WorldWideScience

Sample records for global peatland resource

  1. How important are peatlands globally in providing drinking water resources?

    Xu, Jiren; Morris, Paul; Holden, Joseph

    2017-04-01

    The potential role of peatlands as water stores and sources of downstream water resources for human use is often cited in publications setting the context for the importance of peatlands, but is rarely backed up with substantive evidence. We sought to determine the global role of peatlands in water resource provision. We developed the Peat Population Index (PPI) that combines the coverage of peat and the local population density to show focused (hotspot) areas where there is a combination of both large areas of peat and large populations who would potentially use water sourced from those peatlands. We also developed a method for estimating the proportion of river water that interacted with contributing peatlands before draining into rivers and reservoirs used as a drinking water resource. The Peat Reservoir Index (PRI) estimates the contribution of peatlands to domestic water use to be 1.64 km3 per year which is 0.35 % of the global total. The results suggest that although peatlands are widespread, the spatial distribution of the high PPI and PRI river basins is concentrated in European middle latitudes particularly around major conurbations in The Netherlands, northern England, Scotland (Glasgow) and Ireland (Dublin), although there were also some important systems in Florida, the Niger Delta and Malaysia. More detailed research into water resource provision in high PPI areas showed that they were not always also high PRI areas as often water resources were delivered to urban centres from non-peat areas, despite a large area of peat within the catchment. However, particularly in the UK and Ireland, there are some high PRI systems where peatlands directly supply water to nearby urban centres. Thus both indices are useful and can be used at a global level while more local refinement enables enhanced use which supports global and local peatland protection measures. We now intend to study the impacts of peatland degradation and climate change on water resource

  2. Northern peatlands in global climatic change

    Laiho, R.; Laine, J.; Vasander, H. [eds.] [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    Northern peatlands are important in regulating the global climate. While sequestering carbon dioxide, these peatlands release ca. 24-39 Tg methane annually to the atmosphere. This is 5-20 % of the annual anthropogenic methane emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level draw-down after land-use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Subsequent emissions of methane would decrease, whereas emissions of carbon dioxide and nitrous oxide would increase. Within the Finnish Research Programme on Climate Change (SILMU), the research project `Carbon Balance of Peatlands and Climate Change` (SUOSILMU) has been under progress since 1990. It is a co-operative research project, with research groups from the Universities of Helsinki and Joensuu, the Finnish Forest Research Institute, the National Public Health Institute and the Finnish Environment Agency. The research consortium of this project organised a workshop entitled `Northern Peatlands in Global Climatic Change - Hyytiaelae Revisited` October 8-12, 1995. The main objective of the workshop was to review the state of the art of the carbon cycling research in natural and managed peatlands. The role of peatlands in the greenhouse effect, their response and feedback to the predicted climate change, and the consequences of land-use changes were assessed, and the future research needs were evaluated. The latest information on the role of peatlands in the atmospheric change was given in 50 posters and 4 key lectures. Results of SUOSILMU projects were demonstrated during a 1-day field excursion to one of the intensive study sites, Lakkasuo near Hyytiaelae

  3. Responsible management of tropical peatlands: balancing competing demands on a fragile resource

    Page, Susan; Evans, Christopher; Gauci, Vincent

    2017-04-01

    In 2010 the International Peatland Society published a strategy for responsible peatland management, with the following guiding principles: (i) ensure that high conservation value peatlands are identified and conserved, (ii) manage 'utilised' peatlands responsibly, and (iii) rehabilitate or restore drained, degraded or otherwise irreversibly changed peatlands to restore as many ecological and landscape functions as possible. At the time of its publication, the main focus of the strategy was on northern peatlands, although a few partner organisations in SE Asia were involved in the strategy consultation process. Given the rapid rate of peatland development in SE Asia in the last 7 years and the growing interest in tropical peatland rehabilitation and restoration, we believe that it is now timely to review what a strategy for responsible tropical peatland management might look like. SE Asia's peatlands cover 250,000 km2 of the region and store 69 Gt C but they are subject to continuing deforestation, biodiversity loss, land subsidence/flooding, increasing greenhouse gas (GHG) emissions, and health impacts due to air pollution from land-clearing fires, all of which pose huge regional and global challenges. Around 75% of the peatlands have been deforested in the last 20 years, with 35% of cleared land now under industrial plantation, 34% under smallholder cultivation, and 25% unutilised, largely as a result of uncontrolled land-clearing fires. The production intensity (GHG emissions per calorie produced) of crops grown on SE Asian organic soils is among the highest in the world (Carlson et al. 2016). There are clear tensions between reconciling peatland management for conservation goals (of biodiversity, carbon and natural resources) with economic and livelihood development goals. A balance needs to be struck between the absolute value and distribution of short term economic gains vs. peatland management strategies that deliver longer-term, sustainable and shared

  4. Peatland Organic Matter Chemistry Trends Over a Global Latitudinal Gradient

    Verbeke, B. A.; Hodgkins, S. B.; Carson, M. A.; Lamit, L. J.; Lilleskov, E.; Chanton, J.

    2017-12-01

    Peatlands contain a significant amount of the global soil carbon, and the climate feedback of carbon cycling within these peatland systems is still relatively unknown. Organic matter composition of peatlands plays a major role in determining carbon storage, and while high latitude peatlands seem to be the most sensitive to climate change, a global picture of peat organic matter chemistry is required to improve predictions and models of greenhouse gas emissions fueled by peatland decomposition. The objective of this research is to test the hypothesis that carbohydrate content of peatlands near the equator will be lower than high latitude peatlands, while aromatic content will be higher. As a part of the Global Peatland Microbiome Project (GPMP), around 2000 samples of peat from 10 to 70 cm across a latitudinal gradient of 79 N to 53 S were measured with Fourier transform infrared spectroscopy (FTIR) to examine the organic matter functional groups of peat. Carbohydrate and aromatic content, as determined by FTIR, are useful proxies of decomposition potential and recalcitrance, respectively. We found a highly significant relationship between carbohydrate and aromatic content, latitude, and depth. Carbohydrate content of high latitude sites were significantly greater than at sites near the equator, in contrast to aromatic content which showed the opposite trend. It is also clear that carbohydrate content decreases with depth while aromatic content increases with depth. Higher carbohydrate content at higher latitudes indicates a greater potential for lability and resultant mineralization to form the greenhouse gases, carbon dioxide and methane, whereas the composition of low latitude peatlands is consistent with their apparent stability. We speculate that the combination of low carbohydrates and high aromatics at warmer locations near the equator could foreshadow the organic matter composition of high latitude peat transitioning to a more recalcitrant form with a

  5. Improved Hydrology over Peatlands in a Global Land Modeling System

    Bechtold, M.; Delannoy, G.; Reichle, R.; Koster, R.; Mahanama, S.; Roose, Dirk

    2018-01-01

    Peatlands of the Northern Hemisphere represent an important carbon pool that mainly accumulated since the last ice age under permanently wet conditions in specific geological and climatic settings. The carbon balance of peatlands is closely coupled to water table dynamics. Consequently, the future carbon balance over peatlands is strongly dependent on how hydrology in peatlands will react to changing boundary conditions, e.g. due to climate change or regional water level drawdown of connected aquifers or streams. Global land surface modeling over organic-rich regions can provide valuable global-scale insights on where and how peatlands are in transition due to changing boundary conditions. However, the current global land surface models are not able to reproduce typical hydrological dynamics in peatlands well. We implemented specific structural and parametric changes to account for key hydrological characteristics of peatlands into NASA's GEOS-5 Catchment Land Surface Model (CLSM, Koster et al. 2000). The main modifications pertain to the modeling of partial inundation, and the definition of peatland-specific runoff and evapotranspiration schemes. We ran a set of simulations on a high performance cluster using different CLSM configurations and validated the results with a newly compiled global in-situ dataset of water table depths in peatlands. The results demonstrate that an update of soil hydraulic properties for peat soils alone does not improve the performance of CLSM over peatlands. However, structural model changes for peatlands are able to improve the skill metrics for water table depth. The validation results for the water table depth indicate a reduction of the bias from 2.5 to 0.2 m, and an improvement of the temporal correlation coefficient from 0.5 to 0.65, and from 0.4 to 0.55 for the anomalies. Our validation data set includes both bogs (rain-fed) and fens (ground and/or surface water influence) and reveals that the metrics improved less for fens. In

  6. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  7. Towards a Global High Resolution Peatland Map in 2020

    Barthelmes, Alexandra; Barthelmes, Karen-Doreen; Joosten, Hans; Dommain, Rene; Margalef, Olga

    2015-04-01

    Some 3% of land area on planet Earth (approx. 4 million km2) is covered by peatlands. About 10% (~ 0.3 % of the land area) are drained and responsible for a disproportional 5 % of the global anthropogenic CO2 emissions (Victoria et al., 2012). Additionally, peatland drainage and degradation lead to land subsidence, soil degradation, water pollution, and enhanced susceptibility to fire (Holden et al., 2004; Joosten et al., 2012). The global importance of peatlands for carbon storage and climate change mitigation has currently been recognized in international policy - since 2008 organic soils are subject of discussion in the UN Framework Convention on Climate Change (UNFCCC) (Joosten, 2011). In May 2013 the European Parliament decided that the global post 2020 climate agreement should include the obligation to report emissions and removals from peatland drainage and rewetting. Implementation of such program, however, necessitates the rapid availability of reliable, comprehensive, high resolution, spatially explicit data on the extent and status of peatlands. For many reporting countries this requires an innovation in peatland mapping, i.e. the better and integrative use of novel, but already available methods and technologies. We developed an approach that links various science networks, methodologies and data bases, including those of peatland/landscape ecology for understanding where and how peatlands may occur, those of remote sensing for identifying possible locations, and those of pedology (legacy soil maps) and (palaeo-)ecology for ground truthing. Such integration of old field data, specialized knowledge, and modern RS and GIS technologies enables acquiring a rapid, comprehensive, detailed and rather reliable overview, even on a continental scale. We illustrate this approach with a high resolution overview of peatland distribution, area, status and greenhouse gas fluxes e.g. for the East African countries Rwanda, Burundi, Uganda and Zambia. Furthermore, we

  8. Global peat resources

    Lappalainen, E. [ed.] [Geological Survey of Finland (Finland)

    1996-12-31

    The book provides a detailed review of the world`s peat and peatland resources and their role in the biosphere. It was compiled by 68 peat experts. Reports present the valuable mire ecosystem, its characteristics, and the use of peatlands. Maps and photographs illustrate the distribution of mines and their special characteristics, including raised bogs, aapa mires, blanket bogs, mangrove swamps, swamp forests etc. The book contains a total of 57 chapters, the bulk of then giving surveys of peat resources and use in individual countries. They are grouped under the headings: peatlands in biosphere; general review; Europe; Asia; Africa; North America; Central and South America; Australia (and New Zealand); and use of peatlands. One chapter has been abstracted separately for the IEA Coal Research CD-ROM. 7 apps.

  9. Global peatland initiation driven by regionally asynchronous warming.

    Morris, Paul J; Swindles, Graeme T; Valdes, Paul J; Ivanovic, Ruza F; Gregoire, Lauren J; Smith, Mark W; Tarasov, Lev; Haywood, Alan M; Bacon, Karen L

    2018-05-08

    Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world's largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world's most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates.

  10. Resource contrast in patterned peatlands increases along a climatic gradient

    Eppinga, M.B.; Rietkerk, M.; Belyea, L.R.; Nilsson, M.B.; Ruiter, de P.C.; Wassen, M.J.

    2010-01-01

    Spatial patterning of ecosystems can be explained by several mechanisms. One approach to disentangling the influence of these mechanisms is to study a patterned ecosystem along a gradient of environmental conditions. This study focused on hummock–hollow patterning of peatlands. Previous models

  11. The Global Resource Nexus

    Ridder, M. de; Duijne, F. van; Jong, S. de; Jones, J.; Luit, E. van; Bekkers, F.F.; Auping, W.

    2014-01-01

    Supply and demand of resources are connected in a complex way. This interconnectivity has been framed as the global resource nexus and can conceivebly include all types of resources. This study focus on the nexus of five essential natural resources: land, food, energy, water and minerals. Together

  12. Tropical/Subtropical Peatland Development and Global CH4 during the Last Glaciation.

    Xu, Hai; Lan, Jianghu; Sheng, Enguo; Liu, Yong; Liu, Bin; Yu, Keke; Ye, Yuanda; Cheng, Peng; Qiang, Xiaoke; Lu, Fengyan; Wang, Xulong

    2016-07-28

    Knowledge of peatland development over the tropical/subtropical zone during the last glaciation is critical for understanding the glacial global methane cycle. Here we present a well-dated 'peat deposit-lake sediment' alternate sequence at Tengchong, southwestern China, and discuss the peatland development and its linkage to the global glacial methane cycle. Peat layers were formed during the cold Marine Isotope Stage (MIS)-2 and -4, whereas lake sediments coincided with the relatively warm MIS-3, which is possibly related to the orbital/suborbital variations in both temperature and Asian summer monsoon intensity. The Tengchong peatland formation pattern is broadly synchronous with those over subtropical southern China and other tropical/subtropical areas, but it is clearly in contrast to those over the mid-high Northern Hemisphere. The results of this work suggest that the shifts of peatland development between the tropical/subtropical zone and mid-high Northern Hemisphere may have played important roles in the glacial/interglacial global atmospheric CH4 cycles.

  13. A New Appraisal of Northern Peatlands and Global Atmospheric Methane Over the Holocene

    MacDonald, G. M.; Holmquist, J. R.; Kremenetski, K.; Loisel, J.

    2015-12-01

    Use of large databases of peat cores to examine linkages between northern peatlands and atmospheric CH4 over the Holocene has been prone to uncertainties regarding 1. comparability of radiocarbon techniques and material dated, 2. appropriate summed probability distributions, 3. spatial representativeness of the sites, particularly in capturing sites south of the subarctic, 4. potential impacts of local lateral peatland expansion versus continental-scale peatland initiation, particularly in the late Holocene, and 5. impacts of changes in the proportion of high methane-producing fens vs Sphagnum bogs. We present a comparison of radiocarbon measurements from conventional counts, atomic mass spectrometry and differing peat materials to demonstrate a general compatibility of the various types of dates. We compare and apply several summed probability distribution methods to minimize any statistical bias in our analysis. We then present our analysis of a new data set of 7571 peatland cores from 4420 sites that extend into the temperate zone. Of these, 3732 cores inform on lateral expansion and 329 dates constrain the timing of fen-bog transition. Based on these data in original and gridded form we show that widespread peat initiation commenced at 16 kcal yr BP and reached a maximum rate at 11-8 kcal yr BP. Most sites began as fens, and peak transition to bogs occurred between 5 and 3 kcal yr BP, with a 1000 year lag between Eurasia and North America. There is no global late Holocene increase in lateral expansion. Based on modeled northern peatland area and ratio of fen/bog sites, CH4 production from northern peatlands increased rapidly from 11 to 9 cal yr BP, followed by slower increase until reaching a maximum at 5 kcal yr BP at 25 Tg per yr. From 4 kcal yr BP to Present, bogs become a dominant feature in the northern peatland landscape and CH4 production decreased to reach modern-day levels at about 20 Tg per yr. Northern peatlands have been a key infleunce on global

  14. Global resource sharing

    Frederiksen, Linda; Nance, Heidi

    2011-01-01

    Written from a global perspective, this book reviews sharing of library resources on a global scale. With expanded discovery tools and massive digitization projects, the rich and extensive holdings of the world's libraries are more visible now than at any time in the past. Advanced communication and transmission technologies, along with improved international standards, present a means for the sharing of library resources around the globe. Despite these significant improvements, a number of challenges remain. Global Resource Sharing provides librarians and library managers with a comprehensive

  15. Uncertainty of Methane Fluxes in a Northern Peatland under Global Climate Change

    MA, S.; Jiang, J.; Huang, Y.; Luo, Y.

    2016-12-01

    Large uncertainty exists in predicting responses of methane fluxes to future climate change. How the uncertainty is related to methane production, oxidation, diffusion, ebullition and plant mediated transportation is still poorly understood, despite of the fact that these processes related to methane emission have been theoretically well represented. At the same time, in methane models many of the parameters are given to an empirical value according to measurements or models decades ago. It is unrealistic to testify all the parameters included in methane modules by actual in situ measurements due to the fact of high temporal and spatial variation. However it would be convincible and feasible to measure in field if models could offer better sampling strategy by telling which parameter is more important for estimation of methane emission, and project a constrained value for key parameters in each process. These feedbacks from field measurements could in turn testify the model accuracy for methane emission projection, as well as the optimization of model structures. We incorporated methane module into an existing process-based Terrestrial ECOsystem model (TECO), to simulate methane emission in a boreal peatland forest, northern Minnesota (Spruce and Peatland Responses Under Climatic and Environmental Change Experiment, SPRUCE). We performed sensitivity test and picked key parameters from the five processes for data assimilation using the Bayesian probability inversion and a Markov Chain Monte Carlo (MCMC) technique. We were able to constrain key parameters related to the five processes in the TECO-SPRUCE Methane model. The constrained model simulated daily methane emission fitted quite well with the data from field measurements. The improvement of more realistic and site-specific parameter values allow for reasonable projections of methane emission under different global changing scenarios, warming and elevated CO2, for instance, given the fact that methane emission

  16. Project CLIMPEAT - Influence of global warming and drought on the carbon sequestration and biodiversity of Sphagnum peatlands

    Lamentowicz, M.; Buttler, A.; Mitchell, E. A. D.; Chojnicki, B.; Słowińska, S.; Słowiński, M.

    2012-04-01

    Northern peatlands represent a globally significant pool of carbon and are subject to the highest rates of climate warming, and most of these peatlands are in continental settings. However, it is unclear if how fast peatlands respond to past and present changes in temperature and surface moisture in continental vs. oceanic climate settings. The CLIMPEAT project brings together scientists from Poland and Switzerland. Our goal is to assess the past and present vulnerability to climate change of Sphagnum peatland plant and microbial communities, peat organic matter transformations and carbon sequestration using a combination of field and mesocosm experiments simulating warming and water table changes and palaeoecological studies. Warming will be achieved using ITEX-type "Open-Top Chambers". The field studies are conducted in Poland, at the limit between oceanic and continental climates, and are part of a network of projects also including field experiments in the French Jura (sub-oceanic) and in Siberia (continental). We will calibrate the response of key biological (plants, testate amoebae) and geochemical (isotopic composition of organic compounds, organic matter changes) proxies to warming and water table changes and use these proxies to reconstruct climate changes during the last 1000 years.

  17. Abstracts of the 15. annual workshop of the Peatland Ecology Research Group (PERG) : peatland event 2008

    2008-01-01

    The Peatland Ecology Research Group (PERG) deals with the integrated sustainable management of Canadian peatlands, with projects involving the development of ecological restoration of peatland ecosystems after peat mining; reclamation of abandoned peatlands; hydrology, geochemistry, microbiology of natural, harvested and restored peatlands; peatland conservation strategies; and Sphagnum moss ecology and productivity. The Group has established a method for the re-establishing vegetation on mined peatlands. Research by PERG has initiated the development of global peatland conservation strategies. This workshop featured 35 presentations, of which 9 have been catalogued separately for inclusion in this database

  18. Quantifying global exergy resources

    Hermann, Weston A.

    2006-01-01

    Exergy is used as a common currency to assess and compare the reservoirs of theoretically extractable work we call energy resources. Resources consist of matter or energy with properties different from the predominant conditions in the environment. These differences can be classified as physical, chemical, or nuclear exergy. This paper identifies the primary exergy reservoirs that supply exergy to the biosphere and quantifies the intensive and extensive exergy of their derivative secondary reservoirs, or resources. The interconnecting accumulations and flows among these reservoirs are illustrated to show the path of exergy through the terrestrial system from input to its eventual natural or anthropogenic destruction. The results are intended to assist in evaluation of current resource utilization, help guide fundamental research to enable promising new energy technologies, and provide a basis for comparing the resource potential of future energy options that is independent of technology and cost

  19. Peatland plant communities under global change: negative feedback loops counteract shifts in species composition.

    Hedwall, Per-Ola; Brunet, Jörg; Rydin, Håkan

    2017-01-01

    Mires (bogs and fens) are nutrient-limited peatland ecosystems, the vegetation of which is especially sensitive to nitrogen deposition and climate change. The role of mires in the global carbon cycle, and the delivery of different ecosystem services can be considerably altered by changes in the vegetation, which has a strong impact on peat-formation and hydrology. Mire ecosystems are commonly open with limited canopy cover but both nitrogen deposition and increased temperatures may increase the woody vegetation component. It has been predicted that such an increase in tree cover and the associated effects on light and water regimes would cause a positive feed-back loop with respect to the ground vegetation. None of these effects, however, have so far been confirmed in large-scale spatiotemporal studies. Here we analyzed data pertaining to mire vegetation from the Swedish National Forest Inventory collected from permanent sample plots over a period of 20 yr along a latitudinal gradient covering 14°. We hypothesized that the changes would be larger in the southern parts as a result of higher nitrogen deposition and warmer climate. Our results showed an increase in woody vegetation with increases in most ericaceous dwarf-shrubs and in the basal area of trees. These changes were, in contrast to our expectations, evenly distributed over most of the latitudinal gradient. While nitrogen deposition is elevated in the south, the increase in temperatures during recent decades has been larger in the north. Hence, we suggest that different processes in the north and south have produced similar vegetation changes along the latitudinal gradient. There was, however, a sharp increase in compositional change at high deposition, indicating a threshold effect in the response. Instead of a positive feed-back loop caused by the tree layer, an increase in canopy cover reduced the changes in composition of the ground vegetation, whereas a decrease in canopy cover lead to larger changes

  20. Bicultural Resourcefulness in Global Management

    Clausen, Lisbeth; Keita, Maria H.

    2016-01-01

    Biculturals are increasingly viewed as a resource in global business. They are effective in multicultural teams, they are great boundary spanners between corporate headquarters and their subsidiaries, and their abilities are acknowl-edged in cross-cultural leadership. This article aims to generate...

  1. Optimal beneficiation of global resources

    Aloisi de Larderel, J. (Industry and Environment Office, Paris (France). United Nations Environment Programme)

    1989-01-01

    The growth of the world's population and related human activities are clearly leaving major effects on the environment and on the level of use of natural resources: forests are disappearing, air pollution is leading to acid rains, changes are occuring in the atmospheric ozone and global climate, more and more people lack access to reasonable safe supplies of water, soil pollution is becoming a problem, mineral and energy resources are increasingly being used. Producing more with less, producing more, polluting less, these are basic challenges that the world now faces. Low- and non-waste technologies are certainly one of the keys to those challenges.

  2. McGill wetland model: evaluation of a peatland carbon simulator developed for global assessments

    F. St-Hilaire

    2010-11-01

    Full Text Available We developed the McGill Wetland Model (MWM based on the general structure of the Peatland Carbon Simulator (PCARS and the Canadian Terrestrial Ecosystem Model. Three major changes were made to PCARS: (1 the light use efficiency model of photosynthesis was replaced with a biogeochemical description of photosynthesis; (2 the description of autotrophic respiration was changed to be consistent with the formulation of photosynthesis; and (3 the cohort, multilayer soil respiration model was changed to a simple one box peat decomposition model divided into an oxic and anoxic zones by an effective water table, and a one-year residence time litter pool. MWM was then evaluated by comparing its output to the estimates of net ecosystem production (NEP, gross primary production (GPP and ecosystem respiration (ER from 8 years of continuous measurements at the Mer Bleue peatland, a raised ombrotrophic bog located in southern Ontario, Canada (index of agreement [dimensionless]: NEP = 0.80, GPP = 0.97, ER = 0.97; systematic RMSE [g C m−2 d−1]: NEP = 0.12, GPP = 0.07, ER = 0.14; unsystematic RMSE: NEP = 0.15, GPP = 0.27, ER = 0.23. Simulated moss NPP approximates what would be expected for a bog peatland, but shrub NPP appears to be underestimated. Sensitivity analysis revealed that the model output did not change greatly due to variations in water table because of offsetting responses in production and respiration, but that even a modest temperature increase could lead to converting the bog from a sink to a source of CO2. General weaknesses and further developments of MWM are discussed.

  3. A survey of ASEAN instruments relating to peatlands, mangroves and other wetlands: The REDD+ context

    Kheng-Lian Koh

    2013-07-01

    Full Text Available Since the 13th Association of Southeast Asian Nations (ASEAN Summit in November 2007, held in Singapore, ASEAN has accelerated its response to climate change issues, including REDD+ as a mechanism for climate change mitigation and adaptation, and to enhance conservation and sustainable use of natural resources. There are many wetlands in ASEAN including more than 25 million ha of peatlands spread over Indonesia, Malaysia, Thailand, Brunei, Philippines, Vietnam and Lao PDR. The peatlands account for 60 per cent of global tropical peatland resources. They are of significance for sequestration of carbon. However, degraded wetlands, including peatlands, are also a major source of greenhouse gases contributing to global warming. Of the types of wetlands, ASEAN has focused attention predominantly on peatlands in relation to REDD+, mainly because of the ‘Indonesian Haze’. The Asia-Pacific Centre for Environmental Law (APCEL organised a Workshop titled, REDD+ and Legal Regimes of Mangroves, Peatland and Other Wetlands: ASEAN and the World, in Singapore from 15-16 November 2012. The articles contained in this special themed edition of the International Journal of Rural Law and Policy (IJRLP contains a selection of the papers presented. This editorial will provide a brief background to some aspects of REDD+. Included in this issue of IJRLP is a summary of the proceedings of the workshop as interpreted by the assigned rapporteur and editors of APCEL. These summaries were reviewed and approved by the presenters.

  4. The Role of Low-severity Fire and Thermal Alteration of Soil Organic Matter in Carbon Preservation and GHG Flux From Global Peatlands

    Flanagan, N. E.; Wang, H.; Hodgkins, S. B.; Richardson, C. J.

    2017-12-01

    Many global peatlands are dominated by fire-adapted plant communities and are subject to frequent wildfires with return intervals ranging between 3 to 100 years. Wildfires in peatlands are typically low-severity events that occur in winter and spring when vegetation is desiccated and soil moisture content is high. As a result, most wildfires consume aboveground fuels in a matter of minutes without igniting the nearly saturated peat. In such fires, surface soil layers are subjected to flash heating with a rapid loss of soil moisture but little loss of soil organic matter (SOM). Such fires have the potential to alter the chemical structure of SOM, even in the absence of combustion, through Maillard's Reaction and similar chemical processes, and through structural changes that protect SOM from decomposition. This study examines the effects of low-intensity surface fires on the recalcitrance of SOM from fire-adapted communities located in subtropical, temperate and sub-boreal peatlands. In addition, soil from a non-fire-adapted Peruvian palm peatland was examined for response to thermal alteration. The timing and temperatures of low-intensity fires were measured in the field during prescribed burns and replicated in simulated fires. The effects of fire on the chemical structure of SOM were examined with FTIR, SEM and XPS. Burned and unburned peat replicates were incubated at three temperatures (5oC, 15oC, 25oC) in controlled chambers for more than six months. Burned replicates initially showed higher CO2, CH4 and NO2 emissions. Yet, within four weeks emissions from the burned replicates dropped below those of unburned replicates and remained significantly lower (10-50%) for the duration of the experiment. In addition, thermal alteration significantly reduced the temperature sensitivity (Q10) of thermally altered peat. After accounting for small initial losses of organic matter (<10 %) during the fire simulations, thermal alteration of SOM resulted in a net long

  5. Direct human impacts on the peatland carbon sink

    Jukka Laine; Kari Minkkinen; Carl Trettin

    2009-01-01

    Northern peatlands occupy over 3 million km2 globally and contain the largest carbon (C) pool (typically >100 kg C m-2) among terrestrial ecosystems. Agriculture, forestry, and peat harvesting are the principal human-induced activities that alter the peatland and hence the distribution and flux of carbon. As a prerequisite to those uses, the peatland is usually...

  6. Global Social Media Directory: A Resource Guide

    Noonan, Christine F.; Piatt, Andrew W.

    2014-10-23

    The Global Social Media Directory is a resource guide providing information on social networking services around the globe. This information changes rapidly, therefore, this document will be updated on a regular basis and as funding permits.

  7. Concepts for a global resources information system

    Billingsley, F. C.; Urena, J. L.

    1984-01-01

    The objective of the Global Resources Information System (GRIS) is to establish an effective and efficient information management system to meet the data access requirements of NASA and NASA-related scientists conducting large-scale, multi-disciplinary, multi-mission scientific investigations. Using standard interfaces and operating guidelines, diverse data systems can be integrated to provide the capabilities to access and process multiple geographically dispersed data sets and to develop the necessary procedures and algorithms to derive global resource information.

  8. Utilization of peatlands as possible land resource for low-input agriculture: cultivation of Vaccinium species as an example

    Tonutare, Tonu; Rodima, Ako; Rannik, Kaire; Shanskiy, Merrit

    2013-04-01

    The best way of soil protection is its sustainable and expedient use, which secures soils ecological functioning. Recent years, by exploitation of peat soils for their different use, has raised important issues concerning their input to global climate change as important source of greenhouse gases (GHG) emitters. The dynamics of GHG are determined by different factors as: site specific conditions including hydrology, soil type, vegetation, area management, including meteorological and climatic conditions. Therefore, in this current paper we are presenting the study results were we estimated CO2, CH4 and N2O emissions from exhausted cultivated peatland with Vaccinium species and determined the soil chemical composition. For comparision a virgin state peatland was observed. The main goals of the paper are: (1) to present the experimental results of greenhouse gases generation and peat chemical composition (antioxidant activity of peat, C/N ratio, fiber content, water extractable phenolics) relationships on different microsites either on natural plant cover or Vaccinium species cultivation area on exhausted milled peat area; (2) to discuss how peat soil quality contributes to greenhouse gases emission; (3) and what kind of relationship reveals between low input agricultural system in which Vaccinium species are cultivated on exhausted milled peat area. The study are is located in nearby Ilmatsalu (58°23'N, 26°31'E) in South Estonia, inside of which the three microsites are determined. Microsites are different from each other by exploitation and plant cover type. 1). Natural plant cover, 2). Cultivated area with Vaccinium angustifolium x V. corymbosum, 3). Cultivated area with Vaccinium angustifolium. The determined soil type according to WRB was Fibri Dystric Histosol. The main part of study focuses on the analyses of greenhouse gases. For this purpose the closed chamber method was used. The greenhouse gas samples were collected from spring to autumn 2011 throughout

  9. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  10. Global climate change and California's water resources

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  11. PEAT-CO2. Assessment of CO2 emissions from drained peatlands in SE Asia

    Hooijer, A.; Silvius, M.; Woesten, H.; Page, S.

    2006-12-01

    Forested tropical peatlands in SE Asia store at least 42,000 Megatonnes of soil carbon. This carbon is increasingly released to the atmosphere due to drainage and fires associated with plantation development and logging. Peatlands make up 12% of the SE Asian land area but account for 25% of current deforestation. Out of 27 million hectares of peatland, 12 million hectares (45%) are currently deforested and mostly drained. One important crop in drained peatlands is palm oil, which is increasingly used as a biofuel in Europe. In the PEAT-CO2 project, present and future emissions from drained peatlands were quantified using the latest data on peat extent and depth, present and projected land use and water management practice, decomposition rates and fire emissions. It was found that current likely CO2 emissions caused by decomposition of drained peatlands amounts to 632 Mt/y (between 355 and 874 Mt/y). This emission will increase in coming decades unless land management practices and peatland development plans are changed, and will continue well beyond the 21st century. In addition, over 1997-2006 an estimated average of 1400 Mt/y in CO2 emissions was caused by peatland fires that are also associated with drainage and degradation. The current total peatland CO2 emission of 2000 Mt/y equals almost 8% of global emissions from fossil fuel burning. These emissions have been rapidly increasing since 1985 and will further increase unless action is taken. Over 90% of this emission originates from Indonesia, which puts the country in 3rd place (after the USA and China) in the global CO2 emission ranking. It is concluded that deforested and drained peatlands in SE Asia are a globally significant source of CO2 emissions and a major obstacle to meeting the aim of stabilizing greenhouse gas emissions, as expressed by the international community. It is therefore recommended that international action is taken to help SE Asian countries, especially Indonesia, to better conserve

  12. Open Educational Resources: American Ideals, Global Questions

    Weiland, Steven

    2015-01-01

    Educational relations between societies and cultures that begin with benevolent intentions can come to be seen as threats to national autonomy and local preferences. Indeed, side by side with the growth since the first years of this century of Open Educational Resources (OER) there has been worry about their impact on global educational…

  13. Educational Resources for Global Health in Otolaryngology.

    Hancock, Melyssa; Hoa, Michael; Malekzadeh, Sonya

    2018-03-07

    Advances in modern communications and information technology have helped to improve access to, and quality of, health care and education. These enhancements include a variety of World Wide Web-based and mobile learning platforms, such as eLearning, mLearning, and open education resources. This article highlights the innovative approaches that have fostered improved collaboration and coordination of global health efforts in otolaryngology. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Meeting the challenge of mapping peatlands with remotely sensed data

    O. N. Krankina

    2008-12-01

    Full Text Available Boreal peatlands play a major role in carbon and water cycling and other global environmental processes but understanding this role is constrained by inconsistent representation of peatlands on, or omission from, many global land cover maps. The comparison of several widely used global and continental-scale databases on peatland distribution with a detailed map for the St. Petersburg region of Russia showed significant under-reporting of peatland area, or even total omission. Analysis of the spatial agreement and disagreement with the detailed regional map indicated that the error of comission (overestimation was significantly lower than the error of omission (underestimation which means, that overall, peatlands were correctly classified as such in coarse resolution datasets but a large proportion (74–99% was overlooked. The coarse map resolution alone caused significant omission of peatlands in the study region. In comparison to categorical maps, continuous field mapping approach utilizing MODIS sensor data showed potential for a greatly improved representation of peatlands on coarse resolution maps. Analysis of spectral signatures of peatlands with different types of surface vegetation suggested that improved mapping of boreal peatlands on categorical maps is feasible. The lower reflectance of treeless peatlands in the near- and shortwave-infrared parts of the electromagnetic spectrum is consistent with the spectral signature of sphagnum mosses. However, when trees are present, the canopy architecture appears to be more important in defining the overall spectral reflectance of peatlands. A research focus on developing remote sensing methods for boreal peatlands is needed for adequate characterization of their global distribution.

  15. Resource Letter: GW-1: Global warming

    Firor, John W.

    1994-06-01

    This Resource Letter provides a guide to the literature on the possibility of a human-induced climate change—a global warming. Journal articles and books are cited for the following topics: the Greenhouse Effect, sources of infrared-trapping gases, climate models and their uncertainties, verification of climate models, past climate changes, and economics, ethics, and politics of policy responses to climate change. [The letter E after an item indicates elementary level or material of general interest to persons becoming informed in the field. The letter I, for intermediate level, indicates material of somewhat more specialized nature, and the letter A indicates rather specialized or advanced material.

  16. Simulating groundwater-peatland interactions in depression and slope peatlands in southern Quebec (Canada)

    Larocque, M.; Quillet, A.; Paniconi, C.

    2013-12-01

    four peatland transects considered representative of the overall variability observed at the field sites. The models are first calibrated to reproduce measured heads, head gradients and temporal variations. In order to assess typical flow patterns and exchanges, a global sensitivity analysis of the model are performed to identify which parameters and processes control the exchanged fluxes. Results show that for depression peatlands, exchanged aquifer-peatland fluxes occur on short distances near the peatland border. For slope peatlands, exchanged fluxes are distributed further inside the peatland. Local hydrostratigraphy as well as peat and mineral deposits hydraulic properties control aquifer-peatland exchanges. Peat recharge is a challenge to represent, but appears to have a similar effect on the four simulated peatlands. Based on the influence of each parameter on the flow, a graphical tool is proposed to help estimate the exchanges between groundwater and peatlands when limited data is available.

  17. Contextualizing Embodied Resources in Global Food Trade

    MacDonald, G. K.; Brauman, K. A.; Sun, S.; West, P. C.; Carlson, K. M.; Cassidy, E. S.; Gerber, J. S.; Ray, D. K.

    2014-12-01

    Trade in agricultural commodities has created increasingly complex linkages between resource use and food supplies across national borders. Understanding the degree to which food production and consumption relies on trade is vital to understanding how to sustainably meet growing food demands across scales. We use detailed bilateral trade statistics and data on agricultural management to examine the land use and water consumption embodied in agricultural trade, which we relate to basic nutritional indicators to show how trade contributes to food availability worldwide. Agricultural trade carries enough calories to provide >1.7 billion people a basic diet each year. We identify key commodities and producer-consumer relationships that disproportionately contribute to embodied resource use and flows of food nutrition at the global scale. For example, just 15 disproportionately large soybean trades comprised ~10% the total harvested area embodied in export production. We conclude by framing these results in terms of the fraction of each country's food production and consumption that is linked to international trade. These findings help to characterize how countries allocate resources to domestic versus foreign food demand.

  18. Intermediate-scale community-level flux of CO2 and CH4 in a Minnesota peatland: putting the SPRUCE project in a global context

    P. J. Hanson; A. L. Gill; X. Xu; J. R. Phillips; D. J. Weston; Randy Kolka; J. S. Riggs; L. A. Hook

    2016-01-01

    Peatland measurements of CO2 and CH4 flux were obtained at scales appropriate to the in situ biological community below the tree layer to demonstrate representativeness of the spruce and peatland responses under climatic and environmental change (SPRUCE) experiment. Surface flux measurements were made using dual open-path...

  19. Carbon dynamics and ecosystem diversity of Amazonian peatlands

    Laehteenoja, O.

    2011-07-01

    The overall aim was to initiate peatland research in Amazonia, which has been referred to as 'one of the large white spots on the global peatland map'. Specifically, the study was to clarify how common peat accumulation is on Amazonian floodplains, and how extensive and thick peat deposits can be encountered. Secondly, the intention was to study how rapidly Amazonian peatlands sequester carbon, and how much carbon they store and thirdly, to gain some understanding of the diversity of peatland ecosystem types and of the processes forming these ecosystems

  20. Integrated Water Resources Management: A Global Review

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  1. Open Educational Resources: American Ideals, Global Questions

    Steven Weiland

    2015-09-01

    Full Text Available Educational relations between societies and cultures that begin with benevolent intentions can come to be seen as threats to national autonomy and local preferences. Indeed, side by side with the growth since the first years of this century of Open Educational Resources (OER there has been worry about their impact on global educational development. Evaluation and research have lagged behind the steady expansion of access to online resources, leaving estimates of the value of digital innovation to the enthusiasm of OER providers and technology minded educational reformers. The advent of the “Massive Open Online Course” (or MOOC has exacerbated the problem, with attention moving toward a form of OER reflecting the enthusiasm of leading institutions in industrialized nations. The American led movement on behalf of the MOOC requires new questions about the motives, impact, and future of OER. This essay accounts for the history of OER, culminating in the MOOC, including how the latter in particular is an expression of American pedagogical and institutional interests representing belief in the transformative educational powers of the latest communications technologies. Criticism of OER and MOOCs can reflect organizational, operational, and ideological considerations. But it should recognize what they offer when there are few other opportunities for formal learning, and as research demonstrates their uses and impact.

  2. Subsidence in tropical peatlands: Estimating CO2 fluxes from peatlands in Southeast Asia

    Hoyt, A.; Harvey, C. F.; Seppalainen, S. S.; Chaussard, E.

    2017-12-01

    Tropical peatlands of Southeast Asia are an important global carbon stock. However, they are being rapidly deforested and drained. Peatland drainage facilitates peat decomposition, releases sequestered peat carbon to the atmosphere as CO2, and leads to subsidence of the peat surface. As a result, subsidence measurements can be used to monitor peatland carbon loss over time. Until now, subsidence measurements have been primarily limited to ground-based point measurements using subsidence poles. Here we demonstrate a powerful method to measure peatland subsidence rates across much larger areas than ever before. Using remotely sensed InSAR data, we map subsidence rates across thousands of square kilometers in Southeast Asia and validate our results against ground-based subsidence measurements. The method allows us to monitor subsidence in remote locations, providing unprecedented spatial information, and the first comprehensive survey of land uses such as degraded peatlands, burnt and open areas, shrub lands, and smallholder farmlands. Strong spatial patterns emerged, with the highest subsidence rates occurring at the centers of peat domes, where the peat is thickest and drainage depths are likely to be largest. Peatland subsidence rates were also strongly dependent on current and historical land use, with typical subsidence rates ranging from 2-4 cm/yr. Finally, we scaled up our results to calculate total annual emissions from peat decomposition in degraded peatlands.

  3. Aquatic carbon export from peatland catchments recently undergone wind farm development

    Smith, Ben; Waldron, Susan; Henderson, Andrew; Flowers, Hugh; Gilvear, David

    2013-04-01

    Scotland's peat landscapes are desirable locations for wind-based renewables due to high wind resources and low land use pressures in these areas. The environmental impact of sitting wind-based renewables on peats however, is unknown. Globally, peatlands are important terrestrial carbon stores. Given the topical nature of carbon-related issues, e.g. global warming and carbon footprints, it is imperative we help mitigate their degradation and maintain carbon sequestration. To do so, we need to better understand how peatland systems function with regards to their carbon balance (export versus sequestration) so we can assess their resilience and adaptation to hosting land-based renewable energy projects. Predicting carbon lost as a result of construction of wind farms built on peatland has not been fully characterised and this research will provide data that can supplement current 'carbon payback calculator' models for wind farms that aim to reinforce their 'green' credentials. Transfer of carbon from the terrestrial peatland systems to the aquatic freshwater and oceanic systems is most predominant during periods of high rainfall. It has been estimated that 50% of carbon is exported during only 10% of highest river flows, (Hinton et al., 1998). Furthermore, carbon export from peatlands is known to have a seasonal aspect with highest concentrations of dissolved organic carbon (DOC) found mostly in late summer months of August and September and lowest in December and January, (Dawson et al., 2004). Event sampling, where high intensity sample collection is carried out during high river flow periods, offers a better insight, understanding and estimation of carbon aquatic fluxes from peatland landscapes. The Gordonbush estate, near Brora, has an extensive peatland area where a wind farm development has recently been completed (April 2012). Investigations of aquatic carbon fluxes from this peatland system were started in July 2010, in conjunction with the start of

  4. Human influences on the health of northern peatlands

    Gorham, E.

    1991-01-01

    The present area of peat is estimated to be 342 million hectares, with an average depth of 2.3 m. Peatlands are of interest for their flora and fauna, as a habitat for wildlife, for their capacity to moderate stream flows, and for their sequestration of nitrogen and sulfur (elements important in stream and lake acidification). Of great biogeochemical significance is the role of northern peatlands in the global carbon cycle. Their total stock of carbon stored as peat is 455 Pg, or 64% of the amount present as atmospheric CO 2 , 55% of total plant biomass, and 30% of the global pool of soil carbon excluding peat. The rate of peatland sequestration of atmospheric carbon is very small compared to current emissions of 5.6 Pg from fossil fuel combustion. On the other hand, northern peatlands emit ca 0.046 gigatonnes of carbon in the form of methane, which is about 20 times as effective as a greenhouse gas than CO 2 . Human disturbances to peatlands come directly from forestry, agriculture, and fuel/horticultural peat extraction, and indirectly from destruction or utilization of surrounding upland ecosystems, deposition of pollutants, and global warming. Approaches to the study of human impacts on peatlands are outlined and suggestions are offered to guide peatland research. Peatland conservation and restoration are also briefly reviewed. 65 refs

  5. Peatlands: their nature and role in the biosphere

    Maltby, E.; Proctor, M.C.F.

    1996-01-01

    There are approximately 4 million km 2 of peatlands worldwide, covering some 3 % of the land surface. Their exact extent is uncertain within 150 000 km 2 or so. This is partly because of the difficulty of defining their boundaries precisely, and partly from simple lack of information, especially from parts of Canada and the former USSR, and within the tropical regions. Over 90 % of peatlands are in the temperate and cold belt in the Northern Hemisphere. It is estimated that almost 95 % of peatlands are found in just eight nations: CIS (former USSR) (38 %); Canada (28 %); USA (15 %); Indonesia (6 %); Finland (3 %); Sweden (2 %); China (1 %); Norway (1 %). European peatlands excluding the former USSR amount to just 7 % of the total area. African and South American peatlands each account for 1 % of the total. Central America holds less than 1 % of the global total. Tropical peatlands may account for as much as 10 % of the total area, and more than 7 % of the world total is in south-east Asia alone. The significance of the very large carbon store represented by the world's peatlands in relation to global carbon cycling, and the potential for global environmental change, is becoming increasingly apparent. In this chapter also the conditions for the formation of peat, limits of peat growth, element accumulation, nutrient cycling and budgets of peatlands are discussed. (29 refs.)

  6. The stoichiometry of peatlands

    Moore, Tim

    2017-04-01

    Stoichiometric principles have been developed and successfully applied to freshwater and marine ecosystems, which are characterized by short-lived, structurally simple organisms, simple food webs and an environment which allows rapid movement of water and elements. The application has been less successful in peatlands, and other terrestrial ecosystems: not surprising given their long-lived, structurally complex organisms, slow rates of organic matter decomposition, complex food webs and low hydraulic conductivities slowing water and element movement. I examine some aspects of what we know about stoichiometry in peatlands, especially involving nutrients such as C, N, P, K, Ca and Mg. I follow the cascade of stoichiometry from peatland plants through litter and into decomposing peat, drawing upon data from the Mer Bleue peatland and peatlands in Ontario. There are consistent patterns in stoichiometries, such as C:N, N:P and C:P across diverse peatlands, whereas patterns involving K, Ca and Mg show greater variability. Most of the changes in stoichiometry occur in the early stages of decomposition, from Von Post values 1 through 4. Peatlands are affected by disturbances, such as elevated atmospheric deposition of N and P, and I look at how these changes affect stoichiometric relationships. Finally, I present data on the changes in the stoichiometry of C, H and O, from plants through peat to coal beds. I conclude that while ecological stoichiometry in peatlands is not as 'simple' as in aquatic ecosystems, it offers contributions to our understanding of how peatlands function and respond to disturbance.

  7. Methane flux from boreal peatlands

    Crill, P.; Bartlett, K.; Roulet, N.

    1992-01-01

    The peatlands in the boreal zone (roughly 45 deg - 60 degN) store a significant reservoir of carbon, much of which is potentially available for exchange with the atmosphere. The anaerobic conditions that cause these soils to accumulate carbon also makes wet, boreal peatlands significant sources of methane to the global troposphere. It is estimated that boreal wetlands contribute approximately 19.5 Tg methane per year. The data available on the magnitude of boreal methane emissions have rapidly accumulated in the past twenty years. This paper offers a short review of the flux measured (with range roughly 1 - 2000 mg methane/m2d), considers environmental controls of the flux and briefly discusses how climate change might affect future fluxes

  8. Impact of Globalization on the Human Resource Management ...

    Impact of Globalization on the Human Resource Management Function in ... impact on the management of human resources in developing countries including Kenya. ... The non-core jobs have been outsourced which has led to an increase in ...

  9. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    Mineral resource assessments provide a synthesis of available information about distributions of mineral deposits in the Earth’s crust. A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in Mexico was done as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits within 1 km of the surface at a scale of 1:1,000,000; (2) provide a database of known porphyry copper deposits and significant prospects; (3) estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in undiscovered deposits for each permissive tract. The assessment was conducted using a three-part form of mineral resource assessment based on mineral deposit models (Singer, 1993). Delineation of permissive tracts primarily was based on distributions of mapped igneous rocks related to magmatic arcs that formed in tectonic settings associated with subduction boundary zones. Using a GIS, map units were selected from digital geologic maps based on lithology and age to delineate twelve permissive tracts associated with Jurassic, Laramide (~90 to 34 Ma), and younger Tertiary magmatic arcs. Stream-sediment geochemistry, mapped alteration, regional aeromagnetic data, and exploration history were considered in conjunction with descriptive deposit models and grade and tonnage models to guide estimates.

  10. Global-minded Human Resources and Expectations for Universities

    Inoue, Hiroshi

    Under the globalized economy, Japanese corporations compete with rivals of the western countries and emerging economies. And domestically, they face with deflation, falling birth-rate, an aging society, and shrinking market. So they need to foster and retain global-minded human resources who can play an active role in global business, and who can drive innovation. What Japanese corporations expect for global-minded human resources are ability to meet challenges, ability to think independently free from conventional wisdom, communication skills in foreign languages, interests in foreign cultures and different values, and so on. In order to foster global-minded human resources, Keidanren work with the 13 universities selected under the Japanese Government‧s “Global 30” projects to undertake “Global-minded Human Resources Development Projects” .

  11. Design principles for global commons: Natural resources and emerging technologies

    Paul C. Stern

    2011-09-01

    Full Text Available Ostrom’s design principles for managing common pool resources were developed largely by examining local commons involving natural resources. This paper enumerates several key characteristics that distinguish such commons from more complex commons involving global resources and the risks of emerging technologies. It considers the degree to which the design principles transfer to those commons and concludes that although they have considerable external validity, the list needs some modification and elaboration to apply to global resources and risk commons. A list of design principles is offered for global resource commons and the risks of emerging technologies. Applying Ostrom’s approach to global resources and emerging technologies can improve understanding and expand the solution set for these problems from international treaties, top-down national regulation, and interventions in market pricing systems to include non-governmental institutions that embody principles of self-governance.

  12. Influence Of Globalization On Human Resource Development In ...

    The paper addressed the influence of Globalization on human resource development in Nigeria. It traced the origin of human resource development in Nigeria to the coming of the missionaries who spiritually colonized Africa and also educated their adherents. The human resource produced from the education offered were ...

  13. Nitrogen dynamics in northern peatland ecosystems

    Nitrogen pollution has become a global issue over the last century due to increased fertilizer use and burning of fossil fuels. Excess N has been responsible for algal blooms, hypoxic zones, climate change, and human health issues. Extent of peatlands in the Great Lakes basin is ...

  14. Exploring Global Exposure Factors Resources URLs

    U.S. Environmental Protection Agency — The dataset is a compilation of hyperlinks (URLs) for resources (databases, compendia, published articles, etc.) useful for exposure assessment specific to consumer...

  15. Information empowerment: predeparture resource training for students in global health.

    Rana, Gurpreet K

    2014-04-01

    The Taubman Health Sciences Library (THL) collaborates with health sciences schools to provide information skills instruction for students preparing for international experiences. THL enhances students' global health learning through predeparture instruction for students who are involved in global health research, clinical internships, and international collaborations. This includes teaching international literature searching skills, providing country-specific data sources, building awareness of relevant mobile resources, and encouraging investigation of international news. Information skills empower creation of stronger global partnerships. Use of information resources has enhanced international research and training experiences, built lifelong learning foundations, and contributed to the university's global engagement. THL continues to assess predeparture instruction.

  16. Threats to intact tropical peatlands and opportunities for their conservation.

    Roucoux, K H; Lawson, I T; Baker, T R; Del Castillo Torres, D; Draper, F C; Lähteenoja, O; Gilmore, M P; Honorio Coronado, E N; Kelly, T J; Mitchard, E T A; Vriesendorp, C F

    2017-12-01

    Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza-Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land-use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon-dense (domed pole forest) areas. New carbon-based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc

  17. The global human resource management casebook

    Castro-Christiansen, L.; Farndale, E.; Biron Ben Gera, M.; Kuvaas, B.

    2017-01-01

    This casebook is a collection of international teaching cases focusing on contemporary human resource management issues. Each case centers primarily on one country and illustrates a significant challenge faced by managers and HR practitioners, helping students to understand how the issues they learn

  18. Natural resources management in an era of global change

    Sommers, W.T. [USDA Forest Service, Washington, DC (United States)

    1993-12-31

    The international science community has issued a series of predictions of global atmospheric change that, if they verify, will have heretofore unexperienced impact on our forests. Convincing the public and their natural resource managers to respond to these effects must be high on the agenda of the science community. Mitigative and adapative responses we examine and propose, however, should stem from an understanding of the evolving role of the natural resource manager and how that role might be affected by global change.

  19. Protecting global soil resources for future generations

    Montanarella, Luca

    2017-04-01

    The latest Status of World's Soil Resources report has highlighted that soils are increasingly under pressure by numerous human induced degradation processes in most parts of the world. The limits of our planetary boundaries concerning vital soil resources have been reached and without reversing this negative trend there will be a serious lack of necessary soil resources for future generations. It has been therefore of the highest importance to include soils within some of the Sustainable Development Goals (SDG) recently approved by the United Nations. Sustainable development can not be achieved without protecting the limited, non-renewable, soil resources of our planet. There is the need to limit on-going soil degradation processes and to implement extensive soil restoration activities in order to strive towards a land degradation neutral (LDN) world, as called upon by SDG 15. Sustainable soil management needs to be placed at the core of any LDN strategy and therefore it is of highest importance that the recently approved Voluntary Guidelines for Sustainable Soil Management (VGSSM) of FAO get fully implemented at National and local scale.Sustainable soil management is not only relevant for the protection of fertile soils for food production, but also to mitigate and adopt to climate change at to preserve the large soil biodiversity pool. Therefore the VGSSM are not only relevant to FAO, but also the the climate change convention (UNFCCC) and the biodiversity convention (CBD). An integrated assessment of the current land degradation processes and the available land restoration practices is needed in order to fully evaluate the potential for effectively achieving LDN by 2030. The on-going Land Degradation and Restoration Assessment (LDRA) of the Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES) will provide the necessary scientific basis for the full implementation of the necessary measures for achieving the planned SGS's relevant to land

  20. Global mega forces: Implications for the future of natural resources

    George H. Kubik

    2012-01-01

    The purpose of this paper is to provide an overview of leading global mega forces and their importance to the future of natural resource decisionmaking, policy development, and operation. Global mega forces are defined as a combination of major trends, preferences, and probabilities that come together to produce the potential for future high-impact outcomes. These...

  1. Human and climate impacts on global water resources

    Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water

  2. Northern peatland initiation lagged abrupt increases in deglacial atmospheric CH4.

    Reyes, Alberto V; Cooke, Colin A

    2011-03-22

    Peatlands are a key component of the global carbon cycle. Chronologies of peatland initiation are typically based on compiled basal peat radiocarbon (14C) dates and frequency histograms of binned calibrated age ranges. However, such compilations are problematic because poor quality 14C dates are commonly included and because frequency histograms of binned age ranges introduce chronological artefacts that bias the record of peatland initiation. Using a published compilation of 274 basal 14C dates from Alaska as a case study, we show that nearly half the 14C dates are inappropriate for reconstructing peatland initiation, and that the temporal structure of peatland initiation is sensitive to sampling biases and treatment of calibrated 14C dates. We present revised chronologies of peatland initiation for Alaska and the circumpolar Arctic based on summed probability distributions of calibrated 14C dates. These revised chronologies reveal that northern peatland initiation lagged abrupt increases in atmospheric CH4 concentration at the start of the Bølling-Allerød interstadial (Termination 1A) and the end of the Younger Dryas chronozone (Termination 1B), suggesting that northern peatlands were not the primary drivers of the rapid increases in atmospheric CH4. Our results demonstrate that subtle methodological changes in the synthesis of basal 14C ages lead to substantially different interpretations of temporal trends in peatland initiation, with direct implications for the role of peatlands in the global carbon cycle.

  3. Conflicts over natural resources in the Global South : conceptual approaches

    Bavinck, M.; Pellegrini, L.; Mostert, E.

    2014-01-01

    Inhabitants of poor, rural areas in the Global South heavily depend on natural resources in their immediate vicinity. Conflicts over and exploitation of these resources - whether it is water, fish, wood fuel, minerals, or land - severely affect their livelihoods. The contributors to this volume

  4. CULTURAL DIMENSIONS IN GLOBAL HUMAN RESOURCE MANAGEMENT: IMPLICATIONS FOR NIGERIA

    John N. N. Ugoani

    2016-09-01

    Full Text Available As enterprise operations continue to be globalized through overseas expansions, joint ventures, mergers and acquisitions as well as strategic relationships and partnerships transnational organizations need to give attention to issues of culture in human resource management practices as a panacea for prosperity. The global organization is competent if only it is able to bridge the gap between management and culture so that personal relationships with other peoples in the organization and society become in harmony. This is critical because cultural relativity and reality in organizations influence operations. The study was designed to explore possible relationships between cultural dimensions and global human resource management. The survey research design was employed and data generated through primary and secondary sources. The participants comprised of 385 respondents from a cross-section of the population in Nigeria. By Chi-Square test, it was found that culture has a significant positive relationship with global human resource management.

  5. Global Social Media Directory. A Resource Guide

    Noonan, Christine F. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Piatt, Andrew W. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    Social media platforms are internet-based applications focused on broadcasting user-generated content. While primarily web-based, these services are increasingly available on mobile platforms. Communities and individuals share information, photos, music, videos, provide commentary and ratings/reviews, and more. In essence, social media is about sharing information, consuming information, and repurposing content. Social media technologies identified in this report are centered on social networking services, media sharing, blogging and microblogging. The purpose of this Resource Guide is to provide baseline information about use and application of social media platforms around the globe. It is not intended to be comprehensive as social media evolves on an almost daily basis. The long-term goal of this work is to identify social media information about all geographic regions and nations. The primary objective is that of understanding the evolution and spread of social networking and user-generated content technologies internationally.

  6. Peatlands of the Peruvian Puna ecoregion: types, characteristics and disturbance

    F. Salvador

    2014-05-01

    Full Text Available Peatlands represent one of the most important water resources in the Puna grassland ecoregion, but this fact is not yet widely recognised. Puna peatlands also provide key environmental services such as increasing the regional biodiversity of the Andean Altiplano plateau and contributing to the wellbeing of high-altitude human populations by providing grazing land and cooking fuel. We conducted a study in the Peruvian Puna ecoregion to describe the current condition of peatlands in terms of their vegetation, physical and chemical characteristics and disturbance status. Our results suggest that peat thickness, organic matter and degree of humification are good indicators for identifying peatlands in the Puna ecoregion. In general, the peatland sites that we sampled were dominated by mixtures of cushion and acaulescent rosette forming plants such as Distichia muscoides Nees & Meyen and Plantago tubulosa Decne. These Distichia and Plantago peatland sites were characterised by a mean surface water pH of 6.3, corrected electrical conductivity (K corr. in the range 300–1814 μS cm-1 and presented the following mean exchangeable cation values: Ca2+ 48 mg L-1, Mg2+ 9.6 mg L-1, Na+ 8.2 mg L-1 and K+ 2.1 mg L-1. The most common causes of disturbance we encountered were grazing, peat extraction and roads. Disturbance was most severe in mining sites, where peatlands are especially vulnerable because they are not under legal protection.

  7. Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands

    Swindles, Graeme T.; Amesbury, Matthew J.; Turner, T. Edward; Carrivick, Jonathan L.; Woulds, Clare; Raby, Cassandra; Mullan, Donal; Roland, Thomas P.; Galloway, Jennifer M.; Parry, Lauren; Kokfelt, Ulla; Garneau, Michelle; Charman, Dan J.; Holden, Joseph

    2015-01-01

    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (~ 200 km north of the Arctic Circle). Multivariate statistical analysis confirms that water-table depth and moisture content are the dominant controls on the distribution of testate amoebae, corroborating the results from studies in mid-latitude peatlands. We present a ne...

  8. An assessement of global energy resource economic potentials

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  9. Vascular plants promote ancient peatland carbon loss with climate warming.

    Walker, Tom N; Garnett, Mark H; Ward, Susan E; Oakley, Simon; Bardgett, Richard D; Ostle, Nicholas J

    2016-05-01

    Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century- to millennia-old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ (14)C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf-shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf-shrubs and graminoids prime microbial decomposition of previously 'locked-up' organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant-induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change. © 2016 John Wiley & Sons Ltd.

  10. Assessment of Global Wind Energy Resource Utilization Potential

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  11. Restoration of harvested peatlands

    Saarmets, Tiit

    1999-01-01

    A short analysis of the main topics of the IPS Symposium Peatland Restoration and Reclamation, Duluth, Minnesota, USA, 1998 is given. It has been single-mindedly recommended in Estonia so far that harvested peatland surfaces should be levelled and outflows shut. But following these recommendations will lead to an unfounded formation of marshy areas with a very low growth of plants. The reclamation of harvested peatlands for agricultural purposes is expensive and there is no commercial need for agricultural land in today's Estonia now. In the author's opinion the foreflows and intermediate ditches should be left open which would favour the growth of the brushwood to grow later into the forest of commercial value. (author)

  12. Tropical Peatland Geomorphology and Hydrology

    Cobb, A.; Harvey, C. F.

    2017-12-01

    Tropical peatlands cover many low-lying areas in the tropics. In tropical peatlands, a feedback between hydrology, landscape morphology, and carbon storage causes waterlogged organic matter to accumulate into gently mounded land forms called peat domes over thousands of years. Peat domes have a stable morphology in which peat production is balanced by loss and net precipitation is balanced by lateral flow, creating a link between peatland morphology, rainfall patterns and drainage networks. We show how landscape morphology can be used to make inferences about hydrologic processes in tropical peatlands. In particular, we show that approaches using simple storage-discharge relationships for catchments are especially well suited to tropical peatlands, allowing river forecasting based on peatland morphology in catchments with tropical peatland subcatchments.

  13. The sustainable utilization of human resources in global product development

    Hansen, Zaza Nadja Lee; Rasmussen, Lauge Baungaard; Hansen, Mette Sanne

    2010-01-01

    This empirical paper investigates the challenges global product development faces in regard to a sustainable utilization of resources through case studies and interviews in six Danish multinational corporations. Findings revealed 3 key challenges, which relates to increased rework in product...... development and production, overlapping work and a lack of utilization of knowledge and information at the supplier or subsidiary. The authors suggest the use of strategic simulation in order to gain greater transparency in the global network and thus utilize resources better. Strategic simulation...

  14. GLOBAL CATEGORIZATION OF THE WORLD'S INDIGENOUS LAND AND RESOURCES RIGHTS

    Dubertret , Fabrice

    2014-01-01

    This document is a draft. It aims at providing a basis for discussion between the different organizations and indigenous land and resources rights experts involved in the wider project of building a world atlas of indigenous territories.; This working paper describes the process of establishing a global categorization of indigenous land and resources rights. From the analysis of a great variability of legislations regarding indigenous territories, common considered topics are identified, such...

  15. Status of peatland degradation and development in Sumatra and Kalimantan.

    Miettinen, Jukka; Liew, Soo Chin

    2010-01-01

    Peatlands cover around 13 Mha in Sumatra and Kalimantan, Indonesia. Human activities have rapidly increased in the peatland ecosystems during the last two decades, invariably degrading them and making them vulnerable to fires. This causes high carbon emissions that contribute to global climate change. For this article, we used 94 high resolution (10-20 m) satellite images to map the status of peatland degradation and development in Sumatra and Kalimantan using visual image interpretation. The results reveal that less than 4% of the peatland areas remain covered by pristine peatswamp forests (PSFs), while 37% are covered by PSFs with varying degree of degradation. Furthermore, over 20% is considered to be unmanaged degraded landscape, occupied by ferns, shrubs and secondary growth. This alarming extent of degradation makes peatlands vulnerable to accelerated peat decomposition and catastrophic fire episodes that will have global consequences. With on-going degradation and development the existence of the entire tropical peatland ecosystem in this region is in great danger.

  16. Land Use Change and Recommendation for Sustainable Development of Peatland for Agriculture: Case Study at Kubu Raya and Pontianak Districts, West Kalimantan

    Wahyunto, Wahyunto; Supriatna, Wahyu; Agus, Fahmuddin

    2010-01-01

    Peatland is an increasingly important land resource for livelihood, economic development, and terrestrial carbon storage. Kubu Raya and Pontianak Districts of West Kalimantan rely their future agricultural development on this environmentally fragile peatland because of the dominance (58% and 16% area, respectively) of this land in the two districts. A study aimed to evaluate land use changes on peatland and to develop strategies for sustainable peatland use and management for agriculture. Tim...

  17. Global water resources: vulnerability from climate change and population growth.

    Vörösmarty, C J; Green, P; Salisbury, J; Lammers, R B

    2000-07-14

    The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.

  18. Extent and status of mires, peatlands, and organic soils in Europe

    Tanneberger, Franziska; Barthelmes, Alexandra; Tegetmeyer, Cosima; Busse, Stephan; Joosten, Hans

    2016-04-01

    Key words: peatland distribution, peatland drainage, GIS, Global Peatland Database, European Mires Book The relevance of drained peatlands to climate change due to emission of huge amounts of greenhouse gases has recently been recognised e.g. by IPCC, FAO, and the European Union. Oppositely, natural and restored peatlands provide ecosystem services like enhancing biodiversity, nutrient retention, groundwater storage, flood mitigation, and cooling. To evaluate the drainage status of peatlands and organic soils and to develop specific restoration strategies comprehensive and exact geospatial data are needed. The Global Peatland Database (GPD) is hosted at Greifswald Mire Centre (http://tiny.cc/globalpeat). Currently, it provides estimates on location, extent, and drainage status of peatlands and organic soils for 268 countries and regions of the world. Due to the large diversity of definitions and terms for peatlands and organic soils, this mapping follows the broad definition of organic soils from IPCC that gives a minimum soil organic carbon threshold of 12% and considers any depth of the organic layer larger than 10 cm. GIS datasets are continuously collected, specific terms and definitions analysed and the completeness and accuracy of the datasets evaluated. Currently, the GPD contains geospatial data on peatlands and organic soils for all European countries (except Moldova). Recent information on status, distribution, and conservation of mires and peatlands in Europe is summarised in the European Mires Book. It includes descriptions from 49 countries and other geographic entities in Europe. All country chapters follow a generic structure and include also extensive descriptions of national terminology (also in national languages and script) and typologies as well as up to date area statistics and maps. They are complemented by integrative chapters presenting mire classification, mire regionality, peatland use, and mire conservation in Europe. The European Mires

  19. Strategic Enterprise Resource Planning for Global Supply Chain Competitiveness

    Nageswararao, A. V.; Sahu, Dasarathi; Mohan, V. Krishna

    2011-01-01

    Strategic Enterprise Resource planning (SERP) systems are networked and integrated information mechanisms which are developed to achieve competitive advantage for organizations operating in global scale. It plays a vital role in Integrating various stake holders and channel partners involved in day to day operations. In the present Globalized…

  20. Evaluating the use of testate amoebae for palaeohydrological reconstruction in permafrost peatlands

    Swindles, Graeme T.; Amesbury, Matthew J.; Turner, T. Edward

    2015-01-01

    The melting of high-latitude permafrost peatlands is a major concern due to a potential positive feedback on global climate change. We examine the ecology of testate amoebae in permafrost peatlands, based on sites in Sweden (similar to 200 km north of the Arctic Circle). Multivariate statistical ...

  1. Initial response of the nitrogen cycle to soil warming in Northern Minnesota peatlands

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce a...

  2. TRENDS OF NATURAL RESOURCES MARKET IN A GLOBALIZED WORLD ECONOMY

    Cristian, SIMA

    2013-10-01

    Full Text Available Natural resources are not homogeneous in nature, having certain features in the productive process that require grouping them into different categories by different criteria. Consequently, natural resources cannot be addressed all at once, but only distinctly, according to relevant criteria selected based on the proposed goals. Changing approaches based resources (materials to the knowledge, from quantity to quality, from mass products to new concepts of higher added value, follows a development that is based on eco-efficiency and sustainable products and services. In this respect, integrated research will become key factors towards global processing. Also, global digitalization requires a new approach on the role of information in the development of economy and increase of competitiveness.

  3. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-01-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate

  4. Macroecology Meets Macroeconomics: Resource Scarcity and Global Sustainability.

    Brown, James H; Burger, Joseph R; Burnside, William R; Chang, Michael; Davidson, Ana D; Fristoe, Trevor S; Hamilton, Marcus J; Hammond, Sean T; Kodric-Brown, Astrid; Mercado-Silva, Norman; Nekola, Jeffrey C; Okie, Jordan G

    2014-04-01

    The current economic paradigm, which is based on increasing human population, economic development, and standard of living, is no longer compatible with the biophysical limits of the finite Earth. Failure to recover from the economic crash of 2008 is not due just to inadequate fiscal and monetary policies. The continuing global crisis is also due to scarcity of critical resources. Our macroecological studies highlight the role in the economy of energy and natural resources: oil, gas, water, arable land, metals, rare earths, fertilizers, fisheries, and wood. As the modern industrial technological-informational economy expanded in recent decades, it grew by consuming the Earth's natural resources at unsustainable rates. Correlations between per capita GDP and per capita consumption of energy and other resources across nations and over time demonstrate how economic growth and development depend on "nature's capital". Decades-long trends of decreasing per capita consumption of multiple important commodities indicate that overexploitation has created an unsustainable bubble of population and economy.

  5. Assessing global resource utilization efficiency in the industrial sector

    Rosen, Marc A.

    2013-01-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. - Highlights: ► The global industrial sector and its industries are assessed by using energy and exergy methods. ► Global industrial sector efficiencies are evaluated as 51% based on energy and 30% based on exergy. ► Exergy analysis shows global industrial energy to be less efficient than does energy analysis. ► A misleadingly low margin for efficiency improvement is indicated by energy analysis. ► A significant and rational margin for efficiency improvement exists from an exergy perspective

  6. Assessing global resource utilization efficiency in the industrial sector.

    Rosen, Marc A

    2013-09-01

    Designing efficient energy systems, which also meet economic, environmental and other objectives and constraints, is a significant challenge. In a world with finite natural resources and large energy demands, it is important to understand not just actual efficiencies, but also limits to efficiency, as the latter identify margins for efficiency improvement. Energy analysis alone is inadequate, e.g., it yields energy efficiencies that do not provide limits to efficiency. To obtain meaningful and useful efficiencies for energy systems, and to clarify losses, exergy analysis is a beneficial and useful tool. Here, the global industrial sector and industries within it are assessed by using energy and exergy methods. The objective is to improve the understanding of the efficiency of global resource use in the industrial sector and, with this information, to facilitate the development, prioritization and ultimate implementation of rational improvement options. Global energy and exergy flow diagrams for the industrial sector are developed and overall efficiencies for the global industrial sector evaluated as 51% based on energy and 30% based on exergy. Consequently, exergy analysis indicates a less efficient picture of energy use in the global industrial sector than does energy analysis. A larger margin for improvement exists from an exergy perspective, compared to the overly optimistic margin indicated by energy. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Australia's Uranium and thorium resources and their global significance

    Lambert, I.B.; McKay, A.; Miezitis, Y.

    2006-01-01

    Full text: Full text: Australia's world-leading uranium endowment appears to result from the emplacement of uranium enriched felsic igneous rocks in three major periods during the geological evolution of the continent. Australia has over 27% of the world's total reasonably assured uranium resources (RAR) recoverable at < US$80/kgU (which approximates recent uranium spot prices). Olympic Dam is the largest known uranium deposit, containing approximately 19% of global RAR (and over 40% of global inferred resources) recoverable at < US$80/kg U; the uranium is present at low concentrations and the viability of its recovery is underpinned by co-production of copper and gold. Most of Australia's other identified resources are within Ranger, Jabiluka, Koongarra, Kintyre and Yeelirrie, the last four of which are not currently accessible for mining. In 2004, Australia's three operating uranium mines - Ranger, Olympic Dam, and Beverley -produced 22% of global production. Canada was the only country to produce more uranium (29%) and Kazakhstan (9%) ranked third. Considerably increased uranium production has been recently foreshadowed from Australia (through developing a large open pit at Olympic Dam), Canada (mainly through opening of the Cigar Lake mine), and Kazakhstan (developing several new in situ leach mines). These increases should go a long way towards satisfying demand from about 2010. Olympic Dam has sufficient resources to sustain such increased production over many decades. Thorium is expected to be used in some future generations of nuclear reactors. Australia also has major (but incompletely quantified) resources of this commodity, mainly in heavy mineral sands deposits and associated with alkaline igneous rocks. It is inevitable that the international community will be looking increasingly to Australia to sustain its vital role in providing fuels for future nuclear power generation, given its world-leading identified resources, considerable potential for new

  8. Global Information Resources on Rice for Research and Development

    Shri RAM

    2012-12-01

    Full Text Available Various issues concerning the progress of rice research are related to ambiguous germplasm identification, difficulty in tracing pedigree information, and lack of integration between genetic resources, characterization, breeding, evaluation and utilization data. These issues are the constraints in developing knowledge-intensive crop improvement programs. The rapid growth, development and the global spread of modern information and communication technology allow quick adoption in fundamental research. Thus, there is a need to provide an opportunity for the establishment of services which describe the rice information for better accessibility to information resources used by researchers to enhance the competitiveness. This work reviews some of available resources on rice bioinformatics and their roles in elucidating and propagating biological and genomic information in rice research. These reviews will also enable stakeholders to understand and adopt the change in research and development and share knowledge with the global community of agricultural scientists. The establishment like International Rice Information System, Rice Genome Research Project and Integrated Rice Genome Explorer are major initiatives for the improvement of rice. Creation of databases for comparative studies of rice and other cereals are major steps in further improvement of genetic compositions. This paper will also highlight some of the initiatives and organizations working in the field of rice improvement and explore the availability of the various web resources for the purpose of research and development of rice. We are developing a meta web server for integration of online resources such as databases, web servers and journals in the area of bioinformatics. This integrated platform, with acronym iBIRA, is available online at ibiranet.in. The resources reviewed here are the excerpts from the resources integrated in iBIRA.

  9. Regulation of water resources for sustaining global future socioeconomic development

    Chen, J.; SHI, H.; Sivakumar, B.

    2016-12-01

    With population projections indicating continued growth during this century, socio-economic problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if proper planning, development, and management strategies are not adopted. In the present study, firstly, we explore the vital role of dams in promoting economic growth through analyzing the relationship between dams and Gross Domestic Product (GDP) at both global and national scales. Secondly, we analyze the current situation of global water scarcity based on the data representing water resources availability, dam development, and the level of economic development. Third, with comprehensive consideration of population growth as the major driving force, water resources availability as the basic supporting factor, and topography as the important constraint, this study addresses the question of dam development in the future and predicts the locations of future dams around the world.

  10. Lithium Resources and Production: Critical Assessment and Global Projections

    Steve H. Mohr

    2012-03-01

    Full Text Available This paper critically assesses if accessible lithium resources are sufficient for expanded demand due to lithium battery electric vehicles. The ultimately recoverable resources (URR of lithium globally were estimated at between 19.3 (Case 1 and 55.0 (Case 3 Mt Li; Best Estimate (BE was 23.6 Mt Li. The Mohr 2010 model was modified to project lithium supply. The Case 1 URR scenario indicates sufficient lithium for a 77% maximum penetration of lithium battery electric vehicles in 2080 whereas supply is adequate to beyond 2200 in the Case 3 URR scenario. Global lithium demand approached a maximum of 857 kt Li/y, with a 100% penetration of lithium vehicles, 3.5 people per car and 10 billion population.

  11. Environmental and resource footprints in a global context: Europe's structural deficit in resource endowments

    Tukker, A.; Bulavskaya, T.; Giljum, S.; Koning, A. de; Lutter, S.; Simas, M.; Stadler, K.; Wood, R.

    2016-01-01

    The European Union (EU) has proposed in its Resource-efficiency roadmap a ‘dashboard of indicators’ consisting of four headline indicators for carbon, water, land and materials. The EU recognizes the need to use a consumption-based (or ‘footprint’) perspective to capture the global dimension of

  12. Remote sensing strategies for global resource exploration and environmental management

    Henderson, Frederick B.

    Since 1972, satellite remote sensing, when integrated with other exploration techniques, has demonstrated operational exploration and engineering cost savings and reduced exploration risks through improved geological mapping. Land and ocean remote sensing satellite systems under development for the 1990's by the United States, France, Japan, Canada, ESA, Russia, China, and others, will significantly increase our ability to explore for, develop, and manage energy and mineral resources worldwide. A major difference between these systems is the "Open Skies" and "Non-Discriminatory Access to Data" policies as have been practiced by the U.S. and France and the restrictive nationalistic data policies as have been practiced by Russia and India. Global exploration will use satellite remote sensing to better map regional structural and basin-like features that control the distribution of energy and mineral resources. Improved sensors will better map lithologic and stratigraphic units and identify alteration effects in rocks, soils, and vegetation cover indicative of undiscovered subsurface resources. These same sensors will also map and monitor resource development. The use of satellite remote sensing data will grow substantially through increasing integration with other geophysical, geochemical, and geologic data using improved geographic information systems (GIS). International exploration will focus on underdeveloped countries rather than on mature exploration areas such as the United States, Europe, and Japan. Energy and mineral companies and government agencies in these countries and others will utilize available remote sensing data to acquire economic intelligence on global resources. If the "Non-Discriminatory Access to Data" principle is observed by satellite producing countries, exploration will remain competitive "on the ground". In this manner, remote sensing technology will continue to be developed to better explore for and manage the world's needed resources

  13. In the line of fire: the peatlands of Southeast Asia.

    Page, S E; Hooijer, A

    2016-06-05

    Peatlands are a significant component of the global carbon (C) cycle, yet despite their role as a long-term C sink throughout the Holocene, they are increasingly vulnerable to destabilization. Nowhere is this shift from sink to source happening more rapidly than in Southeast Asia, and nowhere else are the combined pressures of land-use change and fire on peatland ecosystem C dynamics more evident nor the consequences more apparent. This review focuses on the peatlands of this region, tracing the link between deforestation and drainage and accelerating C emissions arising from peat mineralization and fire. It focuses on the implications of the recent increase in fire occurrence for air quality, human health, ecosystem resilience and the global C cycle. The scale and controls on peat-driven C emissions are addressed, noting that although fires cause large, temporary peaks in C flux to the atmosphere, year-round emissions from peat mineralization are of a similar magnitude. The review concludes by advocating land management options to reduce future fire risk as part of wider peatland management strategies, while also proposing that this region's peat fire dynamic could become increasingly relevant to northern peatlands in a warming world.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  14. The peatland map of Europe

    Tanneberger, Franziska; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Mariné, A.M.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; Mendes, C.; Kozulin, A.; Frankard, P.; Milanović,; Ganeva, A.; Apostolova, I.; Alegro, A.; Delipetrou, P.; Navrátilová, J.; Risager, M.; Leivits, A.; Fosaa, A.M.; Tuominen, S.; Muller, F.; Bakuradze, T.; Sommer, M.; Christanis, K.; Szurdoki, E.; Oskarsson, H.; Brink, S.H.; Connolly, J.; Bragazza, L.; Martinelli, G.; Aleksāns, O.; Priede, A.; Sungaila, D.; Melovski, L.; Belous, T.; Saveljić, D.; Vries, De F.; Moen, A.; Dembek, W.; Mateus, J.; Hanganu, J.; Sirin, A.; Markina, A.; Napreenko, M.; Lazarević, P.; Stanová, V.Š.; Skoberne, P.; Pérez, P.H.; Pontevedra-Pombal, X.; Lonnstad, J.; Küchler, M.; Wüst-Galley, C.; Kirca, S.; Mykytiuk, O.; Lindsay, R.; Joosten, H.

    2017-01-01

    Based on the ‘European Mires Book’ of the International Mire Conservation Group (IMCG), this article provides a composite map of national datasets as the first comprehensive peatland map for the whole of Europe. We also present estimates of the extent of peatlands and mires in each European country

  15. Improved Offshore Wind Resource Assessment in Global Climate Stabilization Scenarios

    Arent, D.; Sullivan, P.; Heimiller, D.; Lopez, A.; Eurek, K.; Badger, J.; Jorgensen, H. E.; Kelly, M.; Clarke, L.; Luckow, P.

    2012-10-01

    This paper introduces a technique for digesting geospatial wind-speed data into areally defined -- country-level, in this case -- wind resource supply curves. We combined gridded wind-vector data for ocean areas with bathymetry maps, country exclusive economic zones, wind turbine power curves, and other datasets and relevant parameters to build supply curves that estimate a country's offshore wind resource defined by resource quality, depth, and distance-from-shore. We include a single set of supply curves -- for a particular assumption set -- and study some implications of including it in a global energy model. We also discuss the importance of downscaling gridded wind vector data to capturing the full resource potential, especially over land areas with complex terrain. This paper includes motivation and background for a statistical downscaling methodology to account for terrain effects with a low computational burden. Finally, we use this forum to sketch a framework for building synthetic electric networks to estimate transmission accessibility of renewable resource sites in remote areas.

  16. Peatland Carbon Dynamics in Alaska During Past Warm Climates

    Yu, Z.; Cleary, K.; Massa, C.; Hunt, S. J.; Klein, E. S.; Loisel, J.

    2013-12-01

    and colder winters, also reducing non-growing season decomposition. Reduced summer sea ice cover would also mediate and increase summer temperatures on the North Slope. Overall, our results show that, contrary to conventional wisdom, cool and wet climates such as those that characterized the Neoglacial period may result in peatland flooding (too much water), thereby limiting peat accumulation in these wet and cold regions. If the observations from northern Alaska are also applicable to other high-latitude regions with possible 'disappeared peatlands', our findings have important implications for understanding the role of peatlands in the global C cycle in the past and future.

  17. Fire and Microtopography in Peatlands: Feedbacks and Carbon Dynamics

    Benscoter, B.; Turetsky, M. R.

    2011-12-01

    Fire is the dominant natural disturbance in peatland ecosystems. Over the past decade, peat fires have emerged as an important issue for global climate change, human health, and economic loss, largely due to the extreme peat fire events in Indonesia and Russia that severely impacted metropolitan areas and social infrastructure. However, the impact and importance of fire in peatland ecosystems are more far-reaching. Combustion of vegetation and soil organic matter releases an average of 2.2 kg C m-2 to the atmosphere, primarily as CO2, as well as a number of potentially harmful emissions such as fine particulate matter and mercury. Additionally, while peatlands are generally considered to be net sinks of atmospheric carbon, the removal of living vegetation by combustion halts primary production following fire resulting in a net loss of ecosystem carbon to the atmosphere for several years. The recovery of carbon sink function is linked to plant community succession and development, which can vary based on combustion severity and the resulting post-fire microhabitat conditions. Microtopography has a strong influence on fire behavior and combustion severity during peatland wildfires. In boreal continental peatlands, combustion severity is typically greatest in low-lying hollows while raised hummocks are often lightly burned or unburned. The cross-scale influence of microtopography on landscape fire behavior is due to differences in plant community composition between microforms. The physiological and ecohydrological differences among plant communities result in spatial patterns in fuel availability and condition, influencing the spread, severity, and type of combustion over local to landscape scales. In addition to heterogeneous combustion loss of soil carbon, this differential fire behavior creates variability in post-fire microhabitat conditions, resulting in differences in post-fire vegetation succession and carbon exchange trajectories. These immediate and legacy

  18. New approaches to the restoration of shallow marginal peatlands.

    Grand-Clement, E; Anderson, K; Smith, D; Angus, M; Luscombe, D J; Gatis, N; Bray, L S; Brazier, R E

    2015-09-15

    Globally, the historic and recent exploitation of peatlands through management practices such as agricultural reclamation, peat harvesting or forestry, have caused extensive damage to these ecosystems. Their value is now increasingly recognised, and restoration and rehabilitation programmes are underway to improve some of the ecosystem services provided by peatlands: blocking drainage ditches in deep peat has been shown to improve the storage of water, decrease carbon losses in the long-term, and improve biodiversity. However, whilst the restoration process has benefitted from experience and technical advice gained from restoration of deep peatlands, shallow peatlands have received less attention in the literature, despite being extensive in both uplands and lowlands. Using the experience gained from the restoration of the shallow peatlands of Exmoor National Park (UK), and two test catchments in particular, this paper provides technical guidance which can be applied to the restoration of other shallow peatlands worldwide. Experience showed that integrating knowledge of the historical environment at the planning stage of restoration was essential, as it enabled the effective mitigation of any threat to archaeological features and sites. The use of bales, commonly employed in other upland ecosystems, was found to be problematic. Instead, 'leaky dams' or wood and peat combination dams were used, which are both more efficient at reducing and diverting the flow, and longer lasting than bale dams. Finally, an average restoration cost (£306 ha(-1)) for Exmoor, below the median national value across the whole of the UK, demonstrates the cost-effectiveness of these techniques. However, local differences in peat depth and ditch characteristics (i.e. length, depth and width) between sites affect both the feasibility and the cost of restoration. Overall, the restoration of shallow peatlands is shown to be technically viable; this paper provides a template for such process

  19. Moderate drop in water table increases peatland vulnerability to post-fire regime shift.

    Kettridge, N; Turetsky, M R; Sherwood, J H; Thompson, D K; Miller, C A; Benscoter, B W; Flannigan, M D; Wotton, B M; Waddington, J M

    2015-01-27

    Northern and tropical peatlands represent a globally significant carbon reserve accumulated over thousands of years of waterlogged conditions. It is unclear whether moderate drying predicted for northern peatlands will stimulate burning and carbon losses as has occurred in their smaller tropical counterparts where the carbon legacy has been destabilized due to severe drainage and deep peat fires. Capitalizing on a unique long-term experiment, we quantify the post-wildfire recovery of a northern peatland subjected to decadal drainage. We show that the moderate drop in water table position predicted for most northern regions triggers a shift in vegetation composition previously observed within only severely disturbed tropical peatlands. The combined impact of moderate drainage followed by wildfire converted the low productivity, moss-dominated peatland to a non-carbon accumulating shrub-grass ecosystem. This new ecosystem is likely to experience a low intensity, high frequency wildfire regime, which will further deplete the legacy of stored peat carbon.

  20. Community based ecological restoration of peatland in Central Mongolia for climate change mitigation and adaptation

    Minayeva, Tatiana; Chultem, Dugarjav; Grootjans, Ab; Yamkhin, Jambaljav; Sirin, Andrey; Suvorov, Gennady; Batdorj, Oyunbileg; Tsamba, Batdorj

    2017-04-01

    Peatlands cover almost 2 % of Mongolia. They play crucial role in regulation of key natural processes in ecosystems and provide unique resources to maintain traditional way of life and livelihoods of herders. During the last decades, Mongolian peatlands severely degraded both due to the climate related events and due to overgrazing. The peat degradation causes significant losses of carbon store, GHG emissions and is followed by changes in water balance and water composition. The issue arises if such a type of ecosystems as peatlands could be a subject for ecosystem restoration in this arid and subhumid climate. Could it be considered as measure for climate change mitigation and adaptation? With funding opportunities from the Asian Development Bank a pilot project for peatland restoration had been launched in 2016 in Khashaat soum, Arkhangai aimag in Central Mongolia. The pilot aimed to merge local interests of herders with global targets of climate change mitigation. The following questions are addressed: what are the losses of natural functions and ecosystem services of peatland; what are expectations and demands of local communities and incentives for their involvement; how should and could look the target ecosystem; what are the technical solutions in order to achieve the target ecosystem characteristics; and what are the parameters for monitoring to assess the success of the project? The comprehensive baseline study addressed both natural and social aspects. The conclusions are: most of peat in the study area had been mineralised and has turned to organic rich soil with carbon content between 20 to 40 %, the key sources of water - small springs - are partly destroyed by cattle; the permafrost disappeared in this area and could not be the subject for restoration; local herders understand the value of peatland as water source and had carried out some voluntary activities for water storage and regulation such as dam construction; nevertheless there is no

  1. Resource subsidies between stream and terrestrial ecosystems under global change

    Larsen, Stefano; Muehlbauer, Jeffrey D.; Marti Roca, Maria Eugenia

    2016-01-01

    Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate-driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom-up and top-down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic

  2. "Global Human Resource Development" and Japanese University Education: "Localism" in Actor Discussions

    Yoshida, Aya

    2017-01-01

    The aim of this paper is to analyse the actions of various actors involved in "global human resource development" and to clarify whether discussions on global human resources are based on local perspectives. The results of the analysis are as follows: 1) after the year 2000 began, industry started discussions on global human resources in…

  3. Built-up resilience to climate change in peatlands

    Wang, H.; Tian, J.; Ho, M.; Flanagan, N. E.; Vilgalys, R.; Richardson, C. J.

    2017-12-01

    Peatlands have stored about 30% of global soil carbon over millennia. Most studies suggest that climate change effects, like drought and warming, may decrease C sequestration and increase C loss in peatlands, thus resulting in a positive feedback on climate change. However, the long-term feedback between plant-microbe mediated carbon processes and climate change still remains highly uncertain. Here, we conducted a series of field and lab experiments in southern shrub and northern Sphagnum peatlands to document how previously unrecognized mechanisms regulate the buildup of anti-microbial phenolics, which protects stored carbon directly by reducing phenol oxidase activity during short-term drought, and indirectly through a shift from low-phenolics Sphagnum/herbs to high-phenolics shrubs after long-term moderate drought. We further showed a symbiosis of slow-growing decomposers concomitant with a shift of high-phenolic plants, which increased peat resistance to disturbance. Our results indicate that shrub expansion induced by climate change in boreal peatlands may be a long-term self-adaptive mechanism not only increasing carbon sequestration, but also potentially protecting soil carbon. Therefore, peatlands are highly resilient ecosystems in which the symbiotic adaption of both plants and microbes, triggered by persistent climate change, likely can acclimate to the stressors and maintain their carbon sequestration function and processes.

  4. Initial Response of the Nitrogen Cycle to Soil Warming and Elevated CO2 in Northern Minnesota Peatlands

    Peatlands store 30% of global soil carbon. Many of these peatlands are located in boreal regions which are expected to have the highest temperature increases in response to climate change. As climate warms, peat decomposition may accelerate and release greenhouse gases. Spruce an...

  5. Long-term availability of global uranium resources

    Monnet, Antoine

    2016-01-01

    From a global perspective, a low-carbon path to development driven by a growth of nuclear power production raises issues about the availability of uranium resources. Future technologies allowing nuclear reactors to overcome the need for natural uranium will take time to fully deploy. To address these issues, we analyze the conditions of availability of uranium in the 21. century. The first two conditions are technical accessibility and economic interest, both related to the cost of production. We study them using a model that estimates the ultimate uranium resources (amounts of both discovered and undiscovered resources) and their costs. This model splits the world into regions and the resource estimate for each region derives from the present knowledge of the deposits and economic filtering. The output is a long-term supply curve that illustrates the quantities of uranium that are technically accessible as a function of their cost of production. We identify the main uncertainties of these estimates and we show that with no regional breakdown, the ultimate resources are underestimated. The other conditions of availability of uranium covered in our study are related to the market dynamics, i.e. they derive from the supply and demand clearing mechanism. To assess their influence, they are introduced as dynamic constraints in a partial equilibrium model. This model of the uranium market is deterministic, and market players are represented by regions. For instance, it takes into account the short-term correlation between price and exploration expenditures, which is the subject of a dedicate econometric study. In the longer term, constraints include anticipation of demand by consumers and a gradual depletion of the cheapest ultimate resources. Through a series of prospective simulations, we demonstrate the strong influence on long-term price trends of both the growth rate of demand during the 21. century and its anticipation. Conversely, the uncertainties related to the

  6. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    D. K. Hare

    2017-11-01

    Full Text Available Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns

  7. Hydrogeological controls on spatial patterns of groundwater discharge in peatlands

    Hare, Danielle K.; Boutt, David F.; Clement, William P.; Hatch, Christine E.; Davenport, Glorianna; Hackman, Alex

    2017-11-01

    Peatland environments provide important ecosystem services including water and carbon storage, nutrient processing and retention, and wildlife habitat. However, these systems and the services they provide have been degraded through historical anthropogenic agricultural conversion and dewatering practices. Effective wetland restoration requires incorporating site hydrology and understanding groundwater discharge spatial patterns. Groundwater discharge maintains wetland ecosystems by providing relatively stable hydrologic conditions, nutrient inputs, and thermal buffering important for ecological structure and function; however, a comprehensive site-specific evaluation is rarely feasible for such resource-constrained projects. An improved process-based understanding of groundwater discharge in peatlands may help guide ecological restoration design without the need for invasive methodologies and detailed site-specific investigation. Here we examine a kettle-hole peatland in southeast Massachusetts historically modified for commercial cranberry farming. During the time of our investigation, a large process-based ecological restoration project was in the assessment and design phases. To gain insight into the drivers of site hydrology, we evaluated the spatial patterning of groundwater discharge and the subsurface structure of the peatland complex using heat-tracing methods and ground-penetrating radar. Our results illustrate that two groundwater discharge processes contribute to the peatland hydrologic system: diffuse lower-flux marginal matrix seepage and discrete higher-flux preferential-flow-path seepage. Both types of groundwater discharge develop through interactions with subsurface peatland basin structure, often where the basin slope is at a high angle to the regional groundwater gradient. These field observations indicate strong correlation between subsurface structures and surficial groundwater discharge. Understanding these general patterns may allow resource

  8. Ecological restoration of peatlands in steppe and forest-steppe areas

    Minayeva, Tatiana; Sirin, Andrey; Dugarjav, Chultem

    2016-04-01

    Peatlands in the arid and semi-arid regions of steppe and forest steppe belt of Eurasia have some specific features. That demands the special approach to their management and restoration. The distribution of peatlands under conditions of dry climate is very limited and they are extremely vulnerable. Peatlands in those regions are found in the highlands where temperate conditions still present, in floodplains where they can get water from floods and springs, or in karst areas. Peatlands on watersheds present mainly remains from the more humid climate periods. Water and carbon storage as well as maintenance of the specific biodiversity are the key ecosystem natural functions of peatlands in the steppe and forest steppe. The performance of those functions has strong implications for people wellness and livelihood. Anyhow, peatlands are usually overlooked and poorly represented in the systems of natural protected areas. Land management plans, mitigation and restoration measures for ecosystems under use do not usually include special measures for peatlands. Peatlands'use depends on the traditional practices. Peat extraction is rather limited in subhumid regions but still act as one of the threats to peatlands. The most of peatlands are used as pastures and grasslands. In densely populated areas large part of peatlands are transformed to the arable lands. In many cases peatlands of piedmonts and highlands are affected by industrial developments: road construction, mining of subsoil resources (gold, etc.). Until now, the most of peatlands of steppe and forest steppe region are irreversibly lost, what also effects water regime, lands productivity, biodiversity status. To prevent further dramatic changes the ecological restoration approach should be introduced in the subhumid regions. The feasibility study to assess the potential for introducing ecological restoration techniques for peatlands in the arid and semi-arid conditions had been undertaken in steppe and forest

  9. Global Health: Preparation for Working in Resource-Limited Settings.

    St Clair, Nicole E; Pitt, Michael B; Bakeera-Kitaka, Sabrina; McCall, Natalie; Lukolyo, Heather; Arnold, Linda D; Audcent, Tobey; Batra, Maneesh; Chan, Kevin; Jacquet, Gabrielle A; Schutze, Gordon E; Butteris, Sabrina

    2017-11-01

    Trainees and clinicians from high-income countries are increasingly engaging in global health (GH) efforts, particularly in resource-limited settings. Concomitantly, there is a growing demand for these individuals to be better prepared for the common challenges and controversies inherent in GH work. This is a state-of-the-art review article in which we outline what is known about the current scope of trainee and clinician involvement in GH experiences, highlight specific considerations and issues pertinent to GH engagement, and summarize preparation recommendations that have emerged from the literature. The article is focused primarily on short-term GH experiences, although much of the content is also pertinent to long-term work. Suggestions are made for the health care community to develop and implement widely endorsed preparation standards for trainees, clinicians, and organizations engaging in GH experiences and partnerships. Copyright © 2017 by the American Academy of Pediatrics.

  10. Global status of nuclear power and the needed human resources

    Bernido, Corazon C.

    2009-01-01

    According to projections of the OECD/IEA, the world energy demand will expand by 45% from now until 2030, with coal accounting for more than a third of the overall rise. To reduce greenhouse gases and mitigate climate change, many countries are resorting to renewables and nuclear power. Some statistics about nuclear energy in the global energy mix and about nuclear power plants worldwide, as well as the energy situation in the country are presented. According to sources from the Department of Energy on the Philippine Energy Plan, nuclear power is a long-term energy option and will likely enter the energy mix by 2025. Preparation of the infrastructure for nuclear power has to start ten to fifteen years before the first plant comes online. The needed human resources, the education and training required are present. (Author)

  11. Model of global evaluation for energetic resources; Modelo de avaliacao global de recursos energeticos

    Fujii, Ricardo Junqueira; Udaeta, Miguel Edgar Morales; Galvao, Luiz Claudio Ribeiro [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Energia e Automacao Eletricas. Grupo de Energia]. E-mail: ricardo_fujii@pea.usp.br; daeta@pea.usp.br; lcgalvao@pea.usp.br

    2006-07-01

    The traditional energy planning usually takes into account the technical economical costs, considered alongside environmental and a few political restraints; however, there is a lack of methods to evenly assess environmental, economical, social and political costs. This work tries to change such scenario by elaborating a model to characterize an energy resource in all four dimensions - environmental, political, social and economical - in an integrated view. The model aims at two objectives: provide a method to assess the global cost of the energy resource and estimate its potential considering the limitations provided by these dimensions. To minimize the complexity of the integration process, the model strongly recommends the use of the Full Cost Accounting - FCA - method to assess the costs and benefits from any given resource. The FCA allows considering quantitative and qualitative costs, reducing the need of quantitative data, which are limited in some cases. The model has been applied in the characterization of the region of Aracatuba, located in the west part of the state of Sao Paulo - Brazil. The results showed that the potential of renewable sources are promising, especially when the global costs are considered. Some resources, in spite of being economically attractive, don't provide an acceptable global cost. It became clear that the model is a valuable tool when the conventional tools fail to address many issues, especially the need of an integrated view on the planning process; the results from this model can be applied in a portfolio selection method to evaluate the best options for a power system expansion. It has to be noticed that the usefulness of this model can be increased when adopted with a method to analyze demand side management measures, thus offering a complete set of possible choices of energy options for the decision maker. (author)

  12. Carrara Marble: a nomination for Global Heritage Stone Resource

    primavori, piero

    2014-05-01

    In the collective memory, in ordinary people, or in any technical office not devoted expressly to stone, marble is automatically associated with the word Carrara (Italy). Indisputably, for decades and decades, there has been this word association: marble means Carrara and Carrara means marble. In few other commodity sectors is a word so automatically associated with a name, engendering an identification process that, despite the inexorable onslaught of globalization, continues to exist. Carrara Marble, probably one of the most famous dimension stone in the world, has been recently designated as a suitable "Global Heritage Stone Resource". The additional designation of "Global Ornamental Stone" has also been proposed. Quarried since pre-Roman times, this marble is the testimonial of an area/industry that was able - for a variety of reasons not easily repeatable in future stone history - from the dawn of the stone sector to trigger a flywheel-effect on a global scale. The term Carrara Marble, geographically referable to the marbles extracted in the sorroundings of Carrara town, is in reality a general one, erroneously used since long time to define a multitude of different marbles (more than two hundred commercial varieties) extracted in the whole Apuane Alps region, Nortwestern Tuscany, Italy. The district of Carrara Marble is part of a wider territory where five important extractive areas can be recognized: Lunigiana, Garfagnana, Versilia, Massa and the Carrara area sensu stricto. This region is approximately 30 km long and 12 km wide, with marble outcrops, useful for commercial purposes, covering over 75 km2. The Carrara Marble is currently excavated in more than 100 quarries, at a rate of about 1.500.000 tons per year, is processed almost everywhere, and sold all over the world. The most important commercial designations are the following: 1) "Marmo Bianco"/"Marmo Ordinario" (Carrara White marble/Ordinary marble); 2) "Marmo Venato" (Veined marble); 3) "Marmo

  13. The impact of long-term changes in water table height on carbon cycling in sub-boreal peatlands

    Pypker, T. G.; Moore, P. A.; Waddington, J. M.; Hribljan, J. A.; Ballantyne, D.; Chimner, R. A.

    2011-12-01

    Peatlands are a critical component in the global carbon (C) cycle because they have been slowly sequestering atmospheric greenhouse gases as peat since the last glaciation. Today, soil C stocks in peatlands are estimated to represent 224 to 455 Pg, equal to 12-30% of the global soil C pool. At present, peatlands are estimated to sequester 76 Tg C yr-1. The flux of C to and from peatlands is likely to respond to climate change, thereby influencing atmospheric C concentrations. Peatland C budgets are tightly linked to their hydrology, hence, it is critical we understand how changes in hydrology will affect the C budgets of peatlands. The main objective of the project was to determine how long-term changes in water table height affect CO2 and CH4 fluxes from three adjacent peatlands. This study took place in the Seney National Wildlife Refuge (SNWR) in the Upper Peninsula of Michigan. SNWR is home to the largest wetland drainage project in Michigan. In 1912, ditches and dikes were created in an effort to convert approximately 20,000 ha of peatland to agriculture. The ditches and dikes were unsuccessful in creating agricultural land, but they are still in place. The manipulation of water table heights provides an opportunity to research how long-term peat drying or wetting alters C cycling in peatlands. From May to November in 2009, 2010 and 2011, we monitored CO2 fluxes using eddy covariance and chamber techniques in three adjacent peatlands with lowered, relatively unaltered ("control") and raised water table heights. In 2011, we installed CH4 analyzers to continuously monitor CH4 fluxes at the sites with high and relatively unaltered water table heights. The results are compared across sites to determine how changes in water table height might affect C fluxes sub-boreal peatlands.

  14. The distribution and amount of carbon in the largest peatland complex in Amazonia

    Draper, Frederick C; Baker, Timothy R; Roucoux, Katherine H; Lawson, Ian T; Mitchard, Edward T A; Honorio Coronado, Euridice N; Zaráte, Ricardo; Lähteenoja, Outi; Torres Montenegro, Luis; Valderrama Sandoval, Elvis

    2014-01-01

    Peatlands in Amazonian Peru are known to store large quantities of carbon, but there is high uncertainty in the spatial extent and total carbon stocks of these ecosystems. Here, we use a multi-sensor (Landsat, ALOS PALSAR and SRTM) remote sensing approach, together with field data including 24 forest census plots and 218 peat thickness measurements, to map the distribution of peatland vegetation types and calculate the combined above- and below-ground carbon stock of peatland ecosystems in the Pastaza-Marañon foreland basin in Peru. We find that peatlands cover 35 600 ± 2133 km 2 and contain 3.14 (0.44–8.15) Pg C. Variation in peat thickness and bulk density are the most important sources of uncertainty in these values. One particular ecosystem type, peatland pole forest, is found to be the most carbon-dense ecosystem yet identified in Amazonia (1391 ± 710 Mg C ha −1 ). The novel approach of combining optical and radar remote sensing with above- and below-ground carbon inventories is recommended for developing regional carbon estimates for tropical peatlands globally. Finally, we suggest that Amazonian peatlands should be a priority for research and conservation before the developing regional infrastructure causes an acceleration in the exploitation and degradation of these ecosystems. (letter)

  15. The "Global Heritage Stone Resource": Past, Present and Future

    Cooper, Barry

    2013-04-01

    The "Global Heritage Stone Resource" designation arose in 2007 as a suggested mechanism to enhance international recognition of famous dimension stones. There were also many aspects of dimension stone study that had no formal recognition in mainstream geology and which could be recognised in a formal geological sense via an internationally acceptable geological standard. Such a standard could also receive recognition by other professionals and the wider community. From the start, it was appreciated that active quarrying would an important aspect of the designation so a designation different to any other standard was needed. Also the project was linked to the long-established Commission C-10 Building Stone and Ornamental Rocks of the International Association of Engineering Geology and the Environment (IAEG C-10). Since 2007, the "Global Heritage Stone Resource" (GHSR) proposal has evolved in both in stature and purpose due to an increasing number of interested international correspondents that were actively sought via conference participation. The "English Stone Forum" in particular was pursuing similar aims and was quick to advise that English dimension stone types were being recognised as having international, national or regional importance. Furthermore the proposed designation was suggested as to having significant value in safeguarding designated stone types whilst also providing a potential mechanism in preventing heritage stone replacement by cheap substitutes. During development it also became apparent that stone types having practical applications such as roofing slates and millstones or even stone types utilised by prehistoric man can also be recognised by the new designation. The heritage importance of architects was also recognised. Most importantly an international network evolved, primarily including geologists, that now seems to be the largest international grouping of dimension stone professionals. This has assisted the project to affiliate with the

  16. Northern peatland carbon stocks and dynamics: a review

    Z. C. Yu

    2012-10-01

    Full Text Available Peatlands contain a large belowground carbon (C stock in the biosphere, and their dynamics have important implications for the global carbon cycle. However, there are still large uncertainties in C stock estimates and poor understanding of C dynamics across timescales. Here I review different approaches and associated uncertainties of C stock estimates in the literature, and on the basis of the literature review my best estimate of C stocks and uncertainty is 500 ± 100 (approximate range gigatons of C (Gt C in northern peatlands. The greatest source of uncertainty for all the approaches is the lack or insufficient representation of data, including depth, bulk density and carbon accumulation data, especially from the world's large peatlands. Several ways to improve estimates of peat carbon stocks are also discussed in this paper, including the estimates of C stocks by regions and further utilizations of widely available basal peat ages.

    Changes in peatland carbon stocks over time, estimated using Sphagnum (peat moss spore data and down-core peat accumulation records, show different patterns during the Holocene, and I argue that spore-based approach underestimates the abundance of peatlands in their early histories. Considering long-term peat decomposition using peat accumulation data allows estimates of net carbon sequestration rates by peatlands, or net (ecosystem carbon balance (NECB, which indicates more than half of peat carbon (> 270 Gt C was sequestrated before 7000 yr ago during the Holocene. Contemporary carbon flux studies at 5 peatland sites show much larger NECB during the last decade (32 ± 7.8 (S.E. g C m−2 yr–1 than during the last 7000 yr (∼ 11 g C m−2 yr–1, as modeled from peat records across northern peatlands. This discrepancy highlights the urgent need for carbon accumulation data and process understanding, especially at decadal and centennial timescales

  17. Human resources for health: global crisis and international cooperation.

    Portela, Gustavo Zoio; Fehn, Amanda Cavada; Ungerer, Regina Lucia Sarmento; Poz, Mario Roberto Dal

    2017-07-01

    From the 1990s onwards, national economies became connected and globalized. Changes in the demographic and epidemiological profile of the population highlighted the need for further discussions and strategies on Human Resources for Health (HRH). The health workforce crisis is a worldwide phenomenon. It includes: difficulties in attracting and retaining health professionals to work in rural and remote areas, poor distribution and high turnover of health staff particularly physicians, poor training of health workforces in new sanitation and demographic conditions and the production of scientific evidence to support HRH decision making, policy management, programs and interventions. In this scenario, technical cooperation activities may contribute to the development of the countries involved, strengthening relationships and expanding exchanges as well as contributing to the production, dissemination and use of technical scientific knowledge and evidence and the training of workers and institutional strengthening. This article aims to explore this context highlighting the participation of Brazil in the international cooperation arena on HRH and emphasizing the role of the World Health Organization in confronting this crisis that limits the ability of countries and their health systems to improve the health and lives of their populations.

  18. Do Peatlands Hibernate?

    Dorrepaal, E.; Signarbieux, C.; Jassey, V.; Mills, R.; Buttler, A.; Robroek, B.

    2014-12-01

    . Altogether, our data indicate that peatlands are active in winter. However, a continuous snow cover is crucial for ecosystem processes both in winter and in the subsequent summer and a reduction of snow thickness or duration due to climate change may impact on peatland ecosystem functioning at various levels.

  19. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd E A T M; Berendse, Frank; Robroek, Bjorn J M

    2014-07-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such rewetting required for it to be effective remains unknown. We experimentally assessed the importance of precipitation frequency for Sphagnum water supply and carbon uptake during a stepwise decrease in water tables in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species (Sphagnum majus, Sphagnum balticum and Sphagnum fuscum) representative of three hydrologically distinct peatland microhabitats (hollow, lawn and hummock) and expected to differ in their water table-precipitation relationships. Precipitation contributed significantly to peatmoss water supply when the water table was deep, demonstrating the importance of precipitation during drought. The ability to exploit transient resources was species-specific; S. fuscum carbon uptake increased linearly with precipitation frequency for deep water tables, whereas carbon uptake by S. balticum and S. majus was depressed at intermediate precipitation frequencies. Our results highlight an important role for precipitation in carbon uptake by peatmosses. Yet, the potential to moderate the impact of drought is species-specific and dependent on the temporal distribution of precipitation. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  20. The long-term fate of permafrost peatlands under rapid climate warming

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon...... stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological...... approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed...

  1. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest

    Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O.; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O.

    2016-01-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. PMID:26896139

  2. A GLOBAL ASSESSMENT OF SOLAR ENERGY RESOURCES: NASA's Prediction of Worldwide Energy Resources (POWER) Project

    Zhang, T.; Stackhouse, P. W., Jr.; Chandler, W.; Hoell, J. M.; Westberg, D.; Whitlock, C. H.

    2010-12-01

    NASA's POWER project, or the Prediction of the Worldwide Energy Resources project, synthesizes and analyzes data on a global scale. The products of the project find valuable applications in the solar and wind energy sectors of the renewable energy industries. The primary source data for the POWER project are NASA's World Climate Research Project (WCRP)/Global Energy and Water cycle Experiment (GEWEX) Surface Radiation Budget (SRB) project (Release 3.0) and the Global Modeling and Assimilation Office (GMAO) Goddard Earth Observing System (GEOS) assimilation model (V 4.0.3). Users of the POWER products access the data through NASA's Surface meteorology and Solar Energy (SSE, Version 6.0) website (http://power.larc.nasa.gov). Over 200 parameters are available to the users. The spatial resolution is 1 degree by 1 degree now and will be finer later. The data covers from July 1983 to December 2007, a time-span of 24.5 years, and are provided as 3-hourly, daily and monthly means. As of now, there have been over 18 million web hits and over 4 million data file downloads. The POWER products have been systematically validated against ground-based measurements, and in particular, data from the Baseline Surface Radiation Network (BSRN) archive, and also against the National Solar Radiation Data Base (NSRDB). Parameters such as minimum, maximum, daily mean temperature and dew points, relative humidity and surface pressure are validated against the National Climate Data Center (NCDC) data. SSE feeds data directly into Decision Support Systems including RETScreen International clean energy project analysis software that is written in 36 languages and has greater than 260,000 users worldwide.

  3. On the use of mulching to mitigate permafrost thaw due to linear disturbances in sub-arctic peatlands

    The presence or absence of permafrost significantly influences the hydrology and ecology of northern watersheds. Resource exploration activities are currently having noticeable effects on hydrological and ecological processes in sub-arctic peatlands. Disturbances such as seismic cutlines can result ...

  4. Sustainable and resource-conserving utilization of global land areas and biomass; Globale Landflaechen und Biomasse nachhaltig und ressourcenschonend nutzen

    Jering, Almut; Klatt, Anne; Seven, Jan; Ehlers, Knut; Guenther, Jens; Ostermeier, Andreas; Moench, Lars

    2012-10-15

    The contribution under consideration reports on the state of the art of biomass based land use as well as on existing and future global development trends. An ecologically compatible and socially equitable utilization of resources as well as priorities in the production and utilization of biomass are described in order to achieve their goals. Approaches to action, measures and policy recommendations are presented with respect to the development of a globally sustainable, resource-conserving utilization of land.

  5. The Impact Of Climate Change On Water Resources: Global And ...

    GHGs) is increasing and this has resulted to changing global climate with increasing temperature. The rise in global average temperatures since 1860 now exceeds 0.6OC. The effect of the GHGs concentration on global warming as at 2100 is ...

  6. Vulnerability of the peatland carbon sink to sea-level rise

    Whittle, Alex; Gallego-Sala, Angela V.

    2016-06-01

    Freshwater peatlands are carbon accumulating ecosystems where primary production exceeds organic matter decomposition rates in the soil, and therefore perform an important sink function in global carbon cycling. Typical peatland plant and microbial communities are adapted to the waterlogged, often acidic and low nutrient conditions that characterise them. Peatlands in coastal locations receive inputs of oceanic base cations that shift conditions from the environmental optimum of these communities altering the carbon balance. Blanket bogs are one such type of peatlands occurring in hyperoceanic regions. Using a blanket bog to coastal marsh transect in Northwest Scotland we assess the impacts of salt intrusion on carbon accumulation rates. A threshold concentration of salt input, caused by inundation, exists corresponding to rapid acidophilic to halophilic plant community change and a carbon accumulation decline. For the first time, we map areas of blanket bog vulnerable to sea-level rise, estimating that this equates to ~7.4% of the total extent and a 0.22 Tg yr-1 carbon sink. Globally, tropical peatlands face the proportionally greatest risk with ~61,000 km2 (~16.6% of total) lying ≤5 m elevation. In total an estimated 20.2 ± 2.5 GtC is stored in peatlands ≤5 m above sea level, which are potentially vulnerable to inundation.

  7. Vulnerability of the peatland carbon sink to sea-level rise

    Whittle, Alex; Gallego-Sala, Angela V.

    2016-01-01

    Freshwater peatlands are carbon accumulating ecosystems where primary production exceeds organic matter decomposition rates in the soil, and therefore perform an important sink function in global carbon cycling. Typical peatland plant and microbial communities are adapted to the waterlogged, often acidic and low nutrient conditions that characterise them. Peatlands in coastal locations receive inputs of oceanic base cations that shift conditions from the environmental optimum of these communities altering the carbon balance. Blanket bogs are one such type of peatlands occurring in hyperoceanic regions. Using a blanket bog to coastal marsh transect in Northwest Scotland we assess the impacts of salt intrusion on carbon accumulation rates. A threshold concentration of salt input, caused by inundation, exists corresponding to rapid acidophilic to halophilic plant community change and a carbon accumulation decline. For the first time, we map areas of blanket bog vulnerable to sea-level rise, estimating that this equates to ~7.4% of the total extent and a 0.22 Tg yr−1 carbon sink. Globally, tropical peatlands face the proportionally greatest risk with ~61,000 km2 (~16.6% of total) lying ≤5 m elevation. In total an estimated 20.2 ± 2.5 GtC is stored in peatlands ≤5 m above sea level, which are potentially vulnerable to inundation. PMID:27354088

  8. Resource sharing under global scheduling with partial processor bandwidth

    Afshar, Sara; Behnam, Moris; Bril, Reinder J.; Nolte, Thomas

    2015-01-01

    Resource efficient approaches are of great importance for resource constrained embedded systems. In this paper, we present an approach targeting systems where tasks of a critical application are partitioned on a multi-core platform and by using resource reservation techniques, the remaining

  9. Global change and water resources in the next 100 years

    Larsen, Matthew C.; Hirsch, R.M.

    2010-01-01

    in the first half of the 20th century. Decreased summer runoff affects water supply for agriculture, domestic water supply, cooling needs for thermoelectric power generation, and ecosystem needs. In addition to the reduced volume of streamflow during warm summer months, less water results in elevated stream temperature, which also has significant effects on cooling of power generating facilities and on aquatic ecosystem needs. We are now required to include fish and other aquatic species in negotiation over how much water to leave in the river, rather than, as in the past, how much water we could remove from a river. Additionally, we must pay attention to the quality of that water, including its temperature. This is driven in the US by the Endangered Species Act and the Clean Water Act. Furthermore, we must now better understand and manage the whole hydrograph and the influence of hydrologic variability on aquatic ecosystems. Man has trimmed the tails off the probability distribution of flows. We need to understand how to put the tails back on but can’t do that without improved understanding of aquatic ecosystems. Sea level rise presents challenges for fresh water extraction from coastal aquifers as they are compromised by increased saline intrusion. A related problem faces users of ‘run-of-the-river’ water-supply intakes that are threatened by a salt front that migrates further upstream because of higher sea level. We face significant challenges with water infrastructure. The U.S. has among the highest quality drinking water in the world piped to our homes. However, our water and sewage treatment plants and water and sewer pipelines have not had adequate maintenance or investment for decades. The US Environmental Protection Agency estimates that there are up to 3.5M illnesses per year from recreational contact with sewage from sanitary sewage overflows. Infrastructure investment needs have been put at 5 trillion nationally. Global change and water resources c

  10. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990

    Jukka Miettinen

    2016-04-01

    Full Text Available Insular Southeast Asian peatlands have experienced rapid land cover changes over the past decades inducing a variety of environmental effects ranging from regional consequences on peatland ecology, biodiversity and hydrology to globally significant carbon emissions. In this paper we present the land cover and industrial plantation distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 and analyse their changes since 1990. We create the 2015 maps by visual interpretation of 30 m resolution Landsat data and combine them with fully comparable and completed land cover maps of 1990 and 2007 (Miettinen and Liew, 2010. Our results reveal continued peatland deforestation and conversion into managed land cover types. In 2015, 29% (4.6 Mha of the peatlands in the study area remain covered by peat swamp forest (vs. 41% or 6.4 Mha in 2007 and 76% or 11.9 Mha in 1990. Managed land cover types (industrial plantations and small-holder dominated areas cover 50% (7.8 Mha of all peatlands (vs. 33% 5.2 Mha in 2007 and 11% 1.7 Mha in 1990. Industrial plantations have nearly doubled their extent since 2007 (2.3 Mha; 15% and cover 4.3 Mha (27% of peatlands in 2015. The majority of these are oil palm plantations (73%; 3.1 Mha while nearly all of the rest (26%; 1.1 Mha are pulp wood plantations. We hope that the maps presented in this paper will enable improved evaluation of the magnitude of various regional to global level environmental effects of peatland conversion and that they will help decision makers to define sustainable peatland management policies for insular Southeast Asian peatlands.

  11. Resources transfer and centralization in Brazilian electrical sector: the reversion global reserve (RGR) and the guarantee global reserve (GGR)

    Souza Amaral Filho, J.B. de.

    1991-01-01

    This dissertation makes the analysis of resources transfer and centralization in Brazilian electrical sector, through reversion global reserve (RGR) and guarantee global reserve (GGR). RGR and GGR are funds. RGR finances sectorial investments in electric power and GGR aims the supply of deficient concessionaires. Governmental investments and the results of this application are showing. (M.V.M.). 55 refs, 2 figs, 61 tabs

  12. China's mineral resources security under economic globalization

    Wang, Y. [China University of Mining and Technology, Xuzhou (China). College of Environment and Spatial Informatics

    2002-10-01

    The concept and intention of mineral resources security are introduced. From the insurance and leverage that mineral resources has on China's socio-economic development, the strength of support, the opportunity and challenge imposed by globalised economy, the effect of mineral resource development on the safety of the eco-environment, the author analyses the basic situation and existing problem of the mineral resources security in China; summarizes the current research situation of mineral resources security and the main tactics which are used to ensure mineral resources security in the developed countries; presents the essence of mineral resources security, the basic principles of research and the problems focused; and points out the research areas and goals that should be strengthened urgently. 15 refs.

  13. Linking global scenarios to national assessments: Experiences from the Resources Planning Act (RPA) Assessment

    Linda L. Langner; Peter J. Ince

    2012-01-01

    The Resources Planning Act (RPA) Assessment provides a nationally consistent analysis of the status and trends of the Nation's renewable forest resources. A global scenario approach was taken for the 2010 RPA Assessment to provide a shared world view of potential futures. The RPA Assessment scenarios were linked to the global scenarios and climate projections used...

  14. Greenhouse impact of Finnish peatlands 1900-2100

    Laine, J; Minkkinen, K [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K; Turunen, J [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P; Nykaenen, H [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J; Savolainen, I [VTT Energy, Espoo (Finland)

    1997-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  15. Greenhouse impact of Finnish peatlands 1900-2100

    Laine, J.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K.; Turunen, J. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.; Nykaenen, H. [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J.; Savolainen, I. [VTT Energy, Espoo (Finland)

    1996-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  16. Paradise lost: Sovereign State Interest, Global Resource Exploitation and the Politics of Human Rights

    Augenstein, Daniel

    2016-01-01

    Taking its cue from the US Supreme Court judgment in Kiobel that restricted the extraterritorial reach of the Alien Tort Claims Act, this article explores how sovereignty structures the relationship between global resource exploitation and the localization of human rights in the international order of states. The argument situates international human rights law in an area of tension between national political self-determination and the global economic exploitation of natural resources. Global...

  17. The peatland map of Europe

    Tannenberger, F.; Tagetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Moles Mariné, A.; Jenderedjian, K.; Steiner, G. M.; Essl, F.; Etzold, J.; Mendes, C.; Kozulin, A.; Frankard, P.; Milanović, Ð.; Ganeva, A.; Apostolova, I.; Alegro, A.; Delipetrou, P.; Navrátilová, Jana; Risager, M.; Leivits, A.; Fosaa, A. M.; Tuominen, S.; Muller, F.; Bakuradze, T.; Sommer, M.; Christanis, K.; Szurdoki, E.; Oskarsson, H.; Brink, S. H.; Cannolly, J.; Bragazza, L.; Martinelli, G.; Aleksāns, O.; Priede, A.; Sungaila, D.; Melovski, L.; Belous, T.; Saveljić, D.; de Vries, F.; Moen, A.; Demberk, W.; Mateus, J.; Hanganu, J.; Sirin, A.; Markina, A.; Napreenko, M.; Lazarević, P.; Šefferová Stanová, V.; Skoberne, P.; Heras Peréz, P.; Pontevedra-Pombal, X.; Lonnstad, J.; Küchler, M.; Wüst-Galley, C.; Kirca, S.; Mykytiuk, O.; Lindsay, R.; Joosten, H.

    2017-01-01

    Roč. 19, nov 2017 (2017), č. článku 22. ISSN 1819-754X Institutional support: RVO:67985939 Keywords : peatland * distribution * map Subject RIV: EH - Ecology, Behaviour OBOR OECD: Ecology Impact factor: 1.129, year: 2016

  18. Evapotranspiration from two peatland watersheds

    Roger R. Bay

    1968-01-01

    Measurements of precipitation, runoff, and bog water table levels have provided data for the calculation of evapotranspiration from two forested peatland watersheds near Grand Rapids, Minnesota (ca. 47? 32'N, 93? 28'W). Continuous hydrologie records were collected on one experimental bog for 6 years (1961-1966) and on the other for the past 2 years (1965-1966...

  19. Bringing the Global Scale to Education in Natural Resources Management

    Turner, D. P.

    2017-12-01

    Given the ominous trajectory of rapid global environmental change, environmental managers must grapple with global scale structures, processes, and concepts. The concept of the Anthropocene Epoch, albeit contested, is highly integrative across disciplines and temporal scales, and thus potentially helpful in the context of educating environmental managers. It can be framed temporally in terms of the geologic history of the global environment, the initiation and acceleration of anthropogenic impacts on the environment, and a future global environment that is highly dependent on human decisions. A key lesson from Earth's pre-human geologic history is that global climate has generally been linked to greenhouse gas concentrations, and many mass extinction events were associated with high greenhouse gas concentrations. The pervasive impacts of the contemporary technosphere on the biosphere point especially to the need to conserve biosphere capital. Scenarios of Earth's future environment, based on Earth system models, suggest that business-as-usual technologies and economic practices will set the stage for a biophysical environment that is hostile (if not inimical) to a high technology global civilization. These lessons can inform and inspire sub-global management efforts to mitigate and adapt to global environmental change.

  20. Food Security: Selected Global and U.S. Resources

    Kocher, Megan

    2015-01-01

    Food security is researched and dealt with on local, regional, national, and global levels with solutions ranging from local farmers' market initiatives to increasing crop yields through genetically modified plants to streamlining global supply chains. Because of its broad, interdisciplinary nature, it is necessary to narrow the focus of this…

  1. The Global Fund's resource allocation decisions for HIV programmes

    Avdeeva, Olga; Lazarus, Jeff; Aziz, Mohamed Abdel

    2011-01-01

    Between 2002 and 2010, the Global Fund to Fight AIDS, Tuberculosis and Malaria's investment in HIV increased substantially to reach US$12 billion. We assessed how the Global Fund's investments in HIV programmes were targeted to key populations in relation to disease burden and national income....

  2. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Tao, W. C., LLNL

    1998-03-23

    regional water resources; As an evaluation tool for selecting appropriate remediation technologies for reclaiming water; and As an assessment tool for determining the effectiveness of implementing the remediation technologies. We have included a discussion on the appropriate strategy for LLNL to integrate its technical tools into the global business, geopolitical, and academic communities, whereby LLNL can form partnerships with technology proponents in the commercial, industrial, and public sectors.

  3. Environmental dynamics and carbon accumulation rate of a tropical peatland in Central Sumatra, Indonesia

    Hapsari, Kartika Anggi; Biagioni, Siria; Jennerjahn, Tim C.; Reimer, Peter Meyer; Saad, Asmadi; Achnopha, Yudhi; Sabiham, Supiandi; Behling, Hermann

    2017-08-01

    Tropical peatlands are important for the global carbon cycle as they store 18% of the total global peat carbon. As they are vulnerable to changes in temperature and precipitation, a rapidly changing environment endangers peatlands and their carbon storage potential. Understanding the mechanisms of peatland carbon accumulation from studying past developments may, therefore, help to assess the future role of tropical peatlands. Using a multi-proxy palaeoecological approach, a peat core taken from the Sungai Buluh peatland in Central Sumatra has been analyzed for its pollen and spore, macro charcoal and biogeochemical composition. The result suggests that peat and C accumulation rates were driven mainly by sea level change, river water level, climatic variability and anthropogenic activities. It is also suggested that peat C accumulation in Sungai Buluh is correlated to the abundance of Freycinetia, Myrtaceae, Calophyllum, Stemonuraceae, Ficus and Euphorbiaceae. Sungai Buluh has reasonable potential for being a future global tropical peat C sinks. However, considering the impact of rapid global climate change in addition to land-use change following rapid economic growth in Indonesia, such potential may be lost. Taking advantage of available palaeoecological records and advances made in Quaternary studies, some considerations for management practice such as identification of priority taxa and conservation sites are suggested.

  4. Caspian energy: Oil and gas resources and the global market

    Amineh, M.P.; Houweling, H.

    2003-01-01

    his article develops several concepts of critical geopolitics and relates them to the energy resources of the Caspian Region. Energy resources beyond borders may be accessed by trade, respectively by conquest, domination and changing property rights. These are the survival strategies of human groups

  5. Patterns and Features of Global Uranium Resources and Production

    Wang, Feifei; Song, Zisheng; Cheng, Xianghu; Huanhuan, MA

    2017-11-01

    With the entry into force of the Paris Agreement, the development of clean and low-carbon energy has become the consensus of the world. Nuclear power is one energy that can be vigorously developed today and in the future. Its sustainable development depends on a sufficient supply of uranium resources. It is of great practical significance to understand the distribution pattern of uranium resources and production. Based on the latest international authoritative reports and data, this paper analysed the distribution of uranium resources, the distribution of resources and production in the world, and the developing tendency in future years. The results show that the distribution of uranium resources is uneven in the world, and the discrepancies between different type deposits is very large. Among them, sandstone-type uranium deposits will become the main type owing to their advantages of wide distribution, minor environmental damage, mature mining technology and high economic benefit.

  6. Global change and water resources in the next 100 years

    Larsen, M. C.; Hirsch, R. M.

    2010-03-01

    in the first half of the 20th century. Decreased summer runoff affects water supply for agriculture, domestic water supply, cooling needs for thermoelectric power generation, and ecosystem needs. In addition to the reduced volume of streamflow during warm summer months, less water results in elevated stream temperature, which also has significant effects on cooling of power generating facilities and on aquatic ecosystem needs. We are now required to include fish and other aquatic species in negotiation over how much water to leave in the river, rather than, as in the past, how much water we could remove from a river. Additionally, we must pay attention to the quality of that water, including its temperature. This is driven in the US by the Endangered Species Act and the Clean Water Act. Furthermore, we must now better understand and manage the whole hydrograph and the influence of hydrologic variability on aquatic ecosystems. Man has trimmed the tails off the probability distribution of flows. We need to understand how to put the tails back on but can’t do that without improved understanding of aquatic ecosystems. Sea level rise presents challenges for fresh water extraction from coastal aquifers as they are compromised by increased saline intrusion. A related problem faces users of ‘run-of-the-river’ water-supply intakes that are threatened by a salt front that migrates further upstream because of higher sea level. We face significant challenges with water infrastructure. The U.S. has among the highest quality drinking water in the world piped to our homes. However, our water and sewage treatment plants and water and sewer pipelines have not had adequate maintenance or investment for decades. The US Environmental Protection Agency estimates that there are up to 3.5M illnesses per year from recreational contact with sewage from sanitary sewage overflows. Infrastructure investment needs have been put at 5 trillion nationally. Global change and water resources

  7. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China.

    Zhang, Zhenqing; Zhou, Xue; Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun; Tian, Chunjie

    2017-01-01

    Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure.

  8. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China.

    Zhenqing Zhang

    Full Text Available Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05. Soil age and the carbon (C accumulation rate, as well as total carbon (TC, total nitrogen (TN, C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure.

  9. Fungal communities in ancient peatlands developed from different periods in the Sanjiang Plain, China

    Tian, Lei; Ma, Lina; Luo, Shasha; Zhang, Jianfeng; Li, Xiujun

    2017-01-01

    Peatlands in the Sanjiang Plain could be more vulnerable to global warming because they are located at the southernmost boundary of northern peatlands. Unlike bacteria, fungi are often overlooked, even though they play important roles in substance circulation in the peatland ecosystems. Accordingly, it is imperative that we deepen our understanding of fungal community structure and diversity in the peatlands. In this study, high-throughput Illumina sequencing was used to study the fungal communities in three fens in the Sanjiang Plain, located at the southern edge of northern peatlands. Peat soil was collected from the three fens which developed during different periods. A total of 463,198 fungal ITS sequences were obtained, and these sequences were classified into at least six phyla, 21 classes, more than 60 orders and over 200 genera. The fungal community structures were distinct in the three sites and were dominated by Ascomycota and Basidiomycota. However, there were no significant differences between these three fens in any α-diversity index (p > 0.05). Soil age and the carbon (C) accumulation rate, as well as total carbon (TC), total nitrogen (TN), C/N ratio, and bulk density were found to be closely related to the abundance of several dominant fungal taxa. We captured a rich fungal community and confirmed that the dominant taxa were those which were frequently detected in other northern peatlands. Soil age and the C accumulation rate were found to play important roles in shaping the fungal community structure. PMID:29236715

  10. Upscaling Our Approach to Peatland Carbon Sequestration: Remote Sensing as a Tool for Carbon Flux Estimation.

    Lees, K.; Khomik, M.; Clark, J. M.; Quaife, T. L.; Artz, R.

    2017-12-01

    Peatlands are an important part of the Earth's carbon cycle, comprising approximately a third of the global terrestrial carbon store. However, peatlands are sensitive to climatic change and human mismanagement, and many are now degraded and acting as carbon sources. Restoration work is being undertaken at many sites around the world, but monitoring the success of these schemes can be difficult and costly using traditional methods. A landscape-scale alternative is to use satellite data in order to assess the condition of peatlands and estimate carbon fluxes. This work focuses on study sites in Northern Scotland, where parts of the largest blanket bog in Europe are being restored from forest plantations. A combination of laboratory and fieldwork has been used to assess the Net Ecosystem Exchange (NEE), Gross Primary Productivity (GPP) and respiration of peatland sites in different conditions, and the climatic vulnerability of key peat-forming Sphagnum species. The results from these studies have been compared with spectral data in order to evaluate the extent to which remote sensing can function as a source of information for peatland health and carbon flux models. This work considers particularly the effects of scale in calculating peatland carbon flux. Flux data includes chamber and eddy covariance measurements of carbon dioxide, and radiometric observations include both handheld spectroradiometer results and satellite images. Results suggest that despite the small-scale heterogeneity and unique ecosystem factors in blanket bogs, remote sensing can be a useful tool in monitoring peatland health and carbon sequestration. In particular, this study gives unique insights into the relationships between peatland vegetation, carbon flux and spectral reflectance.

  11. Rebalancing brain drain: exploring resource reallocation to address health worker migration and promote global health.

    Mackey, Timothy Ken; Liang, Bryan Albert

    2012-09-01

    Global public health is threatened by an imbalance in health worker migration from resource-poor countries to developed countries. This "brain drain" results in health workforce shortages, health system weakening, and economic loss and waste, threatening the well-being of vulnerable populations and effectiveness of global health interventions. Current structural imbalances in resource allocation and global incentive structures have resulted in 57 countries identified by WHO as having a "critical shortage" of health workers. Yet current efforts to strengthen domestic health systems have fallen short in addressing this issue. Instead, global solutions should focus on sustainable forms of equitable resource sharing. This can be accomplished by adoption of mandatory global resource and staff-sharing programs in conjunction with implementation of state-based health services corps. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Zarzalejo granite (Spain). A nomination for 'Global Heritage Stone Resource'

    Freire Lista, David Martin; Fort, Rafael; José Varas-Muriel, María

    2015-04-01

    Zarzalejo granite is quarried in the Sierra de Guadarrama (Spanish Central System) foothills, in and around Zarzalejo village, in the province of Madrid, Spain. It is an inequigranular monzogranite medium-to-coarse grained, with a slight porphyritic texture (feldspar phenocrysts) and mafic micro-grained enclaves. In this abstract the candidacy of Zarzalejo granite as a "Global Heritage Resource Stone" (GHSR) is presented. This stone ideally fits the newly proposed designation as it has been used in many heritage buildings and its good petrophysical properties and durability have allowed well preserved constructions such as a Roman road, San Pedro Church in Zarzalejo (1492), Descalzas Reales Monastery in Madrid (1559-1564) and the San Lorenzo del Escorial Royal Monastery (1563-1584), to be declared a World Heritage Site by UNESCO. This level of construction has been a landmark in the extraction and proliferation of historic quarries created due to the high demand that such colossal monuments and buildings with granite, have required for their construction. In the mid-20th century, More, Zarzalejo granite has also been used in restoration works including the Royal Palace and the Reina Sofía Museum (2001-2005), both buildings in Madrid, Spain. Extraction of granite ashlars from tors has been a very frequent activity in the Zarzalejo neighbourhood until mid-twentieth century. So there is also a need to preserve these historic quarries. This type of stone has created a landscape that has been preserved as an open-air museum today where you can see the marks left in the granite due to historic quarry operations. The granite industry has been one of the main pillars of the Zarzalejo regional economy. For centuries, the local community have been engaged in quarrying and have created a cultural landscape based on its building stone. A quarryman monument has been erected in Zarzalejo in honor of this traditional craft as well as an architecture museum at San Lorenzo del

  13. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima

    2017-04-01

    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  14. Global Behavior for a Strongly Coupled Predator-Prey Model with One Resource and Two Consumers

    Yujuan Jiao

    2012-01-01

    Full Text Available We consider a strongly coupled predator-prey model with one resource and two consumers, in which the first consumer species feeds on the resource according to the Holling II functional response, while the second consumer species feeds on the resource following the Beddington-DeAngelis functional response, and they compete for the common resource. Using the energy estimates and Gagliardo-Nirenberg-type inequalities, the existence and uniform boundedness of global solutions for the model are proved. Meanwhile, the sufficient conditions for global asymptotic stability of the positive equilibrium for this model are given by constructing a Lyapunov function.

  15. A high resolution global wind atlas - improving estimation of world wind resources

    Badger, Jake; Ejsing Jørgensen, Hans

    2011-01-01

    to population centres, electrical transmission grids, terrain types, and protected land areas are important parts of the resource assessment downstream of the generation of wind climate statistics. Related to these issues of integration are the temporal characteristics and spatial correlation of the wind...... resources. These aspects will also be addressed by the Global Wind Atlas. The Global Wind Atlas, through a transparent methodology, will provide a unified, high resolution, and public domain dataset of wind energy resources for the whole world. The wind atlas data will be the most appropriate wind resource...

  16. Transnational Clientelism, Global (Resource) Governance and the Disciplining of Dissent

    Hönke, Jana

    2018-01-01

    Schemes for more responsible global governance have often come with new ways of thwarting meaningful voice, participation and dissent of those they are claimed to be beneficial for. This article argues that these processes extend beyond the more often criticized disciplinary effects of civil society

  17. Peatland-GHG emissions in Europe

    Droesler, Matthias

    2013-04-01

    Managed peatlands are hot spots for CO2, CH4 and N2O emissions. GHG which have been not fully integrated in past European climate projects. Peatlands contribute to European GHG emissions 10 times more per unit area than other terrestrial ecosystems. Peatland management and exploration by drainage, agricultural use and peat extraction turned pristine peatland GHG sinks into sources. Emissions can reach more than 40 t CO2equiv. ha-1 a-1 in intensively managed peatlands. On the other hand, the restoration of degraded peatlands does normally reduce these emissions significantly towards climate neutral levels, once the restoration work is done wisely. But in some cases the net climate effect do not decrease significantly depending on hydrological regimes, fertilization status of the peatlands, climate and vegetation type. In many European countries with significant peatland cover nationally funded projects were set up to investigate peatland GHG fluxes and their drivers. These scattered data and knowledge are currently being brought together under the coverage of the GHG-Europe project (Grant agreement no.: 244122) within a new synthesis to develop the relevant EF, identify the drivers and develop upscaling options for GHG-emissions. The talk will: (1) show a first cut of new Emission Factors for peatlands in Europe and compare these with IPCC-default values. (2) discuss the developed sensible response functions for GHG-fluxes against natural and anthropogenic drivers such as land use intensity, land management with drainage and climate variability. (3) show case studies from Germany show the applicability of response functions for upscaling of GHG-balances. (4) An outlook is given to the future European peatland GHG-Balance.

  18. HUMAN RESOURCE MANAGEMENT PERSPECTIVES TOWARDS GLOBAL WORKPLACE BY 2020

    Annette Sonia Chetan; Deekshitha

    2016-01-01

    Globalisation has led to different and varied outcomes in the modern days business by fierce competition, rapid change, emerging market trends and adoption of new technologies. A global workplace is a borderless workplace, which facilitate facing new challenges and compete in changing work culture. Today’s buzz words are ‘Manage change or perish’. The demographics and size of the workplace are changing considerably since 21st century. Hence the organizations are trying to cope with the chang...

  19. Sustainable growth and renewable resources in the global economy

    Van der Ploeg, Frederick; Ligthart, Jenny E. [University of Amsterdam, Tinbergen Institute, Amsterdam (Netherlands)

    1993-02-01

    An endogenous growth model is developed to study the concept of sustainable growth in the context of two countries that exploit a common-property renewable resource. The strategic interactions between countries are analysed within the framework of a differential game. In the absence of international policy coordination too much renewable natural resources are used in production which boosts the rate of economic growth and depresses environmental quality. However, if apart from international environmental externalities there are international knowledge spill-overs in production and productive government spending benefits the productivity of capital in other countries as well, international policy coordination may lead to a higher rate of economic growth and a worse environmental quality. 1 fig., 2 tabs., 20 refs.

  20. Sustainable growth and renewable resources in the global economy

    Van der Ploeg, Frederick; Ligthart, Jenny E.

    1993-02-01

    An endogenous growth model is developed to study the concept of sustainable growth in the context of two countries that exploit a common-property renewable resource. The strategic interactions between countries are analysed within the framework of a differential game. In the absence of international policy coordination too much renewable natural resources are used in production which boosts the rate of economic growth and depresses environmental quality. However, if apart from international environmental externalities there are international knowledge spill-overs in production and productive government spending benefits the productivity of capital in other countries as well, international policy coordination may lead to a higher rate of economic growth and a worse environmental quality. 1 fig., 2 tabs., 20 refs

  1. Managing Human Resource based Intellectual Capital in a Global setting

    Gretzinger, Susanne; Lemke, Sarah; Matiaske, Wenzel

    2014-01-01

    From a strategic management perspective human capital and the embedded knowledge can be viewed as intellectual capital and became inevitably important for companies in general as well as for multinationals. While national companies just have to (re-)combine resources within a homogeneous...... if culturally differentiated incentive systems are necessary for optimised retention management? In the empirical part of this study it was made us of data from 32 countries. The research results reveal a moderating impact of cultural dimensions and therefore a cultural dependency for the effectiveness...... of incentives on retention management and therewith implicates that retention management is significant for the process of developing and fostering a MNCs intellectual capital. To improve their human-resource based intellectual capital MNCs have to adapt their initiatives to the cultural background...

  2. Peatland Microbial Carbon Use Under Warming using Isotopic Fractionation

    Gutknecht, J.

    2016-12-01

    Peatlands are a critical natural resource, especially in their role as carbon sinks. Most of the world's peatlands are located in Northern ecosystems where the climate is changing at a rapid pace, and there is great interest and concern with how climate change will influence them. Although studies regarding the response of peatlands to climate change have emerged, the microbial mediation of C cycling in these systems is still less well understood. In this study, 13CPLFA analysis was used to characterize the microbial community and it's carbon use at the Spruce and Peatland Responses Under Climatic and Environmental Change (SPRUCE) Project. The SPRUCE project is an extensive study of the response of peatlands to climatic manipulation in the Marcell Experimental Forest in northern Minnesota. Heating rods were installed in peatland plots where peat is being warmed at several levels including ambient, +2.5, +4.5, +6.75, and +9 degrees Celsius, at a depth of 3 meters, beginning July of 2014. Samples were taken June 2014, September 2014, and June 2015, throughout the depth profile. We found very high microbial, and especially fungal growth at shallow depths, owing in part to the influence of fungal-like lipids present in Sphagnum stems, and in part to dense mycorrhizal colonization in shrub and tree species. Isotopic data shows that microbial biomass has an enriched δ13C lower in the peat profile, indicating as expected that microbes at depth utilize older carbon or carbon more enriched in 13C. The increase over depth in the δ13C signature may also reflect the increased dominance of pre-industrial carbon that is more enriched in 13C. In this early period of warming we did not see clear effects of warming, either due to the highly heterogeneous microbial growth across the bog, or to the short term deep warming only. We expect that with the initiation of aboveground warming in July 2016, warming will begin to show stronger effects on microbial C cycling.

  3. Global health resource utilization associated with pacemaker complications.

    Waweru, Catherine; Steenrod, Anna; Wolff, Claudia; Eggington, Simon; Wright, David Jay; Wyrwich, Kathleen W

    2017-07-01

    To estimate health resource utilization (HRU) associated with the management of pacemaker complications in various healthcare systems. Electrophysiologists (EPs) from four geographical regions (Western Europe, Australia, Japan, and North America) were invited to participate. Survey questions focused on HRU in the management of three chronic pacemaker complications (i.e. pacemaker infections requiring extraction, lead fractures/insulation breaches requiring replacement, and upper extremity deep venous thrombosis [DVT]). Panelists completed a maximum of two web-based surveys (iterative rounds). Mean, median values, and interquartile ranges were calculated and used to establish consensus. Overall, 32 and 29 panelists participated in the first and second rounds of the Delphi panel, respectively. Consensus was reached on treatment and HRU associated with a typical pacemaker implantation and complications. HRU was similar across regions, except for Japan, where panelists reported the longest duration of hospital stay in all scenarios. Infections were the most resource-intensive complications and were characterized by intravenous antibiotics days of 9.6?13.5 days and 21.3?29.2 days for pocket and lead infections respectively; laboratory and diagnostic tests, and system extraction and replacement procedures. DVT, on the other hand, was the least resource intensive complication. The results of the panel represent the views of the respondents who participated and may not be generalizable outside of this panel. The surveys were limited in scope and, therefore, did not include questions on management of acute complications (e.g. hematoma, pneumothorax). The Delphi technique provided a reliable and efficient approach to estimating resource utilization associated with chronic pacemaker complications. Estimates from the Delphi panel can be used to generate costs of pacemaker complications in various regions.

  4. Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification

    Liu, Wenfeng; Yang, Hong; Liu, Yu; Kummu, Matti; Hoekstra, Arjen Y.; Liu, Junguo; Schulin, Rainer

    2018-01-01

    Global food trade entails virtual flows of agricultural resources and pollution across countries. Here we performed a global-scale assessment of impacts of international food trade on blue water use, total water use, and nitrogen (N) inputs and on N losses in maize, rice, and wheat production. We

  5. Managing Human Resource Capabilities for Sustainable Competitive Advantage: An Empirical Analysis from Indian Global Organisations

    Khandekar, Aradhana; Sharma, Anuradha

    2005-01-01

    Purpose: The purpose of this article is to examine the role of human resource capability (HRC) in organisational performance and sustainable competitive advantage (SCA) in Indian global organisations. Design/Methodology/Approach: To carry out the present study, an empirical research on a random sample of 300 line or human resource managers from…

  6. Soils of peatlands: histosols and gelisols

    Randy Kolka; Scott D. Bridgham; Chien-Lu. Ping

    2016-01-01

    Peatlands are a subset of wetlands that have accumulated significant amounts of soil organic matter. Soils of peatlands are colloquially known as peat, with mucks referring to peats that are decomposed to the point that the original plant remains are altered beyond recognition (Chapter 6, SSSA 2008). Generally, soils with a surface organic layer >40 cm thick...

  7. Towards sustainable management of Indonesian tropical peatlands

    Uda, Saritha Kittie; Hein, Lars; Sumarga, Elham

    2017-01-01

    Large areas of Indonesian peatlands have been converted for agricultural and plantation forest purposes. This requires draining with associated CO2 emissions and fire risks. In order to identify alternative management regimes for peatlands, it is important to understand the

  8. Renewable resources and renewable energy a global challenge

    Fornasiero, Paolo

    2011-01-01

    As energy demands continue to surge worldwide, the need for efficient and environmentally neutral energy production becomes increasingly apparent. In its first edition, this book presented a well-rounded perspective on the development of bio-based feedstocks, biodegradable plastics, hydrogen energy, fuel cells, and other aspects related to renewable resources and sustainable energy production. The new second edition builds upon this foundation to explore new trends and technologies. The authors pay particular attention to hydrogen-based and fuel cell-based technologies and provide real-world c

  9. Globalization: Ecological consequences of global-scale connectivity in people, resources and information

    Globalization is a phenomenon affecting all facets of the Earth System. Within the context of ecological systems, it is becoming increasingly apparent that global connectivity among terrestrial systems, the atmosphere, and oceans is driving many ecological dynamics at finer scales and pushing thresh...

  10. To what extent do food preferences explain the trophic position of heterotrophic and mixotrophic microbial consumers in a Sphagnum peatland?

    Jassey, Vincent E J; Meyer, Caroline; Dupuy, Christine; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Metian, Marc; Chatelain, Auriel P; Gilbert, Daniel

    2013-10-01

    Although microorganisms are the primary drivers of biogeochemical cycles, the structure and functioning of microbial food webs are poorly studied. This is the case in Sphagnum peatlands, where microbial communities play a key role in the global carbon cycle. Here, we explored the structure of the microbial food web from a Sphagnum peatland by analyzing (1) the density and biomass of different microbial functional groups, (2) the natural stable isotope (δ(13)C and δ(15)N) signatures of key microbial consumers (testate amoebae), and (3) the digestive vacuole contents of Hyalosphenia papilio, the dominant testate amoeba species in our system. Our results showed that the feeding type of testate amoeba species (bacterivory, algivory, or both) translates into their trophic position as assessed by isotopic signatures. Our study further demonstrates, for H. papilio, the energetic benefits of mixotrophy when the density of its preferential prey is low. Overall, our results show that testate amoebae occupy different trophic levels within the microbial food web, depending on their feeding behavior, the density of their food resources, and their metabolism (i.e., mixotrophy vs. heterotrophy). Combined analyses of predation, community structure, and stable isotopes now allow the structure of microbial food webs to be more completely described, which should lead to improved models of microbial community function.

  11. Awarding global grades in OSCEs: evaluation of a novel eLearning resource for OSCE examiners.

    Gormley, Gerard J; Johnston, Jenny; Thomson, Clare; McGlade, Kieran

    2012-01-01

    A novel online resource has been developed to aid OSCE examiner training comprising a series of videos of OSCE performances that allow inter-examiner comparison of global grade decisions. To evaluate this training resource in terms of usefulness and ability to improve examiner confidence in awarding global grades in OSCEs. Data collected from the first 200 users included global grades awarded, willingness to change grades following peer comparison and confidence in awarding grades before and after training. Most (86.5%) agreed that the resource was useful in developing global grade scoring ability in OSCEs, with a significant improvement in confidence in awarding grades after using the training package (p<0.001). This is a useful and effective online training package. As an adjunct to traditional training it offers a practical solution to the problem of availability of examiners.

  12. Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems

    Gerten, Dieter; Lucht, Wolfgang; Ostberg, Sebastian; Heinke, Jens; Kundzewicz, Zbigniew W; Rastgooy, Johann; Schellnhuber, Hans Joachim; Kowarsch, Martin; Kreft, Holger; Warren, Rachel

    2013-01-01

    This modelling study demonstrates at what level of global mean temperature rise (ΔT g ) regions will be exposed to significant decreases of freshwater availability and changes to terrestrial ecosystems. Projections are based on a new, consistent set of 152 climate scenarios (eight ΔT g trajectories reaching 1.5–5 ° C above pre-industrial levels by 2100, each scaled with spatial patterns from 19 general circulation models). The results suggest that already at a ΔT g of 2 ° C and mainly in the subtropics, higher water scarcity would occur in >50% out of the 19 climate scenarios. Substantial biogeochemical and vegetation structural changes would also occur at 2 ° C, but mainly in subpolar and semiarid ecosystems. Other regions would be affected at higher ΔT g levels, with lower intensity or with lower confidence. In total, mean global warming levels of 2 ° C, 3.5 ° C and 5 ° C are simulated to expose an additional 8%, 11% and 13% of the world population to new or aggravated water scarcity, respectively, with >50% confidence (while ∼1.3 billion people already live in water-scarce regions). Concurrently, substantial habitat transformations would occur in biogeographic regions that contain 1% (in zones affected at 2 ° C), 10% (3.5 ° C) and 74% (5 ° C) of present endemism-weighted vascular plant species, respectively. The results suggest nonlinear growth of impacts along with ΔT g and highlight regional disparities in impact magnitudes and critical ΔT g levels. (letter)

  13. Summer carbon dioxide and water vapor fluxes across a range of northern peatlands

    Humphreys, Elyn R.; Lafleur, Peter M.; Flanagan, Lawrence B.; Hedstrom, Newell; Syed, Kamran H.; Glenn, Aaron J.; Granger, Raoul

    2006-12-01

    Northern peatlands are a diverse group of ecosystems varying along a continuum of hydrological, chemical, and vegetation gradients. These ecosystems contain about one third of the global soil carbon pool, but it is uncertain how carbon and water cycling processes and response to climate change differ among peatland types. This study examines midsummer CO2 and H2O fluxes measured using the eddy covariance technique above seven northern peatlands including a low-shrub bog, two open poor fens, two wooded moderately rich fens, and two open extreme-rich fens. Gross ecosystem production and ecosystem respiration correlated positively with vegetation indices and with each other. Consequently, 24-hour net ecosystem CO2 exchange was similar among most of the sites (an average net carbon sink of 1.5 ± 0.2 g C m-2 d-1) despite large differences in water table depth, water chemistry, and plant communities. Evapotranspiration was primarily radiatively driven at all sites but a decline in surface conductance with increasing water vapor deficit indicated physiological restrictions to transpiration, particularly at the peatlands with woody vegetation and less at the peatlands with 100% Sphagnum cover. Despite these differences, midday evapotranspiration ranged only from 0.21 to 0.34 mm h-1 owing to compensation among the factors controlling evapotranspiration. Water use efficiency varied among sites primarily as a result of differences in productivity and plant functional type. Although peatland classification includes a great variety of ecosystem characteristics, peatland type may not be an effective way to predict the magnitude and characteristics of midsummer CO2 and water vapor exchanges.

  14. Controls on Ecosystem and Root Respiration in an Alaskan Peatland

    McConnell, N. A.; McGuire, A. D.; Harden, J. W.; Kane, E. S.; Turetsky, M. R.

    2010-12-01

    Boreal ecosystems cover 14% of the vegetated surface on earth and account for 25-30% of the world’s soil carbon (C), mainly due to large carbon stocks in deep peat and frozen soil layers. While peatlands have served as historical sinks of carbon, global climate change may trigger re-release of C to the atmosphere and may turn these ecosystems into net C sources. Rates of C release from a peatland are determined by regional climate and local biotic and abiotic factors such as vegetation cover, thaw depth, and peat thickness. Soil CO2 fluxes are driven by both autotrophic (plant) respiration and heterotrophic (microbial) respiration. Thus, changes in plant and microbial activity in the soil will impact CO2 emissions from peatlands. In this study, we explored environmental and vegetation controls on ecosystem respiration and root respiration in a variety of wetland sites. The study was conducted at the Alaskan Peatland Experiment (APEX; www.uoguelph.ca/APEX) sites in the Bonanza Creek Experimental Forest located 35 km southwest of Fairbanks Alaska. We measured ecosystem respiration, root respiration, and monitored a suite of environmental variables along a vegetation and soil moisture gradient including a black spruce stand with permafrost, a shrubby site with permafrost, a tussock grass site, and a herbaceous open rich fen. Within the rich fen, we have been conducting water table manipulations including a control, lowered, and raised water table treatment. In each of our sites, we measured total ecosystem respiration using static chambers and root respiration by harvesting roots from the uppermost 20 cm and placing them in a root cuvette to obtain a root flux. Ecosystem respiration (ER) on a μmol/m2/sec basis varied across sites. Water table was a significant predictor of ER at the lowered manipulation site and temperature was a strong predictor at the control site in the rich fen. Water table and temperature were both significant predictors of ER at the raised

  15. Canadian forests: A vulnerable resource with a global role

    Pollard, D.F.W.

    1990-01-01

    Impending climatic change could jeopardize the national and global values of Canada's forests, and creates a new and urgent dimension to the objectives of the World Conservation Strategy. The first objective is the maintenance of essential ecological processes and life-support systems. The first priority requirement, reservation of prime crop lands, could bear directly on the forest sector in certain regions of Canada if new areas of prime crop land develop under improving climatic conditions. The second priority, maintenance of productive land capabilities, may be a more serious matter, although in the long run climate change should increase the productivity of much of Canada's land base. The second objective, preservation of genetic diversity, is significant due to the question of whether there is sufficient plasticity within the forest ecosystems, and particularly within their gene pools, for them to withstand changes envisaged over coming decades. The objective of sustainable utilization of species and ecosystems is especially pertinent to Canada, whose forest sector is based on native species in managed and unmanaged ecosystems. In response to the threat of widespread forest dieback resulting from stress and infestation, foresters might engage in premature harvesting followed by planting of more adapted genotypes. 14 refs

  16. Anthropogenic and geomorphic controls on peatland dynamics in contrasting floodplain environments during the Holocene and its impact on carbon storage

    Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Peatlands are an important store of carbon in terrestrial environments, and scientific interest in peatlands has increased strongly in the light of the recent global climatic changes. Much attention has been paid to peatland dynamics in extensive arctic and boreal wetlands or to blanket peat in temperate regions. Nevertheless, long-term dynamics of peat in alluvial wetlands in temperate regions remains largely underresearched. In this study, data from three contrasting environments were used to provide more insights in the anthropogenic and geomorphic controls on peatland dynamics. The results show a high variability in alluvial peatland dynamics between the different study sites. In the central Belgian Loess Belt, alluvial peatlands developed during the early Holocene but gradually disappeared from the Mid-Holocene onwards due to the gradual intensification of agricultural activities in the catchment and consequent higher sedimentation rates in the floodplain system. The end of peat growth is shown to be diachronous at catchment scale, ranging between 6500 and 500 cal a BP. The disappearance of the alluvial peatlands has important implications since it potentially reduces the storage of locally produced C. Nevertheless, it was shown that this reduced production of local C but was outbalanced by the burial of hillslope derived C. Also within the sandy catchments of the Belgian Campine region alluvial peatlands initiated in the early Holocene but, here, they abruptly disappeared in the Mid-Holocene before the onset of intense agricultural activities in the catchment. This suggests that for the sandy regions, anthropogenic impact on peatland dynamics is less important compared to natural factors. For these regions, the disappearance of alluvial peatland formation resulted in a sharp decline in alluvial carbon storage as there is no compensation through hillslope derived C input. For the upper Dee catchment in NE Scotland, Holocene carbon floodplain storage varies

  17. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery.

    Connolly, J; Holden, N M

    2017-12-01

    Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA) was performed on a very high resolution satellite image (Geoeye-1) to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ) were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA) of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95-97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO 2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of drains on a blanket bog in the west of Ireland. The

  18. Detecting peatland drains with Object Based Image Analysis and Geoeye-1 imagery

    J. Connolly

    2017-03-01

    Full Text Available Abstract Background Peatlands play an important role in the global carbon cycle. They provide important ecosystem services including carbon sequestration and storage. Drainage disturbs peatland ecosystem services. Mapping drains is difficult and expensive and their spatial extent is, in many cases, unknown. An object based image analysis (OBIA was performed on a very high resolution satellite image (Geoeye-1 to extract information about drain location and extent on a blanket peatland in Ireland. Two accuracy assessment methods: Error matrix and the completeness, correctness and quality (CCQ were used to assess the extracted data across the peatland and at several sub sites. The cost of the OBIA method was compared with manual digitisation and field survey. The drain maps were also used to assess the costs relating to blocking drains vs. a business-as-usual scenario and estimating the impact of each on carbon fluxes at the study site. Results The OBIA method performed well at almost all sites. Almost 500 km of drains were detected within the peatland. In the error matrix method, overall accuracy (OA of detecting the drains was 94% and the kappa statistic was 0.66. The OA for all sub-areas, except one, was 95–97%. The CCQ was 85%, 85% and 71% respectively. The OBIA method was the most cost effective way to map peatland drains and was at least 55% cheaper than either field survey or manual digitisation, respectively. The extracted drain maps were used constrain the study area CO2 flux which was 19% smaller than the prescribed Peatland Code value for drained peatlands. Conclusions The OBIA method used in this study showed that it is possible to accurately extract maps of fine scale peatland drains over large areas in a cost effective manner. The development of methods to map the spatial extent of drains is important as they play a critical role in peatland carbon dynamics. The objective of this study was to extract data on the spatial extent of

  19. Carbon isotopic composition of deep carbon gases in an ombrogenous peatland, northwestern Ontario, Canada

    Aravena, R.; Dinel, H.

    1993-01-01

    Radiocarbon dating and carbon isotope analyses of deep peat and gases in a small ombrogenous peatland in northwestern Ontario reveals the presence of old gases at depth that are 1000-2000 yr younger than the enclosing peat. The authors suggest that the most likely explanation to account for this age discrepancy is the downward movement by advection of younger dissolved organic carbon for use by fermentation and methanogens bacteria. This study identifies a potentially large supply of old carbon gases in peatlands that should be considered in global carbon models of the terrestrial biosphere

  20. Possible responses of northern peatlands to climate change in the zone of discontinuous permafrost, Manitoba, Canada

    Bubier, J L [New Hampshire Univ., Durham, NH (United States). Inst. for the Study of Earth, Oceans, and Space; Moore, T R [McGill Univ., Montreal (Canada). Geography Dept.

    1997-12-31

    More than half of the world`s peatlands occur in the boreal zone (45 - 60 deg C N. lat), a region which global climate models predict will experience large changes in temperature and precipitation with increasing atmospheric CO{sub 2} concentrations. The northern part of the boreal zone is characterised by discontinuous permafrost, an area that is particularly sensitive to climate change with the possible degradation and thawing of frozen peat. Peatlands are large sources of atmospheric methane (CH{sub 4}), an important greenhouse gas. Yet few measurements of methane have been conducted in discontinuous permafrost environments. As part of the Boreal Ecosystem-Atmosphere Study (BOREAS), CH{sub 4} flux was measured in a diverse peatland complex (bogs, fens, peat plateaus, and collapse scars), representing the complete range of temperature, moisture, and plant community gradients found in northern peatlands. The measurement period May to September 1994 was one of the warmest and driest seasons on record, which provided an opportunity to observe the short-term responses of different parts of the peatland ecosystem to a warmer and drier climate as an analog to predicted climate change in the region. (5 refs.)

  1. The long-term fate of permafrost peatlands under rapid climate warming

    Swindles, Graeme T.; Morris, Paul J.; Mullan, Donal; Watson, Elizabeth J.; Turner, T. Edward; Roland, Thomas P.; Amesbury, Matthew J.; Kokfelt, Ulla; Schoning, Kristian; Pratte, Steve; Gallego-Sala, Angela; Charman, Dan J.; Sanderson, Nicole; Garneau, Michelle; Carrivick, Jonathan L.; Woulds, Clare; Holden, Joseph; Parry, Lauren; Galloway, Jennifer M.

    2015-01-01

    Permafrost peatlands contain globally important amounts of soil organic carbon, owing to cold conditions which suppress anaerobic decomposition. However, climate warming and permafrost thaw threaten the stability of this carbon store. The ultimate fate of permafrost peatlands and their carbon stores is unclear because of complex feedbacks between peat accumulation, hydrology and vegetation. Field monitoring campaigns only span the last few decades and therefore provide an incomplete picture of permafrost peatland response to recent rapid warming. Here we use a high-resolution palaeoecological approach to understand the longer-term response of peatlands in contrasting states of permafrost degradation to recent rapid warming. At all sites we identify a drying trend until the late-twentieth century; however, two sites subsequently experienced a rapid shift to wetter conditions as permafrost thawed in response to climatic warming, culminating in collapse of the peat domes. Commonalities between study sites lead us to propose a five-phase model for permafrost peatland response to climatic warming. This model suggests a shared ecohydrological trajectory towards a common end point: inundated Arctic fen. Although carbon accumulation is rapid in such sites, saturated soil conditions are likely to cause elevated methane emissions that have implications for climate-feedback mechanisms. PMID:26647837

  2. Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK

    Rothwell, James J.; Evans, Martin G.; Lindsay, John B.; Allott, Timothy E.H.

    2007-01-01

    Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably. - Multiple peat cores are required for accurate peatland Pb inventories

  3. Sphagnum peatland development at their southern climatic range in West Siberia: trends and peat accumulation patterns

    Peregon, Anna; Uchida, Masao; Shibata, Yasuyuki

    2007-01-01

    A region of western Siberia is vulnerable to the predicted climatic change which may induce an important modification to the carbon balance in wetland ecosystems. This study focuses on the evaluation of both the long-term and contemporary trends of peat (carbon) accumulation and its patterns at the southern climatic range of Sphagnum peatlands in western Siberia. Visible and physical features of peat and detailed reconstructions of successional change (or sediment stratigraphies) were analysed at two types of forest-peatland ecotones, which are situated close to each other but differ by topography and composition of their plant communities. Our results suggest that Siberian peatlands exhibit a general trend towards being a carbon sink rather than a source even at or near the southern limit of their distribution. Furthermore, two types of peat accumulation were detected in the study area, namely persistent and intermittent. As opposed to persistent peat accumulation, the intermittent one is characterized by the recurrent degradation of the upper peat layers at the marginal parts of raised bogs. Persistent peat accumulation is the case for the majority of Sphagnum peatlands under current climatic conditions. It might be assumed that more peat will accumulate under the 'increased precipitation' scenarios of global warming, although intermittent peat accumulation could result in the eventual drying that may change peatlands from carbon sinks to carbon sources

  4. Moss and peat hydraulic properties are optimized to maximise peatland water use efficiency

    Kettridge, Nicholas; Tilak, Amey; Devito, Kevin; Petrone, Rich; Mendoza, Carl; Waddington, Mike

    2016-04-01

    Peatland ecosystems are globally important carbon and terrestrial surface water stores that have formed over millennia. These ecosystems have likely optimised their ecohydrological function over the long-term development of their soil hydraulic properties. Through a theoretical ecosystem approach, applying hydrological modelling integrated with known ecological thresholds and concepts, the optimisation of peat hydraulic properties is examined to determine which of the following conditions peatland ecosystems target during this development: i) maximise carbon accumulation, ii) maximise water storage, or iii) balance carbon profit across hydrological disturbances. Saturated hydraulic conductivity (Ks) and empirical van Genuchten water retention parameter α are shown to provide a first order control on simulated water tensions. Across parameter space, peat profiles with hypothetical combinations of Ks and α show a strong binary tendency towards targeting either water or carbon storage. Actual hydraulic properties from five northern peatlands fall at the interface between these goals, balancing the competing demands of carbon accumulation and water storage. We argue that peat hydraulic properties are thus optimized to maximise water use efficiency and that this optimisation occurs over a centennial to millennial timescale as the peatland develops. This provides a new conceptual framework to characterise peat hydraulic properties across climate zones and between a range of different disturbances, and which can be used to provide benchmarks for peatland design and reclamation.

  5. Possible responses of northern peatlands to climate change in the zone of discontinuous permafrost, Manitoba, Canada

    Bubier, J.L. [New Hampshire Univ., Durham, NH (United States). Inst. for the Study of Earth, Oceans, and Space; Moore, T.R. [McGill Univ., Montreal (Canada). Geography Dept.

    1996-12-31

    More than half of the world`s peatlands occur in the boreal zone (45 - 60 deg C N. lat), a region which global climate models predict will experience large changes in temperature and precipitation with increasing atmospheric CO{sub 2} concentrations. The northern part of the boreal zone is characterised by discontinuous permafrost, an area that is particularly sensitive to climate change with the possible degradation and thawing of frozen peat. Peatlands are large sources of atmospheric methane (CH{sub 4}), an important greenhouse gas. Yet few measurements of methane have been conducted in discontinuous permafrost environments. As part of the Boreal Ecosystem-Atmosphere Study (BOREAS), CH{sub 4} flux was measured in a diverse peatland complex (bogs, fens, peat plateaus, and collapse scars), representing the complete range of temperature, moisture, and plant community gradients found in northern peatlands. The measurement period May to September 1994 was one of the warmest and driest seasons on record, which provided an opportunity to observe the short-term responses of different parts of the peatland ecosystem to a warmer and drier climate as an analog to predicted climate change in the region. (5 refs.)

  6. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2015-01-01

    Northern peatlands represent a large global carbon store that potentially can be destabilised by summer water table drawdown. Precipitation can moderate negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystems’ key species. Yet, the frequency for such rewetting

  7. Can frequent precipitation moderate the impact of drought on peatmoss carbon uptake in northern peatlands?

    Nijp, J.J.; Limpens, J.; Metselaar, K.; Zee, van der S.E.A.T.M.; Berendse, F.; Robroek, B.J.M.

    2014-01-01

    Northern peatlands represent a large global carbon store that can potentially be destabilized by summer water table drawdown. Precipitation can moderate the negative impacts of water table drawdown by rewetting peatmoss (Sphagnum spp.), the ecosystem's key species. Yet, the frequency of such

  8. N cycling in SPRUCE (Spruce Peatlands Response Under Climatic and Environmental Changes)

    Peatlands located in boreal regions make up a third of global wetland area and are expected to have the highest temperature increases in response to climate change. As climate warms, we expect peat decomposition may accelerate, altering the cycling of nitrogen. Alterations in th...

  9. Pakistan's water resources development and the global perspective

    Mushtaq, M.; Sufi, A.B.

    2005-01-01

    Pakistan's economy is dependent on irrigated agriculture. About 80% of agriculture is irrigated. It contributes 30% of GDP. Agriculture provides 55% job opportunities. This sector provides 60% of country's exports. The development of agriculture will prosper and up-lift 70% of the total population that is annually growing by 3%. The total area of Pakistan is 197.7 MA (79.6 Mha). Out of which about 103.2 MA (41.77 Mha) comprises of rugged mountains, narrow valleys and foot hills, the remaining area of 93.5 MA (37.83 Mha) consists about 54.6 MA (22.1 Mha) is currently cultivated. Remaining 22.5 MA (9.1 Mha) is lying barren lacking water for irrigation. The total surface water availability is 154.5 MAF. Population density is the highest in the canal irrigated areas in the north east of Indus Plains. The increasing population and the associated social, technical and economic activities all depend, directly or indirectly, on the exploitation of water-as a resource. The total surface water availability is 154.5 MAF. Presently water diverted at canal heads is 106 MAF. In Vision 2025 Programme WAPDA has identified to build water sector and hydropower projects such as: i) Water Sector Projects (Gomal Zam, Mirani, Raised Mangla, Satpara. Kurram Tangi Dams and Greater Thai, Kachhi and Rainee Canals) and ii) Hydropower Projects (Jinnah Barrage, Allai Khwar, Khan Khwar, Duber Khwar, Golen Gole, Neelum Jhelum and Low Head Hydropower Project). Besides the above some more projects are under various stages of planning i.e.; (i) Basha Diamer Dam Project - Feasibility Detailed Design and Tenders, (ii) Akhori Dam Project - Feasibility, (iii) Sehwan Barrage - Feasibility. (iv) Chashma Right Bank Canal Lift Scheme Feasibility and Design, (v) Bunji Hydropower Project Pre-feasibility, (vi) Dasu Hydropower Project - Pre-feasibility and Skardu Dam - Prefeasibility. While, keeping in view the planning and development activities regarding water sector and hydropower projects, the country will

  10. How can we conserve intact tropical peatlands?

    Lawson, Ian; Roucoux, Katherine

    2017-04-01

    The scientific community has, for more than three decades, been expressing increasing alarm about the fate of peatlands in parts of Indonesia and Malaysia, where extensive land-use conversion and drainage for rice and oil palm have greatly compromised peatland hydrology, ecology, biological richness, and carbon storage. The discourse in the literature on these peatlands is now moving on from attempts to preserve the last remaining fragments of peat-swamp forest, towards discussion of how best to restore damaged ecosystems, and whether it is possible to manage plantations more 'sustainably'. It is becoming increasingly clear, however, that peatlands occur quite widely in other parts of the lowland tropics, including parts of Amazonia and the Congo Basin, and many of these peatlands can reasonably be described as 'intact': although few if any parts of the tropics are totally unaffected by human actions, the hydrology and functional ecology of these systems appear to be close to a 'natural' state. The question then arises as to what should be done with the knowledge of their existence. Here we analyse the arguments in favour of protecting intact peatlands, and the potential conflicts with other priorities such as economic development and social justice. We evaluate alternative mechanisms for protecting intact peatlands, focusing on the particular issues raised by peatlands as opposed to other kinds of tropical ecosystem. We identify ways in which natural science agendas can help to inform these arguments, using our own contributions in palaeoecology and carbon mapping as examples. Finally, we argue for a radical reconsideration of research agendas in tropical peatlands, highlighting the potential contribution of methodologies borrowed from the social sciences and humanities.

  11. A Soil Service Index: Peatland soils as a case study for quantifying the value, vulnerability, and status of soils

    Loisel, J.; Harden, J. W.; Hugelius, G.

    2017-12-01

    What are the most important soil services valued by land stewards and planners? Which soil-data metrics can be used to quantify each soil service? What are the steps required to quantitatively index the baseline value of soil services and their vulnerability under different land-use and climate change scenarios? How do we simulate future soil service pathways (or trajectories) under changing management regimes using process-based ecosystem models? What is the potential cost (economic, social, and other) of soil degradation under these scenarios? How sensitive or resilient are soil services to prescribed management practices, and how does sensitivity vary over space and time? We are bringing together a group of scientists and conservation organizations to answer these questions by launching Soil Banker, an open and flexible tool to quantify soil services that can be used at any scale, and by any stakeholder. Our overarching goals are to develop metrics and indices to quantify peatland soil ecosystem services, monitor change of these services, and guide management. This paper describes our methodology applied to peatlands and presents two case studies (Indonesia and Patagonia) demonstrating how Peatland Soil Banker can be deployed as an accounting tool of peatland stocks, a quantitative measure of peatland health, and as a projection of peatland degradation or enhancement under different land-use cases. Why peatlands? They store about 600 billion tons of carbon that account for ⅓ of the world's soil carbon. Peatlands have dynamic GHG exchanges of CO2, CH4, and NOx with the atmosphere, which plays a role in regulating global climate; studies indicate that peatland degradation releases about 2-3 billion tons of CO2 to the atmosphere annually. These ecosystems also provide local and regional ecosystem services: they constitute important components of the N and P cycles, store about 10% of the world's freshwater and buffer large fluxes of freshwater on an annual basis

  12. Born Global from the Resource-Based Theory: A Case Study in Colombia

    Alexander Tabares

    2015-07-01

    Full Text Available This paper describes how a born global firm goes into international market from inception at its early years. The objective of this paper is to analyze from the resource-based theory how a born global firm engages in international market. This empirical investigation has been carried out as an explorative single-case study, a high-tech firm, Digital Partner, based in Medellin, Antioquia. The main findings of the research show that organizational capabilities based on intellectual capital are crucial for the development of a born global. Thus, capabilities such as entrepreneurship, global vision, internationally market knowledge, learning management, IT capabilities, technological innovation, collaborative work, networks and customer orientation are recurrent and they correspond to other similar research results. Contributions of the study are both academic (for the advance of the research in born global field and practical (for the design of governmental policies to foster born global firms.

  13. Methanotrophy induces nitrogen fixation during peatland development

    Larmola, Tuula; Leppänen, Sanna M.; Tuittila, Eeva-Stiina; Aarva, Maija; Merilä, Päivi; Fritze, Hannu; Tiirola, Marja

    2014-01-01

    Nitrogen (N) accumulation rates in peatland ecosystems indicate significant biological atmospheric N2 fixation associated with Sphagnum mosses. Here, we show that the linkage between methanotrophic carbon cycling and N2 fixation may constitute an important mechanism in the rapid accumulation of N during the primary succession of peatlands. In our experimental stable isotope enrichment study, previously overlooked methane-induced N2 fixation explained more than one-third of the new N input in the younger peatland stages, where the highest N2 fixation rates and highest methane oxidation activities co-occurred in the water-submerged moss vegetation. PMID:24379382

  14. Restoration techniques for Sphagnum-dominated peatlands

    Ferland, C.; Rochefort, L. [Laval University, Sainte-Foy, PQ (Canada). Department of Phytology

    1997-07-01

    After peat harvesting, peat mosses do not usually recolonize the abandoned site. The purpose of this study is to develop techniques for restoring peatlands. Sphagnum diaspores from natural peatlands were introduced to exploited peatlands. The influence of microrelief, of planting companion species with the Sphagnum, and of light phosphorus fertilization on establishment of a peat moss carpet are examined. The results show that Sphagnum diaspores can be reintroduced on bare peat surfaces. The restoration method is combined with techniques to improve substrata moisture conditions, such as creation of surface roughness and the use of companion plant species. 32 refs., 6 figs., 3 tabs.

  15. Statistical model of global uranium resources and long-term availability

    Monnet, A.; Gabriel, S.; Percebois, J.

    2016-01-01

    Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on 'geological environments'. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance), and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a distribution of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures. (authors)

  16. Global assessment of onshore wind power resources considering the distance to urban areas

    Silva Herran, Diego; Dai, Hancheng; Fujimori, Shinichiro; Masui, Toshihiko

    2016-01-01

    This study assessed global onshore wind power resources considering the distance to urban areas in terms of transmission losses and costs, and visibility (landscape impact) restrictions. Including this factor decreased the economic potential considerably depending on the level of supply cost considered (at least 37% and 16% for an economic potential below 10 and 14 US cents/kWh, respectively). Its importance compared to other factors was secondary below 15 US cents/kWh. At higher costs it was secondary only to land use, and was more important than economic and technical factors. The impact of this factor was mixed across all regions of the world, given the heterogeneity of wind resources in remote and proximal areas. Regions where available resources decreased the most included the European Union, Japan, Southeast Asia, the Middle East, and Africa. The supply cost chosen to evaluate the economic potential and uncertainties influencing the estimation of distance to the closest urban area are critical for the assessment. Neglecting the restrictions associated with integration into energy systems and social acceptability resulted in an overestimation of global onshore wind resources. These outcomes are fundamental for global climate policies because they help to clarify the limits of wind energy resource availability. - Highlights: • Global onshore wind resources were assessed including the distance to urban areas. • We evaluate the impact of transmission losses and cost, and visibility restrictions. • The distance to urban areas' impact was considerable, depending on the supply cost. • This factor's importance was secondary to economic, land use, and technical factors. • Neglecting this factor resulted in an overestimation of global wind resources.

  17. Governing the management and use of pooled microbial genetic resources: Lessons from the global crop commons

    Michael Halewood

    2010-01-01

    Full Text Available The paper highlights lessons learned over the last thirty years establishing a governance structure for the global crop commons that are of relevance to current champions of the microbial commons. It argues that the political, legal and biophysical situation in which microbial genetic resources (and their users are located today are similar to the situation of plant genetic resources in the mid-1990s, before the International Treaty on Plant Genetic Resources was negotiated. Consequently, the paper suggests that it may be useful to look to the model of global network of ex situ plant genetic resources collections as a precedent to follow – even if only loosely – in developing an intergovernmentally endorsed legal substructure and governance framework for the microbial commons.

  18. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  19. Trace gas fluxes from northern peatlands

    Moore, T [McGill Univ., Montreal (Canada). Geography Dept.

    1997-12-31

    Peatlands cover large areas in northern environments: 1.1, 0.1 and 1.7 x 10{sup 4} km{sup 2} in Canada, Finland and the former Soviet Union, respectively. Interest has been generated into the role these extensive areas of peatlands play in controlling the chemistry of the atmosphere. In particular, it has become established that peatlands can be a source of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), and a sink of carbon dioxide (CO{sub 2}), the latter through the rates of plant production exceeding the rate of decomposition of plant material and peat. In this presentation the recent advances in trace gas flux measurements in northern peatlands are presented. (16 refs.)

  20. Trace gas fluxes from northern peatlands

    Moore, T. [McGill Univ., Montreal (Canada). Geography Dept.

    1996-12-31

    Peatlands cover large areas in northern environments: 1.1, 0.1 and 1.7 x 10{sup 4} km{sup 2} in Canada, Finland and the former Soviet Union, respectively. Interest has been generated into the role these extensive areas of peatlands play in controlling the chemistry of the atmosphere. In particular, it has become established that peatlands can be a source of methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), and a sink of carbon dioxide (CO{sub 2}), the latter through the rates of plant production exceeding the rate of decomposition of plant material and peat. In this presentation the recent advances in trace gas flux measurements in northern peatlands are presented. (16 refs.)

  1. Polio eradication is just over the horizon: the challenges of global resource mobilization.

    Pirio, Gregory Alonso; Kaufmann, Judith

    2010-01-01

    This study draws lessons from the resource mobilization experiences of the Global Polio Eradication Initiative (GPEI). As the GPEI launched its eradication effort in 1988, it underestimated both the difficulty and the costs of the campaign. Advocacy for resource mobilization came as an afterthought in the late 1990s, when achieving eradication by the target date of 2000 began to look doubtful. The reality of funding shortfalls undercutting eradication leads to the conclusion that advocacy for resource mobilization is as central to operations as are scientific and technical factors.

  2. An Improved Global Wind Resource Estimate for Integrated Assessment Models: Preprint

    Eurek, Kelly [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sullivan, Patrick [National Renewable Energy Lab. (NREL), Golden, CO (United States); Gleason, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hettinger, Dylan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, Donna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lopez, Anthony [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-02-01

    This paper summarizes initial steps to improving the robustness and accuracy of global renewable resource and techno-economic assessments for use in integrated assessment models. We outline a method to construct country-level wind resource supply curves, delineated by resource quality and other parameters. Using mesoscale reanalysis data, we generate estimates for wind quality, both terrestrial and offshore, across the globe. Because not all land or water area is suitable for development, appropriate database layers provide exclusions to reduce the total resource to its technical potential. We expand upon estimates from related studies by: using a globally consistent data source of uniquely detailed wind speed characterizations; assuming a non-constant coefficient of performance for adjusting power curves for altitude; categorizing the distance from resource sites to the electric power grid; and characterizing offshore exclusions on the basis of sea ice concentrations. The product, then, is technical potential by country, classified by resource quality as determined by net capacity factor. Additional classifications dimensions are available, including distance to transmission networks for terrestrial wind and distance to shore and water depth for offshore. We estimate the total global wind generation potential of 560 PWh for terrestrial wind with 90% of resource classified as low-to-mid quality, and 315 PWh for offshore wind with 67% classified as mid-to-high quality. These estimates are based on 3.5 MW composite wind turbines with 90 m hub heights, 0.95 availability, 90% array efficiency, and 5 MW/km2 deployment density in non-excluded areas. We compare the underlying technical assumption and results with other global assessments.

  3. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  4. Peatland Acidobacteria with a dissimilatory sulfur metabolism.

    Hausmann, Bela; Pelikan, Claus; Herbold, Craig W; Köstlbacher, Stephan; Albertsen, Mads; Eichorst, Stephanie A; Glavina Del Rio, Tijana; Huemer, Martin; Nielsen, Per H; Rattei, Thomas; Stingl, Ulrich; Tringe, Susannah G; Trojan, Daniela; Wentrup, Cecilia; Woebken, Dagmar; Pester, Michael; Loy, Alexander

    2018-02-23

    Sulfur-cycling microorganisms impact organic matter decomposition in wetlands and consequently greenhouse gas emissions from these globally relevant environments. However, their identities and physiological properties are largely unknown. By applying a functional metagenomics approach to an acidic peatland, we recovered draft genomes of seven novel Acidobacteria species with the potential for dissimilatory sulfite (dsrAB, dsrC, dsrD, dsrN, dsrT, dsrMKJOP) or sulfate respiration (sat, aprBA, qmoABC plus dsr genes). Surprisingly, the genomes also encoded DsrL, which so far was only found in sulfur-oxidizing microorganisms. Metatranscriptome analysis demonstrated expression of acidobacterial sulfur-metabolism genes in native peat soil and their upregulation in diverse anoxic microcosms. This indicated an active sulfate respiration pathway, which, however, might also operate in reverse for dissimilatory sulfur oxidation or disproportionation as proposed for the sulfur-oxidizing Desulfurivibrio alkaliphilus. Acidobacteria that only harbored genes for sulfite reduction additionally encoded enzymes that liberate sulfite from organosulfonates, which suggested organic sulfur compounds as complementary energy sources. Further metabolic potentials included polysaccharide hydrolysis and sugar utilization, aerobic respiration, several fermentative capabilities, and hydrogen oxidation. Our findings extend both, the known physiological and genetic properties of Acidobacteria and the known taxonomic diversity of microorganisms with a DsrAB-based sulfur metabolism, and highlight new fundamental niches for facultative anaerobic Acidobacteria in wetlands based on exploitation of inorganic and organic sulfur molecules for energy conservation.

  5. Land use, climate, and water resourcesglobal stages of interaction

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, including those in this special issue. We identify stages, which characterize i...

  6. 32 CFR Enclosure 2 - Requirements for Environmental Considerations-Foreign Nations and Protected Global Resources

    2010-07-01

    ... a serious public health risk; or (2) a physical project that is prohibited or strictly regulated in... of global importance designated for protection by the President or, in the case of such a resource... studies—bilateral or multilateral environmental studies, relevant or related to the proposed action, by...

  7. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    Wada, Y.; Wisser, D.; Bierkens, M.F.P.

    2013-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over a large scale, a number of macro-scale hydrological models (MHMs) have been

  8. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources

    Wada, Y.; Wisser, D.; Bierkens, M. F. P.

    2014-01-01

    To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been

  9. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    Limberger, J.|info:eu-repo/dai/nl/371572037; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.|info:eu-repo/dai/nl/123556856; Cloetingh, S.|info:eu-repo/dai/nl/069161836; van Wees, J.-D.

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  10. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization

    Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; Wees, J.D. van

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  11. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    Limberger, Jon; Boxem, Thijs; Pluymaekers, Maarten; Bruhn, D.F.; Manzella, Adele; Calcagno, Philippe; Beekman, Fred; Cloetingh, S.A.P.L.; van Wees, Jan Diederik

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  12. Competition and Constraint : Economic Globalization and Human Resource Practices in 23 European Countries

    Koster, Ferry; Wittek, Rafael

    2016-01-01

    Economic globalization is often considered to be one of the main causes of recent changes in the workplace and the way in which organizations manage their human resources. Nevertheless, an empirical study putting this claim to the test by relating the internationalization of the economy to the use

  13. Paradise lost : Sovereign State Interest, Global Resource Exploitation and the Politics of Human Rights

    Augenstein, Daniel

    Taking its cue from the US Supreme Court judgment in Kiobel that restricted the extraterritorial reach of the Alien Tort Claims Act, this article explores how sovereignty structures the relationship between global resource exploitation and the localization of human rights in the international order

  14. Carbon emissions from Southeast Asian peatlands will increase despite emission-reduction schemes.

    Wijedasa, Lahiru S; Sloan, Sean; Page, Susan E; Clements, Gopalasamy R; Lupascu, Massimo; Evans, Theodore A

    2018-06-01

    Carbon emissions from drained peatlands converted to agriculture in Southeast Asia (i.e. Peninsular Malaysia, Sumatra and Borneo) are globally significant and increasing. Here, we map the growth of Southeast Asian peatland agriculture and estimate CO 2 emissions due to peat drainage in relation to official land-use plans with a focus on the Reducing Emissions from Deforestation and Degradation (REDD+) related Indonesian moratorium on granting new concession licenses for industrial agriculture and logging. We find that, prior to 2010, 35% of Southeast Asian peatlands had been converted to agriculture, principally by smallholder farmers (15% of original peat extent) and industrial oil palm plantations (14%). These conversions resulted in 1.46-6.43 GtCO 2 of emissions between 1990 and 2010. This legacy of historical clearances on deep peat areas will contribute 51% (4.43-11.45 GtCO 2 ) of projected peatland CO 2 emissions over the period 2010-2130. In Indonesia, which hosts most of the region's peatland and where concession maps are publicly available, 70% of peatland conversion to agriculture occurred outside of known concessions for industrial plantation development, with smallholders accounting for 60% and industrial oil palm accounting for 34%. Of the remaining Indonesian peatswamp forest (PSF), 45% is not protected, and its conversion would amount to CO 2 emissions equivalent to 0.7-2.3% (5.14-14.93 Gt) of global fossil fuel and cement emissions released between 1990-2010. Of the peatland extent included in the moratorium, 48% was no longer forested, and of the PSF included 40-48% is likely to be affected by drainage impacts from agricultural areas and will emit CO 2 over time. We suggest that recent legislation and policy in Indonesia could provide a means of meaningful emission reductions if focused on revised land-use planning, PSF conservation both inside and outside agricultural concessions, and the development of agricultural practices based on

  15. Sulfate reduction in freshwater peatlands

    Oequist, M.

    1996-12-31

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO{sub 4}{sup 2-} concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 {mu}M. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 {mu}M h{sup -1} while in B and C they were 1 and 0.05 {mu}M h{sup -1}, respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 {mu}g d{sup -1} g{sup -1}) were found 10 cm below the water table, in B (ca. 1.0 {mu}g d{sup -1} g{sup -1}) in the vicinity of the water table, and in C (0.75 {mu}g d{sup -1} g{sup -1}) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m{sup -2} d{sup -1}, while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m{sup -2} d{sup -1}, respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination

  16. Sulfate reduction in freshwater peatlands

    Oequist, M.

    1996-01-01

    This text consist of two parts: Part A is a literature review on microbial sulfate reduction with emphasis on freshwater peatlands, and part B presents the results from a study of the relative importance of sulfate reduction and methane formation for the anaerobic decomposition in a boreal peatland. The relative importance of sulfate reduction and methane production for the anaerobic decomposition was studied in a small raised bog situated in the boreal zone of southern Sweden. Depth distribution of sulfate reduction- and methane production rates were measured in peat sampled from three sites (A, B, and C) forming an minerotrophic-ombrotrophic gradient. SO 4 2- concentrations in the three profiles were of equal magnitude and ranged from 50 to 150 μM. In contrast, rates of sulfate reduction were vastly different: Maximum rates in the three profiles were obtained at a depth of ca. 20 cm below the water table. In A it was 8 μM h -1 while in B and C they were 1 and 0.05 μM h -1 , respectively. Methane production rates, however, were more uniform across the three nutrient regimes. Maximum rates in A (ca. 1.5 μg d -1 g -1 ) were found 10 cm below the water table, in B (ca. 1.0 μg d -1 g -1 ) in the vicinity of the water table, and in C (0.75 μg d -1 g -1 ) 20 cm below the water table. In all profiles both sulfate reduction and methane production rates were negligible above the water table. The areal estimates of methane production for the profiles were 22.4, 9.0 and 6.4 mmol m -2 d -1 , while the estimates for sulfate reduction were 26.4, 2.5, and 0.1 mmol m -2 d -1 , respectively. The calculated turnover times at the sites were 1.2, 14.2, and 198.7 days, respectively. The study shows that sulfate reducing bacteria are important for the anaerobic degradation in the studied peatland, especially in the minerotrophic sites, while methanogenic bacteria dominate in ombrotrophic sites Examination paper. 67 refs, 6 figs, 3 tabs

  17. Derivation of Burn Scar Depths with Airborne Light Detection and Ranging (LIDAR) in Indonesian Peatlands

    Ballhorn, U.; Siegert, F.

    2009-04-01

    Tropical deforestation and forest degradation contribute to about 20% of the global greenhouse gas emissions and Indonesia is a leading emitter. Forests are certainly critical; but the peat soils beneath can store 30 times more carbon than the trees above. Indonesia has the fourth-largest area of peatland in the world, ranging from 30 to 45 million ha, which is approximately 10 - 12% of the global peatland resource. Fire has a long tradition in Indonesian land clearing, where almost all fires are related to human activities. The 1997 - 1998 fires throughout Indonesia caused significant haze and smoke-related health problems across Southeast Asia. Strong and weak El Niño events in 1998 and 2002 accelerated burning as soil was parched. Green house gas emissions from the fires were the source of 60% of all anomalies globally for 1997 - 2000, particularly from drained peatlands. In 2007/08 we participated in a study conducted by the World Wildlife Fund which focused on Sumatra's 8.3 million ha province of Riau, along the island's northeastern coastline. In this study CO2 emissions from deforestation and forest degradation, peat decomposition and burning over 17 years from 1990 - 2007 were estimated. Fire hotspot data for the years 1997 - 2000 from the NOAA AVHRR and MODIS sensors was used to identify burned peatland. Based on soil water availability the depths of peat burns were estimated. El Nino years with a water table of lower than 1.5 m propel intense burning so that a peat burn depth of 0.50 m was assumed, while normally only a peat burn depth of 0.15 m. Total emissions for the 1990 - 2007 period were estimated at 3.66 Gt CO2, composed of 1.17 Gt CO2 from deforestation, 0.32 Gt CO2 from forest degradation, 0.78 Gt CO2 from peat decomposition, and 1.39 Gt CO2 from peat burning. Average annual CO2 emissions were 0.22 Gt, equal to 58% of Australia's total CO2 annual emissions (including emissions/removals from LULUCF, in 2005); between 1990 and 2007, Riau produced

  18. An impact of deforestation by extreme weather events on Sphagnum peatland ecosystem

    Slowinski, M. M.; Łuców, D.; Kołaczek, P.; Tjallingii, R.; Lane, C. S.; Slowinska, S.; Tyszkowski, S.; Łokas, E.; Theuerkauf, M.; Brauer, A.; Lamentowicz, M.

    2017-12-01

    An increase in extreme weather phenomena has been observed over the last decades as a result of global climate warming. Terrestrial ecosystems are influenced by different types of disturbances such as e.g. deforestation, land-use, fragmentation, fire, floods or storms. Disturbance triggers may be natural or anthropogenic, but usually we observe negative feedback loops and interconnected causal factors. Here we investigate the effects of a tornado event on the peatland ecosystem of the Tuchola Pinewoods, Northern Poland. Deforestation by tornado events can cause severe perturbations of the hydrology and erosion that, in turn, affects adjacent lakes and peatlands. Martwe peatland provide an exceptional opportunity to study the impact of such extreme events, as it was struck by a tornado in 2012. Our research is focused on lake-peatland ecosystems that were directly affected by this tornado, and we consider the general transformation of the vegetation (mainly forests) over the last 150 years. Extensive clearing of the forest occurred in the nineteenth century due to human activity, and we compare this with the impact of the 2012 tornado. Accurate reconstructions will rely on a broad range of palaeoecological techniques such as pollen, macro-remains and testate amoebae, but also on geochemistry, i.e. μXRF scanning. The chronology of the records is based on 210Pb and radiocarbon dating and will incorporate correlations using (crypto)tephra markers of the Eyjafjöll (2010) and Askja (1875) eruptions. We expect to observe that disturbance (tornado-induced deforestation) affects the short-term changes in peatland productivity and biodiversity, through a cascading "top-down" effect. This research addresses the emerging issue of the impact of extreme phenomena and more general climate changes on peatland ecosystems, which will potentially help to inform adaptations to the environmental consequences of extreme events in the future. This project is funded by the Polish

  19. An integrated model for the assessment of global water resources – Part 2: Applications and assessments

    N. Hanasaki

    2008-07-01

    Full Text Available To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3 and the allocation of environmental flow requirements can alter the population under high water stress by approximately −11% to +5% globally. The integrated model is applicable to

  20. Mitigating wildfire carbon loss in managed northern peatlands through restoration

    Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.

    2016-06-01

    Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha-1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change.

  1. Energy potential of Finnish peatlands

    Virtanen, K. (Geological Survey of Finland, Kuopio (Finland)); Valpola, S. (Geological Survey of Finland, Kokkola (Finland)), e-mail: kimmo.virtanen@gtk.fi, e-mail: samu.valpola@gtk.fi

    2011-07-01

    One-third of the Finnish land area is covered by mires and peat. GTK has investigated 2.0 million ha of the 9.3 million ha area covered by mires in Finland. According to the EU Commission, the broadly-based Finnish energy economy, with various energy sources, is the best in the EU. As a fuel, peat fulfils the goals of the EU energy policy in Finland well: it is local, its availability is good and the price is stable. The use of peat also enhances national security. At present, peat is used in around one hundred larger applications that co-generate electricity and heat. In Finland, the development of mires has led to several mire complex types and three main types: raised bogs in Southern Finland, aapa mires in Ostrobothnia and Lapland, and palsa mires in Northern Lapland. Peat layers are deepest in southern Finland and partly in the southern Finnish Lake area, the Region of North Karelia and in the area of central Lapland. The mean depth of geological mires is 1.41 m and the thickest drilled peat is 12.3 m. According to peat investigations, the national peat reserve totals 69.3 billion m3 in situ (peatlands larger than 20 hectares). The dry solids of peat are estimated at 6.3 billion tones. Sphagnum peat accounts for 54% and Carex peat for 45% of feasible peat reserves. Peatlands that are technically suitable for the peat industry cover a total area of 1.2 million ha and contain 29.6 billion m3 of peat in situ. Slightly humified peat suitable for horticultural and environmental use totals 5.9 billion m3 in situ. The energy peat reserve is 23.7 billion m3 in situ and its energy content is 12 800 TWh. (orig.)

  2. Distribution of peatlands in Indonesia

    Rieley, J. [Dept. of Life Science, Nottingham (United Kingdom); Page, S.E. [Leicester Univ. (United Kingdom). Dept. of Zoology; Setiadi, B. [Agency for the Assesment and Application of Technology, Jakarta (Indonesia)

    1996-12-31

    Indonesia contains between 160 and 270 000 km{sup 2} of peatland, mostly in the sub-coastal lowlands of Irian Jaya, Kalimantan and Sumatra; depth varies from 0.5 to more than 10 metres. Present day peat started to accumulate in response to very wet climatic conditions after the end of the last glacial period on waterlogged substrates of low nutrient status and oxygen deficiency. Coastal and basin peatlands were preceded by mangrove swamp; Yiigh peat (peat at a slightly higher elevation) was probably initiated in freshwater swamp. Dates of origin range from 800 to almost 5 000 years B.P. for the former and over 9 000 years B.P. for the latter. Lowland tropical peat is relatively homogeneous, consisting of trunks, branches and roots of trees; it is mainly fibric with low mineral content. Peat domes are ombrogenous with a water table close to or above the surface for most of the year. Lowland peat swamps support a zonation of forest types. The marginal, mixed swamp forest is dominated by high canopy trees whilst the interior `pole` forest consists of lower, smaller diameter trees. Indonesian peat swamp forests are an important reservoir of biodiversity; they contain several commercial tree species and provide a range of non-timber forest products. Almost 20 % of the peat swamp forests of Indonesia have been developed for agriculture and settlement. In their natural condition, however, they act as important water catchment and control systems, stabilize the landscape against erosion and maintain water quality for downstream riverine, estuarine and coastal fisheries. (orig.) (19 refs.)

  3. Stable carbon and nitrogen isotopes in vertical peat profiles of natural and drained boreal peatlands

    Nykänen, Hannu; Mpamah, Promise; Rissanen, Antti; Pitkänen, Aki; Turunen, Jukka; Simola, Heikki

    2015-04-01

    Peatlands form a significant carbon pool in the global carbon cycle. Change in peat hydrology, due to global warming is projected to change microbiological processes and peat carbon pool. We tested if bulk stable carbon and nitrogen isotopes serve as indicators of severe long term drying in peatlands drained for forestry. Depth profile analysis of peat, for their carbon and nitrogen content as well as their carbon and nitrogen stable isotopic signatures, were conducted for peatlands in southern and eastern Finland, having ombrotrophic and minerotrophic natural and corresponding drained pairs or separate drained sites. The selection of sites allowed us to compare changes due to different fertility and changes due to long term artificial drying. Drainage lasting over 40 years has led to changes in hydrology, vegetation, nutrient mineralization and respiration. Furthermore, increased nutrient uptake and possible recycling of peat nitrogen and carbon trough vegetation back to the peat surface, also possibly has an effect on the stable isotopic composition of peat carbon and nitrogen. We think that drainage induced changes somehow correspond to those caused by changed hydrology due to climate change. We will present data from these measurements and discuss their implications for carbon and nitrogen flows in peatlands.

  4. Molecular Characterization of Methanogenic Communities in Core Sediments of the Dajiuhu Peatland, Central China

    Wang, R.; Wang, H.

    2017-12-01

    Methane (CH4) is an important greenhouse gas with a global warming potential 22 times greater than carbon dioxide. Large amounts of CH4 can be produced and released by methanogenesis in peatland ecosystems, which make peatland ecosystems play an important role in mediating global climate change. Here we report the abundance and distribution of methanogenic communities and their correlation with physicochemical parameters along two sediment cores in the Dajiuhu Peatland via quantitative PCR, clone library construction of functional genes and statistical analysis. Uncultured Group and Fen Cluster were found to be the dominant methanogens at the upper part of the cores, and Rice and Related Rice Cluster became dominant in the bottom of the cores. Quantitative PCR showed that abundances of methanogenic communities ranged from 104 to 106 copies/ng DNA throughout the cores. Canonical Correlation Analysis (CCA) indicated that dissolved oxygen (DO) (P=0.046, F=1.4) was the main factor significantly controlling methanogenic communities. Our results enhance the understanding of the compositions and variations of methanogenic communities vertically and greatly help us to further investigate process of microbial methanogenesis in Dajiuhu Peatland.

  5. Responsible management of peatlands in Canada, from peat industry to oil sands

    Rochefort, Line

    2013-04-01

    Canada harbors one third of the peat resources of the world. Peat is an accumulated organic matter composed of dead and partly decomposed plant material, forming huge deposit through time in wetlands like peatlands and boreal coniferous swamps. Peat is a valuable resource as a growing media and soil amendments, an eco-friendly absorbent, also used as biofilters, for body care and for wastewater treatment. Peatlands also offer valuable ecological services : for example, they are the most efficient terrestrial ecosystem to store carbon on a long-term basis. Their ability to "cool off" the planet warrants a good look at their management. The horticultural peat industry of Canada has invested 22 years in R&D in habitat restoration and is now a strong leader in managing industrial peatlands in a sustainable way. The oil sand industry, which is strongly impacting the wetland landscapes of northern Canada, does realize that it has to reduce its ecological footprint, which is heavily criticized around the world. Decommissioned open mines near Fort McMurray have already begun recreating peatland ecosystems, and some restoration attempts of former oil pads are underway in the Peace River region. But the restoration of the largely disturbed wetland landscape of the oil sands is commanding innovative solutions.

  6. Global comparative healthcare effectiveness research: Evaluating sustainable programmes in low & middle resource settings

    Rajesh Balkrishnan

    2013-01-01

    Full Text Available The need to focus healthcare expenditures on innovative and sustainable health systems that efficiently use existing effective therapies are the major drivers stimulating Comparative Effectiveness Research (CER across the globe. Lack of adequate access and high cost of essential medicines and technologies in many countries increases morbidity and mortality and cost of care that forces people and families into poverty due to disability and out-of-pocket expenses. This review illustrates the potential of value-added global health care comparative effectiveness research in shaping health systems and health care delivery paradigms in the "global south". Enabling the development of effective CER systems globally paves the way for tangible local and regional definitions of equity in health care because CER fosters the sharing of critical assets, resources, skills, and capabilities and the development of collaborative of multi-sectorial frameworks to improve health outcomes and metrics globally.

  7. Exploring Global Exposure Factors Resources for Use in Consumer Exposure Assessments

    Zaleski, Rosemary T.; Egeghy, Peter P.; Hakkinen, Pertti J.

    2016-01-01

    This publication serves as a global comprehensive resource for readers seeking exposure factor data and information relevant to consumer exposure assessment. It describes the types of information that may be found in various official surveys and online and published resources. The relevant exposure factors cover a broad range, including general exposure factor data found in published compendia and databases and resources about specific exposure factors, such as human activity patterns and housing information. Also included are resources on exposure factors related to specific types of consumer products and the associated patterns of use, such as for a type of personal care product or a type of children’s toy. Further, a section on using exposure factors for designing representative exposure scenarios is included, along with a look into the future for databases and other exposure science developments relevant for consumer exposure assessment. PMID:27455300

  8. Global Squeeze: Assessing Climate-Critical Resource Constraints for Coastal Climate Adaptation

    Chase, N. T.; Becker, A.; Schwegler, B.; Fischer, M.

    2014-12-01

    The projected impacts of climate change in the coastal zone will require local planning and local resources to adapt to increasing risks of social, environmental, and economic consequences from extreme events. This means that, for the first time in human history, aggregated local demands could outpace global supply of certain "climate-critical resources." For example, construction materials such as sand and gravel, steel, and cement may be needed to fortify many coastal locations at roughly the same point in time if decision makers begin to construct new storm barriers or elevate coastal lands. Where might adaptation bottlenecks occur? Can the world produce enough cement to armour the world's seaports as flood risks increase due to sea-level rise and more intense storms? Just how many coastal engineers would multiple such projects require? Understanding such global implications of adaptation requires global datasets—such as bathymetry, coastal topography, local sea-level rise and storm surge projections, and construction resource production capacity—that are currently unavailable at a resolution appropriate for a global-scale analysis. Our research group has identified numerous gaps in available data necessary to make such estimates on both the supply and demand sides of this equation. This presentation examines the emerging need and current availability of these types of datasets and argues for new coordinated efforts to develop and share such data.

  9. Are world uranium resources sufficient to fuel global growth in nuclear generating capacity?

    Cameron, R.; Vance, R.E.

    2012-01-01

    Increased uranium prices since 2003 have produced more activity in the sector than the previous 20 years. Nuclear reactor construction is proceeding in some countries, ambitious expansion plans have been announced in others and several, particularly in the developing world, are considering introducing nuclear power as a means of meeting rising electricity demand without increasing greenhouse gas emissions. Others have recently decided to either withdraw from the use of nuclear power or not proceed with development plans following the accident at the Fukushima Dai-ichi nuclear power plant in Japan in March 2011. Since the mid-1960, the OECD Nuclear Energy Agency and the International Atomic Energy Agency have jointly prepared a comprehensive update of global uranium resources, production and demand (commonly known as the 'Red Book'. The Red Book is based on government responses to a questionnaire that requests information on uranium exploration and mine development activity, resources and plans for nuclear development to 2035. This presentation provides an overview of the global situation based on the recently published 2011 edition. It features a compilation of global uranium resources, projected mine development and production capability in all the countries currently producing uranium or with plans to do so in the near future. This is compared to updated, post-Fukushima demand projections, reflecting nuclear phase-out plans announced in some countries and ambitious expansion plans of others. The 2011 Red Book shows that currently defined uranium resources are sufficient to meet high case projections of nuclear power development to 2035. (authors)

  10. Global impacts of energy demand on the freshwater resources of nations.

    Holland, Robert Alan; Scott, Kate A; Flörke, Martina; Brown, Gareth; Ewers, Robert M; Farmer, Elizabeth; Kapos, Valerie; Muggeridge, Ann; Scharlemann, Jörn P W; Taylor, Gail; Barrett, John; Eigenbrod, Felix

    2015-12-01

    The growing geographic disconnect between consumption of goods, the extraction and processing of resources, and the environmental impacts associated with production activities makes it crucial to factor global trade into sustainability assessments. Using an empirically validated environmentally extended global trade model, we examine the relationship between two key resources underpinning economies and human well--being-energy and freshwater. A comparison of three energy sectors (petroleum, gas, and electricity) reveals that freshwater consumption associated with gas and electricity production is largely confined within the territorial boundaries where demand originates. This finding contrasts with petroleum, which exhibits a varying ratio of territorial to international freshwater consumption, depending on the origin of demand. For example, although the United States and China have similar demand associated with the petroleum sector, international freshwater consumption is three times higher for the former than the latter. Based on mapping patterns of freshwater consumption associated with energy sectors at subnational scales, our analysis also reveals concordance between pressure on freshwater resources associated with energy production and freshwater scarcity in a number of river basins globally. These energy-driven pressures on freshwater resources in areas distant from the origin of energy demand complicate the design of policy to ensure security of fresh water and energy supply. Although much of the debate around energy is focused on greenhouse gas emissions, our findings highlight the need to consider the full range of consequences of energy production when designing policy.

  11. Organic Matter Quality and its Influence on Carbon Turnover and Stabilization in Northern Peatlands

    Turetsky, M. R.; Wieder, R. K.

    2002-12-01

    Peatlands cover 3-5 % of the world's ice-free land area, but store about 33 % of global terrestrial soil carbon. Peat accumulation in northern regions generally is controlled by slow decomposition, which may be limited by cold temperatures and water-logging. Poor organic matter quality also may limit decay, and microbial activity in peatlands likely is regulated by the availability of labile carbon and/or nutrients. Conversely, carbon in recalcitrant soil structures may be chemically protected from microbial decay, particularly in peatlands where carbon can be buried in anaerobic soils. Soil organic matter quality is controlled by plant litter chemical composition and the susceptibility of organic compounds to decomposition through time. There are a number of techniques available for characterizing organic quality, ranging from chemical proximate or elemental analysis to more qualitative methods such as nuclear magenetic resonance, pyrolysis/mass spectroscopy, and Fourier transform infrared spectroscopy. We generally have relied on proximate analysis for quantitative determination of several organic fractions (i.e., water-soluble carbohydrates, soluble nonpolars, water-soluble phenolics, holocellulose, and acid insoluble material). Our approaches to studying organic matter quality in relation to C turnover in peatlands include 1) 14C labelling of peatland vegetation along a latitudinal gradient in North America, allowing us to follow the fate of 14C tracer in belowground organic fractions under varying climates, 2) litter bag studies focusing on the role of individual moss species in litter quality and organic matter decomposition, and 3) laboratory incubations of peat to explore relationships between organic matter quality and decay. These studies suggest that proximate organic fractions vary in lability, but that turnover of organic matter is influenced both by plant species and climate. Across boreal peatlands, measures of soil recalcitrance such as acid

  12. Globally sustainable and stable nuclear energy resources for the next millennium

    Duffey, Romney B.

    2010-09-15

    We address the issues of future resource unsustainability, energy demand uncertainty and supply unpredictability. Inexorably growing global energy demand increases the costs of energy sources, and raises concerns about security of energy supply and environmental emissions of carbon dioxide and other greenhouse gases (GHGs). Taking the viewpoint of developing a sustainable global fuel cycle, we propose alternate paths outside the present rather traditional thinking. Nevertheless, they still represent existing and known technology opportunities that may run counter to many current national positions, and today's commercial and technical interests, while still presenting very large opportunities.

  13. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of Southeast Asia and Melanesia as part of a global mineral resource assessment. The region hosts world-class porphyry copper deposits and underexplored areas that are likely to contain undiscovered deposits. Examples of known porphyry copper deposits include Batu Hijau and Grasberg in Indonesia; Panguna, Frieda River, and Ok Tedi in Papua New Guinea; and Namosi in Fiji.

  14. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    Berger, Byron R.; Mars, John L.; Denning, Paul; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The U.S. Geological Survey conducted an assessment of resources associated with porphyry copper deposits in the western Central Asia countries of Kyrgyzstan, Uzbekistan, Kazakhstan, and Tajikistan and the southern Urals of Kazakhstan and Russia as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits; (2) compile a database of known porphyry copper deposits and significant prospects; (3) where data permit, estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in those undiscovered deposits.

  15. Allocating Scarce Resources Strategically - An Evaluation and Discussion of the Global Fund's Pattern of Disbursements

    McCoy, David; Kinyua, Kelvin

    2012-01-01

    Background The Global Fund is under pressure to improve its rationing of financial support. This study describes the GF's pattern of disbursements in relation to total health expenditure (THE), government health expenditure (GHE), income status and the burden of HIV/AIDS, TB and malaria. It also examines the potential for recipient countries to increase domestic public financing for health. Methods This is a cross-sectional study of 104 countries that received Global Fund disbursements in 2009. It analyses data on Global Fund disbursements; health financing indicators; government revenue and expenditure; and burden of disease. Findings Global Fund disbursements made up 0.37% of THE across all 104 countries; but with considerable country variation ranging from 0.002% to 53.4%. Global Fund disbursements to government amounted to 0.47% of GHE across the 104 countries, but again with considerable variation (in three countries more than half of GHE was based on Global Fund support). Although the Global Fund provides progressively more funding for lower income countries on average, there is much variation at the country such that here was no correlation between per capita GF disbursements and per capita THE, nor between per capita GF disbursement to government and per capita GHE. There was only a slight positive correlation between per capita GF disbursement and burden of disease. Several countries with a high degree of 'financial dependency' upon the Fund have the potential to increase levels of domestic financing for health. Discussion The Global Fund can improve its targeting of resources so that it better matches the pattern of global need. To do this it needs to: a) reduce the extent to which funds are allocated on a demand-driven basis; and b) align its funding model to broader health systems financing and patterns of health expenditure beyond the three diseases. PMID:22590496

  16. Allocating scarce resources strategically--an evaluation and discussion of the Global Fund's pattern of disbursements.

    David McCoy

    Full Text Available BACKGROUND: The Global Fund is under pressure to improve its rationing of financial support. This study describes the GF's pattern of disbursements in relation to total health expenditure (THE, government health expenditure (GHE, income status and the burden of HIV/AIDS, TB and malaria. It also examines the potential for recipient countries to increase domestic public financing for health. METHODS: This is a cross-sectional study of 104 countries that received Global Fund disbursements in 2009. It analyses data on Global Fund disbursements; health financing indicators; government revenue and expenditure; and burden of disease. FINDINGS: Global Fund disbursements made up 0.37% of THE across all 104 countries; but with considerable country variation ranging from 0.002% to 53.4%. Global Fund disbursements to government amounted to 0.47% of GHE across the 104 countries, but again with considerable variation (in three countries more than half of GHE was based on Global Fund support. Although the Global Fund provides progressively more funding for lower income countries on average, there is much variation at the country such that here was no correlation between per capita GF disbursements and per capita THE, nor between per capita GF disbursement to government and per capita GHE. There was only a slight positive correlation between per capita GF disbursement and burden of disease. Several countries with a high degree of 'financial dependency' upon the Fund have the potential to increase levels of domestic financing for health. DISCUSSION: The Global Fund can improve its targeting of resources so that it better matches the pattern of global need. To do this it needs to: a reduce the extent to which funds are allocated on a demand-driven basis; and b align its funding model to broader health systems financing and patterns of health expenditure beyond the three diseases.

  17. Transient simulations of the carbon and nitrogen dynamics in northern peatlands: from the Last Glacial Maximum to the 21st century

    R. Spahni

    2013-06-01

    Full Text Available The development of northern high-latitude peatlands played an important role in the carbon (C balance of the land biosphere since the Last Glacial Maximum (LGM. At present, carbon storage in northern peatlands is substantial and estimated to be 500 ± 100 Pg C (1 Pg C = 1015 g C. Here, we develop and apply a peatland module embedded in a dynamic global vegetation and land surface process model (LPX-Bern 1.0. The peatland module features a dynamic nitrogen cycle, a dynamic C transfer between peatland acrotelm (upper oxic layer and catotelm (deep anoxic layer, hydrology- and temperature-dependent respiration rates, and peatland specific plant functional types. Nitrogen limitation down-regulates average modern net primary productivity over peatlands by about half. Decadal acrotelm-to-catotelm C fluxes vary between −20 and +50 g C m−2 yr−1 over the Holocene. Key model parameters are calibrated with reconstructed peat accumulation rates from peat-core data. The model reproduces the major features of the peat core data and of the observation-based modern circumpolar soil carbon distribution. Results from a set of simulations for possible evolutions of northern peat development and areal extent show that soil C stocks in modern peatlands increased by 365–550 Pg C since the LGM, of which 175–272 Pg C accumulated between 11 and 5 kyr BP. Furthermore, our simulations suggest a persistent C sequestration rate of 35–50 Pg C per 1000 yr in present-day peatlands under current climate conditions, and that this C sink could either sustain or turn towards a source by 2100 AD depending on climate trajectories as projected for different representative greenhouse gas concentration pathways.

  18. Cooperation in Global Environmental Governance for Building A Conflict Prevention Architecture in Natural Resources Torno

    Padilha, Norma Sueli; Cardoso, Simone Alves

    2016-01-01

    This article aims to demonstrate the effectiveness and the importance of cooperation in global environmental governance arrangements to prevent conflicts and promote pea- cebuilding through analysis the partnership between the European Union (EU) and the United Nations (UN) around the natural resources and conflict prevention. The problem to be addressed and the challenge to overcome by the international community is the fra- gility of some countries in creating and maintaining institutions t...

  19. Building Virtual Watersheds: A Global Opportunity to Strengthen Resource Management and Conservation

    Benda, Lee; Miller, Daniel; Barquin, Jose; McCleary, Richard; Cai, TiJiu; Ji, Y.

    2016-03-01

    Modern land-use planning and conservation strategies at landscape to country scales worldwide require complete and accurate digital representations of river networks, encompassing all channels including the smallest headwaters. The digital river networks, integrated with widely available digital elevation models, also need to have analytical capabilities to support resource management and conservation, including attributing river segments with key stream and watershed data, characterizing topography to identify landforms, discretizing land uses at scales necessary to identify human-environment interactions, and connecting channels downstream and upstream, and to terrestrial environments. We investigate the completeness and analytical capabilities of national to regional scale digital river networks that are available in five countries: Canada, China, Russia, Spain, and United States using actual resource management and conservation projects involving 12 university, agency, and NGO organizations. In addition, we review one pan-European and one global digital river network. Based on our analysis, we conclude that the majority of the regional, national, and global scale digital river networks in our sample lack in network completeness, analytical capabilities or both. To address this limitation, we outline a general framework to build as complete as possible digital river networks and to integrate them with available digital elevation models to create robust analytical capabilities (e.g., virtual watersheds). We believe this presents a global opportunity for in-country agencies, or international players, to support creation of virtual watersheds to increase environmental problem solving, broaden access to the watershed sciences, and strengthen resource management and conservation in countries worldwide.

  20. Global resources and energy trade. An overview for coal, natural gas, oil and uranium

    Remme, U.; Blesl, M.; Fahl, U.

    2007-07-15

    Despite efforts to improve energy effi-ciency and increase the usage of renewable energy carriers, fossil fuels and nuclear energy will continue to be important sources of global energy supply for the coming decades. Present global oil and gas supply is characterized by a concentration of production in a few world areas, mainly the Middle East and the Former Soviet Union, and a transport from these regions to the industrialized countries. Depletion of conventional reserves, especially oil, in combination with a surge for energy in emerging economies, as China and India, how-ever, is expected to change this picture in the future: unconventional resources in other world regions may be exploited to cover the surge energy demand, infrastructure for energy transport along new routes may have to be established. To provide a data base for such ques-tions, this report gives an overview of the current global resource situation for coal, natural gas, oil and uranium. In the first part, an assessment of the con-ventional and unconventional reserves and resources as well as their supply costs is given for the different regions of the world. The second part describes the current energy trade infrastructure between world regions and estimates the costs for existing and new trade links between these regions. (orig.)

  1. Nutrient Controls on Methane Emissions in a Permafrost Thaw Subarctic Peatland

    Kashi, N. N.; Perryman, C. R.; Malhotra, A.; Marek, E. A.; Giesler, R.; Varner, R. K.

    2015-12-01

    Permafrost peatlands in northern latitudes are large reservoirs of sequestered carbon that are vulnerable to climate change. While peatlands account for a small fraction of total global land surfaces, their potential to release sequestered carbon in response to higher temperatures is of concern. Of particular relevance is the conversion of these carbon stores into methane (CH4), a strong greenhouse gas with a global warming potential 20 times greater than that of CO2 over a 100-year time frame. Here, we explore how key nutrients impact the consumption of CH4 at the Stordalen Mire in Abisko, Sweden, a discontinuous permafrost peatland with expanding thaw over the last century. Peatland CH4 emissions are highly spatially variable due to multiple emission pathways and strong dependence on several environmental factors. Among controls on CH4 emissions, such as temperature and water table depth, primary production of wetland vegetation is also a strong factor in the variability of CH4 emissions. Plant community shifts among permafrost thaw stages subsequently change nutrient cycling and availability, which in turn impacts primary production. Early stages of permafrost thaw are mosaicked with a variety of vascular plants and mosses. We analyzed potential enzymatic activities of chitinase, glucosidase, and phosphatase as proxies for organic nitrogen, carbon, and phosphorus cycling, respectively, in tandem with potential CH4 oxidation rates. In addition, stoichiometric ratios of carbon, nitrogen, and phosphorus concentrations are used to illustrate nutrient limitation controls on CH4 oxidation rates. While CH4 emissions are low throughout initial thaw stages, highest rates of potential CH4 oxidation. These permafrost thaw-induced CH4 oxidation rates are 5 and 11 times higher, in the surface and depth of the peat profile respectively, than subsequent aerobic permafrost thaw stages. As CH4 emissions are low in intact permafrost peatlands, these high rates of potential CH4

  2. Management of business process design in global implementation of enterprise resource planning systems

    Rahimi, Fatemeh

    on process standardization with corporate international management strategy and structural characteristics. Furthermore, business process design can be supported by establishing permanent central governance for BPM and horizontally integrating the BPM function with the IT function at the strategic......Investments in global enterprise resource planning (ERP) systems are typically carried out as a part of the globalization process in multinational corporations (MNCs). Global ERP systems support integration and control in MNCs in an important way by establishing a common language across an MNC...... and findings from case studies in nine organizations, the study addresses the three prescriptive research questions through five descriptive studies. First, by deploying alternative theories, this study explores the strategic, institutional, organizational, and relational factors that influence business...

  3. Assessing water resources in Azerbaijan using a local distributed model forced and constrained with global data

    Bouaziz, Laurène; Hegnauer, Mark; Schellekens, Jaap; Sperna Weiland, Frederiek; ten Velden, Corine

    2017-04-01

    In many countries, data is scarce, incomplete and often not easily shared. In these cases, global satellite and reanalysis data provide an alternative to assess water resources. To assess water resources in Azerbaijan, a completely distributed and physically based hydrological wflow-sbm model was set-up for the entire Kura basin. We used SRTM elevation data, a locally available river map and one from OpenStreetMap to derive the drainage direction network at the model resolution of approximately 1x1 km. OpenStreetMap data was also used to derive the fraction of paved area per cell to account for the reduced infiltration capacity (c.f. Schellekens et al. 2014). We used the results of a global study to derive root zone capacity based on climate data (Wang-Erlandsson et al., 2016). To account for the variation in vegetation cover over the year, monthly averages of Leaf Area Index, based on MODIS data, were used. For the soil-related parameters, we used global estimates as provided by Dai et al. (2013). This enabled the rapid derivation of a first estimate of parameter values for our hydrological model. Digitized local meteorological observations were scarce and available only for limited time period. Therefore several sources of global meteorological data were evaluated: (1) EU-WATCH global precipitation, temperature and derived potential evaporation for the period 1958-2001 (Harding et al., 2011), (2) WFDEI precipitation, temperature and derived potential evaporation for the period 1979-2014 (by Weedon et al., 2014), (3) MSWEP precipitation (Beck et al., 2016) and (4) local precipitation data from more than 200 stations in the Kura basin were available from the NOAA website for a period up to 1991. The latter, together with data archives from Azerbaijan, were used as a benchmark to evaluate the global precipitation datasets for the overlapping period 1958-1991. By comparing the datasets, we found that monthly mean precipitation of EU-WATCH and WFDEI coincided well

  4. The Spanish Food Industry on Global Supply Chains and Its Impact on Water Resources

    Rosa Duarte

    2014-12-01

    Full Text Available The study of the impact of economic activities on natural resources through global supply chains is increasingly demanded in the context of the growing globalization of economies and product fragmentation. Taking Spain as a case study and a sector with significant economic and environmental impacts, the agri-food industry, the objective of this work is two-fold. First, we estimate the associated water impact, both from the production and consumption perspectives, paying special attention to the water embodied in production exchanges among countries and sectors. To that aim, we use an environmentally-extended multiregional input-output model (MRIO. Second, we assess the main driving factors behind changes in direct and embodied water consumption between the years 1995 and 2009 by means of a structural decomposition analysis. The MRIO model provides a comprehensive estimate of the economic linkages among regions and economic sectors and, therefore, allows calculating the environmental impacts over international value chains. The results indicate that the food industry exerts large impacts on global water resources, particularly given the remarkable interactions with the domestic and foreign agricultural sectors, These growing linkages show how consumption patterns, and, therefore, lifestyles, involve large environmental impacts through the whole and global supply chains.

  5. The role of climate change in regulating Arctic permafrost peatland hydrological and vegetation change over the last millennium

    Zhang, Hui; Piilo, Sanna R.; Amesbury, Matthew J.; Charman, Dan J.; Gallego-Sala, Angela V.; Väliranta, Minna M.

    2018-02-01

    Climate warming has inevitable impacts on the vegetation and hydrological dynamics of high-latitude permafrost peatlands. These impacts in turn determine the role of these peatlands in the global biogeochemical cycle. Here, we used six active layer peat cores from four permafrost peatlands in Northeast European Russia and Finnish Lapland to investigate permafrost peatland dynamics over the last millennium. Testate amoeba and plant macrofossils were used as proxies for hydrological and vegetation changes. Our results show that during the Medieval Climate Anomaly (MCA), Russian sites experienced short-term permafrost thawing and this induced alternating dry-wet habitat changes eventually followed by desiccation. During the Little Ice Age (LIA) both sites generally supported dry-hummock habitats, at least partly driven by permafrost aggradation. However, proxy data suggest that occasionally, MCA habitat conditions were drier than during the LIA, implying that evapotranspiration may create important additional eco-hydrological feedback mechanisms under warm conditions. All sites showed a tendency towards dry conditions as inferred from both proxies starting either from ca. 100 years ago or in the past few decades after slight permafrost thawing, suggesting that recent warming has stimulated surface desiccation rather than deeper permafrost thawing. This study shows links between two important controls over hydrology and vegetation changes in high-latitude peatlands: direct temperature-induced surface layer response and deeper permafrost layer-related dynamics. These data provide important backgrounds for predictions of Arctic permafrost peatlands and related feedback mechanisms. Our results highlight the importance of increased evapotranspiration and thus provide an additional perspective to understanding of peatland-climate feedback mechanisms.

  6. Ecology of testate amoebae in an Amazonian peatland and development of a transfer function for palaeohydrological reconstruction.

    Swindles, Graeme T; Reczuga, Monika; Lamentowicz, Mariusz; Raby, Cassandra L; Turner, T Edward; Charman, Dan J; Gallego-Sala, Angela; Valderrama, Elvis; Williams, Christopher; Draper, Frederick; Honorio Coronado, Euridice N; Roucoux, Katherine H; Baker, Tim; Mullan, Donal J

    2014-08-01

    Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r(2)(apparent)= 0.76, RMSE = 4.29; r(2)(jack)= 0.68, RMSEP =5.18). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.

  7. Variations in diatom communities at genus and species levels in peatlands (central China) linked to microhabitats and environmental factors.

    Chen, Xu; Bu, Zhaojun; Stevenson, Mark A; Cao, Yanmin; Zeng, Linghan; Qin, Bo

    2016-10-15

    Peatlands are a specialized type of organic wetlands, fulfilling essential roles as global carbon sinks, headwaters of rivers and biodiversity hotspots. Despite their importance, peatlands are being lost at an alarming rate due to human disturbance and climatic variability. Both the scientific and regulatory communities have focused considerable attention on developing tools for assessing environmental changes in peatlands. Diatoms are widely used in biomonitoring studies of lakes, rivers and streams as they have high abundance, specific ecological preferences and can respond rapidly to environmental change. However, diatom-based assessment studies in peatlands remain limited. The aims of this study were to identify indicator species and genus for three types of habitats (hummocks, hollows and ditch edges) in peatlands (central China), to examine the effects of physiochemical factors on diatom composition at genus and species levels, and to compare the efficiency of species- and genus-level identification in environmental assessment. Our results revealed that hummocks were characterized by drought-tolerant diatoms, while hollows were dominated by species and genus preferring wet conditions. Ditch edges were characterized by diatoms with different life strategies. Depth to water table, redox potential, conductivity and calcium were significant predictors of both genus- and species-level composition. According to ordination analyses, pH was not correlated with species composition while it was a significant factor associated with genus-level composition. Genus-level composition outperformed species composition in describing the response of diatoms to environmental variables. Our results indicate that diatoms can be useful environmental indicators of peatlands, and show that genus-level taxonomic analysis can be a potential tool for assessing environmental change in peatlands. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Scale-dependent spatial variability in peatland lead pollution in the southern Pennines, UK.

    Rothwell, James J; Evans, Martin G; Lindsay, John B; Allott, Timothy E H

    2007-01-01

    Increasingly, within-site and regional comparisons of peatland lead pollution have been undertaken using the inventory approach. The peatlands of the Peak District, southern Pennines, UK, have received significant atmospheric inputs of lead over the last few hundred years. A multi-core study at three peatland sites in the Peak District demonstrates significant within-site spatial variability in industrial lead pollution. Stochastic simulations reveal that 15 peat cores are required to calculate reliable lead inventories at the within-site and within-region scale for this highly polluted area of the southern Pennines. Within-site variability in lead pollution is dominant at the within-region scale. The study demonstrates that significant errors may be associated with peatland lead inventories at sites where only a single peat core has been used to calculate an inventory. Meaningful comparisons of lead inventories at the regional or global scale can only be made if the within-site variability of lead pollution has been quantified reliably.

  9. The global resource balance table, an integrated table of energy, materials and the environment

    Tsuchiya, Haruki

    2013-01-01

    This paper introduces the Global Resource Balance Table (GRBT), which is an extension of the energy balance tables that expresses the relationships between energy, materials and the environment. The material division of the GRBT includes steel, cement, paper, wood and grain. In contrast, the environmental division of the GRBT includes oxygen, CO 2 and methane. The transaction division rows in the GRBT include production, conversion, end use and stock. Each cell of the GRBT contains the quantities of the respective resources that were generated or consumed. The relationships between the cells were constructed from the laws of conservation of the materials and energy. We constructed a GRBT for 2007 and discussed the increasing air temperature due to waste heat and the CO 2 equivalent from human breathing. The GRBT is a comprehensive integrated table that represents the resources that are consumed by human activities and is useful for energy and environmental studies. - Highlights: • We extended energy balance table and introduced Global Resource Balance Table. • It shows relationships between energy, materials and the environment. • The material division includes steel, cement, paper, wood and grain. • The environmental division includes oxygen, CO 2 and methane. • We discussed on waste heat and CO 2 emission by human breathing

  10. Bioenergy and the Sustainability Transition: from Local Resource to Global Commodity

    Johnson, Francis X.

    2007-07-01

    The looming threat of climate change and the invaluable role of energy in development have complicated the global transition to sustainable energy while also increasing the urgency of the transition. Bioenergy has a key role in this transition due to its unique characteristics among renewable energy sources, the concentration of bioenergy potential in major developing country regions, and the close relationship between biomass resources and carbon management strategies. This paper offers a conceptual model for bioenergy's role in the transition, outlining its key elements and their significance with respect to environment and development. In spite of the globalising economy, the security of energy supply continues to be threatened by geo-political conflicts. Continued expansion of energy consumption is constrained by its environmental impacts. At the same time two billion persons have little or no access to modern energy services. The diversity and flexibility of bioenergy systems offers opportunities to bridge some of the key divisions-technical, political, economic, and environmental-that have complicated international efforts to address climate change and promote equitable development of global resources. The challenge is to take advantage of the heterogeneity of biomass resources to facilitate the most effective use of those resources in the emerging bio-economy. (auth)

  11. Strengthening community participation in reducing GHG emission from forest and peatland fire

    Thoha, A. S.; Saharjo, B. H.; Boer, R.; Ardiansyah, M.

    2018-02-01

    Strengthening community participation is needed to find solutions to encourage community more participate in reducing Green House Gas (GHG) from forest and peatland fire. This research aimed to identify stakeholders that have the role in forest and peatland fire control and to formulate strengthening model of community participation through community-based early warning fire. Stakeholder mapping and action research were used to determine stakeholders that had potential influence and interest and to formulate strengthening model of community participation in reducing GHG from forest and peatland fire. There was found that position of key players in the mapping of stakeholders came from the government institution. The existence of community-based fire control group can strengthen government institution through collaborating with stakeholders having strong interest and influence. Moreover, it was found several local knowledge in Kapuas District about how communities predict drought that have potential value for developing the community-based early warning fire system. Formulated institutional model in this research also can be further developed as a model institution in the preservation of natural resources based on local knowledge. In conclusion, local knowledge and community-based fire groups can be integrated within strengthening model of community participation in reducing GHG from forest and peatland fire.

  12. Opportunities for reducing greenhouse gas emissions in tropical peatlands.

    Murdiyarso, D; Hergoualc'h, K; Verchot, L V

    2010-11-16

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO(2) per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO(2) per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N(2)O emissions compared to CO(2) losses remains unclear.

  13. River ecosystem response to prescribed vegetation burning on Blanket Peatland.

    Brown, Lee E; Johnston, Kerrylyn; Palmer, Sheila M; Aspray, Katie L; Holden, Joseph

    2013-01-01

    Catchment-scale land-use change is recognised as a major threat to aquatic biodiversity and ecosystem functioning globally. In the UK uplands rotational vegetation burning is practised widely to boost production of recreational game birds, and while some recent studies have suggested burning can alter river water quality there has been minimal attention paid to effects on aquatic biota. We studied ten rivers across the north of England between March 2010 and October 2011, five of which drained burned catchments and five from unburned catchments. There were significant effects of burning, season and their interaction on river macroinvertebrate communities, with rivers draining burned catchments having significantly lower taxonomic richness and Simpson's diversity. ANOSIM revealed a significant effect of burning on macroinvertebrate community composition, with typically reduced Ephemeroptera abundance and diversity and greater abundance of Chironomidae and Nemouridae. Grazer and collector-gatherer feeding groups were also significantly less abundant in rivers draining burned catchments. These biotic changes were associated with lower pH and higher Si, Mn, Fe and Al in burned systems. Vegetation burning on peatland therefore has effects beyond the terrestrial part of the system where the management intervention is being practiced. Similar responses of river macroinvertebrate communities have been observed in peatlands disturbed by forestry activity across northern Europe. Finally we found river ecosystem changes similar to those observed in studies of wild and prescribed forest fires across North America and South Africa, illustrating some potentially generic effects of fire on aquatic ecosystems.

  14. National water resource management as a global problem: The example of Egypt

    Elshorbagy, A. A.; Abdelkader, A. A.; Tuninetti, M.; Laio, F.; Ridolfi, L.; Fahmy, H.

    2017-12-01

    The engineering redistribution of water remains limited in its spatial scope, when compared with the socioeconomic redistribution of water in its virtual form. Virtual water (VW) embedded in products has its own human-induced cycle by moving across the globe. There is a significant body of literature on global VW trade networks (VWTN), with most studies focused on the network structure and the variables controlling its behavior. It was shown that the importing nations will play an important role in the evolution of the network dynamics. The increased connectivity of the global network highlights the risk of systemic disruptions and the vulnerability of the global food, especially when exporting countries change to non-exporting ones. The existing models of VWTN characterize the properties of the network, along with its nodes and links. Acknowledging its contribution to understand the global redistribution of virtual water, hardly can this approach attract potential users to adopt it. The VW trade (VWT) modeling needs to be repositioned to allow resource managers and policy makers at various scales to benefit from it and link global VW dynamics to their local decisions. The aim of this research is to introduce a new modeling approach for the VWT where detailed national scale water management is nested within the coarser global VWTN. The case study of Egypt, the world biggest importer of wheat, is considered here because its population growth and limitations of water and arable land position it as a significant node in the global network. A set of potential scenarios of Egypt's future, driven by population growth, development plans, consumption patterns, technology change, and water availability are developed. The annual national food and water balance in every scenario is calculated to estimate the potential for VW export and import of Egypt. The results indicate that Egypt's demand for food might cause unexpectedly higher demands on other countries' water resources

  15. Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality

    Scanlon, Bridget R.; Jolly, Ian; Sophocleous, Marios; Zhang, Lu

    2007-03-01

    Past land use changes have greatly impacted global water resources, with often opposing effects on water quantity and quality. Increases in rain-fed cropland (460%) and pastureland (560%) during the past 300 years from forest and grasslands decreased evapotranspiration and increased recharge (two orders of magnitude) and streamflow (one order of magnitude). However, increased water quantity degraded water quality by mobilization of salts, salinization caused by shallow water tables, and fertilizer leaching into underlying aquifers that discharge to streams. Since the 1950s, irrigated agriculture has expanded globally by 174%, accounting for ˜90% of global freshwater consumption. Irrigation based on surface water reduced streamflow and raised water tables resulting in waterlogging in many areas (China, India, and United States). Marked increases in groundwater-fed irrigation in the last few decades in these areas has lowered water tables (≤1 m/yr) and reduced streamflow. Degradation of water quality in irrigated areas has resulted from processes similar to those in rain-fed agriculture: salt mobilization, salinization in waterlogged areas, and fertilizer leaching. Strategies for remediating water resource problems related to agriculture often have opposing effects on water quantity and quality. Long time lags (decades to centuries) between land use changes and system response (e.g., recharge, streamflow, and water quality), particularly in semiarid regions, mean that the full impact of land use changes has not been realized in many areas and remediation to reverse impacts will also take a long time. Future land use changes should consider potential impacts on water resources, particularly trade-offs between water, salt, and nutrient balances, to develop sustainable water resources to meet human and ecosystem needs.

  16. Caracterización florística e hidrológica de turberas de la Isla Grande de Chiloé, Chile Floristic and hydrological characterization of Chiloé Island peatlands, Chile

    MARÍA F DÍAZ

    2008-12-01

    ecológicas.Peatlands are globally known as major deposits of fresh water and carbón, affecting the planet's weather and local hydrology; for bearing unique plant and animal species, contributing to biodiversity; and because they represent a major economic resource to humanity. Peatlands are dominated by plants forming dense populations, especially Sphagnum moss and vascular plants belonging to the Cyperaceae and Juncaceae. They present high water table levéis and a deep organic matter layer (peat below the living layer of plants. The use of fire and logging to clear forests in poor drainage soils have generated a kind of ecosystem similar to peatlands, dominated by Sphagnum moss, where peat accumulation is very low or absent (anthropogenic peatlands or "pomponales". Compared with natural peatlands, they share the presence of Sphagnum, but they are very different in the use human beings give to them. While natural peatlands are used for peat extraction, anthropogenic peatlands are harvested for the superficial layer of living moss. The ecological consequences after both extractive activities are also different. The aim of this work is to compare the floristic composition and water table levéis between natural and anthropogenic peatlands. We sampled natural and anthropogenic peatlands with and without Sphagnum extraction. We registered 74 taxa (eight lichens, 19 bryophytes and 47 vascular plants. Differences in floristic composition allow us to distinguish between natural and anthropogenic peatlands. Water table levéis also differ between study sites, being less superficial in natural and anthropogenic peatlands without moss extraction. The hydrological alterations after peatland exploitation would bring serious ecological consequences to Chiloé island, since its only source of water comes from rainfall and is stored in these large reservoirs called peatlands.

  17. Theological foundations for an effective Christian response to the global disease burden in resource-constrained regions

    Daniel W. O’Neill

    2016-01-01

    Full Text Available Given the global disease burden and resource disparity that exists in the world and the globalization of Christianity, Christians are in a critical position to effect radical change in individuals, communities and systems for human flourishing. This paper describes the theological basis of seven key elements that the Church can contribute to sustainable development, global health equity, and universal access as an expanding movement: defining health, speaking truth, providing care, making peace, cooperating, setting priorities, and mobilizing resources for maximum stewardship in low resource settings.

  18. Southward shift of the global wind energy resource under high carbon dioxide emissions

    Karnauskas, Kristopher B.; Lundquist, Julie K.; Zhang, Lei

    2018-01-01

    The use of wind energy resource is an integral part of many nations' strategies towards realizing the carbon emissions reduction targets set forth in the Paris Agreement, and global installed wind power cumulative capacity has grown on average by 22% per year since 2006. However, assessments of wind energy resource are usually based on today's climate, rather than taking into account that anthropogenic greenhouse gas emissions continue to modify the global atmospheric circulation. Here, we apply an industry wind turbine power curve to simulations of high and low future emissions scenarios in an ensemble of ten fully coupled global climate models to investigate large-scale changes in wind power across the globe. Our calculations reveal decreases in wind power across the Northern Hemisphere mid-latitudes and increases across the tropics and Southern Hemisphere, with substantial regional variations. The changes across the northern mid-latitudes are robust responses over time in both emissions scenarios, whereas the Southern Hemisphere changes appear critically sensitive to each individual emissions scenario. In addition, we find that established features of climate change can explain these patterns: polar amplification is implicated in the northern mid-latitude decrease in wind power, and enhanced land-sea thermal gradients account for the tropical and southern subtropical increases.

  19. Climate change impact on available water resources obtained using multiple global climate and hydrology models

    S. Hagemann

    2013-05-01

    Full Text Available Climate change is expected to alter the hydrological cycle resulting in large-scale impacts on water availability. However, future climate change impact assessments are highly uncertain. For the first time, multiple global climate (three and hydrological models (eight were used to systematically assess the hydrological response to climate change and project the future state of global water resources. This multi-model ensemble allows us to investigate how the hydrology models contribute to the uncertainty in projected hydrological changes compared to the climate models. Due to their systematic biases, GCM outputs cannot be used directly in hydrological impact studies, so a statistical bias correction has been applied. The results show a large spread in projected changes in water resources within the climate–hydrology modelling chain for some regions. They clearly demonstrate that climate models are not the only source of uncertainty for hydrological change, and that the spread resulting from the choice of the hydrology model is larger than the spread originating from the climate models over many areas. But there are also areas showing a robust change signal, such as at high latitudes and in some midlatitude regions, where the models agree on the sign of projected hydrological changes, indicative of higher confidence in this ensemble mean signal. In many catchments an increase of available water resources is expected but there are some severe decreases in Central and Southern Europe, the Middle East, the Mississippi River basin, southern Africa, southern China and south-eastern Australia.

  20. Rain events decrease boreal peatland net CO2 uptake through reduced light availability.

    Nijp, Jelmer J; Limpens, Juul; Metselaar, Klaas; Peichl, Matthias; Nilsson, Mats B; van der Zee, Sjoerd E A T M; Berendse, Frank

    2015-06-01

    Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short-term exchange and the long-term storage of atmospheric carbon dioxide (CO2 ) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11-year time series of half-hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2 . The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23-0.54 gC m(-2) . On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely

  1. Above- and belowground linkages in Sphagnum peatland: climate warming affects plant-microbial interactions.

    Jassey, Vincent E J; Chiapusio, Geneviève; Binet, Philippe; Buttler, Alexandre; Laggoun-Défarge, Fatima; Delarue, Frédéric; Bernard, Nadine; Mitchell, Edward A D; Toussaint, Marie-Laure; Francez, André-Jean; Gilbert, Daniel

    2013-03-01

    Peatlands contain approximately one third of all soil organic carbon (SOC). Warming can alter above- and belowground linkages that regulate soil organic carbon dynamics and C-balance in peatlands. Here we examine the multiyear impact of in situ experimental warming on the microbial food web, vegetation, and their feedbacks with soil chemistry. We provide evidence of both positive and negative impacts of warming on specific microbial functional groups, leading to destabilization of the microbial food web. We observed a strong reduction (70%) in the biomass of top-predators (testate amoebae) in warmed plots. Such a loss caused a shortening of microbial food chains, which in turn stimulated microbial activity, leading to slight increases in levels of nutrients and labile C in water. We further show that warming altered the regulatory role of Sphagnum-polyphenols on microbial community structure with a potential inhibition of top predators. In addition, warming caused a decrease in Sphagnum cover and an increase in vascular plant cover. Using structural equation modelling, we show that changes in the microbial food web affected the relationships between plants, soil water chemistry, and microbial communities. These results suggest that warming will destabilize C and nutrient recycling of peatlands via changes in above- and belowground linkages, and therefore, the microbial food web associated with mosses will feedback positively to global warming by destabilizing the carbon cycle. This study confirms that microbial food webs thus constitute a key element in the functioning of peatland ecosystems. Their study can help understand how mosses, as ecosystem engineers, tightly regulate biogeochemical cycling and climate feedback in peatlands. © 2012 Blackwell Publishing Ltd.

  2. Small-scale variability in peatland pore-water biogeochemistry, Hudson Bay Lowland, Canada.

    Ulanowski, T A; Branfireun, B A

    2013-06-01

    The Hudson Bay Lowland (HBL) of northern Ontario, Manitoba and Quebec, Canada is the second largest contiguous peatland complex in the world, currently containing more than half of Canada's soil carbon. Recent concerns about the ecohydrological impacts to these large northern peatlands resulting from climate change and resource extraction have catalyzed a resurgence in scientific research into this ecologically important region. However, the sheer size, heterogeneity and elaborate landscape arrangements of this ecosystem raise important questions concerning representative sampling of environmental media for chemical or physical characterization. To begin to quantify such variability, this study assessed the small-scale spatial (1m) and short temporal (21 day) variability of surface pore-water biogeochemistry (pH, dissolved organic carbon, and major ions) in a Sphagnum spp.-dominated, ombrotrophic raised bog, and a Carex spp.-dominated intermediate fen in the HBL. In general, pore-water pH and concentrations of dissolved solutes were similar to previously reported literature values from this region. However, systematic sampling revealed consistent statistically significant differences in pore-water chemistries between the bog and fen peatland types, and large within-site spatiotemporal variability. We found that microtopography in the bog was associated with consistent differences in most biogeochemical variables. Temporal changes in dissolved solute chemistry, particularly base cations (Na(+), Ca(2+) and Mg(2+)), were statistically significant in the intermediate fen, likely a result of a dynamic connection between surficial waters and mineral-rich deep groundwater. In both the bog and fen, concentrations of SO4(2-) showed considerable spatial variability, and a significant decrease in concentrations over the study period. The observed variability in peatland pore-water biogeochemistry over such small spatial and temporal scales suggests that under-sampling in

  3. The impact of climate change on Canadian peatlands

    Tarnocai, C.

    2009-01-01

    This paper discussed the sensitivity of Canadian peatlands to climate change, with particular emphasis on the carbon dynamics, water regime changes and the contribution of peatlands to atmospheric greenhouse gases. Peatlands cover 12 per cent of the Canadian landscape, with most occurring in the boreal and subarctic regions. In total, the peatlands contain nearly 147 Gt of soil organic carbon, or about 56 per cent of the organic carbon stored in all Canadian soils. A peatland sensitivity model that was used to determine the effect of climate warming on peatlands revealed that about 60 per cent of the boreal and subarctic regions and 56 per cent of the organic carbon mass in all Canadian peatlands will be severely to extremely severely affected by climate change, and at an accelerated rate than ever before. Climate change predictions suggest that the greatest effects of climate warming on Canadian peatlands will occur in areas with perennially frozen peat. The major concern in these areas is that the melting of the frozen peat will result in waterlogged conditions. In contrast, drying of non-permafrost peatlands will result in a higher frequency and extent of wildfires. As a result of these changes, large amounts of carbon in the forms of carbon dioxide (CO 2 ) and methane (CH 4 ) will be released into the atmosphere from these peatlands, which will further accelerate climate warming. 43 refs., 2 tabs., 7 figs.

  4. Global demand for rare earth resources and strategies for green mining

    Dutta, Tanushree [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Kim, Ki-Hyun, E-mail: kkim61@hanyang.ac.kr [Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Uchimiya, Minori [USDA-ARS Southern Regional Research Center, 1100 Robert E. Lee Boulevard, New Orleans, LA 70124 (United States); Kwon, Eilhann E. [Department of Environment and Energy, Sejong University, Seoul 05006 (Korea, Republic of); Jeon, Byong-Hun [Department of Natural Resources & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763 (Korea, Republic of); Deep, Akash [Central Scientific Instruments Organisation (CSIR-CSIO), Sector 30C, Chandigarh 160030 (India); Yun, Seong-Taek [Department of Earth and Environmental Sciences and KU-KIST Green School, Korea University, Seoul 02841 (Korea, Republic of)

    2016-10-15

    Rare earth elements (REEs) are essential raw materials for emerging renewable energy resources and ‘smart’ electronic devices. Global REE demand is slated to grow at an annual rate of 5% by 2020. This high growth rate will require a steady supply base of REEs in the long run. At present, China is responsible for 85% of global rare earth oxide (REO) production. To overcome this monopolistic supply situation, new strategies and investments are necessary to satisfy domestic supply demands. Concurrently, environmental, economic, and social problems arising from REE mining must be addressed. There is an urgent need to develop efficient REE recycling techniques from end-of-life products, technologies to minimize the amount of REEs required per unit device, and methods to recover them from fly ash or fossil fuel-burning wastes.

  5. Natural resources: adjusting and innovating - Hydro-Quebec in the global age

    Ouellet, D.

    1995-01-01

    Although it is believed that the information economy is replacing the mass economy, many companies continue to grow on economies based on natural resources. Recent aggressive growth by Hydro-Quebec in the highly competitive market for energy products was singled out as one of the success stories. Among other things, Hydro-Quebec was reported to focus attention on the globalization of electricity products, particularly in Asia, Europe and Africa. The corporation was said to cooperate with other utilities companies such as Ontario Hydro and Power Asia Assets Corporation to diversify its markets abroad. Hydro-Quebec is also marketing new products, developed in its laboratories and by subsidiaries, such as power system simulators and power system planning and management systems, on a global scale

  6. Managing peatland vegetation for drinking water treatment.

    Ritson, Jonathan P; Bell, Michael; Brazier, Richard E; Grand-Clement, Emilie; Graham, Nigel J D; Freeman, Chris; Smith, David; Templeton, Michael R; Clark, Joanna M

    2016-11-18

    Peatland ecosystem services include drinking water provision, flood mitigation, habitat provision and carbon sequestration. Dissolved organic carbon (DOC) removal is a key treatment process for the supply of potable water downstream from peat-dominated catchments. A transition from peat-forming Sphagnum moss to vascular plants has been observed in peatlands degraded by (a) land management, (b) atmospheric deposition and (c) climate change. Here within we show that the presence of vascular plants with higher annual above-ground biomass production leads to a seasonal addition of labile plant material into the peatland ecosystem as litter recalcitrance is lower. The net effect will be a smaller litter carbon pool due to higher rates of decomposition, and a greater seasonal pattern of DOC flux. Conventional water treatment involving coagulation-flocculation-sedimentation may be impeded by vascular plant-derived DOC. It has been shown that vascular plant-derived DOC is more difficult to remove via these methods than DOC derived from Sphagnum, whilst also being less susceptible to microbial mineralisation before reaching the treatment works. These results provide evidence that practices aimed at re-establishing Sphagnum moss on degraded peatlands could reduce costs and improve efficacy at water treatment works, offering an alternative to 'end-of-pipe' solutions through management of ecosystem service provision.

  7. Stability of peatland carbon to rising temperatures

    R. M. Wilson; A. M. Hopple; M. M. Tfaily; S. D. Sebestyen; C. W. Schadt; L. Pfeifer-Meister; C. Medvedeff; K. J. McFarlane; J. E. Kostka; M. Kolton; R.K. Kolka; L. A. Kluber; J. K. Keller; T. P. Guilderson; N. A. Griffiths; J. P. Chanton; S. D. Bridgham; P. J. Hanson

    2016-01-01

    Peatlands contain one-third of soil carbon (C), mostly buried in deep, saturated anoxic zones (catotelm). The response of catotelm C to climate forcing is uncertain, because prior experiments have focused on surface warming. We show that deep peat heating of a 2 m-thick peat column results in an exponential increase in CH4 emissions. However,...

  8. Born Again Globals and the reconfiguration of Resources in the Internationalization Process

    Servais, Per; Decker, Arnim

    perspective in depth in the context of international new ventures (INVs) and particularly toward their marketing activities, but even fewer studies has research the very same in ”born-again” globals firms (Bell et al. 2001). Internationalization is recognized as a valuable strategy for organizations’ growth......Internationalization has become an issue in most small and medium sized enterprises (SMEs), and literature has emphasized the role of strategic choices focusing on several aspects, such as motivations, entry mode choices, internationalization process. Few studies have examined the social capital...... pathways taken by the family firm are identified eg. the level of commitment toward internationalization, the resources available, and the ability to commit and use those resources to develop the required capabilities. Furthermore, how the owner makes international decisions is explored and four...

  9. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.

    2007-12-01

    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land

  10. Global Fund investments in human resources for health: innovation and missed opportunities for health systems strengthening.

    Bowser, Diana; Sparkes, Susan Powers; Mitchell, Andrew; Bossert, Thomas J; Bärnighausen, Till; Gedik, Gulin; Atun, Rifat

    2014-12-01

    Since the early 2000s, there have been large increases in donor financing of human resources for health (HRH), yet few studies have examined their effects on health systems. To determine the scope and impact of investments in HRH by the Global Fund to Fight AIDS, Tuberculosis and Malaria (Global Fund), the largest investor in HRH outside national governments. We used mixed research methodology to analyse budget allocations and expenditures for HRH, including training, for 138 countries receiving money from the Global Fund during funding rounds 1-7. From these aggregate figures, we then identified 27 countries with the largest funding for human resources and training and examined all HRH-related performance indicators tracked in Global Fund grant reports. We used the results of these quantitative analyses to select six countries with substantial funding and varied characteristics-representing different regions and income levels for further in-depth study: Bangladesh (South and West Asia, low income), Ethiopia (Eastern Africa, low income), Honduras (Latin America, lower-middle income), Indonesia (South and West Asia, lower-middle income), Malawi (Southern Africa, low income) and Ukraine (Eastern Europe and Central Asia, upper-middle income). We used qualitative methods to gather information in each of the six countries through 159 interviews with key informants from 83 organizations. Using comparative case-study analysis, we examined Global Fund's interactions with other donors, as well as its HRH support and co-ordination within national health systems. Around US$1.4 billion (23% of total US$5.1 billion) of grant funding was allocated to HRH by the 138 Global Fund recipient countries. In funding rounds 1-7, the six countries we studied in detail were awarded a total of 47 grants amounting to US$1.2 billion and HRH budgets of US$276 million, of which approximately half were invested in disease-focused in-service and short-term training activities. Countries employed

  11. Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs

    Ellis, T.; Petroski, R.; Hejzlar, P.; Zimmerman, G.; McAlees, D.; Whitmer, C.; Touran, N.; Hejzlar, J.; Weave, K.; Walter, J. C.; McWhirter, J.; Ahlfeld, C.; Burke, T.; Odedra, A.; Hyde, R.; Gilleland, J.; Ishikawa, Y.; Wood, L.; Myhrvold, N.; Gates Iii, W. H.

    2010-01-01

    Rising environmental and economic concerns have signaled a desire to reduce dependence on hydrocarbon fuels. These concerns have brought the world to an inflection point and decisions made today will dictate what the global energy landscape will look like for the next half century or more. An optimal energy technology for the future must meet stricter standards than in the past; in addition to being economically attractive, it now must also be environmentally benign, sustainable and scalable to global use. For stationary energy, only one existing resource comes close to fitting all of the societal requirements for an optimal energy source: nuclear energy. Its demonstrated economic performance, power density, and emissions-free benefits significantly elevate nuclear electricity generation above other energy sources. However, the current nuclear fuel cycle has some attributes that make it challenging to expand on a global scale. Traveling-wave reactor (TWR) technology, being developed by TerraPower, LLC, represents a potential solution to these limitations by offering a nuclear energy resource which is truly sustainable at full global scale for the indefinite future and is deployable in the near-term. TWRs are capable of offering a ∼40-fold gain in fuel utilization efficiency compared to conventional light-water reactors burning enriched fuel. Such high fuel efficiency, combined with an ability to use uranium recovered from river water or sea-water (which has been recently demonstrated to be technically and economically feasible) suggests that enough fuel is readily available for TWRs to generate electricity for 10 billion people at United States per capita levels for million-year time-scales. Interestingly, the Earth's rivers carry into the ocean a flux of uranium several times greater than that required to replace the implied rate-of-consumption, so that the Earth's slowly-eroding crust will provide a readily-accessible flow of uranium sufficient for all of

  12. Abrupt vegetation transitions characterise long-term Amazonian peatland development

    Roucoux, K. H.; Baker, T. R.; Gosling, W. D.; Honorio Coronado, E.; Jones, T. D.; Lahteenoja, O.; Lawson, I. T.

    2012-04-01

    Recent investigations of wetlands in western Amazonia have revealed the presence of extensive peatlands with peat deposits of up to 8 m-thick developing under a variety of vegetation types (Lähteenoja et al. 2012). Estimated to cover 150,000 km2 (Schulman et al. 1999), these peatlands make a valuable contribution to landscape and biological diversity and represent globally important carbon stores. In order to understand the processes leading to peat formation, and the sensitivity of these environments to future climatic change, it is necessary to understand their long-term history. The extent to which peatland vegetation changes over time, the stability of particular communities, the controls on transitions between vegetation types and how these factors relate to the accumulation of organic matter are not yet known. We report the first attempt to establish the long-term (millennial scale) vegetation history of a recently-described peatland site: Quistococha, a palm swamp, or aguajal, close to Iquitos in northern Peru. The vegetation is dominated by Mauritia flexuosa and Mauritiella armata and occupies a basin which is thought to be an abandoned channel of the River Amazon. We obtained a 4 m-long peat sequence from the deepest part of the basin. AMS-radiocarbon dating yielded a maximum age of 2,212 cal yr BP for the base of the peat, giving an average accumulation rate of 18 cm per century. Below the peat are 2 m of uniform, largely inorganic pale grey clays of lacustrine origin, which are underlain by an unknown thickness of inorganic sandy-silty clay of fluvial origin. Pollen analysis, carried out at c. 88-year intervals, shows the last 2,212 years to be characterised by the development of at least four distinct vegetation communities, with peat accumulating throughout. The main phases were: (1) Formation of Cyperaceae (sedge) fen coincident with peat initiation; (2) A short-lived phase of local Mauritia/Mauritiella development; (3) Development of mixed wet

  13. Developing a national strategy for the conservation and sustainable use of peatlands in the Republic of Belarus

    A. Kozulin

    2018-03-01

    Full Text Available During most of the 20th century, peatlands in Belarus were regarded primarily as a strategic resource for agriculture and energy. In 1991, the Council of Ministers approved a “Scheme of Sustainable Use and Conservation of Peat Resources until 2010” (the “Scheme until 2010” which allocated a considerable fraction of the country’s mires to nature conservation. Expiry of that Scheme has prompted its replacement with the “National Strategy for the Conservation and Wise (Sustainable Use of Peatlands in the Republic of Belarus” (the “Strategy” supported by a new “Scheme until 2030”. The aim is to meet the requirements for both sustainable development of natural resources within Belarus and international conventions. This article describes the development of the Strategy, which was achieved in conjunction with a detailed appraisal of the current state of peatlands in Belarus. The outcome is that the “Scheme until 2030” allocates almost all of the mires that have so far been confirmed still to be in natural (pristine condition (684,200 ha or 29 % of the total peatland area to nature conservation, 19,600 ha (1 % as a reserve of ‘especially valuable’ peat, 99,100 ha (4 % for commercial peat extraction, and 1,592,600 ha (66 % for agriculture and forestry.

  14. Exploring Terra Incognita: Preliminary Reflections on the Impact of the Global Financial Crisis upon Human Resource Management.

    Zagelmeyer, S.J.; Gollan, P.J.

    2012-01-01

    Since 2007, the global financial crisis (GFC) appears not only to have shaken the foundations of the financial markets and the real economy; it also appears to have harmed the social and political life of many countries. For human resource management (HRM), the global crisis represents an external

  15. How can urbanization be sustainable? : a reflection on the role of city resources in global sustainable development

    Pereira Roders, A.R.

    2014-01-01

    This article is a contribution to the debate on the role of city resources in global sustainable development. It discusses the evolution of models in which urbanization is defined to be sustainable, as well as, their relation to the conservation of city resources. Further, it provides an in-depth

  16. Emissions of methane and nitrogen oxides from peatland ecosystems

    Martikainen, P.J.; Nykaenen, H.; Laang, K.; Alm, J.; Silvola, J.

    1994-01-01

    Climatic change may cause drier, warmer summer in the high latitudes and cause remarkable changes in gas fluxes on peatlands. Drained peatlands can be used as models to predict the long-term effects of increased peat aeration on trace gas fluxes. Results are presented from studies about emissions of CH 4 , N 2 O and NO in both virgin and drained Finnish peatlands, and give some information about the factors regulating the production and consumption of these trace gases

  17. An appraisal of Indonesia's immense peat carbon stock using national peatland maps: uncertainties and potential losses from conversion.

    Warren, Matthew; Hergoualc'h, Kristell; Kauffman, J Boone; Murdiyarso, Daniel; Kolka, Randall

    2017-12-01

    A large proportion of the world's tropical peatlands occur in Indonesia where rapid conversion and associated losses of carbon, biodiversity and ecosystem services have brought peatland management to the forefront of Indonesia's climate mitigation efforts. We evaluated peat volume from two commonly referenced maps of peat distribution and depth published by Wetlands International (WI) and the Indonesian Ministry of Agriculture (MoA), and used regionally specific values of carbon density to calculate carbon stocks. Peatland extent and volume published in the MoA maps are lower than those in the WI maps, resulting in lower estimates of carbon storage. We estimate Indonesia's total peat carbon store to be within 13.6 GtC (the low MoA map estimate) and 40.5 GtC (the high WI map estimate) with a best estimate of 28.1 GtC: the midpoint of medium carbon stock estimates derived from WI (30.8 GtC) and MoA (25.3 GtC) maps. This estimate is about half of previous assessments which used an assumed average value of peat thickness for all Indonesian peatlands, and revises the current global tropical peat carbon pool to 75 GtC. Yet, these results do not diminish the significance of Indonesia's peatlands, which store an estimated 30% more carbon than the biomass of all Indonesian forests. The largest discrepancy between maps is for the Papua province, which accounts for 62-71% of the overall differences in peat area, volume and carbon storage. According to the MoA map, 80% of Indonesian peatlands are peatlands is conservatively estimated to be 10.6 GtC, equivalent to 42% of Indonesia's total peat carbon and about 12 years of global emissions from land use change at current rates. Considering the high uncertainties in peatland extent, volume and carbon storage revealed in this assessment of current maps, a systematic revision of Indonesia's peat maps to produce a single geospatial reference that is universally accepted would improve national peat carbon storage estimates and

  18. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The U.S. Geological Survey assesses resources (mineral, energy, water, environmental, and biologic) at regional, national, and global scales to provide science in support of land management and decision making. Mineral resource assessments provide a synthesis of available information about where mineral deposits are known and suspected to be in the Earth’s crust, which commodities may be present, and estimates of amounts of resources in undiscovered deposits.

  19. The effects of global climate change on fish and wildlife resources

    LaRose, E.T.

    1991-01-01

    Climate models predict a global temperature rise of 3±1 degree C, a sea level rise of 0.5-1.0 m, increased frequency of extreme events, and possible doubling of ultraviolet B radiation by 2050. A significant decrease in precipitation will have the most important effect on fish and wildlife in the Great Plains region. Temperature change in the Great Plains region is likely to exceed the global average increase, due to lack of ocean buffering. Human competition for dwindling water resources is likely to exacerbate the impact on wildlife. Wetlands and waterfowl will be the most severely impacted groups on the Plains. The diversity of aquatic invertebrates is expected to decline, due to loss of brackish wetlands. A net decline in population of fish and amphibians is expected, due to the reduction in hydrologic regimes outweighing any temperature increase benefits. Loss of old growth, climax, and late successional stages is expected to be particularly severe. Rapid global climate change is expected to lead to a higher extinction rate. Effectiveness of existing protected areas is expected to decline

  20. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis

    Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation. PMID:26372160

  1. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis.

    Chen, Ning; Liu, Yun; Cheng, Yijie; Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.

  2. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis.

    Ning Chen

    Full Text Available Influenza virus vaccine (IVV is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a designs the technology classification system and search strategy for the identification of IVV; and (b presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.

  3. Governance of global health research consortia: Sharing sovereignty and resources within Future Health Systems.

    Pratt, Bridget; Hyder, Adnan A

    2017-02-01

    Global health research partnerships are increasingly taking the form of consortia that conduct programs of research in low and middle-income countries (LMICs). An ethical framework has been developed that describes how the governance of consortia comprised of institutions from high-income countries and LMICs should be structured to promote health equity. It encompasses initial guidance for sharing sovereignty in consortia decision-making and sharing consortia resources. This paper describes a first effort to examine whether and how consortia can uphold that guidance. Case study research was undertaken with the Future Health Systems consortium, performs research to improve health service delivery for the poor in Bangladesh, China, India, and Uganda. Data were thematically analysed and revealed that proposed ethical requirements for sharing sovereignty and sharing resources are largely upheld by Future Health Systems. Facilitating factors included having a decentralised governance model, LMIC partners with good research capacity, and firm budgets. Higher labour costs in the US and UK and the funder's policy of allocating funds to consortia on a reimbursement basis prevented full alignment with guidance on sharing resources. The lessons described in this paper can assist other consortia to more systematically link their governance policy and practice to the promotion of health equity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Global Uranium And Thorium Resources: Are They Adequate To Satisfy Demand Over The Next Half Century?

    Lambert, I. B.

    2012-04-01

    This presentation will consider the adequacy of global uranium and thorium resources to meet realistic nuclear power demand scenarios over the next half century. It is presented on behalf of, and based on evaluations by, the Uranium Group - a joint initiative of the OECD Nuclear Energy Agency and the International Atomic Energy Agency, of which the author is a Vice Chair. The Uranium Group produces a biennial report on Uranium Resources, Production and Demand based on information from some 40 countries involved in the nuclear fuel cycle, which also briefly reviews thorium resources. Uranium: In 2008, world production of uranium amounted to almost 44,000 tonnes (tU). This supplied approximately three-quarters of world reactor requirements (approx. 59,000 tU), the remainder being met by previously mined uranium (so-called secondary sources). Information on availability of secondary sources - which include uranium from excess inventories, dismantling nuclear warheads, tails and spent fuel reprocessing - is incomplete, but such sources are expected to decrease in market importance after 2013. In 2008, the total world Reasonably Assured plus Inferred Resources of uranium (recoverable at less than 130/kgU) amounted to 5.4 million tonnes. In addition, it is clear that there are vast amounts of uranium recoverable at higher costs in known deposits, plus many as yet undiscovered deposits. The Uranium Group has concluded that the uranium resource base is more than adequate to meet projected high-case requirements for nuclear power for at least half a century. This conclusion does not assume increasing replacement of uranium by fuels from reprocessing current reactor wastes, or by thorium, nor greater reactor efficiencies, which are likely to ameliorate future uranium demand. However, progressively increasing quantities of uranium will need to be mined, against a backdrop of the relatively small number of producing facilities around the world, geopolitical uncertainties and

  5. Wetland restoration: a survey of options for restoring peatlands

    Lode, Elve

    1999-01-01

    In spite of increased attention to wetland conservation following the Ramsar Convention on Wetlands of International Importance, the peat-harvesting industry in many countries is still interested in the further exploitation of peatlands. In some of the most industrialised countries, all natural peatlands have already been lost. In others, only small areas of native peatland remain. Among other possible uses for cut-over peatlands, peatland restoration is one: there is an urgent need for the development of measures for regenerating peat-accumulation processes. The redevelopment of a fen or bog peat landscape is a long-term process, which will probably take centuries. The restoration of any peatland may therefore be considered successful if the outcome is the development and growth of plant communities able to produce peat. The renewal of the hydrological regime of such areas is a major factor which determines the re-colonisation of cut-over peat fields by peat-forming plants. The aim of this paper is to give a brief survey of wetlands, and especially of peatland restoration options, for use in terminated peat-cuttings. It aims to show how peatland management may be made sustainable by means of existing and tried methods and principles, with the goal of returning cut-over peat fields to their former peat-accumulating state. A glossary of peat and peatland terminology is included 105 refs, 5 figs

  6. Limited Resources, Limited Opportunities, and the Accumulation of Disadvantage: Evidence from the Global Survey of Physicists

    Ivie, Rachel

    2012-03-01

    Using the results of the Global Survey of Physicists, which we conducted in collaboration with the International Union of Pure and Applied Physics Working Group on Women, we document the effect of limited resources and opportunities on women physicists' careers. We find that women respondents are less likely than men to report access to a variety of resources and opportunities that would be helpful in advancing a scientific career. These include access to funding, travel money, lab and office space, equipment, clerical support, and availability of employees or students to help with research. When asked about specific opportunities, women report fewer invited talks and overseas research opportunities. Women who responded are less likely to have been journal editors, acted as bosses or managers, advised graduate students, served on thesis or dissertation committees, and served on committees for grant agencies. We also show the disproportionate effects of children on women physicists' careers. Women who responded are more likely than men to have changed their work situations upon becoming parents. Mothers are more likely than men and women without children to report that their careers have progressed more slowly than colleagues who finished their degrees at the same time. Furthermore, women are more likely than men to report that their careers affected the decisions they made about marriage and children. The results of this survey draw attention to the need to focus on factors other than representation when discussing the situation of women in physics. 15,000 physicists in 130 countries answered this survey, and across all these countries, women have fewer resources and opportunities and are more affected by cultural expectations concerning child care. Cultural expectations about home and family are difficult to change. However, for women to have successful outcomes and advance in physics, they must have equal access to resources and opportunities.

  7. Impacts of peatland and permafrost changes on the terrestrial carbon storage over the last 21 ka

    Spahni, Renato; Stocker, Benjamin D.; Joos, Fortunat

    2014-05-01

    Paleoclimate records and global climate-carbon cycle models suggest a net increase in land carbon (C) storage between 300 and 700 Pg C (1 Pg C = 1015 g C) during the transition from the last glacial maximum (LGM), the Holocene up to the preindustrial period. Peat accumulation rate records imply an increase in peatland C of ~600 Pg C over the course of the Holocene. In high northern latitudes mineral and organic soils are subject to permafrost formation, which is believed to have been more extensive during glacial compared to interglacial periods. Soil C in permafrost regions represents the largest inert C pool on land at present. The spatio-temporal evolution, however, of C stocks in soils and vegetation remains poorly quantified and is uncertain. Here, the Land surface Processes and eXchanges (LPX-Bern) Dynamic Global Vegetation Model is applied in transient simulations to explore the evolution of permafrost, peatland and vegetation C over the last 21'000 years. The model is forced with temperature and precipitation output from the Trace-21ka climate simulation, and dynamically simulates the formation and disappearance of peatlands and permafrost soils, vegetation distribution and C stocks. Results indicate that peatlands and permfrost areas existed further south in the LGM, in agreement with available proxy information, and that their associated C was lost during the transition into the Holocene. The simulated loss of inert C is over-compensated by vegetation regrowth. The timing of the C relocation on land is compared to observational evidence from paleoclimate archives and estimates from ocean C inventory changes.

  8. Global Equity and Resource Sustainability: the Central Roles of Conservation and Enhanced Efficiency

    Ernst, W. G.

    2002-05-01

    The terrestrial biosphere arose at approximately 3.5 Ga, and since the early Archean, evolving life has maintained a dynamic equilibrium with solar energy and resources derived from the lithosphere, hydrosphere and atmosphere. This well-integrated system persisted after the emergence of Homo sapiens while we remained in a hunter/gatherer mode. Beginning about 10,000 years ago, settled agriculture allowed for division of labor, and the rise of civilization. World population now exceeds six billion individuals, and is growing at about ninety million annually. By about 2050, demographic estimates put our numbers at 9-10 billion. Approximately 85 percent of humanity now reside in the Developing Nations. Most people desire the increased standard of living now confined to the Industrialized Nations (due largely to exploitation of the planet). The present distribution of wealth is grossly inequitable and politically destabilizing. But can all people be afforded reasonably comfortable lives without destroying planetary habitability? Of the Earth's net primary biological production, humans control about a third, and our share is increasing. The impact on the environment is largely adverse, resulting in heightened air and water pollution, accelerated loss of biodiversity, ecosystem services, topsoil, fisheries, tropical rain forests, and in global warming + sea-level rise. Implications for human welfare and for viability of the web of life are ominous. Modern societies are sustained by the extraction of energy, water, and other Earth materials far beyond renewal rates, limiting future global carrying capacity. Island communities (e. g., Easter Island, Haiti, Madagascar) provide sobering examples of the fate of cultures that overexploit their environments. The biological carrying capacity of the planet is unknown but finite, hence humanity eventually must reach a managed steady state involving efficient, universal resource recovery and world-wide conservation, while

  9. On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities

    Mercure, Jean-François; Salas, Pablo

    2013-01-01

    A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an endogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the current state and possible uses of remaining non-renewable resources such as fossil fuels and natural uranium. The theory is however designed for use within economic or technology models that allow technology substitutions. In this work, it is implemented in the global power sector model FTT:Power. Policy implications are given. - Highlights: • Theoretical model to forecast marginal costs of non-renewable resources. • Tracks the consumption and costs of non-renewable resources. • For use in economic or technology models

  10. Fine root production at drained peatland sites

    Finer, L [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1997-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  11. Fine root production at drained peatland sites

    Finer, L. [Finnish Forest Research Inst. (Finland). Joensuu Research Station; Laine, J. [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1996-12-31

    The preliminary results of the Finnish project `Carbon balance of peatlands and climate change` show that fine roots play an important role in carbon cycling on peat soils. After drainage the roots of mire species are gradually replaced by the roots of trees and other forest species. Pine fine root biomass reaches a maximum level by the time of crown closure, some 20 years after drainage on pine mire. The aim of this study is to compare the results of the sequential coring method and the ingrowth bag method used for estimating fine root production on three drained peatland sites of different fertility. The results are preliminary and continuation to the work done in the study Pine root production on drained peatlands, which is part of the Finnish project `Carbon cycling on peatlands and climate change`. In this study the fine root biomass was greater on the poor site than on the rich sites. Pine fine root production increased with the decrease in fertility. Root turnover and the production of field layer species were greater on the rich sites than on the poor site. The results suggested that the in growth bag method measured more root activity than the magnitude of production. More than two growing seasons would have been needed to balance the root dynamics in the in growth bags with the surrounding soil. That time would probably have been longer on the poor site than on the rich ones and longer for pine and field layer consisting of dwarf shrubs than for field layer consisting of sedge like species and birch. (11 refs.)

  12. Variable carbon losses from recurrent fires in drained tropical peatlands.

    Konecny, Kristina; Ballhorn, Uwe; Navratil, Peter; Jubanski, Juilson; Page, Susan E; Tansey, Kevin; Hooijer, Aljosja; Vernimmen, Ronald; Siegert, Florian

    2016-04-01

    Tropical peatland fires play a significant role in the context of global warming through emissions of substantial amounts of greenhouse gases. However, the state of knowledge on carbon loss from these fires is still poorly developed with few studies reporting the associated mass of peat consumed. Furthermore, spatial and temporal variations in burn depth have not been previously quantified. This study presents the first spatially explicit investigation of fire-driven tropical peat loss and its variability. An extensive airborne Light Detection and Ranging data set was used to develop a prefire peat surface modelling methodology, enabling the spatially differentiated quantification of burned area depth over the entire burned area. We observe a strong interdependence between burned area depth, fire frequency and distance to drainage canals. For the first time, we show that relative burned area depth decreases over the first four fire events and is constant thereafter. Based on our results, we revise existing peat and carbon loss estimates for recurrent fires in drained tropical peatlands. We suggest values for the dry mass of peat fuel consumed that are 206 t ha(-1) for initial fires, reducing to 115 t ha(-1) for second, 69 t ha(-1) for third and 23 t ha(-1) for successive fires, which are 58-7% of the current IPCC Tier 1 default value for all fires. In our study area, this results in carbon losses of 114, 64, 38 and 13 t C ha(-1) for first to fourth fires, respectively. Furthermore, we show that with increasing proximity to drainage canals both burned area depth and the probability of recurrent fires increase and present equations explaining burned area depth as a function of distance to drainage canal. This improved knowledge enables a more accurate approach to emissions accounting and will support IPCC Tier 2 reporting of fire emissions. © 2015 John Wiley & Sons Ltd.

  13. Sequestration of arsenic in ombrotrophic peatlands

    Rothwell, James; Hudson-Edwards, Karen; Taylor, Kevin; Polya, David; Evans, Martin; Allott, Tim

    2014-05-01

    Peatlands can be important stores of arsenic but we are lacking spectroscopic evidence of the sequestration pathways of this toxic metalloid in peatland environments. This study reports on the solid-phase speciation of anthropogenically-derived arsenic in atmospherically contaminated peat from the Peak District National Park (UK). Surface and sub-surface peat samples were analysed by synchrotron X-ray absorption spectroscopy on B18 beamline at Diamond Light Source (UK). The results suggest that there are contrasting arsenic sequestration mechanisms in the peat. The bulk arsenic speciation results, in combination with strong arsenic-iron correlations at the surface, suggest that iron (hydr)oxides are key phases for the immobilisation of arsenic at the peat surface. In contrast, the deeper peat samples are dominated by arsenic sulphides (arsenopyrite, realgar and orpiment). Given that these peats receive inputs solely from the atmosphere, the presence of these sulphide phases suggests an in-situ authigenic formation. Redox oscillations in the peat due to a fluctuating water table and an abundant store of legacy sulphur from historic acid rain inputs may favour the precipitation of arsenic sequestering sulphides in sub-surface horizons. Oxidation-induced loss of these arsenic sequestering sulphur species by water table drawdown has important implications for the mobility of arsenic and the quality of waters draining peatlands.

  14. Open Data as Open Educational Resources: Towards Transversal Skills and Global Citizenship

    Javiera Atenas

    2015-11-01

    Full Text Available Open Data is the name given to datasets which have been generated by international organisations, governments, NGOs and academic researchers, and made freely available online and openly-licensed. These datasets can be used by educators as Open Educational Resources (OER to support different teaching and learning activities, allowing students to gain experience working with the same raw data researchers and policy-makers generate and use. In this way, educators can facilitate students to understand how information is generated, processed, analysed and interpreted. This paper offers an initial exploration of ways in which the use of Open Data can be key in the development of transversal skills (including digital and data literacies, alongside skills for critical thinking, research, teamwork, and global citizenship, enhancing students’ abilities to understand and select information sources, to work with, curate, analyse and interpret data, and to conduct and evaluate research. This paper also presents results of an exploratory survey that can guide further research into Open Data-led learning activities. Our goal is to support educators in empowering students to engage, critically and collaboratively, as 21st century global citizens.

  15. Global Human Appropriation of Net Primary Production and Associated Resource Decoupling: 2010-2050.

    Zhou, Chuanbin; Elshkaki, Ayman; Graedel, T E

    2018-02-06

    Human appropriation of net primary production (HANPP) methodology has previously been developed to assess the intensity of anthropogenic extraction of biomass resources. However, there is limited analysis concerning future trends of HANPP. Here we present four scenarios for global biomass demand and HANPP harv (the most key component of HANPP) from 2010 to 2050 by incorporating data on expanded historical drivers and disaggregated biomass demand (food, wood material, and fuelwood). The results show that the biomass demand has the lowest value in the equitability world scenario (an egalitarian vision) and the highest value in the security foremost scenario (an isolationist vision). The biomass demand for food and materials increases over time, while fuelwood demand decreases over time. Global HANPP harv rises to between 8.5 and 10.1 Pg C/yr in 2050 in the four scenarios, 14-35% above its value in 2010, and some 50% of HANPP harv is calculated to be crop residues, wood residues, and food losses in the future. HANPP harv in developing regions (Asia, Africa, and Latin America) increases faster than that in more-developed regions (North America and Europe), due to urbanization, population growth, and increasing income. Decoupling of HANPP harv and socioeconomic development is also discussed in this work.

  16. Land Use, Climate, and Water Resources-Global Stages of Interaction.

    Kaushal, Sujay S; Gold, Arthur J; Mayer, Paul M

    2017-10-24

    Land use and climate change can accelerate the depletion of freshwater resources that support humans and ecosystem services on a global scale. Here, we briefly review studies from around the world, and highlight those in this special issue. We identify stages that characterize increasing interaction between land use and climate change. During the first stage, hydrologic modifications and the built environment amplify overland flow via processes associated with runoff-dominated ecosystems (e.g., soil compaction, impervious surface cover, drainage, and channelization). During the second stage, changes in water storage impact the capacity of ecosystems to buffer extremes in water quantity and quality (e.g., either losses in snowpack, wetlands, and groundwater recharge or gains in water and nutrient storage behind dams in reservoirs). During the third stage, extremes in water quantity and quality contribute to losses in ecosystem services and water security (e.g., clean drinking water, flood mitigation, and habitat availability). During the final stage, management and restoration strategies attempt to regain lost ecosystem structure, function, and services but need to adapt to climate change. By anticipating the increasing interaction between land use and climate change, intervention points can be identified, and management strategies can be adjusted to improve outcomes for realistic expectations. Overall, global water security cannot be adequately restored without considering an increasing interaction between land use and climate change across progressive stages and our ever-increasing human domination of the water cycle from degradation to ecosystem restoration.

  17. Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use.

    Kummu, M; de Moel, H; Porkka, M; Siebert, S; Varis, O; Ward, P J

    2012-11-01

    Reducing food losses and waste is considered to be one of the most promising measures to improve food security in the coming decades. Food losses also affect our use of resources, such as freshwater, cropland, and fertilisers. In this paper we estimate the global food supply losses due to lost and wasted food crops, and the resources used to produce them. We also quantify the potential food supply and resource savings that could be made by reducing food losses and waste. We used publically available global databases to conduct the study at the country level. We found that around one quarter of the produced food supply (614 kcal/cap/day) is lost within the food supply chain (FSC). The production of these lost and wasted food crops accounts for 24% of total freshwater resources used in food crop production (27 m(3)/cap/yr), 23% of total global cropland area (31 × 10(-3)ha/cap/yr), and 23% of total global fertiliser use (4.3 kg/cap/yr). The per capita use of resources for food losses is largest in North Africa & West-Central Asia (freshwater and cropland) and North America & Oceania (fertilisers). The smallest per capita use of resources for food losses is found in Sub-Saharan Africa (freshwater and fertilisers) and in Industrialised Asia (cropland). Relative to total food production, the smallest food supply and resource losses occur in South & Southeast Asia. If the lowest loss and waste percentages achieved in any region in each step of the FSC could be reached globally, food supply losses could be halved. By doing this, there would be enough food for approximately one billion extra people. Reducing the food losses and waste would thus be an important step towards increased food security, and would also increase the efficiency of resource use in food production. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Developing a Resource for Implementing ArcSWAT Using Global Datasets

    Taggart, M.; Caraballo Álvarez, I. O.; Mueller, C.; Palacios, S. L.; Schmidt, C.; Milesi, C.; Palmer-Moloney, L. J.

    2015-12-01

    This project developed a comprehensive user manual outlining methods for adapting and implementing global datasets for use within ArcSWAT for international and worldwide applications. The Soil and Water Assessment Tool (SWAT) is a hydrologic model that looks at a number of hydrologic variables including runoff and the chemical makeup of water at a given location on the Earth's surface using Digital Elevation Models (DEM), land cover, soil, and weather data. However, the application of ArcSWAT for projects outside of the United States is challenging as there is no standard framework for inputting global datasets into ArcSWAT. This project aims to remove this obstacle by outlining methods for adapting and implementing these global datasets via the user manual. The manual takes the user through the processes of data conditioning while providing solutions and suggestions for common errors. The efficacy of the manual was explored using examples from watersheds located in Puerto Rico, Mexico and Western Africa. Each run explored the various options for setting up a ArcSWAT project as well as a range of satellite data products and soil databases. Future work will incorporate in-situ data for validation and calibration of the model and outline additional resources to assist future users in efficiently implementing the model for worldwide applications. The capacity to manage and monitor freshwater availability is of critical importance in both developed and developing countries. As populations grow and climate changes, both the quality and quantity of freshwater are affected resulting in negative impacts on the health of the surrounding population. The use of hydrologic models such as ArcSWAT can help stakeholders and decision makers understand the future impacts of these changes enabling informed and substantiated decisions.

  19. Combining short-term manipulative experiments with long-term palaeoecological investigations at high resolution to assess the response of Sphagnum peatlands to drought, fire and warming

    M. Lamentowicz

    2016-09-01

    Full Text Available Northern hemisphere peatlands are substantial carbon stores. However, recent climate change and human impacts (e.g., drainage and atmospheric nutrient deposition may trigger the emission of their stored carbon to the atmosphere. Biodiversity losses are also an important consequence of those changes. Therefore, there is a need to recognise these processes in space and time. Global change experiments are often conducted to improve our understanding of the potential responses of various ecosystems to global warming and drought. Most of the experiments carried out in peatlands are focused on carbon balance and nitrogen deposition. Nevertheless, it is still unclear how fast peatlands respond to temperature changes and water-table lowering in the continental climate setting. This is important because continental regions account for a significant proportion of all northern hemisphere peatlands. A combination of short-term and long-term approaches in a single research project is especially helpful because it facilitates the correct interpretation of experimental data. Here we describe the CLIMPEAT project - a manipulative field experiment in a Sphagnum-dominated peatland supported by a high-resolution multi-proxy palaeoecological study. The design of the field experiment (e.g., treatments, methodology and biogeographical setting are presented. We suggest it is beneficial to support field experiments with an investigation of past environmental changes in the studied ecosystem, as human impacts during the past 300 years have already caused substantial changes in ecosystem functioning which may condition the response in experimental studies.

  20. International Trade Drives Global Resource Use: A Structural Decomposition Analysis of Raw Material Consumption from 1990-2010.

    Plank, Barbara; Eisenmenger, Nina; Schaffartzik, Anke; Wiedenhofer, Dominik

    2018-04-03

    Globalization led to an immense increase of international trade and the emergence of complex global value chains. At the same time, global resource use and pressures on the environment are increasing steadily. With these two processes in parallel, the question arises whether trade contributes positively to resource efficiency, or to the contrary is further driving resource use? In this article, the socioeconomic driving forces of increasing global raw material consumption (RMC) are investigated to assess the role of changing trade relations, extended supply chains and increasing consumption. We apply a structural decomposition analysis of changes in RMC from 1990 to 2010, utilizing the Eora multi-regional input-output (MRIO) model. We find that changes in international trade patterns significantly contributed to an increase of global RMC. Wealthy developed countries play a major role in driving global RMC growth through changes in their trade structures, as they shifted production processes increasingly to less material-efficient input suppliers. Even the dramatic increase in material consumption in the emerging economies has not diminished the role of industrialized countries as drivers of global RMC growth.

  1. A Global Look at Future Trends in the Renewable Energy Resource

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  2. The institutional fit of peatland governance in Indonesia

    Uda, Saritha Kittie; Schouten, Greetje; Hein, Lars

    2018-01-01

    The Government of Indonesia has published a number of policies and regulations to better manage its vast amount of tropical peatland, yet the degradation and conversion of Indonesian peatlands still continues. This paper analyses the institutional fit between Indonesian regulations related to

  3. Element cycling in upland/peatland watersheds Chapter 8.

    Noel Urban; Elon S. Verry; Steven Eisenreich; David F. Grigal; Stephen D. Sebestyen

    2011-01-01

    Studies at the Marcell Experimental Forest (MEF) have measured the pools, cycling, and transport of a variety of elements in both the upland and peatland components of the landscape. Peatlands are important zones of element retention and biogeochemical reactions that greatly influence the chemistry of surface water. In this chapter, we summarize findings on nitrogen (N...

  4. Assessment of chemical properties of tropical peatland soil in ...

    The chemical assessment of the peatland in oil palm plantation in South Selangor Peatland Swamp in Malaysia were evaluated in this study. Soil samples were obtained from fifteen (15) different locations within the study area at three different depths of 0.5m, 1.5 m, and 2.5 m in three replicates at each depth, using peat ...

  5. Plant diversity associated with pools in natural and restored peatlands

    N. Fontaine

    2007-06-01

    Full Text Available This study describes plant assemblages associated with the edges of peatland pools. We conducted inventories in six natural peatlands in the province of Québec (Canada in order to measure the contribution of pools to species diversity in climatic regions where peatlands are used for peat extraction. We also carried out vegetation surveys in a peatland that has been restored after peat extraction/harvesting to determine whether pool vegetation establishes along the edges of created pools when dry surface restoration techniques only are used. Pools enhanced plant species richness in natural peatlands. Around created pools, species associated with natural pools were still absent, and non-bog species were present, six years after restoration. On this basis, we emphasise the importance of preserving natural peatlands with pools. In order to restore fully the plant diversity associated with peatlands at harvested sites, it may be necessary to modify pool excavation techniques so that created pools resemble more closely those in natural peatlands. Active introduction of the plant species or communities associated with natural pools may also be needed; candidate species for North America include Andromeda glaucophylla, Cladopodiella fluitans, Carex limosa, Eriophorum virginicum, Rhynchospora alba and Sphagnum cuspidatum.

  6. Inventory and monitoring options of peatlands at regional scale

    Gardi, Ciro; Sommer, Stefan; Seep, Kalev

    2010-01-01

    Determination of the spatial extent of peatlands and monitoring their status is important for the evaluation of soil carbon stocks and greenhouse gas fluxes. At European Level there is a need to provide accurate and updated estimate of the distribution of peatlands. Comparison of national data wi...

  7. Peatlands and carbon flows. Outlook and importance for the Netherlands

    Verhagen, A.; Van den Akker, J.J.H.; Diemont, W.H.; Schrijver, R.A.M.; Wosten, H.M.; Blok, C.; Joosten, J.H.J.; Schouten, M.A.; Den Uyl, R.M.; Verweij, P.A.

    2010-02-01

    Peatlands are found on all continents, however, uncertainties regarding their size and exact locations are very high. Horticulture is the main user of peat in the Netherlands. Compared to other terrestrial ecosystems, peatlands are the most space-effective carbon stocks. Annual emissions of carbon dioxide from peat import for Dutch horticulture is between 0.2 and 0.3 Mt. Climate change will considerably increase most problems associated with peat soils in the Netherlands. It is difficult to establish a correlation between economic activities within the Netherlands and exploitation of tropical peatland. Of the products imported into the Netherlands palm oil perhaps is the most threatening to tropical peatlands. Given the increasing demand from, for example, India and China, the main challenge is to meet this demand without clearing forests, reclaiming peatland, or exploiting other carbon stocks.

  8. Dominant Tree Species and Soil Type Affect the Fungal Community Structure in a Boreal Peatland Forest.

    Sun, Hui; Terhonen, Eeva; Kovalchuk, Andriy; Tuovila, Hanna; Chen, Hongxin; Oghenekaro, Abbot O; Heinonsalo, Jussi; Kohler, Annegret; Kasanen, Risto; Vasander, Harri; Asiegbu, Fred O

    2016-05-01

    Boreal peatlands play a crucial role in global carbon cycling, acting as an important carbon reservoir. However, little information is available on how peatland microbial communities are influenced by natural variability or human-induced disturbances. In this study, we have investigated the fungal diversity and community structure of both the organic soil layer and buried wood in boreal forest soils using high-throughput sequencing of the internal transcribed spacer (ITS) region. We have also compared the fungal communities during the primary colonization of wood with those of the surrounding soils. A permutational multivariate analysis of variance (PERMANOVA) confirmed that the community composition significantly differed between soil types (P< 0.001) and tree species (P< 0.001). The distance-based linear models analysis showed that environmental variables were significantly correlated with community structure (P< 0.04). The availability of soil nutrients (Ca [P= 0.002], Fe [P= 0.003], and P [P= 0.003]) within the site was an important factor in the fungal community composition. The species richness in wood was significantly lower than in the corresponding soil (P< 0.004). The results of the molecular identification were supplemented by fruiting body surveys. Seven of the genera of Agaricomycotina identified in our surveys were among the top 20 genera observed in pyrosequencing data. Our study is the first, to our knowledge, fungal high-throughput next-generation sequencing study performed on peatlands; it further provides a baseline for the investigation of the dynamics of the fungal community in the boreal peatlands. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  9. Impact of an abrupt cooling event on interglacial methane emissions in northern peatlands

    S. Zürcher

    2013-03-01

    Full Text Available Rapid changes in atmospheric methane (CH4, temperature and precipitation are documented by Greenland ice core data both for glacial times (the so called Dansgaard-Oeschger (D-O events as well as for a cooling event in the early Holocene (the 8.2 kyr event. The onsets of D-O warm events are paralleled by abrupt increases in CH4 by up to 250 ppb in a few decades. Vice versa, the 8.2 kyr event is accompanied by an intermittent decrease in CH4 of about 80 ppb over 150 yr. The abrupt CH4 changes are thought to mainly originate from source emission variations in tropical and boreal wet ecosystems, but complex process oriented bottom-up model estimates of the changes in these ecosystems during rapid climate changes are still missing. Here we present simulations of CH4 emissions from northern peatlands with the LPJ-Bern dynamic global vegetation model. The model represents CH4 production and oxidation in soils and transport by ebullition, through plant aerenchyma, and by diffusion. Parameters are tuned to represent site emission data as well as inversion-based estimates of northern wetland emissions. The model is forced with climate input data from freshwater hosing experiments using the NCAR CSM1.4 climate model to simulate an abrupt cooling event. A concentration reduction of ~10 ppb is simulated per degree K change of mean northern hemispheric surface temperature in peatlands. Peatland emissions are equally sensitive to both changes in temperature and in precipitation. If simulated changes are taken as an analogy to the 8.2 kyr event, boreal peatland emissions alone could only explain 23% of the 80 ppb decline in atmospheric methane concentration. This points to a significant contribution to source changes from low latitude and tropical wetlands to this event.

  10. Large interannual variability in net ecosystem carbon dioxide exchange of a disturbed temperate peatland.

    Aslan-Sungur, Guler; Lee, Xuhui; Evrendilek, Fatih; Karakaya, Nusret

    2016-06-01

    Peatland ecosystems play an important role in the global carbon (C) cycle as significant C sinks. However, human-induced disturbances can turn these sinks into sources of atmospheric CO2. Long-term measurements are needed to understand seasonal and interannual variability of net ecosystem CO2 exchange (NEE) and effects of hydrological conditions and their disturbances on C fluxes. Continuous eddy-covariance measurements of NEE were conducted between August 2010 and April 2014 at Yenicaga temperate peatland (Turkey), which was drained for agricultural usage and for peat mining until 2009. Annual NEE during the three full years of measurement indicated that the peatland acted as a CO2 source with large interannual variability, at rates of 246, 244 and 663 g Cm(-2)yr(-1) for 2011, 2012, and 2013 respectively, except for June 2011, and May to July 2012. The emission strengths were comparable to those found for severely disturbed tropical peatlands. The peak CO2 emissions occurred in the dry summer of 2013 when water table level (WTL) was below a threshold value of -60 cm and soil water content (SCW) below a threshold value of 70% by volume. Water availability index was found to have a stronger explanatory power for variations in monthly ecosystem respiration (ER) than the traditional water status indicators (SCW and WTL). Air temperature, evapotranspiration and vapor pressure deficient were the most significant variables strongly correlated with NEE and its component fluxes of gross primary production and ER. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Assessing environmental attributes and effects of climate change on Sphagnum peatland distributions in North America using single- and multi-species models.

    Oke, Tobi A; Hager, Heather A

    2017-01-01

    The fate of Northern peatlands under climate change is important because of their contribution to global carbon (C) storage. Peatlands are maintained via greater plant productivity (especially of Sphagnum species) than decomposition, and the processes involved are strongly mediated by climate. Although some studies predict that warming will relax constraints on decomposition, leading to decreased C sequestration, others predict increases in productivity and thus increases in C sequestration. We explored the lack of congruence between these predictions using single-species and integrated species distribution models as proxies for understanding the environmental correlates of North American Sphagnum peatland occurrence and how projected changes to the environment might influence these peatlands under climate change. Using Maximum entropy and BIOMOD modelling platforms, we generated single and integrated species distribution models for four common Sphagnum species in North America under current climate and a 2050 climate scenario projected by three general circulation models. We evaluated the environmental correlates of the models and explored the disparities in niche breadth, niche overlap, and climate suitability among current and future models. The models consistently show that Sphagnum peatland distribution is influenced by the balance between soil moisture deficit and temperature of the driest quarter-year. The models identify the east and west coasts of North America as the core climate space for Sphagnum peatland distribution. The models show that, at least in the immediate future, the area of suitable climate for Sphagnum peatland could expand. This result suggests that projected warming would be balanced effectively by the anticipated increase in precipitation, which would increase Sphagnum productivity.

  12. Temporal variability in methane fluxes from tropical peatlands within the Peruvian Amazon

    Murphy, Wayne; Berrio, Juan Carlos; Boom, Arnoud; Page, Sue; Arn Teh, Yit

    2016-04-01

    Tropical peatlands are one of the largest soil carbon (C) reservoirs globally and play a significant role in modulating fluxes of C between the tropical biosphere and atmosphere. These C fluxes are of global importance because tropical wetlands are the single largest natural source of atmospheric methane (CH4); while land-use change and biomass burning also contribute to the growing global atmospheric carbon dioxide (CO2) burden. Amazonian peatlands play a potentially important role in regional and global atmospheric budgets of C because of their large extent. These ecosystems cover an estimated 150,000km2, which is roughly three-quarters the size of Indonesian peatlands; the world's most extensive and well-studied tropical peatlands. Here we report CH4 fluxes from a lowland tropical peatland in the Pastaza-Maranon foreland basin in Peru, one of the largest peatland complexes in the lowland Amazon Basin. Strong prolonged seasonal rainfall events and the annual Amazon River flood-pulse may lead to pronounced temporal variability in biogeochemical cycling and trace gas fluxes, and this study explored how CH4 fluxes varied among wet and dry season periods in a number of key vegetation types in this region. Sampling was concentrated in 3 of the most numerically-dominant vegetation types: Forested Swamp, Mixed Palm Swamp and Mauritia flexuosa-dominated Palm Swamp, with data collection occurring in both wet and dry seasons over a 2 year period from 2012-2014 (4 field campaigns in total). Overall mean CH4 fluxes from the Forested Swamp, Mixed Palm Swamp and Mauritia flexuosa-dominated Palm Swamp for the entire sampling period were 31.06 ± 3.42 mg CH4 - C m-2 d-1, 52.03 ± 16.05 mg CH4 - C m-2 d-1 and 36.68 ± 4.32 mg CH4 - C m-2 d-1. CH4 emissions, when averaged across the entire dataset, did not differ significantly among habitats. However, when CH4 emissions were aggregated by season, the Mixed Palm Swamp showed a significantly different emissions from all other

  13. LAND USE CHANGE AND RECOMMENDATION FOR SUSTAINABLE DEVELOPMENT OF PEATLAND FOR AGRICULTURE: Case Study at Kubu Raya and Pontianak Districts, West Kalimantan

    Wahyunto Wahyunto

    2013-07-01

    Full Text Available Peatland is an increasingly important land resource for livelihood, economic development, and terrestrial carbon storage. Kubu Raya and Pontianak Districts of West Kalimantan rely their future agricultural development on this environmentally fragile peatland because of the dominance (58% and 16% area, respectively of this land in the two districts. A study aimed to evaluate land use changes on peatland and to develop strategies for sustainable peatland use and management for agriculture. Time series satellite imageries of land use and land cover, ground truthing, and statistical data of land use change were analyzed for generating the dynamics of land use changes in the period of 1986-2008. Field observation, peat sampling, and peat analyses of representative land use types were undertaken to assess peat characteristics and its agricultural suitability. The study showed that within 22 years (1986-2008, the area of peat forests in Kubu Raya and Pontianak Districts decreased as much as 13.6% from 391,902 ha to 328,078 ha. The current uses of the peatland in the two districts include oil palm plantation (8704 ha, smallholder rubber plantation (13,186 ha, annual crops (15,035 ha, mixed cropping of trees and annual crops (22,328 ha, and pineapple farming (11,744 ha. Our evaluation showed unconformity of the current uses of peatland with regulations and crops agronomic requirements such as peat thickness and maturity, rendering unsustainability. This study recommends that expansion of agriculture and plantation on peatland areas be limited over idle land within the agricultural production and conversion production forest areas. About 34,362 ha (9.7% of uncultivated log-over forest and shrubs can potentially be developed for agriculture. Peat soils with the thickness of >3 m should be allocated for conservation or forest protection due to low inherent soil fertility and high potential greenhouse gas emissions if converted for agriculture.

  14. The impact of birch seedlings on evapotranspiration from a mined peatland: an experimental study in southern Quebec, Canada

    E. Fay

    2009-03-01

    Full Text Available Dense stands of birch (Betula spp. on abandoned peat workings have often been identified as potential barriers to site restoration, but little research has been conducted to evaluate their impact on water resources. The objective of this experimental study was to determine whether birch seedlings established on an abandoned mined peatland in eastern Canada had a significant impact on evapotranspiration. Transpiration rates from birch seedlings planted in containers filled with Sphagnum compost were measured gravimetrically. Unplanted containers were used to similarly measure evaporation rates from bare peat. On average, the measured rates of evaporation (per unit area from peat were 2.5 times the rates of transpiration from birch leaves. However, if the total leaf area of a dense birch population established on an abandoned mined peatland is considered, the total amount of water lost through birch transpiration could be higher than that lost by evaporation from the peat surface. This study provides a rough estimate of potential water losses due to birch seedling transpiration, and indicates that a dense population of birch on a mined peatland may influence site hydrology even at the early establishment phase (seedlings. Consequently, recently abandoned mined peatlands should be restored rapidly to prevent the establishment of birch trees.

  15. Piedra Pajarilla: A candidate for nomination as Global Heritage Stone Resource from Spain

    Pereira, Dolores; Gimeno, Ana; del Barrio, Santiago

    2013-04-01

    Piedra Pajarilla is a tourmaline bearing leucogranite outcropping at Martinamor, near Salamanca, Spain. It is part of the Hercynian granitic chain in the Spanish Central System. The stone received the local name "Piedra Pajarilla", meaning "Little Bird Stone" due to the shape of the many tourmaline aggregates that are the main visual feature of the rock. This local name has been extrapolated to every granitic stone used in the area, even if they differ significantly in mineralogy, and as recently tested in physical and mechanical properties as well. Here we present the nomination of Piedra Pajarilla as a suitable "Global Heritage Stone Resource". This stone ideally fits the newly proposed designation as it has been used since Roman times in Salamanca (Spain) and since the Middle Ages in the construction of major historic buildings, including both the Old and New Cathedrals, and many additional churches, castles and walls in the Salamanca area. Salamancás historic city core has been granted UNESCO World Heritage status in 1988, and all associated buildings, monuments and pedestrian streets are constructed from original materials. One of utilised materials, Piedra Pajarilla, was quarried for centuries from the immediate area. It was also the preferred building stone of many internationally renowned architects of Spanish origin during the 18th and 19th centuries especially involved in reconstruction following the Lisbon earthquake. Although the associated quarries are no longer active, the Piedra Pajarilla quarry sites remain relatively undisturbed and accessible. A renewal of quarrying is consequently feasible if additional stone supplies are required for heritage restoration. Thus there is also a need to preserve these historic quarries in anticipation of such work. The importance of Salamanca as emblematic heritage makes the historic stone quarries worthwhile to preserve as well. At the same time, Piedra Pajarilla can be considered as the first of several natural

  16. Role of nuclear energy to a future society of shortage of energy resources and global warming

    Saito, Shinzo, E-mail: saito.shinzo@jaea.go.j [Japan Atomic Energy Research Institute (Japan)

    2010-03-15

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO{sub 2} as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  17. Drainage in Shallow Peatlands of Marginal Upland Landscapes: DOC Losses from High Flow Events

    Grand-Clement, E.; Anderson, K.; Luscombe, D.; Gatis, N.; Benaud, P.; Brazier, R.

    2013-12-01

    Peatlands are widely represented in northern Europe, especially in the UK. In the South West of England (i.e. Exmoor, Dartmoor and Bodmin moors), climate change puts their existence under threat: according to recent modelling work, marginal peatlands are highly vulnerable to future temperature and precipitation change and are likely to be the first to disappear from as early as 2050. Additionally, peat cutting and intensive drainage for agricultural reclamation in the 19th and 20th century, have modified the hydrological behaviour of these shallow peatlands and dried out the upper layers, causing oxidation, erosion and vegetation change. Such anthropogenic interventions directly impact on the storage of carbon, but also the provision of other ecosystem services, such as the supply of drinking water, and the support of specific and rare habitats. Large restoration programs involving the blocking of drainage ditches are currently under way throughout the UK but, to date, little is known about the consequences of such management approaches on overall Carbon stocks, and whether the restoration can revert ecosystems back to a state similar to that of undisturbed peatlands. In this context, Exmoor is particularly vulnerable due to its location at the southernmost margin of the UK peatlands' geographical extent, and its dense network of drainage ditches putting pressure on already very shallow peat resources. We hypothesise that monitoring of these peatlands may provide an ';early warning system' for climatic impacts that could affect more northerly sites in years to come, as climates change more significantly. The aim of this study is to look at the current impact of peatland degradation on water quality on Exmoor during rainfall-runoff events. Our experimental approach employs detailed, high resolution monitoring of selected ditches that are representative of damaged conditions on Exmoor, from small- (30 x 30cm ditches) through medium- (50x50cm), large- (1-2m ditches

  18. The International Database of Efficient Appliances (IDEA): A New Resource for Global Efficiency Policy

    Gerke, Brian F; McNeil, Michael A; Tu, Thomas; Xu, Feiyang

    2017-09-06

    A major barrier to effective appliance efficiency program design and evaluation is a lack of data for determination of market baselines and cost-effective energy savings potential. The data gap is particularly acute in developing countries, which may have the greatest savings potential per unit GDP. To address this need, we are developing the International Database of Efficient Appliances (IDEA), which automatically compiles data from a wide variety of online sources to create a unified repository of information on efficiency, price, and features for a wide range of energy-consuming products across global markets. This paper summarizes the database framework and demonstrates the power of IDEA as a resource for appliance efficiency research and policy development. Using IDEA data for refrigerators in China and India, we develop robust cost-effectiveness indicators that allow rapid determination of savings potential within each market, as well as comparison of that potential across markets and appliance types. We discuss implications for future energy efficiency policy development.

  19. Emergence of Global Adaptive Governance for Stewardship of Regional Marine Resources

    Henrik Österblom

    2013-06-01

    Full Text Available Overfishing has historically caused widespread stock collapses in the Southern Ocean. Until recently, illegal, unreported, and unregulated (IUU fishing threatened to result in the collapse of some of the few remaining valuable fish stocks in the region and vulnerable seabird populations. Currently, this unsustainable fishing has been reduced to less than 10% of former levels. We describe and analyze the emergence of the social-ecological governance system that made it possible to curb the fisheries crisis. For this purpose, we investigated the interplay between actors, social networks, organizations, and institutions in relation to environmental outcomes. We drew on a diversity of methods, including qualitative interviews, quantitative social network and survey data, and literature reviews. We found that the crisis triggered action of an informal group of actors over time, which led to a new organization (ISOFISH that connected two independent networks (nongovermental organizations and the fishing industry, and later (COLTO linked to an international body and convention (CCAMLR. The emergence of the global adaptive governance systems for stewardship of a regional marine resource took place over a 15-year period. We describe in detail the emergence process and illustrate the usefulness of analyzing four features of governance and understanding social-ecological processes, thereby describing structures and functions, and their link to tangible environmental outcomes.

  20. Designing for multiple global user populations: increasing resource allocation efficiency for greater sustainability.

    Nadadur, G; Parkinson, M B

    2012-01-01

    This paper proposes a method to identify opportunities for increasing the efficiency of raw material allocation decisions for products that are simultaneously targeted at multiple user populations around the world. The values of 24 body measures at certain key percentiles were used to estimate the best-fitting anthropometric distributions for female and male adults in nine national populations, which were selected to represent the diverse target markets multinational companies must design for. These distributions were then used to synthesize body measure data for combined populations with a 1:1 female:male ratio. An anthropometric range metric (ARM) was proposed for assessing the variation of these body measures across the populations. At any percentile, ARM values were calculated as the percentage difference between the highest and lowest anthropometric values across the considered user populations. Based on their magnitudes, plots of ARM values computed between the 1st and 99 th percentiles for each body measure were grouped into low, medium, and high categories. This classification of body measures was proposed as a means of selecting the most suitable strategies for designing raw material-efficient products. The findings in this study and the contributions of subsequent work along these lines are expected to help achieve greater efficiencies in resource allocation in global product development.

  1. 76 FR 19174 - In the Matter of Circuit Systems, Inc., Global Energy Group, Inc., Integrated Medical Resources...

    2011-04-06

    ... SECURITIES AND EXCHANGE COMMISSION File No. 500-1 In the Matter of Circuit Systems, Inc., Global Energy Group, Inc., Integrated Medical Resources, Inc., iNTELEFILM Corp., and Lot$off Corp.; Order of... lack of current and accurate information concerning the securities of Circuit Systems, Inc. because it...

  2. Critical Spaces for Critical Times: Global Conversations in Literacy Research as an Open Professional Development and Practices Resource

    Albers, Peggy; Cho, A. Ram; Shin, Ji Hye; Pang, Myoung Eun; Angay-Crowder, Tuba; Jung, Jin Kyeong; Pace, Christi L.; Sena, Mandi; Turnbull, Sarah

    2015-01-01

    This paper reflects an OER (Open Educational Resources) critical literacy project, Global Conversations in Literacy Research (GCLR), (www.globalconversationsinliteracy.wordpress.com), now in its fourth year. GCLR annually hosts seven web seminars presented by internationally recognized literacy and education scholars. We outline key dimensions of…

  3. Peatland geoengineering: an alternative approach to terrestrial carbon sequestration.

    Freeman, Christopher; Fenner, Nathalie; Shirsat, Anil H

    2012-09-13

    Terrestrial and oceanic ecosystems contribute almost equally to the sequestration of ca 50 per cent of anthropogenic CO(2) emissions, and already play a role in minimizing our impact on Earth's climate. On land, the majority of the sequestered carbon enters soil carbon stores. Almost one-third of that soil carbon can be found in peatlands, an area covering just 2-3% of the Earth's landmass. Peatlands are thus well established as powerful agents of carbon capture and storage; the preservation of archaeological artefacts, such as ancient bog bodies, further attest to their exceptional preservative properties. Peatlands have higher carbon storage densities per unit ecosystem area than either the oceans or dry terrestrial systems. However, despite attempts over a number of years at enhancing carbon capture in the oceans or in land-based afforestation schemes, no attempt has yet been made to optimize peatland carbon storage capacity or even to harness peatlands to store externally captured carbon. Recent studies suggest that peatland carbon sequestration is due to the inhibitory effects of phenolic compounds that create an 'enzymic latch' on decomposition. Here, we propose to harness that mechanism in a series of peatland geoengineering strategies whereby molecular, biogeochemical, agronomical and afforestation approaches increase carbon capture and long-term sequestration in peat-forming terrestrial ecosystems.

  4. Multi-method investigation of cushion peatlands (

    Forbriger, M.; Schittek, K.; Höfle, B.; Siart, C.; Eitel, B.

    2012-04-01

    This study presents a multi-method and multi-proxy approach for palaeonvironmental investigations in the western andean cordillera of southern Peru (Lucanas province, 14° S) using cushion peatlands as terrestrial geoarchives. The region stretching between the Altiplano and the Peruvian desert in the lowland shares a long term settlement history, in which local cultures adapted to climate change in many different ways. Being one of the most outstanding human remains, the abri below Cerro Llamoca, 4.450 m a.s.l. in the uppermost ranges of the Llamoca peatland catchment area further reveals an occupation history of almost 10.000 years, as revealed by latest archaeological investigations. In remote and highly elevated regions such as the central Andes, cushion peatlands basically represent the only high resolution terrestrial archives suitable for geoarchaeological and palaeoenvironmental studies. Characterized by high accumulation rates, they ideally document environmental changes, particularly at small time intervals. Within the multidisciplinary project 'Andean Transect - Climate Sensitivity of pre-Columbian Man-Environment-Systems' several sediment cores with depths up to 11.5 m b.s. were recovered from the Llamoca peatland. Based on almost 100 AMS 14C-datings they provide a chronology of 8000 years and, thus, offer profound insights into climatic and environmental changes in the study area. While nearly homogeneous peat layers record stable environmental conditions, the heterogeneous granulometric composition of intercalated sediment layers documents several periods of intense geomorphodynamic activity. Due to high resolution geochemical analyses of peat layers (1 cm interval; humification degree, CNS measurements, XRF-scanning), the existence of slight and short-term trends of landscape development during these phases can be identified. Additional pollen, charred particles and plant macrofossil analyses confirm these findings and help reconstructing local

  5. Geology and undiscovered resource assessment of the potash-bearing Central Asia Salt Basin, Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan: Chapter AA in Global mineral resource assessment

    Wynn, Jeff; Orris, Greta J.; Dunlap, Pamela; Cocker, Mark D.; Bliss, James D.

    2016-03-23

    Undiscovered potash resources in the Central Asia Salt Basin (CASB) of Turkmenistan, Uzbekistan, Tajikistan, and Afghanistan were assessed as part of a global mineral resource assessment led by the U.S. Geological Survey. The term “potash” refers to potassium-bearing, water-soluble salts derived from evaporite basins, where seawater dried up and precipitated various salt compounds; the word for the element “potassium” is derived from potash. Potash is produced worldwide at amounts exceeding 30 million metric tons per year, mostly for use in fertilizers. The term “potash” is used by industry to refer to potassium chloride, as well as potassium in sulfate, nitrate, and oxide forms. For the purposes of this assessment, the term “potash” refers to potassium ores and minerals and potash ore grades. Resource and production values are usually expressed by industry in terms of K2O (potassium oxide) or muriate of potash (KCl, potassium chloride).

  6. Creating Online Training for Procedures in Global Health with PEARLS (Procedural Education for Adaptation to Resource-Limited Settings).

    Bensman, Rachel S; Slusher, Tina M; Butteris, Sabrina M; Pitt, Michael B; On Behalf Of The Sugar Pearls Investigators; Becker, Amanda; Desai, Brinda; George, Alisha; Hagen, Scott; Kiragu, Andrew; Johannsen, Ron; Miller, Kathleen; Rule, Amy; Webber, Sarah

    2017-11-01

    The authors describe a multiinstitutional collaborative project to address a gap in global health training by creating a free online platform to share a curriculum for performing procedures in resource-limited settings. This curriculum called PEARLS (Procedural Education for Adaptation to Resource-Limited Settings) consists of peer-reviewed instructional and demonstration videos describing modifications for performing common pediatric procedures in resource-limited settings. Adaptations range from the creation of a low-cost spacer for inhaled medications to a suction chamber for continued evacuation of a chest tube. By describing the collaborative process, we provide a model for educators in other fields to collate and disseminate procedural modifications adapted for their own specialty and location, ideally expanding this crowd-sourced curriculum to reach a wide audience of trainees and providers in global health.

  7. Analysis of Trade as a Driver of Oil Palm Expansion: The Implication for Peatlands in Indonesia and Malaysia

    Morel, A. C.

    2011-12-01

    There is international concern regarding the carbon emissions of oil palm cultivation, particularly where areas of tropical peatlands are cleared, drained and planted. This is increasingly becoming a problem as areas of suitable agricultural land are being lost to degradation or urbanization, which displaces cultivation to marginal lands such as peatlands. Southeast Asia is home to approximately 24.8 million hectares (mha) of peatland, with an estimated 2.1 mha in Indonesia and Malaysia currently planted with industrial oil palm plantations. Peat areas are not evenly distributed across these countries and are subject to differing governance regimes and local authority development priorities. In addition, global demand for palm oil as an input for food and fuel is driving greater production. This additional volume may be realized through either expansion of planted area or improved yields on existing plantations; therefore, to project future expansion a better understanding of these trade dynamics and how they are interacting with local governance priorities is necessary. This study focuses on Indonesia and Malaysia, looking at recent peatland cultivation and projecting likely oil palm cultivation including the proportion expected to occur on peatlands using a computable general equilibrium model, MIRAGE. The time frame for this modeling is over 50 years, where replanting, peat subsidence and climate change are important factors to consider. The carbon emission implications for Malaysia and Indonesia from land use conversions are presented for a number of trade scenarios, with the understanding that emerging palm oil producers in Latin America and Africa will be significant in the future.

  8. Can Resilience be Reconciled with Globalization and the Increasingly Complex Conditions of Resource Degradation in Asian Coastal Regions?

    Derek Armitage

    2006-06-01

    Full Text Available This paper explores the relationship between resilience and globalization. We are concerned, most importantly, with whether resilience is a suitable conceptual framework for natural resource management in the context of the rapid changes and disruptions that globalization causes in social-ecological systems. Although theoretical in scope, we ground this analysis using our experiences in two Asian coastal areas: Junagadh District in Gujarat State, India and Banawa Selatan, in Central Sulawesi, Indonesia. We present the histories of resource exploitation in the two areas, and we attempt to combine a resilience perspective with close attention to the impact of globalization. Our efforts serve as a basis from which to examine the conceptual and practical compatibility of resilience with globalization. The first challenge we address is epistemological: given that resilience and globalization have roots in different disciplines, do they share a sufficiently common perception of change and human action to be compatible? Second, we address the issue of how resilience can be a viable management objective in the rapidly changing context of globalization. We identify scale as particularly important in this regard.

  9. A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland

    Pester, Michael; Bittner, Norbert; Deevong, Pinsurang; Wagner, Michael; Loy, Alexander

    2015-01-01

    Methane emission from peatlands contributes substantially to global warming but is significantly reduced by sulfate reduction, which is fuelled by globally increasing aerial sulfur pollution. However, the biology behind sulfate reduction in terrestrial ecosystems is not well understood and the key players for this process as well as their abundance remained unidentified. Comparative 16S rRNA gene stable isotope probing in the presence and absence of sulfate indicated that a Desulfosporosinus species, which constitutes only 0.006% of the total microbial community 16S rRNA genes, is an important sulfate reducer in a long-term experimental peatland field site. Parallel stable isotope probing using dsrAB [encoding subunit A and B of the dissimilatory (bi)sulfite reductase] identified no additional sulfate reducers under the conditions tested. For the identified Desulfosporosinus species a high cell-specific sulfate reduction rate of up to 341 fmol SO42− cell−1 day−1 was estimated. Thus, the small Desulfosporosinus population has the potential to reduce sulfate in situ at a rate of 4.0–36.8 nmol (g soil w. wt.)−1 day−1, sufficient to account for a considerable part of sulfate reduction in the peat soil. Modeling of sulfate diffusion to such highly active cells identified no limitation in sulfate supply even at bulk concentrations as low as 10 μM. Collectively, these data show that the identified Desulfosporosinus species, despite being a member of the ‘rare biosphere’, contributes to an important biogeochemical process that diverts the carbon flow in peatlands from methane to CO2 and, thus, alters their contribution to global warming. PMID:20535221

  10. Processes Adopted to Integrate Intangible Resources in Global Acquisitions among Container Lines: Perceptions of Acquirer and Acquired

    Indika Sigera

    2018-03-01

    Full Text Available The spectrum of strategic co-operations among container lines varies from loose-knitted slot charters, liner conferences, shipping alliances, joint services and consortia, through to mergers and acquisitions (M&As. However, these forms of strategic co-operations have not always been able to achieve the intended synergetic growth resulting from the integration of resources. The Resource Based View (RBV suggests that integrating intangible resources, which are valuable, rare, inimitable and non-substitutable (VRIN, can make a significant contribution to the performance of post strategic co-operations. This research paper investigates the contribution of intangible resources to the post acquisition success six global acquisitions among container lines. The nine senior managers attached to global container lines were the main participants of this study. Five of them represented acquired container lines, four represented acquirer container lines. The paper explains their personnel experience on the processes adopts to integrate intangible resources in acquisitions. Keywords: Merger and Acquisitions, Intangible Resources, Container Lines, Task Integration, Human Integration

  11. Nomination of the Globigerina Limestone of the Maltese Islands as a "Global Heritage Stone Resource"

    Cassar, JoAnn

    2016-04-01

    the prehistoric Temples. Even today, this local building stone is still much in demand, with many modern buildings still being constructed in this material; it is also widely used for the repair and restoration of historic buildings and many local quarries are still active, with this stone even today being a keystone of the local economy. This stone is thus being nominated as a suitable "Global Heritage Stone Resource".

  12. Tropical Peatland Burn Depth and Combustion Heterogeneity Assessed Using UAV Photogrammetry and Airborne LiDAR

    Jake E. Simpson

    2016-12-01

    Full Text Available We provide the first assessment of tropical peatland depth of burn (DoB using structure from motion (SfM photogrammetry, applied to imagery collected using a low-cost, low-altitude unmanned aerial vehicle (UAV system operated over a 5.2 ha tropical peatland in Jambi Province on Sumatra, Indonesia. Tropical peat soils are the result of thousands of years of dead biomass accumulation, and when burned are globally significant net sources of carbon emissions. The El Niño year of 2015 saw huge areas of Indonesia affected by tropical peatland fires, more so than any year since 1997. However, the Depth of Burn (DoB of these 2015 fires has not been assessed, and indeed has only previously been assessed in few tropical peatland burns in Kalimantan. Therefore, DoB remains arguably the largest uncertainty when undertaking fire emissions calculations in these tropical peatland environments. We apply a SfM photogrammetric methodology to map this DoB metric, and also investigate combustion heterogeneity using orthomosaic photography collected using the UAV system. We supplement this information with pre-burn airborne light detection and ranging (LiDAR data, reducing uncertainty by estimating pre-burn soil height more accurately than from interpolation of adjacent unburned areas alone. Our pre-and post-fire Digital Terrain Models (DTMs show accuracies of 0.04 and 0.05 m (root-mean-square error, RMSE respectively, compared to ground-based global navigation satellite system (GNSS surveys. Our final DoB map of a 5.2 ha degraded peat swamp forest area neighboring Berbak National Park (Sumatra, Indonesia shows burn depths extending from close to zero to over 1 m, with a mean (±1σ DoB of 0.23 ± 0.19 m. This lies well within the range found by the few other studies available (on Kalimantan; none are available on Sumatra. Our combustion heterogeneity analysis suggests the deepest burns, which extend to ~1.3 m, occur around tree roots. We use these DoB data within

  13. Lioz: The Stone that made Lisbon reborn - A Global Heritage Stone Resource Proposal

    Lopes, Luis

    2017-04-01

    Lioz: The Stone that made Lisbon reborn - A Global Heritage Stone Resource Proposal Explored since the Roman Period, the Lioz (Cenomanian age microcrystalline fossiliferous limestone) is the main stone used in the buildings and monuments of Lisbon. After the great cataclysm of 1755 (earthquake, tsunami and fire) of 1755, the already known great quality and the near occurrence of these limestones were wisely used in the great reconstruction of the "Capital do Império" (Capital of the Empire). At the time, Lisbon was one of the largest European cities and great business center of the World, so the necessary and urgent reconstruction was not so difficult to start. Sebastião José de Carvalho e Melo, better known as "Marquês de Pombal", Secretary of King José I, successfully took up the challenge of rebuilding Lisbon. Inside the actual Portuguese capital geographical limits, several quarries of the Cretaceous limestone were explored; some still exist and are classified as geomonuments (i.e., Rio Seco Geomonument, 38 ° 42'21 .67''N; 9 ° 11 '30.37''W). As the City boundaries expanded, the quarries stopped and now there is no one asset in Lisbon. The most important exploitation and processing Lioz stone center was situated in Pêro Pinheiro, 20 km NW of Lisbon. Most of the stones used in the National Palace-Convent of Mafra (1717) belongs to the four main types of Lioz (the cream/white "Abancado", the pink/dark pink "Encarnadão", the yellow "Amarelo de Negrais" and the blueish grey "Azulino"), either cut "against" (perpendicular to the bedding plane) or "along" (parallel to the bedding plane). The orientation stone cut deeply controls texture and mechanical properties of the rocks that behaves as different ones were considered. In the last two decades, the Lioz extraction was almost extinguished. However, some of the old quarries was reactivated and produces first quality blocks needed both for new works and restoration of historic buildings and monuments. The

  14. Age, extent and carbon storage of the central Congo Basin peatland complex.

    Dargie, Greta C; Lewis, Simon L; Lawson, Ian T; Mitchard, Edward T A; Page, Susan E; Bocko, Yannick E; Ifo, Suspense A

    2017-02-02

    Peatlands are carbon-rich ecosystems that cover just three per cent of Earth's land surface, but store one-third of soil carbon. Peat soils are formed by the build-up of partially decomposed organic matter under waterlogged anoxic conditions. Most peat is found in cool climatic regions where unimpeded decomposition is slower, but deposits are also found under some tropical swamp forests. Here we present field measurements from one of the world's most extensive regions of swamp forest, the Cuvette Centrale depression in the central Congo Basin. We find extensive peat deposits beneath the swamp forest vegetation (peat defined as material with an organic matter content of at least 65 per cent to a depth of at least 0.3 metres). Radiocarbon dates indicate that peat began accumulating from about 10,600 years ago, coincident with the onset of more humid conditions in central Africa at the beginning of the Holocene. The peatlands occupy large interfluvial basins, and seem to be largely rain-fed and ombrotrophic-like (of low nutrient status) systems. Although the peat layer is relatively shallow (with a maximum depth of 5.9 metres and a median depth of 2.0 metres), by combining in situ and remotely sensed data, we estimate the area of peat to be approximately 145,500 square kilometres (95 per cent confidence interval of 131,900-156,400 square kilometres), making the Cuvette Centrale the most extensive peatland complex in the tropics. This area is more than five times the maximum possible area reported for the Congo Basin in a recent synthesis of pantropical peat extent. We estimate that the peatlands store approximately 30.6 petagrams (30.6 × 10 15  grams) of carbon belowground (95 per cent confidence interval of 6.3-46.8 petagrams of carbon)-a quantity that is similar to the above-ground carbon stocks of the tropical forests of the entire Congo Basin. Our result for the Cuvette Centrale increases the best estimate of global tropical peatland carbon stocks by

  15. How does whole ecosystem warming of a peatland affect methane production and consumption?

    Hopple, A.; Brunik, K.; Keller, J.; Pfeifer-Meister, L.; Woerndle, G.; Zalman, C.; Hanson, P.; Bridgham, S. D.

    2017-12-01

    Peatlands are among Earth's most important terrestrial ecosystems due to their massive soil carbon (C) stores and significant release of methane (CH4) into the atmosphere. Methane has a sustained-flux global warming potential 45-times greater than carbon dioxide (CO2), and the accuracy of Earth system model projections relies on our mechanistic understanding of peatland CH4 cycling in the context of environmental change. The objective of this study was to determine, under in situ conditions, how heating of the peat profile affects ecosystem-level anaerobic C cycling. We assessed the response of CO2 and CH4 production, as well as the anaerobic oxidation of CH4 (AOM), in a boreal peatland following 13 months of deep peat heating (DPH) and 16 months of subsequent whole-ecosystem warming (surface and deep heating; WEW) as part of the Spruce and Peatland Responses Under Changing Environments (SPRUCE) project in northern Minnesota, USA. The study uses a regression-based experimental design including 5 temperature treatments that warmed the entire 2 m peat profile from 0 to +9 °C above ambient temperature. Soil cores were collected at multiple depths (25-200 cm) from each experimental chamber at the SPRUCE site and anaerobically incubated at in situ temperatures for 1-2 weeks. Methane and CO2 production in surface peat were positively correlated with elevated temperature, but no consistent temperature response was found at depth (75-200 cm) following DPH. However, during WEW, we observed significant increases in both surface and deep peat methanogenesis with increasing temperature. Surface peat had greater CH4 production rates than deeper peat, implying that the increased CH4 emissions observed in the field were largely driven by surface peat warming. The CO2:CH4 ratio was inversely correlated with temperature across all depths following 16 months of WEW, indicating that the entire peat profile is becoming more methanogenic with warming. We also observed AOM throughout

  16. Aerobic carbon-cycle related microbial communities in boreal peatlands: responses to water-level drawdown

    Peltoniemi, K

    2010-07-01

    Boreal peatlands represent a considerable portion of the global carbon (C) pool. Water-level drawdown (WLD) causes peatland drying and induces a vegetation change, which affects the decomposition of soil organic matter and the release of greenhouse gases (CO{sub 2} and CH{sub 4}). The objective of this thesis was to study the microbial communities related to the C cycle and their response to WLD in two boreal peatlands. Both sampling depth and site type had a strong impact on all microbial communities. In general, bacteria dominated the deeper layers of the nutrient-rich fen and the wettest surfaces of the nutrient-poor bog sites, whereas fungi seemed more abundant in the drier surfaces of the bog. WLD clearly affected the microbial communities but the effect was dependent on site type. The fungal and methane-oxidizing bacteria (MOB) community composition changed at all sites but the actinobacterial community response was apparent only in the fen after WLD. Microbial communities became more similar among sites after long-term WLD. Litter quality had a large impact on community composition, whereas the effects of site type and WLD were relatively minor. The decomposition rate of fresh organic matter was influenced slightly by actinobacteria, but not at all by fungi. Field respiration measurements in the northern fen indicated that WLD accelerates the decomposition of soil organic matter. In addition, a correlation between activity and certain fungal sequences indicated that community composition affects the decomposition of older organic matter in deeper peat layers. WLD had a negative impact on CH{sub 4} oxidation, especially in the oligotrophic fen. Fungal sequences were matched to taxa capable of utilizing a broad range of substrates. Most of the actinobacterial sequences could not be matched to characterized taxa in reference databases. This thesis represents the first investigation of microbial communities and their response to WLD among a variety of boreal

  17. Teaching and Learning about Universal Human Rights and International Humanitarian Law: Digital Resources and Global Expectations

    Blanchard, Rosemary Ann

    2013-01-01

    Today's education for civic engagement requires a global dimension. To live responsibly in their own communities, young people need to situate their personal and local interests in the context of their global interconnections. Bridging the personal, local, and global begins with an awareness of the universal aspirations for dignity and human…

  18. Global change impact on water resources at the regional scale - a reflection on participatory modeling

    Barthel, Roland; Büttner, Hannah; Nickel, Darla; Seidl, Roman

    2015-04-01

    Participatory modeling (PM) has become an essential part of environmental impact assessment and planning in the field of water resources research and management. This is mainly because of the notion that models developed by scientists for scientific purposes are often not suitable for practical management for several reasons, such as (too) high complexity, low user-friendliness and lack of problem/solution orientation. Participation is seen as a key concept for bridging the gap between modelers and stakeholders. In this submission we focus on the PM-process in the GLOWA-Danube (GD) project (German Ministry of Education and Research, 2001-2011). GD was carried out by an interdisciplinary consortium of 17 research organizations. The main goal was to develop and to use the integrated modelling system DANUBIA as a tool to evaluate the impact of global change on the Upper Danube Catchment (Southern Germany, 77,000 km^2) and to discuss the implications with relevant stakeholders. An intensive stakeholder dialoged was carried out to include the perspective of stakeholders and end-users in the model and scenario development - with the final goal of facilitating implementation of DANUBIA in practical management after termination of the scientific project. This contribution looks at the specific conditions for PM in the field of global change scenarios and complex integrated models. The different phases of the PM process in GD are presented along with a discussion of the respective results. Overall, the impact of stakeholder interaction on the model development was much lower than expected. The ultimate goal of using the PM process to develop DANUBIA as a tool used in practical management after termination of the scientific project was not reached. However, implications of climate change and modelling could be discussed with the stakeholders involved and relevant learning processes on both sides (scientists and stakeholders) were facilitated in the final phase. In the

  19. Long-term impacts of peatland restoration on the net ecosystem exchange (NEE) of blanket bogs in Northern Scotland.

    Hambley, Graham; Hill, Timothy; Saunders, Matthew; Arn Teh, Yit

    2016-04-01

    Unmanaged peatlands represent an important long-term C sink and thus play an important part of the global C cycle. Despite covering only 12 % of the UK land area, peatlands are estimated to store approximately 20 times more carbon than the UK's forests, which cover 13% of the land area. The Flow Country of Northern Scotland is the largest area of contiguous blanket bog in the UK, and one of the biggest in Europe, covering an area in excess of 4000 km2 and plays a key role in mediating regional atmospheric exchanges of greenhouse gases (GHGs) such as carbon dioxide (CO2), and water vapour (H2O). However, these peatlands underwent significant afforestation in the 1980s, when over 670 km2 of blanket bog were drained and planted with Sitka spruce (Picea sitchensis) and Lodgepole pine (Pinus contorta). This resulted in modifications to hydrology, micro-topography, vegetation and soil properties all of which are known to influence the production, emission and sequestration of key GHGs. Since the late 1990s restoration work has been carried out to remove forest plantations and raise water tables, by drain blocking, to encourage the recolonisation of Sphagnum species and restore ecosystem functioning. Here, we report findings of NEE and its constituent fluxes, GPP and Reco, from a study investigating the impacts of restoration on C dynamics over a chronosequence of restored peatlands. The research explored the role of environmental variables and microtopography in modulating land-atmosphere exchanges, using a multi-scale sampling approach that incorporated eddy covariance measurements with dynamic flux chambers. Key age classes sampled included an undrained peatland; an older restored peatland (17 years old); and a more recently restored site (12 years old). The oldest restored site showed the strongest uptake of C, with an annual assimilation rate of 858 g C m-2 yr-1 compared to assimilation rates of 501g C m-2 yr-1 and 575g C m-2 yr-1 from the younger restored site and

  20. Raw material monitoring assists companies. German Mineral Resources Agency at BGR provides information on global developments in resource markets

    2016-01-01

    Germany is dependent on imports for its metalliferous natural resources. Although prices have been declining significantly in recent months, numerous raw materials such as platinum, cobalt and rare earth elements continue to be exposed to price and supply risks. To ensure that German industry can respond better to this situation in their procurement activities, the German Mineral Resources Agency (DERA) at BGR has developed a raw material monitoring system on behalf of the German government. DERA experts have con figured a screening method for the early identification of possible procurement risks. This is the platform which enables German companies to gain the specific advice they require. All of the most important information on this issue is bundled within DERA 's internet portal (www.deutsche-rohstoffagentur.de). BGR also provides its expertise in other important fields with great societal relevance. BGR has been advising the national commission on ''Storage of High-level Radioactive Waste'' since 2014. Due to their comprehensive research activities in the field of radioactive waste disposal, BGR scientists are important technical experts to which the commission can turn to for geological information and advice.

  1. Recent revisions of phosphate rock reserves and resources: reassuring or misleading? An in-depth literature review of global estimates of phosphate rock reserves and resources

    Edixhoven, J. D.; Gupta, J.; Savenije, H. H. G.

    2013-09-01

    Phosphate rock (PR) is a finite mineral indispensible for fertilizer production and a major pollutant. High grade PR is obtained from deposits which took millions of years to form and are gradually being depleted. Over the past three years, global PR reserves as reported by US Geological Survey (USGS) have seen a massive increase, from 16 000 Mt PR in 2010 to 65 000 Mt PR in 2011. The bulk of this four-fold increase is based on a 2010 report by International Fertilizer Development Center (IFDC), which increased Moroccan reserves from 5700 Mt PR as reported by USGS, to 51 000 Mt PR, reported as upgraded ("beneficiated") concentrate. IFDC used a starkly simplified classification compared to the classification used by USGS and proposed that agreement should be reached on PR resource terminology which should be as simple as possible. The report has profoundly influenced the PR scarcity debate, shifting the emphasis from depletion to the pollution angle of the phosphate problem. Various analysts adopted the findings of IFDC and USGS, and argued that that following depletion of reserves, uneconomic deposits (resources and occurrences) will remain available which will extend the lifetime of available deposits to thousands of years. Given the near total dependence of food production on PR, data on PR deposits must be transparent, comparable, reliable and credible. Based on an in-depth literature review, we analyze (i) how IFDC's simplified terminology compares to international best practice in resource classification and whether it is likely to yield data that meets the abovementioned requirements; (ii) whether the difference between ore reserves and reserves as concentrate is sufficiently noted in the literature, and (iii) whether the IFDC report and its estimate of PR reserves and resources is reliable. We conclude that, while there is a global development toward common criteria in resource reporting, IFDC's definitions contravene this development and - due to their

  2. Spontaneous revegetation of mined peatlands in eastern Canada

    Poulin, M.; Rochefort, L.; Quinty, F.; Lavoie, C [Laval University, Quebec, QC (Canada)

    2005-05-15

    Revegetation patterns of sphagnum recolonization at abandoned mined peatlands are assessed, based on a survey of 26 abandoned harvested peatlands, in the provinces of Quebec and New Brunswick. The impact of local and regional variables and the length of time since abandonment are examined. The vegetation structure of all 2571 trenches and 2595 blocks of abandoned block-cut areas and in all 395 vacuum fields of the mechanically mined areas was recorded. The species at 243 recolonized peat fields (selected by random sampling) were analyzed. The abandoned surfaces were found to be distinctly different depending on whether peat extraction was by hand block-cutting or vacuum mining methods. Block-cut peatlands recovered well; herb cover was similar to that in natural peatlands. Practically no sphagnum species recolonized the vacuum- mined peat fields. The species diversity in abandoned mined peat fields was observed to be high. 72 refs., 3 figs., 5 tabs., 1 app.

  3. Making sense of the global economy: 10 resources for health promoters.

    Mohindra, K S; Labonté, Ronald

    2010-09-01

    Population health is shaped by more than local or national influences-the global matters. Health promotion practitioners and researchers increasingly are challenged to engage with upstream factors related to the global economy, such as global prescriptions for national macroeconomic policies, debt relief and international trade. This paper identifies 10 books (A Brief History of Neoliberalism, Bad Samaritans: The Myth of Free Trade and the Secret History of Capitalism, The World is Not Flat: Inequality and Injustice in Our Global Economy, Globalization and its Discontents, The Debt Threat: How Debt is Destroying the Developing World, Global Woman: Nannies, Maids, and Sex Workers in the New Economy, A Race Against Time, Globalization and Health: An Introduction, Global Public Goods for Health: Health Economics and Public Health Perspectives, Trade and Health: Seeking Common Ground) and several key reports that we found to be particularly useful for understanding the global economy's effects on people's health. We draw attention to issues helpful in understanding the present global financial crisis.

  4. Scarcity in a Sea of Plenty? Global Resource Scarcities and Policies in the European Union and the Netherlands

    Prins, A.G.; Slingerland, S.; Manders, A.J.G.; Lucas, P.L.; Hilderink, H.B.M.; Kok, M.T.J.

    2011-03-01

    Current high prices of food, oil and many other resources are indications of increasing scarcity. This scarcity, however, has little to do with stock depletion. Badly functioning markets and wrong policy reactions play a particularly important role. For most resources, global stocks will be sufficient to meet increasing demand, over the coming decades. However, these stocks are not equally distributed over the world; they tend to be located in a limited number of countries. This causes an increasing European dependency on imports, which, in turn, feeds the fear of a decrease in security of supply.

  5. JEDI - an executive dashboard and decision support system for lean global military medical resource and logistics management.

    Sloane, Elliot B; Rosow, Eric; Adam, Joe; Shine, Dave

    2006-01-01

    Each individual U.S. Air Force, Army, and Navy Surgeon General has integrated oversight of global medical supplies and resources using the Joint Medical Asset Repository (JMAR). A Business Intelligence system called the JMAR Executive Dashboard Initiative (JEDI) was developed over a three-year period to add real-time interactive data-mining tools and executive dashboards. Medical resources can now be efficiently reallocated to military, veteran, family, or civilian purposes and inventories can be maintained at lean levels with peaks managed by interactive dashboards that reduce workload and errors.

  6. Multiyear greenhouse gas balances at a rewetted temperate peatland.

    Wilson, David; Farrell, Catherine A; Fallon, David; Moser, Gerald; Müller, Christoph; Renou-Wilson, Florence

    2016-12-01

    Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long-term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) calculated for a 5-year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2-year data set), and with ten long-term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO 2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (R eco ) rather than gross primary production (GPP). CH 4 emissions were related to soil temperature and either water table level or plant biomass. N 2 O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO 2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5-year mean of annual balances) for the rewetted site were (±SD) -104 ± 80 g CO 2 -C m -2  yr -1 (i.e. CO 2 sink) and 9 ± 2 g CH 4 -C m -2  yr -1 (i.e. CH 4 source). Nearly a decade after rewetting, the GHG balance (100-year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO 2 sink to a source if triggered by slightly drier

  7. The dynamics of fire regimes in tropical peatlands in Central Kalimantan, Borneo

    Hoscilo, Agata; Page, Susan; Tansey, Kevin

    2010-05-01

    As a carbon-rich ecosystem, tropical peatland contributes significantly to terrestrial carbon storage and stability of the global carbon cycle. Vast areas of tropical peatland in SE Asia are degraded by the increasingly intensive scale of human activities, illustrated by high rates of deforestation, poor land-use management, selective illegal logging, and frequently repeated fires. Analysis of time-series satellite images performed in this study confirmed that fire regimes have dramatically changed in tropical peatlands over the last three decades (1973-2005). The study was conducted in the southern part of Central Kalimantan (Indonesian Borneo). We found that there was an evident increase in fire frequency and a decline in the fire return interval after implementation of the Mega Rice Project (1997-2005). Up until 1997, fires had affected a relatively small area, in total 23% of the study area, and were largely related to land clearance. This situation changed significantly during the last decade (1997-2005), when the widespread, intensive fires of 1997 affected a much larger area. Five years later, in 2002, extensive fires returned, affecting again 22% of the study area. Then, in 2004 and 2005, a further large area of peatland was on fire. Fire frequency analysis showed that during the period 1997-2005, around 45% of the study area was subject to multiple fires, with 37% burnt twice and 8% burnt three or more times. Near-annual occurrence of fire events reduces the rate and nature of vegetation regrowth. Hence, we observed a shift in the fire fuel type and amount over the period of investigation. After 1997, the fire fuel shifted from mainly peat swamp forest biomass towards non-woody biomass, dominated by regenerating vegetation, mainly ferns and a few trees. This secondary vegetation has been shown to be fire prone, although fire propagation is slower than in forest and restricted by both low fuel quality and load. Furthermore, we investigated the interaction

  8. Increased losses of organic carbon and destabilising of tropical peatlands following deforestation, drainage and burning. (Invited)

    Moore, S.; Gauci, V.; Evans, C.; Page, S. E.

    2013-12-01

    Tropical peatlands contain one of the largest pools of terrestrial organic carbon, amounting to about 89,000 teragrams. Approximately 65% of this carbon store is in Indonesia, where extensive anthropogenic degradation in the form of deforestation, drainage and associated fire is converting it into a globally significant source of atmospheric carbon dioxide. Unlike boreal and temperate forests and higher-latitude wetlands, however, the loss of fluvial organic carbon from tropical peats has yet to be fully quantified. Here, we present the first data from intact and degraded peat swamp forest (PSF) catchments in Central Kalimantan, Borneo, that indicate a doubling of fluvial organic carbon losses from tropical peatlands following deforestation and drainage. Through carbon-14 dating of dissolved organic carbon (DO14C), we find that leaching of DOC from intact PSF is derived mainly from recent primary production. In contrast, DOC from disturbed PSF consists mostly of much older carbon from deep within the peat column. When we include this fluvial carbon loss, which is often ignored in peatland carbon budgets, we find that it increases the estimate of total carbon lost from the disturbed peatlands in our study by 22%. We further estimate that since 1990, peatland disturbance has resulted in a 32% increase in fluvial organic carbon flux from Southeast Asia - an increase that equates to more than half of the entire annual fluvial organic carbon flux from all European peatlands. Finally, we monitored fluvial organic carbon fluxes following large-scale peatland fires in 2009/10 within the study sub-catchments and found fluvial carbon fluxes to be 30-70% larger in the fire-affected catchments when compared to fluxes during the same interval in the previous year (pre-fire). This is in marked contrast to the intact catchment (control/no fire) where there were no differences observed in fluxes 'pre to post fire years'. Our sub-catchment findings were also found to be

  9. Fire Behavior in Pelalawan Peatland, Riau Province

    BAMBANG HERO SAHARJO

    2006-01-01

    Full Text Available During dry season it is easily recognized that smoke will emerge at certain place both in Sumatra and Kalimantan that is in peatland. The worst situation occurred when fire burnt buried log in the logged over area where the fire fighter did not have any experience and knowledge on how to work with fire in peatland. Finally it had been found that one of the reasons why firefighter failed to fight fire in peatland is because they do not have any knowledge and experience on it. In order to know the fire behavior characteristics in different level of peat decomposition for fire management and sustainable management of the land for the community, research done in Pelalawan area, Riau Province, Indonesia, during dry season 2001. Three level of peat decomposition named Sapric, Hemic, and Fibric used. To conduct the research, two 400 m2 of plot each was established in every level of the peat decomposition. Burning done three weeks following slashing, cutting and drying at different time using circle method. During burning, flame length, rate of the spread of fire, flame temperature and following burning fuel left and the depth of peat destruction were measured. Results of research shown that in sapric site where sapric 2 has fuel load 9 ton ha-1 less than sapric 1, fire behavior was significantly different while peat destructed was deepest in sapric 2 with 31.87 cm. In hemic site where hemic 2 has fuel load 12.3 ton ha-1 more than hemic 1, fire behavior was significantly different and peat destructed deeper than hemic 1 that was 12.6 cm. In fibric site where fibric 1 has fuel load 3.5 ton ha-1 more than fibric 1, fire behavior was significantly different that has no burnt peat found. This results found that the different fuel characteristics (potency, moisture, bed depth, and type at the same level of peat decomposition will have significantly different fire behavior as it happened also on the depth of peat destruction except fibric. The same condition

  10. "Belgian black and red marbles" as potential candidates for Global Heritage Stone Resource

    Tourneur, Francis; Pereira, Dolores

    2016-04-01

    examples of historical buildings are known around the world, for examples the decoration of the harem of Topkapi in Istanbul in the 19th c. or in the floors of the St-Pieter basilica in Rom. Today, only one quarry is active, in Vodelée, a village close to Philippeville but all the varieties of colors and textures can be obtained from this unique source. Both referred materials present the characteristics needed to be candidates to the Global Heritage Stone Resource designation.

  11. Villamayor stone (Golden Stone) as a Global Heritage Stone Resource from Salamanca (NW of Spain)

    Garcia-Talegon, Jacinta; Iñigo, Adolfo; Vicente-Tavera, Santiago

    2013-04-01

    Villamayor stone is an arkosic stone of Middle Eocene age and belongs to the Cabrerizos Sandstone Formation that comprising braided fluvial systems and paleosoils at the top of each stratigraphic sequence. The sandstone is known by several names: i) the Villamayor Stone because the quarries are located in Villamayor de Armuña village that are situated at 7 km to the North from Salamanca city; ii) the Golden Stone due to its patina that produced a ochreous/golden color on the façades of monuments of Salamanca (World Heritage City,1988) built in this Natural stone (one of the silicated rocks utilised). We present in this work, the Villamayor Stone to be candidate as Global Heritage Stone Resource. The Villamayor Stone were quarrying for the construction and ornamentation of Romanesque religious monuments as the Old Cathedral and San Julian church; Gothic (Spanish plateresc style) as the New Cathedral, San Esteban church and the sculpted façade of the Salamanca University, one of the oldest University in Europe (it had established in 1250); and this stone was one of the type of one of the most sumptuous Baroque monuments is the Main Square of the its galleries and arcades (1729). Also, this stone was used in building palaces, walls and reconstruction of Roman bridge. Currently, Villamayor Stone is being quarried by small and family companies, without a modernized processing, for cladding of the façades of the new buildings until that the construction sector was burst (in 2008 the international economic crisis). However, Villamayor Stone is the main stone material used in the city of Salamanca for the restoration of monuments and, even in small quantities when compared with just before the economic crisis, it would be of great importance for future generations protect their quarries and the craft of masonry. Villamayor Stone has several varieties from channels facies to floodplains facies, in this work the selected varieties are: i) the fine-grained stone

  12. Effects of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence

    Carmel E. Johnston,; Stephanie A. Ewing,; Harden, Jennifer W.; Ruth K. Varner,; Wickland, Kimberly P.; Koch, Joshua C.; Fuller, Christopher C.; Manies, Kristen L.; M. Torre Jorgenson,

    2014-01-01

    Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH4), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO2) and CH4 exchange along sites that constitute a ~1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH4exchange in July (123 ± 71 mg CH4–C m−2 d−1) was observed in features that have been thawed for 30 to 70 (peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH4 dynamics.

  13. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Lou, Xue-Dong; Zhai, Sheng-Qiang; Kang, Bing; Hu, Ya-Lin; Hu, Li-Le

    2014-01-01

    A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC) is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm), SUVA(254 nm), Abs(400 nm), and SUVA(400 nm)) were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  14. Rapid response of hydrological loss of DOC to water table drawdown and warming in Zoige peatland: results from a mesocosm experiment.

    Xue-Dong Lou

    Full Text Available A large portion of the global carbon pool is stored in peatlands, which are sensitive to a changing environment conditions. The hydrological loss of dissolved organic carbon (DOC is believed to play a key role in determining the carbon balance in peatlands. Zoige peatland, the largest peat store in China, is experiencing climatic warming and drying as well as experiencing severe artificial drainage. Using a fully crossed factorial design, we experimentally manipulated temperature and controlled the water tables in large mesocosms containing intact peat monoliths. Specifically, we determined the impact of warming and water table position on the hydrological loss of DOC, the exported amounts, concentrations and qualities of DOC, and the discharge volume in Zoige peatland. Our results revealed that of the water table position had a greater impact on DOC export than the warming treatment, which showed no interactive effects with the water table treatment. Both DOC concentration and discharge volume were significantly increased when water table drawdown, while only the DOC concentration was significantly promoted by warming treatment. Annual DOC export was increased by 69% and 102% when the water table, controlled at 0 cm, was experimentally lowered by -10 cm and -20 cm. Increases in colored and aromatic constituents of DOC (measured by Abs(254 nm, SUVA(254 nm, Abs(400 nm, and SUVA(400 nm were observed under the lower water tables and at the higher peat temperature. Our results provide an indication of the potential impacts of climatic change and anthropogenic drainage on the carbon cycle and/or water storage in a peatland and simultaneously imply the likelihood of potential damage to downstream ecosystems. Furthermore, our results highlight the need for local protection and sustainable development, as well as suggest that more research is required to better understand the impacts of climatic change and artificial disturbances on peatland degradation.

  15. July: "Soils are living: Overview of soil biodiversity, global issues, and new resources"

    The July poster will provide an overview of soil biology and the many ecosystem functions that soil organisms drive including their impact on global biodiversity, climate regulation, soil health/stability, and plant growth. Five main global issues related to soil biodiversity will be presented such ...

  16. The Global Index of Vegetation-Plot Databases 1 (GIVD): a new resource for vegetation science

    Dengler, J.; Jansen, F.; Glockler, F.; Schaminee, J.H.J.

    2011-01-01

    Question: How many vegetation plot observations (relevés) are available in electronic databases, how are they geographically distributed, what are their properties and how might they be discovered and located for research and application? Location: Global. Methods: We compiled the Global Index of

  17. Deforestation: Can We Balance Resource Conservation with Economic Growth? Global Environmental Change Series.

    Environmental Protection Agency, Washington, DC.

    This book is the second installment in the Global Environmental Change Series that links the ecology and biology of global environmental changes with insights and information from other disciplines. This series teaches students how to gather a wide range of information from pertinent areas of study and encourages them to develop their own opinions…

  18. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  19. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  20. Involvement of Higher Education in Building Human Resources Character in the Era of Globalization

    Ishomuddin

    2015-01-01

    In general, the objectives of this study were to explain the role played by universities in improving its human resources are office holders, lecturers, and students, explain the program what is being done related to the improvement of human resources, and explains the non-academic program to support the implementation of a program that has been…

  1. Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    Eppinga, M.B.; Ruiter, de P.C.; Wassen, M.J.; Rietkerk, M.

    2009-01-01

    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for

  2. The ways of harmonization of uranium resources accounting systems on a global scale

    Naumov, S.S.; Shumilin, M.V.

    1998-01-01

    Resource classification systems used today in different countries make reference to the same principals: geological variability, commercial importance and level of preparedness for production. However, some countries with mining industries and established traditions use different classifications that are difficult to harmonize. To assist in developing a common international classification four issues are proposed for discussion: 1) existence of production facilities for producing resources; 2) need for low production cost categories compatible with current market prices; 3) specifying the degree of accuracy for various categories of resources and 4) in situ versus recoverable resource estimates. Based on these concepts revisions are proposed to the IAEA uranium classification system. Examples are also given of resource classifications for the Streltzovskoe deposit, Krasnokamensk. (author)

  3. Nitrogen removal in Northern peatlands treating mine wastewaters

    Palmer, Katharina; Karlsson, Teemu; Turunen, Kaisa; Liisa Räisänen, Marja; Backnäs, Soile

    2015-04-01

    Natural peatlands can be used as passive purification systems for mine wastewaters. These treatment peatlands are well-suited for passive water treatment as they delay the flow of water, and provide a large filtration network with many adsorptive surfaces on plant roots or soil particles. They have been shown to remove efficiently harmful metals and metalloids from mine waters due to variety of chemical, physical and biological processes such as adsorption, precipitation, sedimentation, oxidation and reduction reactions, as well as plant uptake. Many factors affect the removal efficiency such as inflow water quality, wetland hydrology, system pH, redox potential and temperature, the nature of the predominating purification processes, and the presence of other components such as salts. However, less attention has been paid to nitrogen (N) removal in peatlands. Thus, this study aimed to assess the efficiency of N removal and seasonal variation in the removal rate in two treatment peatlands treating mine dewatering waters and process effluent waters. Water sampling from treatment peatland inflow and outflow waters as well as pore waters in peatland were conducted multiple times during 2012-2014. Water samples were analysed for total N, nitrate-N and ammonium-N. Additionally, an YSI EXO2 device was used for continuous nitrate monitoring of waters discharged from treatment peatlands to the recipient river during summer 2014. The results showed that the oxic conditions in upper peat layer and microbial activity in treatment peatlands allowed the efficient oxidation of ammonium-N to nitrite-N and further to nitrate-N during summer time. However, the slow denitrification rate restricts the N removal as not all of the nitrate produced during nitrification is denitrified. In summer time, the removal rate of total N varied between 30-99 % being highest in late summer. N removal was clearly higher for treatment peatland treating process effluent waters than for peatland

  4. Building human resources capability in health care: a global analysis of best practice--Part II.

    Zairi, M

    1998-01-01

    This paper is the second from a series of three, addressing human resource practices using best practice examples. The analysis covered is based on the experiences of organisations that have won the Malcolm Baldrige National Quality Award (MBNQA) in the USA. The subcriteria covered in this benchmarking comparative analysis covers the following areas: human resource planning and management; employee involvement; employee education and training; employee performance and recognition; employee wellbeing and satisfaction. The paper concludes by reflecting on the likely implications for health-care professionals working in the human resource field.

  5. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    Bracken-Grissom, Heather; Collins, Allen G.; Collins, Timothy; Crandall, Keith; Distel, Daniel; Dunn, Casey; Giribet, Gonzalo; Haddock, Steven; Knowlton, Nancy; Martindale, Mark; Medina, Monica; Messing, Charles; O'Brien, Stephen J.; Paulay, Gustav; Putnam, Nicolas; Ravasi, Timothy; Rouse, Greg W.; Ryan, Joseph F.; Schulze, Anja; Worheide, Gert; Adamska, Maja; Bailly, Xavier; Breinholt, Jesse; Browne, William E.; Diaz, M. Christina; Evans, Nathaniel; Flot, Jean-Francois; Fogarty, Nicole; Johnston, Matthew; Kamel, Bishoy; Kawahara, Akito Y.; Laberge, Tammy; Lavrov, Dennis; Michonneau, Francois; Moroz, Leonid L.; Oakley, Todd; Osborne, Karen; Pomponi, Shirley A.; Rhodes, Adelaide; Rodriguez-Lanetty, Mauricio; Santos, Scott R.; Satoh, Nori; Thacker, Robert W.; Van de Peer, Yves; Voolstra, Christian R.; Welch, David Mark; Winston, Judith; Zhou, Xin

    2013-01-01

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative

  6. Malenco Serpentine: proposed as a candidate for "Global Heritage Stone Resource" designation

    Primavori, Piero

    2017-04-01

    of the valley on sleighs and carts and sold in two distinct markets: Sundrium (now Sondrio) and throughout the region, or carried up on an old Roman caravan route to the region formerly called Rezia. From early on, Serpentinoscisto gained a reputation as an outstanding roofing material and, over the centuries, it has had a significant impact on the social and cultural life of the valley, and continues to do so today. The excavation has been moved open-cast from the initially adopted underground system, with the use of modern technologies; but processing and installation have maintained the truly original, traditional and artisanal systems. Apart from its intrinsic geological, petrographic, commercial and technical properties, several issues related to the Malenco Serpentine are considered to be of relevant importance for its candidature for the designation as a "Global Heritage Stone Resource". Among the most important, there are: the peculiarity of some applications (tools, tradition, technical rules), the architecture and urban landscape of the area, the importance of the whole territory (Malenco Valley is known as "a world of geology"), the presence of an EcoMuseum, the local Historical Consortium.

  7. Roman Travertine: proposed as a candidate for "Global Heritage Stone Resource" designation

    Primavori, Piero

    2017-04-01

    , and artistic buildings, making Rome the "city of travertine". After its diffusion in Italy, the Roman Travertine has known an uninterrupted expansion abroad, becoming a sort of reference in the commercial worldwide category of the travertines; and this is probably why it has been sold and applied almost everywhere, irrespective of the geography, of the cultural landmarks, of the local culture and architectural styles. Nowadays, it is comparable to an icon of the Made in Italy, evoking what is still appointed the "eternal city" (Rome) and the remarkable heritage this city has accumulated. For the role this stone has played in the national context, for its history, the worldwide diffusion, the great importance in the social and cultural aspects, the Roman Travertine is here proposed as a candidate for the designation as "Global Heritage Stone Resource".

  8. China's role as a global health donor in Africa: what can we learn from studying under reported resource flows?

    Grépin, Karen A; Fan, Victoria Y; Shen, Gordon C; Chen, Lucy

    2014-12-30

    There is a growing recognition of China's role as a global health donor, in particular in Africa, but there have been few systematic studies of the level, destination, trends, or composition of these development finance flows or a comparison of China's engagement as a donor with that of more traditional global health donors. Using newly released data from AidData on China's development finance activities in Africa, developed to track under reported resource flows, we identified 255 health, population, water, and sanitation (HPWS) projects from 2000-2012, which we descriptively analyze by activity sector, recipient country, project type, and planned activity. We compare China's activities to projects from traditional donors using data from the OECD's Development Assistance Committee (DAC) Creditor Reporting System. Since 2000, China increased the number of HPWS projects it supported in Africa and health has increased as a development priority for China. China's contributions are large, ranking it among the top 10 bilateral global health donors to Africa. Over 50% of the HPWS projects target infrastructure, 40% target human resource development, and the provision of equipment and drugs is also common. Malaria is an important disease priority but HIV is not. We find little evidence that China targets health aid preferentially to natural resource rich countries. China is an important global health donor to Africa but contrasts with traditional DAC donors through China's focus on health system inputs and on malaria. Although better data are needed, particularly through more transparent aid data reporting across ministries and agencies, China's approach to South-South cooperation represents an important and distinct source of financial assistance for health in Africa.

  9. Restoration Ecology of Lowland tropical Peatlands in Southeast Asia: Current Knowledge and Future Research Directions

    Page, S.; Hoscilo, A.; Wösten, J.H.M.; Jauhiainen, J.; Silvius, M.J.; Rieley, J.; Ritzema, H.P.; Tansey, K.; Graham, L.; Vasander, H.; Limin, S.

    2009-01-01

    Studies of restoration ecology are well established for northern peatlands, but at an early stage for tropical peatlands. Extensive peatland areas in Southeast Asia have been degraded through deforestation, drainage and fire, leading to on- and off-site environmental and socio-economic impacts of

  10. Representing northern peatland microtopography and hydrology within the Community Land Model

    X. Shi; P.E. Thornton; D.M. Ricciuto; P J. Hanson; J. Mao; Stephen Sebestyen; N.A. Griffiths; G. Bisht

    2015-01-01

    Predictive understanding of northern peatland hydrology is a necessary precursor to understanding the fate of massive carbon stores in these systems under the influence of present and future climate change. Current models have begun to address microtopographic controls on peatland hydrology, but none have included a prognostic calculation of peatland water table depth...

  11. Porphyry copper assessment of the Tibetan Plateau, China: Chapter F in Global mineral resource assessment

    Ludington, Steve; Hammarstrom, Jane M.; Robinson, Gilpin R.; Mars, John L.; Miller, Robert J.

    2012-01-01

    The U.S. Geological Survey collaborated with the China Geological Survey to conduct a mineral-resource assessment of resources in porphyry copper deposits on the Tibetan Plateau in western China. This area hosts several very large porphyry deposits, exemplified by the Yulong and Qulong deposits, each containing at least 7,000,000 metric tons (t) of copper. However, large parts of the area are underexplored and are likely to contain undiscovered porphyry copper deposits.

  12. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.

    Elliott, David R; Caporn, Simon J M; Nwaishi, Felix; Nilsson, R Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15-19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare peat

  13. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation.

    David R Elliott

    Full Text Available The UK hosts 15-19% of global upland ombrotrophic (rain fed peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6 and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals. Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in

  14. Bacterial and Fungal Communities in a Degraded Ombrotrophic Peatland Undergoing Natural and Managed Re-Vegetation

    Elliott, David R.; Caporn, Simon J. M.; Nwaishi, Felix; Nilsson, R. Henrik; Sen, Robin

    2015-01-01

    The UK hosts 15–19% of global upland ombrotrophic (rain fed) peatlands that are estimated to store 3.2 billion tonnes of carbon and represent a critical upland habitat with regard to biodiversity and ecosystem services provision. Net production is dependent on an imbalance between growth of peat-forming Sphagnum mosses and microbial decomposition by microorganisms that are limited by cold, acidic, and anaerobic conditions. In the Southern Pennines, land-use change, drainage, and over 200 years of anthropogenic N and heavy metal deposition have contributed to severe peatland degradation manifested as a loss of vegetation leaving bare peat susceptible to erosion and deep gullying. A restoration programme designed to regain peat hydrology, stability and functionality has involved re-vegetation through nurse grass, dwarf shrub and Sphagnum re-introduction. Our aim was to characterise bacterial and fungal communities, via high-throughput rRNA gene sequencing, in the surface acrotelm/mesotelm of degraded bare peat, long-term stable vegetated peat, and natural and managed restorations. Compared to long-term vegetated areas the bare peat microbiome had significantly higher levels of oligotrophic marker phyla (Acidobacteria, Verrucomicrobia, TM6) and lower Bacteroidetes and Actinobacteria, together with much higher ligninolytic Basidiomycota. Fewer distinct microbial sequences and significantly fewer cultivable microbes were detected in bare peat compared to other areas. Microbial community structure was linked to restoration activity and correlated with soil edaphic variables (e.g. moisture and heavy metals). Although rapid community changes were evident following restoration activity, restored bare peat did not approach a similar microbial community structure to non-eroded areas even after 25 years, which may be related to the stabilisation of historic deposited heavy metals pollution in long-term stable areas. These primary findings are discussed in relation to bare

  15. Can frequent precipitation moderate drought impact on peatmoss carbon uptake in northern peatlands?

    Nijp, Jelmer; Limpens, Juul; Metselaar, Klaas; van der Zee, Sjoerd; Berendse, Frank; Robroek, Bjorn

    2014-05-01

    Northern peatlands represent one of the largest global carbon stores that can potentially be released by water table drawdown during extreme summer droughts. Small precipitation events may moderate negative impacts of deep water levels on carbon uptake by sustaining photosynthesis of peatmoss (Sphagnum spp.), the key species in these ecosystems. We experimentally assessed the importance of the temporal distribution of precipitation for Sphagnum water supply and carbon uptake during a stepwise decrease in water levels in a growth chamber. CO2 exchange and the water balance were measured for intact cores of three peatmoss species representative of three contrasting habitats in northern peatlands (Sphagnum fuscum, S. balticum and S. majus). For shallow water levels, capillary rise was the most important source of water for peatmoss photosynthesis and precipitation did not promote carbon uptake irrespective of peatmoss species. For deep water levels, however, precipitation dominated over capillary rise and moderated adverse effects of drought on carbon uptake by peat mosses. The ability to use the transient water supply by precipitation was species-specific: carbon uptake of S. fuscum increased linearly with precipitation frequency for deep water levels, whereas S. balticum and S. majus showed depressed carbon uptake at intermediate precipitation frequencies. Our results highlight the importance of precipitation for carbon uptake by peatmosses. The potential of precipitation to moderate drought impact, however, is species specific and depends on the temporal distribution of precipitation and water level. These results also suggest that modelling approaches in which water level depth is used as the only state variable determining water availability in the living moss layer and (in)directly linked to Sphagnum carbon uptake may have serious drawbacks. The predictive power of peatland ecosystem models may be reduced when deep water levels prevail, as precipitation

  16. Elemental, stable isotopic and biochemical characterization of soil organic matter alteration across a natural peatland gradient

    Cowie, G.; Mowbray, S.; Belyea, L.; Laing, C.; Allton, K.; Abbott, G.; Muhammad, A.

    2010-12-01

    Northern peatlands store around one third of global soil C and thus represent a key reservoir. To elucidate how these systems might respond to climate change, field- and laboratory-based experimental incubation studies are being conducted at sites across a natural peatland gradient in the boreonemoral zone of central Sweden (Ryggmossen). The site comprises four successional stages, from edge to centre; Swamp Forest (SF), Lagg Fen (LF), Bog Margin (BM) and Bog Plateau (BP). The well-preserved succession shows strong decreases in mineral cations and pH, and distinct changes in vegetation and water-table depth. As an underpinning to these experiments, comprehensive characterization of natural soil organic matter (SOM) alteration has been carried out through detailed analyses of vegetation and downcore profiles at contrasting topographic sites (hummock vs hollow) in each of the four locations. As illustrated in Figure 1, while some similarities occur in downcore trends, contrasts are observed in C and N elemental and stable isotopic compositions, between stages and, in some cases, between microtopographic settings. Downcore trends and intersite differences are also observed in biochemical yields and molecular composition (carbohydrates, amino acids, phenols, lipids and D/L amino acid ratios). These reflect SOM decay and alteration combined with the effects of contrasting hydrologic, redox and nutrient regimes and differing vegetation and microbial inputs at each of the study sites. Multivariate analysis is used to to elucidate compositional patterns that characterize and delineate progressive SOM decay, specific vegetation types, and the effects of contrasting environmental conditions at the different sites. Figure 1. A. Organic carbon content (wt %), B. Atomic ratio of organic C to total N, C. Stable C isotopic composition of organic C (d13Corg), and D. Stable N isotopic composition of total nitrogen (d15N), all for core profiles from contrasting settings (hummock and

  17. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  18. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land

  19. A Case Study of the Global Group for Sharing Knowledge and Efforts in Human Resources within the Nuclear Industry

    Thomas, C.

    2016-01-01

    Full text: One of the main conclusions from the IAEA’s HRD Conference in 2014 was that people and organisations in the global nuclear industry could cooperate more in sharing information and efforts. This was an inspiring conclusion, and there seemed an especially great opportunity for such sharing of information and efforts related to the attraction, recruitment, development and retention of people within the nuclear workforce. Founding members include people from the IAEA, WNA, WANO, EDF and OPG amongst others, the global working group for Human Resource matters aimed at “Building and Sustaining a Competent Nuclear Workforce” was established. This global working group is free to join and is open to anyone concerned with Building and Sustaining a Competent NuclearWorkforce. The objectives of the group are to share useful information, find others with similar objectives to cooperate with, ask questions, share opinions and crucially to avoid unnecessary duplication of efforts. The group already has 160 members from more than 15 countries and is currently hosted as a group on the LinkedIn website. The vision for the group is that it will become an invaluable resource for people across the world in the nuclear industry for sharing information and efforts. (author

  20. Preferences of Local People for the Use of Peatlands: the Case of the Richest Peatland Region in Finland

    Anne Tolvanen

    2013-06-01

    Full Text Available We analyze the potential for socioeconomically sustainable peatland use by investigating conflicting interests, revealing trade-offs that people are willing to accept, and studying whether opinions are dependent on socioeconomic and demographic factors. Opinions toward five forms of peatland use and seven peatland ecosystem services were surveyed in Northern Ostrobothnia in northern Finland in 2011. Choice experiment (CE was used to reveal trade-offs in land use preferences, and groups of respondents were identified using the latent class model (LCM. We identified three classes of respondents in which environmentalists showed a high preference toward the cessation of peat production and increase of peatland restoration, the production-oriented class preferred an increase in timber and peat production areas, and the current use supporters agreed on the present land use policy. However, all respondent classes agreed on the increase of nature protection and the present level of timber production and disagreed on the cessation of restoration. The CE revealed that environmentally minded people who are likely to consider the indirect use values and existence values important are less willing to make trade-offs between ecosystem services than those who emphasize direct use values. Because peatland restoration occurs in commercially unproductive peatlands, it improves both the direct use and existence values without reducing provisioning services of peatlands. Therefore, restoration is commonly accepted by the public, in contrast to management options that involve clear trade-offs between ecosystem services. We conclude that the understanding of preferences and trade-offs can enhance sustainable land use planning. It may be unrealistic, however, to expect a solution that all interest groups would completely accept.

  1. Building human resources capability in health care: a global analysis of best practice--Part III.

    Zairi, M

    1998-01-01

    This is the last part of a series of three papers which discussed very comprehensively best practice applications in human resource management by drawing special inferences to the healthcare context. It emerged from parts I and II that high performing organisations plan and intend to build sustainable capability through a systematic consideration of the human element as the key asset and through a continuous process of training, developing, empowering and engaging people in all aspects of organisational excellence. Part III brings this debate to a close by demonstrating what brings about organisational excellence and proposes a road map for effective human resource development and management, based on world class standards. Healthcare human resource professionals can now rise to the challenge and plan ahead for building organisational capability and sustainable performance.

  2. Airborne Electromagnetic Mapping of Peatlands: a Case Study in Norway.

    Silvestri, S.; Viezzoli, A.; Pfaffhuber, A. A.; Vettore, A.

    2017-12-01

    Peatlands are extraordinary reservoirs of organic carbon that can be found over a wide range of latitudes, in tropical, to temperate, to (sub)polar climates. According to some estimates, the carbon stored in peatlands almost match the atmospheric carbon pool. Peatlands degradation due to natural and anthropogenic factors releases every year large amount of CO2 and other green house gasses into the atmosphere. The conservation of peatlands is therefore a key measure to reduce emissions and to mitigate climate change. An effective plan to prevent peatlands degradation must move from a precise estimate of the volume of peat stored across vast territories around the world. One example are the several bogs that characterize large surfaces in Norway. Our research combines the use of high spatial resolution satellite optical data with Airborne Electromagnetic (AEM) and field measurements in order to map the extension and thickness of peat in Brøttum, Ringsaker province, Norway. The methodology allows us to quantify the volume of peat as well as the organic carbon stock. The variable thickness typical of Norwegian bogs allows us to test the limits of the AEM methodology in resolving near surface peat layers. This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 747809. Start date: 1 June 2017. Duration: 24 months

  3. Effects of winter temperature and summer drought on net ecosystem exchange of CO2 in a temperate peatland

    Helfter, Carole; Campbell, Claire; Dinsmore, Kerry; Drewer, Julia; Coyle, Mhairi; Anderson, Margaret; Skiba, Ute; Nemitz, Eiko; Billett, Michael; Sutton, Mark

    2014-05-01

    Northern peatlands are one of the most important global sinks of atmospheric carbon dioxide (CO2); their ability to sequester C is a natural feedback mechanism controlled by climatic variables such as precipitation, temperature, length of growing season and period of snow cover. In the UK it has been predicted that peatlands could become a net source of carbon in response to climate change with climate models predicting a rise in global temperature of ca. 3oC between 1961-1990 and 2100. Land-atmosphere exchange of CO2in peatlands exhibits marked seasonal and inter-annual variations, which have significant short- and long-term effects on carbon sink strength. Net ecosystem exchange (NEE) of CO2 has been measured continuously by eddy-covariance (EC) at Auchencorth Moss (55° 47'32 N, 3° 14'35 W, 267 m a.s.l.), a temperate peatland in central Scotland, since 2002. Auchencorth Moss is a low-lying, ombrotrophic peatland situated ca. 20 km south-west of Edinburgh. Peat depth ranges from 5 m and the site has a mean annual precipitation of 1155 mm. The vegetation present within the flux measurement footprint comprises mixed grass species, heather and substantial areas of moss species (Sphagnum spp. and Polytrichum spp.). The EC system consists of a LiCOR 7000 closed-path infrared gas analyser for the simultaneous measurement of CO2 and water vapour and of a Gill Windmaster Pro ultrasonic anemometer. Over the 10 year period, the site was a consistent yet variable sink of CO2 ranging from -34.1 to -135.9 g CO2-C m-2 yr-1 (mean of -69.1 ± 33.6 g CO2-C m-2 yr-1). Inter-annual variability in NEE was positively correlated to the length of the growing seasons and mean winter air temperature explained 93% of the variability in summertime sink strength, indicating a phenological memory-effect. Plant development and productivity were stunted by colder winters causing a net reduction in the annual carbon sink strength of this peatland where autotrophic processes are thought to be

  4. Accumulation of organic carbon over the past 150 years in five freshwater peatlands in western and central Europe

    Novak, Martin; Brizova, Eva; Adamova, Marie; Erbanova, Lucie; Bottrell, Simon H.

    2008-01-01

    Under predicted scenarios of global climate change, peatlands may become a net source of greenhouse gases which will accelerate warming of the atmosphere. Comparative studies of peat bogs along present climatic gradients may provide an insight into the future response of boreal and subarctic peatlands to changing temperature and moisture. Three maritime peat bogs in the British Isles, and two high-elevation peatlands in the Czech Republic were studied. All sites were relatively wet, the mean annual temperatures were higher by up to 6 o C at the British/Irish sites than at the Czech sites. Cumulative carbon content in 210 Pb-dated Sphagnum-dominated vertical peat cores increased from the warmer to the colder sites when evaluated for the most recent decades (since ca. 1950). That would correspond to formation of thinner, more highly decomposed peat deposits over the long-term in warmer conditions, and deeper peat bogs in colder conditions. However, when cumulative carbon content was evaluated for the last ca. 150 years, no relationship was found between mean annual temperature and the carbon pool size. Even along broad present-day climatic gradients, site-specific factors controlled organic carbon preservation in peat. Pollen analysis was instrumental in corroborating the 210 Pb dates, identifying wet and dry periods in the past, and it also provided evidence for increasing nitrogen loads in wetland areas

  5. Subtle shifts in microbial communities occur alongside the release of carbon induced by drought and rewetting in contrasting peatland ecosystems.

    Potter, Caitlin; Freeman, Chris; Golyshin, Peter N; Ackermann, Gail; Fenner, Nathalie; McDonald, James E; Ehbair, Abdassalam; Jones, Timothy G; Murphy, Loretta M; Creer, Simon

    2017-09-12

    Peat represents a globally significant pool of sequestered carbon. However, peatland carbon stocks are highly threatened by anthropogenic climate change, including drought, which leads to a large release of carbon dioxide. Although the enzymatic mechanisms underlying drought-driven carbon release are well documented, the effect of drought on peatland microbial communities has been little studied. Here, we carried out a replicated and controlled drought manipulation using intact peat 'mesocosm cores' taken from bog and fen habitats, and used a combination of community fingerprinting and sequencing of marker genes to identify community changes associated with drought. Community composition varied with habitat and depth. Moreover, community differences between mesocosm cores were stronger than the effect of the drought treatment, emphasising the importance of replication in microbial marker gene studies. While the effect of drought on the overall composition of prokaryotic and eukaryotic communities was weak, a subset of the microbial community did change in relative abundance, especially in the fen habitat at 5 cm depth. 'Drought-responsive' OTUs were disproportionately drawn from the phyla Bacteroidetes and Proteobacteria. Collectively, the data provide insights into the microbial community changes occurring alongside drought-driven carbon release from peatlands, and suggest a number of novel avenues for future research.

  6. Pakistan's resources proficiency in global fever, greenhouse gases and atmospheric pollution control and need of their mobilization

    Malik, M.N.

    1997-01-01

    The temperature of earth planet is rising at an alarming rate and environmental changes, green house gasses emission and atmospheric pollution are approaching very critical limits. Ozone layer hole is increasing at very fast rate. On account of these very serious issues, the earth planet is heading at a very fast rate towards total collapse of life on it. For overcoming these very dangerous global problems Pakistan has very ideal resources subject to their proper management and well planned and timely mobilization. The efficient scientific utilization of these resources will not resolve its own pollution problems along contributing towards its own agricultural, industrial and economic growth, but also heavily contribute to the very critical global issues endangering the very existence of life on the earth along with contributing towards its own agricultural, industrial and economic growth. This will also forbid it to join hand with the rations already engaged in contributing toward the world's destruction by adding to these highly dangerous factors. In this work role of proper management of its water flow, gradient and storage resources in hydroelectric power generation and irrigation of its vast fertile agricultural fields and substantial control of these very dangerous global issues in highlighted. Also the economic boost of Pakistan due to its firm footing in respect economy, agricultural and industrial output, energy employment and flood damages control as a result of this mobilization is elaborated. At the end world's political leaders, electronic media, scientific and financial institutions are urged to help Pakistan in playing its role not only for welfare but very existence of mankind on this planet. (author)

  7. The response of vegetation structure to active warming and precipitation reduction of the Sphagnum peatland

    Łuców, Dominika; Basińska, Anna; Chojnicki, Bogdan; Gąbka, Maciej; Józefczyk, Damian; Juszczak, Radosław; Leśny, Jacek; Olejnik, Janusz; Reczuga, Monika; Samson, Mateusz; Silvennoinen, Hanna; Stróżecki, Marcin; Urbaniak, Marek; Zielińska, Małgorzata; Lamentowicz, Mariusz

    2017-04-01

    still challenging to explore air temperature as a key variable driving the observed species turnover. Therefore the study needs to be continued in the following years. We plan to synthesize vegetation data with carbon fluxes to obtain a better understanding of the response of peatland ecosystem to global warming. The Research was co-founded by the Polish National Centre for Research and Development within the Polish-Norwegian Research Programme within the WETMAN project (Central European Wetland Ecosystem Feedbacks to Changing Climate - Field Scale Manipulation, Project ID: 203258, contract No. Pol-Nor/203258/31/2013 (www.wetman.pl).

  8. Partitioning of the net CO2 exchange using an automated chamber system reveals plant phenology as key control of production and respiration fluxes in a boreal peatland.

    Järveoja, Järvi; Nilsson, Mats B; Gažovič, Michal; Crill, Patrick M; Peichl, Matthias

    2018-04-30

    The net ecosystem CO 2 exchange (NEE) drives the carbon (C) sink-source strength of northern peatlands. Since NEE represents a balance between various production and respiration fluxes, accurate predictions of its response to global changes require an in depth understanding of these underlying processes. Currently, however, detailed information of the temporal dynamics as well as the separate biotic and abiotic controls of the NEE component fluxes is lacking in peatland ecosystems. In this study, we address this knowledge gap by using an automated chamber system established across natural and trenching-/vegetation removal plots to partition NEE into its production (i.e. gross and net primary production; GPP and NPP) and respiration (i.e. ecosystem, heterotrophic and autotrophic respiration; ER, Rh and Ra) fluxes in a boreal peatland in northern Sweden. Our results showed that daily NEE patterns were driven by GPP while variations in ER were governed by Ra rather than Rh. Moreover, we observed pronounced seasonal shifts in the Ra/Rh and above-/belowground NPP ratios throughout the main phenological phases. Generalized linear model analysis revealed that the greenness index derived from digital images (as a proxy for plant phenology) was the strongest control of NEE, GPP and NPP while explaining considerable fractions also in the variations of ER and Ra. In addition, our data exposed greater temperature sensitivity of NPP compared to Rh resulting in enhanced C sequestration with increasing temperature. Overall, our study suggests that the temporal patterns in NEE and its component fluxes are tightly coupled to vegetation dynamics in boreal peatlands and thus challenges previous studies that commonly identify abiotic factors as key drivers. These findings further emphasize the need for integrating detailed information on plant phenology into process-based models to improve predictions of global change impacts on the peatland C cycle. This article is protected by

  9. Global heterogeneous resource harvesting: the next-generation PanDA Pilot for ATLAS

    Nilsson, Paul; The ATLAS collaboration

    2017-01-01

    The Production and Distributed Analysis system (PanDA), used for workload management in the ATLAS Experiment for over a decade, has in recent years expanded its reach to diverse new resource types such as HPCs, and innovative new workflows such as the Event Service. PanDA meets the heterogeneous resources it harvests in the PanDA pilot, which has embarked on a next-generation reengineering to efficiently integrate and exploit the new platforms and workflows. The new modular architecture is the product of a year of design and prototyping in conjunction with the design of a completely new component, Harvester, that will mediate a richer flow of control and information between pilot and PanDA. Harvester will enable more intelligent and dynamic matching between processing tasks and resources, with an initial focus on HPCs, simplifying the operator and user view of a PanDA site but internally leveraging deep information gathering on the resource to accrue detailed knowledge of a site's capabilities and dynamic sta...

  10. Global heterogeneous resource harvesting: the next-generation PanDA pilot for ATLAS

    Nilsson, Paul; The ATLAS collaboration

    2017-01-01

    The Production and Distributed Analysis system (PanDA), used for workload management in the ATLAS Experiment for over a decade, has in recent years expanded its reach to diverse new resource types such as HPCs, and innovative new workflows such as the event service. PanDA meets the heterogeneous resources it harvests in the PanDA pilot, which has embarked on a next-generation reengineering to efficiently integrate and exploit the new platforms and workflows. The new modular architecture is the product of a year of design and prototyping in conjunction with the design of a completely new component, Harvester, that will mediate a richer flow of control and information between pilot and PanDA. Harvester will enable more intelligent and dynamic matching between processing tasks and resources, with an initial focus on HPCs, simplifying the operator and user view of a PanDA site but internally leveraging deep information gathering on the resource to accrue detailed knowledge of a site's capabilities and dynamic sta...

  11. Managing common resources in local and global systems. Applying theory across scales

    Karlsson, Sylvia [ed.

    1997-12-31

    The main point brought forward in this publication is the productiveness of applying theoretical elements, developed within common property resource (CPR) literature, to a broader field of cases on different scales. The common framework for the contributions is a series of seminars held at the Department of Water and Environmental Studies in the spring of 1996, covering expanding work during the last decade on common property resource (CPR) management. It is obvious that there were a broad range of definitions of the concept CPR in the literature. The common pool/property resource concepts are both used, often depending on the resource studied, and authors in this volume have used both terms accordingly. Certain points are raised from empirical cases presented in this volume that are partly missing or not thoroughly stressed in other work in the area of CPR management and which crystallized much clearer when contrasting the situation for cases from different scales. Separate abstracts have been performed for five of the seven contributions

  12. Managing common resources in local and global systems. Applying theory across scales

    Karlsson, Sylvia [ed.

    1998-12-31

    The main point brought forward in this publication is the productiveness of applying theoretical elements, developed within common property resource (CPR) literature, to a broader field of cases on different scales. The common framework for the contributions is a series of seminars held at the Department of Water and Environmental Studies in the spring of 1996, covering expanding work during the last decade on common property resource (CPR) management. It is obvious that there were a broad range of definitions of the concept CPR in the literature. The common pool/property resource concepts are both used, often depending on the resource studied, and authors in this volume have used both terms accordingly. Certain points are raised from empirical cases presented in this volume that are partly missing or not thoroughly stressed in other work in the area of CPR management and which crystallized much clearer when contrasting the situation for cases from different scales. Separate abstracts have been performed for five of the seven contributions

  13. Global patient safety and antiretroviral drug-drug interactions in the resource-limited setting.

    Seden, Kay; Khoo, Saye H; Back, David; Byakika-Kibwika, Pauline; Lamorde, Mohammed; Ryan, Mairin; Merry, Concepta

    2013-01-01

    Scale-up of HIV treatment services may have contributed to an increase in functional health facilities available in resource-limited settings and an increase in patient use of facilities and retention in care. As more patients are reached with medicines, monitoring patient safety is increasingly important. Limited data from resource-limited settings suggest that medication error and antiretroviral drug-drug interactions may pose a significant risk to patient safety. Commonly cited causes of medication error in the developed world include the speed and complexity of the medication use cycle combined with inadequate systems and processes. In resource-limited settings, specific factors may contribute, such as inadequate human resources and high disease burden. Management of drug-drug interactions may be complicated by limited access to alternative medicines or laboratory monitoring. Improving patient safety by addressing the issue of antiretroviral drug-drug interactions has the potential not just to improve healthcare for individuals, but also to strengthen health systems and improve vital communication among healthcare providers and with regulatory agencies.

  14. Global Demand for Natural Resources Eliminated More Than 100,000 Bornean Orangutans

    Voigt, M.; Wich, S.A.; Ancrenaz, M.; Meijaard, E.; Abram, N.; Banes, G.L.; Campbell-Smith, G.; d'Arcy, L.J.; Delgado, R.A.; Erman, A.; Gaveau, D.; Goossens, B.; Heinicke, S.; Houghton, M.; Husson, S.J.; Leiman, A.; Sanchez, K.L.; Makinuddin, N.; Marshall, A.J.; Meididit, A.; Miettinen, J.; Mundry, R.; Musnanda,; Nardiyono,; Nurcahyo, A.; Odom, K.; Panda, A.; Prasetyo, D.; Priadjati, A.; Purnomo,; Rafiastanto, A.; Russon, A.E.; Santika, T.; Sihite, J.; Spehar, S.; Struebig, M.; Sulbaran-Romero, E.; Tjiu, A.; Wells, J.; Wilson, K.A.; Kühl, H.S.

    2018-01-01

    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3–5], our knowledge about the effects of

  15. A global index for mapping the exposure of water resources to wildfire

    Francois-Nicolas Robinne; Carol Miller; Marc-Andre Parisien; Monica B. Emelko; Kevin D. Bladon; Uldis Silins; Mike Flannigan

    2016-01-01

    Wildfires are keystone components of natural disturbance regimes that maintain ecosystem structure and functions, such as the hydrological cycle, in many parts of the world. Consequently, critical surface freshwater resources can be exposed to post-fire effects disrupting their quantity, quality and regularity. Although well studied at the local scale, the potential...

  16. The Lavender Ceiling atop the Global Closet: Human Resource Development and Lesbian Expatriates

    Gedro, Julie

    2010-01-01

    This literature review will examine international assignments as career development opportunities and uncover multiple issues and considerations with respect to lesbians and international assignments. There is a clear interest in the fields of management and human resource management in the privileges, challenges, and opportunities of…

  17. Searching for a global reserves standard - The United Nations Framework Classification for Fossil Energy and Mineral Reserves and Resources 2009

    Lynch-Bell, Michael

    2010-09-15

    The UNFC-2009 applies to fossil energy and mineral reserves and resources located on or below the Earth's surface and is intended to serve the needs for classification at a global level for governments, for industry and for financial reporting. UNFC-2009 is a generic system in which quantities are classified on the basis of the three fundamental criteria of economic and social viability (E), field project status and feasibility (F), and geological knowledge (G), using a numerical coding system. The aim of this paper is to explore whether the UNFC-2009 can meet the needs of all internal and external stakeholders.

  18. Assessment of undiscovered sandstone copper deposits of the Kodar-Udokan area, Russia: Chapter M in Global mineral resource assessment

    Zientek, Michael L.; Chechetkin, Vladimir S.; Parks, Heather L.; Box, Stephen E.; Briggs, Deborah A.; Cossette, Pamela M.; Dolgopolova, Alla; Hayes, Timothy S.; Seltmann, Reimar; Syusyura, Boris; Taylor, Cliff D.; Wintzer, Niki E.

    2014-01-01

    Mineral resource assessments integrate and synthesize available information as a basis for estimating the location, quality, and quantity of undiscovered mineral resources. This probabilistic mineral resource assessment of undiscovered sandstone copper deposits within Paleoproterozoic metasedimentary rocks of the Kodar-Udokan area in Russia is a contribution to a global assessment led by the U.S. Geological Survey (USGS). The purposes of this study are to (1) delineate permissive areas (tracts) to indicate where undiscovered sandstone-hosted copper deposits may occur within 2 km of the surface, (2) provide a database of known sandstone copper deposits and significant prospects, (3) estimate numbers of undiscovered deposits within these permissive tracts at several levels of confidence, and (4) provide probabilistic estimates of amounts of copper (Cu) and mineralized rock that could be contained in undiscovered deposits within each tract. The workshop for the assessment, held in October 2009, used a three-part form of mineral resource assessment as described by Singer (1993) and Singer and Menzie (2010).

  19. Long time management of fossil fuel resources to limit global warming and avoid ice age onsets

    Shaffer, Gary

    2009-02-01

    There are about 5000 billion tons of fossil fuel carbon in accessible reserves. Combustion of all this carbon within the next few centuries would force high atmospheric CO2 content and extreme global warming. On the other hand, low atmospheric CO2 content favors the onset of an ice age when changes in the Earth's orbit lead to low summer insolation at high northern latitudes. Here I present Earth System Model projections showing that typical reduction targets for fossil fuel use in the present century could limit ongoing global warming to less than one degree Celcius above present. Furthermore, the projections show that combustion pulses of remaining fossil fuel reserves could then be tailored to raise atmospheric CO2 content high and long enough to parry forcing of ice age onsets by summer insolation minima far into the future. Our present interglacial period could be extended by about 500,000 years in this way.

  20. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Kurevija, Tomislav; Kukulj, Nenad; Rajković, Damir

    2007-01-01

    Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned...

  1. Technology Resource, Distribution, and Development Characteristics of Global Influenza Virus Vaccine: A Patent Bibliometric Analysis

    Chen, Ning; Liu, Yun; Cheng, Yijie; Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang

    2015-01-01

    Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this pa...

  2. Rewetted industrial cutaway peatlands in western Ireland: a prime location for climate change mitigation?

    D. Wilson

    2013-04-01

    Full Text Available Rewetting of drained industrial peatlands may reduce greenhouse gas (GHG emissions and promote recolonisation by peat forming plant species. We investigated carbon dioxide (CO2, methane (CH4 and nitrous oxide (N2O dynamics over a three-year period in a rewetted industrial peatland in Ireland. Sample plots were established in bare peat, Juncus effusus-Sphagnum cuspidatum, Sphagnum cuspidatum and Eriophorum angustifolium dominated microsites. The relationships between fluxes and environmental variables were examined and regression models were used to provide an estimate of the annual GHG balance for each microsite. All the vegetated microsites were carbon sinks for the duration of the study. Highest uptake occurred in the Eriophorum microsite (146–583 g C m-2 yr-1, followed by Juncus-Sphagnum (35–204 g C m-2 yr-1 and Sphagnum (5–140 g C m-2 yr-1. The bare peat microsite was a source of 37–82 g C m-2 yr-1. No N2O fluxes were detected. Strong inter-annual variation was observed in all microsites, driven by variation in precipitation and subsequent changes in the position of the water table. In terms of Global Warming Potential (GWP, the microsites had either a cooling effect (Eriophorum, a close to neutral effect (Juncus-Sphagnum, Sphagnum or a warming effect (bare peat on the climate.

  3. Application of Resource Utilization in Dementia (RUD) instrument in a global setting.

    Wimo, Anders; Gustavsson, Anders; Jönsson, Linus; Winblad, Bengt; Hsu, Ming-Ann; Gannon, Brenda

    2013-07-01

    The Resource Utilization in Dementia (RUD) questionnaire is the most widely used instrument for resource use data collection in dementia, enabling comparison of costs of care across countries with differing health care provisions. Recent feedback from payers questioned its face validity given that health care provisions have changed since the initial development of the RUD in 1998. The aim of this study was to update the RUD to improve its face validity in Alzheimer's disease (AD) clinical research and its utility for health care resource allocation. An extensive PubMed review was conducted of current relevant resource items in AD in 15 countries. The findings were complemented by interviews with local care providers and experts in dementia care and health economics. Their proposed revisions were discussed with five leading dementia experts in North and South America, northern and southern Europe, and Asia. A new version of the RUD was developed based on their recommendations. RUD users identified a need for more information relevant to coverage decisions. Proposed revisions included changes to existing questions (e.g., to capture more accurately the number and type of health care visits) and the addition of new questions (e.g., on informal caregiver hours and the primary caregiver's hours of sleep). Several minor changes were made to the RUD instrument to improve the accuracy and precision of the data while maintaining comparability with the original version and reflecting current medical practice. The RUD Complete Version 4.0 is now available for use in future AD clinical trials. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  4. Delineation of peatland lagg boundaries from airborne LiDAR

    Langlois, Melanie N.; Richardson, Murray C.; Price, Jonathan S.

    2017-09-01

    In Canada, peatlands are the most common type of wetland, but boundary delineation in peatland complexes has received little attention in the scientific literature. Typically, peatland boundaries are mapped as crisp, absolute features, and the transitional lagg zone—the ecotone found between a raised bog and the surrounding mineral land—is often overlooked. In this study, we aim (1) to advance existing approaches for detecting and locating laggs and lagg boundaries using airborne LiDAR surveys and (2) to describe the spatial distribution of laggs around raised bog peatlands. Two contrasting spatial analytical approaches for lagg detection were tested using five LiDAR-derived topographic and vegetation indices: topography, vegetation height, topographic wetness index, the standard deviation of the vegetation's height (as a proxy for the complexity of the vegetation's structure), and local indices of elevation variance. Using a dissimilarity approach (edge-detection, split-moving window analysis), no one variable accurately depicted both the lagg-mineral land and bog-lagg boundaries. Some indicators were better at predicting the bog-lagg boundary (i.e., vegetation height) and others at finding the lagg-mineral land boundary (i.e., topography). Dissimilarity analysis reinforces the usefulness of derived variables (e.g., wetness indices) in locating laggs, especially for those with weak topographic and vegetation gradients. When the lagg was confined between the bog and the adjacent upland, it took a linear form, parallel to the peatland's edge and was easier to predict. When the adjacent mineral land was flat or sloping away from the peatland, the lagg was discontinuous and intermittent and more difficult to predict.

  5. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange

    Sonnentag, O.

    2008-01-01

    A recent version of the Boreal Ecosystem Productivity Simulator (BEPS) was extended and modified to include northern peatlands. This thesis evaluated the BEPS-TerrainLab using observations made at the Mer Bleue bog located near Ottawa, Ontario, and the Sandhill fen located near Prince Albert, Saskatchewan. The code was revised to represent the multi-layer canopy and processes related to energy, water vapour and carbon dioxide fluxes through remotely-sensed leaf area index (LAI) maps. A quick and reliable method was also developed to determine shrub LAI with the LAI-2000 plant canopy analyzer. A large number of LAI data was collected at the Mer Bleue bog for the development of a new remote sensing-based methodology using multiple end member spectral unmixing to allow for separate tree and shrub LAI mapping in ombrotrophic peatlands. The methodology was also adapted for use in minerotrophic peatlands and their surrounding landscapes. These LAI maps within the BEPS-TerrainLab represented the tree and shrub layers of the Mer Bleue bog and the tree and shrub/sedge layers of the Sandhill fen. The study examined the influence of mesoscale topography (Mer Bleue bog) and macro- and mesoscale topography (Sandhill fen) on wetness, evapotranspiration, and gross primary productivity during the snow-free period of 2004. The results suggested that a peatland type-specific differentiation of macro- and mesoscale topographic effects on hydrology should be included in future peatland ecosystem modelling efforts in order to allow for a more realistic simulation of the soil water balance in peatlands and to reduce uncertainties in carbon dioxide and methane annual fluxes from wetlands

  6. Spatially explicit simulation of peatland hydrology and carbon dioxide exchange

    Sonnentag, O.

    2008-08-01

    A recent version of the Boreal Ecosystem Productivity Simulator (BEPS) was extended and modified to include northern peatlands. This thesis evaluated the BEPS-TerrainLab using observations made at the Mer Bleue bog located near Ottawa, Ontario, and the Sandhill fen located near Prince Albert, Saskatchewan. The code was revised to represent the multi-layer canopy and processes related to energy, water vapour and carbon dioxide fluxes through remotely-sensed leaf area index (LAI) maps. A quick and reliable method was also developed to determine shrub LAI with the LAI-2000 plant canopy analyzer. A large number of LAI data was collected at the Mer Bleue bog for the development of a new remote sensing-based methodology using multiple end member spectral unmixing to allow for separate tree and shrub LAI mapping in ombrotrophic peatlands. The methodology was also adapted for use in minerotrophic peatlands and their surrounding landscapes. These LAI maps within the BEPS-TerrainLab represented the tree and shrub layers of the Mer Bleue bog and the tree and shrub/sedge layers of the Sandhill fen. The study examined the influence of mesoscale topography (Mer Bleue bog) and macro- and mesoscale topography (Sandhill fen) on wetness, evapotranspiration, and gross primary productivity during the snow-free period of 2004. The results suggested that a peatland type-specific differentiation of macro- and mesoscale topographic effects on hydrology should be included in future peatland ecosystem modelling efforts in order to allow for a more realistic simulation of the soil water balance in peatlands and to reduce uncertainties in carbon dioxide and methane annual fluxes from wetlands.

  7. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor.

    Gumbricht, Thomas; Roman-Cuesta, Rosa Maria; Verchot, Louis; Herold, Martin; Wittmann, Florian; Householder, Ethan; Herold, Nadine; Murdiyarso, Daniel

    2017-09-01

    Wetlands are important providers of ecosystem services and key regulators of climate change. They positively contribute to global warming through their greenhouse gas emissions, and negatively through the accumulation of organic material in histosols, particularly in peatlands. Our understanding of wetlands' services is currently constrained by limited knowledge on their distribution, extent, volume, interannual flood variability and disturbance levels. We present an expert system approach to estimate wetland and peatland areas, depths and volumes, which relies on three biophysical indices related to wetland and peat formation: (1) long-term water supply exceeding atmospheric water demand; (2) annually or seasonally water-logged soils; and (3) a geomorphological position where water is supplied and retained. Tropical and subtropical wetlands estimates reach 4.7 million km 2 (Mkm 2 ). In line with current understanding, the American continent is the major contributor (45%), and Brazil, with its Amazonian interfluvial region, contains the largest tropical wetland area (800,720 km 2 ). Our model suggests, however, unprecedented extents and volumes of peatland in the tropics (1.7 Mkm 2 and 7,268 (6,076-7,368) km 3 ), which more than threefold current estimates. Unlike current understanding, our estimates suggest that South America and not Asia contributes the most to tropical peatland area and volume (ca. 44% for both) partly related to some yet unaccounted extended deep deposits but mainly to extended but shallow peat in the Amazon Basin. Brazil leads the peatland area and volume contribution. Asia hosts 38% of both tropical peat area and volume with Indonesia as the main regional contributor and still the holder of the deepest and most extended peat areas in the tropics. Africa hosts more peat than previously reported but climatic and topographic contexts leave it as the least peat-forming continent. Our results suggest large biases in our current understanding of

  8. Geophysical characterization of peatlands using crosshole GPR full-waveform inversion: Case study from a bog in northwestern Germany

    Schmäck, J.; Klotzsche, A.; Van Der Kruk, J.; Vereecken, H.; Bechtold, M.

    2017-12-01

    The characterization of peatlands is of particular interest, since areas with peat soils represent global hotspots for the exchange of greenhouse gases. Their effect on global warming depends on several parameters, like mean annual water level and land use. Models of greenhouse gas emissions and carbon accumulation in peatlands can be improved by including small-scale soil properties that e.g. act as gas traps and periodically release gases to the atmosphere during ebullition events. Ground penetrating radar (GPR) is well suited to non- or minimal invasively characterize and improve our understanding of dynamic processes that take place in the critical zone. It uses high frequency electromagnetic waves to image and characterize the dielectric permittivity and electrical conductivity of the critical zone, which can be related to hydrogeological properties like porosity, soil water content, salinity and clay content. In the last decade, the full-waveform inversion of crosshole GPR data has proved to be a powerful tool to improve the image resolution compared to standard ray-based methods. This approach was successfully applied to several different aquifers and was able to provide decimeter-scale resolution images including small-scale high contrast layers that can be related to zones of high porosity, zones of preferential flow or clay lenses. The comparison to independently measured e.g. logging data proved the reliability of the method. Here, for the first time crosshole GPR full-waveform inversion is used to image three peatland plots with different land use that are part of the "Ahlen-Falkenberger Moor peat bog complex" in northwestern Germany. The full-waveform inversion of the acquired data returned higher resolution images than standard ray-based GPR methods, and, is able to improve our understanding of subsurface structures. The comparison of the different plots is expected to provide new insights into gas content and gas trapping structures across different

  9. Environmental controls on δ13C variations of Sphagnum derived n-alkanes in the Dajiuhu peatland, central China

    Huang, X.; Xue, J.; Wang, X.; WANG, H.; Meyers, P. A.; Qin, Y.; Gong, L.; Ding, W.

    2012-12-01

    Northern peatlands are one of the very important atmospheric carbon sinks and represent about 30% of the global soil organic carbon (Gorham, 1991). In peatland conditions, high water levels and consequent anoxia make them an important source of methane. A recent study revealed that methanotrophic bacteria growing on stems or in hyaline cells of Sphagnum can provide methane derived carbon for photosynthesis (Raghoebarsing et al., 2005). This interaction has been found to be globally prevalent in peat-moss ecosystems and can contribute up to 30% of carbon for Sphagnum photosynthesis (Kip et al., 2010). Due to the uptake of 13C-depleted methane-derived CO2 and the sensitivity of methane oxidizing bacteria to the surface wetness, the carbon isotopic signatures of Sphagnum derived lipids have the potential to be used as a proxy for the surface wetness in peatlands and hence as paleoclimate archives (Nichols et al., 2009). In this study, we report the δ13C variations of the Sphagnum derived n-C23 alkane in both fresh Sphagnum and surface peat samples in the Dajiuhu peatland, a small fen located in the Shennongjia forestry region, Hubei province, central China. The δ13C23 values of Sphagnum show a negative correlation with the water level, supporting the idea that that the carbon isotope fractionation of Sphagnum is mainly manifested by the diffusion resistance of CO2 in hyaline cells of Sphagnum. However, δ13C23 values of surface peats collected in Sphagnum dominated ecosystems display a positive relation with the water level when the water level is less than 30 cm. Such an inconsistency probably results from the higher potential for methane-oxidizing activity in the lower parts of Sphagnum in fen meadows. When the water level is higher than 30 cm, the influence of symbiotic methanotrophic bacteria on Sphagnum derived n-C23 alkane is weak or nearly absent. These findings provide direct evidence to support the hypothesis that the carbon isotopic signatures of Sphagnum

  10. World Resources: A guide to the Global Environment, 1992-1993

    Anon.

    1993-01-01

    This book, produced in collaboration with the U.N., is a basic information source on the impact humans have had on the earth's environment, with a theme of sustainable development. Part I is an essay on sustainable development, examined in the contest of industrial, industrializing, and non-industrial countries. Part II is a description of the environmental devastation in central Europe. Part III examines global environmental conditions and trends, and part IV consists of tables, each with an interductory text and citations, including such topics as population, development, land cover, food, forests, wildlife, habitats, energy, water, atmosphere, and climate

  11. A global health delivery framework approach to epilepsy care in resource-limited settings.

    Cochran, Maggie F; Berkowitz, Aaron L

    2015-11-15

    The Global Health Delivery (GHD) framework (Farmer, Kim, and Porter, Lancet 2013;382:1060-69) allows for the analysis of health care delivery systems along four axes: a care delivery value chain that incorporates prevention, diagnosis, and treatment of a medical condition; shared delivery infrastructure that integrates care within existing healthcare delivery systems; alignment of care delivery with local context; and generation of economic growth and social development through the health care delivery system. Here, we apply the GHD framework to epilepsy care in rural regions of low- and middle-income countries (LMIC) where there are few or no neurologists. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Global Demand for Natural Resources Eliminated More Than 100,000 Bornean Orangutans.

    Voigt, Maria; Wich, Serge A; Ancrenaz, Marc; Meijaard, Erik; Abram, Nicola; Banes, Graham L; Campbell-Smith, Gail; d'Arcy, Laura J; Delgado, Roberto A; Erman, Andi; Gaveau, David; Goossens, Benoit; Heinicke, Stefanie; Houghton, Max; Husson, Simon J; Leiman, Ashley; Sanchez, Karmele Llano; Makinuddin, Niel; Marshall, Andrew J; Meididit, Ari; Miettinen, Jukka; Mundry, Roger; Musnanda; Nardiyono; Nurcahyo, Anton; Odom, Kisar; Panda, Adventus; Prasetyo, Didik; Priadjati, Aldrianto; Purnomo; Rafiastanto, Andjar; Russon, Anne E; Santika, Truly; Sihite, Jamartin; Spehar, Stephanie; Struebig, Matthew; Sulbaran-Romero, Enrique; Tjiu, Albertus; Wells, Jessie; Wilson, Kerrie A; Kühl, Hjalmar S

    2018-03-05

    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3-5], our knowledge about the effects of these changes on wildlife is much more sparse [6, 7]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8-10]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12]. VIDEO ABSTRACT. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  14. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  15. Data resource profile: the World Health Organization Study on global AGEing and adult health (SAGE).

    Kowal, Paul; Chatterji, Somnath; Naidoo, Nirmala; Biritwum, Richard; Fan, Wu; Lopez Ridaura, Ruy; Maximova, Tamara; Arokiasamy, Perianayagam; Phaswana-Mafuya, Nancy; Williams, Sharon; Snodgrass, J Josh; Minicuci, Nadia; D'Este, Catherine; Peltzer, Karl; Boerma, J Ties

    2012-12-01

    Population ageing is rapidly becoming a global issue and will have a major impact on health policies and programmes. The World Health Organization's Study on global AGEing and adult health (SAGE) aims to address the gap in reliable data and scientific knowledge on ageing and health in low- and middle-income countries. SAGE is a longitudinal study with nationally representative samples of persons aged 50+ years in China, Ghana, India, Mexico, Russia and South Africa, with a smaller sample of adults aged 18-49 years in each country for comparisons. Instruments are compatible with other large high-income country longitudinal ageing studies. Wave 1 was conducted during 2007-2010 and included a total of 34 124 respondents aged 50+ and 8340 aged 18-49. In four countries, a subsample consisting of 8160 respondents participated in Wave 1 and the 2002/04 World Health Survey (referred to as SAGE Wave 0). Wave 2 data collection will start in 2012/13, following up all Wave 1 respondents. Wave 3 is planned for 2014/15. SAGE is committed to the public release of study instruments, protocols and meta- and micro-data: access is provided upon completion of a Users Agreement available through WHO's SAGE website (www.who.int/healthinfo/systems/sage) and WHO's archive using the National Data Archive application (http://apps.who.int/healthinfo/systems/surveydata).

  16. Natural gas as a traded global commodity : no longer just a continental resource

    Pickard, A.

    2004-01-01

    Many consider natural gas to be the fuel of choice for the future because it is abundant, clean and cost competitive. This presentation reviewed how gas markets are changing in terms of globalization, the critical role of liquefied natural gas (LNG), the politics, technology and how the evolution will differ from oil. Other topics of discussion included the expanding world trade of LNG, LNG markets, supply countries, LNG flows in 2002 and potential future flows. Developments in the market were reviewed with reference to limited LNG spot market, mix of contract types, and the role of powerful aggregator partners. The impact of joining suppliers and markets was also discussed along with the value chain of the tramline model. Shell's LNG shipping position was outlined. Shell wholly owns 4 LNG ships and partly owns and operates 16 more ships. The presentation listed existing, permitted, publicly announced and scouting LNG regas terminals in North America, along with Shell interests. It was noted that LNG has the potential to meet some of the growing deficit in North American gas production. The issues that require consideration include permitting uncertainties, basis risk, impact of imports on basis, expansion possibilities, constraints on pipeline infrastructure, marketing capabilities, global supply issues and finance possibilities. figs

  17. Resources transfer and centralization in Brazilian electrical sector: the reversion global reserve (RGR) and the guarantee global reserve (GGR); Centralizacao e transferencia de recursos no setor eletrico brasileiro: a reserva global de reversao (RGR) e a reserva global de garantia (RGG)

    Souza Amaral Filho, J.B. de

    1991-12-31

    This dissertation makes the analysis of resources transfer and centralization in Brazilian electrical sector, through reversion global reserve (RGR) and guarantee global reserve (GGR). RGR and GGR are funds. RGR finances sectorial investments in electric power and GGR aims the supply of deficient concessionaires. Governmental investments and the results of this application are showing. (M.V.M.). 55 refs, 2 figs, 61 tabs.

  18. Resources transfer and centralization in Brazilian electrical sector: the reversion global reserve (RGR) and the guarantee global reserve (GGR); Centralizacao e transferencia de recursos no setor eletrico brasileiro: a reserva global de reversao (RGR) e a reserva global de garantia (RGG)

    Souza Amaral Filho, J.B. de

    1992-12-31

    This dissertation makes the analysis of resources transfer and centralization in Brazilian electrical sector, through reversion global reserve (RGR) and guarantee global reserve (GGR). RGR and GGR are funds. RGR finances sectorial investments in electric power and GGR aims the supply of deficient concessionaires. Governmental investments and the results of this application are showing. (M.V.M.). 55 refs, 2 figs, 61 tabs.

  19. Multi-Scale Governance of Sustainable Natural Resource Use—Challenges and Opportunities for Monitoring and Institutional Development at the National and Global Level

    Stefan Bringezu

    2016-08-01

    Full Text Available In a globalized economy, the use of natural resources is determined by the demand of modern production and consumption systems, and by infrastructure development. Sustainable natural resource use will require good governance and management based on sound scientific information, data and indicators. There is a rich literature on natural resource management, yet the national and global scale and macro-economic policy making has been underrepresented. We provide an overview of the scholarly literature on multi-scale governance of natural resources, focusing on the information required by relevant actors from local to global scale. Global natural resource use is largely determined by national, regional, and local policies. We observe that in recent decades, the development of public policies of natural resource use has been fostered by an “inspiration cycle” between the research, policy and statistics community, fostering social learning. Effective natural resource policies require adequate monitoring tools, in particular indicators for the use of materials, energy, land, and water as well as waste and GHG emissions of national economies. We summarize the state-of-the-art of the application of accounting methods and data sources for national material flow accounts and indicators, including territorial and product-life-cycle based approaches. We show how accounts on natural resource use can inform the Sustainable Development Goals (SDGs and argue that information on natural resource use, and in particular footprint indicators, will be indispensable for a consistent implementation of the SDGs. We recognize that improving the knowledge base for global natural resource use will require further institutional development including at national and international levels, for which we outline options.

  20. Revealing the uncultivated majority: combining DNA stable-isotope probing, multiple displacement amplification and metagenomic analyses of uncultivated Methylocystis in acidic peatlands.

    Chen, Yin; Dumont, Marc G; Neufeld, Josh D; Bodrossy, Levente; Stralis-Pavese, Nancy; McNamara, Niall P; Ostle, Nick; Briones, Maria J I; Murrell, J Colin

    2008-10-01

    Peatlands represent an enormous carbon reservoir and have a potential impact on the global climate because of the active methanogenesis and methanotrophy in these soils. Uncultivated methanotrophs from seven European peatlands were studied using a combination of molecular methods. Screening for methanotroph diversity using a particulate methane monooxygenase-based diagnostic gene array revealed that Methylocystis-related species were dominant in six of the seven peatlands studied. The abundance and methane oxidation activity of Methylocystis spp. were further confirmed by DNA stable-isotope probing analysis of a sample taken from the Moor House peatland (England). After ultracentrifugation, (13)C-labelled DNA, containing genomic DNA of these Methylocystis spp., was separated from (12)C DNA and subjected to multiple displacement amplification (MDA) to generate sufficient DNA for the preparation of a fosmid metagenomic library. Potential bias of MDA was detected by fingerprint analysis of 16S rRNA using denaturing gradient gel electrophoresis for low-template amplification (0.01 ng template). Sufficient template (1-5 ng) was used in MDA to circumvent this bias and chimeric artefacts were minimized by using an enzymatic treatment of MDA-generated DNA with S1 nuclease and DNA polymerase I. Screening of the metagenomic library revealed one fosmid containing methanol dehydrogenase and two fosmids containing 16S rRNA genes from these Methylocystis-related species as well as one fosmid containing a 16S rRNA gene related to that of Methylocella/Methylocapsa. Sequencing of the 14 kb methanol dehydrogenase-containing fosmid allowed the assembly of a gene cluster encoding polypeptides involved in bacterial methanol utilization (mxaFJGIRSAC). This combination of DNA stable-isotope probing, MDA and metagenomics provided access to genomic information of a relatively large DNA fragment of these thus far uncultivated, predominant and active methanotrophs in peatland soil.

  1. Drained coastal peatlands: A potential nitrogen source to marine ecosystems under prolonged drought and heavy storm events-A microcosm experiment.

    Wang, Hongjun; Richardson, Curtis J; Ho, Mengchi; Flanagan, Neal

    2016-10-01

    Over the past several decades there has been a massive increase in coastal eutrophication, which is often caused by increased runoff input of nitrogen from landscape alterations. Peatlands, covering 3% of land area, have stored about 12-21% of global soil organic nitrogen (12-20Pg N) around rivers, lakes and coasts over millennia and are now often drained and farmed. Their huge nitrogen pools may be released by intensified climate driven hydrologic events-prolonged droughts followed by heavy storms-and later transported to marine ecosystems. In this study, we collected peat monoliths from drained, natural, and restored coastal peatlands in the Southeastern U.S., and conducted a microcosm experiment simulating coupled prolonged-drought and storm events to (1) test whether storms could trigger a pulse of nitrogen export from drought-stressed peatlands and (2) assess how differentially hydrologic managements through shifting plant communities affect nitrogen export by combining an experiment of nitrogen release from litter. During the drought phase, we observed a significant temporal variation in net nitrogen mineralization rate (NMR). NMR spiked in the third month and then decreased rapidly. This pattern indicates that drought duration significantly affects nitrogen mineralization in peat. NMR in the drained site reached up to 490±110kgha(-1)year(-1), about 5 times higher than in the restored site. After the 14-month drought phase, we simulated a heavy storm by bringing peat monoliths to saturation. In the discharge waters, concentrations of total dissolved nitrogen in the monoliths from the drained site (72.7±16.3mgL(-1)) was about ten times as high as from the restored site. Our results indicate that previously drained peatlands under prolonged drought are a potent source of nitrogen export. Moreover, drought-induced plant community shifts to herbaceous plants substantially raise nitrogen release with lasting effects by altering litter quality in peatlands

  2. The effects of global climate variability on water resources and agriculture

    Adibe, E.C.

    1990-06-01

    Widespread improvements in agricultural productivity have been achieved over the last century using a wide range of technological advances. Future improvements, however, are likely to be constrained by the decreasing quality of new lands brought into production, growing limitations on capital for crop expansion and mechanization, and increasing population pressures. On top of these constraints are new uncertainties about future climatic conditions and the effects of anthropogenic climatic changes on water availability. In order to better understand some of the impacts of climatic changes on food security, plausible changes in water supply are explored and the possible effects on food production investigated. The cases discussed here include increases and decreases in both the average and the variability of water resource availability. (author). 30 refs, 5 figs, 3 tabs

  3. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires.

    Miettinen, Jukka; Shi, Chenghua; Liew, Soo Chin

    2017-10-01

    In this paper, we analyze the spatio-temporal distribution of vegetation fires in Peninsular Malaysia, Sumatra, and Borneo in the severe El Niño year of 2015, concentrating on the distribution of fires between mineral soils and peatland areas, and between land cover types in peatland areas. The results reveal that 53% of all Moderate Resolution Imaging Spectroradiometer (MODIS) fire detections were recorded in peatlands that cover only 12% of the study area. However, fire occurrence in the peatland areas was highly dependent on land cover type. Pristine peat swamp forests (PSF) experienced only marginal fire activity (30 fire detections per 1000 km 2 ) compared to deforested undeveloped peatlands (831-915 fire detections per 1000 km 2 ). Our results also highlight the extreme fire vulnerability of the southern Sumatran and Bornean peatlands under strong El Niño conditions: 71% of all peatland hotspots were detected in the provinces of South Sumatra and Central Kalimantan, which contain 29% of peatlands in the study area. Degraded PSF and all deforested peatland land cover types, including managed areas, in the two provinces were severely affected, demonstrating how difficult it is to protect even managed drained agricultural areas from unwanted fires during dry periods. Our results thereby advocate rewetting and rehabilitation as the primary management option for highly fire prone degraded undeveloped peatland areas, whenever feasible, as a means to reduce fire risk during future dry episodes.

  4. Peatlands as a unique climatic hotspots

    Slowinska, S.; Marcisz, K.; Slowinski, M. M.; Blazejczyk, K.; Lamentowicz, M.

    2017-12-01

    Peatlands are unique environments, often acting as microrefugia of various taxa. High groundwater table, organic soils, specific vegetation and topography are important determinants of their local climatic conditions. However, relations between those determinants are not stable. For example, seasonal changes in weather patterns, hydrological dynamics, and local vegetation may alter microclimate. Additionally, long-term changes are important factor, as for example overgrowing due to significant change of microclimate conditions, what in turn changes geochemical and biological processes in the peat layer. We have been investigating interactions between abiotic and biotic factors of a small Sphagnum mire (ca. 6.0 ha) for over ten years now. The mire is located in Poland in transitional temperate climate and is the only place in polish lowlands where glacial relict Betula nana occurs. Identification of local climate of the mire, its microclimatic differentiation and its influence on surroundings were objectives of the study. We recorded water level fluctuations, photosynthetically active radiation (PAR), air temperature and humidity, and peat temperature at five monitoring plots at the mire and observed significant differences between them. We also investigated Sphagnum mosses growth and testate amoeba diversity and community structure to understand biological response of those differences. We observed that local climate of the mire was significantly different from open area reference place, it was much colder especially during nights. The average minimal temperature at the height 30 cm for growing seasons 2010-2012 was 3.7oC lower there and ground frosts occurred even in the summer. The climate of the mire affected the forest directly adjacent to it, and depending on weather conditions the strength and the distance of this interaction was different. Our results show that micro-environmental changes affects on biological processes and should be taken into consideration

  5. Geomorphology and landscape organization of a northern peatland complex

    Richardson, M. C.

    2012-12-01

    The geomorphic evolution of northern peatlands is governed by complex ecohydrological feedback mechanisms and associated hydro-climatic drivers. For example, prevailing models of bog development (i.e. Ingram's groundwater mounding hypothesis and variants) attempt to explicitly link bog dome characteristics to the regional climate based on analytical and numerical models of lateral groundwater flow and the first-order control of water table position on rates of peat accumulation. In this talk I will present new results from quantitative geomorphic analyses of a northern peatland complex at the De Beers Victor diamond mine site in the Hudson Bay Lowlands of northern Ontario. This work capitalizes on spatially-extensive, high-resolution topographic (LiDAR) data to rigorously test analytical and numerical models of bog dome development in this landscape. The analysis and discussion are then expanded beyond individual bog formations to more broadly consider ecohydrological drivers of landscape organization, with implications for understanding and modeling catchment-scale runoff response. Results show that in this landscape, drainage patterns exhibit relatively well-organized characteristics consistent with observed runoff responses in six gauged research catchments. Interpreted together, the results of these geomorphic and hydrologic analyses help refine our understanding of water balance partitioning among different landcover types within northern peatland complexes. These findings can be used to help guide the development of appropriate numerical model structures for hydrologic prediction in ungauged peatland basins of northern Canada.

  6. Climate-driven flushing of pore water in peatlands

    Siegel, D. I.; Reeve, A. S.; Glaser, P. H.; Romanowicz, E. A.

    1995-04-01

    NORTHERN peatlands can act as either important sources or sinks for atmospheric carbon1,2. It is therefore important to understand how carbon cycling in these regions will respond to a changing climate. Existing carbon balance models for peatlands assume that fluid flow and advective mass transport are negligible at depth3,4, and that the effects of climate change should be essentially limited to the near-surface. Here we report the response of groundwater flow and porewater chemistry in the Glacial Lake Agassiz peat-lands of northern Minnesota to the regional drought cycle. Comparison of field observations and numerical simulations indicates that climate fluctuations of short duration may temporarily reverse the vertical direction of fluid flow through the peat, although this has little effect on water chemistry5. On the other hand, periods of drought persisting for at least 3-5 years produce striking changes in the chemistry of the pore water. These longer-term changes in hydrology influence the flux of nutrients and dissolved organic matter through the deeper peat, and therefore affect directly the rates of fermentation and methanogenesis, and the export of dissolved carbon compounds from the peatland.

  7. Establishing trees on cut-over peatlands in eastern Canada

    J. Bussières

    2008-12-01

    Full Text Available Four major tree-planting trials on cut-over peatlands in eastern Canada were surveyed in 2002, in order to evaluate the potential use of trees in rehabilitation following horticultural peat extraction. At one of the sites, an experiment to determine the appropriate fertilisation rate for trees planted on cut-over peatlands was also conducted over several years. Tree performance was assessed by measuring survival, total height and annual growth of red maple (Acer rubrum L., tamarack (Larix laricina (Du Roi Koch., black spruce (Picea mariana (Mill. B.S.P., jack pine (Pinus banksiana Lamb. and hybrid poplar (Populus spp.. Establishment and growth of tamarack and black spruce in cut-over peatlands showed good potential when compared to performance in conventional forestry plantations. Red maple and jack pine gave poor productivity but promising survival, whilst hybrid poplar plantings failed. Adding nutrients was essential for growth but dosages above 122.5 g of 3.4N-8.3P-24.2K per tree gave no further improvement. Therefore, several different tree species can be planted to reclaim cut-over peatlands in eastern Canada, so long as the appropriate species are chosen and nutrients are provided.

  8. GHG mitigation of agricultural peatlands requires coherent policies

    Regina, Kristina; Budiman, Arif; Greve, Mogens Humlekrog

    2016-01-01

    As soon as peat soil is drained for agricultural production, the peat starts to degrade, which causes emissions to the atmosphere. In countries with large peatland areas, the GHG mitigation potential related to management of these soils is often estimated as the highest amongst the measures...

  9. Russian boreal peatlands dominate the natural European methane budget

    Schneider, Julia; Jungkunst, Hermann F; Wolf, Ulrike; Schreiber, Peter; Kutzbach, Lars; Gazovic, Michal; Miglovets, Mikhail; Mikhaylov, Oleg; Grunwald, Dennis; Erasmi, Stefan; Wilmking, Martin

    2016-01-01

    About 60% of the European wetlands are located in the European part of Russia. Nevertheless, data on methane emissions from wetlands of that area are absent. Here we present results of methane emission measurements for two climatically different years from a boreal peatland complex in European Russia. Winter fluxes were well within the range of what has been reported for the peatlands of other boreal regions before, but summer fluxes greatly exceeded the average range of 5–80 mg CH 4 m −2 d −1 for the circumpolar boreal zone. Half of the measured fluxes ranged between 150 and 450 mg CH 4 m −2 d −1 . Extrapolation of our data to the whole boreal zone of European Russia shows that theses emissions could amount to up to 2.7 ± 1.1 Tg CH 4 a −1 , corresponding to 69% of the annual emissions from European wetlands or 33% of the total annual natural European methane emission. In 2008, climatic conditions corresponded to the long term mean, whereas the summer of 2011 was warmer and noticeably drier. Counterintuitively, these conditions led to even higher CH 4 emissions, with peaks up to two times higher than the values measured in 2008. As Russian peatlands dominate the areal extend of wetlands in Europe and are characterized by very high methane fluxes to the atmosphere, it is evident, that sound European methane budgeting will only be achieved with more insight into Russian peatlands. (letter)

  10. IMPROVING WATER REGIME IN MLACA TĂTARILOR PEATLAND

    Ionuţ Cristian Moale

    2017-07-01

    Full Text Available Following the project Restoration strategies of the deteriorated peatland ecosystems from Romania (PeatRo, it has been shown that Romania has 32 peatlands that need hydrological restoration taking into account the increasing of human activities and changes in land use. These peatlands are distributed in the Alpine region (30 and in the Continental region (2. In this paper, we started from the assumption that the evapotranspiration process can be reduced by decreasing the spread of colonizing species Betula pendula and Rhamnus frangula, in order to reduce the evapotranspiration rate. To establish the conditions for hydrology restoration, we used a conceptual model applied to the peatland functioning in order to quantify the water inflows (from runoff and rainfall and outflows (overbank outflows, by evaporation, by colonizing species transpiration. To estimate the rate of evapotranspiration for these species, we used in the model as input data: height and diameter of the individuals, the number of individuals, the leaf area of individual, wind speed, temperature, humidity, the number of sun hours / day, the surface of the water table. Model results show that evapotranspiration process can be reduced after implementation of specific restoration activities, demonstrating a real improvement on water regime.

  11. Carbon storage in forests and peatlands of Russia

    V.A. Alexeyev; R.A. Birdsey; [Editors

    1998-01-01

    Contains information about carbon storage in the vegetation, soils, and peatlands of Russia. Estimates of carbon storage in forests are derived from statistical data from the 1988 national forest inventory of Russia and from other sources. Methods are presented for converting data on timber stock into phytomass of tree stands, and for estimating carbon storage in...

  12. Peatland Ecosystem Processes in the Maritime Antarctic During Warm Climates.

    Loisel, Julie; Yu, Zicheng; Beilman, David W; Kaiser, Karl; Parnikoza, Ivan

    2017-09-27

    We discovered a 50-cm-thick peat deposit near Cape Rasmussen (65.2°S), in the maritime Antarctic. To our knowledge, while aerobic 'moss banks' have often been examined, waterlogged 'peatlands' have never been described in this region before. The waterlogged system is approximately 100 m 2 , with a shallow water table. Surface vegetation is dominated by Warnstorfia fontinaliopsis, a wet-adapted moss commonly found in the Antarctic Peninsula. Peat inception was dated at 2750 cal. BP and was followed by relatively rapid peat accumulation (~0.1 cm/year) until 2150 cal. BP. Our multi-proxy analysis then shows a 2000-year-long stratigraphic hiatus as well as the recent resurgence of peat accumulation, sometime after 1950 AD. The existence of a thriving peatland at 2700-2150 cal. BP implies regionally warm summer conditions extending beyond the mid-Holocene; this finding is corroborated by many regional records showing moss bank initiation and decreased sea ice extent during this time period. Recent peatland recovery at the study site (maritime Antarctic region may promote a more peatland-rich landscape in the future.

  13. Beaver Mediated Water Table Dynamics in Mountain Peatlands

    Karran, D. J.; Westbrook, C.; Bedard-Haughn, A.

    2016-12-01

    Water table dynamics play an important role in the ecological and biogeochemical processes that regulate carbon and water storage in peatlands. Beaver are common in these habitats and the dams they build have been shown to raise water tables in other environments. However, the impact of beaver dams in peatlands, where water tables rest close to the surface, has yet to be determined. We monitored a network of 50 shallow wells in a Canadian Rocky Mountain peatland for 6 years. During this period, a beaver colony was maintaining a number of beaver ponds for four years until a flood event removed the colony from the area and breached some of the dams. Two more years of data were collected after the flood event to assess whether the dams enhanced groundwater storage. Beaver dams raised water tables just as they do in other environments. Furthermore, water tables within 100 meters of beaver dams were more stable than those further away and water table stability overall was greater before the flood event. Our results suggest the presence/absence of beaver in peatlands has implications for groundwater water storage and overall system function.

  14. Decreased summer water table depth affects peatland vegetation

    Breeuwer, A.J.G.; Robroek, B.J.M.; Limpens, J.; Heijmans, M.M.P.D.; Schouten, M.G.C.; Berendse, F.

    2009-01-01

    Climate change can be expected to increase the frequency of summer droughts and associated low water tables in ombrotrophic peatlands. We studied the effects of periodic water table drawdown in a mesocosm experiment. Mesocosms were collected in Southern Sweden, and subsequently brought to an

  15. Modelling Peatland Hydrology: Three cases from Northern Europe

    Querner, E.P.; Mioduszewski, W.; Povilaitis, A.; Slesicka, A.

    2010-01-01

    Many of the peatlands that used to extend over large parts of Northern Europe have been reclaimed for agriculture. Human influence continues to have a major impact on the hydrology of those that remain, affecting river flow and groundwater levels. In order to understand this hydrology it is

  16. Polygonal patterned peatlands of the White Sea islands

    Kutenkov, S. A.; Kozhin, M. N.; Golovina, E. O.; Kopeina, E. I.; Stoikina, N. V.

    2018-03-01

    The summits and slopes of some islands along the northeastern and northern coasts of the White Sea are covered with dried out peatlands. The thickness of the peat deposit is 30–80 cm and it is separated by troughs into gently sloping polygonal peat blocks up to 20 m2 in size. On some northern islands the peat blocks have permafrost cores. The main components of the dried out peatlands vegetation are dwarf shrubs and lichens. The peat stratigraphy reveals two stages of peatland development. On the first stage, the islands were covered with wet cottongrass carpets, which repeated the convex relief shape. On the second stage, they were occupied by the xeromorphic vegetation. We suggest that these polygonal patterned peatlands are the remnants of blanket bogs, the formation of which assumes the conditions of a much more humid climate in the historical past. The time of their active development was calculated according to the White Sea level changes and radiocarbon dates from 1000–4000 BP.

  17. The role of fire in UK peatland and moorland management

    Davies, G.M.; Kettridge, Nicholas; Stoof, Cathelijne R.; Gray, Alan; Ascoli, Davide; Fernandes, Paulo M.; Marrs, Rob; Allen, Katherine A.; Doerr, Stefan H.; Clay, Gareth D.; McMorrow, Julia; Vandvik, Vigdis

    2016-01-01

    Fire has been used for centuries to generate and manage some of the UK’s cultural landscapes. Despite its complex role in the ecology of UK peatlands and moorlands, there has been a trend of simplifying the narrative around burning to present it as an only ecologically damaging practice. That

  18. Vegetation management with fire modifies peatland soil thermal regime.

    Brown, Lee E; Palmer, Sheila M; Johnston, Kerrylyn; Holden, Joseph

    2015-05-01

    Vegetation removal with fire can alter the thermal regime of the land surface, leading to significant changes in biogeochemistry (e.g. carbon cycling) and soil hydrology. In the UK, large expanses of carbon-rich upland environments are managed to encourage increased abundance of red grouse (Lagopus lagopus scotica) by rotational burning of shrub vegetation. To date, though, there has not been any consideration of whether prescribed vegetation burning on peatlands modifies the thermal regime of the soil mass in the years after fire. In this study thermal regime was monitored across 12 burned peatland soil plots over an 18-month period, with the aim of (i) quantifying thermal dynamics between burned plots of different ages (from post burning), and (ii) developing statistical models to determine the magnitude of thermal change caused by vegetation management. Compared to plots burned 15 + years previously, plots recently burned (management effects. Temperatures measured in soil plots burned vegetation regrows. Our findings that prescribed peatland vegetation burning alters soil thermal regime should provide an impetus for further research to understand the consequences of thermal regime change for carbon processing and release, and hydrological processes, in these peatlands. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Vegetation, soil property and climatic controls over greenhouse gas fluxes in a blanket peatland hosting a wind farm

    Armstrong, Alona; Waldron, Susan; Ostle, Nick; Whitaker, Jeanette

    2013-04-01

    results from this study suggest that a wind turbine-induced microclimatic effect may exist. Consequently, given that the climatic variables, factors influenced by changes in the climate, and their interactions affect GHG fluxes, the operational effects of wind farms on peatland ecosystems may need to be taken into account when considering their full life cycle carbon budget. Baidya Roy, S. and J. J. Traiteur (2010). Impacts of wind farms on surface air temperatures, Proceedings of the National Academy of Sciences, 109: 15679-15684. Limpens, J. et al. (2008). Peatlands and the carbon cycle: from local processes to global implications - a synthesis, Biogeosciences, 5(5): 1475-1491. Zhou, L., et al. (2012). Impacts of wind farms on land surface temperature, Nature Climate Change, 2: 539-543.

  20. Calculating carbon budgets of wind farms on Scottish peatlands

    D.R. Nayak

    2010-04-01

    Full Text Available The reliability of calculation methods for the carbon emission savings to be achieved in Scotland by replacing power generated from fossil fuels (and other more conventional sources with that produced by large-scale wind farm developments is a cause for concern, largely in relation to wind farms sited on peatlands. Scottish Government policy is to deliver renewable energy without environmental harm, and to meet biodiversity objectives including the conservation of designated wildlife sites and important habitats such as peatlands. The implications for carbon emissions of developing a wind farm are, therefore, just one aspect of the suite of considerations that the planning system takes into account. This paper presents a simple methodology for prospectively calculating the potential carbon emission savings to be realised by developing wind farms on peatland, forestland or afforested peatland. The total carbon emission savings of an individual wind farm are estimated by accounting emissions from the power source that will be replaced by wind power against: loss of carbon due to production, transportation, erection, operation and dismantling of the wind farm components (the infrastructure overhead; loss of carbon due to backup power generation; loss of carbon stored in peat and forest; loss of carbon-fixing potential of peatland and forest; and carbon savings due to habitat improvement. Most of the carbon losses are determined by national infrastructure, but those from peat soil and plants are influenced by site selection and management practices. The extent of drainage around each constructed element of the wind farm is a major factor for greenhouse gas emissions. Consideration of an example site with a low extent of drainage, where management practices that minimise net carbon losses (e.g. undrained floating roads, habitat improvement and site restoration on decommissioning were used indicates that emissions from the soil and plants may cancel

  1. Methanogenesis limitations in degraded peatlands after their hydrological restoration

    Urbanová, Zuzana

    2017-04-01

    Peatlands are ecosystems that can have a high degree of carbon sequestration due to CO2 fixation and low decomposition rates, but on the other hand, they are a source of CH4. Past drainage or mining can disturb these natural functions with rewetting being the main method used to bring back their original ecosystem properties. Methanogenic community composition and its activity seems to be very sensitive to environmental changes and therefore its limited activity after restoration can reflect the not fully restored functioning of the microbial community and its processes in the rewetted peatlands. To find the cause for this methanogenesis limitation we determined the abundance and composition of the methanogenic community and methane potential production in pristine, long-term drained and rewetted bogs and spruce swamp forests (SSF) in the Šumava Mountains (Czech Republic), using high-throughput barcoded sequencing, qPCR and anaerobic incubation of peat samples in relation to peat biochemical properties. Long-term drainage led to a strongly reduced diversity, abundance and activity of the methanogenic community in both peatland types. In restored sites, methanogenic abundance and community composition reached a pristine like state, however their activity measured as CH4 production remained as low as in drained sites. Substrate limitation was expected; therefore we further added different substrates during anaerobic incubation of the peat samples. In addition to glucose and ethanol, we added natural complex substrates from peatland plants (sedges, Sphagnum) to simulate the effect of the spreading of peatland species and their litter on methanogenic activity. The results unambiguously confirmed the limitation of methanogens by substrate availability due to the previous long-term drainage and strongly decomposed peat. The addition of natural substrates led to an increase in CH4 production, which was close to values in pristine sites. The limited CH4 production

  2. Water pollution in low and middle resources countries: a global health public problem

    Oscar Gómez-Duarte

    2018-01-01

    Full Text Available El agua es un elemento esencial para la vida de todos los seres vivientes del planeta, además es un derecho humano fundamental (1. El 97.2% del agua en el planeta Tierra es salina y solo el 2.5% corresponde a agua fresca; de ese 2.5%, 30% es subterránea, 68% está en los glaciares y otras capas de nieve y solo el 1.2% es superficial y se encuentra en ríos, lagos y otras formas de agua de superficie (2. El agua potable está amenazada por la continua contaminación que genera la actividad humana y por la disminución de los recursos hídricos como consecuencia del calentamiento global (3. Según la Organización Mundial de la Salud, desde el año 2015 solo el 89% de la población mundial tiene acceso a agua apta para consumo y se anticipa que este porcentaje continuará disminuyendo (4, aunque se estima que la situación ya es crítica para 260 millones de personas que carecen de agua apta para el consumo (5.

  3. The Global Invertebrate Genomics Alliance (GIGA): Developing Community Resources to Study Diverse Invertebrate Genomes

    Bracken-Grissom, Heather

    2013-12-12

    Over 95% of all metazoan (animal) species comprise the invertebrates, but very few genomes from these organisms have been sequenced. We have, therefore, formed a Global Invertebrate Genomics Alliance (GIGA). Our intent is to build a collaborative network of diverse scientists to tackle major challenges (e.g., species selection, sample collection and storage, sequence assembly, annotation, analytical tools) associated with genome/transcriptome sequencing across a large taxonomic spectrum. We aim to promote standards that will facilitate comparative approaches to invertebrate genomics and collaborations across the international scientific community. Candidate study taxa include species from Porifera, Ctenophora, Cnidaria, Placozoa, Mollusca, Arthropoda, Echinodermata, Annelida, Bryozoa, and Platyhelminthes, among others. GIGA will target 7000 noninsect/nonnematode species, with an emphasis on marine taxa because of the unrivaled phyletic diversity in the oceans. Priorities for selecting invertebrates for sequencing will include, but are not restricted to, their phylogenetic placement; relevance to organismal, ecological, and conservation research; and their importance to fisheries and human health. We highlight benefits of sequencing both whole genomes (DNA) and transcriptomes and also suggest policies for genomic-level data access and sharing based on transparency and inclusiveness. The GIGA Web site () has been launched to facilitate this collaborative venture.

  4. GLOBAL PROSPECTS OF SYNTHETIC DIESEL FUEL PRODUCED FROM HYDROCARBON RESOURCES IN OIL&GAS EXPORTING COUNTRIES

    Tomislav Kurevija

    2007-12-01

    Full Text Available Production of synthetic diesel fuel through Fischer-Tropsch process is a well known technology which dates from II World War, when Germany was producing transport fuel from coal. This process has been further improved in the South Africa due to period of international isolation. Today, with high crude oil market cost and increased demand of energy from China and India, as well as global ecological awareness and need to improve air quality in urban surroundings, many projects are being planned regarding production of synthetic diesel fuel, known as GTL (Gas To Liquid. Most of the future GTL plants are planned in oil exporting countries, such are Qatar and Nigeria, where natural gas as by-product of oil production is being flared, losing in that way precious energy and profit. In that way, otherwise flared natural gas, will be transformed into synthetic diesel fuel which can be directly used in all modern diesel engines. Furthermore, fossil fuel transportation and distribution technology grid can be used without any significant changes. According to lower emissions of harmful gasses during combustion than fossil diesel, this fuel could in the future play a significant part of EU efforts to reach 23% of alternative fuel share till 2020., which are now mostly relied on biodiesel, LPG (liquefied petroleum gas and CNG (compressed natural gas.

  5. The Future of Evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; Kilic, Ayse; Tu, Kevin; Miralles, Diego G.; Perret, Johan; Lagouarde, Jean-Pierre; Waliser, Duane; Purdy, Adam J.; French, Andrew; Schimel, David; Famiglietti, James S.; Stephens, Graeme; Wood, Eric F.

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them. This article is protected by copyright. All rights reserved.

  6. The Future of Evapotranspiration: Global requirements for ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources

    Fisher, Joshua B.

    2017-03-11

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them. This article is protected by copyright. All rights reserved.

  7. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources

    Fisher, Joshua B.; Melton, Forrest; Middleton, Elizabeth; Hain, Christopher; Anderson, Martha; Allen, Richard; McCabe, Matthew F.; Hook, Simon; Baldocchi, Dennis; Townsend, Philip A.; hide

    2017-01-01

    The fate of the terrestrial biosphere is highly uncertain given recent and projected changes in climate. This is especially acute for impacts associated with changes in drought frequency and intensity on the distribution and timing of water availability. The development of effective adaptation strategies for these emerging threats to food and water security are compromised by limitations in our understanding of how natural and managed ecosystems are responding to changing hydrological and climatological regimes. This information gap is exacerbated by insufficient monitoring capabilities from local to global scales. Here, we describe how evapotranspiration (ET) represents the key variable in linking ecosystem functioning, carbon and climate feedbacks, agricultural management, and water resources, and highlight both the outstanding science and applications questions and the actions, especially from a space-based perspective, necessary to advance them.

  8. Macroinvertebrate community assembly in pools created during peatland restoration.

    Brown, Lee E; Ramchunder, Sorain J; Beadle, Jeannie M; Holden, Joseph

    2016-11-01

    Many degraded ecosystems are subject to restoration attempts, providing new opportunities to unravel the processes of ecological community assembly. Restoration of previously drained northern peatlands, primarily to promote peat and carbon accumulation, has created hundreds of thousands of new open water pools. We assessed the potential benefits of this wetland restoration for aquatic biodiversity, and how communities reassemble, by comparing pool ecosystems in regions of the UK Pennines on intact (never drained) versus restored (blocked drainage-ditches) peatland. We also evaluated the conceptual idea that comparing reference ecosystems in terms of their compositional similarity to null assemblages (and thus the relative importance of stochastic versus deterministic assembly) can guide evaluations of restoration success better than analyses of community composition or diversity. Community composition data highlighted some differences in the macroinvertebrate composition of restored pools compared to undisturbed peatland pools, which could be used to suggest that alternative end-points to restoration were influenced by stochastic processes. However, widely used diversity metrics indicated no differences between undisturbed and restored pools. Novel evaluations of restoration using null models confirmed the similarity of deterministic assembly processes from the national species pool across all pools. Stochastic elements were important drivers of between-pool differences at the regional-scale but the scale of these effects was also similar across most of the pools studied. The amalgamation of assembly theory into ecosystem restoration monitoring allows us to conclude with more certainty that restoration has been successful from an ecological perspective in these systems. Evaluation of these UK findings compared to those from peatlands across Europe and North America further suggests that restoring peatland pools delivers significant benefits for aquatic fauna by

  9. Annual carbon balance of a peatland 10 yr following restoration

    M. Strack

    2013-05-01

    Full Text Available Undisturbed peatlands represent long-term net sinks of carbon; however, peat extraction converts these systems into large and persistent sources of greenhouse gases. Although rewetting and restoration following peat extraction have taken place over the last several decades, very few studies have investigated the longer term impact of this restoration on peatland carbon balance. We determined the annual carbon balance of a former horticulturally-extracted peatland restored 10 yr prior to the study and compared these values to the carbon balance measured at neighboring unrestored and natural sites. Carbon dioxide (CO2 and methane (CH4 fluxes were measured using the chamber technique biweekly during the growing season from May to October 2010 and three times over the winter period. Dissolved organic carbon (DOC export was measured from remnant ditches in the unrestored and restored sites. During the growing season the restored site had greater uptake of CO2 than the natural site when photon flux density was greater than 1000 μmol m−2 s−1, while the unrestored site remained a source of CO2. Ecosystem respiration was similar between natural and restored sites, which were both significantly lower than the unrestored site. Methane flux remained low at the restored site except from open water pools, created as part of restoration, and remnant ditches. Export of DOC during the growing season was 5.0 and 28.8 g m−2 from the restored and unrestored sites, respectively. Due to dry conditions during the study year all sites acted as net carbon sources with annual balance of the natural, restored and unrestored sites of 250.7, 148.0 and 546.6 g C m−2, respectively. Although hydrological conditions and vegetation community at the restored site remained intermediate between natural and unrestored conditions, peatland restoration resulted in a large reduction in annual carbon loss from the system resulting in a carbon balance more similar to a natural

  10. Global warming and climate change in Amazonia: Climate-vegetation feedback and impacts on water resources

    Marengo, José; Nobre, Carlos A.; Betts, Richard A.; Cox, Peter M.; Sampaio, Gilvan; Salazar, Luis

    This chapter constitutes an updated review of long-term climate variability and change in the Amazon region, based on observational data spanning more than 50 years of records and on climate-change modeling studies. We start with the early experiments on Amazon deforestation in the late 1970s, and the evolution of these experiments to the latest studies on greenhouse gases emission scenarios and land use changes until the end of the twenty-first century. The "Amazon dieback" simulated by the HadCM3 model occurs after a "tipping point" of CO2 concentration and warming. Experiments on Amazon deforestation and change of climate suggest that once a critical deforestation threshold (or tipping point) of 40-50% forest loss is reached in eastern Amazonia, climate would change in a way which is dangerous for the remaining forest. This may favor a collapse of the tropical forest, with a substitution of the forest by savanna-type vegetation. The concept of "dangerous climate change," as a climate change, which induces positive feedback, which accelerate the change, is strongly linked to the occurrence of tipping points, and it can be explained as the presence of feedback between climate change and the carbon cycle, particularly involving a weakening of the current terrestrial carbon sink and a possible reversal from a sink (as in present climate) to a source by the year 2050. We must, therefore, currently consider the drying simulated by the Hadley Centre model(s) as having a finite probability under global warming, with a potentially enormous impact, but with some degree of uncertainty.

  11. Essays on globalization. Policies in trade, development, resources and climate change

    Kerkelae, L.

    2009-07-01

    This research study on globalization consists of an introduction on the methodology applied, a summary and four independent essays focussing on applied policy research in international trade. The study follows the CGE (Computable General Equilibrium) research tradition. The simulation environment is the publicly available GTAP model. The essays examine the specific topics of trade and aid policies, price liberalization of the Russian energy markets, trade preferences in the sugar sector of the EU and the role of carbon sinks in mitigating climate change. The first essay examines trade and aid policies in Mozambique. The essay analyses the impact of alternative options like trade agreements, aid and trade facilitation. The results suggest that Mozambique has very little to gain from trade agreements or the Doha Round, although some agreements with the EU do yield some benefit. Trade facilitation and aid-for-trade programs on the other hand have the potential for larger benefits. The second essay examines the impact of liberalising RussiaAEs energy sector. The analysis is based on the implicit subsidies in regulated prices of electricity and gas and focuses on the effect of the different taxes and subsidies with respect to welfare and GDP in Russia and abroad. Increases in the price of electricity and gas improve efficiency and shift output from domestic markets to exports. The third essay investigates the impact of liberalising the EUAEs sugar sector by taking into account the complex structure of the EU sugar market and preferences in imports for developing countries. The fourth essay focuses on the effects of including carbon sinks into the analysis of the impacts of the Kyoto agreement. (orig.)

  12. Biodiversity on mire ecosystems and drained peatlands - a basis for environmental peat harvesting; Biologisk maangfald paa myrar och dikad torvmark - underlag foer ett miljoemaessigt torvbruk

    Stedingk, Henrik von (Swedish Biodiversity Centre, Uppsala (Sweden))

    2009-07-01

    The interest of peat harvesting has increased, due to the political ambition to reduce greenhouse gas emissions and to increase the use of local energy sources. Peatlands drained for forestry, a common resource in Sweden, can be a good energy source in terms of greenhouse gas emissions, under certain conditions. The question is what consequences increased peat harvesting would have on biodiversity in the forest landscape. To answer this question this literature study was performed to summarize what is known about the life of a natural and drained mire, and to discuss what conservation values could be found on a drained peatland. The definition of mire is a wetland with active peat accumulation, even if mires also are distinguished based on specific plant communities. A mire often contains several mire types. Some mire taxa are specialized for living on mires, other organisms have other main habitats but utilize the mire for fulfilling their life cycle. The level of knowledge varies for different organisms. The best known groups are vascular plants and bryophytes. They are also used for classifying mires since their abundance is related to gradients of pH, fertility and water level. Arthropods is a diverse group on mires favored by open moist forests and water pools. Poor mires with restricted flora may be good insect habitats. Birds are found in habitats rich in insects. Large mires are richer in wader species thanks to higher heterogeneity and a variety of insect habitats. The microscopic life in peat is rich and the species composition differs from the forest soil, even if the level of knowledge is limited. Drainage leads to species turn over for many groups of organisms and drainage often leads to a decrease in diversity. However, drained peatlands is a collective concept including different peatland types in different succession phases and different intensity of drainage. Therefore in general, drained peatlands cannot be treated as less important for

  13. Northern Peatland Shifts Under Changing Climate and Their Impact on Permafrost

    Shur, Y.; Jorgenson, T.; Kanevskiy, M. Z.

    2014-12-01

    Formation of peatlands depends primarily on climate and its interactions with hydrology, soil thermal regimes, plant composition, and nutrients. A water balance with precipitation exceeding evaporation is necessary for their formation. The rate of peat accumulation also greatly depends on thermal resources. The prominent impact of the water balance and temperature on peatland formation is evident in the West Siberia Lowland. The rate of peat accumulation steadily increases from arctic tundra to moss tundra, to forest tundra, to northern taiga, and to southern taiga. This increase is a result in increase in air temperature and length of the growing season because all of these zones have water balance favorable for peat formation. Further to south, evaporation prevails over precipitation and peat formation occurs only in isolated areas. Climate change will redefine geographical distribution of climatic and vegetation zones. It is predicted that in arctic and subarctic regions the difference between precipitation and evaporation will increase and as a result these regions will remain favorable to peat accumulation. With increase of thermal resources, the rate of peat accumulation will also increase. The Alaska Arctic Coastal Plain is of a special interest because it has thousands of shallow lakes, which due to warming climate would shift from open waterbodies to peatlands through shoreline paludification and infilling. The accumulation of organic matter will likely turn open water into shore fens and bogs, and eventually to peat plateaus, as is occurring in many boreal landscapes. Expected impact on permafrost in arctic and subarctic regions will include rise of the permafrost table, thickening of the ice-rich intermediate layer with ataxitic (suspended) cryostructure, and replacement of frost boils with earth hummocks. In the contemporary continuous permafrost zone, permafrost formed as climate-driven will be transformed into climate-driven ecosystem protected

  14. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery

    Kim, Mi-Hyung; Kim, Jung-Wk

    2010-01-01

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1 tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200 kg of CO 2 -eq could be produced from dry feeding process, 61 kg of CO 2 -eq from wet feeding process, 123 kg of CO 2 -eq from composting process, and 1010 kg of CO 2 -eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended.

  15. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery

    Kim, Mi-Hyung, E-mail: mhkim9@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Kim, Jung-Wk, E-mail: kimjw@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2010-09-01

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1 tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200 kg of CO{sub 2}-eq could be produced from dry feeding process, 61 kg of CO{sub 2}-eq from wet feeding process, 123 kg of CO{sub 2}-eq from composting process, and 1010 kg of CO{sub 2}-eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended.

  16. Critical Spaces for Critical Times: Global Conversations in Literacy Research as an Open Professional Development and Practices Resource

    Peggy Albers

    2015-09-01

    Full Text Available This paper reflects an OER (Open Educational Resources critical literacy project, Global Conversations in Literacy Research (GCLR, (www.globalconversationsinliteracy.wordpress.com, now in its fourth year. GCLR annually hosts seven web seminars presented by internationally recognized literacy and education scholars. We outline key dimensions of GCLR not only as an OER but as an open educational practice (OEP (Andrade et al., 2011 that through its design, not only provides open access to scholarship, but also understands the critical nexus among resources, practices and theory. Informed by data from a longitudinal study, this paper situates these dimensions within professional development literature, and outlines GCLR as a critical space designed for critical times, and the importance of intentionality when accessing OER. Like scholars before us, we argue that that availability is not the only consideration when using OER (Andrade et al., 2011; OER must be considered in relation to pedagogical considerations and how OER are used as a critical component to online professional development.

  17. A Preliminary Investigation of the Effect of Ocean Thermal Energy Conversion (OTEC Effluent Discharge Options on Global OTEC Resources

    Gérard Nihous

    2018-03-01

    Full Text Available A simple algorithm previously used to evaluate steady-state global Ocean Thermal Energy Conversion (OTEC resources is extended to probe the effect of various effluent discharge methodologies. It is found that separate evaporator and condenser discharges potentially increase OTEC net power limits by about 60% over a comparable mixed discharge scenario. This stems from a relatively less severe degradation of the thermal resource at given OTEC seawater flow rates, which corresponds to a smaller heat input into the ocean. Next, the most practical case of a mixed discharge into the mixed layer is found to correspond to only 80% of the so-called baseline case (mixed discharge at a water depth of initial neutral buoyancy. In general, locating effluent discharges at initial neutral-buoyancy depths appears to be nearly optimal in terms of OTEC net power production limits. The depth selected for the OTEC condenser effluent discharge, however, has by far the greatest impact. Clearly, these results are preliminary and should be investigated in more complex ocean general circulation models.

  18. Tracking Global Fund HIV/AIDS resources used for sexual and reproductive health service integration: case study from Ethiopia.

    Mookherji, Sangeeta; Ski, Samantha; Huntington, Dale

    2015-05-27

    The Global Fund to Fight AIDS, Tuberculosis & Malaria (GF) strives for high value for money, encouraging countries to integrate synergistic services and systems strengthening to maximize investments. The GF needs to show how, and how much, its grants support more than just HIV/AIDS, TB and malaria. Sexual and Reproductive Health (SRH) has been part of HIV/AIDS grants since 2007. Previous studies showed the GF PBF system does not allow resource tracking for SRH integration within HIV/AIDS grants. We present findings from a resource tracking case study using primary data collected at country level. Ethiopia was the study site. We reviewed data from four HIV/AIDS grants from January 2009-June 2011 and categorized SDAs and activities as directly, indirectly, or not related to SRH integration. Data included: GF PBF data; financial, performance, in-depth interview and facility observation data from Ethiopia. All HIV/AIDS grants in Ethiopia support SRH integration activities (12-100%). Using activities within SDAs, expenditures directly supporting SRH integration increased from 25% to 66% for the largest HIV/AIDS grant, and from 21% to 34% for the smaller PMTCT-focused grant. Using SDAs to categorize expenditures underestimated direct investments in SRH integration; activity-based categorization is more accurate. The important finding is that primary data collection could not resolve the limitations in using GF GPR data for resource tracking. The remedy is to require existing activity-based budgets and expenditure reports as part of PBF reporting requirements, and make them available in the grant portfolio database. The GF should do this quickly, as it is a serious shortfall in the GF guiding principle of transparency. Showing high value for money is important for maximizing impact and replenishments. The Global Fund should routinely track HIV/AIDs grant expenditures to disease control, service integration, and overall health systems strengthening. The current PBF system

  19. Effect of permafrost thaw on CO2 and CH4 exchange in a western Alaska peatland chronosequence

    Johnston, Carmel E; Ewing, Stephanie A; Harden, Jennifer W; Fuller, Christopher C; Manies, Kristen; Varner, Ruth K; Wickland, Kimberly P; Koch, Joshua C; Jorgenson, M Torre

    2014-01-01

    Permafrost soils store over half of global soil carbon (C), and northern frozen peatlands store about 10% of global permafrost C. With thaw, inundation of high latitude lowland peatlands typically increases the surface-atmosphere flux of methane (CH 4 ), a potent greenhouse gas. To examine the effects of lowland permafrost thaw over millennial timescales, we measured carbon dioxide (CO 2 ) and CH 4 exchange along sites that constitute a ∼1000 yr thaw chronosequence of thermokarst collapse bogs and adjacent fen locations at Innoko Flats Wildlife Refuge in western Alaska. Peak CH 4 exchange in July (123 ± 71 mg CH 4 –C m −2 d −1 ) was observed in features that have been thawed for 30 to 70 (<100) yr, where soils were warmer than at more recently thawed sites (14 to 21 yr; emitting 1.37 ± 0.67 mg CH 4 –C m −2 d −1 in July) and had shallower water tables than at older sites (200 to 1400 yr; emitting 6.55 ± 2.23 mg CH 4 –C m −2 d −1 in July). Carbon lost via CH 4 efflux during the growing season at these intermediate age sites was 8% of uptake by net ecosystem exchange. Our results provide evidence that CH 4 emissions following lowland permafrost thaw are enhanced over decadal time scales, but limited over millennia. Over larger spatial scales, adjacent fen systems may contribute sustained CH 4 emission, CO 2 uptake, and DOC export. We argue that over timescales of decades to centuries, thaw features in high-latitude lowland peatlands, particularly those developed on poorly drained mineral substrates, are a key locus of elevated CH 4 emission to the atmosphere that must be considered for a complete understanding of high latitude CH 4 dynamics. (paper)

  20. Peatland Bryophytes in a Changing Environment : Ecophysiological Traits and Ecosystem Function

    Granath, Gustaf

    2012-01-01

    Peatlands are peat forming ecosystems in which not fully decomposed plant material builds up the soil. The sequestration of carbon into peat is mainly associated with the bryophyte genus Sphagnum (peat mosses), which dominate and literally form most peatlands. The responses of Sphagnum to environmental change help us to understand peatland development and function and to predict future changes in a rapidly changing world. In this thesis, the overarching aim was to use ecophysiological traits ...

  1. The effect of peatland drainage and restoration on Odonata species richness and abundance

    Elo, Merja; Penttinen, Jouni; Kotiaho, Janne Sakari

    2015-01-01

    Background Restoration aims at reversing the trend of habitat degradation, the major threat to biodiversity. In Finland, more than half of the original peatland area has been drained, and during recent years, restoration of some of the drained peatlands has been accomplished. Short-term effects of the restoration on peatland hydrology, chemistry and vegetation are promising but little is known about how other species groups apart from vascular plants and bryophytes respond to restoration effo...

  2. Unraveling past impacts of climate change and land management on historic peatland development using proxy-based reconstruction, monitoring data and process modeling.

    Heinemeyer, Andreas; Swindles, Graeme T

    2018-05-08

    Peatlands represent globally significant soil carbon stores that have been accumulating for millennia under water-logged conditions. However, deepening water-table depths (WTD) from climate change or human-induced drainage could stimulate decomposition resulting in peatlands turning from carbon sinks to carbon sources. Contemporary WTD ranges of testate amoebae (TA) are commonly used to predict past WTD in peatlands using quantitative transfer function models. Here we present, for the first time, a study comparing TA-based WTD reconstructions to instrumentally monitored WTD and hydrological model predictions using the MILLENNIA peatland model to examine past peatland responses to climate change and land management. Although there was very good agreement between monitored and modeled WTD, TA-reconstructed water table was consistently deeper. Predictions from a larger European TA transfer function data set were wetter, but the overall directional fit to observed WTD was better for a TA transfer function based on data from northern England. We applied a regression-based offset correction to the reconstructed WTD for the validation period (1931-2010). We then predicted WTD using available climate records as MILLENNIA model input and compared the offset-corrected TA reconstruction to MILLENNIA WTD predictions over an extended period (1750-1931) with available climate reconstructions. Although the comparison revealed striking similarities in predicted overall WTD patterns, particularly for a recent drier period (1965-1995), there were clear periods when TA-based WTD predictions underestimated (i.e. drier during 1830-1930) and overestimated (i.e. wetter during 1760-1830) past WTD compared to MILLENNIA model predictions. Importantly, simulated grouse moor management scenarios may explain the drier TA WTD predictions, resulting in considerable model predicted carbon losses and reduced methane emissions, mainly due to drainage. This study demonstrates the value of a site

  3. Effects of peatland drainage on water quality: a case study of the shallow blanket bogs of Exmoor, UK

    Grand-Clement, E.; Luscombe, D.; Le Feuvre, N.; Smith, D.; Anderson, K.; Brazier, R. E.

    2012-04-01

    Peatlands are widely represented in the South West of England (i.e. Exmoor, Dartmoor and Bodmin moors), but their existence is currently under threat due to both climate change and the impact of historical human activities. Peat cutting and intensive drainage for agricultural reclamation in the 19th and 20th century, have modified the hydrological behaviour of these shallow peats and dried out the upper layers, causing oxidation, erosion and vegetation change. Such anthropogenic impacts directly affect the storage of carbon, but also the provision of other ecosystem services, such as the supply of drinking water, and the support of specific and rare habitats. Blocking drainage ditches to restore the hydrological behaviour of peatlands has mostly been undertaken in the North of England, but to date, little is still known about the consequences of such management approaches on the overall Carbon stocks. The need to monitor restoration of peatlands in the South West of England arises due to the specific characteristics of the peat - it is often shallower than more northerly peat and dominated by Purple Moor Grass. In addition, and in part because of the shallowness of the resource, the peat has been damaged differently, often with very dense networks of hand-cut ditches which behave as highly efficient drainage networks. Most importantly, their location at the southernmost margin of the UK peatlands' geographical extent makes them extremely vulnerable to climate change, and so it is hypothesised that monitoring of these peatlands may provide an 'early warning system' for climatic impacts that affect more northerly sites in years to come. This study focuses upon the current impact of peatland degradation on water quality on Exmoor. Our experimental approach employs detailed, high resolution monitoring of selected ditches that are representative of damaged conditions on Exmoor, from small- (30 x 30cm ditches) through medium- (50x50cm), large- (1-2m ditches) and finally

  4. Microclimate of Developed Peatland of the Mega Rice Project in Central Kalimantan

    Adi Jaya

    2010-01-01

    Full Text Available In Indonesia peatland covers an area of 16 to 27 Mha and this ecosystem is vitally linked toenvironmental and conservation issues, as well as its economic value for human survival. These peatlands are,however, the subject of various land use pressures, including forestry, agriculture, energy and horticulture. A fieldstudy was carried out 6 years after the end of failed peatland development project shows that inappropriate andunsustainable forms of peatland management have resulted in degradation of the natural forest vegetation, draw-downof the peat water table, increase of peat surface and air temperatures and recurrent surface and ground fires. Implicationsof microclimate for possible restoration options

  5. Peatlands and potatoes; organic wetland soils in Uganda

    Farmer, Jenny; Langan, Charlie; Gimona, Alessandro; Poggio, Laura; Smith, Jo

    2017-04-01

    Land use change in Uganda's wetlands has received very little research attention. Peat soils dominate the papyrus wetlands of the south west of the country, but the areas they are found in have been increasingly converted to potato cultivation. Our research in Uganda set out to (a) document both the annual use of and changes to these soils under potato cultivation, and (b) the extent and condition of these soils across wetland systems. During our research we found it was necessary to develop locally appropriate protocols for sampling and analysis of soil characteristics, based on field conditions and locally available resources. Over the period of one year we studied the use of the peat soil for potato cultivation by smallholder farmers in Ruhuma wetland and measured changes to surface peat properties and soil nutrients in fields over that time. Farmer's use of the fields changed over the year, with cultivation, harvesting and fallow periods, which impacted on soil micro-topography. Measured soil properties changed over the course of the year as a result of the land use, with bulk density, nitrogen content, potassium and magnesium all reducing. Comparison of changes in soil carbon stocks over the study period were difficult to make as it was not possible to reach the bottom of the peat layer. However, a layer of fallow weeds discarded onto the soil prior to preparation of the raised potato beds provided a time marker which gave insight into carbon losses over the year. To determine the peatland extent, a spatial survey was conducted in the Kanyabaha-Rushebeya wetland system, capturing peat depths and key soil properties (bulk density, organic matter and carbon contents). Generalised additive models were used to map peat depth and soil characteristics across the system, and maps were developed for these as well as drainage and land use classes. Comparison of peat cores between the two study areas indicates spatial variability in peat depths and the influence of

  6. Macroinvertebrate community assembly in pools created during peatland restoration

    Brown, Lee E.; Ramchunder, Sorain J.; Beadle, Jeannie M.; Holden, Joseph

    2016-01-01

    Many degraded ecosystems are subject to restoration attempts, providing new opportunities to unravel the processes of ecological community assembly. Restoration of previously drained northern peatlands, primarily to promote peat and carbon accumulation, has created hundreds of thousands of new open water pools. We assessed the potential benefits of this wetland restoration for aquatic biodiversity, and how communities reassemble, by comparing pool ecosystems in regions of the UK Pennines on intact (never drained) versus restored (blocked drainage-ditches) peatland. We also evaluated the conceptual idea that comparing reference ecosystems in terms of their compositional similarity to null assemblages (and thus the relative importance of stochastic versus deterministic assembly) can guide evaluations of restoration success better than analyses of community composition or diversity. Community composition data highlighted some differences in the macroinvertebrate composition of restored pools compared to undisturbed peatland pools, which could be used to suggest that alternative end-points to restoration were influenced by stochastic processes. However, widely used diversity metrics indicated no differences between undisturbed and restored pools. Novel evaluations of restoration using null models confirmed the similarity of deterministic assembly processes from the national species pool across all pools. Stochastic elements were important drivers of between-pool differences at the regional-scale but the scale of these effects was also similar across most of the pools studied. The amalgamation of assembly theory into ecosystem restoration monitoring allows us to conclude with more certainty that restoration has been successful from an ecological perspective in these systems. Evaluation of these UK findings compared to those from peatlands across Europe and North America further suggests that restoring peatland pools delivers significant benefits for aquatic fauna by

  7. Paludiculture on marginal lands - sustainable use of wet peatlands

    Oehmke, Claudia; Dahms, Tobias; Wichmann, Sabine; Wichtmann, Wendelin

    2017-04-01

    Peatlands are marginal lands. If they are drained, they show a short initial productive period. Soil degradation due to peat oxidation leads to numerous problems which increasingly restrict agricultural use and cause significant environmental impacts such as greenhouse gas emissions and eutrophication and thereby produce high external costs. Worldwide greenhouse gas emissions from drained peatlands have a significant share ( 10%) in the emissions from agriculture, forestry and other land use (AFOLU) sectors (Smith et al. 2014). In Germany they contribute more than 35% to the total emissions from agriculture (agricultural sector and cropland and grassland management) (UBA 2016). Rewetting drained peatlands can significantly reduce environmental problems caused by peatland drainage. Continuation of agricultural use with adapted crops and machinery, so called paludiculture (Latin ‚palus' = swamp) stops further degradation, maintains the peat body, reduces climate change mitigation and produces renewable fuels and raw materials. Fen and bog soils are suitable for various different paludicultures. The biomass of Sphagnum (sphagnum farming) cultivated on cut-over bogs or degraded bog grasslands can be used as raw material for horticultural growing media. Flood-tolerant and productive plant species like Common Reed, Reed Canary Grass, Cattail, Black Alder and different Sedge species are suitable for paludiculture on fen soils. Biomass utilization ranges from traditional forms, like fodder production or the use of Common Reed as roof thatch, to new utilization options, that includes biomass use for heat generation, co-subtrates for biorefineries or construction and insulation products. The above-ground biomass of one hectare Common Reed (winter yield=8 t DM) equates to an energy content of 3,000 litre heating oil. A district heating plant (800 kW) in NE Germany demonstrates the feasibility of using biomass from wet fen meadows for local heat generation. Moreover, tests

  8. Macroinvertebrate community assembly in pools created during peatland restoration

    Brown, Lee E., E-mail: l.brown@leeds.ac.uk; Ramchunder, Sorain J.; Beadle, Jeannie M.; Holden, Joseph

    2016-11-01

    Many degraded ecosystems are subject to restoration attempts, providing new opportunities to unravel the processes of ecological community assembly. Restoration of previously drained northern peatlands, primarily to promote peat and carbon accumulation, has created hundreds of thousands of new open water pools. We assessed the potential benefits of this wetland restoration for aquatic biodiversity, and how communities reassemble, by comparing pool ecosystems in regions of the UK Pennines on intact (never drained) versus restored (blocked drainage-ditches) peatland. We also evaluated the conceptual idea that comparing reference ecosystems in terms of their compositional similarity to null assemblages (and thus the relative importance of stochastic versus deterministic assembly) can guide evaluations of restoration success better than analyses of community composition or diversity. Community composition data highlighted some differences in the macroinvertebrate composition of restored pools compared to undisturbed peatland pools, which could be used to suggest that alternative end-points to restoration were influenced by stochastic processes. However, widely used diversity metrics indicated no differences between undisturbed and restored pools. Novel evaluations of restoration using null models confirmed the similarity of deterministic assembly processes from the national species pool across all pools. Stochastic elements were important drivers of between-pool differences at the regional-scale but the scale of these effects was also similar across most of the pools studied. The amalgamation of assembly theory into ecosystem restoration monitoring allows us to conclude with more certainty that restoration has been successful from an ecological perspective in these systems. Evaluation of these UK findings compared to those from peatlands across Europe and North America further suggests that restoring peatland pools delivers significant benefits for aquatic fauna by

  9. Framing water and forests as global or local? Transnational community-based networks transforming common-pool resources essence and scales

    Dupuits, Emilie; Pflieger, Géraldine

    2017-01-01

    The current era of globalization and commodification has had a substantial impact on common-pool resources governance. In direct response to this, community-based organizations managing water and forests at the local level began to create their own transnational networks. Primarily, these organizations aim to achieve direct representation in international decision-making arenas in order to promote their model of collective governance. By reframing the representations of common-pool resources ...

  10. Multi-annual fluxes of carbon dioxide from an intensively cultivated temperate peatland

    Cumming, Alex; Balzter, Heiko; Evans, Chris; Kaduk, Joerg; Morrison, Ross; Page, Susan

    2016-04-01

    East Anglia contains the largest continuous area of lowland fen peatlands in the United Kingdom (UK) which store vast quantities of terrestrial carbon (C) that have accrued over millennia. These long term C stores have largely been drained and converted for agricultural land use over the last 400 years due to their high agricultural production potential. Initial drainage of these peatlands leads to surface lowering and peat wastage. Prolonged exposure of carbon dense peat soils to oxygen through continued agricultural management results in sustained losses of carbon dioxide (CO₂) to the atmosphere. An increasing population in the UK has the potential to put further stress on these productive but rapidly diminishing Grade 1 agricultural land. Improving our understanding of land management impacts on CO₂ emissions from these soils is crucial to improving their longevity as an important store of C and as an economic resource. Our measurements at an intensively cultivated lowland peatland in Norfolk, UK, are the first multi-annual record using the micrometeorological eddy covariance (EC) technique to measure CO₂ fluxes associated with the production of horticultural salad crops. Three full years of flux measurements over leek (2013), lettuce (2014) and celery (2015) cropping systems found that the site was a net annual source of CO₂ with a net ecosystem exchange (NEE) of 6.59, 7.84 and 7.71 t C-CO₂ ha-1 a-1 respectively. The leek crop, with its longer growing period, had a lower annual NEE due to its long growth period from early spring through to late autumn, whereas the shorter growing periods of lettuce and celery meant their peak growth (CO₂ uptake, Gross Primary Productivity, GPP) took place during early/mid-summer with post-harvest weeds exploiting the later growing season but exhibited lower CO₂ assimilation than the leek crop. Periods of high CO₂ emissions from the soil to the atmosphere were measured during mechanical disruptions to the soils

  11. Towards an Ontology for the Global Geodynamics Project: Automated Extraction of Resource Descriptions from an XML-Based Data Model

    Lumb, L. I.; Aldridge, K. D.

    2005-12-01

    Using the Earth Science Markup Language (ESML), an XML-based data model for the Global Geodynamics Project (GGP) was recently introduced [Lumb & Aldridge, Proc. HPCS 2005, Kotsireas & Stacey, eds., IEEE, 2005, 216-222]. This data model possesses several key attributes -i.e., it: makes use of XML schema; supports semi-structured ASCII format files; includes Earth Science affinities; and is on track for compliance with emerging Grid computing standards (e.g., the Global Grid Forum's Data Format Description Language, DFDL). Favorable attributes notwithstanding, metadata (i.e., data about data) was identified [Lumb & Aldridge, 2005] as a key challenge for progress in enabling the GGP for Grid computing. Even in projects of small-to-medium scale like the GGP, the manual introduction of metadata has the potential to be the rate-determining metric for progress. Fortunately, an automated approach for metadata introduction has recently emerged. Based on Gleaning Resource Descriptions from Dialects of Languages (GRDDL, http://www.w3.org/2004/01/rdxh/spec), this bottom-up approach allows for the extraction of Resource Description Format (RDF) representations from the XML-based data model (i.e., the ESML representation of GGP data) subject to rules of transformation articulated via eXtensible Stylesheet Language Transformations (XSLT). In addition to introducing relationships into the GGP data model, and thereby addressing the metadata requirement, the syntax and semantics of RDF comprise a requisite for a GGP ontology - i.e., ``the common words and concepts (the meaning) used to describe and represent an area of knowledge'' [Daconta et al., The Semantic Web, Wiley, 2003]. After briefly reviewing the XML-based model for the GGP, attention focuses on the automated extraction of an RDF representation via GRDDL with XSLT-delineated templates. This bottom-up approach, in tandem with a top-down approach based on the Protege integrated development environment for ontologies (http

  12. Zimbabwe's Human Resources for health Information System (ZHRIS)-an assessment in the context of establishing a global standard.

    Waters, Keith P; Zuber, Alexandra; Simbini, Tungamirirai; Bangani, Zwashe; Krishnamurthy, Ramesh S

    2017-04-01

    There have been numerous global calls to action to utilize human resources information systems (HRIS) to improve the availability and quality of data for strengthening the regulation and deployment of health workers. However, with no normative guidance in existence, the development of HRIS has been inconsistent and lacking in standardization, hindering the availability and use of data for health workforce planning and decision making (Riley et al., 2012). CDC and WHO partnered with the Ministry of Health in several countries to conduct HRIS functional requirements analyses and establish a Minimum Data Set (MDS) of elements essential for a global standard HRIS. As a next step, CDC advanced a study to examine the alignment of one of the HRIS it supports (in Zimbabwe) against this MDS. For this study, we created a new data collection and analysis tool to assess the extent to which Zimbabwe's CDC-supported HRIS was aligned with the WHO MDS. We performed systematic "gap analyses" in order to make prioritized recommendations for addressing the gaps, with the aim of improving the availability and quality of data on Zimbabwe's health workforce. The majority of the data elements outlined in the WHO MDS were present in the ZHRIS databases, though they were found to be missing various applicable elements. The lack of certain elements could impede functions such as health worker credential verification or equitable in-service training allocation. While the HRIS MDS treats all elements equally, our assessment revealed that not all the elements have equal significance when it comes to data utilization. Further, some of the HRIS MDS elements exceeded the current needs of regulatory bodies and the Ministry of Health and Child Care (MOHCC) in Zimbabwe. The preliminary findings of this study helped inspire the development of a more recent HRH Registry MDS subset, which is a shorter list of priority data elements recommended as a global standard for HRIS. The field-tested assessment

  13. Improving Water Resources Management on Global and Region Scales - Evaluating Strategies for Water Futures with the IIASA's Community Water Model

    Burek, P.; Kahil, T.; Satoh, Y.; Greve, P.; Byers, E.; Langan, S.; Wada, Y.

    2017-12-01

    Half of the planet's population is severely impacted by severe water issues including absent or unreliable water supply, sanitation, poor water quality, unmitigated floods and droughts, and degraded water environments. In recent years, global water security has been highlighted not only by the science community but also by business leaders as one of the greatest threats to sustainable human development for different generations. How can we ensure the well-being of people and ecosystems with limited water, technology and financial resources? To evaluate this, IIASA's Water Futures and Solutions Initiative (WFaS) is identifying a portfolios of robust and cost-effective options across different economic sectors including agriculture, energy, manufacturing, households, and environment and ecosystems. Options to increase water supply and accessibility are evaluated together with water demand management and water governance options. To test these solution-portfolios in order to obtain a clear picture of the opportunities but also of the risks and the trade-offs we have developed the Community Water Model (CWATM) which joins IIASA's integrated assessment modeling framework, coupling hydrology with hydro-economics (ECHO model), energy (MESSAGE model) and land use (GLOBIOM model). CWATM has been developed to work flexibly with varying spatial resolutions from global to regional levels. The model is open source and community-driven to promote our work amongst the wider water and other science community worldwide, with flexibility to link to other models and integrate newly developed modules such as water quality. In order to identify the solution portfolios, we present a global hotspots assessment of water-related risks with the ability to zoom in at regional scale using the example of the Lake Victoria basin in E. Africa. We show how socio-economic and climate change will alter spatial patterns of the hydrological cycle and have regional impacts on water availability. At

  14. Effects of peatland drainage management on peak flows

    C. E. Ballard; N. McIntyre; H. S. Wheater

    2011-01-01

    Open ditch drainage has historically been a common land management practice in upland blanket peats, particularly in the UK. However, peatland drainage is now generally considered to have adverse effects on the upland environment, including increased peak flows. As a result, drain blocking has become a common management strategy in the UK over recent years, although there is only anecdotal evidence to suggest that this might decrease peak flows. The change in the hydrologica...

  15. Design of Spillway Structures of Peatland Rewetting systems

    Sainov Mihail Petrovich

    2014-03-01

    Full Text Available In summer 2010 drought and heat weather cause numerous peat fires. During two months Moscow was shrouded in acid smoke. To prevent such situations government of Moscow region decided to rewet previously drained peatlands. Peatland rewetting systems can be divided into two types. The first type is watering system based on previously used drainage system. The main idea of this method is rising of groundwater levels with the help of special water retaining constructions installed in drainage canals. The design of water receivers allows keeping up water level in canals and draining excesses. There are two types of water receivers: dock-type water receiver and water receiver as a portal to the gate. The choice of one or another type of water receiver depends on the canal depth. If it is less than 1.5 m, we apply portal construction. At the depth of more than 1.5 m the mine water receiver is more suitable. The second way of watering previously drained peatlands is the creation of ponds, dams on streams and small rivers. Special discharge structures increase water level in the river upstream. In downstream water level rises due to the redistribution of the flow. As a result, the groundwater level rises and peat become watered. There are two types of spillway structures: with direct overflow wall and labyrinth overflow wall. Structure with direct overflow wall is applicable on small rivers. In narrow alignments with high consumptions it is better to use another type of weir. As output it is necessary to notice that all constructions used in peatlands watering were designed as simple and reliable as possible. It is so because unpredictable weather conditions can cause beyond the design flows so weirs must have necessary reserve of passing costs.

  16. Hegemonic transitions and global shifts in social metabolism: Implications for resource-rich countries. Introduction to the special section

    Muradian Sarache, R.P.; Walter, M.; Martinez-Alier, J.

    2012-01-01

    This introductory paper to the special section of Global Environmental Change entitled "Global transformations, social metabolism and the dynamics of socio-environmental conflicts" argues that the emergence of new global economic centers is inducing a major expansion in the global social metabolism

  17. Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia

    J.A. Hribljan; D.J. Cooper; J. Sueltenfuss; E.C. Wolf; K.A. Heckman; Erik Lilleskov; R.A. Chimner

    2015-01-01

    The high-altitude (4,500+ m) Andean mountain range of north-western Bolivia contains many peatlands. Despite heavy grazing pressure and potential damage from climate change, little is known about these peatlands. Our objective was to quantify carbon pools, basal ages and long-term peat accumulation rates in peatlands in two areas of the arid puna ecoregion of Bolivia:...

  18. Neotropical peatland methane emissions along a vegetation and biogeochemical gradient.

    Winton, R Scott; Flanagan, Neal; Richardson, Curtis J

    2017-01-01

    Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4) concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for an important unrecognized CH4 source, but the hydrologic and biogeochemical controls of CH4 dynamics from these systems remain poorly understood. We studied three zones of a peatland in Madre de Dios, Peru, to test whether CH4 emissions and pore water concentrations varied with vegetation community, soil chemistry and proximity to groundwater sources. We found that the open-canopy herbaceous zone emitted roughly one-third as much CH4 as the Mauritia flexuosa palm-dominated areas (4.7 ± 0.9 and 14.0 ± 2.4 mg CH4 m-2 h-1, respectively). Emissions decreased with distance from groundwater discharge across the three sampling sites, and tracked changes in soil carbon chemistry, especially increased soil phenolics. Based on all available data, we calculate that neotropical peatlands contribute emissions of 43 ± 11.9 Tg CH4 y-1, however this estimate is subject to geographic bias and will need revision once additional studies are published.

  19. Neotropical peatland methane emissions along a vegetation and biogeochemical gradient.

    R Scott Winton

    Full Text Available Tropical wetlands are thought to be the most important source of interannual variability in atmospheric methane (CH4 concentrations, yet sparse data prevents them from being incorporated into Earth system models. This problem is particularly pronounced in the neotropics where bottom-up models based on water table depth are incongruent with top-down inversion models suggesting unaccounted sinks or sources of CH4. The newly documented vast areas of peatlands in the Amazon basin may account for an important unrecognized CH4 source, but the hydrologic and biogeochemical controls of CH4 dynamics from these systems remain poorly understood. We studied three zones of a peatland in Madre de Dios, Peru, to test whether CH4 emissions and pore water concentrations varied with vegetation community, soil chemistry and proximity to groundwater sources. We found that the open-canopy herbaceous zone emitted roughly one-third as much CH4 as the Mauritia flexuosa palm-dominated areas (4.7 ± 0.9 and 14.0 ± 2.4 mg CH4 m-2 h-1, respectively. Emissions decreased with distance from groundwater discharge across the three sampling sites, and tracked changes in soil carbon chemistry, especially increased soil phenolics. Based on all available data, we calculate that neotropical peatlands contribute emissions of 43 ± 11.9 Tg CH4 y-1, however this estimate is subject to geographic bias and will need revision once additional studies are published.

  20. The Role of Peat Layers on Iron Dynamics in Peatlands

    Arifin Fahmi

    2010-09-01

    Full Text Available The research aimed to study the effect of peat thickness and humification stage of the peat material on Fe solubility at the peatlands with sulfidic material as substratum. The research was conducted at three conditionals of ombrogen peatlands ie ; deep, moderate and shallow peat. Soil samples were collected by using peat borer according to interlayer (the border layer of peat and mineral layer and conditional of soil horizons. The sample point depth were (cm G.s2 : 25, G.s1 : 50, Int.s : 70, M.s1 : 90 and M.s2 : 100 for shallow peat, G.m2 : 47, G.m1 : 100, Int.m : 120 and M.m1 : 135 for moderate peat and G.d3 : 50, G.d2 : 150, G.d1 : 200, Int.d : 220 and M.d1 : 235 for deep peat respectively. The results showed that most of Fe on the tested soils was found in organic forms. The peat layers above the sulfidic material decreased the Fe2+ solubility at peatlands. Fe2+ concentration in peat layer decreased with its increasing distance from sulfidic material. There was any other processes beside complexation and chelation of Fe2+ by humic material and its processes was reduction of Fe3+ and this conditions was reflected in redox potential values (Eh.

  1. Ammonium release from a blanket peatland into headwater stream systems

    Daniels, S.M.; Evans, M.G.; Agnew, C.T.; Allott, T.E.H.

    2012-01-01

    Hydrochemical sampling of South Pennine (UK) headwater streams draining eroded upland peatlands demonstrates these systems are nitrogen saturated, with significant leaching of dissolved inorganic nitrogen (DIN), particularly ammonium, during both stormflow and baseflow conditions. DIN leaching at sub-catchment scale is controlled by geomorphological context; in catchments with low gully densities ammonium leaching dominates whereas highly gullied catchments leach ammonium and nitrate since lower water tables and increased aeration encourages nitrification. Stormflow flux calculations indicate that: approximately equivalent amounts of nitrate are deposited and exported; ammonium export significantly exceeds atmospheric inputs. This suggests two ammonium sources: high atmospheric loadings; and mineralisation of organic nitrogen stored in peat. Downstream trends indicate rapid transformation of leached ammonium into nitrate. It is important that low-order headwater streams are adequately considered when assessing impacts of atmospheric loads on the hydrochemistry of stream networks, especially with respect to erosion, climate change and reduced precipitation. - Highlights: ► Headwaters draining eroded South Pennine (UK) peatlands are nitrogen saturated. ► Ammonium and nitrate leaching arises from aeration due to lower water tables. ► Nitrate deposition equals export during storms; ammonium export exceeds input. ► Ammonia input from high atmospheric loading and mineralisation of organic nitrogen. ► Downstream nitrogen trends indicate rapid transformation of ammonium into nitrate. - Inorganic nitrogen leaching from South Pennine peatlands is dominated by ammonium that is rapidly transformed within-streams to nitrate.

  2. The subcatchment- and catchment-scale hydrology of a boreal headwater peatland complex with sporadic permafrost.

    Sonnentag, O.; Helbig, M.; Connon, R.; Hould Gosselin, G.; Ryu, Y.; Karoline, W.; Hanisch, J.; Moore, T. R.; Quinton, W. L.

    2017-12-01

    The permafrost region of the Northern Hemisphere has been experiencing twice the rate of climate warming compared to the rest of the Earth, resulting in the degradation of the cryosphere. A large portion of the high-latitude boreal forests of northwestern Canada grows on low-lying organic-rich lands with relative warm and thin isolated, sporadic and discontinuous permafrost. Along this southern limit of permafrost, increasingly warmer temperatures have caused widespread permafrost thaw leading to land cover changes at unprecedented rates. A prominent change includes wetland expansion at the expense of Picea mariana (black spruce)-dominated forest due to ground surface subsidence caused by the thawing of ice-rich permafrost leading to collapsing peat plateaus. Recent conceptual advances have provided important new insights into high-latitude boreal forest hydrology. However, refined quantitative understanding of the mechanisms behind water storage and movement at subcatchment and catchment scales is needed from a water resources management perspective. Here we combine multi-year daily runoff measurements with spatially explicit estimates of evapotranspiration, modelled with the Breathing Earth System Simulator, to characterize the monthly growing season catchment scale ( 150 km2) hydrological response of a boreal headwater peatland complex with sporadic permafrost in the southern Northwest Territories. The corresponding water budget components at subcatchment scale ( 0.1 km2) were obtained from concurrent cutthroat flume runoff and eddy covariance evapotranspiration measurements. The highly significant linear relationships for runoff (r2=0.64) and evapotranspiration (r2=0.75) between subcatchment and catchment scales suggest that the mineral upland-dominated downstream portion of the catchment acts hydrologically similar to the headwater portion dominated by boreal peatland complexes. Breakpoint analysis in combination with moving window statistics on multi

  3. To Globalise or Not to Globalise? "Inward-Looking Youth" as Scapegoats for Japan's Failure to Secure and Cultivate "Global Human Resources"

    Burgess, Chris

    2015-01-01

    In Japan in recent years, there has been much discussion of the need for global human resources alongside criticism of Japanese youth as having an "inward-looking" ("uchimuki") orientation. Drawing out the contradictions apparent in a youth apparently reluctant to leave Japan and companies, universities and government seemingly…

  4. Problem solving for breast health care delivery in low and middle resource countries (LMCs): consensus statement from the Breast Health Global Initiative.

    Harford, J.B.; Otero, I.V.; Anderson, B.O.; Cazap, E.; Gradishar, W.J.; Gralow, J.R.; Kane, G.M.; Niens, L.M.; Porter, P.L.; Reeler, A.V.; Rieger, P.T.; Shockney, L.D.; Shulman, L.N.; Soldak, T.; Thomas, D.B.; Thompson, B.; Winchester, D.P.; Zelle, S.G.; Badwe, R.A.

    2011-01-01

    International collaborations like the Breast Health Global Initiative (BHGI) can help low and middle income countries (LMCs) to establish or improve breast cancer control programs by providing evidence-based, resource-stratified guidelines for the management and control of breast cancer. The Problem

  5. Environmental controls of temporal and spatial variability in CO2 and CH4 fluxes in a neotropical peatland.

    Wright, Emma L; Black, Colin R; Turner, Benjamin L; Sjögersten, Sofie

    2013-12-01

    Tropical peatlands play an important role in the global storage and cycling of carbon (C) but information on carbon dioxide (CO2) and methane (CH4) fluxes from these systems is sparse, particularly in the Neotropics. We quantified short and long-term temporal and small scale spatial variation in CO2 and CH4 fluxes from three contrasting vegetation communities in a domed ombrotrophic peatland in Panama. There was significant variation in CO2 fluxes among vegetation communities in the order Campnosperma panamensis > Raphia taedigera > Cyperus. There was no consistent variation among sites and no discernible seasonal pattern of CH4 flux despite the considerable range of values recorded (e.g. -1.0 to 12.6 mg m(-2) h(-1) in 2007). CO2 fluxes varied seasonally in 2007, being greatest in drier periods (300-400 mg m(-2) h(-1)) and lowest during the wet period (60-132 mg m(-2) h(-1)) while very high emissions were found during the 2009 wet period, suggesting that peak CO2 fluxes may occur following both low and high rainfall. In contrast, only weak relationships between CH4 flux and rainfall (positive at the C. panamensis site) and solar radiation (negative at the C. panamensis and Cyperus sites) was found. CO2 fluxes showed a diurnal pattern across sites and at the Cyperus sp. site CO2 and CH4 fluxes were positively correlated. The amount of dissolved carbon and nutrients were strong predictors of small scale within-site variability in gas release but the effect was site-specific. We conclude that (i) temporal variability in CO2 was greater than variation among vegetation communities; (ii) rainfall may be a good predictor of CO2 emissions from tropical peatlands but temporal variation in CH4 does not follow seasonal rainfall patterns; and (iii) diurnal variation in CO2 fluxes across different vegetation communities can be described by a Fourier model. © 2013 John Wiley & Sons Ltd.

  6. Controls on bacterial and archaeal community structure and greenhouse gas production in natural, mined, and restored Canadian peatlands

    Nathan eBasiliko

    2013-07-01

    Full Text Available Northern peatlands are important global C reservoirs, largely because of their slow rates of microbial C mineralization. Particularly in sites that are heavily influenced by anthropogenic disturbances, there is scant information about microbial ecology and whether or not microbial community structure influences greenhouse gas production. This work characterized communities of bacteria and archaea using terminal restriction fragment length polymorphism and sequence analysis of 16S rRNA and functional genes across eight natural, mined, or restored peatlands in two locations in eastern Canada. Correlations were explored among chemical properties of peat, bacterial and archaeal community structure, and carbon dioxide and methane production rates under oxic and anoxic conditions. Bacteria and archaea similar to those found in other peat soil environments were detected. In contrast to other reports, methanogen diversity was low in our study, with only 2 groups of known or suspected methanogens. Although mining and restoration affected substrate availability and microbial activity, these land-uses did not consistently affect bacterial or archaeal community composition. In fact, larger differences were observed between the two locations and between oxic and anoxic peat samples than between mined and restored sites, with anoxic samples characterized by less detectable bacterial diversity and stronger dominance by members of the phylum Acidobacteria. There were also no apparent strong linkages between prokaryote community structure and methane or carbon dioxide production, suggesting that different organisms exhibit functional redundancy and/or that the same taxa function at very different rates when exposed to different peat substrates. In contrast to other earlier work focusing on fungal communities across similar mined and restored peatlands, bacterial and archaeal communities appeared to be more resistant or resilient to peat substrate changes brought

  7. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and net radiative forcing

    Johansson, Torbjörn; Malmer, Nils; Crill, Patrick M

    2006-01-01

    SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE......SUB-ARCTIC MIRE; CLIMATE-CHANGE; BOREAL PEATLANDS; METHANE EMISSIONS; VASCULAR PLANTS; CARBON-DIOXIDE; PERMAFROST THAW; CO2 EXCHANGE; WATER-TABLE...

  8. Interannual, seasonal, and retrospective analysis of the methane and carbon dioxide budgets of a temperate peatland

    D.M. Olson; T.J. Griffis; A. Noormets; R. Kolka; J. Chen

    2013-01-01

    Three years (2009-2011) of near-continuous methane (CH4) and carbon dioxide (CO2) fluxes were measured with the eddy covariance (EC) technique at a temperate peatland located within the Marcell Experimental Forest, in northern Minnesota, USA. The peatland was a net source of CH4 and a net sink of CO...

  9. The effects of hydrologic fluctuation and sulfate regeneration on mercury cycling in an experimental peatland

    J.K. Coleman Wasik; D.R. Engstrom; C.P.J. Mitchell; E.B. Swain; B.A. Monson; S.J. Balogh; J.D. Jeremiason; B.A. Branfireun; R.K. Kolka; J.E. Almendinger

    2015-01-01

    A series of severe droughts during the course of a long-term, atmospheric sulfate-deposition experiment in a boreal peatland in northern Minnesota created a unique opportunity to study how methylmercury (MeHg) production responds to drying and rewetting events in peatlands under variable levels of sulfate loading. Peat oxidation during extended dry periods mobilized...

  10. Peatland vascular plant functional types affect methane dynamics by altering microbial community structure

    Robroek, B.J.M.; Jassey, Vincent E.J.; Kox, Martine A.R.; Berendsen, Roeland L.; Mills, Robert T.E.; Cécillon, Lauric; Puissant, Jérémy; Meima-Franke, M.; Bakker, Peter A.H.M.; Bodelier, Paul

    2015-01-01

    Peatlands are natural sources of atmospheric methane (CH4), an important greenhouse gas. It is established that peatland methane dynamics are controlled by both biotic and abiotic conditions, yet the interactive effect of these drivers is less studied, and consequently poorly understood. Climate

  11. Spatio-temporal trends of nitrogen deposition and climate effects on Sphagnum productivity in European peatlands

    Granath, Gustaf; Limpens, Juul; Posch, Maximilian; Mücher, Sander; Vries, Wim de

    2014-01-01

    To quantify potential nitrogen (N) deposition impacts on peatland carbon (C) uptake, we explored temporal and spatial trends in N deposition and climate impacts on the production of the key peat forming functional group (Sphagnum mosses) across European peatlands for the period 1900–2050. Using a modelling approach we estimated that between 1900 and 1950 N deposition impacts remained limited irrespective of geographical position. Between 1950 and 2000 N deposition depressed production between 0 and 25% relative to 1900, particularly in temperate regions. Future scenarios indicate this trend will continue and become more pronounced with climate warming. At the European scale, the consequences for Sphagnum net C-uptake remained small relative to 1900 due to the low peatland cover in high-N areas. The predicted impacts of likely changes in N deposition on Sphagnum productivity appeared to be less than those of climate. Nevertheless, current critical loads for peatlands are likely to hold under a future climate. - Highlights: • We model the effect of N deposition combined with climate on production of Sphagnum between 1900 and 2050. • Spatially explicit projections are indicated on an updated European peatland distribution map. • Results stress the vulnerability of temperate Sphagnum peatlands to current and future N deposition. • Future impacts of N deposition on Sphagnum productivity likely depend more on climate change than on N deposition rate. - Temperate Sphagnum peatlands are vulnerable to current and future N deposition and current critical loads for peatlands are likely to hold under a future climate

  12. Influence of climate change factors on carbon dynamics in northern forested peatlands

    C.C Trettin; R. Laiho; K. Minkkinen; J. Laine

    2005-01-01

    Peatlands are carbon-accumulating wetland ecosystems, developed through an imbalance among organic matter production and decomposition processes. Soil saturation is the principal cause of anoxic conditions that constrain organic matter decay. Accordingly, changes in the hydrologic regime will affect the carbon (C) dynamics in forested peatlands. Our objective is to...

  13. Contemporary Mobilization of Legacy Pb Stores by DOM in a Boreal Peatland

    Jeff D. Jeremiason; Erin I. Baumann; Stephen D. Sebestyen; Alison M. Agather; Emily A. Seelen; Benjamin J. Carlson-Stehlin; Meghan M. Funke; James B. Cotner

    2018-01-01

    We examined how different landscape areas in a catchment containing a northern ombrotrophic peatland and upland mineral soils responded to dramatic decreases in atmospheric deposition of lead (Pb). Pb concentrations in the outflow stream from the peatland measured from 2009−2015 indicated continued mobilization and export of Pb derived from historic inputs to the bog....

  14. Seasonal changes in peatland surface elevation recorded at GPS stations in the Red Lake Peatlands, northern Minnesota, USA

    Reeve, A.S.; Glaser, P.H.; Rosenberry, Donald O.

    2013-01-01

    Northern peatlands appear to hold large volumes of free-phase gas (e.g., CH4 and CO2), which has been detected by surface deformations, pore pressure profiles, and electromagnetic surveys. Determining the gas content and its impact in peat is challenging because gas storage depends on both the elastic properties of the peat matrix and the buoyant forces exerted by pore fluids. We therefore used a viscoelastic deformation model to estimate these variables by adjusting model runs to reproduce observed changes in peat surface elevation within a 1300 km2 peatland. A local GPS network documented significant changes in surface elevations throughout the year with the greatest vertical displacements associated with rapid changes in peat water content and unloadings due to melting of the winter snowpack. These changes were coherent with changes in water table elevation and also abnormal pore pressure changes measured by nests of instrumented piezometers. The deformation model reproduced these changes when the gas content was adjusted to 10% of peat volume, and Young's modulus was varied between 5 and 100 kPa as the peat profile shifted from tension to compression. In contrast, the model predicted little peat deformation when the gas content was 3% or lower. These model simulations are consistent with previous estimates of gas volume in northern peatlands and suggest an upper limit of gas storage controlled by the elastic moduli of the peat fabric.

  15. Supportive and palliative care for metastatic breast cancer: resource allocations in low- and middle-income countries. A Breast Health Global Initiative 2013 consensus statement.

    Cleary, James; Ddungu, Henry; Distelhorst, Sandra R; Ripamonti, Carla; Rodin, Gary M; Bushnaq, Mohammad A; Clegg-Lamptey, Joe N; Connor, Stephen R; Diwani, Msemo B; Eniu, Alexandru; Harford, Joe B; Kumar, Suresh; Rajagopal, M R; Thompson, Beti; Gralow, Julie R; Anderson, Benjamin O

    2013-10-01

    Many women diagnosed with breast cancer in low- and middle-income countries (LMICs) present with advanced-stage disease. While cure is not a realistic outcome, site-specific interventions, supportive care, and palliative care can achieve meaningful outcomes and improve quality of life. As part of the 5th Breast Health Global Initiative (BHGI) Global Summit, an expert international panel identified thirteen key resource recommendations for supportive and palliative care for metastatic breast cancer. The recommendations are presented in three resource-stratified tables: health system resource allocations, resource allocations for organ-based metastatic breast cancer, and resource allocations for palliative care. These tables illustrate how health systems can provide supportive and palliative care services for patients at a basic level of available resources, and incrementally add services as more resources become available. The health systems table includes health professional education, patient and family education, palliative care models, and diagnostic testing. The metastatic disease management table provides recommendations for supportive care for bone, brain, liver, lung, and skin metastases as well as bowel obstruction. The third table includes the palliative care recommendations: pain management, and psychosocial and spiritual aspects of care. The panel considered pain management a priority at a basic level of resource allocation and emphasized the need for morphine to be easily available in LMICs. Regular pain assessments and the proper use of pharmacologic and non-pharmacologic interventions are recommended. Basic-level resources for psychosocial and spiritual aspects of care include health professional and patient and family education, as well as patient support, including community-based peer support. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Long-term carbon accumulation in Andes peatlands

    Huaman, Yizet; Moreira-turq, Patricia; Willems, Bram; Espinoza, Raul; Turq, Bruno; Apaéstegui, James; Llanos, Romina

    2017-04-01

    High-altitude peatlands of the Andes still remain relatively un