju; PAN Ji-Huan
2008-01-01
Based on the Global Color Symmetry Model, the non-perturbative QCD vacuum is investigated in theparameterized fully dressed quark propagator. Our theoretical predictions for various quantities characterized the QCD vacuum are in agreement with those predicted by many other phenomenological QCD inspired models. The successful predictions clearly indicate the extensive validity of our parameterized quark propagator used here. A detailed discussion on the arbitrariness in determining the integration cut-off parameter of# in calculating QCD vacuum condensates and a good method, which avoided the dependence of calculating results on the cut-off parameter is also strongly recommended to readers.
Next-to-leading order QCD-analysis of EMC deep inelastic μp and μd scattering data
International Nuclear Information System (INIS)
Bilen'kaya, S.I.; Stamenov, D.B.
1987-01-01
A combined next-to-leading order QCD analysis of the European Muon Collaboration (EMC) μH 2 and μD 2 scattering data is presented. The nucleon structure functions are given in terms of parton distributions. The Buras-Gaemers method is used to solve the QCD equations for these distributions. The higher twist corrections are not taken into account. As has been shown their contribution to the structure functions is negligible in the EMC kinematic region. Unlike most of the papers on this subject the cross section data (not the value for the structure functions obtained from these data by additional extrapolations and assumptions) are fitted. the following values for the QCD scale parameter Λ MS-bar are found: Λ MS-bar =218 ±73 MeV for the non-singlet fit to the data in the range x>0.3 and Λ MS-bar =65±20 MeV if the whole x data are fitted
NLO QCD effective field theory analysis of W+W- production at the LHC including fermionic operators
Baglio, Julien; Dawson, Sally; Lewis, Ian M.
2017-10-01
We study the impact of anomalous gauge boson and fermion couplings on the production of W+W- pairs at the LHC. Helicity amplitudes are presented separately to demonstrate the sources of new physics contributions and the impact of QCD and electroweak corrections. The QCD corrections have important effects on the fits to anomalous couplings, in particular when one W boson is longitudinally polarized and the other is transversely polarized. In effective field theory language, we demonstrate that the dimension-6 approximation to constraining new physics effects in W+W- pair production fails at pT˜500 - 1000 GeV .
Moment analysis of hadronic vacuum polarization. Proposal for a lattice QCD evaluation of gμ - 2
de Rafael, Eduardo
2014-09-01
I suggest a new approach to the determination of the hadronic vacuum polarization (HVP) contribution to the anomalous magnetic moment of the muon aμHVP in lattice QCD. It is based on properties of the Mellin transform of the hadronic spectral function and their relation to the HVP self-energy in the Euclidean. I show how aμHVP is very well approximated by a few moments associated to this Mellin transform and how these moments can be evaluated in lattice QCD, providing thus a series of tests when compared with the corresponding determinations using experimental data.
Global Analysis of Minimal Surfaces
Dierkes, Ulrich; Tromba, Anthony J
2010-01-01
Many properties of minimal surfaces are of a global nature, and this is already true for the results treated in the first two volumes of the treatise. Part I of the present book can be viewed as an extension of these results. For instance, the first two chapters deal with existence, regularity and uniqueness theorems for minimal surfaces with partially free boundaries. Here one of the main features is the possibility of 'edge-crawling' along free parts of the boundary. The third chapter deals with a priori estimates for minimal surfaces in higher dimensions and for minimizers of singular integ
Lattice and Phase Diagram in QCD
International Nuclear Information System (INIS)
Lombardo, Maria Paola
2008-01-01
Model calculations have produced a number of very interesting expectations for the QCD Phase Diagram, and the task of a lattice calculations is to put these studies on a quantitative grounds. I will give an overview of the current status of the lattice analysis of the QCD phase diagram, from the quantitative results of mature calculations at zero and small baryochemical potential, to the exploratory studies of the colder, denser phase.
Unambiguity of renormalization group calculations in QCD
International Nuclear Information System (INIS)
Vladimirov, A.A.
1979-01-01
A detailed analysis of the reduction of ambiguities determined by an arbitrary renormalization scheme is presented for the renormalization group calculations of physical quantities in quantum chromodynamics (QCD). Some basic formulas concerning the renormalization-scheme dependence of Green's and renormalization group functions are given. A massless asymptotically free theory with one coupling constant g is considered. In conclusion, several rules for renormalization group calculations in QCD are formulated
Energy Technology Data Exchange (ETDEWEB)
Anon.
1979-10-15
Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics.
International Nuclear Information System (INIS)
Simonov, Yu.A.
1989-01-01
To apply QCD to nuclear physics one needs methods of long-distance QCD. A new method, method of Confining Background Fields, CBF, which incorporates confinement, is presented with applications to heavy and light quarks, both in mesons and baryons. Spin-dependent forces are calculated for light and heavy quarks. The quark potential model in some limiting case is derived. 25 refs
International Nuclear Information System (INIS)
Anon.
1979-01-01
Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics
The nucleon mass and pion-nucleon sigma term from a chiral analysis of Nf = 2 lattice QCD world data
Directory of Open Access Journals (Sweden)
Alvarez-Ruso L.
2014-03-01
Full Text Available We investigate the pion-mass dependence of the nucleon mass within the covariant SU(2 baryon chiral perturbation theory up to order p4 with and without explicit Δ (1232 degrees of freedom. We fit lattice QCD data from several collaborations for 2 and 2+1 flavor ensembles. Here, we emphasize our Nf = 2 study where the inclusion the Δ (1232 contributions stabilizes the fits. We correct for finite volume and spacing effects, set independently the lattice QCD scale by a Sommer-scale of r0 = 0.493(23 fm and also include one σπN lQCD data point at Mπ ≈ 290 MeV. We obtain low-energy constants of natural size which are compatible with the rather linear pion-mass dependence observed in lattice QCD. We report a value of σπN = 41(5(4 MeV for the 2 flavor case and σπN = 52(3(8 MeV for 2+1 flavors.
An analysis of the nucleon spectrum from lattice partially-quenched QCD.
Energy Technology Data Exchange (ETDEWEB)
Armour, W.; Allton, C. R.; Leinweber, D. B.; Thomas, A. W.; Young, R. D.; Physics; Swansea Univ.; Univ. of Adelaide; Coll. of William and Mary
2010-09-01
The chiral extrapolation of the nucleon mass, M{sub n}, is investigated using data coming from 2-flavour partially-quenched lattice simulations. A large sample of lattice results from the CP-PACS Collaboration is analysed using the leading one-loop corrections, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite-range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of Mn in agreement with experiment. Furthermore, determinations of the low energy constants of the nucleon mass's chiral expansion are in agreement with previous methods, but with significantly reduced errors. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.
An analysis of the nucleon spectrum from lattice partially-quenched QCD
Energy Technology Data Exchange (ETDEWEB)
Armour, W. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Allton, C.R., E-mail: c.allton@swan.ac.u [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Leinweber, D.B. [Special Research Centre for the Subatomic Structure of Matter (CSSM), School of Chemistry and Physics, University of Adelaide, 5005 (Australia); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Ave., Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States); Young, R.D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2010-09-01
The chiral extrapolation of the nucleon mass, M{sub n}, is investigated using data coming from 2-flavour partially-quenched lattice simulations. A large sample of lattice results from the CP-PACS Collaboration is analysed using the leading one-loop corrections, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite-range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of M{sub n} in agreement with experiment. Furthermore, determinations of the low energy constants of the nucleon mass's chiral expansion are in agreement with previous methods, but with significantly reduced errors. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.
Global analysis of muon decay measurements
International Nuclear Information System (INIS)
Gagliardi, C.A.; Tribble, R.E.; Williams, N.J.
2005-01-01
We have performed a global analysis of muon decay measurements to establish model-independent limits on the space-time structure of the muon decay matrix element. We find limits on the scalar, vector, and tensor coupling of right- and left-handed muons to right- and left-handed electrons. The limits on those terms that involve the decay of right-handed muons to left-handed electrons are more restrictive than in previous global analyses, while the limits on the other nonstandard model interactions are comparable. The value of the Michel parameter η found in the global analysis is -0.0036±0.0069, slightly more precise than the value found in a more restrictive analysis of a recent measurement. This has implications for the Fermi coupling constant G F
2017-01-01
This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.
International Nuclear Information System (INIS)
Kronfeld, Andreas
2005-01-01
Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.
International Nuclear Information System (INIS)
Ingelman, Gunnar
1994-01-01
The traditional annual DESY Theory Workshop highlights a topical theory sector. The most recent was under the motto 'Quantum Chromo-Dynamics' - QCD, the field theory of quarks and gluons. The organizers had arranged a programme covering most aspects of current QCD research. This time the workshop was followed by a topical meeting on 'QCD at HERA' to look at the electron-proton scattering experiments now in operation at DESY's new HERA collider
Aurenche , P; Guillet , J.-Ph; Pilon , E
2016-01-01
3rd cycle; Ces notes sont une introduction à l'application de l'électrodynamique quantique (QED) et de la chromodynamiques quantique (QCD) aux réactions de diffusion à hautes énergies. Le premier thème abordé est celui des divergences ultraviolettes et de la renormalisation à une boucle, avec comme conséquence pour QCD la liberté asymptotique. Le deuxième thème est celui des divergences infrarouges et colinéaires qui dans QCD sont traitées dans le cadre du modèle des partons avec l'introducti...
International Nuclear Information System (INIS)
Kaplan, D.B.
1995-01-01
I give a brief and selective overview of QCD as it pertains to determining hadron structure, and the relevant directions in this field for nuclear theory. This document is intended to start discussion about priorities, not end it
Sykora, Tomas; The ATLAS collaboration
2018-01-01
Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.
International Nuclear Information System (INIS)
Dominguez, C.A.
1987-02-01
The scalar (0 ++ ) and the tensor (2 ++ ) gluonium spectrum is analyzed in the framework of QCD sum rules. Stable eigenvalue solutions, consistent with duality and low energy theorems, are obtained for the mass and width of these glueballs. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
International Nuclear Information System (INIS)
Mueller, A.H.
1986-03-01
A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)
International Nuclear Information System (INIS)
Christ, Norman H
2000-01-01
The architecture and capabilities of the computers currently in use for large-scale lattice QCD calculations are described and compared. Based on this present experience, possible future directions are discussed
International Nuclear Information System (INIS)
Kikkawa, Keiji
1983-01-01
The varidity of the perturbation method in the high temperature QCD is discussed. The skeleton expansion method takes account of plasmon effects and eliminates the electric infrared singularity but not the magnetic one. A possibility of eliminating the latter, which was recently proposed, is examined by a gauge invariant skeleton expansion. The magnetic singularity is unable to be eliminated by the perturbation method. This implies that some non-perturbative approaches must be incorporated in the high temperature QCD. (author)
Schuster, Theodor
2013-01-01
We derive color decompositions of arbitrary tree and one-loop QCD amplitudes into color ordered objects called primitive amplitudes. Furthermore, we derive general fermion flip and reversion identities spanning the null space among the primitive amplitudes and use them to prove that all color ordered tree amplitudes of massless QCD can be written as linear combinations of color ordered tree amplitudes of $\\mathcal{N}=4$ super Yang-Mills theory.
International Nuclear Information System (INIS)
Sivers, D.
1979-10-01
Some aspects of a simple strategy for testing the validity of QCD perturbation theory are examined. The importance of explicit evaluation of higher-order contributions is illustrated by considering Z 0 decays. The recent progress toward understanding exclusive processes in QCD is discussed and some simple examples are given of how to isolate and test the separate components of the perturbation expansion in a hypothetical series of jet experiments
Skands, Peter
2011-01-01
These lectures are directed at a level suitable for graduate students in experimental and theoretical High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD) as it is used in collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into four main areas: 1) fundamentals, 2) perturbative QCD, ...
Precision Light Flavor Physics from Lattice QCD
Murphy, David
In this thesis we present three distinct contributions to the study of light flavor physics using the techniques of lattice QCD. These results are arranged into four self-contained papers. The first two papers concern global fits of the quark mass, lattice spacing, and finite volume dependence of the pseudoscalar meson masses and decay constants, computed in a series of lattice QCD simulations, to partially quenched SU(2) and SU(3) chiral perturbation theory (chiPT). These fits determine a subset of the low energy constants of chiral perturbation theory -- in some cases with increased precision, and in other cases for the first time -- which, once determined, can be used to compute other observables and amplitudes in chiPT. We also use our formalism to self-consistently probe the behavior of the (asymptotic) chiral expansion as a function of the quark masses by repeating the fits with different subsets of the data. The third paper concerns the first lattice QCD calculation of the semileptonic K0 → pi-l +nul ( Kl3) form factor at vanishing momentum transfer, f+Kpi(0), with physical mass domain wall quarks. The value of this form factor can be combined with a Standard Model analysis of the experimentally measured K0 → pi -l+nu l decay rate to extract a precise value of the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vus, and to test unitarity of the CKM matrix. We also discuss lattice calculations of the pion and kaon decay constants, which can be used to extract Vud through an analogous Standard Model analysis of experimental constraints on leptonic pion and kaon decays. The final paper explores the recently proposed exact one flavor algorithm (EOFA). This algorithm has been shown to drastically reduce the memory footprint required to simulate single quark flavors on the lattice relative to the widely used rational hybrid Monte Carlo (RHMC) algorithm, while also offering modest O(20%) speed-ups. We independently derive the exact one flavor action, explore its
Adloff, C.; Andrieu, B.; Anthonis, T.; Arkadov, V.; Astvatsatourov, A.; Ayyaz, I.; Babaev, A.; Bahr, J.; Baranov, P.; Barrelet, E.; Bartel, W.; Bassler, U.; Bate, P.; Beglarian, A.; Behnke, O.; Beier, C.; Belousov, A.; Benisch, T.; Berger, Christoph; Bernardi, G.; Berndt, T.; Bizot, J.C.; Boudry, V.; Braunschweig, W.; Brisson, V.; Broker, H.B.; Brown, D.P.; Bruckner, W.; Bruel, P.; Bruncko, D.; Burger, J.; Busser, F.W.; Bunyatyan, A.; Burkhardt, H.; Burrage, A.; Buschhorn, G.; Campbell, A.J.; Cao, Jun; Carli, T.; Caron, S.; Chabert, E.; Chernyshov, V.; Tchetchelnitski, S.; Clarke, D.; Clerbaux, B.; Collard, C.; Contreras, J.G.; Coppens, Y.R.; Coughlan, J.A.; Cousinou, M.C.; Cox, B.E.; Cozzika, G.; Cvach, J.; Dainton, J.B.; Dau, W.D.; Daum, K.; Davidsson, M.; Delcourt, B.; Delerue, N.; Demirchyan, R.; De Roeck, A.; De Wolf, E.A.; Diaconu, C.; Dixon, P.; Dodonov, V.; Dowell, J.D.; Droutskoi, A.; Duprel, C.; Eckerlin, Guenter; Eckstein, D.; Efremenko, V.; Egli, S.; Eichler, R.; Eisele, F.; Eisenhandler, E.; Ellerbrock, M.; Elsen, E.; Erdmann, M.; Erdmann, W.; Faulkner, P.J.W.; Favart, L.; Fedotov, A.; Felst, R.; Ferencei, J.; Ferron, S.; Fleischer, M.; Fleming, Y.H.; Flugge, G.; Fomenko, A.; Foresti, I.; Formanek, J.; Foster, J.M.; Franke, G.; Gabathuler, E.; Gabathuler, K.; Garvey, J.; Gassner, J.; Gayler, Joerg; Gerhards, R.; Ghazarian, S.; Goerlich, L.; Gogitidze, N.; Goldberg, M.; Goodwin, C.; Grab, C.; Grassler, H.; Greenshaw, T.; Grindhammer, Guenter; Hadig, T.; Haidt, D.; Hajduk, L.; Haynes, W.J.; Heinemann, B.; Heinzelmann, G.; Henderson, R.C.W.; Hengstmann, S.; Henschel, H.; Heremans, R.; Herrera, G.; Herynek, I.; Hildebrandt, M.; Hilgers, M.; Hiller, K.H.; Hladky, J.; Hoting, P.; Hoffmann, D.; Hoprich, W.; Horisberger, R.; Hurling, S.; Ibbotson, M.; Issever, C .; Jacquet, M.; Jaffre, M.; Janauschek, L.; Jansen, D.M.; Janssen, X.; Jemanov, V.; Jonsson, L.; Johnson, D.P.; Jones, M.A.S.; Jung, H.; Kastli, H.K.; Kant, D.; Kapichine, M.; Karlsson, M.; Karschnick, O.; Keil, F.; Keller, N.; Kennedy, J.; Kenyon, I.R.; Kermiche, S.; Kiesling, Christian M.; Klein, M.; Kleinwort, C.; Knies, G.; Koblitz, B.; Kolya, S.D.; Korbel, V.; Kostka, P.; Kotelnikov, S.K.; Koutouev, R.; Koutov, A.; Krasny, M.W.; Krehbiel, H.; Kroseberg, J.; Kruger, K.; Kupper, A.; Kuhr, T.; Kurca, T.; Lahmann, R.; Lamb, D.; Landon, M.P.J.; Lange, W.; Lastovicka, T.; Lebailly, E.; Lebedev, A.; Leissner, B.; Lemrani, R.; Lendermann, V.; Levonian, S.; Lindstroem, M.; List, B.; Lobodzinska, E.; Lobodzinski, B.; Loginov, A.; Loktionova, N.; Lubimov, V.; Luders, S.; Luke, D.; Lytkin, L.; Magnussen, N.; Mahlke-Kruger, H.; Malden, N.; Malinovski, E.; Malinovski, I.; Maracek, R.; Marage, P.; Marks, J.; Marshall, R.; Martyn, H.U.; Martyniak, J.; Maxfield, S.J.; Mehta, A.; Meier, K.; Merkel, P.; Metlica, F.; Meyer, A.B.; Meyer, H.; Meyer, J.; Meyer, P.O.; Mikocki, S.; Milstead, D.; Mkrtchyan, T.; Mohr, R.; Mohrdieck, S.; Mondragon, M.N.; Moreau, F.; Morozov, A.; Morris, J.V.; Muller, K.; Murin, P.; Nagovizin, V.; Naroska, B.; Naumann, J.; Naumann, T.; Nellen, G.; Newman, Paul R.; Nicholls, T.C.; Niebergall, F.; Niebuhr, C.; Nix, O.; Nowak, G.; Nunnemann, T.; Olsson, J.E.; Ozerov, D.; Panassik, V.; Pascaud, C.; Patel, G.D.; Perez, E.; Phillips, J.P.; Pitzl, D.; Poschl, R.; Potachnikova, I.; Povh, B.; Rabbertz, K.; Radel, G.; Rauschenberger, J.; Reimer, P.; Reisert, B.; Reyna, D.; Riess, S.; Risler, C.; Rizvi, E.; Robmann, P.; Roosen, R.; Rostovtsev, A.; Royon, C.; Rusakov, S.; Rybicki, K.; Sankey, D.P.C.; Scheins, J.; Schilling, F.P.; Schleper, P.; Schmidt, D.; Schmitt, S.; Schoeffel, L.; Schoning, A.; Schorner, T.; Schroder, V.; Schultz-Coulon, H.C.; Schwanenberger, C.; Sedlak, K.; Sefkow, F.; Chekelian, V.I.; Sheviakov, I.; Shtarkov, L.N.; Siegmon, G.; Sievers, P.; Sirois, Y.; Sloan, T.; Smirnov, P.; Solochenko, V.; Solovev, Y.; Spaskov, V.; Specka, Arnd E.; Spitzer, H.; Stamen, R.; Steinhart, J.; Stella, B.; Stellberger, A.; Stiewe, J.; Straumann, U.; Struczinski, W.; Swart, M.; Tasevsky, M.; Thompson, Graham; Thompson, P.D.; Tobien, N.; Traynor, D.; Truoel, Peter; Tsipolitis, G.; Tsurin, I.; Turnau, J.; Turney, J.E.; Tzamariudaki, E.; Udluft, S.; Usik, A.; Valkar, S.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vasilev, S.; Vazdik, Y.; Vichnevski, A.; von Dombrowski, S.; Wacker, K.; Wallny, R.; Walter, T.; Waugh, B.; Weber, G.; Weber, M.; Wegener, D.; Werner, M.; White, G.; Wiesand, S.; Wilksen, T.; Winde, M.; Winter, G.G.; Wissing, C.; Wobisch, M.; Wollatz, H.; Wunsch, E.; Wyatt, A.C.; Zacek, J.; Zalesak, J.; Zhang, Z.; Zhokin, A.; Zomer, F.; Zsembery, J.
2001-01-01
Jet production is studied in the Breit frame in deep-inelastic positron-proton scattering over a large range of four-momentum transfers 5 < Q^2 < 15000 GeV^2 and transverse jet energies 7 < E_T < 60 GeV. The analysis is based on data corresponding to an integrated luminosity of L_int \\simeq 33 pb^(-1) taken in the years 1995-1997 with the H1 detector at HERA at a center-of-mass energy sqrt(s)=300 GeV. Dijet and inclusive jet cross sections are measured multi-differentially using k_perp and angular ordered jet algorithms. The results are compared to the predictions of perturbative QCD calculations in next-to-leading order in the strong coupling constant alphas.QCD fits are performed in which alphas and the gluon density in the proton are determined separately. The gluon density is found to be in good agreement with results obtained in other analyses using data from different processes. The strong coupling constant is determined to be alphas(MZ)=0.1186+-0.0059. In addition an analysis of the data in...
A BHLS model based moment analysis of muon g-2, and its use for lattice QCD evaluations of ahadμ
International Nuclear Information System (INIS)
Benayoun, M.; DelBuono, L.
2016-05-01
We present an up-to-date analysis of muon g-2 evaluations in terms of Mellin-Barnes moments as they might be useful for lattice QCD calculations of a μ . The moments up to 4th order are evaluated directly in terms of e + e - -annihilation data and improved within the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms. The model provides a reliable Effective Lagrangian (BHLS) estimate of the two-body channels plus the πππ channel up to 1.05 GeV, just including the φ resonance. The HLS piece accounts for 80% of the contribution to a μ . The missing pieces are evaluated in the standard way directly in terms of the data. We find that the moment expansion converges well in terms of a few moments. The two types of moments which show up in the Mellin-Barnes representation are calculated in terms of hadronic cross-section data in the timelike region and in terms of the hadronic vacuum polarization (HVP) function in the spacelike region which is accessible to lattice QCD (LQCD). In the Euclidean the first type of moments are the usual Taylor coefficients of the HVP and we show that the second type of moments may be obtained as integrals over the appropriately Taylor truncated HVP function. Specific results for the isovector part of a had μ are determined by means of HLS model predictions in close relation to τ-decay spectra.
Global sensitivity analysis by polynomial dimensional decomposition
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2011-07-15
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.
QCD as a topologically ordered system
International Nuclear Information System (INIS)
Zhitnitsky, Ariel R.
2013-01-01
We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1) A problem where the would be η ′ Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1) A problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied
Global plastic models for computerized structural analysis
International Nuclear Information System (INIS)
Roche, R.L.; Hoffmann, A.
1977-01-01
In many types of structures, it is possible to use generalized stresses (like membrane forces, bending moment, torsion moment...) to define a yield surface for a part of the structure. Analysis can be achieved by using the HILL's principle and a hardening rule. The whole formulation is said 'Global Plastic Model'. Two different global models are used in the CEASEMT system for structural analysis, one for shell analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses chosen are the membrane forces and bending (including torsion) moments. There is only one yield condition for a normal to the middle surface and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is bending moments, torsional moment, hoop stress and tension stress. There is only a set of stresses for a cross section and no integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic function of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield functions used. Some examples of applications in structural analysis are added to the text
Energy Technology Data Exchange (ETDEWEB)
Roessner, Simon
2009-04-09
Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)
International Nuclear Information System (INIS)
Roessner, Simon
2009-01-01
Quantum Chromodynamics (QCD) is the theory of the strong interaction within the Standard Model of elementary particles. Today's research in this area dedicates substantial resources to numeric solutions of the QCD field equations and experimental programs exploring the phases of QCD. This thesis proceeds along a complementary line - that of modelling QCD, with the aim of identifying its dominant degrees of freedom. This is possible by minimally coupling effective potentials for the Polyakov loop to Nambu-Jona-Lasinio models using temporal background fields to model chiral symmetry breaking respecting colour confinement. The fermion sign problem resulting from the minimal coupling is addressed in this work establishing a novel, systematically ordered approach. The modifications to the approximative order parameter of colour confinement, the Polyakov loop, are in direct connection with the fermion sign problem. Furthermore an effective coupling of quark densities of different flavours is induced. This mechanism, most likely also present in QCD, produces finite contributions to flavour off diagonal susceptibilities. Susceptibilities are amongst the most promising physical quantities for the experimental exploration of the phase transition at high temperatures and densities. (orig.)
QCD machines - present and future
International Nuclear Information System (INIS)
Christ, N.H.
1991-01-01
The present status of the currently working and nearly working dedicated QCD machines is reviewed and proposals for future machines are discussed with particular emphasis on the QCD Teraflop Project in the US. (orig.)
Finite element application to global reactor analysis
International Nuclear Information System (INIS)
Schmidt, F.A.R.
1981-01-01
The Finite Element Method is described as a Coarse Mesh Method with general basis and trial functions. Various consequences concerning programming and application of Finite Element Methods in reactor physics are drawn. One of the conclusions is that the Finite Element Method is a valuable tool in solving global reactor analysis problems. However, problems which can be described by rectangular boxes still can be solved with special coarse mesh programs more efficiently. (orig.) [de
Next-to-next-to-leading order QCD analysis of the revised CCFR data for xF3 structure function
International Nuclear Information System (INIS)
Kataev, A.L.; Kotikov, A.V.; Parente, G.; Sidorov, A.V.
1997-01-01
The results of the next-to-next-to-leading order QCD analysis of the recently revised experimental data of the CCFR collaboration for the xF 3 structure function using the Jacobi polynomial expansion method are presented. The effects of the higher twist contributions are included into the fits following the infrared renormalon motivated model. It is stressed that at the next-to-next-to-leading order the results for the parameter Λ M -bar S -bar (4) turn out to be almost nonsensitive to the predictions of the infrared renormalon model. The outcomes of our analysis are compared to the ones obtained by the CCFR collaboration itself at the next-to-leading order. (author)
Conference on Convex Analysis and Global Optimization
Pardalos, Panos
2001-01-01
There has been much recent progress in global optimization algo rithms for nonconvex continuous and discrete problems from both a theoretical and a practical perspective. Convex analysis plays a fun damental role in the analysis and development of global optimization algorithms. This is due essentially to the fact that virtually all noncon vex optimization problems can be described using differences of convex functions and differences of convex sets. A conference on Convex Analysis and Global Optimization was held during June 5 -9, 2000 at Pythagorion, Samos, Greece. The conference was honoring the memory of C. Caratheodory (1873-1950) and was en dorsed by the Mathematical Programming Society (MPS) and by the Society for Industrial and Applied Mathematics (SIAM) Activity Group in Optimization. The conference was sponsored by the European Union (through the EPEAEK program), the Department of Mathematics of the Aegean University and the Center for Applied Optimization of the University of Florida, by th...
Dynamical Analysis of the Global Warming
Directory of Open Access Journals (Sweden)
J. A. Tenreiro Machado
2012-01-01
Full Text Available Global warming is a major concern nowadays. Weather conditions are changing, and it seems that human activity is one of the main causes. In fact, since the beginning of the industrial revolution, the burning of fossil fuels has increased the nonnatural emissions of carbon dioxide to the atmosphere. Carbon dioxide is a greenhouse gas that absorbs the infrared radiation produced by the reflection of the sunlight on the Earth’s surface, trapping the heat in the atmosphere. Global warming and the associated climate changes are being the subject of intensive research due to their major impact on social, economic, and health aspects of human life. This paper studies the global warming trend in the perspective of dynamical systems and fractional calculus, which is a new standpoint in this context. Worldwide distributed meteorological stations and temperature records for the last 100 years are analysed. It is shown that the application of Fourier transforms and power law trend lines leads to an assertive representation of the global warming dynamics and a simpler analysis of its characteristics.
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F.M., E-mail: m.lutz@gsi.de [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Lange, Jens Sören, E-mail: Soeren.Lange@exp2.physik.uni-giessen.de [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Pennington, Michael, E-mail: michaelp@jlab.org [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Bettoni, Diego [Istituto Nazionale di Fisica Nucleare, Sezione di Ferrara, 44122 Ferrara (Italy); Brambilla, Nora [Physik Department, Technische Universität München, D-85747 Garching (Germany); Crede, Volker [Department of Physics, Florida State University, Tallahassee, FL 32306 (United States); Eidelman, Simon [Novosibirsk State University, Novosibirsk 630090 (Russian Federation); Budker Istitute of Nuclear Physics SB RAS, Novosibirsk 630090 (Russian Federation); Gillitzer, Albrecht [Institut für Kernphysik, Forschungszentrum Jülich GmbH, D-52425 Jülich (Germany); Gradl, Wolfgang [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55128 Mainz (Germany); Lang, Christian B. [Institut für Physik, Universität Graz, A-8010 Graz (Austria); Metag, Volker [II. Physikalisches Institut, Justus-Liebig-Universität Giessen, D-35392 Giessen (Germany); Nakano, Takashi [Research Center for Nuclear Physics, Osaka University, Osaka 567-0047 (Japan); and others
2016-04-15
We report on the EMMI Rapid Reaction Task Force meeting ‘Resonances in QCD’, which took place at GSI October 12–14, 2015. A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions: • What is needed to understand the physics of resonances in QCD? • Where does QCD lead us to expect resonances with exotic quantum numbers? • What experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy–light and heavy–heavy meson systems, those with charm quarks were the focus. This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.
International Nuclear Information System (INIS)
Zou, L.P.; Zhang, P.M.; Pak, D.G.
2013-01-01
We consider topological structure of classical vacuum solutions in quantum chromodynamics. Topologically non-equivalent vacuum configurations are classified by non-trivial second and third homotopy groups for coset of the color group SU(N) (N=2,3) under the action of maximal Abelian stability group. Starting with explicit vacuum knot configurations we study possible exact classical solutions. Exact analytic non-static knot solution in a simple CP 1 model in Euclidean space–time has been obtained. We construct an ansatz based on knot and monopole topological vacuum structure for searching new solutions in SU(2) and SU(3) QCD. We show that singular knot-like solutions in QCD in Minkowski space–time can be naturally obtained from knot solitons in integrable CP 1 models. A family of Skyrme type low energy effective theories of QCD admitting exact analytic solutions with non-vanishing Hopf charge is proposed
International Nuclear Information System (INIS)
Brodsky, Stanley J.; SLAC
2007-01-01
I discuss a number of novel topics in QCD, including the use of the AdS/CFT correspondence between Anti-de Sitter space and conformal gauge theories to obtain an analytically tractable approximation to QCD in the regime where the QCD coupling is large and constant. In particular, there is an exact correspondence between the fifth-dimension coordinate z of AdS space and a specific impact variable ζ which measures the separation of the quark constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions of mesons and baryons, the fundamental entities which encode hadron properties and allow the computation of exclusive scattering amplitudes. I also discuss a number of novel phenomenological features of QCD. Initial- and final-state interactions from gluon-exchange, normally neglected in the parton model, have a profound effect in QCD hard-scattering reactions, leading to leading-twist single-spin asymmetries, diffractive deep inelastic scattering, diffractive hard hadronic reactions, the breakdown of the Lam Tung relation in Drell-Yan reactions, and nuclear shadowing and non-universal antishadowing--leading-twist physics not incorporated in the light-front wavefunctions of the target computed in isolation. I also discuss tests of hidden color in nuclear wavefunctions, the use of diffraction to materialize the Fock states of a hadronic projectile and test QCD color transparency, and anomalous heavy quark effects. The presence of direct higher-twist processes where a proton is produced in the hard subprocess can explain the large proton-to-pion ratio seen in high centrality heavy ion collisions
International Nuclear Information System (INIS)
Anisovich, V.V.
1989-06-01
Using the language of the quarks and gluons for description of the soft hadron physics it is necessary to take into account two characteristic phenomena which prevent one from usage of QCD Lagrangian in the straightforward way, chiral symmetry breaking, and confinement of colour particles. The topics discussed in this context are: QCD in the domain of soft processes, phenomenological Lagrangian for soft processes and exotic mesons, spectroscopy of low-lying hadrons (mesons, baryons and mesons with heavy quarks - c,b -), confinement forces, spectral integration over quark masses. (author) 3 refs.; 19 figs.; 3 tabs
International Nuclear Information System (INIS)
Shindler, A.
2007-07-01
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
International Nuclear Information System (INIS)
Hansl-Kozanecka, T.
1992-01-01
The phenomenological aspects of Quantum Chromodynamics (QCD) are examined which are relevant for lepton-hadron, electron-positron and hadron-hadron collisions. In deep inelastic scattering the virtual γ or W/Z is used as a probe of the nucleon structure. The strong coupling constant (α s ) measurements via deep inelastic scattering and e + e - annihilation are discussed. Parton-parton collisions (e.g., hard hadron-hadron collisions) are examined as the third regime for QCD tests. (K.A.) 122 refs., 84 figs., 4 tabs
International Nuclear Information System (INIS)
Lippert, Matthew
2009-01-01
We investigated the Sakai-Sugimoto model of large N QCD at nonzero temperature and baryon chemical potential and in the presence of background electric and magnetic fields. We studied the holographic representation of baryons and the deconfinement, chiral-symmetry breaking, and nuclear matter phase transitions. In a background electric field, chiral-symmetry breaking corresponds to an insulator-conductor transition. A magnetic field both catalyzes chiral-symmetry breaking and generates, in the confined phase, a pseudo-scalar gradient or, in the deconfined phase, an axial current. The resulting phase diagram is in qualitative agreement with studies of hot, dense QCD.
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
Analysis of J/psi → etasub(c)γ decay by the method of QCD sum rules
International Nuclear Information System (INIS)
Bejlin, V.A.; Radyushkin, A.V.
1984-01-01
The radiative M1 transitions in charmonium are analyzed by the method of QCD sum rules taking into account nonperturbative corrections O( ). The dependence of the result on the choice of the parameter is investigated. The account of the lower nonperturbative corrections to the amplitude, describing radiation M1-transitions in charmonium, changes slightly the result for the decay widths GITA(J/psi → etasub(c)γ). The calculations show that the values of parameter phi, somewhat larger than the standard, one, result in shifting the theoretical values for GITA(J/psi → etasub(c)γ) in the direction of the experimental one, however no unambiguous conclusion on phi deviation of the standard value can be drawn without account for the contribution from higher dimensions
Analysis of the strong decays Ds3*(2860) → DK, D*K with QCD sum rules
International Nuclear Information System (INIS)
Wang, Zhi-Gang
2016-01-01
In this article, we assign the D s3 * (2860) to be a D-wave c anti s meson, study the hadronic coupling constants G D s3 * (2860)DK and G D s3 * (2860)D * K with the three-point QCD sum rules, and calculate the partial decay widths Γ(D s3 * (2860) → D * K) and Γ(D s3 * (2860) → DK). The predicted ratio R = Γ(D s3 * (2860) → D * K)/Γ(D s3 * (2860) → DK) = 0.57±0.38 cannot reproduce the experimental value R = Br(D sJ * (2860) → D * K)/Br(D sJ * (2860) → DK) = 1.10±0.15±0.19. (orig.)
Analysis of the strong decays Ds3 *(2860) → DK, D*K with QCD sum rules
Wang, Zhi-Gang
2016-10-01
In this article, we assign the D_{s3}^{ast}(2860) to be a D-wave c bar{s} meson, study the hadronic coupling constants G_{D_{s3}^{ast}(2860)DK} and G_{D_{s3}^{ast} (2860)D^{ast}K} with the three-point QCD sum rules, and calculate the partial decay widths Γ (D_{s3}^{ast} (2860) → D^{ast}K) and Γ (D_{s3}^{ast}(2860) → DK) . The predicted ratio R = Γ (D_{s3}^{ast} (2860)→ D^{ast}K)/Γ (D_{s3}^{ast} (2860)→ DK) = 0.57± 0.38 cannot reproduce the experimental value R = Br(D_{sJ}^{ast} (2860)→ D^{ast}K)/Br (D_{sJ}^{ast} (2860)→ DK) = 1.10 ± 0.15 ± 0.19.
Analysis of the strong coupling form factors of ΣbNB and ΣcND in QCD sum rules
Yu, Guo-Liang; Wang, Zhi-Gang; Li, Zhen-Yu
2017-08-01
In this article, we study the strong interaction of the vertices Σ b NB and Σ c ND using the three-point QCD sum rules under two different Dirac structures. Considering the contributions of the vacuum condensates up to dimension 5 in the operation product expansion, the form factors of these vertices are calculated. Then, we fit the form factors into analytical functions and extrapolate them into time-like regions, which gives the coupling constants. Our analysis indicates that the coupling constants for these two vertices are G ΣbNB = 0.43±0.01 GeV-1 and G ΣcND = 3.76±0.05 GeV-1. Supported by Fundamental Research Funds for the Central Universities (2016MS133)
Resolution of ambiguities in perturbative QCD
International Nuclear Information System (INIS)
Nakkagawa, Hisao; Niegawa, Akira.
1984-01-01
In the perturbative QCD analyses of the deeply inelastic processes, the coupling constant depends on at least two mass-scales, the renormalization scale and the factorization scale. By integrating the coupled renormalization group equations with respect to these two mass-scales, the running coupling constant is defined. A perturbative approximation then introduces a new ambiguity, the integration-path dependence, into the theory. We show that the problem of this new ambiguity is resolved by imposing Stevenson's principle of minimal sensitivity. Together with the analogous analysis of the operator matrix element or the cut vertex, we can completely solve the problem of getting an unambiguous perturbative QCD prediction. (author)
A hybrid approach for global sensitivity analysis
International Nuclear Information System (INIS)
Chakraborty, Souvik; Chowdhury, Rajib
2017-01-01
Distribution based sensitivity analysis (DSA) computes sensitivity of the input random variables with respect to the change in distribution of output response. Although DSA is widely appreciated as the best tool for sensitivity analysis, the computational issue associated with this method prohibits its use for complex structures involving costly finite element analysis. For addressing this issue, this paper presents a method that couples polynomial correlated function expansion (PCFE) with DSA. PCFE is a fully equivalent operational model which integrates the concepts of analysis of variance decomposition, extended bases and homotopy algorithm. By integrating PCFE into DSA, it is possible to considerably alleviate the computational burden. Three examples are presented to demonstrate the performance of the proposed approach for sensitivity analysis. For all the problems, proposed approach yields excellent results with significantly reduced computational effort. The results obtained, to some extent, indicate that proposed approach can be utilized for sensitivity analysis of large scale structures. - Highlights: • A hybrid approach for global sensitivity analysis is proposed. • Proposed approach integrates PCFE within distribution based sensitivity analysis. • Proposed approach is highly efficient.
Global meta-analysis of transcriptomics studies.
Directory of Open Access Journals (Sweden)
José Caldas
Full Text Available Transcriptomics meta-analysis aims at re-using existing data to derive novel biological hypotheses, and is motivated by the public availability of a large number of independent studies. Current methods are based on breaking down studies into multiple comparisons between phenotypes (e.g. disease vs. healthy, based on the studies' experimental designs, followed by computing the overlap between the resulting differential expression signatures. While useful, in this methodology each study yields multiple independent phenotype comparisons, and connections are established not between studies, but rather between subsets of the studies corresponding to phenotype comparisons. We propose a rank-based statistical meta-analysis framework that establishes global connections between transcriptomics studies without breaking down studies into sets of phenotype comparisons. By using a rank product method, our framework extracts global features from each study, corresponding to genes that are consistently among the most expressed or differentially expressed genes in that study. Those features are then statistically modelled via a term-frequency inverse-document frequency (TF-IDF model, which is then used for connecting studies. Our framework is fast and parameter-free; when applied to large collections of Homo sapiens and Streptococcus pneumoniae transcriptomics studies, it performs better than similarity-based approaches in retrieving related studies, using a Medical Subject Headings gold standard. Finally, we highlight via case studies how the framework can be used to derive novel biological hypotheses regarding related studies and the genes that drive those connections. Our proposed statistical framework shows that it is possible to perform a meta-analysis of transcriptomics studies with arbitrary experimental designs by deriving global expression features rather than decomposing studies into multiple phenotype comparisons.
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.
2015-02-26
This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.
International Nuclear Information System (INIS)
Konishi, K.
1980-01-01
The author discusses, in an introductory fashion, the latest developments in the study of hadronic jets produced in hard processes, based on perturbative QCD. Emphasis is on jet calculus (and its applications and generalizations), and on the appearance of a parton-like consistent, over-all picture of jet evolution in momentum, colour, and real space-time. (Auth.)
Stirling, William James
1991-12-01
1. Some basic theory. 2. Two important applications: - e+ e- annihilation (LEPSLS) ; deep inelastic scattering (HERA). 3. Other applications..., large Pt jets, W and Z, heavy quark production..., (pp- colliders). In this lecture: some basic theory. 1. QCD as a non abelian gauge field theory. 2. Asymptotic freedom. 3. Beyond leading order - renormalisation schemes. 4. MS.
Renormalization of Hamiltonian QCD
International Nuclear Information System (INIS)
Andrasi, A.; Taylor, John C.
2009-01-01
We study to one-loop order the renormalization of QCD in the Coulomb gauge using the Hamiltonian formalism. Divergences occur which might require counter-terms outside the Hamiltonian formalism, but they can be cancelled by a redefinition of the Yang-Mills electric field.
Phenomenology Using Lattice QCD
Gupta, R.
2005-08-01
This talk provides a brief summary of the status of lattice QCD calculations of the light quark masses and the kaon bag parameter BK. Precise estimates of these four fundamental parameters of the standard model, i.e., mu, md, ms and the CP violating parameter η, help constrain grand unified models and could provide a window to new physics.
Observables of QCD diffraction
Mieskolainen, Mikael; Orava, Risto
2017-03-01
A new combinatorial vector space measurement model is introduced for soft QCD diffraction. The model independent mathematical construction resolves experimental complications; the theoretical framework of the approach includes the Good-Walker view of diffraction, Regge phenomenology together with AGK cutting rules and random fluctuations.
Metzger, W.J.
2003-01-01
Several preliminary QCD results from e+e- interactions at LEP are reported. These include studies of event shape variables, which are used to determine alpha_s and for studies of the validity of power corrections. Further, a study of color reconnection effects in 3-jet Z decays is reported.
International Nuclear Information System (INIS)
Nathan Isgur
1997-01-01
The author presents an idiosyncratic view of baryons which calls for a marriage between quark-based and hadronic models of QCD. He advocates a treatment based on valence quark plus glue dominance of hadron structure, with the sea of q pairs (in the form of virtual hadron pairs) as important corrections
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S
2003-11-19
Theoretical and phenomenological evidence is now accumulating that the QCD coupling becomes constant at small virtuality; i.e., {alpha}{sub s}(Q{sup 2}) develops an infrared fixed point in contradiction to the usual assumption of singular growth in the infrared. For example, the hadronic decays of the {tau} lepton can be used to determine the effective charge {alpha}{sub {tau}}(m{sub {tau}{prime}}{sup 2}) for a hypothetical {tau}-lepton with mass in the range 0 < m{sub {tau}{prime}} < m{sub {tau}}. The {tau} decay data at low mass scales indicates that the effective charge freezes at a value of s = m{sub {tau}{prime}}{sup 2} of order 1 GeV{sup 2} with a magnitude {alpha}{sub {tau}} {approx} 0.9 {+-} 0.1. The near-constant behavior of effective couplings suggests that QCD can be approximated as a conformal theory even at relatively small momentum transfer and why there are no significant running coupling corrections to quark counting rules for exclusive processes. The AdS/CFT correspondence of large N{sub c} supergravity theory in higher-dimensional anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time also has interesting implications for hadron phenomenology in the conformal limit, including an all-orders demonstration of counting rules for exclusive processes and light-front wavefunctions. The utility of light-front quantization and light-front Fock wavefunctions for analyzing nonperturbative QCD and representing the dynamics of QCD bound states is also discussed.
Global plastic models for computerized structural analysis
International Nuclear Information System (INIS)
Roche, R.; Hoffmann, A.
1977-01-01
Two different global models are used in the CEASEMT system for structural analysis, one for the shells analysis and the other for piping analysis (in plastic or creep field). In shell analysis the generalized stresses choosed are the membrane forces Nsub(ij) and bending (including torsion) moments Msub(ij). There is only one yield condition for a normal (to the middle surface) and no integration along the thickness is required. In piping analysis, the choice of generalized stresses is: bending moments, torsional moments, Hoop stress and tension stress. There is only a set of stresses for a cross section and non integration over the cross section area is needed. Connected strains are axis curvature, torsion, uniform strains. The definition of the yield surface is the most important item. A practical way is to use a diagonal quadratic fonction of the stress components. But the coefficients are depending of the shape of the pipe element, especially for curved segments. Indications will be given on the yield fonctions used. Some examples of applications in structural analysis are added to the text [fr
Energy Technology Data Exchange (ETDEWEB)
Benayoun, M.; DelBuono, L. [Paris VI et Paris VII Univs. (France). LPNHE; David, P. [Paris VI et Paris VII Univs. (France). LPNHE; Paris-Diderot Univ. (France). LIED; Jegerlehner, F. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)
2016-05-15
We present an up-to-date analysis of muon g-2 evaluations in terms of Mellin-Barnes moments as they might be useful for lattice QCD calculations of a{sub μ}. The moments up to 4th order are evaluated directly in terms of e{sup +}e{sup -}-annihilation data and improved within the Hidden Local Symmetry (HLS) Model, supplied with appropriate symmetry breaking mechanisms. The model provides a reliable Effective Lagrangian (BHLS) estimate of the two-body channels plus the πππ channel up to 1.05 GeV, just including the φ resonance. The HLS piece accounts for 80% of the contribution to a{sub μ}. The missing pieces are evaluated in the standard way directly in terms of the data. We find that the moment expansion converges well in terms of a few moments. The two types of moments which show up in the Mellin-Barnes representation are calculated in terms of hadronic cross-section data in the timelike region and in terms of the hadronic vacuum polarization (HVP) function in the spacelike region which is accessible to lattice QCD (LQCD). In the Euclidean the first type of moments are the usual Taylor coefficients of the HVP and we show that the second type of moments may be obtained as integrals over the appropriately Taylor truncated HVP function. Specific results for the isovector part of a{sup had}{sub μ} are determined by means of HLS model predictions in close relation to τ-decay spectra.
Global Food Security Support Analysis Data (GFSAD) Crop Mask 2010 Global 1 km V001
National Aeronautics and Space Administration — The NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Global Food Security Support Analysis Data (GFSAD) Crop Mask Global 1 kilometer...
Large Nc QCD at nonzero chemical potential
International Nuclear Information System (INIS)
Cohen, Thomas D.
2004-01-01
The general issue of large N c QCD at nonzero chemical potential is considered with a focus on understanding the difference between large N c QCD with an isospin chemical potential and large N c QCD with a baryon chemical potential. A simple diagrammatic analysis analogous to 't Hooft's analysis at μ=0 implies that the free energy with a given baryon chemical potential is equal to the free energy with an isospin chemical potential of the same value plus 1/N c corrections. Phenomenologically, these two systems behave quite differently. A scenario to explain this difference in light of the diagrammatic analysis is explored. This scenario is based on a phase transition associated with pion condensation when the isospin chemical potential exceeds m π /2; associated with this transition there is breakdown of the 1/N c expansion--in the pion condensed phase there is a distinct 1/N c expansion including a larger set of diagrams. While this scenario is natural, there are a number of theoretical issues which at least superficially challenge it. Most of these can be accommodated. However, the behavior of quenched QCD which raises a number of apparently analogous issues cannot be easily understood completely in terms of an analogous scenario. Thus, the overall issue remains open
Abramowicz, H.; Adamczyk, L.; Adamus, M.; Andreev, V.; Antonelli, S.; Antunovic, B.; Aushev, V.; Aushev, Y.; Baghdasaryan, A.; Begzsuren, K.; Behnke, O.; Behrendt Dubak, A.; Behrens, U.; Belousov, A.; Belov, P.; Bertolin, A.; Bloch, I.; Boos, E.G.; Borras, K.; Boudry, V.; Brandt, G.; Brisson, V.; Britzger, D.; Brock, I.; Brook, N.H.; Brugnera, R.; Bruni, A.; Buniatyan, A.; Bussey, P.J.; Bylinkin, A.; Bystritskaya, L.; Caldwell, A.; Campbell, A.J.; Cantun Avila, K.B.; Capua, M.; Catterall, C.D.; Ceccopieri, F.; Cerny, K.; Chekelian, V.; Chwastowski, J.; Ciborowski, J.; Ciesielski, R.; Contreras, J.G.; Cooper-Sarkar, A.M.; Corradi, M.; Corriveau, F.; Cvach, J.; Dainton, J.B.; Daum, K.; Dementiev, R.K.; Devenish, R.C.E.; Diaconu, C.; Dobre, M.; Dodonov, V.; Dolinska, G.; Dusini, S.; Eckerlin, G.; Egli, S.; Elsen, E.; Favart, L.; Fedotov, A.; Feltesse, J.; Ferencei, J.; Figiel, J.; Fleischer, M.; Fomenko, A.; Foster, B.; Gabathuler, E.; Gach, G.; Gallo, E.; Garfagnini, A.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gizhko, A.; Gladilin, L.K.; Goerlich, L.; Gogitidze, N.; Golubkov, Yu. A.; Gouzevitch, M.; Grab, C.; Grebenyuk, A.; Grebenyuk, J.; Greenshaw, T.; Gregor, I.; Grindhammer, G.; Grzelak, G.; Gueta, O.; Guzik, M.; Gwenlan, C.; Haidt, D.; Hain, W.; Henderson, R.C.W.; Henkenjohann, P.; Hladky, J.; Hochman, D.; Hoffmann, D.; Hori, R.; Horisberger, R.; Hreus, T.; Huber, F.; Ibrahim, Z.A.; Iga, Y.; Ishitsuka, M.; Iudin, A.; Jacquet, M.; Janssen, X.; Januschek, F.; Jomhari, N.Z.; Jung, H.; Kadenko, I.; Kananov, S.; Kapichine, M.; Karshon, U.; Kaur, M.; Kaur, P.; Kiesling, C.; Kisielewska, D.; Klanner, R.; Klein, M.; Klein, U.; Kleinwort, C.; Kogler, R.; Kondrashova, N.; Kononenko, O.; Korol, Ie.; Korzhavina, I.A.; Kostka, P.; Kotanski, A.; Kotz, U.; Kovalchuk, N.; Kowalski, H.; Kretzschmar, J.; Kruger, K.; Krupa, B.; Kuprash, O.; Kuze, M.; Landon, M.P.J.; Lange, W.; Laycock, P.; Lebedev, A.; Levchenko, B.B.; Levonian, S.; Levy, A.; Libov, V.; Limentani, S.; Lipka, K.; Lisovyi, M.; List, B.; List, J.; Lobodzinska, E.; Lobodzinski, B.; Lohr, B.; Lohrmann, E.; Longhin, A.; Lontkovskyi, D.; Lukina, O.Yu.; Makarenko, I.; Malinovski, E.; Malka, J.; Martyn, H.U.; Maxfield, S.J.; Mehta, A.; Mergelmeyer, S.; Meyer, A.B.; Meyer, H.; Meyer, J.; Mikocki, S.; Idris, F.Mohamad; Morozov, A.; Nasir, N.Muhammad; Muller, K.; Myronenko, V.; Nagano, K.; Naumann, Th.; Newman, P.R.; Niebuhr, C.; Nikiforov, A.; Nobe, T.; Notz, D.; Nowak, G.; Nowak, R.J.; Olsson, J.E.; Onishchuk, Yu.; Ozerov, D.; Pahl, P.; Pascaud, C.; Patel, G.D.; Paul, E.; Perez, E.; Perlanski, W.; Petrukhin, A.; Picuric, I.; Pirumov, H.; Pitzl, D.; Pokorny, B.; Pokrovskiy, N.S.; Polifka, R.; Przybycien, M.; Radescu, V.; Raicevic, N.; Ravdandorj, T.; Reimer, P.; Rizvi, E.; Robmann, P.; Roloff, P.; Roosen, R.; Rostovtsev, A.; Rotaru, M.; Rubinsky, I.; Rusakov, S.; Ruspa, M.; Salek, D.; Sankey, D.P.C.; Sauter, M.; Sauvan, E.; Saxon, D.H.; Schioppa, M.; Schmidke, W.B.; Schmitt, S.; Schneekloth, U.; Schoeffel, L.; Schoning, A.; Schorner-Sadenius, T.; Sefkow, F.; Shcheglova, L.M.; Shevchenko, R.; Shkola, O.; Shushkevich, S.; Shyrma, Yu.; Singh, I.; Skillicorn, I.O.; Slominski, W.; Solano, A.; Soloviev, Y.; Sopicki, P.; South, D.; Spaskov, V.; Specka, A.; Stanco, L.; Steder, M.; Stefaniuk, N.; Stella, B.; Stern, A.; Stopa, P.; Straumann, U.; Sykora, T.; Sztuk-Dambietz, J.; Szuba, D.; Szuba, J.; Tassi, E.; Thompson, P.D.; Tokushuku, K.; Tomaszewska, J.; Traynor, D.; Trofymov, A.; Truol, P.; Tsakov, I.; Tseepeldorj, B.; Tsurugai, T.; Turcato, M.; Turkot, O.; Turnau, J.; Tymieniecka, T.; Valkarova, A.; Vallee, C.; Van Mechelen, P.; Vazdik, Y.; Verbytskyi, A.; Viazlo, O.; Walczak, R.; Wan Abdullah, W.A.T.; Wegener, D.; Wichmann, K.; Wing, M.; Wolf, G.; Wunsch, E.; Yamada, S.; Yamazaki, Y.; Zacek, J.; Zakharchuk, N.; Zarnecki, A.F.; Zawiejski, L.; Zenaiev, O.; Zhang, Z.; Zhautykov, B.O.; Zhmak, N.; Zlebcik, R.; Zohrabyan, H.; Zomer, F.; Zotkin, D.S.
2015-12-08
A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current $e^{\\pm}p$ scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb$^{-1}$ and span six orders of magnitude in negative four-momentum-transfer squared, $Q^2$, and Bjorken $x$. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisatio...
Global sensitivity analysis using polynomial chaos expansions
International Nuclear Information System (INIS)
Sudret, Bruno
2008-01-01
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices
Global sensitivity analysis using polynomial chaos expansions
Energy Technology Data Exchange (ETDEWEB)
Sudret, Bruno [Electricite de France, R and D Division, Site des Renardieres, F 77818 Moret-sur-Loing Cedex (France)], E-mail: bruno.sudret@edf.fr
2008-07-15
Global sensitivity analysis (SA) aims at quantifying the respective effects of input random variables (or combinations thereof) onto the variance of the response of a physical or mathematical model. Among the abundant literature on sensitivity measures, the Sobol' indices have received much attention since they provide accurate information for most models. The paper introduces generalized polynomial chaos expansions (PCE) to build surrogate models that allow one to compute the Sobol' indices analytically as a post-processing of the PCE coefficients. Thus the computational cost of the sensitivity indices practically reduces to that of estimating the PCE coefficients. An original non intrusive regression-based approach is proposed, together with an experimental design of minimal size. Various application examples illustrate the approach, both from the field of global SA (i.e. well-known benchmark problems) and from the field of stochastic mechanics. The proposed method gives accurate results for various examples that involve up to eight input random variables, at a computational cost which is 2-3 orders of magnitude smaller than the traditional Monte Carlo-based evaluation of the Sobol' indices.
Generalized parton distributions and transversity from full lattice QCD
Göckeler, M.; Hägler, Ph.; Horsley, R.; Pleiter, D.; Rakow, P. E. L.; Schäfer, A.; Schierholz, G.; Zanotti, J. M.; Qcdsf Collaboration
2005-06-01
We present here the latest results from the QCDSF collaboration for moments of gener- alized parton distributions and transversity in two-flavour QCD, including a preliminary analysis of the pion mass dependence.
Non-leading contributions in QCD: Summing the perturbative series
International Nuclear Information System (INIS)
Trentadue, L.
1984-01-01
This paper presents the results of a systematic analysis of the leading and non-leading contributions in perturbative QCD and addresses the question of logarithmic contributions to all orders of the perturbative series
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
International Nuclear Information System (INIS)
Espriu, D.
2003-01-01
QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)
Updated Global Analysis of Higgs Couplings
Ellis, John
2013-01-01
There are many indirect and direct experimental indications that the new particle H discovered by the ATLAS and CMS Collaborations has spin zero and (mostly) positive parity, and that its couplings to other particles are correlated with their masses. Beyond any reasonable doubt, it is a Higgs boson, and here we examine the extent to which its couplings resemble those of the single Higgs boson of the Standard Model. Our global analysis of its couplings to fermions and massive bosons determines that they have the same relative sign as in the Standard Model. We also show directly that these couplings are highly consistent with a dependence on particle masses that is linear to within a few %, and scaled by the conventional electroweak symmetry-breaking scale to within 10%. We also give constraints on loop-induced couplings, on the total Higgs decay width, and on possible invisible decays of the Higgs boson under various assumptions.
Introduction to finite temperature and finite density QCD
International Nuclear Information System (INIS)
Kitazawa, Masakiyo
2014-01-01
It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)
International Nuclear Information System (INIS)
Kharzeev, D.
2004-01-01
In this talk I discuss recent advances in Quantum Chromo-Dynamics, in particular the progress in understanding the collective dynamics of the theory. I emphasise the significance of the RHIC program for establishing the properties of hot and dense QCD matter and for understanding the dynamics of the theory at the high parton density, strong color field frontier. Hopes and expectations for the future are discussed as well
International Nuclear Information System (INIS)
Nachtmann, O.
1992-01-01
The modern theory of strong interactions - Quantum Chromodynamics (QCD), where quarks and gluons carrying the 'colour' quantum number play the essential role, is twenty years old. This birthday was duly celebrated at RWTH Aachen from 9-13 June, where recurring themes were - what has been achieved in the past twenty years?, where do we stand?, and what are the perspectives for the future?
International Nuclear Information System (INIS)
Bjorken, J.D.
1996-10-01
New directions for exploring QCD at future high-energy colliders are sketched. These include jets within jets. BFKL dynamics, soft and hard diffraction, searches for disoriented chiral condensate, and doing a better job on minimum bias physics. The new experimental opportunities include electron-ion collisions at HERA, a new collider detector at the C0 region of the TeVatron, and the FELIX initiative at the LHC
International Nuclear Information System (INIS)
Gervais, J.L.; Neveu, A.
1980-01-01
Recent works of the authors on string interpretation of the Wilson loop operators in QCD are reviewed in a self-contained fashion. Although most of the results habe already appeared in print, some new material is presented in renormalization of the Wilson loop operator and on the use of light-cone expansion to derive a linear string-like equation in light-cone formalism. (orig.)
Skands, Peter
2012-01-01
These lectures were originally given at TASI and are directed at a level suitable for graduate students in High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD), focusing on collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into five main areas: 1) fundamentals, 2) fixed-order pertu...
International Nuclear Information System (INIS)
Gottlieb, S.
1992-01-01
Increased computer power is essential for future progress in lattice gauge theory and for other Grand challenge applications. We address the physics that can be done with a computer capable of sustaining 1 Teraflops for QCD and the technology that will make it possible to construct such a computer within the next three years. Our collaboration has proposed to build a computer based on the Thinking Machines CM5 communication network, but with nodes 10 times faster
Global Surface Warming Hiatus Analysis Data
National Oceanic and Atmospheric Administration, Department of Commerce — These data were used to conduct the study of the global surface warming hiatus, an apparent decrease in the upward trend of global surface temperatures since 1998....
AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks
International Nuclear Information System (INIS)
Albacete, Javier L.; Armesto, Nestor; Salgado, Carlos A.; Milhano, Jose Guilherme; Quiroga Arias, Paloma
2011-01-01
We present a global analysis of available data on inclusive structure functions and reduced cross sections measured in electron-proton scattering at small values of Bjorken-x, x<0.01, including the latest data from HERA on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling Balitsky-Kovchegov equation for the description of the small-x dynamics. We improve our previous studies by including the heavy quark (charm and beauty) contribution to the reduced cross sections, and also by considering a variable flavor scheme for the running of the coupling. We obtain a good description of the data, with the fit parameters remaining stable with respect to our previous analyses where only light quarks were considered. The inclusion of the heavy quark contributions resulted in a good description of available experimental data for the charm component of the structure function and reduced cross section provided the initial transverse distribution of heavy quarks was allowed to differ from (more specifically, to have a smaller radius than) that of the light flavors. (orig.)
AAMQS: A non-linear QCD analysis of new HERA data at small-x including heavy quarks
Energy Technology Data Exchange (ETDEWEB)
Albacete, Javier L. [CEA/Saclay, URA 2306, Unite de Recherche Associee au CNRS, Institut de Physique Theorique, Gif-sur-Yvette cedex (France); Armesto, Nestor; Salgado, Carlos A. [Universidade de Santiago de Compostela, Departamento de Fisica de Particulas and IGFAE, Santiago de Compostela (Spain); Milhano, Jose Guilherme [Instituto Superior Tecnico (IST), Universidade Tecnica de Lisboa, CENTRA, Lisboa (Portugal); Theory Unit, CERN, Physics Department, Geneve 23 (Switzerland); Quiroga Arias, Paloma [UPMC Univ. Paris 6 and CNRS UMR7589, LPTHE, Paris (France)
2011-07-15
We present a global analysis of available data on inclusive structure functions and reduced cross sections measured in electron-proton scattering at small values of Bjorken-x, x<0.01, including the latest data from HERA on reduced cross sections. Our approach relies on the dipole formulation of DIS together with the use of the non-linear running coupling Balitsky-Kovchegov equation for the description of the small-x dynamics. We improve our previous studies by including the heavy quark (charm and beauty) contribution to the reduced cross sections, and also by considering a variable flavor scheme for the running of the coupling. We obtain a good description of the data, with the fit parameters remaining stable with respect to our previous analyses where only light quarks were considered. The inclusion of the heavy quark contributions resulted in a good description of available experimental data for the charm component of the structure function and reduced cross section provided the initial transverse distribution of heavy quarks was allowed to differ from (more specifically, to have a smaller radius than) that of the light flavors. (orig.)
International Nuclear Information System (INIS)
Baker, M.; Ball, J.S.; Zachariasen, F.
1991-01-01
We review the attempts to use dual (electric) vector potentials rather than the standard magnetic vector potentials to describe QCD, particularly in the infrared regime. The use of dual potentials is motivated by the fact that in classical electrodynamics, in a medium with a dielectric constant vanishing at small momenta (as is believed to be the case in QCD), electric potentials provide a far more convenient language than do magnetic potentials. To begin with, we outline attempts to construct the QCD Lagrangian in terms of dual potentials and describe the various possibilities, their shortcomings and advantages, which so far exist. We then proceed to use the most attractive (albeit consistent as a field theory only at the tree level) of these Lagrangians in a number of applications. We show that it describes a non-Abelian dual superconductor (so that it automatically confines color), derive the static quark-antiquark potential, and various temperature dependent effects, such as deconfinement and chiral symmetry breaking. (orig.)
QCD: Renormalization for the practitioner
International Nuclear Information System (INIS)
Pascual, P.; Tarrach, R.
1984-01-01
These notes correspond to a GIFT (Grupo Interuniversitario de Fisica Teorica) course which was given by us in autumn 1983 at the University of Barcelona. Their main subject is renormalization in perturbative QCD and only the last chapter goes beyond perturbation theory. They are essentially self contained and their aim is to teach the student the techniques of perturbative QCD and the QCD sum rules. (orig./HSI)
Analysis of Globalization, the Planet and Education
Tsegay, Samson Maekele
2016-01-01
Thorough the framework of theories analyzing globalization and education, this paper focuses on the intersection among globalization, the environment and education. This paper critically analyzes how globalization could affect environmental devastation, and explore the role of pedagogies that could foster planetary citizenship by exposing…
Remark on the Ansatz for IR behaviour of gluon propagator in QCD
International Nuclear Information System (INIS)
Tran Huu Phat; Nguyen Tuan Anh.
1996-10-01
It is shown that if in the IR region the gluon propagator of QCD behaves like D(k) = μ 2 δ(k) then the minimum of effective potential would correspond to the vanishing value of μ in the global color symmetry model (GCS) of QCD. (author). 10 refs, 1 fig
Light hadron spectrum from quenched lattice QCD. Results from the CP-PACS
International Nuclear Information System (INIS)
Yoshie, Tomoteru
2001-01-01
Deriving the light hadron spectrum from first principles of QCD has been a fundamental issue in elementary particle physics since the mid-1970s, when QCD was established. With this goal in mind, we have carried out large-scale simulations of lattice QCD on the CP-PACS computer. In this article, we present results for the light hadron spectrum derived in the quenched approximation to lattice QCD. We find that although the global structure of the observed spectrum is reproduced, the quenched spectrum systematically deviates from experiment when examined with an accuracy at better than a 10% level. Results for light quark masses are also reported. Another simulation of full QCD done recently (also on the CP-PACS computer) shows indications that the discrepancy observed in quenched QCD is significantly reduced by the introduction of two flavors of light dynamical quarks. (author)
Experimental application of QCD antennas
International Nuclear Information System (INIS)
Bobrovskyi, Sergei
2010-02-01
A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)
Meyer, C; The ATLAS collaboration
2014-01-01
The ATLAS collaboration has performed studies of a wide range of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of underlying event and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for determination of parton density functions. Measurements of isolated inclusive and di-photons cross sections for high transverse momentum photons test theoretical predictions of perturbative QCD and constrain parton density functions. An overview of these results is given.
Experimental application of QCD antennas
Energy Technology Data Exchange (ETDEWEB)
Bobrovskyi, Sergei
2010-02-15
A serious problem in searches for new physics at the LHC is the rejection of QCD induced multijet events. In this thesis the formalism of QCD antenna variables based on the SPHEL approximation of QCD matrix elements is applied for the rst time on experimentally reconstructed jets in order to discriminate QCD from supersymmetric processes. The new observables provide additional information with respect to traditional event shape variables. Albeit correlated with experimentally measured missing transverse energy, the variables can be used to improve the signal to background ratio. (orig.)
Renormalization of Extended QCD2
International Nuclear Information System (INIS)
Fukaya, Hidenori; Yamamura, Ryo
2015-01-01
Extended QCD (XQCD), proposed by Kaplan [D. B. Kaplan, arXiv:1306.5818], is an interesting reformulation of QCD with additional bosonic auxiliary fields. While its partition function is kept exactly the same as that of original QCD, XQCD naturally contains properties of low-energy hadronic models. We analyze the renormalization group flow of 2D (X)QCD, which is solvable in the limit of a large number of colors N c , to understand what kind of roles the auxiliary degrees of freedom play and how the hadronic picture emerges in the low-energy region
Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Schaefer, Andreas
2008-01-01
Some elements and current developments of lattice QCD are reviewed, with special emphasis on hadron structure observables. In principle, high precision experimental and lattice data provide nowadays a very detailled picture of the internal structure of hadrons. However, to relate both, a very good controle of perturbative QCD is needed in many cases. Finally chiral perturbation theory is extremely helpful to boost the precision of lattice calculations. The mutual need and benefit of all four elements: experiment, lattice QCD, perturbative QCD and chiral perturbation theory is the main topic of this review
Energy Technology Data Exchange (ETDEWEB)
Brodsky, Stanley J.; /SLAC /Southern Denmark U., CP3-Origins
2011-08-12
I review a number of topics where conventional wisdom in hadron physics has been challenged. For example, hadrons can be produced at large transverse momentum directly within a hard higher-twist QCD subprocess, rather than from jet fragmentation. Such 'direct' processes can explain the deviations from perturbative QCD predictions in measurements of inclusive hadron cross sections at fixed x{sub T} = 2p{sub T}/{radical}s, as well as the 'baryon anomaly', the anomalously large proton-to-pion ratio seen in high centrality heavy ion collisions. Initial-state and final-state interactions of the struck quark, the soft-gluon rescattering associated with its Wilson line, lead to Bjorken-scaling single-spin asymmetries, diffractive deep inelastic scattering, the breakdown of the Lam-Tung relation in Drell-Yan reactions, as well as nuclear shadowing and antishadowing. The Gribov-Glauber theory predicts that antishadowing of nuclear structure functions is not universal, but instead depends on the flavor quantum numbers of each quark and antiquark, thus explaining the anomalous nuclear dependence measured in deep-inelastic neutrino scattering. Since shadowing and antishadowing arise from the physics of leading-twist diffractive deep inelastic scattering, one cannot attribute such phenomena to the structure of the nucleus itself. It is thus important to distinguish 'static' structure functions, the probability distributions computed from the square of the target light-front wavefunctions, versus 'dynamical' structure functions which include the effects of the final-state rescattering of the struck quark. The importance of the J = 0 photon-quark QCD contact interaction in deeply virtual Compton scattering is also emphasized. The scheme-independent BLM method for setting the renormalization scale is discussed. Eliminating the renormalization scale ambiguity greatly improves the precision of QCD predictions and increases the sensitivity of
Photon-photon inclusive scattering and perturbative QCD
International Nuclear Information System (INIS)
Maor, U.
1988-01-01
Perturbative QCD expectations and problems associated with the study of the photon structure function data are reviewed. An assessment is given for the viability and sensitivity of photon-photon scattering as a decisive tool for the determination of the QCD scale. Particular attention is given to the theoretical problems of singularity cancellations at x = 0 and threshold-associated difficulties at x = 1 and their implications on the actual data analysis. It is concluded that the experimental results, while not providing a decisive verification of QCD at small distances, do add to other independent experiments which are all consistent with the theory and suggest a reasonably well defined QCD scale parameter. The importance of the small Q 2 limit to photon-photon analysis is discussed and the data are examined in an attempt to identify and isolate the contributions of the hadronic and point-like sectors of the target photon. 21 refs., 7 figs. (author)
Energy Technology Data Exchange (ETDEWEB)
Henner, V.K. [University of Louisville, Department of Physics, Louisville, KY (United States); Perm State University, Department of Theoretical Physics, Perm (Russian Federation); Perm State Technical University, Department of Mathematics, Perm (Russian Federation); Davis, C.L. [University of Louisville, Department of Physics, Louisville, KY (United States); Belozerova, T.S. [Perm State University, Department of Theoretical Physics, Perm (Russian Federation)
2015-10-15
The first part of our analysis uses the wavelet method to compare the quantum chromodynamic (QCD) prediction for the ratio of hadronic to muon cross sections in electron-positron collisions, R, with experimental data for R over a center of mass energy range up to about 7 GeV. A direct comparison of the raw experimental data and the QCD prediction is difficult because the data have a wide range of structures and large statistical errors and the QCD description contains sharp quark-antiquark thresholds. However, a meaningful comparison can be made if a type of ''smearing'' procedure is used to smooth out rapid variations in both the theoretical and experimental values of R. A wavelet analysis (WA) can be used to achieve this smearing effect. The second part of the analysis concentrates on the 3.0-6.0 GeV energy region which includes the relatively wide charmonium resonances ψ(1{sup -}). We use the wavelet methodology to distinguish these resonances from experimental noise, background and from each other, allowing a reliable determination of the parameters of these states. Both analyses are examples of the usefulness of WA in extracting information in a model independent way from high energy physics data. (orig.)
Stability of fundamental couplings: A global analysis
Martins, C. J. A. P.; Pinho, A. M. M.
2017-01-01
Astrophysical tests of the stability of fundamental couplings are becoming an increasingly important probe of new physics. Motivated by the recent availability of new and stronger constraints we update previous works testing the consistency of measurements of the fine-structure constant α and the proton-to-electron mass ratio μ =mp/me (mostly obtained in the optical/ultraviolet) with combined measurements of α , μ and the proton gyromagnetic ratio gp (mostly in the radio band). We carry out a global analysis of all available data, including the 293 archival measurements of Webb et al. and 66 more recent dedicated measurements, and constraining both time and spatial variations. While nominally the full data sets show a slight statistical preference for variations of α and μ (at up to two standard deviations), we also find several inconsistencies between different subsets, likely due to hidden systematics and implying that these statistical preferences need to be taken with caution. The statistical evidence for a spatial dipole in the values of α is found at the 2.3 sigma level. Forthcoming studies with facilities such as ALMA and ESPRESSO should clarify these issues.
QCD: Questions, challenges, and dilemmas
International Nuclear Information System (INIS)
Bjorken, J.
1996-11-01
An introduction to some outstanding issues in QCD is presented, with emphasis on work by Diakonov and co-workers on the influence of the instanton vacuum on low-energy QCD observables. This includes the calculation of input valence-parton distributions for deep-inelastic scattering. 35 refs., 3 figs
CERN. Geneva
2013-01-01
Perturbative QCD is the general theoretical framework for describing hard scattering processes yielding multiparticle production at hadron colliders. In these lectures, we shall introduce fundamental features of perturbative QCD and describe its application to several high energy collider processes, including jet production in electron-positron annihilation, deep inelastic scattering, Higgs boson and gauge boson production at the LHC.
Experimental Summary Moriond QCD 2007
Rolandi, Gigi
2007-01-01
More than 90 speakers gave a presentation at this years Moriond QCD conference and more than 60 talks reported the experimental status and perspectives on Standard Model, especially QCD, search for new physics, quark spectroscopy and Heavy Ions physics. I summarize what I consider the highlights of these presentations.
Nuclear properties from perturbative QCD
International Nuclear Information System (INIS)
Close, F.E.; Roberts, R.G.; Ross, G.G.
1986-01-01
Two apparently different descriptions of quark distributions in a nucleus may in fact be connected. A ''duality'' between the QCD approach and the conventional model of nucleon binding leads to nuclear properties being simply related to the anomalous dimensions of QCD. (orig.)
Quarklei: nuclear physics from QCD
International Nuclear Information System (INIS)
Goldman, T.
1985-01-01
The difficulties posed for nuclear physics by either recognizing or ignoring QCD, are discussed. A QCD model for nuclei is described. A crude approximation is shown to qualitatively reproduce saturation of nuclear binding energies and the EMC effect. The model is applied seriously to small nuclei, and to hypernuclei
Energy Technology Data Exchange (ETDEWEB)
Brodsky, S.
2004-11-30
In these lectures, I survey a number of applications of light-front methods to hadron and nuclear physics phenomenology and dynamics, including light-front statistical physics. Light-front Fock-state wavefunctions provide a frame-independent representation of hadrons in terms of their fundamental quark and gluon degrees of freedom. Nonperturbative methods for computing LFWFs in QCD are discussed, including string/gauge duality which predicts the power-law fall-off at high momentum transfer of light-front Fock-state hadronic wavefunctions with an arbitrary number of constituents and orbital angular momentum. The AdS/CFT correspondence has important implications for hadron phenomenology in the conformal limit, including an all-orders derivation of counting rules for exclusive processes. One can also compute the hadronic spectrum of near-conformal QCD assuming a truncated AdS/CFT space. Given the LFWFs, one can compute form factors, heavy hadron decay amplitudes, hadron distribution amplitudes, and the generalized parton distributions underlying deeply virtual Compton scattering. The quantum fluctuations represented by the light-front Fock expansion leads to novel QCD phenomena such as color transparency, intrinsic heavy quark distributions, diffractive dissociation, and hidden-color components of nuclear wavefunctions. A new test of hidden color in deuteron photodisintegration is proposed. The origin of leading-twist phenomena such as the diffractive component of deep inelastic scattering, single-spin asymmetries, nuclear shadowing and antishadowing is also discussed; these phenomena cannot be described by light-front wavefunctions of the target computed in isolation. Part of the anomalous NuTeV results for the weak mixing angle {theta}{sub W} could be due to the non-universality of nuclear antishadowing for charged and neutral currents.
International Nuclear Information System (INIS)
Kataev, A.L; Parente, G.; Sidorov, A.V.
1999-05-01
The more detailed next-to-next-to-leading order (NNLO) QCD analysis of the experimental data of the CCFR collaboration for the xF 3 structure function is performed. The factorization scale uncertainties are analyzed. The theoretical ambiguities of the results of our NNLO fits are estimated by means of the Pade resummation technique. The NNLO and the N 3 LO α s (Q 2 ) MS-matching conditions are used. In the process of the fits we are taking into account the twist-4 1/Q 2 -terms. We found that the amplitude of the x-shape of the twist-4 factor is consequently decreasing at the NLO and NNLO, though some remaining twist-4 structure seems to retain at the NNLO in the case when only statistical uncertainties are taken into account. The question of the stability of these results to the application of the [0/2] Pade resummation technique is considered. Our NNLO results for α s (M z ) values, extracted from the CCFR xF 3 data, are α s (M z ) = 0.118 ± 0.002(stat) ± 0.005(syst) ± 0.003(theory) provided the twist-4 contributions are fixed through the infrared renormalon model and α s (M z ) 0.121 -0.010 +0.007 (stat)±0.005(syst)±0.003(theory) provided the twist-4 terms are considered as the free parameters. (author)
International Nuclear Information System (INIS)
Sonoda, Hidenori
1992-01-01
We give a formula for the derivatives of a correlation function of composite operators with respect to the parameters (i.e. the strong fine structure constant and the quark mass) of QCD in four- dimensional euclidean space. The formula is given as spatial integration of the operator conjugate to a parameter. The operator product of a composite operator and a conjugate operator has an unintegrable part, and the formula requires divergent subtractions. By imposing consistency conditions we drive a relation between the anomalous dimensions of the composite operators and the unintegrable part of the operator product coefficients. (orig.)
International Nuclear Information System (INIS)
Reya, E.
1982-01-01
The some of motivations for color and the numerous qualitative successes of QCD are presented. Non-leading higher order contributions to the (x, Q 2 )-dependence of scaling violations of non-singlet and singlet structure functions are discussed, especially non-perturbative correction to deep inelastic processes such as higher twist contributions. Finally the topic of how to account theoretically for the existence of free fractionally charged particles by concentrating mainly on spontaneously breaking SU(3) color is presented. (M.F.W.)
Spring and Its Global Echo: Quantitative Analysis
Directory of Open Access Journals (Sweden)
A. V. Korotayev
2017-01-01
Full Text Available It is shown that the Arab Spring acted as a trigger for a global wave of socio-political destabilization, which signifi cantly exceeded the scale of the Arab Spring itself and affected absolutely all world-system zones. Only in 2011 the growth of the global number of largescale anti-government demonstrations, riots and political strikes was to a high degree (although not entirely due to their growth in the Arab world. In the ensuing years, the Arab countries rather made a negative contribution to a very noticeable further increase in the global number of large-scale anti-government demonstrations, riots and general strikes (the global intensity of all these three important types of socio-political destabilization continued to grow despite the decline in the Arab world. Thus, for all these three important indicators of sociopolitical destabilization, the scale of the global echo of the Arab Spring has overshadowed the scale of the Arab Spring itself. Only as regards the fourth considered indicator (major terrorist attacks / guerrilla warfare the scale of the global echo for the entire period considered did not overshadow the scale of the Arab Spring (and, incidentally, «Winter» - and in 2014-2015 Arab countries continued to make a disproportionate contribution to the historically record global values of this sad indicator – global number of major terrorist attacks/ guerilla warfare. To conclude, triggered by the Arab Spring, the global wave of socio-political destabilization led after 2010 to a very signifi cant growth of socio-political instability in absolutely all World System zones. However, this global destabilization wave manifested itself in different World System zones in different ways and not completely synchronously.
Studies of QCD structure in high-energy collisions
Energy Technology Data Exchange (ETDEWEB)
Nadolsky, Pavel M. [Southern Methodist Univ., Dallas, TX (United States)
2016-06-26
”Studies of QCD structure in high-energy collisions” is a research project in theoretical particle physics at Southern Methodist University funded by US DOE Award DE-SC0013681. The award furnished bridge funding for one year (2015/04/15-2016/03/31) between the periods funded by Nadolsky’s DOE Early Career Research Award DE-SC0003870 (in 2010-2015) and a DOE grant DE-SC0010129 for SMU Department of Physics (starting in April 2016). The primary objective of the research is to provide theoretical predictions for Run-2 of the CERN Large Hadron Collider (LHC). The LHC physics program relies on state-of-the-art predictions in the field of quantum chromodynamics. The main effort of our group went into the global analysis of parton distribution functions (PDFs) employed by the bulk of LHC computations. Parton distributions describe internal structure of protons during ultrarelivistic collisions. A new generation of CTEQ parton distribution functions (PDFs), CT14, was released in summer 2015 and quickly adopted by the HEP community. The new CT14 parametrizations of PDFs were obtained using benchmarked NNLO calculations and latest data from LHC and Tevatron experiments. The group developed advanced methods for the PDF analysis and estimation of uncertainties in LHC predictions associated with the PDFs. We invented and refined a new ’meta-parametrization’ technique that streamlines usage of PDFs in Higgs boson production and other numerous LHC processes, by combining PDFs from various groups using multivariate stochastic sampling. In 2015, the PDF4LHC working group recommended to LHC experimental collaborations to use ’meta-parametrizations’ as a standard technique for computing PDF uncertainties. Finally, to include new QCD processes into the global fits, our group worked on several (N)NNLO calculations.
Studies of QCD structure in high-energy collisions
International Nuclear Information System (INIS)
Nadolsky, Pavel M.
2016-01-01
''Studies of QCD structure in high-energy collisions'' is a research project in theoretical particle physics at Southern Methodist University funded by US DOE Award DE-SC0013681. The award furnished bridge funding for one year (2015/04/15-2016/03/31) between the periods funded by Nadolsky's DOE Early Career Research Award DE-SC0003870 (in 2010-2015) and a DOE grant DE-SC0010129 for SMU Department of Physics (starting in April 2016). The primary objective of the research is to provide theoretical predictions for Run-2 of the CERN Large Hadron Collider (LHC). The LHC physics program relies on state-of-the-art predictions in the field of quantum chromodynamics. The main effort of our group went into the global analysis of parton distribution functions (PDFs) employed by the bulk of LHC computations. Parton distributions describe internal structure of protons during ultrarelivistic collisions. A new generation of CTEQ parton distribution functions (PDFs), CT14, was released in summer 2015 and quickly adopted by the HEP community. The new CT14 parametrizations of PDFs were obtained using benchmarked NNLO calculations and latest data from LHC and Tevatron experiments. The group developed advanced methods for the PDF analysis and estimation of uncertainties in LHC predictions associated with the PDFs. We invented and refined a new 'meta-parametrization' technique that streamlines usage of PDFs in Higgs boson production and other numerous LHC processes, by combining PDFs from various groups using multivariate stochastic sampling. In 2015, the PDF4LHC working group recommended to LHC experimental collaborations to use 'meta-parametrizations' as a standard technique for computing PDF uncertainties. Finally, to include new QCD processes into the global fits, our group worked on several (N)NNLO calculations.
Modelling and analysis of global coal markets
International Nuclear Information System (INIS)
Trueby, Johannes
2013-01-01
International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global
Modelling and analysis of global coal markets
Energy Technology Data Exchange (ETDEWEB)
Trueby, Johannes
2013-01-17
International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global
Multitarget global sensitivity analysis of n-butanol combustion.
Zhou, Dingyu D Y; Davis, Michael J; Skodje, Rex T
2013-05-02
A model for the combustion of butanol is studied using a recently developed theoretical method for the systematic improvement of the kinetic mechanism. The butanol mechanism includes 1446 reactions, and we demonstrate that it is straightforward and computationally feasible to implement a full global sensitivity analysis incorporating all the reactions. In addition, we extend our previous analysis of ignition-delay targets to include species targets. The combination of species and ignition targets leads to multitarget global sensitivity analysis, which allows for a more complete mechanism validation procedure than we previously implemented. The inclusion of species sensitivity analysis allows for a direct comparison between reaction pathway analysis and global sensitivity analysis.
Integrated risk analysis of global climate change
International Nuclear Information System (INIS)
Shlyakhter, Alexander; Wilson, Richard; Valverde A, L.J. Jr.
1995-01-01
This paper discusses several factors that should be considered in integrated risk analyses of global climate change. We begin by describing how the problem of global climate change can be subdivided into largely independent parts that can be linked together in an analytically tractable fashion. Uncertainty plays a central role in integrated risk analyses of global climate change. Accordingly, we consider various aspects of uncertainty as they relate to the climate change problem. We also consider the impacts of these uncertainties on various risk management issues, such as sequential decision strategies, value of information, and problems of interregional and intergenerational equity. (author)
Tevatron-for-LHC Report of the QCD Working Group
Energy Technology Data Exchange (ETDEWEB)
Albrow, Michael G.; Begel, M.; Bourilkov, D.; Campanelli, M.; Chlebana, F.; De Roeck, A.; Dittmann, J.R.; Ellis, S.D.; Field, B.; Field, R.; Gallinaro, M.; /Fermilab
2006-10-01
The experiments at Run 2 of the Tevatron have each accumulated over 1 fb{sup -1} of high-transverse momentum data. Such a dataset allows for the first precision (i.e. comparisons between theory and experiment at the few percent level) tests of QCD at a hadron collider. While the Large Hadron Collider has been designed as a discovery machine, basic QCD analyses will still need to be performed to understand the working environment. The Tevatron-for-LHC workshop was conceived as a communication link to pass on the expertise of the Tevatron and to test new analysis ideas coming from the LHC community. The TeV4LHC QCD Working Group focused on important aspects of QCD at hadron colliders: jet definitions, extraction and use of Parton Distribution Functions, the underlying event, Monte Carlo tunes, and diffractive physics. This report summarizes some of the results achieved during this workshop.
Global sensitivity analysis in wind energy assessment
Tsvetkova, O.; Ouarda, T. B.
2012-12-01
Wind energy is one of the most promising renewable energy sources. Nevertheless, it is not yet a common source of energy, although there is enough wind potential to supply world's energy demand. One of the most prominent obstacles on the way of employing wind energy is the uncertainty associated with wind energy assessment. Global sensitivity analysis (SA) studies how the variation of input parameters in an abstract model effects the variation of the variable of interest or the output variable. It also provides ways to calculate explicit measures of importance of input variables (first order and total effect sensitivity indices) in regard to influence on the variation of the output variable. Two methods of determining the above mentioned indices were applied and compared: the brute force method and the best practice estimation procedure In this study a methodology for conducting global SA of wind energy assessment at a planning stage is proposed. Three sampling strategies which are a part of SA procedure were compared: sampling based on Sobol' sequences (SBSS), Latin hypercube sampling (LHS) and pseudo-random sampling (PRS). A case study of Masdar City, a showcase of sustainable living in the UAE, is used to exemplify application of the proposed methodology. Sources of uncertainty in wind energy assessment are very diverse. In the case study the following were identified as uncertain input parameters: the Weibull shape parameter, the Weibull scale parameter, availability of a wind turbine, lifetime of a turbine, air density, electrical losses, blade losses, ineffective time losses. Ineffective time losses are defined as losses during the time when the actual wind speed is lower than the cut-in speed or higher than the cut-out speed. The output variable in the case study is the lifetime energy production. Most influential factors for lifetime energy production are identified with the ranking of the total effect sensitivity indices. The results of the present
Global Analysis of Photosynthesis Transcriptional Regulatory Networks
Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.
2014-01-01
Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406
Global analysis of photosynthesis transcriptional regulatory networks.
Directory of Open Access Journals (Sweden)
Saheed Imam
2014-12-01
Full Text Available Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888, which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.
State of the Climate - Global Analysis
National Oceanic and Atmospheric Administration, Department of Commerce — The State of the Climate is a collection of periodic summaries recapping climate-related occurrences on both a global and national scale. The State of the Climate...
International Nuclear Information System (INIS)
Ali, A.; Kramer, G.
2010-12-01
The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e + e - collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W ± ,Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ali, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kramer, G. [Hamburg Univ. (Germany). II. Inst. fuer Theoretische Physik
2010-12-15
The observation of quark and gluon jets has played a crucial role in establishing Quantum Chromodynamics [QCD] as the theory of the strong interactions within the Standard Model of particle physics. The jets, narrowly collimated bundles of hadrons, reflect configurations of quarks and gluons at short distances. Thus, by analysing energy and angular distributions of the jets experimentally, the properties of the basic constituents of matter and the strong forces acting between them can be explored. In this review we summarise the properties of quark and gluon jets and the impact of their observation on Quantum Chromodynamics, primarily the discovery of the gluons as the carriers of the strong force. Focusing on these basic points, jets in e{sup +}e{sup -} collisions will be in the foreground of the discussion. In addition we will delineate the role of jets as tools for exploring other particle aspects in ep and pp/p anti p collisions - quark and gluon densities in protons, measurements of the QCD coupling, fundamental 2-2 quark/gluon scattering processes, but also the impact of jet decays of top quarks, and W{sup {+-}},Z bosons on the electroweak sector. The presentation to a large extent is formulated in a non-technical language with the intent to recall the significant steps historically and convey the significance of this field also to communities beyond high energy physics. (orig.)
International Nuclear Information System (INIS)
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-01-01
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results
Singlet axial constant from QCD sum rules
International Nuclear Information System (INIS)
Belitskij, A.V.; Teryaev, O.V.
1995-01-01
We analyze the singlet axial form factor of the proton for small momentum transferred in the framework of QCD sum rules using the interpolating nucleon current which explicitly accounts for the gluonic degrees of freedom. As the result we come to the quantitative prediction of the singlet axial constant. It is shown that the bilocal power corrections play the most important role in the analysis. 21 refs., 3 figs
Land Tenure, Gender, and Globalization : Research and Analysis ...
International Development Research Centre (IDRC) Digital Library (Canada)
Land Tenure, Gender, and Globalization : Research and Analysis from Africa, Asia, and Latin America. Couverture du livre Land Tenure, Gender, and Globalization : Research and Analysis from Africa. Directeur(s) : Dzodzi Tsikata et Pamela Golah. Maison(s) d'édition : Zubaan, CRDI. 29 août 2009. ISBN : 9788189884727.
QCD Sum Rule External Field Approach and Vacuum Susceptibilities
Institute of Scientific and Technical Information of China (English)
ZONG Hong-Shi; PING Jia-Lun; CHANG Chao-His; WANG Fan; ZHAO En-Guang
2002-01-01
Based on QCD sum rule three-point and two-point external field formulas respectively, the vector vacuumsusceptibilities are calculated at the mean-field level in the framework of the global color symmetry model. It is shownthat the above two approaches of determination of the vector vacuum susceptibility may lead to different results. Thereason of this contradiction is discussed.
Global Analysis of a Planetary Gear Train
Directory of Open Access Journals (Sweden)
Tongjie Li
2014-01-01
Full Text Available By using the Poincaré-like cell-to-cell mapping method and shooting method, the global characteristics of a planetary gear train are studied based on the torsional vibration model with errors of transmission, time-varying meshing stiffness, and multiple gear backlashes. The study results reveal that the planetary with a certain set of parameters has four coexisting periodic orbits, which are P-1, P-2, P-4, and P-8, respectively. P-1 and P-2 motions are not of long-term stability, P-8 motion is of local stability, and P-4 motion is of global stability. Shooting method does not have the capacity of searching coexisting periodic orbits in a global scope, and it is easy to omit some periodic orbits which are far away from the main gropes of periodic orbits.
Illuminating the photon content of the proton within a global PDF analysis arXiv
Bertone, Valerio; Hartland, Nathan P.; Rojo, Juan
Precision phenomenology at the LHC requires accounting for both higher-order QCD and electroweak corrections as well as for photon-initiated subprocesses. Building upon the recent NNPDF3.1 fit, in this work the photon content of the proton is determined within a global analysis supplemented by the LUXqed constraint relating the photon PDF to lepton-proton scattering structure functions: NNPDF3.1luxQED. The uncertainties on the resulting photon PDF are at the level of a few percent, with photons carrying up to 0.5% of the proton's momentum. We study the phenomenological implications of NNPDF3.1luxQED at the LHC for Drell-Yan, vector boson pair, top quark pair, and Higgs plus vector boson production. We find that photon-initiated contributions can be significant for many processes, leading to corrections of up to 20%. Our results represent a state-of-the-art determination of the partonic structure of the proton including its photon component.
Heavy flavor production in QCD
International Nuclear Information System (INIS)
Hoyer, P.
1989-01-01
In this paper a brief survey is given of the status of heavy quark hadroproduction in QCD. The next-to-leading order calculation allows an estimate of the theoretical uncertainties to be made. They are manageable for top, but considerable for charm. The data on charm continues to show an excess of events at large x F , compared to QCD expectations. This may be linked to the measured anomalous A-dependence of the cross section on nuclear targets, also present at large x F . QCD models for the diffractive production of heavy quarks remain to be tested experimentally
Factorization and pion form factor in QCD
International Nuclear Information System (INIS)
Efremov, A.V.; Radyushkin, A.V.
1979-01-01
The behaviour of the pion electromagnetic form factor (EMFF) in the framework of quantum chromodynamics (QCD) is discussed. Pion is considered to be a quark-antiquark bound state. It is proposed to use an OPE description of the bound state structure by matrix elements of certain local gauge-invariant operators. Short-distance quark interactions is proved using a direct analysis of perturbation theory in the α-parametric representation of the Feynman diagrams. It is shown that the short-distance parton picture privides a self-consistent description of the large Q 2 momentum behaviour of the pion EMFF in QCD. Pion EMFF asymptotics is expressed in terms of fu fundamental constants of the theory
International Nuclear Information System (INIS)
Ali, A.
1981-04-01
The promise of e + e - annihilation as an ideal laboratory to test Quantum Chromodynamics, QCD, has been the dominating theme in elementary particle physics during the last several years. An attempt is made to partially survey the subject in deep perturbative region in e + e - annihilation where theoretical ambiguities are minimal. Topics discussed include a review of the renormalization group methods relevant for e + e - annihilation, total hadronic cross section, jets and large-psub(T) phenomena, non-perturbative quark and gluon fragmentation effects and analysis of the jet distributions measured at DORIS, SPEAR and PETRA. My hope is to review realistic tests of QCD in e + e - annihilation - as opposed to the ultimate tests, which abound in literature. (orig.)
QCD studies at the hadron colliders
International Nuclear Information System (INIS)
Flaugher, B.L.
1990-01-01
Two hadron collider experiments are actively pursuing QCD jet analyses. They are CDF, with a √s = 1800 GeV, and UA2, with a √s = 630 GeV. Recent results from these collaborations are discussed. The inclusive jet spectrum, dijet mass and angular distribution are compared to QCD predictions and used to set limits on quark substructure. Data from both experiments are compared to the O(α s 3 ) calculations for the inclusive jet cross section. Studies of 3-jet, 4-jet and 5-jet events are described. A limit is set on the cross section for double parton scattering from the UA2 4-jet analysis. The inclusive photon cross section has been measured by both CDF and UA2 and is compared to theoretical predictions. 13 refs., 17 figs., 1 tab
Mass and scattering length inequalities in QCD and QCD-like theories
International Nuclear Information System (INIS)
Nussinov, S.; Pennsylvania Univ., Philadelphia; Sathiapalan, B.
1985-01-01
Some observations about mass scattering length inequalities in QCD-like theories are presented. It is shown that the Weingarten mass inequality can be used to argue that global vector symmetries are unbroken in such theories. For QCD, in the limit Nsub(c)->infinite, it is shown that Msub(baryon)>=1/2Nsub(c)Msub(meson), provided there are at least Nsub(c) degenerate flavors of quarks. It is argued that when there are not bound states in a scattering channel, the mass inequalities can be used to derive inequalities beteen scattering lengths. Some rigorous inequalities for two and higher point functions for operators bilinear in currents are derived, and used to extract inequalities between quartic coupling constants. (orig.)
Martens, Pim; Akin, Su-Mia; Maud, Huynen; Mohsin, Raza
2010-09-17
It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all.
Is globalization healthy: a statistical indicator analysis of the impacts of globalization on health
Directory of Open Access Journals (Sweden)
Martens Pim
2010-09-01
Full Text Available Abstract It is clear that globalization is something more than a purely economic phenomenon manifesting itself on a global scale. Among the visible manifestations of globalization are the greater international movement of goods and services, financial capital, information and people. In addition, there are technological developments, more transboundary cultural exchanges, facilitated by the freer trade of more differentiated products as well as by tourism and immigration, changes in the political landscape and ecological consequences. In this paper, we link the Maastricht Globalization Index with health indicators to analyse if more globalized countries are doing better in terms of infant mortality rate, under-five mortality rate, and adult mortality rate. The results indicate a positive association between a high level of globalization and low mortality rates. In view of the arguments that globalization provides winners and losers, and might be seen as a disequalizing process, we should perhaps be careful in interpreting the observed positive association as simple evidence that globalization is mostly good for our health. It is our hope that a further analysis of health impacts of globalization may help in adjusting and optimising the process of globalization on every level in the direction of a sustainable and healthy development for all.
Global Proteome Analysis of Leptospira interrogans
Comparative global proteome analyses were performed on Leptospira interrogans serovar Copenhageni grown under conventional in vitro conditions and those mimicking in vivo conditions (iron limitation and serum presence). Proteomic analyses were conducted using iTRAQ and LC-ESI-tandem mass spectrometr...
Pesznyak, Csilla
The aim of the investigation is to give answer to some questions of the QC in the mega-voltage therapy for the sake of making the treatments more trouble-free. We investigated the terms of the usage of CT and PET/CT equipments in treatment planning that were made originally for diagnostic purposes. We compared the calculation algorithms of the Varian CadPlan(TM) and CMS XiORTM treatment planning systems (TPS) for photon and electron radiations of different energy. We also investigated the terms of usage of the PTW EPID QC PHANTOMRTM in the quality control of the EPID's and the portal images, as well. We laid down the terms in a protocol that make the diagnostic CT and PET/CT equipments capable for radiation treatment planning. The protocols should contain the exact patient setup, the tube voltage, detailed directions for use of patient immobilization tools, the review and use of the necessary QA/QC devices, the time consumption of the procedure, the frequency of controls and the worksheet to be used during the measurements. On the base of the measurements, it can be stated that on photon energies the superposition algorithm can be used for patient treatments in the case of the CMS XiORTM TPS while in the case of Varian CadPlan(TM) TPS the PBMB algorithm is the proper choice. It is not allowed to use the TPS without inhomogeneity correction. The CIRS Thorax IMRT phantom can be used for electron measurement only at higher than 10 MeV since only the Farmer chamber can be inserted into the holes of the phantom. On the base of the electron measurements, it can be stated that both planning systems give good results in soft tissue. In lung equivalent material the calculated values of the Varian CadPlan(TM) are in better agreement with the measured values, but the calculated values behind the bones are not accurate enough. In the QA/QC process the PTW EPID QC PHANTOMRTM is usable not only for the amorphous silicon EPID's but the image quality can be analysed on the video based devices and on EPID's operating with liquid filled ionisation chamber array detector and even on port films. In the protocol for measurements, the usable file format should be given since the DICOM implementation is not complete in the case of these systems.
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
International Nuclear Information System (INIS)
Gross, D.
1979-01-01
An overview of QCD is given, and some of the dynamical issues that arise in attempts to solve this theory are discussed. In particular, attention is focused on the problems that appear in attempts to discuss the structure of low-lying hadrons, e.g. nucleons, on the basis of a color gauge theory of quarks. The picture of hadronic structure developed by Callan, Dashen, and Gross is reviewed; this picture maintains that it presents the qualitative features of hadronic structure emerging in a direct way from first principles. Finally, the relevance of the emerging understanding of the structure of hadrons to the question of what hadronic matter (nuclear or quark matter) might look like at high densities is discussed
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [Tel Aviv Univ. (Israel). School of Physics; Max Planck Institute for Physics, Munich (Germany); Abt, I. [Max Planck Institute for Physics, Munich (Germany); Adamczyk, L. [AGH-Univ. of Science and Technology, Krakow (Poland). Faculty of Physics and Applied Computer Science; Collaboration: H1 and ZEUS Collaborations; and others
2015-06-15
A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current e{sup ±}p scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb{sup -1} and span six orders of magnitude in negative four-momentum-transfer squared, Q{sup 2}, and Bjorken x. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in α{sub s}(M{sub Z}{sup 2})=0.1183±0.0009(exp)±0.0005(model/parameterisation)±0.00 12(hadronisation){sub -0.0030}{sup +0.0037}(scale). An extraction of xF{sub 3}{sup γZ} and results on electroweak unification and scaling violations are also presented.
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [I. Physikalisches Institut der RWTH, Aachen (Germany); Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv University, Tel Aviv (Israel); Abt, I. [Max-Planck-Institut für Physik, Munich (Germany); Adamczyk, L. [Faculty of Physics and Applied Computer Science, AGH-University of Science and Technology, Kraków (Poland); Adamus, M. [National Centre for Nuclear Research, Warsaw (Poland); Andreev, V. [Lebedev Physical Institute, Moscow (Russian Federation); and others
2015-12-08
A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current e{sup ±}p scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb{sup -1} and span six orders of magnitude in negative four-momentum-transfer squared, Q{sup 2}, and Bjorken x. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in α{sub s}(M{sub Z}{sup 2})=0.1183±0.0009(exp)±0.0005(model/parameterisation)±0.0012 (hadronisation){sub -0.0030}{sup +0.0037}(scale). An extraction of xF{sub 3}{sup γZ} and results on electroweak unification and scaling violations are also presented.
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, H. [I. Physikalisches Institut der RWTH, Aachen (Germany); Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Physics, Tel Aviv (Israel); Abt, I.; Caldwell, A.; Chekelian, V.; Grindhammer, G.; Kiesling, C.; Lobodzinski, B.; Verbytskyi, A. [Max-Planck-Institut fuer Physik, Munich (Germany); Adamczyk, L.; Guzik, M.; Kisielewska, D.; Przybycien, M. [AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (Poland); Adamus, M.; Tymieniecka, T. [National Centre for Nuclear Research, Warsaw (Poland); Andreev, V.; Belousov, A.; Fomenko, A.; Gogitidze, N.; Lebedev, A.; Malinovski, E.; Rusakov, S.; Vazdik, Y. [Lebedev Physical Institute, Moscow (Russian Federation); Antonelli, S. [University Bologna (Italy); INFN Bologna, Bologna (Italy); Antunovic, B. [Univerzitet u Banjoj Luci, Arhitektonsko-gradko-geodetski Fakultet, Banja Luka (Bosnia and Herzegovina); Aushev, V. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); National Academy of Sciences, Institute for Nuclear Research, Kyiv (Ukraine); National Taras Shevchenko University of Kyiv, Department of Nuclear Physics, Kyiv (Ukraine); Aushev, Y. [Universitaet Heidelberg, Physikalisches Institut, Heidelberg (Germany); National Taras Shevchenko University of Kyiv, Department of Nuclear Physics, Kyiv (Ukraine); Baghdasaryan, A.; Zohrabyan, H. [Yerevan Physics Institute, Yerevan (Armenia); Begzsuren, K.; Ravdandorj, T. [Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar (Mongolia); Behnke, O.; Behrens, U.; Borras, K.; Britzger, D.; Campbell, A.J.; Dodonov, V.; Dolinska, G.; Eckerlin, G.; Elsen, E.; Fleischer, M.; Gayler, J.; Geiser, A.; Ghazaryan, S.; Gizhko, A.; Grebenyuk, J.; Gregor, I.; Haidt, D.; Hain, W.; Katzy, J.; Kleinwort, C.; Korol, I.; Koetz, U.; Kowalski, H.; Kruecker, D.; Krueger, K.; Kuprash, O.; Levonian, S.; Libov, V.; Lipka, K.; List, B.; List, J.; Lobodzinska, E.; Loehr, B.; Lontkovskyi, D.; Makarenko, I.; Malka, J.; Meyer, A.B.; Meyer, J.; Niebuhr, C.; Notz, D.; Olsson, J.E.; Ozerov, D.; Pahl, P.; Pirumov, H.; Pitzl, D.; Rubinsky, I.; Schmitt, S.; Schneekloth, U.; Schoerner-Sadenius, T.; Sefkow, F.; Shushkevich, S.; South, D.; Steder, M.; Stefaniuk, N.; Szuba, J.; Wolf, G.; Wuensch, E.; Zenaiev, O. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Behrendt Dubak, A. [Max-Planck-Institut fuer Physik, Munich (Germany); University of Montenegro, Faculty of Science, Podgorica (Montenegro); Belov, P.; Jung, H. [Inter-University Institute for High Energies ULB-VUB, Brussels (Belgium); Universiteit Antwerpen, Antwerpen (Belgium); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Bertolin, A.; Dusini, S.; Stanco, L. [INFN Padova, Padova (Italy); Bloch, I.; Lange, W.; Naumann, T. [Deutsches Elektronen-Synchrotron DESY, Zeuthen (Germany); Boos, E.G.; Pokrovskiy, N.S.; Zhautykov, B.O. [Institute of Physics and Technology of Ministry of Education and Science of Kazakhstan, Almaty (Kazakhstan); Boudry, V.; Specka, A. [LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau (France); Brandt, G. [Universitaet Goettingen, II. Physikalisches Institut, Goettingen (Germany); Brisson, V.; Jacquet, M.; Pascaud, C.; Zhang, Z.; Zomer, F. [LAL, Universite Paris-Sud, CNRS/IN2P3, Orsay (France); Brock, I.; Mergelmeyer, S.; Paul, E. [Physikalisches Institut der Universitaet Bonn, Bonn (Germany); Brook, N.H. [University College London, Physics and Astronomy Department, London (United Kingdom); Brugnera, R.; Garfagnini, A.; Limentani, S. [Dipartimento di Fisica e Astronomia dell' Universita, Padua (Italy); INFN, Padua (Italy); Bruni, A.; Corradi, M. [INFN Bologna, Bologna (Italy); Buniatyan, A.; Newman, P.R.; Thompson, P.D. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Bussey, P.J.; Saxon, D.H.; Skillicorn, I.O. [University of Glasgow, School of Physics and Astronomy, Glasgow (United Kingdom); Bylinkin, A. [Univerzitet u Banjoj Luci, Arhitektonsko-gradko-geodetski Fakultet, Banja Luka (Bosnia and Herzegovina); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Bystritskaya, L.; Fedotov, A. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Cantun Avila, K.B.; Contreras, J.G. [CINVESTAV, Merida, Departamento de Fisica Aplicada, Yucatan (Mexico); Capua, M.; Schioppa, M.; Tassi, E. [Calabria University, Physics Department, Cosenza (Italy); INFN, Cosenza (Italy); Catterall, C.D. [York University, Department of Physics, Ontario (Canada); Ceccopieri, F.; Favart, L.; Grebenyuk, A.; Hreus, T.; Janssen, X.; Roosen, R.; Mechelen, P. van [Inter-University Institute for High Energies ULB-VUB, Brussels (Belgium); Universiteit Antwerpen, Antwerpen (Belgium); Cerny, K.; Pokorny, B.; Salek, D.; Valkarova, A.; Zacek, J.; Zlebcik, R. [Charles University, Faculty of Mathematics and Physics, Praha (Czech Republic); Chwastowski, J.; Figiel, J.; Goerlich, L.; Krupa, B.; Mikocki, S.; Nowak, G.; Sopicki, P.; Stopa, P.; Turnau, J.; Zawiejski, L. [Polish Academy of Sciences, The Henryk Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Ciborowski, J. [Universitaet Bielefeld, Bielefeld (Germany); University of Warsaw, Faculty of Physics, Warsaw (Poland); Ciesielski, R. [University of Birmingham, School of Physics and Astronomy, Birmingham (United Kingdom); Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Cooper-Sarkar, A.M.; Devenish, R.C.E.; Gwenlan, C.; Walczak, R. [University of Oxford, Department of Physics, Oxford (United Kingdom); Corriveau, F. [McGill University, Department of Physics, Montreal, QC (Canada); Cvach, J.; Hladka, J.; Reimer, P. [Academy of Sciences of the Czech Republic, Institute of Physics, Praha (Czech Republic); Dainton, J.B.; Gabathuler, E.; Greenshaw, T.; Klein, M.; Kostka, P.; Kretzschmar, J.; Laycock, P.; Maxfield, S.J.; Mehta, A.; Patel, G.D. [University of Liverpool, Department of Physics, Liverpool (United Kingdom); Daum, K. [INFN Bologna, Bologna (Italy); Fachbereich C, Universitaet Wuppertal, Wuppertal (Germany); Dementiev, R.K.; Gladilin, L.K.; Golubkov, Yu.A.; Korzhavina, I.A.; Levchenko, B.B.; Lukina, O.Yu.; Shcheglova, L.M.; Zotkin, D.S. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (RU); Diaconu, C.; Hoffmann, D.; Vallee, C. [Aix Marseille Universite, CNRS/IN2P3, CPPM UMR 7346, Marseille (FR); Dobre, M.; Rotaru, M. [National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest (RO); Egli, S.; Horisberger, R. [Paul Scherrer Institut, Villigen (CH); Feltesse, J.; Schoeffel, L. [CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette (FR); Ferencei, J. [Slovak Academy of Sciences, Institute of Experimental Physics, Kosice (SK); Foster, B. [University Bologna (IT); INFN Bologna, Bologna (IT); Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (DE); Gach, G. [Physikalisches Institut der Universitaet Bonn, Bonn (DE); AGH-University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow (PL); Gallo, E. [Universitaet Hamburg, Institut fuer Experimentalphysik, Hamburg (DE); Deutsches Elektronen-Synchrotron DESY, Hamburg (DE); Collaboration: H1 and ZEUS Collaborations; and others
2015-12-15
A combination is presented of all inclusive deep inelastic cross sections previously published by the H1 and ZEUS collaborations at HERA for neutral and charged current e{sup ±}p scattering for zero beam polarisation. The data were taken at proton beam energies of 920, 820, 575 and 460 GeV and an electron beam energy of 27.5 GeV. The data correspond to an integrated luminosity of about 1 fb{sup -1} and span six orders of magnitude in negative four-momentum-transfer squared, Q{sup 2}, and Bjorken x. The correlations of the systematic uncertainties were evaluated and taken into account for the combination. The combined cross sections were input to QCD analyses at leading order, next-to-leading order and at next-to-next-to-leading order, providing a new set of parton distribution functions, called HERAPDF2.0. In addition to the experimental uncertainties, model and parameterisation uncertainties were assessed for these parton distribution functions. Variants of HERAPDF2.0 with an alternative gluon parameterisation, HERAPDF2.0AG, and using fixed-flavour-number schemes, HERAPDF2.0FF, are presented. The analysis was extended by including HERA data on charm and jet production, resulting in the variant HERAPDF2.0Jets. The inclusion of jet-production cross sections made a simultaneous determination of these parton distributions and the strong coupling constant possible, resulting in α{sub s} (M{sub Z}{sup 2}) = 0.1183±0.0009(exp)±0.0005(model/parameterisation)±0.0012(hadronisation) {sub -0.0030}{sup +0.0037}(scale). An extraction of xF{sub 3}{sup γZ} and results on electroweak unification and scaling violations are also presented. (orig.)
Testing QCD factorization and charming penguins in charmless B -> PV
Aleksan, Roy; Morénas, V; Pène, O; Safir, A S
2002-01-01
We try a global fit of the experimental branching ratios and CP-asymmetries of the charmless B -> PV decays according to QCD factorization. We find it impossible to reach a satisfactory agreement, the confidence level (CL) of the best is smaller than .1 %. The main reason for this failure is the difficulty to accommodate several large experimental branching ratios of the strange channels. Furthermore, experiment was not able to exclude a large direct CP asymmetry in B-bar0 -> rho sup +pi sup - which is predicted very small by QCD factorization. Trying a fit with QCD factorization complemented by a charming-penguin inspired model we reach a best fit which is not excluded by experiment (CL of about 8 %) but is not fully convincing. These negative results must be tempered by the remark that some of the experimental data used are recent and might still evolve significantly.
DEFF Research Database (Denmark)
Plum, Maja
Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...
International Meeting: Excited QCD 2014
Giacosa, Francesco; Malek, Magdalena; Marinkovic, Marina; Parganlija, Denis
2014-01-01
Excited QCD 2014 will take place on the beautiful Bjelasnica mountain located in the vicinity of the Bosnian capital Sarajevo. Bjelasnica was a venue of the XIV Winter Olympic Games and it is situated only 30 kilometers from Sarajevo International Airport. The workshop program will start on February 2 and finish on February 8, 2014, with scientific lectures taking place from February 3 to 7. Workshop participants will be accomodated in Hotel Marsal, only couple of minutes by foot from the Olympic ski slopes. ABOUT THE WORKSHOP This edition is the sixth in a series of workshops that were previously organised in Poland, Slovakia, France and Portugal. Following the succesful meeting in 2013, the Workshop is returning to Sarajevo Olympic mountains in 2014, exactly thirty years after the Games. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-...
A bayesian approach to QCD sum rules
International Nuclear Information System (INIS)
Gubler, Philipp; Oka, Makoto
2010-01-01
QCD sum rules are analyzed with the help of the Maximum Entropy Method. We develop a new technique based on the Bayesion inference theory, which allows us to directly obtain the spectral function of a given correlator from the results of the operator product expansion given in the deep euclidean 4-momentum region. The most important advantage of this approach is that one does not have to make any a priori assumptions about the functional form of the spectral function, such as the 'pole + continuum' ansatz that has been widely used in QCD sum rule studies, but only needs to specify the asymptotic values of the spectral function at high and low energies as an input. As a first test of the applicability of this method, we have analyzed the sum rules of the ρ-meson, a case where the sum rules are known to work well. Our results show a clear peak structure in the region of the experimental mass of the ρ-meson. We thus demonstrate that the Maximum Entropy Method is successfully applied and that it is an efficient tool in the analysis of QCD sum rules. (author)
Heavy quark production processes in QCD
International Nuclear Information System (INIS)
Brodsky, S.J.; Gunion, J.F.
1984-12-01
We have identified two novel effects in QCD, each of which acts to enhance the production of heavy quark and supersymmetric particles beyond what is conventionally expected from gluon fusion. Both effects are present in QED, but are compounded in QCD because of the increased number of diagrams and the much larger coupling constant. The intrinsic charm quark distribution in the nucleon could account for the observed enhancements of the charm structure function at large x and features of the charm production data but this mechanism is relatively suppressed for heavier systems. Prebinding distortion of the fusion cross section is, however, likely to be significant for the production at low p/sub T/ of all particles containing heavy colored constituents. At this stage the QCD calculations are highly model dependent although they agree with the general properties which can be inferred from the operator product expansion in the heavy quark mass. Much more theoretical analysis of these effects is clearly needed. It is also clear that much more experimental work is necessary to extend and confirm the reported anomalous heavy quark signals. 22 references
Energy Technology Data Exchange (ETDEWEB)
Karami, K.; Abdolmaleki, A.; Asadzadeh, S. [University of Kurdistan, Department of Physics, Sanandaj (Iran, Islamic Republic of); Safari, Z. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of)
2013-09-15
Within the framework of modified teleparallel gravity, we reconstruct a f(T) model corresponding to the QCD ghost dark energy scenario. For a spatially flat FRW universe containing only the pressureless matter, we obtain the time evolution of the torsion scalar T (or the Hubble parameter). Then, we calculate the effective torsion equation of state parameter of the QCD ghost f(T)-gravity model as well as the deceleration parameter of the universe. Furthermore, we fit the model parameters by using the latest observational data including SNeIa, CMB and BAO data. We also check the viability of our model using a cosmographic analysis approach. Moreover, we investigate the validity of the generalized second law (GSL) of gravitational thermodynamics for our model. Finally, we point out the growth rate of matter density perturbation. We conclude that in QCD ghost f(T)-gravity model, the universe begins a matter dominated phase and approaches a de Sitter regime at late times, as expected. Also this model is consistent with current data, passes the cosmographic test, satisfies the GSL and fits the data of the growth factor well as the {Lambda}CDM model. (orig.)
Mapping the global health employment market: an analysis of global health jobs.
Keralis, Jessica M; Riggin-Pathak, Brianne L; Majeski, Theresa; Pathak, Bogdan A; Foggia, Janine; Cullinen, Kathleen M; Rajagopal, Abbhirami; West, Heidi S
2018-02-27
The number of university global health training programs has grown in recent years. However, there is little research on the needs of the global health profession. We therefore set out to characterize the global health employment market by analyzing global health job vacancies. We collected data from advertised, paid positions posted to web-based job boards, email listservs, and global health organization websites from November 2015 to May 2016. Data on requirements for education, language proficiency, technical expertise, physical location, and experience level were analyzed for all vacancies. Descriptive statistics were calculated for the aforementioned job characteristics. Associations between technical specialty area and requirements for non-English language proficiency and overseas experience were calculated using Chi-square statistics. A qualitative thematic analysis was performed on a subset of vacancies. We analyzed the data from 1007 global health job vacancies from 127 employers. Among private and non-profit sector vacancies, 40% (n = 354) were for technical or subject matter experts, 20% (n = 177) for program directors, and 16% (n = 139) for managers, compared to 9.8% (n = 87) for entry-level and 13.6% (n = 120) for mid-level positions. The most common technical focus area was program or project management, followed by HIV/AIDS and quantitative analysis. Thematic analysis demonstrated a common emphasis on program operations, relations, design and planning, communication, and management. Our analysis shows a demand for candidates with several years of experience with global health programs, particularly program managers/directors and technical experts, with very few entry-level positions accessible to recent graduates of global health training programs. It is unlikely that global health training programs equip graduates to be competitive for the majority of positions that are currently available in this field.
Global qualitative analysis of a quartic ecological model
Broer, Hendrik; Gaiko, Valery A.
2010-01-01
in this paper we complete the global qualitative analysis of a quartic ecological model. In particular, studying global bifurcations of singular points and limit cycles, we prove that the corresponding dynamical system has at most two limit cycles. (C) 2009 Elsevier Ltd. All rights reserved.
Clayton, Thomas
2004-01-01
In recent years, many scholars have become fascinated by a contemporary, multidimensional process that has come to be known as "globalization." Globalization originally described economic developments at the world level. More specifically, scholars invoked the concept in reference to the process of global economic integration and the seemingly…
Global analysis of the protection status of the world's forests
DEFF Research Database (Denmark)
Schmitt, Christine B.; Burgess, Neil David; Coad, Lauren
2009-01-01
This study presents a global analysis of forest cover and forest protection. An updated Global Forest Map (using MODIS2005) provided a current assessment of forest cover within 20 natural forest types. This map was overlaid onto WWF realms and ecoregions to gain additional biogeographic information...... on forest distribution. Using the 2008 World Database on Protected Areas, percentage forest cover protection was calculated globally, within forest types, realms and ecoregions, and within selected areas of global conservation importance. At the 10% tree cover threshold, global forest cover was 39 million...... km2. Of this, 7.7% fell within protected areas under IUCN management categories I-IV. With the inclusion of IUCN categories V and VI, the level of global forest protection increased to 13.5%. Percentage forest protection (IUCN I-IV) varied greatly between realms from 5.5% (Palearctic) to 13...
Analysis of soft wall AdS/QCD potentials to obtain the melting temperature of scalar hadrons
Energy Technology Data Exchange (ETDEWEB)
Vega, Alfredo; Ibanez, Adolfo [Universidad de Valparaiso, Instituto de Fisica y Astronomia, Valparaiso (Chile)
2017-11-15
We consider an analysis of potentials related to Schroedinger-type equations for scalar fields in a 5D AdS black hole background with dilaton in order to obtain melting temperatures for different hadrons in a thermal bath. The approach does not consider calculations of spectral functions, and it is easy to yield results for hadrons with an arbitrary number of constituents. We present results for scalar mesons, glueballs, hybrid mesons and tetraquarks, and we show that mesons are more resistant to being melted in a thermal bath than other scalar hadrons, and in general the melting temperature increases when hadrons contain heavy quarks. (orig.)
The CP-odd sector and $θ$ dynamics in holographic QCD
Arean, Daniel; Iatrakis, Ioannis; Jarvinen, Matti; Kiritsis, Elias
2017-01-01
The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit. An unprecedented analysis of the CP-odd physics is performed going beyond the level of effective field theories. The structure of holographic saddle-points at finite $\\theta$ is determined, as well
International Nuclear Information System (INIS)
Negele, J.W.
1993-01-01
Architectural enhancements are described to increase the performance of the arithmetic accelerator and memory of the nodes in the CM-5 for QCD and a broad range of general problems while maintaining compatibility with existing software, compilers, communications network and I/O subsystems. A factor of 10 increase in performance is obtained by increasing the number of floating point processors by a factor of 4, extending the vector instruction set for dual execution of single-precision arithmetic, and increasing the clock rate from 32 to 40 MHz. The required memory bandwidth is obtained by using synchronous DRAMs and 4 floating point processors are packaged into a multichip module which occupies the same area as a present processor package. The proposed 2048 node machine will provide 2.6 Teraflops peak, 0.5 - 1.5 Teraflops sustained on lattices of 32 2 x 64 - 128 3 x 256, will have 256 Gigabytes of memory, 1 Terabyte of disk, an estimated cost of approximately $40 million, and can be built in 2.5 years. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)
2016-11-14
We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
Community Analysis of Global Financial Markets
Directory of Open Access Journals (Sweden)
Irena Vodenska
2016-05-01
Full Text Available We analyze the daily returns of stock market indices and currencies of 56 countries over the period of 2002–2012. We build a network model consisting of two layers, one being the stock market indices and the other the foreign exchange markets. Synchronous and lagged correlations are used as measures of connectivity and causality among different parts of the global economic system for two different time intervals: non-crisis (2002–2006 and crisis (2007–2012 periods. We study community formations within the network to understand the influences and vulnerabilities of specific countries or groups of countries. We observe different behavior of the cross correlations and communities for crisis vs. non-crisis periods. For example, the overall correlation of stock markets increases during crisis while the overall correlation in the foreign exchange market and the correlation between stock and foreign exchange markets decrease, which leads to different community structures. We observe that the euro, while being central during the relatively calm period, loses its dominant role during crisis. Furthermore we discover that the troubled Eurozone countries, Portugal, Italy, Greece and Spain, form their own cluster during the crisis period.
Developments in perturbative QCD? challenges from collider physics
Energy Technology Data Exchange (ETDEWEB)
Zeppenfeld, Dieter [Valencia Univ. (Spain). Dept. de Fisica Teorica]. E-mail: dieter@phenom.physics.wisc.edu
1996-07-01
The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)
Developments in perturbative QCD? challenges from collider physics
International Nuclear Information System (INIS)
Zeppenfeld, Dieter
1996-01-01
The search for new phenomena at hadron colliders requires a good understanding of QCD processes. The analysis of multi-jet signatures in the top quark search at the Tevatron is one example, forward jet tagging and rapidity gap techniques in the analysis of weak boson scattering events at the LH C will be another important application. These topics are discussed in the context of multi-parton/multi-jet QCD processes. Also described are some of the calculation tools, like amplitude techniques and automatic code generation for tree level processes. (author)
COMPARATIVE ANALYSIS OF GLOBAL TERTIARY EDUCATIONAL SYSTEMS
Directory of Open Access Journals (Sweden)
Ciumas Cristina
2013-07-01
Full Text Available Higher education system occupies a special place in the policy of each nation. Regardless of geographical location, socio-economic or cultural differences, the need to improve the education offered for population by facilitating access to higher education becomes more and more important. Providing a suitable framework for the personal development of each student is expensive and involves high amounts of money. From the analyses carried out we couldn\\'t identify the substantial differences between the way it is structured and organized education system worldwide. However, we were able to identify a number of common elements that create a global University System. The need to invest in human resources through structural reforms in each country is present, and therefore a higher indention to pay greater attention to the development of the higher education system. In our work we decided to analyze education systems in countries like United States of America (USA, United Kingdom (GB, China (CHN, Germany (DE, France (FR, Russian Federation (RU, Japan (JPN average values recorded for EU-27 and last but not least Romania (RO. Although the investment in the University system is hard to quantify, it is unanimously acknowledged that a country can achieve a competitive advantage in international relations through a very well prepared and trained personnel. The countries reviewed in this paper have different policies when it comes to financial support of the University System. If Germany and France have decided to get involved directly in supporting the system by allocating the necessary funds from the State budget, another European country, the United Kingdom, decided to apply a policy diametrically opposite, similar to that existing in the USA and cover in a lesser degree the needs of universities in Government funds. Regardless of the policy adopted the results are intended to be the same: facilitating access to university education, a high quality of
Weak-interacting holographic QCD
International Nuclear Information System (INIS)
Gazit, D.; Yee, H.-U.
2008-06-01
We propose a simple prescription for including low-energy weak-interactions into the frame- work of holographic QCD, based on the standard AdS/CFT dictionary of double-trace deformations. As our proposal enables us to calculate various electro-weak observables involving strongly coupled QCD, it opens a new perspective on phenomenological applications of holographic QCD. We illustrate efficiency and usefulness of our method by performing a few exemplar calculations; neutron beta decay, charged pion weak decay, and meson-nucleon parity non-conserving (PNC) couplings. The idea is general enough to be implemented in both Sakai-Sugimoto as well as Hard/Soft Wall models. (author)
Analytic continuation in perturbative QCD
International Nuclear Information System (INIS)
Caprini, Irinel
2002-01-01
We discuss some attempts to improve standard perturbative expansion in QCD by using the analytic continuation in the momentum and the Borel complex planes. We first analyse the momentum-plane analyticity properties of the Borel-summed Green functions in perturbative QCD and the connection between the Landau singularities and the infrared renormalons. By using the analytic continuation in the Borel complex plane, we propose a new perturbative series replacing the standard expansion in powers of the normalized coupling constant a. The new expansion functions have branch point and essential singularities at the origin of the complex a-plane and divergent Taylor expansions in powers of a. On the other hand the modified expansion of the QCD correlators is convergent under rather conservative conditions. (author)
Quantum chromodynamics (QCD) and collider physics
International Nuclear Information System (INIS)
Ellis, R.K.; Stirling, W.J.
1990-01-01
This report discusses: fundamentals of perturbative QCD; QCD in e + e - → hadrons; deep inelastic scattering and parton distributions; the QCD parton model in hadron-hadron collisions; large p T jet production in hadron-hadron collisions; the production of vector bosons in hadronic collisions; and the production of heavy quarks
Theoretical summary talk of QCD 2002
International Nuclear Information System (INIS)
Basu, Rahul
2003-01-01
This is a summary of the talks on QCD, not including QCD at finite temperature or density (which are discussed elsewhere) presented at the QCD 2002 meeting held at IIT, Kanpur. I have attempted to give only an overview of the talks since the details may be found in the individual contributions. (author)
Analysis and Research on Several Global Subdivision Grids
Directory of Open Access Journals (Sweden)
SONG Shuhua
2016-12-01
Full Text Available In order to solve the problem that lacking of an unified organization frame about global remote sensing satellite image data, this paper introduces serval global subdivision grids as the unified organization frame for remote sensing image. Based on the characteristics of remote sensing image data, this paper analyzes and summarizes the design principles and difficulties of the organization frame. Based on analysis and comparison with these grids, GeoSOT is more suitable as the unified organization frame for remote sensing image. To provide a reference for the global remote sensing image organization.
Modeling the thermodynamics of QCD
Energy Technology Data Exchange (ETDEWEB)
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
The supercritical pomeron in QCD
International Nuclear Information System (INIS)
White, A. R.
1998-01-01
Deep-inelastic diffractive scaling violations have provided fundamental insight into the QCD pomeron, suggesting a single gluon inner structure rather than that of a perturbative two-gluon bound state. This talk outlines a derivation of a high-energy, transverse momentum cut-off, confining solution of QCD. The pomeron, in first approximation, is a single reggeized gluon plus a ''wee parton'' component that compensates for the color and particle properties of the gluon. This solution corresponds to a super-critical phase of Reggeon Field Theory
Simulating QCD at finite density
de Forcrand, Philippe
2009-01-01
In this review, I recall the nature and the inevitability of the "sign problem" which plagues attempts to simulate lattice QCD at finite baryon density. I present the main approaches used to circumvent the sign problem at small chemical potential. I sketch how one can predict analytically the severity of the sign problem, as well as the numerically accessible range of baryon densities. I review progress towards the determination of the pseudo-critical temperature T_c(mu), and towards the identification of a possible QCD critical point. Some promising advances with non-standard approaches are reviewed.
International Nuclear Information System (INIS)
Close, F.E.
1980-07-01
The idea that quantum chromodynamics is Nature's choice for the theory of quark interactions and that desirable phenomena, such as quark confinement, are consequences of it are considered. The lecture is presented under the headings: (1) Why do we believe that quarks have colour. (2) A rapid summary of the parton model in deep inelastic scattering. (3) Non Abelian theories: the vertices. (4) Hyperfine splitting of hadrons: more evidence for colour. (5) Renormalisation. (6) Alpha(Q 2 ). (7) The renormalisation group equations. (8) QCD, the renormalisation group equation and deep inelastic data. (9) Higher order corrections in QCD. (U.K.)
Neutron star structure from QCD
Fraga, Eduardo S; Vuorinen, Aleksi
2016-01-01
In this review article, we argue that our current understanding of the thermodynamic properties of cold QCD matter, originating from first principles calculations at high and low densities, can be used to efficiently constrain the macroscopic properties of neutron stars. In particular, we demonstrate that combining state-of-the-art results from Chiral Effective Theory and perturbative QCD with the current bounds on neutron star masses, the Equation of State of neutron star matter can be obtained to an accuracy better than 30% at all densities.
Lattice QCD: Status and Prospect
International Nuclear Information System (INIS)
Ukawa, Akira
2006-01-01
A brief review is given of the current status and near-future prospect of lattice QCD studies of the Standard Model. After summarizing a bit of history, we describe current attempts toward inclusion of dynamical up, down and strange quarks. Recent results on the light hadron mass spectrum as well as those on the heavy quark quantities are described. Recent work on lattice pentaquark search is summarized. We touch upon the PACS-CS Project for building our next machine for lattice QCD, and conclude with a summary of computer situation and the physics possibilities over the next several years
Hadron scattering, resonances, and QCD
Briceño, R. A.
2016-11-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
Archeology and evolution of QCD
De Rújula, A.
2017-01-01
These are excerpts from the closing talk at the "XIIth Conference on Quark Confinement and the Hadron Spectrum", which took place last Summer in Thessaloniki --an excellent place to enjoy an interest in archeology. A more complete personal view of the early days of QCD and the rest of the Standard Model is given in [1]. Here I discuss a few of the points which --to my judgement-- illustrate well the QCD evolution (in time), both from a scientific and a sociological point of view.
The QCD vacuum at infinite momentum
International Nuclear Information System (INIS)
White, A.R.
1988-01-01
We outline how ''topological confinement'' can be seen by the analysis of Regge limit infra-red divergences. We suggest that it is a necessary bridge between conventional confinement and the parton model at infinite momentum. It is produced by adding a chiral doublet of color sextet quarks to conventional QCD. An immediate signature of the resultant electroweak symmetry breaking would be large cross-sections for W + W/sup /minus// and Z 0 Z 0 pairs at the CERN and Fermilab /bar p/p colliders. 24 refs
Global processing takes time: A meta-analysis on local-global visual processing in ASD.
Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan
2015-05-01
What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. (c) 2015 APA, all rights reserved).
Systemic sclerosis: a world wide global analysis.
Coral-Alvarado, Paola; Pardo, Aryce L; Castaño-Rodriguez, Natalia; Rojas-Villarraga, Adriana; Anaya, Juan-Manuel
2009-07-01
The objective of this study was to analyze epidemiological tendencies of systemic sclerosis (SSc) around the world in order to identify possible local variations in the presentation and occurrence of the disease. A systematic review of the literature was performed through electronic databases using the keywords "Systemic Sclerosis" and "Clinical Characteristics." Out of a total of 167 articles, 41 were included in the analysis. Significant differences in the mean age at the time of diagnosis, subsets of SSc, clinical characteristics, and presence of antibodies were found between different regions of the word. Because variations in both additive and nonadditive genetic factors and the environmental variance are specific to the investigated population, ethnicity and geography are important characteristics to be considered in the study of SSc and other autoimmune diseases.
Recurrence quantification analysis of global stock markets
Bastos, João A.; Caiado, Jorge
2011-04-01
This study investigates the presence of deterministic dependencies in international stock markets using recurrence plots and recurrence quantification analysis (RQA). The results are based on a large set of free float-adjusted market capitalization stock indices, covering a period of 15 years. The statistical tests suggest that the dynamics of stock prices in emerging markets is characterized by higher values of RQA measures when compared to their developed counterparts. The behavior of stock markets during critical financial events, such as the burst of the technology bubble, the Asian currency crisis, and the recent subprime mortgage crisis, is analyzed by performing RQA in sliding windows. It is shown that during these events stock markets exhibit a distinctive behavior that is characterized by temporary decreases in the fraction of recurrence points contained in diagonal and vertical structures.
The generalized scheme-independent Crewther relation in QCD
Shen, Jian-Ming; Wu, Xing-Gang; Ma, Yang; Brodsky, Stanley J.
2017-07-01
The Principle of Maximal Conformality (PMC) provides a systematic way to set the renormalization scales order-by-order for any perturbative QCD calculable processes. The resulting predictions are independent of the choice of renormalization scheme, a requirement of renormalization group invariance. The Crewther relation, which was originally derived as a consequence of conformally invariant field theory, provides a remarkable connection between two observables when the β function vanishes: one can show that the product of the Bjorken sum rule for spin-dependent deep inelastic lepton-nucleon scattering times the Adler function, defined from the cross section for electron-positron annihilation into hadrons, has no pQCD radiative corrections. The ;Generalized Crewther Relation; relates these two observables for physical QCD with nonzero β function; specifically, it connects the non-singlet Adler function (Dns) to the Bjorken sum rule coefficient for polarized deep-inelastic electron scattering (CBjp) at leading twist. A scheme-dependent ΔCSB-term appears in the analysis in order to compensate for the conformal symmetry breaking (CSB) terms from perturbative QCD. In conventional analyses, this normally leads to unphysical dependence in both the choice of the renormalization scheme and the choice of the initial scale at any finite order. However, by applying PMC scale-setting, we can fix the scales of the QCD coupling unambiguously at every order of pQCD. The result is that both Dns and the inverse coefficient CBjp-1 have identical pQCD coefficients, which also exactly match the coefficients of the corresponding conformal theory. Thus one obtains a new generalized Crewther relation for QCD which connects two effective charges, αˆd (Q) =∑i≥1 αˆg1 i (Qi), at their respective physical scales. This identity is independent of the choice of the renormalization scheme at any finite order, and the dependence on the choice of the initial scale is negligible. Similar
The dual description of long-distance QCD (Dual QCD)
International Nuclear Information System (INIS)
Baker, M.
1990-01-01
We construct and solve a local field theory which describes in terms of dual variables a system having an A μ propagator behaving like M 2 /q 4 in the infrared and discuss how this theory can be used as a starting point for describing long-distance QCD. 3 refs
Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD
DEFF Research Database (Denmark)
Ryttov, Thomas A.
2016-01-01
order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...
Valence QCD: Connecting QCD to the quark model
International Nuclear Information System (INIS)
Liu, K.F.; Dong, S.J.; Draper, T.; Sloan, J.; Leinweber, D.; Woloshyn, R.M.
1999-01-01
A valence QCD theory is developed to study the valence quark properties of hadrons. To keep only the valence degrees of freedom, the pair creation through the Z graphs is deleted in the connected insertions, whereas the sea quarks are eliminated in the disconnected insertions. This is achieved with a new 'valence QCD' Lagrangian where the action in the time direction is modified so that the particle and antiparticle decouple. It is shown in this valence version of QCD that the ratios of isovector to isoscalar matrix elements (e.g., F A /D A and F S /D S ratios) in the nucleon reproduce the SU(6) quark model predictions in a lattice QCD calculation. We also consider how the hadron masses are affected on the lattice and discover new insights into the origin of dynamical mass generation. It is found that, within statistical errors, the nucleon and the Δ become degenerate for the quark masses we have studied (ranging from 1 to 4 times the strange mass). The π and ρ become nearly degenerate in this range. It is shown that valence QCD has the C, P, T symmetries. The lattice version is reflection positive. It also has the vector and axial symmetries. The latter leads to a modified partially conserved axial Ward identity. As a result, the theory has a U(2N F ) symmetry in the particle-antiparticle space. Through lattice simulation, it appears that this is dynamically broken down to U q (N F )xU bar q (N F ). Furthermore, the lattice simulation reveals spin degeneracy in the hadron masses and various matrix elements. This leads to an approximate U q (2N F )xU bar q (2N F ) symmetry which is the basis for the valence quark model. In addition, we find that the masses of N, Δ,ρ,π,a 1 , and a 0 all drop precipitously compared to their counterparts in the quenched QCD calculation. This is interpreted as due to the disappearance of the 'constituent' quark mass which is dynamically generated through tadpole diagrams. The origin of the hyperfine splitting in the baryon is
The High Energy Asymptotics of Scattering Processes in QCD
Energy Technology Data Exchange (ETDEWEB)
Enberg, Rikard; Golec-Biernat, K.; Munier, S.
2005-05-12
High energy scattering in the QCD parton model was recently shown to be a reaction-diffusion process, and thus to lie in the universality class of the stochastic Fisher-Kolmogorov-Petrovsky-Piscounov equation. We recall that the latter appears naturally in the context of the parton model. We provide a thorough numerical analysis of the mean field approximation, given in QCD by the Balitsky-Kovchegov equation. In the framework of a simple stochastic toy model that captures the relevant features of QCD, we discuss and illustrate the universal properties of such stochastic models. We investigate in particular the validity of the mean field approximation and how it is broken by fluctuations. We find that the mean field approximation is a good approximation in the initial stages of the evolution in rapidity.
Exposing the QCD Splitting Function with CMS Open Data.
Larkoski, Andrew; Marzani, Simone; Thaler, Jesse; Tripathee, Aashish; Xue, Wei
2017-09-29
The splitting function is a universal property of quantum chromodynamics (QCD) which describes how energy is shared between partons. Despite its ubiquitous appearance in many QCD calculations, the splitting function cannot be measured directly, since it always appears multiplied by a collinear singularity factor. Recently, however, a new jet substructure observable was introduced which asymptotes to the splitting function for sufficiently high jet energies. This provides a way to expose the splitting function through jet substructure measurements at the Large Hadron Collider. In this Letter, we use public data released by the CMS experiment to study the two-prong substructure of jets and test the 1→2 splitting function of QCD. To our knowledge, this is the first ever physics analysis based on the CMS Open Data.
Global approach of emergency response, reflection analysis
International Nuclear Information System (INIS)
Velasco Garcia, E.; Garcia Ahumada, F.; Albaladejo Vidal, S.
1998-01-01
The emergency response management approach must be dealt with adequately within company strategy, since a badly managed emergency situation can adversely affect a company, not only in terms of asset, but also in terms of the negative impact on its credibility, profitability and image. Thereby, it can be said that there are three main supports to manage the response in an emergency situation. a) Diagnosis b) Prognosis. c) Communications. To reach these capabilities it is necessary a co-ordination of different actions at the following levels. i. Facility Operation implies Local level. ii. Facility Property implies National level iii. Local Authority implies Local level iv. National Authority implies National level Taking into account all the last, these following functions must be covered: a) Management: incorporating communication, diagnosis and prognosis areas. b) Decision: incorporating communication and information means. c) Services: in order to facilitate the decision, as well as the execution of this decision. d) Analysis: in order to facilitate the situations that make easier to decide. e) Documentation: to seek the information for the analysts and decision makers. (Author)
Two-loop off-shell QCD amplitudes in FDR
Page, Ben
2015-01-01
We link the FDR treatment of ultraviolet (UV) divergences to dimensional regularization up to two loops in QCD. This allows us to derive the one-loop and two-loop coupling constant and quark mass shifts necessary to translate infrared finite quantities computed in FDR to the MSbar renormalization scheme. As a by-product of our analysis, we solve a problem analogous to the breakdown of unitarity in the Four Dimensional Helicity (FDH) method beyond one loop. A fix to FDH is then presented that preserves the renormalizability properties of QCD without introducing evanescent quantities.
Carbon emission intensity in electricity production: A global analysis
International Nuclear Information System (INIS)
Ang, B.W.; Su, Bin
2016-01-01
We study changes in the aggregate carbon intensity (ACI) for electricity at the global and country levels. The ACI is defined as the energy-related CO_2 emissions in electricity production divided by the electricity produced. It is a performance indicator since a decrease in its value is a desirable outcome from the environmental and climate change viewpoints. From 1990 to 2013, the ACI computed at the global level decreased only marginally. However, fairly substantial decreases were observed in many countries. This apparent anomaly arises from a geographical shift in global electricity production with countries having a high ACI increasingly taking up a larger electricity production share. It is found that globally and in most major electricity producing countries, reduction in their ACI was due mainly to improvements in the thermal efficiency of electricity generation rather than to fuel switching. Estimates of the above-mentioned effects are made using LMDI decomposition analysis. Our study reveals several challenges in reducing global CO_2 emissions from the electricity production sector although technically the reduction potential for the sector is known to be great. - Highlights: •Variations of aggregate carbon intensity (ACI) for electricity of world countries are analysed. •Main drivers of changes in ACI of major electricity producing countries are studied using index decomposition analysis. •Geographical shift in electricity production had a significant impact on global ACI. •Improvements in the thermal efficiency of generation were the main driver of reduction in ACI.
Global/local methods for probabilistic structural analysis
Millwater, H. R.; Wu, Y.-T.
1993-04-01
A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.
Optimizing human activity patterns using global sensitivity analysis.
Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M
2014-12-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Comparative Study of Algorithms for the Numerical Simulation of Lattice QCD
International Nuclear Information System (INIS)
Luz, Fernando H. P.; Mendes, Tereza
2010-01-01
Large-scale numerical simulations are the prime method for a nonperturbative study of QCD from first principles. Although the lattice simulation of the pure-gauge (or quenched-QCD) case may be performed very efficiently on parallel machines, there are several additional difficulties in the simulation of the full-QCD case, i.e. when dynamical quark effects are taken into account. We discuss the main aspects of full-QCD simulations, describing the most common algorithms. We present a comparative analysis of performance for two versions of the hybrid Monte Carlo method (the so-called R and RHMC algorithms), as provided in the MILC software package. We consider two degenerate flavors of light quarks in the staggered formulation, having in mind the case of finite-temperature QCD.
Savin, I A
2007-01-01
The fits of all published data on $g_{1}$, including the new COMPASS measurements of $g^{d}_{1}(x,Q^{2})$ , have been performed by using two different QCD evolution formalisms in the next-to-leading-order (NLO) approximation. In both methods we obtain two solutions for fitted parameters of the parton distribution functions (PDFs), one with $\\Delta G >$ 0 and the other - with $\\Delta G <$ 0, where $\\Delta G$ is the first moment of the polarized gluon distribution in nucleon.
Basics of QCD perturbation theory
International Nuclear Information System (INIS)
Soper, D.E.
1997-01-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs
Current issues in perturbative QCD
International Nuclear Information System (INIS)
Hinchliffe, I.
1994-12-01
This review talk discusses some issues of active research in perturbative QCD. The following topics are discussed: (1) current value of αs; (2) heavy quark production in hadron collisions; (3) production of Ψ and Υ in p anti p collisions; (4) prompt photon production; (5) small-x and related phenomena; and (6) particle multiplicity in heavy quark jets
New results in perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1986-01-01
Three topics in perturbative QCD important for Super-collider physics are reviewed. The topics are: 1. (2 → 2) jet phenomena calculated in O(αs 3 ). 2. New techniques for the calculation of tree graphs. 3. Color coherence in jet phenomena. 31 references, 6 figures
Energy Technology Data Exchange (ETDEWEB)
Moch, S
2008-02-15
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)
International Nuclear Information System (INIS)
Moch, S.
2008-02-01
We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W ± /Z-boson, Higgs boson or top quark production. (orig.)
Seven topics in perturbative QCD
International Nuclear Information System (INIS)
Buras, A.J.
1980-09-01
The following topics of perturbative QCD are discussed: (1) deep inelastic scattering; (2) higher order corrections to e + e - annihilation, to photon structure functions and to quarkonia decays; (3) higher order corrections to fragmentation functions and to various semi-inclusive processes; (4) higher twist contributions; (5) exclusive processes; (6) transverse momentum effects; (7) jet and photon physics
Reggeon interactions in perturbative QCD
International Nuclear Information System (INIS)
Kirschner, R.
1994-08-01
We study the pairwise interaction of reggeized gluons and quarks in the Regge limit of perturbative QCD. The interactions are represented as integral kernels in the transverse momentum space and as operators in the impact parameter space. We observe conformal symmetry and holomorphic factorization in all cases. (orig.)
LHC physics: challenges for QCD
Frixione, S.
2003-01-01
I review the status of the comparisons between a few measurements at hadronic colliders and perturbative QCD predictions, which emphasize the need for improving the current computations. Such improvements will be mandatory for a satisfactory understanding of high-energy collisions at the LHC
International Nuclear Information System (INIS)
Woloshyn, R.M.
1988-03-01
The basic concepts of the Lagrangian formulation of lattice field theory are discussed. The Wilson and staggered schemes for dealing with fermions on the lattice are described. Some recent results for hadron masses and vector and axial vector current matrix elements in lattice QCD are reviewed. (Author) (118 refs., 16 figs.)
Basics of QCD perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science
1997-06-01
This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.
Multiplicity distributions in QCD cascades
International Nuclear Information System (INIS)
Gustafson, G.
1992-03-01
Multiplicity distributions for hadrons and for jets are studied in QCD parton cascades. The colour dipole formalism is used and earlier results in the double log approximation are generalized to include terms which are suppressed by colour factors or factors of ln s. The result is a set of coupled differential equations, together with appropriate boundary conditions
Chiral symmetry in perturbative QCD
International Nuclear Information System (INIS)
Trueman, T.L.
1979-04-01
The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant
International Nuclear Information System (INIS)
Preparata, G.
1983-01-01
In this paper the necessity of going beyond Quantum chromodynamics is argued, and a new theory of Isotropic Chromodynamics (ICD) is introduced. The basic theoretical notions behind QCD--quarks, colors, and gauge theory are retained, but the conclusion that QCD must be the theory of hadrions is questioned. Two points of QCD are reviewed, gluons (including glueballs), and asymptotic freedom. It is suggested that much of this theory is wishful thinking. Beyond QCD, aspects which are puzzling in hadrodynamics are well understood in two-dimensional gauge theories (confinement, freedom at short distances etc). Anisotropic chromodynamics is proposed in the attempt to conjugate the basic pillars of hadrodynamics with the peculiar characteristics of two-dimensional gauge dynamics. In order to construct a gauge dynamics for the color field which is isomorphic to a two-dimensional gauge-theory base space must be enlarged to a seven dimension space-time structure, to be called Anisotropic Space-Time (AST). The ideas and present achievements of ICD are then reviewed
International Nuclear Information System (INIS)
Moriyasu, K.
1981-01-01
A basic primer for QCD is presented using a semiclassical approach to the colour Maxwell equations. The non-Abelian nature of colour symmetry and the violation of superposition by colour fields is compared with QED. A simple discussion of asymptotic freedom is also presented. (author)
Static QCD potential at rQCD-1: Perturbative expansion and operator-product expansion
International Nuclear Information System (INIS)
Sumino, Y.
2007-01-01
We analyze the static QCD potential V QCD (r) in the distance region 0.1 fm QCD (r) analytically. Higher-order terms are estimated by large-β 0 approximation or by renormalization group, and the renormalization scale is varied around the minimal-sensitivity scale. A 'Coulomb'+linear potential can be identified with the scale-independent and renormalon-free part of the prediction and can be separated from the renormalon-dominating part. (II) In the frame of OPE, we define two types of renormalization schemes for the leading Wilson coefficient. One scheme belongs to the class of conventional factorization schemes. The other scheme belongs to a new class, which is independent of the factorization scale, derived from a generalization of the Coulomb+linear potential of (I). The Wilson coefficient is free from IR renormalons and IR divergences in both schemes. We study properties of the Wilson coefficient and of the corresponding nonperturbative contribution δE US (r) in each scheme. (III) We compare numerically perturbative predictions of the Wilson coefficient and lattice computations of V QCD (r) when n l =0. We confirm either correctness or consistency (within uncertainties) of the theoretical predictions made in (II). Then we perform fits to simultaneously determine δE US (r) and r 0 Λ MS 3-loop (relation between lattice scale and Λ MS ). As for the former quantity, we improve bounds as compared to the previous determination; as for the latter quantity, our analysis provides a new method for its determination. We find that (a) δE US (r)=0 is disfavored, and (b) r 0 Λ MS 3-loop =0.574±0.042. We elucidate the mechanism for the sensitivities and examine sources of errors in detail
SU(2)-breaking effects for meson masses in lattice QCD
International Nuclear Information System (INIS)
Bramon, A.; Casulleras, J.
1989-01-01
The quenched approximation of lattice QCD for Wilson fermions is used to calculate isospin breaking effects in the pseudoscalar- and vector-meson nonets. Mass differences inside the K and K * isodoublets and mixing phenomena for π 0 -η and ρ-ω are found to agree with the experimental data. A new and specific method of analysis is proposed and successfully tested. (orig.)
Multiplicity and event shape in the perturbative QCD
International Nuclear Information System (INIS)
Tesima, K.
1995-01-01
The multiple hadroproduction in the perturbative QCD is briefly reviewed. There are a number of quantities which can be analysed with the use of the high-luminosity TRISTAN data. The analysis will contribute to clarifying some unsolved questions, and to the deeper understanding of the jet physics. (author)
Nuclear chromodynamics: Novel nuclear phenomena predicted by QCD
Bakker, B.L.G.; Ji, C.R.
2014-01-01
With the acceptance of QCD as the fundamental theory of strong interactions, one of the basic problems in the analysis of nuclear phenomena became how to consistently account for the effects of the underlying quark/gluon structure of nucleons and nuclei. Besides providing more detailed understanding
Simulation analysis of globally integrated logistics and recycling strategies
Energy Technology Data Exchange (ETDEWEB)
Song, S.J.; Hiroshi, K. [Hiroshima Inst. of Tech., Graduate School of Mechanical Systems Engineering, Dept. of In formation and Intelligent Systems Engineering, Hiroshima (Japan)
2004-07-01
This paper focuses on the optimal analysis of world-wide recycling activities associated with managing the logistics and production activities in global manufacturing whose activities stretch across national boundaries. Globally integrated logistics and recycling strategies consist of the home country and two free trading economic blocs, NAFTA and ASEAN, where significant differences are found in production and disassembly cost, tax rates, local content rules and regulations. Moreover an optimal analysis of globally integrated value-chain was developed by applying simulation optimization technique as a decision-making tool. The simulation model was developed and analyzed by using ProModel packages, and the results help to identify some of the appropriate conditions required to make well-performed logistics and recycling plans in world-wide collaborated manufacturing environment. (orig.)
Finite-time analysis of global projective synchronization on coloured ...
Indian Academy of Sciences (India)
A novel finite-time analysis is given to investigate the global projective synchronization on coloured networks. Some less conservative conditions are derived by utilizing finite-time control techniques and Lyapunov stability theorem. In addition, two illustrative numerical simulations are provided to verify the effectiveness of ...
Global and Local Sensitivity Analysis Methods for a Physical System
Morio, Jerome
2011-01-01
Sensitivity analysis is the study of how the different input variations of a mathematical model influence the variability of its output. In this paper, we review the principle of global and local sensitivity analyses of a complex black-box system. A simulated case of application is given at the end of this paper to compare both approaches.…
Methods for global sensitivity analysis in life cycle assessment
Groen, Evelyne A.; Bokkers, Eddy; Heijungs, Reinout; Boer, de Imke J.M.
2017-01-01
Purpose: Input parameters required to quantify environmental impact in life cycle assessment (LCA) can be uncertain due to e.g. temporal variability or unknowns about the true value of emission factors. Uncertainty of environmental impact can be analysed by means of a global sensitivity analysis to
Ecological network analysis on global virtual water trade.
Yang, Zhifeng; Mao, Xufeng; Zhao, Xu; Chen, Bin
2012-02-07
Global water interdependencies are likely to increase with growing virtual water trade. To address the issues of the indirect effects of water trade through the global economic circulation, we use ecological network analysis (ENA) to shed insight into the complicated system interactions. A global model of virtual water flow among agriculture and livestock production trade in 1995-1999 is also built as the basis for network analysis. Control analysis is used to identify the quantitative control or dependency relations. The utility analysis provides more indicators for describing the mutual relationship between two regions/countries by imitating the interactions in the ecosystem and distinguishes the beneficiary and the contributor of virtual water trade system. Results show control and utility relations can well depict the mutual relation in trade system, and direct observable relations differ from integral ones with indirect interactions considered. This paper offers a new way to depict the interrelations between trade components and can serve as a meaningful start as we continue to use ENA in providing more valuable implications for freshwater study on a global scale.
Error Analysis of Determining Airplane Location by Global Positioning System
Hajiyev, Chingiz; Burat, Alper
1999-01-01
This paper studies the error analysis of determining airplane location by global positioning system (GPS) using statistical testing method. The Newton Rhapson method positions the airplane at the intersection point of four spheres. Absolute errors, relative errors and standard deviation have been calculated The results show that the positioning error of the airplane varies with the coordinates of GPS satellite and the airplane.
Revealing the underlying drivers of disaster risk: a global analysis
Peduzzi, Pascal
2017-04-01
Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL
A general first-order global sensitivity analysis method
International Nuclear Information System (INIS)
Xu Chonggang; Gertner, George Zdzislaw
2008-01-01
Fourier amplitude sensitivity test (FAST) is one of the most popular global sensitivity analysis techniques. The main mechanism of FAST is to assign each parameter with a characteristic frequency through a search function. Then, for a specific parameter, the variance contribution can be singled out of the model output by the characteristic frequency. Although FAST has been widely applied, there are two limitations: (1) the aliasing effect among parameters by using integer characteristic frequencies and (2) the suitability for only models with independent parameters. In this paper, we synthesize the improvement to overcome the aliasing effect limitation [Tarantola S, Gatelli D, Mara TA. Random balance designs for the estimation of first order global sensitivity indices. Reliab Eng Syst Safety 2006; 91(6):717-27] and the improvement to overcome the independence limitation [Xu C, Gertner G. Extending a global sensitivity analysis technique to models with correlated parameters. Comput Stat Data Anal 2007, accepted for publication]. In this way, FAST can be a general first-order global sensitivity analysis method for linear/nonlinear models with as many correlated/uncorrelated parameters as the user specifies. We apply the general FAST to four test cases with correlated parameters. The results show that the sensitivity indices derived by the general FAST are in good agreement with the sensitivity indices derived by the correlation ratio method, which is a non-parametric method for models with correlated parameters
Directory of Open Access Journals (Sweden)
Tulio Rosembuj
2006-12-01
Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.
Tulio Rosembuj
2006-01-01
There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.
Higher order QCD corrections in exclusive charmless B decays
International Nuclear Information System (INIS)
Bell, G.
2006-10-01
We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in Λ QCD /m b and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B → ππ and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B → πlν. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non-relativistic bound states which can be
Higher order QCD corrections in exclusive charmless B decays
Energy Technology Data Exchange (ETDEWEB)
Bell, G.
2006-10-15
We discuss exclusive charmless B decays within the Standard Model of particle physics. These decays play a central role in the on-going process to constrain the parameters of the CKM matrix and to clarify the nature of CP violation. In order to exploit the rich source of data that is currently being collected at the experiments, a systematic theoretical treatment of the complicated hadronic dynamics is strongly desired. QCD Factorization represents a model-independent framework to compute hadronic matrix elements from first principles. It is based on a power expansion in {lambda}{sub QCD}/m{sub b} and allows for the systematic implementation of perturbative corrections. In particular, we consider hadronic two-body decays as B {yields} {pi}{pi} and perform a conceptual analysis of heavy-to-light form factors which encode the strong interaction effects in semi-leptonic decays as B {yields} {pi}l{nu}. Concerning the hadronic decays we compute NNLO QCD corrections which are particularly important with respect to strong interaction phases and hence direct CP asymmetries. On the technical level, we perform a 2-loop calculation which is based on an automatized reduction algorithm and apply sophisticated techniques for the calculation of loop-integrals. We indeed find that the considered quantities are well-defined as predicted by QCD Factorization, which is the result of a highly complicated subtraction procedure. We present results for the imaginary part of the topological tree amplitudes and observe that the considered corrections are substantial. The calculation of the real part of the amplitudes is far more complicated and we present a preliminary result which is based on certain simplifications. Our calculation is one part of the full NNLO analysis of nonleptonic B decays within QCD Factorization which is currently pursued by various groups. In our conceptual analysis of the QCD dynamics in heavy-to-light transitions we consider form factors between non
Safety-oriented global analysis of reactor dynamics
International Nuclear Information System (INIS)
Belhadj, M.; Aldemir, T.
1992-01-01
It is well known that the asymptotic solutions of the non-linear systems encountered in reactor dynamics can change from stable to periodic or from periodic to chaotic with a very small change in system parameters and/or initial conditions. In that respect, determination of the domains of attraction (DOAs) in the state-space that contains the asymptotic solutions and the identification of the basins of attraction (BOAs) and lead to these DOAs usually requires a global analysis of reactor dynamics (as opposed to a local analysis through perturbation theory). From the standpoint of safety, the DOAs indicate whether the reactor behavior remains within the imposed constraints or not, and the BOAs show which initial conditions lead to safe operation. Due to the lack of a general theory, often the only feasible method for the global analysis of nonlinear systems is the direct integration of governing equations. However, direct integration can be computationally prohibitive, particularly if there is uncertainty on the values of the system parameters to be used in the analysis, and/or asymptotic system behavior is chaotic. In a recent study, a global analysis algorithm was presented to determine the structure of DOAs (and their probability distribution when there is uncertainty on the system parameters) more quickly than by direct integration. This paper shows how the new algorithm can be expanded to determine the BOAs of reactor dynamics equations as well as their DOAs
HIGH DENSITY QCD WITH HEAVY-IONS
The Addendum 1 to Volume 2 of the CMS Physics TDR has been published The Heavy-Ion analysis group completed the writing of a TDR summarizing the CMS plans in using heavy ion collisions to study high density QCD. The document was submitted to the LHCC in March and presented in the Open Session of the LHCC on May 9th. The study of heavy-ion physics at the LHC is promising to be very exciting. LHC will open a new energy frontier in ultra-relativistic heavy-ion physics. The collision energy of heavy nuclei at sNN = 5.5 TeV will be thirty times larger than what is presently available at RHIC. We will certainly probe quark and gluon matter at unprecedented values of energy density. The prime goal of this research programme is to study the fundamental theory of the strong interaction - Quantum Chromodynamics (QCD) - in extreme conditions of temperature, density and parton momentum fraction (low-x). Such studies, with impressive experimental and theoretical advances in recent years thanks to the wealth of high-qua...
Global robust exponential stability analysis for interval recurrent neural networks
International Nuclear Information System (INIS)
Xu Shengyuan; Lam, James; Ho, Daniel W.C.; Zou Yun
2004-01-01
This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition
Analysis of the strong decay X(5568) → B{sub s}{sup 0}π{sup +} with QCD sum rules
Energy Technology Data Exchange (ETDEWEB)
Wang, Zhi-Gang [North China Electric Power University, Department of Physics, Baoding (China)
2016-05-15
In this article, we take the X(5568) to be the scalar diquark-antidiquark type tetraquark state, study the hadronic coupling constant g{sub XB{sub sπ}} with the three-point QCD sum rules by carrying out the operator product expansion up to the vacuum condensates of dimension-6 and including both the connected and the disconnected Feynman diagrams; then we calculate the partial decay width of the strong decay X(5568) → B{sub s}{sup 0}π{sup +} and obtain the value Γ{sub X} = (20.5 ± 8.1) MeV, which is consistent with the experimental data Γ{sub X} = (21.9 ± 6.4{sup +5.0}{sub -2.5}) MeV from the D0 collaboration. (orig.)
International Nuclear Information System (INIS)
Gupta, R.
1990-01-01
In this talk I give a brief introduction to the standard model of particle interactions and illustrate why analytical methods fail to solve QCD. I then give some details of our implementation of the high performance QCD code on the CM2 and highlight the important lessons learned. The sustained speed of the code at the time of this conference is 5.2 Gigaflops (scaled to a full 64K machine). Since this is a conference dedicated to computing in the 21st century, I will tailor my expectations (somewhat idiosyncratic) of the physics objectives to reflect what we will be able to do in 10 years time, extrapolating from where we stand today. This work is being done under a joint LANL-TMC collaboration consisting of C. Baillie, R. Brickner, D. Daniel, G. Kilcup, L. Johnson, A. Patel. S. Sharpe and myself. 5 refs
International Nuclear Information System (INIS)
Brodsky, S.J.
1992-09-01
The quantization of gauge theory at fixed light-cone time τ = t - z/c provides new perspectives for solving non-perturbative problems in quantum chromodynamics. The light-cone Fock state expansion provides both a precise definition of the relativistic wavefunctions of hadrons as bound-states of quarks and gluons and a general calculus for predicting QCD processes at the amplitude level. Applications to exclusive processes and weak decay amplitudes are discussed. The problem of computing the hadronic spectrum and the corresponding light-cone wavefunctions of QCD in one space and one time dimension has been successfully reduced to the diagonalization of a discrete representation of the light-cone Hamiltonian. The problems confronting the solution of gauge theories in 3 + 1 dimensions in the light-cone quantization formalism,, including zero modes and non-perturbative renormalization, are reviewed
Innovations in lattice QCD algorithms
International Nuclear Information System (INIS)
Orginos, Konstantinos
2006-01-01
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today
Baryon physics in holographic QCD
Directory of Open Access Journals (Sweden)
Alex Pomarol
2009-03-01
Full Text Available In a simple holographic model for QCD in which the Chern–Simons term is incorporated to take into account the QCD chiral anomaly, we show that baryons arise as stable solitons which are the 5D analogs of 4D skyrmions. Contrary to 4D skyrmions and previously considered holographic scenarios, these solitons have sizes larger than the inverse cut-off of the model, and therefore they are predictable within our effective field theory approach. We perform a numerical determination of several static properties of the nucleons and find a satisfactory agreement with data. We also calculate the amplitudes of “anomalous” processes induced by the Chern–Simons term in the meson sector, such as ω→πγ and ω→3π. A combined fit to baryonic and mesonic observables leads to an agreement with experiments within 16%.
Testing QCD with current algebra
International Nuclear Information System (INIS)
Leutwyler, H.
1984-01-01
Spontaneously broken chiral symmetry fixes the low energy structure of QCD to a large extent. I show how to determine the Green's functions to first nonleading order in a simultaneous expansion in powers of the momenta and of the u- and d-quark masses. In particular, I discuss the corrections of order M π 2 to the low energy theorems for ππ scattering. 19 refs., 1 tab. (author)
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
International Nuclear Information System (INIS)
Sommer, Rainer
2014-02-01
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
The status of perturbative QCD
International Nuclear Information System (INIS)
Ellis, R.K.
1988-10-01
The advances in perturbative QCD are reviewed. The status of determinations of the coupling constant α/sub S/ and the parton distribution functions is presented. New theoretical results on the spin dependent structure functions of the proton are also reviewed. The theoretical description of the production of vector bosons, jets and heavy quarks is outlined with special emphasis on new results. Expected rates for top quark production at hadronic colliders are presented. 111 refs., 8 figs
International Nuclear Information System (INIS)
Davier, M.
1999-12-01
Hadronic decays of the τ lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
International Nuclear Information System (INIS)
Brodsky, Stanley J.; de Teramond, Guy F.
2007-01-01
The AdS/CFT correspondence between string theory in AdS space and conformal .eld theories in physical spacetime leads to an analytic, semi-classical model for strongly-coupled QCD which has scale invariance and dimensional counting at short distances and color confinement at large distances. Although QCD is not conformally invariant, one can nevertheless use the mathematical representation of the conformal group in five-dimensional anti-de Sitter space to construct a first approximation to the theory. The AdS/CFT correspondence also provides insights into the inherently non-perturbative aspects of QCD, such as the orbital and radial spectra of hadrons and the form of hadronic wavefunctions. In particular, we show that there is an exact correspondence between the fifth-dimensional coordinate of AdS space z and a specific impact variable ζ which measures the separation of the quark and gluonic constituents within the hadron in ordinary space-time. This connection allows one to compute the analytic form of the frame-independent light-front wavefunctions, the fundamental entities which encode hadron properties and allow the computation of decay constants, form factors, and other exclusive scattering amplitudes. New relativistic lightfront equations in ordinary space-time are found which reproduce the results obtained using the 5-dimensional theory. The effective light-front equations possess remarkable algebraic structures and integrability properties. Since they are complete and orthonormal, the AdS/CFT model wavefunctions can also be used as a basis for the diagonalization of the full light-front QCD Hamiltonian, thus systematically improving the AdS/CFT approximation
Energy Technology Data Exchange (ETDEWEB)
Davier, M
1999-12-01
Hadronic decays of the {tau} lepton provide a clean source to study hadron dynamics in an energy regime dominated by resonances, with the interesting information captured in the spectral functions. Recent results on exclusive channels are reviewed. Inclusive spectral functions are the basis for QCD analyses, delivering an accurate determination of the strong coupling constant and quantitative information on nonperturbative contributions. Strange decays yield a determination of the strange quark mass. (author)
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
QCD contributions to vacuum polarization
International Nuclear Information System (INIS)
Reinders, L.J.; Rubinstein, H.R.; Yazaki, S.
1980-01-01
We have computed to lowest non-trivial order the perturbative and non-perturbative contributions to the vacuum polarization from all currents up to and including spin 2 ++ . These expressions are important, for example to evaluate QCD sum rules for heavy and light quark systems as shown by Shifman, Vainshtein and Zakharov. Most of the known ones are verified, one slightly changed, and many new ones are displayed. (orig.)
Perturbative QCD at finite temperature
International Nuclear Information System (INIS)
Altherr, T.
1989-03-01
We discuss an application of finite temperature QCD to lepton-pair production in a quark-gluon plasma. The perturbative calculation is performed within the realtime formalism. After cancellation of infrared and mass singularities, the corrections at O (α s ) are found to be very small in the region where the mass of the Drell-Yan pair is much larger than the temperature of the plasma. Interesting effects, however, appear at the annihilation threshold of the thermalized quarks
Lattice Boltzmann methods for global linear instability analysis
Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis
2017-12-01
Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.
Perturbative QCD and exclusive processes
International Nuclear Information System (INIS)
Bennett, J.; Hawes, F.; Zhao, M.; Zyla, P.
1991-01-01
The authors discuss perturbation theory as applied to particle physics calculations. In particle physics one is generally interested in the scattering amplitude for a system going from some initial state to a final state. The intermediate state or states are unknown. To get the scattering amplitude it is necessary to sum the contributions from processes which pass through all possible intermediate states. Intermediate states involve the exchange of intermediate vector bosons between the particles, and with this interaction is associated a coupling constant α. Each additional boson exchange involves an additional contribution of α to the coupling. If α is less than 1, one can see that the relative contribution of higher order processes is less and less important as α falls. In QCD the gluons serve as the intermediate vector bosons exchanged by quarks and gluons, and the interaction constant is not really a constant, but depends upon the distance between the particles. At short distances the coupling is small, and one can assume perturbative expansions may converge rapidly. Exclusive scattering processes, as opposed to inclusive, are those in which all of the final state products are detected. The authors then discuss the application of perturbative QCD to the deuteron. The issues of chiral conservation and color transparancy are also discussed, in the scheme of large Q 2 interations, where perturbative QCD should be applicable
Structural analysis of a ship on global aspect using ANSYS
Rahman, M. Muzibur; Kamol, Rajia Sultana; Islam, Reyana
2017-12-01
Ship is a complex geometry which undergoes a combination of loadings such as hydrostatic, hydrodynamic, wind, wave etc. at sea and thus adequate strength in a ship has always been one of the most challenging tasks for the ship designers. International Maritime Organization (IMO) and classification societies are providing the standards to ensure the adequacy of strength for the ship against all demands throughout its service life. Thus, structural analysis is needed to assess the overall strength of hull, and the means in this regard are based on finite element method which may be applied either local or global aspect of the ship. This paper is an attempt to carry out the structural analysis of a ship in global aspect using ANSYS software to locate the most stress concentration and deformed area, which will have ultimate effect on fatigue fracture.
Andru?cã Maria Carmen
2013-01-01
The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...
Measurement and QCD Interpretation of the Inclusive Deep-Inelastic Scattering Cross Section by H1
CERN. Geneva
2001-01-01
Deep inelastic electron proton collisions are a straightforward tool to study the QCD dynamics between quarks and gluons in the proton. A recent measurement and QCD analysis of the deep inelastic scattering cross section by the H1 experiment at HERA are presented. In a NLO QCD analysis of H1 structure function data, the gluon distribution in the proton is extracted to typically 3% experimental accuracy at low Bjorken x.. In a combined analysis of H1 and high precision µp data by the CERN muon experiment BCDMS, the gluon distribution at low x and the strong coupling constant as were for the first time extracted simultaneously.The strong coupling constant is determined with about 1% experimental accuracy, and QCD at NLO is confirmed over 5 orders of magnitude of Bjorken x at a new level of precision.
Topology in dynamical lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Gruber, Florian
2012-08-20
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Topology in dynamical lattice QCD simulations
International Nuclear Information System (INIS)
Gruber, Florian
2012-01-01
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Bakkes JA; Woerden JW van; Alcamo J; Berk MM; Bol P; Born GJ van den; Brink BJE ten; Hettelingh JP; Langeweg F; Niessen LW; Swart RJ; United Nations Environment; MNV
1997-01-01
This report documents the scenario analysis in UNEP's first Global Environment Outlook, published at the same time as the scenario analysis. This Outlook provides a pilot assessment of developments in the environment, both global and regional, between now and 2015, with a further projection to
An Analysis of Yip's Global Strategy Model, Using Coca-Cola ...
African Journals Online (AJOL)
Analysis of the selected business cases suggest a weak fit between the Yip model of a truly Global strategy ... like Coca-Cola in the beverage industry for effective implementation of a global strategy. ... Keywords: Global Strategy, Leadership.
Disconnected Diagrams in Lattice QCD
Gambhir, Arjun Singh
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called "disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
A first determination of the unpolarized quark TMDs from a global analysis
Energy Technology Data Exchange (ETDEWEB)
Bacchetta, Alessandro [INFN, Pavia; Delcarro, Filippo [INFN, Pavia; Pisano, Cristian [INFN Pavia; INFN Cagliari; Radici, Marco [INFN Pavia; Signori, Andrea [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2018-04-01
Transverse momentum dependent distribution and fragmentation functions of unpolarized quarks inside unpolarized protons are extracted, for the first time, through a simultaneous analysis of semi-inclusive deep-inelastic scattering, Drell-Yan and Z boson hadroproduction processes. This study is performed at leading order in perturbative QCD, with energy scale evolution at the next-to-leading logarithmic accuracy. Moreover, some specific choices are made to deal with low scale evolution around 1 GeV2. Since only data in the low transverse momentum region are considered, no matching to fixed-order calculations at high transverse momentum is needed.
A global sensitivity analysis approach for morphogenesis models
Boas, Sonja E. M.
2015-11-21
Background Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such ‘black-box’ models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. Results To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. Conclusions We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all ‘black-box’ models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
A global sensitivity analysis approach for morphogenesis models.
Boas, Sonja E M; Navarro Jimenez, Maria I; Merks, Roeland M H; Blom, Joke G
2015-11-21
Morphogenesis is a developmental process in which cells organize into shapes and patterns. Complex, non-linear and multi-factorial models with images as output are commonly used to study morphogenesis. It is difficult to understand the relation between the uncertainty in the input and the output of such 'black-box' models, giving rise to the need for sensitivity analysis tools. In this paper, we introduce a workflow for a global sensitivity analysis approach to study the impact of single parameters and the interactions between them on the output of morphogenesis models. To demonstrate the workflow, we used a published, well-studied model of vascular morphogenesis. The parameters of this cellular Potts model (CPM) represent cell properties and behaviors that drive the mechanisms of angiogenic sprouting. The global sensitivity analysis correctly identified the dominant parameters in the model, consistent with previous studies. Additionally, the analysis provided information on the relative impact of single parameters and of interactions between them. This is very relevant because interactions of parameters impede the experimental verification of the predicted effect of single parameters. The parameter interactions, although of low impact, provided also new insights in the mechanisms of in silico sprouting. Finally, the analysis indicated that the model could be reduced by one parameter. We propose global sensitivity analysis as an alternative approach to study the mechanisms of morphogenesis. Comparison of the ranking of the impact of the model parameters to knowledge derived from experimental data and from manipulation experiments can help to falsify models and to find the operand mechanisms in morphogenesis. The workflow is applicable to all 'black-box' models, including high-throughput in vitro models in which output measures are affected by a set of experimental perturbations.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks.
Navarro Jimenez, M; Le Maître, O P; Knio, O M
2016-12-28
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Global sensitivity analysis in stochastic simulators of uncertain reaction networks
Navarro, María
2016-12-26
Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.
Energy Technology Data Exchange (ETDEWEB)
Kugler, W.
2007-01-15
Hard exclusive processes in high energy electron proton scattering offer the opportunity to get access to a new generation of parton distributions, the so-called generalized parton distributions (GPDs). This functions provide more detailed informations about the structure of the nucleon than the usual PDFs obtained from DIS. In this work we present a detailed analysis of exclusive processes, especially of hard exclusive meson production. We investigated the influence of exclusive produced mesons on the semi-inclusive production of mesons at fixed target experiments like HERMES. Further we give a detailed analysis of higher order corrections (NLO) for the exclusive production of mesons in a very broad range of kinematics. (orig.)
Lattice QCD Calculation of Nucleon Structure
International Nuclear Information System (INIS)
Liu, Keh-Fei; Draper, Terrence
2016-01-01
It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_s meson decay constant f_D__s, the strangeness and charmness, the meson mass decomposition and the strange quark spin from the
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Mixed kernel function support vector regression for global sensitivity analysis
Cheng, Kai; Lu, Zhenzhou; Wei, Yuhao; Shi, Yan; Zhou, Yicheng
2017-11-01
Global sensitivity analysis (GSA) plays an important role in exploring the respective effects of input variables on an assigned output response. Amongst the wide sensitivity analyses in literature, the Sobol indices have attracted much attention since they can provide accurate information for most models. In this paper, a mixed kernel function (MKF) based support vector regression (SVR) model is employed to evaluate the Sobol indices at low computational cost. By the proposed derivation, the estimation of the Sobol indices can be obtained by post-processing the coefficients of the SVR meta-model. The MKF is constituted by the orthogonal polynomials kernel function and Gaussian radial basis kernel function, thus the MKF possesses both the global characteristic advantage of the polynomials kernel function and the local characteristic advantage of the Gaussian radial basis kernel function. The proposed approach is suitable for high-dimensional and non-linear problems. Performance of the proposed approach is validated by various analytical functions and compared with the popular polynomial chaos expansion (PCE). Results demonstrate that the proposed approach is an efficient method for global sensitivity analysis.
Warren, Ashley E; Wyss, Kaspar; Shakarishvili, George; Atun, Rifat; de Savigny, Don
2013-07-26
Millions of dollars are invested annually under the umbrella of national health systems strengthening. Global health initiatives provide funding for low- and middle-income countries through disease-oriented programmes while maintaining that the interventions simultaneously strengthen systems. However, it is as yet unclear which, and to what extent, system-level interventions are being funded by these initiatives, nor is it clear how much funding they allocate to disease-specific activities - through conventional 'vertical-programming' approach. Such funding can be channelled to one or more of the health system building blocks while targeting disease(s) or explicitly to system-wide activities. We operationalized the World Health Organization health system framework of the six building blocks to conduct a detailed assessment of Global Fund health system investments. Our application of this framework framework provides a comprehensive quantification of system-level interventions. We applied this systematically to a random subset of 52 of the 139 grants funded in Round 8 of the Global Fund to Fight AIDS, Tuberculosis and Malaria (totalling approximately US$1 billion). According to the analysis, 37% (US$ 362 million) of the Global Fund Round 8 funding was allocated to health systems strengthening. Of that, 38% (US$ 139 million) was for generic system-level interventions, rather than disease-specific system support. Around 82% of health systems strengthening funding (US$ 296 million) was allocated to service delivery, human resources, and medicines & technology, and within each of these to two to three interventions. Governance, financing, and information building blocks received relatively low funding. This study shows that a substantial portion of Global Fund's Round 8 funds was devoted to health systems strengthening. Dramatic skewing among the health system building blocks suggests opportunities for more balanced investments with regard to governance, financing, and
Methodology for global nonlinear analysis of nuclear systems
International Nuclear Information System (INIS)
Cacuci, D.G.; Cacuci, G.L.
1987-01-01
This paper outlines a general method for globally computing the crucial features of nonlinear problems: bifurcations, limit points, saddle points, extrema (maxima and minima); our method also yields the local sensitivities (i.e., first order derivatives) of the system's state variables (e.g., fluxes, power, temperatures, flows) at any point in the system's phase space. We also present an application of this method to the nonlinear BWR model discussed in Refs. 8 and 11. The most significant novel feature of our method is the recasting of a general mathematical problem comprising three aspects: (1) nonlinear constrained optimization, (2) sensitivity analysis, into a fixed point problem of the form F[u(s), λ(s)] = 0 whose global zeros and singular points are related to the special features (i.e., extrema, bifurcations, etc.) of the original problem
Global analysis of a renewable micro hydro power generation plant
Rahman, Md. Shad; Nabil, Imtiaz Muhammed; Alam, M. Mahbubul
2017-12-01
Hydroelectric power or Hydropower means the power generated by the help of flowing water with force. It is one the best source of renewable energy in the world. Water evaporates from the earth's surface, forms clouds, precipitates back to earth, and flows toward the ocean. Hydropower is considered a renewable energy resource because it uses the earth's water cycle to generate electricity. As far as Global is concerned, only a small fraction of electricity is generated by hydro-power. The aim of our analysis is to demonstrate and observe the hydropower of the Globe in micro-scale by our experimental setup which is completely new in concept. This paper consists of all the Global and National Scenario of Hydropower. And how we can more emphasize the generation of Hydroelectric power worldwide.
International Nuclear Information System (INIS)
Munehisa, Tomo
1990-01-01
We present a review on the parton shower in e + e - annihilation. Also we discuss the next-to-leading-logarithmic parton shower. We emphasize that this new model provides a useful tool for the determinations of Λ MS from jet distributions. Analysis by the new model gives us Λ MS = 0.235±0.052 GeV from data of PETRA, PEP and TRISTAN. (author)
The QCD phase diagram from analytic continuation
Directory of Open Access Journals (Sweden)
R. Bellwied
2015-12-01
Full Text Available We present the crossover line between the quark gluon plasma and the hadron gas phases for small real chemical potentials. First we determine the effect of imaginary values of the chemical potential on the transition temperature using lattice QCD simulations. Then we use various formulas to perform an analytic continuation to real values of the baryo-chemical potential. Our data set maintains strangeness neutrality to match the conditions of heavy ion physics. The systematic errors are under control up to μB≈300 MeV. For the curvature of the transition line we find that there is an approximate agreement between values from three different observables: the chiral susceptibility, chiral condensate and strange quark susceptibility. The continuum extrapolation is based on Nt=10, 12 and 16 lattices. By combining the analysis for these three observables we find, for the curvature, the value κ=0.0149±0.0021.
Higher order effects of pseudoparticles in QCD
International Nuclear Information System (INIS)
Hietarinta, J.; Palmer, W.F.
1977-01-01
Gauge invariant Green's functions of quark-antiquark bilinear densities in massless, two-color QCD are studied. Nonzero-energy fermion modes, pseudoparticle solutions with topological charge absolute value ν > 1, and n-point functions with n > 2. Some general properties of the O(Dirac constant) approximation are developed, enabling one to isolate and define the terms which contribute to a general n-point function. The higher effects it is found preserve the symmetry breakdown found earlier in the 2-point function (U(2) x U(2) → SU(2) x SU(2) x U(1)). It is shown that a previous 2-point function analysis is exact to order Dirac constant
Global tractography with embedded anatomical priors for quantitative connectivity analysis
Directory of Open Access Journals (Sweden)
Alia eLemkaddem
2014-11-01
Full Text Available The main assumption of fiber-tracking algorithms is that fiber trajectories are represented by paths of highest diffusion, which is usually accomplished by following the principal diffusion directions estimated in every voxel from the measured diffusion MRI data. The state-of-the-art approaches, known as global tractography, reconstruct all the fiber tracts of the whole brain simultaneously by solving a global energy minimization problem. The tractograms obtained with these algorithms outperform any previous technique but, unfortunately, the price to pay is an increased computational cost which is not suitable in many practical settings, both in terms of time and memory requirements. Furthermore, existing global tractography algorithms suffer from an important shortcoming that is crucial in the context of brain connectivity analyses. As no anatomical priors are used during in the reconstruction process, the recovered fiber tracts are not guaranteed to connect cortical regions and, as a matter of fact, most of them stop prematurely in the white matter. This does not only unnecessarily slow down the estimation procedure and potentially biases any subsequent analysis but also, most importantly, prevents the de facto quantification of brain connectivity. In this work, we propose a novel approach for global tractography that is specifically designed for connectivity analysis applications by explicitly enforcing anatomical priors of the tracts in the optimization and considering the effective contribution of each of them, i.e. volume, to the acquired diffusion MRI image. We evaluated our approach on both a realistic diffusion MRI phantom and in-vivo data, and also compared its performance to existing tractography aloprithms.
QCD fits to combined H1 and ZEUS inclusive DIS cross sections
Energy Technology Data Exchange (ETDEWEB)
Myronenko, Volodymyr [DESY (ZEUS), Hamburg (Germany)
2015-07-01
QCD fits to combined inclusive deep inelastic scattering cross sections in neutral and charged current e{sup ±}p are presented. The measurements used for fits cover six orders of magnitude in Q{sup 2} and Bjorken x and correspond to a luminosity of about 1 fb{sup -1}. Within the QCD analysis at NLO (VFNS) parton distribution functions and some electroweak quantities were extracted.
Bakkes JA; Woerden JW van; Alcamo J; Berk MM; Bol P; Born GJ van den; Brink BJE ten; Hettelingh JP; Langeweg F; Niessen LW; Swart RJ; United Nations Environment Programme (UNEP), Nairobi, Kenia; MNV
1997-01-01
This report documents the scenario analysis in UNEP's first Global Environment Outlook, published at the same time as the scenario analysis. This Outlook provides a pilot assessment of developments in the environment, both global and regional, between now and 2015, with a further projection to 2050. The study was carried out in support of the Agenda 21 interim evaluation, five years after 'Rio' and ten years after 'Brundtland'. The scenario analysis is based on only one scenario, Conventional...
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Lattice QCD. A critical status report
International Nuclear Information System (INIS)
Jansen, Karl
2008-10-01
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Fractal structures and intermittency in QCD
International Nuclear Information System (INIS)
Gustafson, Goesta.
1990-04-01
New results are presented for fractal structures and intermittency in QCD parton showers. A geometrical interpretation of the anomalous dimension in QCD is given. It is shown that model predications for factorial moments in the PEP-PETRA energy range are increased. if the properties of directly produced pions are more carefully taken into account
Color-magnetic permeability of QCD vacuum
Energy Technology Data Exchange (ETDEWEB)
Saito, T [Kyoto Prefectural Univ. of Medicine (Japan); Shigemoto, K
1980-03-01
In the very strong background gauge field the QCD true vacuum has been shown to have lower energy than the ''perturbative vacuum.'' The color-magnetic permeability of the QCD true vacuum is then calculated to be 1/2 within the quark-one-loop approximation.
Recent developments in QCD for LHC physics
International Nuclear Information System (INIS)
Anastasiou, C.
2006-01-01
We will review recent theoretical developments in QCD, attempting to assess the phenomenological impact of new theoretical results and to identify potentially useful directions for the future. A part of the talk will be devoted to new imaginative ideas which are rapidly changing the traditional approach to QCD computations, and surprising theoretical discoveries from perturbative calculations on the structure of gauge theories. (author)
Understanding of QCD through solvable models
Energy Technology Data Exchange (ETDEWEB)
Bhattacharya, G.
1980-07-01
Various aspects of strong interaction physics are discussed. It is shown that several nontrivial features arise from non-perturbative 'solutions' of QCD-like models in (1+1) dimensions. An attempt is made to bring these features in (3+1) dimensional semiclassical treatments of QCD.
Academic Training Lectures - QCD for Postgraduates
Maureen Prola-Tessaur
2010-01-01
by Giulia Zanderighi (University of Oxford) Monday 12 to Friday 16 April 2010 From 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Monday 12 - Modern QCD - Lecture 1 Starting from the QCD Lagrangian we will revisit some basic QCD concepts and derive fundamental properties like gauge invariance and isospin symmetry and will discuss the Feynman rules of the theory. We will then focus on the gauge group of QCD and derive the Casimirs CF and CA and some useful color identities. Tuesday 13 - Modern QCD - Lecture 2 We will start discussing the matter content of the theory and revisit the experimental measurements that led to the discovery of quarks. We will then consider a classic QCD observable, the R-ratio, and use it to illustrate the appearance of UV divergences and the need to renormalize the coupling constant of QCD. We will then discuss asymptotic freedom and confinement. Finally, we will examine a case where soft and collinear infrared divergences appear, will discuss the soft approximation in QCD ...
Solving QCD via multi-Regge theory
International Nuclear Information System (INIS)
White, A. R.
1998-01-01
A high-energy, transverse momentum cut-off, solution of QCD is outlined. Regge pole and single gluon properties of the pomeron are directly related to the confinement and chiral symmetry breaking properties of the hadron spectrum. This solution, which corresponds to a supercritical phase of Reggeon Field Theory, may only be applicable to QCD with a very special quark content
Solvable models and hidden symmetries in QCD
International Nuclear Information System (INIS)
Yepez-Martinez, Tochtli; Hess, P. O.; Szczepaniak, A.; Civitarese, O.; Lerma H., S.
2010-01-01
We show that QCD Hamiltonians at low energy exhibit an SU(2) structure, when only few orbital levels are considered. In case many orbital levels are taken into account we also find a semi-analytic solution for the energy levels of the dominant part of the QCD Hamiltonian. The findings are important to propose the structure of phenomenological models.
How is the charmonium splitting in QCD
International Nuclear Information System (INIS)
Bertlmann, R.A.
1981-06-01
Using the SVZ moment procedure to predict resonance masses within QCD the author has calculated exponential moments as a limit of the QCD formulae given by Reinders, Rubinstein and Yazaki. Applied to charmonium their results (besides 3 P 0 ) are reproduced very well. (Auth.)
Quantum properties of QCD string fragmentation
Directory of Open Access Journals (Sweden)
Todorova-Nová Šárka
2016-01-01
Full Text Available A simple quantization concept for a 3-dim QCD string is used to derive properties of QCD flux tube from the mass spectrum of light mesons and to predict observable quantum effects in correlations between adjacent hadrons. The quantized fragmentation model is presented and compared with experimental observations.
Global Sensitivity Analysis of Environmental Models: Convergence, Robustness and Validation
Sarrazin, Fanny; Pianosi, Francesca; Khorashadi Zadeh, Farkhondeh; Van Griensven, Ann; Wagener, Thorsten
2015-04-01
Global Sensitivity Analysis aims to characterize the impact that variations in model input factors (e.g. the parameters) have on the model output (e.g. simulated streamflow). In sampling-based Global Sensitivity Analysis, the sample size has to be chosen carefully in order to obtain reliable sensitivity estimates while spending computational resources efficiently. Furthermore, insensitive parameters are typically identified through the definition of a screening threshold: the theoretical value of their sensitivity index is zero but in a sampling-base framework they regularly take non-zero values. There is little guidance available for these two steps in environmental modelling though. The objective of the present study is to support modellers in making appropriate choices, regarding both sample size and screening threshold, so that a robust sensitivity analysis can be implemented. We performed sensitivity analysis for the parameters of three hydrological models with increasing level of complexity (Hymod, HBV and SWAT), and tested three widely used sensitivity analysis methods (Elementary Effect Test or method of Morris, Regional Sensitivity Analysis, and Variance-Based Sensitivity Analysis). We defined criteria based on a bootstrap approach to assess three different types of convergence: the convergence of the value of the sensitivity indices, of the ranking (the ordering among the parameters) and of the screening (the identification of the insensitive parameters). We investigated the screening threshold through the definition of a validation procedure. The results showed that full convergence of the value of the sensitivity indices is not necessarily needed to rank or to screen the model input factors. Furthermore, typical values of the sample sizes that are reported in the literature can be well below the sample sizes that actually ensure convergence of ranking and screening.
Economic impact analysis for global warming: Sensitivity analysis for cost and benefit estimates
International Nuclear Information System (INIS)
Ierland, E.C. van; Derksen, L.
1994-01-01
Proper policies for the prevention or mitigation of the effects of global warming require profound analysis of the costs and benefits of alternative policy strategies. Given the uncertainty about the scientific aspects of the process of global warming, in this paper a sensitivity analysis for the impact of various estimates of costs and benefits of greenhouse gas reduction strategies is carried out to analyze the potential social and economic impacts of climate change
QCD pairing in primordial nuggets
Lugones, G.; Horvath, J. E.
2003-08-01
We analyze the problem of boiling and surface evaporation of quark nuggets in the cosmological quark-hadron transition. Recently, it has been shown that QCD pairing modifies the stability properties of strange quark matter. More specifically, strange quark matter in a color-flavor locked state was found to be absolutely stable for a much wider range of the parameters than ordinary unpaired strange quark matter (G. Lugones and J. E. Horvath, Phys. Rev. D, 66, 074017 (2002)). Assuming that primordial quark nuggets are actually formed we analyze the consequences of pairing on the rates of boiling and surface evaporation in order to determine whether they could have survived.
Pasztor, Gabriella
2018-01-01
The rich proton-proton collision data of the LHC allow to study QCD processes in a previously unexplored region with ever improving precision. This paper summarises recent results of the ATLAS, CMS and LHCb Collaborations using primarily multi-jet and vector boson plus jet data collected at $\\sqrt s$ = 8 and 13 TeV. Comparisons to higher-order theoretical calculations and sophisticated Monte Carlo predictions are presented, as well as the impact of the data on the determination of the parton distribution functions and the measurement of the strong coupling constant, $\\alpha_s$.
Nucleon deformation from lattice QCD
International Nuclear Information System (INIS)
Tsapalis, A.
2008-01-01
The issue of nucleon and Delta(1232) deformation is discussed through the evaluation of the N to Delta electromagnetic transition and Delta electromagnetic form factors in Lattice QCD. The momentum dependence of the form factors is studied using 2+1 staggered dynamical flavors at pion masses as low as 350 MeV and compared to results obtained in the Wilson quenched and two-flavor dynamical theory at similar pion masses. The measurement of small non-zero quadrupole amplitudes, in agreement to recent experiments, establishes the existence of deformation in the N and Delta states. (author)
Alvarez-Gaumé, Luís; Kounnas, Costas; Marino, M; Alvarez-Gaume, Luis; Distler, Jacques; Kounnas, Costas; Marino, Marcos
1996-01-01
We analyze the possible soft breaking of N=2 supersymmetric Yang-Mills theory with and without matter flavour preserving the analyticity properties of the Seiberg-Witten solution. For small supersymmetry breaking parameter with respect to the dynamical scale of the theory we obtain an exact expression for the effective potential. We describe in detail the onset of the confinement transition and some of the patterns of chiral symmetry breaking. If we extrapolate the results to the limit where supersymmetry decouples, we obtain hints indicating that perhaps a description of the QCD vacuum will require the use of Lagrangians containing simultaneously mutually non-local degrees of freedom (monopoles and dyons).
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Meson Spectroscopy from QCD - Project Results
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States)
2017-04-17
Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing in πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.
Reality of the fundamental topological structure in the QCD vacuum
International Nuclear Information System (INIS)
Alexandru, Andrei; Horvath, Ivan; Zhang Jianbo
2005-01-01
Long-range order of a specific kind has recently been found directly in configurations dominating the regularized QCD path integral. In particular, a low-dimensional global structure was identified in typical space-time distributions of topological charge defined via the overlap Dirac matrix. The presence of the order has been concluded from the fact that the structure disappears after random permutation of position coordinates in measured densities. Here we complete the argument for the reality of this structure (namely the conjecture that its existence is a consequence of QCD dynamics and not an artifact of the overlap-based definition of lattice topological field) by showing that the structure ceases to exist after randomizing the space-time coordinates of the underlying gauge field. This implies that the long-range order present in the overlap-based topological density is indeed a manifestation of the QCD vacuum, and that the notion of the fundamental structure (structure involving relevant features at all scales) is viable
Light-front QCD. II. Two-component theory
International Nuclear Information System (INIS)
Zhang, W.; Harindranath, A.
1993-01-01
The light-front gauge A a + =0 is known to be a convenient gauge in practical QCD calculations for short-distance behavior, but there are persistent concerns about its use because of its ''singular'' nature. The study of nonperturbative field theory quantizing on a light-front plane for hadronic bound states requires one to gain a priori systematic control of such gauge singularities. In the second paper of this series we study the two-component old-fashioned perturbation theory and various severe infrared divergences occurring in old-fashioned light-front Hamiltonian calculations for QCD. We also analyze the ultraviolet divergences associated with a large transverse momentum and examine three currently used regulators: an explicit transverse cutoff, transverse dimensional regularization, and a global cutoff. We discuss possible difficulties caused by the light-front gauge singularity in the applications of light-front QCD to both old-fashioned perturbative calculations for short-distance physics and upcoming nonperturbative investigations for hadronic bound states
Drivers of wetland conversion: a global meta-analysis.
van Asselen, Sanneke; Verburg, Peter H; Vermaat, Jan E; Janse, Jan H
2013-01-01
Meta-analysis of case studies has become an important tool for synthesizing case study findings in land change. Meta-analyses of deforestation, urbanization, desertification and change in shifting cultivation systems have been published. This present study adds to this literature, with an analysis of the proximate causes and underlying forces of wetland conversion at a global scale using two complementary approaches of systematic review. Firstly, a meta-analysis of 105 case-study papers describing wetland conversion was performed, showing that different combinations of multiple-factor proximate causes, and underlying forces, drive wetland conversion. Agricultural development has been the main proximate cause of wetland conversion, and economic growth and population density are the most frequently identified underlying forces. Secondly, to add a more quantitative component to the study, a logistic meta-regression analysis was performed to estimate the likelihood of wetland conversion worldwide, using globally-consistent biophysical and socioeconomic location factor maps. Significant factors explaining wetland conversion, in order of importance, are market influence, total wetland area (lower conversion probability), mean annual temperature and cropland or built-up area. The regression analyses results support the outcomes of the meta-analysis of the processes of conversion mentioned in the individual case studies. In other meta-analyses of land change, similar factors (e.g., agricultural development, population growth, market/economic factors) are also identified as important causes of various types of land change (e.g., deforestation, desertification). Meta-analysis helps to identify commonalities across the various local case studies and identify which variables may lead to individual cases to behave differently. The meta-regression provides maps indicating the likelihood of wetland conversion worldwide based on the location factors that have determined historic
The identification of model effective dimensions using global sensitivity analysis
International Nuclear Information System (INIS)
Kucherenko, Sergei; Feil, Balazs; Shah, Nilay; Mauntz, Wolfgang
2011-01-01
It is shown that the effective dimensions can be estimated at reasonable computational costs using variance based global sensitivity analysis. Namely, the effective dimension in the truncation sense can be found by using the Sobol' sensitivity indices for subsets of variables. The effective dimension in the superposition sense can be estimated by using the first order effects and the total Sobol' sensitivity indices. The classification of some important classes of integrable functions based on their effective dimension is proposed. It is shown that it can be used for the prediction of the QMC efficiency. Results of numerical tests verify the prediction of the developed techniques.
The identification of model effective dimensions using global sensitivity analysis
Energy Technology Data Exchange (ETDEWEB)
Kucherenko, Sergei, E-mail: s.kucherenko@ic.ac.u [CPSE, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Feil, Balazs [Department of Process Engineering, University of Pannonia, Veszprem (Hungary); Shah, Nilay [CPSE, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Mauntz, Wolfgang [Lehrstuhl fuer Anlagensteuerungstechnik, Fachbereich Chemietechnik, Universitaet Dortmund (Germany)
2011-04-15
It is shown that the effective dimensions can be estimated at reasonable computational costs using variance based global sensitivity analysis. Namely, the effective dimension in the truncation sense can be found by using the Sobol' sensitivity indices for subsets of variables. The effective dimension in the superposition sense can be estimated by using the first order effects and the total Sobol' sensitivity indices. The classification of some important classes of integrable functions based on their effective dimension is proposed. It is shown that it can be used for the prediction of the QMC efficiency. Results of numerical tests verify the prediction of the developed techniques.
Combinatorial-topological framework for the analysis of global dynamics
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
Combinatorial-topological framework for the analysis of global dynamics.
Bush, Justin; Gameiro, Marcio; Harker, Shaun; Kokubu, Hiroshi; Mischaikow, Konstantin; Obayashi, Ippei; Pilarczyk, Paweł
2012-12-01
We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications.
An Analysis of Historical Global Warming and Social Engagement
Train, Joseph; Roizenman, David; Damiani, Seth; Rochwerg, Ronny
2018-01-01
The goal of this paper is to determine whether there is a correlation between awareness of global warming, and where global warming occurs. This theory is carried out by analyzing maps containing various forms of data that have to do with global warming, such as precipitation and surface temperature, and comparing it with a map of engagement from tweets which mention global warming. This paper found that there is no solid correlation between mentioning global warming in tweets and global warm...
A meta-analysis of global urban land expansion.
Seto, Karen C; Fragkias, Michail; Güneralp, Burak; Reilly, Michael K
2011-01-01
The conversion of Earth's land surface to urban uses is one of the most irreversible human impacts on the global biosphere. It drives the loss of farmland, affects local climate, fragments habitats, and threatens biodiversity. Here we present a meta-analysis of 326 studies that have used remotely sensed images to map urban land conversion. We report a worldwide observed increase in urban land area of 58,000 km(2) from 1970 to 2000. India, China, and Africa have experienced the highest rates of urban land expansion, and the largest change in total urban extent has occurred in North America. Across all regions and for all three decades, urban land expansion rates are higher than or equal to urban population growth rates, suggesting that urban growth is becoming more expansive than compact. Annual growth in GDP per capita drives approximately half of the observed urban land expansion in China but only moderately affects urban expansion in India and Africa, where urban land expansion is driven more by urban population growth. In high income countries, rates of urban land expansion are slower and increasingly related to GDP growth. However, in North America, population growth contributes more to urban expansion than it does in Europe. Much of the observed variation in urban expansion was not captured by either population, GDP, or other variables in the model. This suggests that contemporary urban expansion is related to a variety of factors difficult to observe comprehensively at the global level, including international capital flows, the informal economy, land use policy, and generalized transport costs. Using the results from the global model, we develop forecasts for new urban land cover using SRES Scenarios. Our results show that by 2030, global urban land cover will increase between 430,000 km(2) and 12,568,000 km(2), with an estimate of 1,527,000 km(2) more likely.
Thermodynamics of QCD from Sakai-Sugimoto model
International Nuclear Information System (INIS)
Isono, Hiroshi; Mandal, Gautam; Morita, Takeshi
2015-01-01
Till date, the only consistent description of the deconfinement phase of the Sakai-Sugimoto model appears to be provided by the analysis of http://dx.doi.org/10.1007/JHEP09(2011)073. The current version of the analysis, however, has a subtlety regarding the monodromy of quarks around the Euclidean time circle. In this note, we revisit and resolve this issue by considering the effect of an imaginary baryon chemical potential on quark monodromies. With this ingredient, the proposal of http://dx.doi.org/10.1007/JHEP09(2011)073 for investigating finite temperature QCD using holography is firmly established. Additionally, our technique allows a holographic computation of the free energy as a function of the imaginary chemical potential in the deconfinement phase; we show that our result agrees with the corresponding formula obtained from perturbative QCD, namely the Roberge-Weiss potential.
A Global Sensitivity Analysis Methodology for Multi-physics Applications
Energy Technology Data Exchange (ETDEWEB)
Tong, C H; Graziani, F R
2007-02-02
Experiments are conducted to draw inferences about an entire ensemble based on a selected number of observations. This applies to both physical experiments as well as computer experiments, the latter of which are performed by running the simulation models at different input configurations and analyzing the output responses. Computer experiments are instrumental in enabling model analyses such as uncertainty quantification and sensitivity analysis. This report focuses on a global sensitivity analysis methodology that relies on a divide-and-conquer strategy and uses intelligent computer experiments. The objective is to assess qualitatively and/or quantitatively how the variabilities of simulation output responses can be accounted for by input variabilities. We address global sensitivity analysis in three aspects: methodology, sampling/analysis strategies, and an implementation framework. The methodology consists of three major steps: (1) construct credible input ranges; (2) perform a parameter screening study; and (3) perform a quantitative sensitivity analysis on a reduced set of parameters. Once identified, research effort should be directed to the most sensitive parameters to reduce their uncertainty bounds. This process is repeated with tightened uncertainty bounds for the sensitive parameters until the output uncertainties become acceptable. To accommodate the needs of multi-physics application, this methodology should be recursively applied to individual physics modules. The methodology is also distinguished by an efficient technique for computing parameter interactions. Details for each step will be given using simple examples. Numerical results on large scale multi-physics applications will be available in another report. Computational techniques targeted for this methodology have been implemented in a software package called PSUADE.
International Nuclear Information System (INIS)
Smith, W.H.
1997-01-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F 2 , which is used to determine the gluon momentum distribution. Both low and high Q 2 regimes are discussed. The low Q 2 transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure α s , and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs
Energy Technology Data Exchange (ETDEWEB)
Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.
1997-06-01
These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.
De Forcrand, Philippe; Forcrand, Philippe de; Philipsen, Owe
2006-01-01
We summarize our recent results on the phase diagram of QCD with N_f=2+1 quark flavors, as a function of temperature T and quark chemical potential \\mu. Using staggered fermions, lattices with temporal extent N_t=4, and the exact RHMC algorithm, we first determine the critical line in the quark mass plane (m_{u,d},m_s) where the finite temperature transition at \\mu=0 is second order. We confirm that the physical point lies on the crossover side of this line. Our data are consistent with a tricritical point at (m_{u,d},m_s) = (0,\\sim 500) MeV. Then, using an imaginary chemical potential, we determine in which direction this second-order line moves as the chemical potential is turned on. Contrary to standard expectations, we find that the region of first-order transitions shrinks in the presence of a chemical potential, which is inconsistent with the presence of a QCD critical point at small chemical potential. The emphasis is put on clarifying the translation of our results from lattice to physical units, and ...
Theta dependence in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Bartolini, Lorenzo [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Bigazzi, Francesco [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Bolognesi, Stefano [Dipartimento di Fisica “E. Fermi' , Università di Pisa and INFN, Sezione di Pisa,Largo B. Pontecorvo 3, I-56127 Pisa (Italy); Cotrone, Aldo L. [INFN, Sezione di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Dipartimento di Fisica e Astronomia, Università di Firenze,Via G. Sansone 1, I-50019 Sesto Fiorentino (Firenze) (Italy); Manenti, Andrea [Institute of Physics, EPFL,Rte de la Sorge, BSP 728, CH-1015 Lausanne (Switzerland)
2017-02-07
We study the effects of the CP-breaking topological θ-term in the large N{sub c} QCD model by Witten, Sakai and Sugimoto with N{sub f} degenerate light flavors. We first compute the ground state energy density, the topological susceptibility and the masses of the lowest lying mesons, finding agreement with expectations from the QCD chiral effective action. Then, focusing on the N{sub f}=2 case, we consider the baryonic sector and determine, to leading order in the small θ regime, the related holographic instantonic soliton solutions. We find that while the baryon spectrum does not receive O(θ) corrections, this is not the case for observables like the electromagnetic form factor of the nucleons. In particular, it exhibits a dipole term, which turns out to be vector-meson dominated. The resulting neutron electric dipole moment, which is exactly the opposite as that of the proton, is of the same order of magnitude of previous estimates in the literature. Finally, we compute the CP-violating pion-nucleon coupling constant ḡ{sub πNN}, finding that it is zero to leading order in the large N{sub c} limit.
F. Gerard Adams
2008-01-01
The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is â€œflatâ€ . While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between â€œoldâ€ countries and â€œnewâ€ . As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...
Mass spectrum of 1-+ exotic mesons from lattice QCD
International Nuclear Information System (INIS)
Cook, M. S.; Fiebig, H. R.
2006-01-01
Time correlation functions of a hybrid exotic meson operator, with J PC =1 -+ , generated in quenched lattice QCD are subjected to a (Bayesian) maximum entropy analysis. Five distinct spectral levels are uncovered. Their extrapolation into the physical pion mass region suggests a possible relationship to experimentally known states π 1 (1400) and π 1 (1600), and also to a state in the 2 GeV region carrying the same quantum numbers
An application of transverse momentum dependent evolution equations in QCD
International Nuclear Information System (INIS)
Ceccopieri, Federico A.; Trentadue, Luca
2008-01-01
The properties and behaviour of the solutions of the recently obtained k t -dependent QCD evolution equations are investigated. When used to reproduce transverse momentum spectra of hadrons in Semi-Inclusive DIS, an encouraging agreement with data is found. The present analysis also supports at the phenomenological level the factorization properties of the Semi-Inclusive DIS cross-sections in terms of k t -dependent distributions. Further improvements and possible developments of the proposed evolution equations are envisaged
ACE2 Global Digital Elevation Model : User Analysis
Smith, R. G.; Berry, P. A. M.; Benveniste, J.
2013-12-01
Altimeter Corrected Elevations 2 (ACE2), first released in October 2009, is the Global Digital Elevation Model (GDEM) created by fusing the high accuracy of over 100 million altimeter retracked height estimates, derived primarily from the ERS-1 Geodetic Mission, with the high frequency content available within the near-global Shuttle Radar Topography Mission. This novel ACE2 GDEM is freely available at 3”, 9”, 30” and 5' and has been distributed via the web to over 680 subscribers. This paper presents the results of a detailed analysis of geographical distribution of subscribed users, along with fields of study and potential uses. Investigations have also been performed to determine the most popular spatial resolutions and the impact these have on the scope of data downloaded. The analysis has shown that, even though the majority of users have come from Europe and America, a significant number of website hits have been received from South America, Africa and Asia. Registered users also vary widely, from research institutions and major companies down to individual hobbyists looking at data for single projects.
Global patterns of materials use. A socioeconomic and geophysical analysis
Energy Technology Data Exchange (ETDEWEB)
Steinberger, Julia K.; Krausmann, Fridolin; Eisenmenger, Nina [Institute of Social Ecology Vienna, IFF, University of Klagenfurt, Schottenfeldgasse 29, A-1070 Wien (Austria)
2010-03-15
Human use of materials is a major driver of global environmental change. The links between materials use and economic development are central to the challenge of decoupling of materials use and economic growth (dematerialization). This article presents a new global material flow dataset compiled for the year 2000, covering 175 countries, including both extraction and trade flows, and comprising four major material categories: biomass, construction minerals, fossil energy carriers and ores/industrial minerals. First, we quantify the variability and distributional inequality (Gini coefficients) in international material consumption. We then measure the influence of the drivers population, GDP, land area and climate. This analysis yields international income elasticities of material use. Finally, we examine the coupling between material flows, and between income and material productivity, measured in economic production per tonne material consumed. Material productivity is strongly coupled to income, and may thus not be suitable as an international indicator of environmental progress - a finding which we relate to the economic inelasticity of material consumption. The results demonstrate striking differences between the material groups. Biomass is the most equitably distributed resource, economically the most inelastic, and is not correlated to any of the mineral materials. The three mineral material groups are closely coupled to each other and economic activity, indicating that the challenge of dematerializing industrial economies may require fundamental structural transformation. Our analysis provides a first systematic investigation of international differences in material use and their drivers, and thus serves as the basis for more detailed future work. (author)
Global sensitivity analysis of multiscale properties of porous materials
Um, Kimoon; Zhang, Xuan; Katsoulakis, Markos; Plechac, Petr; Tartakovsky, Daniel M.
2018-02-01
Ubiquitous uncertainty about pore geometry inevitably undermines the veracity of pore- and multi-scale simulations of transport phenomena in porous media. It raises two fundamental issues: sensitivity of effective material properties to pore-scale parameters and statistical parameterization of Darcy-scale models that accounts for pore-scale uncertainty. Homogenization-based maps of pore-scale parameters onto their Darcy-scale counterparts facilitate both sensitivity analysis (SA) and uncertainty quantification. We treat uncertain geometric characteristics of a hierarchical porous medium as random variables to conduct global SA and to derive probabilistic descriptors of effective diffusion coefficients and effective sorption rate. Our analysis is formulated in terms of solute transport diffusing through a fluid-filled pore space, while sorbing to the solid matrix. Yet it is sufficiently general to be applied to other multiscale porous media phenomena that are amenable to homogenization.
Risk-analysis of global climate tipping points
Energy Technology Data Exchange (ETDEWEB)
Frieler, Katja; Meinshausen, Malte; Braun, N [Potsdam Institute for Climate Impact Research e.V., Potsdam (Germany). PRIMAP Research Group; and others
2012-09-15
vulnerable to climate change impacts. Here we focus on tipping elements within the physical / biological system. In the following two sections, we briefly highlight some of our methodological research regarding global mean precipitation and regional climate change. These methodological developments provided the underpinning for our subsequent analysis of individual large-scale climate impacts, as e.g. mass losses of the Greenland ice sheet, the release of greenhouse gases by the thawing of permafrost regions or the threat of coral reefs by high ocean temperatures.
Scattering processes and resonances from lattice QCD
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Duality and BPS spectra in N = 2 supersymmetric QCD
International Nuclear Information System (INIS)
Ferrari, F.
1997-01-01
I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.)
Duality and BPS spectra in N = 2 supersymmetric QCD
Energy Technology Data Exchange (ETDEWEB)
Ferrari, F. [Ecole Normale Superieure, 75 - Paris (France). Lab. de Physique Theorique
1997-05-01
I review, with some pedagogy, two different approaches to the computation of BPS spectra in N = 2 supersymmetric QCD with gauge group SU(2). The first one is semiclassical and has been widely used in the literature. The second one makes use of constraints coming from the non perturbative, global structure of the Coulomb branch of these theories. The second method allows for a description of discontinuities in the BPS spectra at strong coupling, and should lead to accurate test of duality conjectures in N = 2 theories. (orig.).
Domain wall QCD with physical quark masses
Blum, T.; Christ, N.H.; Frison, J.; Garron, N.; Hudspith, R.J.; Izubuchi, T.; Janowski, T.; Jung, C.; Jüttner, A.; Kelly, C.; Kenway, R.D.; Lehner, C.; Marinkovic, M.; Mawhinney, R.D.; McGlynn, G.; Murphy, D.J.; Ohta, S.; Portelli, A.; Sachrajda, C.T.; Soni, A.
2016-01-01
We present results for several light hadronic quantities ($f_\\pi$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit' with a number of other ensembles with heavier pion masses. We use the physical values of $m_\\pi$, $m_K$ and $m_\\Omega$ to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: $f_\\pi$ = 130.2(9) MeV; $f_K$ = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the $\\bar {\\rm MS}$ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, $B_K$...
Langevin simulations of QCD, including fermions
International Nuclear Information System (INIS)
Kronfeld, A.S.
1986-02-01
We encounter critical slow down in updating when xi/a -> infinite and in matrix inversion (needed to include fermions) when msub(q)a -> 0. A simulation that purports to solve QCD numerically will encounter these limits, so to face the challenge in the title of this workshop, we must cure the disease of critical slow down. Physically, this critical slow down is due to the reluctance of changes at short distances to propagate to large distances. Numerically, the stability of an algorithm at short wavelengths requires a (moderately) small step size; critical slow down occurs when the effective long wavelength step size becomes tiny. The remedy for this disease is an algorithm that propagates signals quickly throughout the system; i.e. one whose effective step size is not reduced for the long wavelength conponents of the fields. (Here the effective ''step size'' is essentially an inverse decorrelation time.) To do so one must resolve various wavelengths of the system and modify the dynamics (in CPU time) of the simulation so that all modes evolve at roughly the same rate. This can be achieved by introducing Fourier transforms. I show how to implement Fourier acceleration for Langevin updating and for conjugate gradient matrix inversion. The crucial feature of these algorithms that lends them to Fourier acceleration is that they update the lattice globally; hence the Fourier transforms are computed once per sweep rather than once per hit. (orig./HSI)
The QCD Critical Point and Related Observables
Energy Technology Data Exchange (ETDEWEB)
Nahrgang, Marlene
2016-12-15
The search for the critical point of QCD in heavy-ion collision experiments has sparked enormous interest with the completion of phase I of the RHIC beam energy scan. Here, I review the basics of the thermodynamics of the QCD phase transition and its implications for experimental multiplicity fluctuations in heavy-ion collisions. Several sources of noncritical fluctuations impact the observables and need to be understood in addition to the critical phenomena. Recent progress has been made in dynamical modeling of critical fluctuations, which ultimately is indispensable to understand potential signals of the QCD critical point in heavy-ion collision.
Towards the chiral limit in QCD
International Nuclear Information System (INIS)
Shailesh Chandrasekharan
2006-01-01
Computing hadronic observables by solving QCD from first principles with realistic quark masses is an important challenge in fundamental nuclear and particle physics research. Although lattice QCD provides a rigorous framework for such calculations many difficulties arise. Firstly, there are no good algorithms to solve lattice QCD with realistically light quark masses. Secondly, due to critical slowing down, Monte Carlo algorithms are able to access only small lattice sizes on coarse lattices. Finally, due to sign problems it is almost impossible to study the physics of finite baryon density. Lattice QCD contains roughly three mass scales: the cutoff (or inverse lattice spacing) a -1 , the confinement scale Λ QCD , and the pion mass m π . Most conventional Monte Carlo algorithms for QCD become inefficient in two regimes: when Λ QCD becomes small compared to a -1 and when m π becomes small compared to Λ QCD . The former can be largely controlled by perturbation theory thanks to asymptotic freedom. The latter is more difficult since chiral extrapolations are typically non-analytic and can be unreliable if the calculations are not done at sufficiently small quark masses. For this reason it has been difficult to compute quantities close to the chiral limit. The essential goal behind this proposal was to develop a new approach towards understanding QCD and QCD-like theories with sufficiently light quarks. The proposal was based on a novel cluster algorithm discovered in the strong coupling limit with staggered fermions [1]. This algorithm allowed us to explore the physics of exactly massless quarks and as well as light quarks. Thus, the hope was that this discovery would lead to the complete solution of at least a few strongly coupled QCD-like theories. The solution would be far better than those achievable through conventional methods and thus would be able to shed light on the chiral physics from a new direction. By the end of the funding period, the project led
QCD Results from ATLAS and CMS
Leyton, M; The ATLAS collaboration
2014-01-01
The ATLAS and CMS collaborations have performed a wide range of studies of QCD phenomena, from soft particle to hard photon and jet production. Recent soft-QCD measurements include studies of the underlying event, double parton interactions and vector meson production. Differential measurements of inclusive and dijet production provide stringent tests of high-order QCD predictions and provide input for the determination of parton density functions. Measurements of isolated, inclusive and di-photon cross sections for high-pT photons test various theoretical predictions and further constrain PDFs. An overview of these results is given.
Dynamical effects of QCD vacuum structure
International Nuclear Information System (INIS)
Ferreira, Erasmo
1994-01-01
The role of the QCD vacuum structure in the determination of the properties of states and processes occurring in the confinement regime of QCD is reviewed. The finite range of the vacuum correlations is discussed, and an analytical form is suggested for the correlation functions. The role of the vacuum quantum numbers in the phenomenology of high-energy scattering is reviewed. The vacuum correlation model of non-perturbative QCD is mentioned as a bridge between the fundamental theory and the description of the experiments. (author). 13 refs., 1 fig
Quark virtuality and QCD vacuum condensates
International Nuclear Information System (INIS)
Zhou Lijuan; Ma Weixing
2004-01-01
Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions
CERN. Geneva
2006-01-01
The LHC energy regime poses a serious challenge to our capability of predicting QCD reactions to the level of accuracy necessary for a successful programme of searches for physics beyond the Standard Model. In these lectures, I'll introduce basic concepts in QCD, and present techniques based on perturbation theory, such as fixed-order and resummed computations, and Monte Carlo simulations. I'll discuss applications of these techniques to hadron-hadron processes, concentrating on recent trends in perturbative QCD aimed at improving our understanding of LHC phenomenology.
Death to perturbative QCD in exclusive processes?
Energy Technology Data Exchange (ETDEWEB)
Eckardt, R.; Hansper, J.; Gari, M.F. [Institut fuer Theoretische Physik, Bochum (Germany)
1994-04-01
The authors discuss the question of whether perturbative QCD is applicable in calculations of exclusive processes at available momentum transfers. They show that the currently used method of determining hadronic quark distribution amplitudes from QCD sum rules yields wave functions which are completely undetermined because the polynomial expansion diverges. Because of the indeterminacy of the wave functions no statement can be made at present as to whether perturbative QCD is valid. The authors emphasize the necessity of a rigorous discussion of the subject and the importance of experimental data in the range of interest.
Global sensitivity analysis of computer models with functional inputs
International Nuclear Information System (INIS)
Iooss, Bertrand; Ribatet, Mathieu
2009-01-01
Global sensitivity analysis is used to quantify the influence of uncertain model inputs on the response variability of a numerical model. The common quantitative methods are appropriate with computer codes having scalar model inputs. This paper aims at illustrating different variance-based sensitivity analysis techniques, based on the so-called Sobol's indices, when some model inputs are functional, such as stochastic processes or random spatial fields. In this work, we focus on large cpu time computer codes which need a preliminary metamodeling step before performing the sensitivity analysis. We propose the use of the joint modeling approach, i.e., modeling simultaneously the mean and the dispersion of the code outputs using two interlinked generalized linear models (GLMs) or generalized additive models (GAMs). The 'mean model' allows to estimate the sensitivity indices of each scalar model inputs, while the 'dispersion model' allows to derive the total sensitivity index of the functional model inputs. The proposed approach is compared to some classical sensitivity analysis methodologies on an analytical function. Lastly, the new methodology is applied to an industrial computer code that simulates the nuclear fuel irradiation.
Exploring the nucleon structure from first principles of QCD
Energy Technology Data Exchange (ETDEWEB)
Bietenholz, W. [Universidad Nacional Autonoma de Mexico (Mexico). Inst. de Ciencias Nucleares; Cundy, N.; Goeckeler, M. [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2010-04-15
Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)
Using a commercial symmetric multiprocessor for lattice QCD
International Nuclear Information System (INIS)
Brower, R.C.; Chen, D.; Negele, J.W.
1998-01-01
In its evolution, the computer industry has reached the point when considerable computing power can be packaged on a single microprocessor chip. At the same time, costs of designing a computer system around such a CPU are growing. For these reasons we decided to explore a possibility of using commercially available symmetric multiprocessors (SMP) as building blocks for the LQCD computer. Careful analysis of the architecture allowed us to build a QCD primitive library running close to the peak performance on the UltraSPARC processor. As a result, multithreaded QCD code (both the heatbath and the Wilson fermion inverter) runs at about 50% efficiency on a single SMP. The communication between different CPUs is handled by a coherent memory system. Currently we are planning to connect several SMPs with a high bandwidth network into a single system. (orig.)
C P -odd sector and θ dynamics in holographic QCD
Areán, Daniel; Iatrakis, Ioannis; Järvinen, Matti; Kiritsis, Elias
2017-07-01
The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit. An unprecedented analysis of the C P -odd physics is performed going beyond the level of effective field theories. The structure of holographic saddle points at finite θ is determined, as well as its interplay with chiral symmetry breaking. Many observables (vacuum energy and higher-order susceptibilities, singlet and nonsinglet masses and mixings) are computed as functions of θ and the quark mass m . Wherever applicable the results are compared to those of chiral Lagrangians, finding agreement. In particular, we recover the Witten-Veneziano formula in the small x →0 limit, we compute the θ dependence of the pion mass, and we derive the hyperscaling relation for the topological susceptibility in the conformal window in terms of the quark mass.
Results on QCD Physics from the CDF-II Experiment
Energy Technology Data Exchange (ETDEWEB)
Pagliarone, C.; /Cassino U. /INFN, Pisa
2006-12-01
In this paper the authors review a selection of recent results obtained, in the area of QCD physics, from the CDF-II experiment that studies p{bar p} collisions at {radical}s = 1.96 TeV provided by the Fermilab Tevatron Collider. All results shown correspond to analysis performed using the Tevatron Run II data samples. In particular they will illustrate the progress achieved and the status of the studies on the following QCD processes: jet inclusive production, using different jet clustering algorithm, W({yields} e{nu}{sub e}) + jets and Z({yields} e{sup +}e{sup -}) + jets production, {gamma} + b-jet production, dijet production in double pomeron exchange and finally exclusive e{sup +}e{sup -} and {gamma}{gamma} production. No deviations from the Standard Model have been observed so far.
openQ*D simulation code for QCD+QED
Campos, Isabel; Fritzsch, Patrick; Hansen, Martin; Krstić Marinković, Marina; Patella, Agostino; Ramos, Alberto; Tantalo, Nazario
2018-03-01
The openQ*D code for the simulation of QCD+QED with C* boundary conditions is presented. This code is based on openQCD-1.6, from which it inherits the core features that ensure its efficiency: the locally-deflated SAP-preconditioned GCR solver, the twisted-mass frequency splitting of the fermion action, the multilevel integrator, the 4th order OMF integrator, the SSE/AVX intrinsics, etc. The photon field is treated as fully dynamical and C* boundary conditions can be chosen in the spatial directions. We discuss the main features of openQ*D, and we show basic test results and performance analysis. An alpha version of this code is publicly available and can be downloaded from http://rcstar.web.cern.ch/.
Entropic information of dynamical AdS/QCD holographic models
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex E., E-mail: alexeb@ufscar.br [Departamento de Física, Universidade Federal de São Carlos, PO Box 676, 13565-905, São Carlos, SP (Brazil); Rocha, Roldão da, E-mail: roldao.rocha@ufabc.edu.br [Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, UFABC, 09210-580, Santo André (Brazil)
2016-11-10
The Shannon based conditional entropy that underlies five-dimensional Einstein–Hilbert gravity coupled to a dilaton field is investigated in the context of dynamical holographic AdS/QCD models. Considering the UV and IR dominance limits of such AdS/QCD models, the conditional entropy is shown to shed some light onto the meson classification schemes, which corroborate with the existence of light-flavor mesons of lower spins in Nature. Our analysis is supported by a correspondence between statistical mechanics and information entropy which establishes the physical grounds to the Shannon information entropy, also in the context of statistical mechanics, and provides some specificities for accurately extending the entropic discussion to continuous modes of physical systems. From entropic informational grounds, the conditional entropy allows one to identify the lower experimental/phenomenological occurrence of higher spin mesons in Nature. Moreover, it introduces a quantitative theoretical apparatus for studying the instability of high spin light-flavor mesons.
Large scale computing in theoretical physics: Example QCD
International Nuclear Information System (INIS)
Schilling, K.
1986-01-01
The limitations of the classical mathematical analysis of Newton and Leibniz appear to be more and more overcome by the power of modern computers. Large scale computing techniques - which resemble closely the methods used in simulations within statistical mechanics - allow to treat nonlinear systems with many degrees of freedom such as field theories in nonperturbative situations, where analytical methods do fail. The computation of the hadron spectrum within the framework of lattice QCD sets a demanding goal for the application of supercomputers in basic science. It requires both big computer capacities and clever algorithms to fight all the numerical evils that one encounters in the Euclidean world. The talk will attempt to describe both the computer aspects and the present state of the art of spectrum calculations within lattice QCD. (orig.)
Exploring the nucleon structure from first principles of QCD
International Nuclear Information System (INIS)
Bietenholz, W.; Cundy, N.; Goeckeler, M.
2010-04-01
Quantum Chromodynamics (QCD) is generally assumed to be the fundamental theory underlying nuclear physics. In recent years there is progress towards investigating the nucleon structure from first principles of QCD. Although this structure is best revealed in Deep Inelastic Scattering, a consistent analysis has to be performed in a fully non-perturbative scheme. The only known method for this purpose are lattice simulations. We first sketch the ideas of Monte Carlo simulations in lattice gauge theory. Then we comment in particular on the issues of chiral symmetry and operator mixing. Finally we present our results for the Bjorken variable of a single quark, and for the second Nachtmann moment of the nucleon structure functions. (orig.)
Global Analysis of Solar Neutrino Oscillations Including SNO CC Measurement
Bahcall, J N; Peña-Garay, C; Bahcall, John N; Peña-Garay, Carlos
2001-01-01
For active and sterile neutrinos, we present the globally allowed solutions for two neutrino oscillations. We include the SNO CC measurement and all other relevant solar neutrino and reactor data. Five active neutrino oscillation solutions (LMA, LOW, SMA, VAC, and Just So2) are currently allowed at 3 sigma; three sterile neutrino solutions (Just So2, SMA, and VAC) are allowed at 3 sigma. The goodness of fit is satisfactory for all eight solutions. We also investigate the robustness of the allowed solutions by carrying out global analyses with and without: 1) imposing solar model constraints on the 8B neutrino flux, 2) including the Super-Kamiokande spectral energy distribution and day-night data, 3) using an enhanced CC cross section for deuterium (due to radiative corrections), and 4) a optimistic, hypothetical reduction by a factor of three of the error of the SNO CC rate. For every analysis strategy used in this paper, the most favored solutions all involve large mixing angles: LMA, LOW, or VAC. The favore...
Global Analysis of RNA Secondary Structure in Two Metazoans
Directory of Open Access Journals (Sweden)
Fan Li
2012-01-01
Full Text Available The secondary structure of RNA is necessary for its maturation, regulation, processing, and function. However, the global influence of RNA folding in eukaryotes is still unclear. Here, we use a high-throughput, sequencing-based, structure-mapping approach to identify the paired (double-stranded RNA [dsRNA] and unpaired (single-stranded RNA [ssRNA] components of the Drosophila melanogaster and Caenorhabditis elegans transcriptomes, which allows us to identify conserved features of RNA secondary structure in metazoans. From this analysis, we find that ssRNAs and dsRNAs are significantly correlated with specific epigenetic modifications. Additionally, we find key structural patterns across protein-coding transcripts that indicate that RNA folding demarcates regions of protein translation and likely affects microRNA-mediated regulation of mRNAs in animals. Finally, we identify and characterize 546 mRNAs whose folding pattern is significantly correlated between these metazoans, suggesting that their structure has some function. Overall, our findings provide a global assessment of RNA folding in animals.
Aoki, Sinya
2013-07-01
We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.
International Nuclear Information System (INIS)
Lebed, R.F.
1999-01-01
These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, we demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c . We then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c , while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when 'large' N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions. (author)
International Nuclear Information System (INIS)
Richard Lebed
1998-01-01
These lectures are designed to introduce the methods and results of large N c QCD in a presentation intended for nuclear and particle physicists alike. Beginning with definitions and motivations of the approach, they demonstrate that all quark and gluon Feynman diagrams are organized into classes based on powers of 1/N c . They then show that this result can be translated into definite statements about mesons and baryons containing arbitrary numbers of constituents. In the mesons, numerous well-known phenomenological properties follow as immediate consequences of simply counting powers of N c , while for the baryons, quantitative large N c analyses of masses and other properties are seen to agree with experiment, even when ''large'' N c is set equal to its observed value of 3. Large N c reasoning is also used to explain some simple features of nuclear interactions
Soft Pomeron in Holographic QCD
Ballon-Bayona, Alfonso; Costa, Miguel S; Djurić, Marko
2016-01-01
We study the graviton Regge trajectory in Holographic QCD as a model for high energy scattering processes dominated by soft pomeron exchange. This is done by considering spin J fields from the closed string sector that are dual to glueball states of even spin and parity. In particular, we construct a model that governs the analytic continuation of the spin J field equation to the region of real J < 2, which includes the scattering domain of negative Maldelstam variable t. The model leads to approximately linear Regge trajectories and is compatible with the measured values of 1.08 for the intercept and 0.25 GeV$^{-2}$ for the slope of the soft pomeron. The intercept of the secondary pomeron trajectory is in the same region of the subleading trajectories, made of mesons, proposed by Donnachie and Landshoff, and should therefore be taken into account.
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Colour singlets in perturbative QCD
International Nuclear Information System (INIS)
Bassetto, A.
1979-01-01
In the axial gauge and at the leading log level, a definite and consistent picture seems to emerge of a parton decay into states in which many partons are found just before confinement should take place. They are grouped into colourless clusters in a number sufficient to exhaust the ''final'' state, still possessing a finite average mass. This result is peculiar of QCD, in particular of its non-abelian nature. Large transverse momenta or more generally average invariant quantities of partons are mainly due to the multiplicities involved in the branching processes. If eventually confinement would convert these clusters into hadrons (and this is of course the main issue which has still to be proven) without a large rearrangement of the colour lines, the picture we have found for colour singlets could apply to the real hadronic world. (author)
Energy Technology Data Exchange (ETDEWEB)
Iancu, Edmond [IPhT, Saclay (France)
2014-07-01
These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.
International Nuclear Information System (INIS)
Iancu, Edmond
2014-01-01
These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry
International Nuclear Information System (INIS)
Kalashnikova, Yu.S.; Nefediev, A.V.
1997-01-01
The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective swelling of baryon in comparison with standard potential picture. The effects of finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the swelling considerably is discussed
Baryon structure from lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.
2009-01-01
We present recent lattice results on the baryon spectrum, nucleon electromagnetic and axial form factors, nucleon to Δ transition form factors as well as the Δ electromagnetic form factors. The masses of the low lying baryons and the nucleon form factors are calculated using two degenerate flavors of twisted mass fermions down to pion mass of about 270 MeV. We compare to the results of other collaborations. The nucleon to Δ transition and Δ form factors are calculated in a hybrid scheme, which uses staggered sea quarks and domain wall valence quarks. The dominant magnetic dipole nucleon to Δ transition form factor is also evaluated using dynamical domain wall fermions. The transverse density distributions of the Δ in the infinite momentum frame are extracted using the form factors determined from lattice QCD. (author)
Energy Technology Data Exchange (ETDEWEB)
Curci, G [European Organization for Nuclear Research, Geneva (Switzerland); Greco, M; Srivastava, Y [Istituto Nazionale di Fisica Nucleare, Frascati (Italy). Lab. Nazionale di Frascati
1979-11-19
A recently proposed approach to the problem of infrared and mass singularities in QCD based on the formalism of coherent states, is extended to discuss massless quark and gluon jets. The present results include all leading (ln delta) terms as well as finite terms in the energy loss epsilon, in addition to the usual ln epsilon associated with ln delta. The formulae agree with explicit perturbative calculations, whenever available. Explicit expressions for the total Ksub(T) distributions are given which take into account transverse-momentum conservation. Predictions are also made for the Q/sup 2/ dependence of the mean Ksub(T)/sup 2/ for quark and gluon jets. The jet ksub(T) distributions are extrapolated for low ksub(T) and shown to describe with good accuracy the data for eanti e..-->..qanti q..-->.. hadrons. Numerical predictions are also presented for the forthcoming PETRA, PEP and LEP machines.
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Particle states of lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Kapoyannis, A.S.; Panagiotou, A.D. [University of Athens, Nuclear and Particle Physics Section, Faculty of Physics, Athens (Greece)
2017-11-15
We determine the degeneracy factor and the average particle mass of particles that produce the lattice QCD pressure and specific entropy at zero baryon chemical potential. The number of states of the gluons and the quarks are found to converge above T = 230 MeV to almost constant values, close to the number of states of an ideal quark-gluon phase, while their assigned masses retain high values. The number of states and the average mass of a system containing quarks in interaction with gluons are found to decrease steeply with increase of temperature between T ∝ 150 and 160 MeV, a region contained within the region of the chiral transition. The minimum value of the number of states within this temperature interval indicates that the states are of hadronic nature. (orig.)
A global analysis of NMR distance constraints from the PDB
International Nuclear Information System (INIS)
Vranken, Wim
2007-01-01
Information obtained from Nuclear Magnetic Resonance (NMR) experiments is encoded as a set of constraint lists when calculating three-dimensional structures for a protein. With the amount of constraint data from the world wide Protein Data Bank (wwPDB) that is now available, it is possible to do a global, large-scale analysis using only information from the constraints, without taking the coordinate information into account. This article describes such an analysis of distance constraints from NOE data based on a set of 1834 NMR PDB entries containing 1909 protein chains. In order to best represent the quality and extent of the data that is currently deposited at the wwPDB, only the original data as deposited by the authors was used, and no attempt was made to 'clean up' and further interpret this information. Because the constraint lists provide a single set of data, and not an ensemble of structural solutions, they are easier to analyse and provide a reduced form of structural information that is relevant for NMR analysis only. The online resource resulting from this analysis makes it possible to check, for example, how often a particular contact occurs when assigning NOESY spectra, or to find out whether a particular sequence fragment is likely to be difficult to assign. In this respect it formalises information that scientists with experience in spectrum analysis are aware of but cannot necessarily quantify. The analysis described here illustrates the importance of depositing constraints (and all other possible NMR derived information) along with the structure coordinates, as this type of information can greatly assist the NMR community
Daniell, James; Simpson, Alanna; Gunasekara, Rashmin; Baca, Abigail; Schaefer, Andreas; Ishizawa, Oscar; Murnane, Rick; Tijssen, Annegien; Deparday, Vivien; Forni, Marc; Himmelfarb, Anne; Leder, Jan
2015-04-01
Over the past few decades, a plethora of open access software packages for the calculation of earthquake, volcanic, tsunami, storm surge, wind and flood have been produced globally. As part of the World Bank GFDRR Review released at the Understanding Risk 2014 Conference, over 80 such open access risk assessment software packages were examined. Commercial software was not considered in the evaluation. A preliminary analysis was used to determine whether the 80 models were currently supported and if they were open access. This process was used to select a subset of 31 models that include 8 earthquake models, 4 cyclone models, 11 flood models, and 8 storm surge/tsunami models for more detailed analysis. By using multi-criteria analysis (MCDA) and simple descriptions of the software uses, the review allows users to select a few relevant software packages for their own testing and development. The detailed analysis evaluated the models on the basis of over 100 criteria and provides a synopsis of available open access natural hazard risk modelling tools. In addition, volcano software packages have since been added making the compendium of risk software tools in excess of 100. There has been a huge increase in the quality and availability of open access/source software over the past few years. For example, private entities such as Deltares now have an open source policy regarding some flood models (NGHS). In addition, leaders in developing risk models in the public sector, such as Geoscience Australia (EQRM, TCRM, TsuDAT, AnuGA) or CAPRA (ERN-Flood, Hurricane, CRISIS2007 etc.), are launching and/or helping many other initiatives. As we achieve greater interoperability between modelling tools, we will also achieve a future wherein different open source and open access modelling tools will be increasingly connected and adapted towards unified multi-risk model platforms and highly customised solutions. It was seen that many software tools could be improved by enabling user
International Nuclear Information System (INIS)
Satz, Helmut
1998-01-01
The aim of high energy nuclear collisions is to study strong interaction thermodynamics in the laboratory; we want to explore colour deconfinement and the resulting new state of matter, the quark-gluon plasma. Phenomenological models have done much to form the concepts of the field, but today QCD provides the theoretical basis for our understanding of hot and dense matter and for the tools to probe it. I will therefore begin by summarizing recent results from finite temperature lattice QCD and then turn to the study of colour deconfinement using hard probes; here the recently reported anomalous J/ψ suppression represents a particularly promising signal. Similarly, the observed low mass dilepton enhancement has focussed our attention on the properties of hadrons near chiral symmetry restoration. The hadrosynthesis at freeze-out is yet another region of much present activity to be addressed in the final part of this summary. All aspects were covered here in a variety of excellent plenary talks and contributions; I hope the speakers will forgive me for concentrating on the progress in physics as I see it, rather than on individual talks. The field of high energy nuclear collisions is very many-faceted, and moreover I had to select what I could coherently summarize in the given time. I therefore also apologize to all those whose contributions to this meeting are covered insufficiently or not at all. In particular, I shall review neither the developments in astrophysics nor the search for disoriented chiral condensates, simply because of my lack of competence in these areas. (author)
International Nuclear Information System (INIS)
Muller, David
1999-01-01
We present selected results on strong interaction physics from the SLD experiment at the SLAC Linear Collider. We report on several new studies of 3- and 4-jet hadronic Z 0 decays, in which jets are identified as quark, antiquark or gluon. The 3-jet Z 0 --> b anti-bg rate is sensitive to the b-quark mass; prospects for measuring m b are discussed. The gluon energy spectrum is measured over the full kinematic range, providing an improved test of QCD and limits on anomalous b anti-bg couplings. The parity violation in Z 0 --> b anti-bg decays is consistent with electroweak theory plus QCD. New tests of T- and CP-conservation at the bbg vertex are performed. A new measurement of the rate of gluon splitting into b anti-b pairs yields g b anti-b = 0.0031 ± 0.0007 (stat.)± 0.0006 (syst.) (Preliminary). We also present a number of new results on jet fragmentation into identified hadrons. The B hadron energy spectrum is measured over the full kinematic range using a new, inclusive technique, allowing stringent tests of predictions for its shape and a precise measurement of (xB) = 0.714 ± 0.005(stat.) ± 0.007(syst.) (Preliminary). A detailed study of correlations in rapidity y between pairs of identified pi ± , K ± and p/anti-p confirms that strangeness and baryon number are conserved locally, and shows local charge conservation between meson-baryon and strange-nonstrange pairs. Flavor-dependent long-range correlations are observed for all combinations of these hadron species, yielding new information on leading particle production. The first study of correlations using rapidities signed such that y > 0 corresponds to the quark direction provides additional new insights into fragmentation, including the first direct observation of baryon number ordering along the q anti-q axis
Energy Technology Data Exchange (ETDEWEB)
Weinberg, Volker
2008-12-15
In this thesis the structure of the QCD vacuum and the nature of the chiral phase transition were studied by means of overlap fermions. The main topic of the theiss lies in the study of the infrared long-range aspects shown by the low-lying eigenmodes of the overlap operator. For the characterization of the structure and dimension of an arbitray density embedded in the four-dimensional space-time diverse analysis tools were developed. These are applied both at low temperature (T=0) in the valence-quark approximation of QCD and in the environment of the high-temperature phase transition of the full QCD for the description of the structure of the modes and the topological density, as well as for the analysis of the local self-duality of the basing gauge fields.
Global sensitivity analysis using low-rank tensor approximations
International Nuclear Information System (INIS)
Konakli, Katerina; Sudret, Bruno
2016-01-01
In the context of global sensitivity analysis, the Sobol' indices constitute a powerful tool for assessing the relative significance of the uncertain input parameters of a model. We herein introduce a novel approach for evaluating these indices at low computational cost, by post-processing the coefficients of polynomial meta-models belonging to the class of low-rank tensor approximations. Meta-models of this class can be particularly efficient in representing responses of high-dimensional models, because the number of unknowns in their general functional form grows only linearly with the input dimension. The proposed approach is validated in example applications, where the Sobol' indices derived from the meta-model coefficients are compared to reference indices, the latter obtained by exact analytical solutions or Monte-Carlo simulation with extremely large samples. Moreover, low-rank tensor approximations are confronted to the popular polynomial chaos expansion meta-models in case studies that involve analytical rank-one functions and finite-element models pertinent to structural mechanics and heat conduction. In the examined applications, indices based on the novel approach tend to converge faster to the reference solution with increasing size of the experimental design used to build the meta-model. - Highlights: • A new method is proposed for global sensitivity analysis of high-dimensional models. • Low-rank tensor approximations (LRA) are used as a meta-modeling technique. • Analytical formulas for the Sobol' indices in terms of LRA coefficients are derived. • The accuracy and efficiency of the approach is illustrated in application examples. • LRA-based indices are compared to indices based on polynomial chaos expansions.
Analysis of Global Urban Temperature Trends and Urbanization Impacts
Lee, K. I.; Ryu, J.; Jeon, S. W.
2018-04-01
Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.
Satellite Imagery Analysis for Automated Global Food Security Forecasting
Moody, D.; Brumby, S. P.; Chartrand, R.; Keisler, R.; Mathis, M.; Beneke, C. M.; Nicholaeff, D.; Skillman, S.; Warren, M. S.; Poehnelt, J.
2017-12-01
The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. Cloud computing and storage, combined with recent advances in machine learning, are enabling understanding of the world at a scale and at a level of detail never before feasible. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and that can scale with the high-rate and dimensionality of imagery being collected. We focus on the problem of monitoring food crop productivity across the Middle East and North Africa, and show how an analysis-ready, multi-sensor data platform enables quick prototyping of satellite imagery analysis algorithms, from land use/land cover classification and natural resource mapping, to yearly and monthly vegetative health change trends at the structural field level.
Importance measures in global sensitivity analysis of nonlinear models
International Nuclear Information System (INIS)
Homma, Toshimitsu; Saltelli, Andrea
1996-01-01
The present paper deals with a new method of global sensitivity analysis of nonlinear models. This is based on a measure of importance to calculate the fractional contribution of the input parameters to the variance of the model prediction. Measures of importance in sensitivity analysis have been suggested by several authors, whose work is reviewed in this article. More emphasis is given to the developments of sensitivity indices by the Russian mathematician I.M. Sobol'. Given that Sobol' treatment of the measure of importance is the most general, his formalism is employed throughout this paper where conceptual and computational improvements of the method are presented. The computational novelty of this study is the introduction of the 'total effect' parameter index. This index provides a measure of the total effect of a given parameter, including all the possible synergetic terms between that parameter and all the others. Rank transformation of the data is also introduced in order to increase the reproducibility of the method. These methods are tested on a few analytical and computer models. The main conclusion of this work is the identification of a sensitivity analysis methodology which is both flexible, accurate and informative, and which can be achieved at reasonable computational cost
Accuracy analysis of the 2014–2015 Global Shuttle Radar ...
Indian Academy of Sciences (India)
1KIIT University, Bhubaneswar 751 024, India. 2Continental ... Global Shuttle Radar Topography Mission (SRTM) data products have been widely used in Earth. Sciences ..... tional GNSS Service in a changing landscape of Global. Navigation ...
Strange Baryon Physics in Full Lattice QCD
International Nuclear Information System (INIS)
Huey-Wen Lin
2007-01-01
Strange baryon spectra and form factors are key probes to study excited nuclear matter. The use of lattice QCD allows us to test the strength of the Standard Model by calculating strange baryon quantities from first principles
Chiral perturbation theory for lattice QCD
International Nuclear Information System (INIS)
Baer, Oliver
2010-01-01
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Two-color QCD via dimensional reduction
Czech Academy of Sciences Publication Activity Database
Zhang, T.; Brauner, Tomáš; Kurkela, A.; Vuorinen, A.
2012-01-01
Roč. 2012, č. 139 (2012), s. 1-16 ISSN 1126-6708 Institutional support: RVO:61389005 Keywords : thermal field theory * QCD * confinement Subject RIV: BE - Theoretical Physics Impact factor: 5.618, year: 2012
QCD Effective Field Theories for Heavy Quarkonium
International Nuclear Information System (INIS)
Brambilla, Nora
2006-01-01
QCD nonrelativistic effective field theories (NREFT) are the modern and most suitable frame to describe heavy quarkonium properties. Here I summarize few relevant concepts and some of the interesting physical applications (spectrum, decays, production) of NREFT
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Wegner, P.; Wettig, T.
2003-09-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC. (orig.)
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Stueben, H.; Wegner, P.; Wettig, T.; Wittig, H.
2004-01-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E; Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC
The time development of QCD jets
International Nuclear Information System (INIS)
Caneschi, L.
1979-01-01
The time development of jets in perturbative QCD is studied. In spite of the fact that the total time for the jet to develop increases indefinitely with increasing energy, quark antiquark pairs remain unscreened only an infinitesimal time. (author)
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
Challenges for QCD theory: some personal reflections
International Nuclear Information System (INIS)
Sjöstrand, T
2013-01-01
At the LHC all processes are QCD ones, whether ‘signal’ or ‘background’. In this review the frontiers of current QCD research are addressed, towards increased understanding, improved calculational precision, and role in potential future discoveries. Issues raised include: - the limits of perturbative QCD calculations and parton distribution usage,; - the nature of multiparton interactions,; - the impact of colour reconnection on physical observables,; - the need for progress on hadronization modelling,; - the improvements of parton showers and their combination with the matrix-element description,; - the use of QCD concepts in Beyond-the-Standard-Model scenarios and; - the key position of event generators and other software in the successful exploration of LHC physics. On the way, several questions are posed, where further studies are needed. (paper)
Opportunities, Challenges, and Fantasies in Lattice QCD
Wilczek, Frank
2002-01-01
Some important problems in quantitative QCD will certainly yield to hard work and adequate investment of resources, others appear difficult but may be accessible, and still others will require essentially new ideas. Here I identify several examples in each class.
Automated NLO QCD corrections with WHIZARD
International Nuclear Information System (INIS)
Weiss, Christian; Siegen Univ.; Chokoufe Nejad, Bijan; Reuter, Juergen; Kilian, Wolfgang
2015-10-01
We briefly discuss the current status of NLO QCD automation in the Monte Carlo event generator WHIZARD. The functionality is presented for the explicit study of off-shell top quark production with associated backgrounds at a lepton collider.
Towards understanding Regge trajectories in holographic QCD
International Nuclear Information System (INIS)
Cata, Oscar
2007-01-01
We reassess a work done by Migdal on the spectrum of low-energy vector mesons in QCD in the light of the anti-de Sitter (AdS)-QCD correspondence. Recently, a tantalizing parallelism was suggested between Migdal's work and a family of holographic duals of QCD. Despite the intriguing similarities, both approaches face a major drawback: the spectrum is in conflict with well-tested Regge scaling. However, it has recently been shown that holographic duals can be modified to accommodate Regge behavior. Therefore, it is interesting to understand whether Regge behavior can also be achieved in Migdal's approach. In this paper we investigate this issue. We find that Migdal's approach, which is based on a modified Pade approximant, is closely related to the issue of quark-hadron duality breakdown in QCD
The global burden of dengue: an analysis from the Global Burden of Disease Study 2013
J.D. Stanaway (Jeffrey D.); D.S. Shepard (Donald); E.A. Undurraga (Eduardo); Halasa, Y.A. (Yara A); L.E. Coffeng (Luc); Brady, O.J. (Oliver J); Hay, S.I. (Simon I); Bedi, N. (Neeraj); I.M. Bensenor (Isabela M.); C.A. Castañeda-Orjuela (Carlos A); T.-W. Chuang (Ting-Wu); K.B. Gibney (Katherine B); Z.A. Memish (Ziad); A. Rafay (Anwar); K.N. Ukwaja (Kingsley N); N. Yonemoto (Naohiro); C.J.L. Murray (Christopher)
2016-01-01
textabstractBackground Dengue is the most common arbovirus infection globally, but its burden is poorly quantified. We estimated dengue mortality, incidence, and burden for the Global Burden of Disease Study 2013. Methods We modelled mortality from vital registration, verbal autopsy, and
Globalization and Shanghai Model: A Retrospective and Prospective Analysis
Directory of Open Access Journals (Sweden)
Linsun Cheng
2012-11-01
Full Text Available Intended to shed light on the debate on the results of globalization and providebetter understanding of the influences of globalization upon China as well as theworld, this article traces the history of Shanghai’s economic globalization over thepast 170 years since 1843 and demonstrates the benefits and problems Shanghaireceived from (or connected to its economic globalization. Divided into threesections (Globalization, de-globalization and re-globalization of Shanghai’s economy;Manufacturing-Oriented vs. Tertiary-oriented—Shanghai’s Double PriorityStrategy of Economic Growth; Free market, state enterprises, and Shanghai’s mixedeconomy the article summarizes and analyzes several characteristics that madeShanghai a unique model in the history of globalization: In adapting and adoptinginevitable economic globalization, Shanghai created its unique model of economicdevelopment—widely embracing economic globalization; placing Shanghai’seconomy on a solid foundation of both strong modern manufacturing and strongtertiary industry (consisting of finance and insurance, real estate, transportations,post and telecommunication, wholesale and retailing; and creating a mixedeconomic structure with hybrid of private and state owned enterprises. TheShanghai model proves that globalization has been an unavoidable trend as scienceand technology have made the world “smaller” and “smaller.” Actively engaging intoeconomic globalization is the only way for Shanghai, as well as many developingcountries, to accelerate its economic growth.
GLobal Ocean Data Analysis Project (GLODAP) version 1.1 (NODC Accession 0001644)
National Oceanic and Atmospheric Administration, Department of Commerce — The GLobal Ocean Data Analysis Project (GLODAP) is a cooperative effort to coordinate global synthesis projects funded through NOAA/DOE and NSF as part of the Joint...
The structure of gluon radiation in QCD
International Nuclear Information System (INIS)
Parke, S.; Mangano, M.
1989-08-01
For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processes. Also, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD. 16 refs., 3 figs., 1 tab
Charge correlations as definitive tests of QCD
International Nuclear Information System (INIS)
Maxwell, C.J.
1981-07-01
Certain weighted charge correlations are defined and it is shown how they can be used to measure properties of the gluon jet in the e + e - 3-jet final state. Properties are suggested which are indicative of the form of the QCD matrix element, the running coupling constant and value of Λ, and hence constitute definitive tests of QCD. The recent near tenfold increase in luminosity at PETRA should make such experimental tests possible in the near future. (author)
Deuteron transverse densities in holographic QCD
Energy Technology Data Exchange (ETDEWEB)
Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)
2017-05-15
We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)
Some New/Old Approaches to QCD
Gross, D. J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
Self-consistent areas law in QCD
International Nuclear Information System (INIS)
Makeenko, Yu.M.; Migdal, A.A.
1980-01-01
The problem of obtaining the self-consistent areas law in quantum chromodynamics (QCD) is considered from the point of view of the quark confinement. The exact equation for the loop average in multicolor QCD is reduced to a bootstrap form. Its iterations yield new manifestly gauge invariant perturbation theory in the loop space, reproducing asymptotic freedom. For large loops, the areas law apprears to be a self-consistent solution
Recent QCD Studies at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Group, Robert Craig
2008-04-01
Since the beginning of Run II at the Fermilab Tevatron the QCD physics groups of the CDF and D0 experiments have worked to reach unprecedented levels of precision for many QCD observables. Thanks to the large dataset--over 3 fb{sup -1} of integrated luminosity recorded by each experiment--important new measurements have recently been made public and will be summarized in this paper.
QCD angular correlations for muon pair production
International Nuclear Information System (INIS)
Kajantie, K.; Raitio, R.; Lindfors, J.
1978-01-01
Angular distributions of muons are discussed in the framework of a QCD treatment of muon pair production in hadron-hadron collisions. The predicted angular effects are independent of the infrared behavior of QCD. Measuring them will permit one to determine whether the origin of the large transverse momentum of the pair is in the quark transverse momenta or in a constituent-constituent subprocess. (author)
Understanding Theoretical Uncertainties in Perturbative QCD Computations
DEFF Research Database (Denmark)
Jenniches, Laura Katharina
effective field theories and perturbative QCD to predict the effect of New Physics on measurements at the LHC and at other future colliders. We use heavy-quark, heavy-scalar and soft-collinear effective theory to calculate a three-body cascade decay at NLO QCD in the expansion-by-regions formalism...... discuss an extension of the Cacciari-Houdeau approach to observables with hadrons in the initial state....
The structure of gluon radiation in QCD
International Nuclear Information System (INIS)
Parke, S.; Mangano, M.
1990-01-01
For massless QCD the hard scattering amplitudes are naturally written in terms of the dual color expansion. Here I present this expansion for purely gluonic processes and processes involving quark-antiquark pairs and gluons. The properties of the sub-amplitudes as well as explicit algebraic expressions are given for a number of these processess. Finally, I demonstrate how to recover massless QED amplitudes from the dual expansion of massless QCD
A new perturbative approach to QCD
International Nuclear Information System (INIS)
Pervushin, V.N.; Kallies, W.; Sarikov, N.A.
1988-01-01
For the description of bound states in QED and QCD the physical perturbation theory on the spatial components of the vector over the exact solution, defined by the time one, is proposed. It is shown this perturbation theory in QCD can be redefined so that it reproduces the main elements of hadron physics: confinement, spectroscopy of light and heavy quarkonia, dual-resonance amplitudes, chiral Lagrangians and the parton model
Some new/old approaches to QCD
Energy Technology Data Exchange (ETDEWEB)
Gross, D.J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
International Nuclear Information System (INIS)
Cornwall, J.M.
1986-01-01
The nonperturbative aspects of continuum QCD are so complex that one can only hope to approach them through well-motivated models. The author reviews the general properties that any such model must have, based on the understanding of the gluon condensate in the QCD vacuum. A specific, practical model is proposed motivated by a picture of the condensate as made of thick vortex sheets self-consistently constructed from dynamically massive gluons. (author)
Some new/old approaches to QCD
International Nuclear Information System (INIS)
Gross, D.J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD
QCD and hard diffraction at the LHC
International Nuclear Information System (INIS)
Albrow, Michael G.; Fermilab
2005-01-01
As an introduction to QCD at the LHC I given an overview of QCD at the Tevatron, emphasizing the high Q 2 frontier which will be taken over by the LHC. After describing briefly the LHC detectors I discuss high mass diffraction, in particular central exclusive production of Higgs and vector boson pairs. I introduce the FP420 project to measure the scattered protons 420 m downstream of ATLAS and CMS
Search for the QCD ground state
International Nuclear Information System (INIS)
Reuter, M.; Wetterich, C.
1994-05-01
Within the Euclidean effective action approach we propose criteria for the ground state of QCD. Despite a nonvanishing field strength the ground state should be invariant with respect to modified Poincare transformations consisting of a combination of translations and rotations with suitable gauge transformations. We have found candidate states for QCD with four or more colours. The formation of gluon condensates shows similarities with the Higgs phenomenon. (orig.)
On microscopic structure of the QCD vacuum
Pak, D. G.; Lee, Bum-Hoon; Kim, Youngman; Tsukioka, Takuya; Zhang, P. M.
2018-05-01
We propose a new class of regular stationary axially symmetric solutions in a pure QCD which correspond to monopole-antimonopole pairs at macroscopic scale. The solutions represent vacuum field configurations which are locally stable against quantum gluon fluctuations in any small space-time vicinity. This implies that the monopole-antimonopole pair can serve as a structural element in microscopic description of QCD vacuum formation.