WorldWideScience

Sample records for global parametrization method

  1. Global optimization of silicon nanowires for efficient parametric processes

    DEFF Research Database (Denmark)

    Vukovic, Dragana; Xu, Jing; Mørk, Jesper

    2013-01-01

    We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions.......We present a global optimization of silicon nanowires for parametric single-pump mixing. For the first time, the effect of surface roughness-induced loss is included in the analysis, significantly influencing the optimum waveguide dimensions....

  2. A non-parametric method for correction of global radiation observations

    DEFF Research Database (Denmark)

    Bacher, Peder; Madsen, Henrik; Perers, Bengt

    2013-01-01

    in the observations are corrected. These are errors such as: tilt in the leveling of the sensor, shadowing from surrounding objects, clipping and saturation in the signal processing, and errors from dirt and wear. The method is based on a statistical non-parametric clear-sky model which is applied to both...

  3. Global chaos synchronization of coupled parametrically excited ...

    Indian Academy of Sciences (India)

    In this paper, we study the synchronization behaviour of two linearly coupled parametrically excited chaotic pendula. The stability of the synchronized state is examined using Lyapunov stability theory and linear matrix inequality (LMI); and some sufficient criteria for global asymptotic synchronization are derived from which ...

  4. Parametric Methods for Order Tracking Analysis

    DEFF Research Database (Denmark)

    Nielsen, Jesper Kjær; Jensen, Tobias Lindstrøm

    2017-01-01

    Order tracking analysis is often used to find the critical speeds at which structural resonances are excited by a rotating machine. Typically, order tracking analysis is performed via non-parametric methods. In this report, however, we demonstrate some of the advantages of using a parametric method...

  5. Parametric methods for spatial point processes

    DEFF Research Database (Denmark)

    Møller, Jesper

    is studied in Section 4, and Bayesian inference in Section 5. On one hand, as the development in computer technology and computational statistics continues,computationally-intensive simulation-based methods for likelihood inference probably will play a increasing role for statistical analysis of spatial...... inference procedures for parametric spatial point process models. The widespread use of sensible but ad hoc methods based on summary statistics of the kind studied in Chapter 4.3 have through the last two decades been supplied by likelihood based methods for parametric spatial point process models......(This text is submitted for the volume ‘A Handbook of Spatial Statistics' edited by A.E. Gelfand, P. Diggle, M. Fuentes, and P. Guttorp, to be published by Chapmand and Hall/CRC Press, and planned to appear as Chapter 4.4 with the title ‘Parametric methods'.) 1 Introduction This chapter considers...

  6. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    Science.gov (United States)

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration

  7. Using non-parametric methods in econometric production analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    2012-01-01

    by investigating the relationship between the elasticity of scale and the farm size. We use a balanced panel data set of 371~specialised crop farms for the years 2004-2007. A non-parametric specification test shows that neither the Cobb-Douglas function nor the Translog function are consistent with the "true......Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify a functional form of the production function of which the Cobb...... parameter estimates, but also in biased measures which are derived from the parameters, such as elasticities. Therefore, we propose to use non-parametric econometric methods. First, these can be applied to verify the functional form used in parametric production analysis. Second, they can be directly used...

  8. Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods - A comparison

    NARCIS (Netherlands)

    Verrelst, Jochem; Rivera, Juan Pablo; Veroustraete, Frank; Muñoz-Marí, Jordi; Clevers, J.G.P.W.; Camps-Valls, Gustau; Moreno, José

    2015-01-01

    Given the forthcoming availability of Sentinel-2 (S2) images, this paper provides a systematic comparison of retrieval accuracy and processing speed of a multitude of parametric, non-parametric and physically-based retrieval methods using simulated S2 data. An experimental field dataset (SPARC),

  9. Digital spectral analysis parametric, non-parametric and advanced methods

    CERN Document Server

    Castanié, Francis

    2013-01-01

    Digital Spectral Analysis provides a single source that offers complete coverage of the spectral analysis domain. This self-contained work includes details on advanced topics that are usually presented in scattered sources throughout the literature.The theoretical principles necessary for the understanding of spectral analysis are discussed in the first four chapters: fundamentals, digital signal processing, estimation in spectral analysis, and time-series models.An entire chapter is devoted to the non-parametric methods most widely used in industry.High resolution methods a

  10. Comparing parametric and nonparametric regression methods for panel data

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    We investigate and compare the suitability of parametric and non-parametric stochastic regression methods for analysing production technologies and the optimal firm size. Our theoretical analysis shows that the most commonly used functional forms in empirical production analysis, Cobb......-Douglas and Translog, are unsuitable for analysing the optimal firm size. We show that the Translog functional form implies an implausible linear relationship between the (logarithmic) firm size and the elasticity of scale, where the slope is artificially related to the substitutability between the inputs....... The practical applicability of the parametric and non-parametric regression methods is scrutinised and compared by an empirical example: we analyse the production technology and investigate the optimal size of Polish crop farms based on a firm-level balanced panel data set. A nonparametric specification test...

  11. CFD Parametric Studies for Global Performance Improvement of Open Refrigerated Display Cabinets

    Directory of Open Access Journals (Sweden)

    Pedro Dinis Gaspar

    2012-01-01

    Full Text Available A detailed CFD modelling of an open refrigerated display cabinet has been formulated in a previous study. Some modifications are introduced in order to perform parametric studies dealing with low-cost geometrical and functional characteristics for improvement of the global performance and energy efficiency. The parametric studies are devoted to the analysis of the thermal response and behaviour inside the food conservation space influenced by (1 air flow rate through the evaporator heat exchanger; (2 air curtain behaviour; (3 hole dimensions and distribution of the back panel; (4 discharge and return grilles angles; and (5 flow deflectors inside the internal duct. The analysis of the numerical predictions from the parametric studies allows the development of an optimized model for the conception of an open refrigerated display cabinet with a more adequate configuration. The numerical predictions of the optimized model show lower product temperature and reduced electrical energy consumption, allowing the improvement of the food safety and the energy rationalization of the refrigeration equipment.

  12. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.

    2011-08-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques. The algorithm features two key steps: (i) a dynamic programming step, in which the mp-MPC problem is decomposed into a set of smaller subproblems in which only the current control, state variables, and constraints are considered, and (ii) a multi-parametric programming step, in which each subproblem is solved as a convex multi-parametric programming problem, to derive the control variables as an explicit function of the states. The key feature of the proposed method is that it overcomes potential limitations of previous methods for solving multi-parametric programming problems with dynamic programming, such as the need for global optimization for each subproblem of the dynamic programming step. © 2011 Elsevier Ltd. All rights reserved.

  13. Bayesian non- and semi-parametric methods and applications

    CERN Document Server

    Rossi, Peter

    2014-01-01

    This book reviews and develops Bayesian non-parametric and semi-parametric methods for applications in microeconometrics and quantitative marketing. Most econometric models used in microeconomics and marketing applications involve arbitrary distributional assumptions. As more data becomes available, a natural desire to provide methods that relax these assumptions arises. Peter Rossi advocates a Bayesian approach in which specific distributional assumptions are replaced with more flexible distributions based on mixtures of normals. The Bayesian approach can use either a large but fixed number

  14. Using non-parametric methods in econometric production analysis

    DEFF Research Database (Denmark)

    Czekaj, Tomasz Gerard; Henningsen, Arne

    Econometric estimation of production functions is one of the most common methods in applied economic production analysis. These studies usually apply parametric estimation techniques, which obligate the researcher to specify the functional form of the production function. Most often, the Cobb...... results—including measures that are of interest of applied economists, such as elasticities. Therefore, we propose to use nonparametric econometric methods. First, they can be applied to verify the functional form used in parametric estimations of production functions. Second, they can be directly used...

  15. Image sequence analysis in nuclear medicine: (1) Parametric imaging using statistical modelling

    International Nuclear Information System (INIS)

    Liehn, J.C.; Hannequin, P.; Valeyre, J.

    1989-01-01

    This is a review of parametric imaging methods on Nuclear Medicine. A Parametric Image is an image in which each pixel value is a function of the value of the same pixel of an image sequence. The Local Model Method is the fitting of each pixel time activity curve by a model which parameter values form the Parametric Images. The Global Model Method is the modelling of the changes between two images. It is applied to image comparison. For both methods, the different models, the identification criterion, the optimization methods and the statistical properties of the images are discussed. The analysis of one or more Parametric Images is performed using 1D or 2D histograms. The statistically significant Parametric Images, (Images of significant Variances, Amplitudes and Differences) are also proposed [fr

  16. Parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method of ledre profile attributes

    Science.gov (United States)

    Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.

    2018-03-01

    This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).

  17. Parametric and Non-Parametric System Modelling

    DEFF Research Database (Denmark)

    Nielsen, Henrik Aalborg

    1999-01-01

    the focus is on combinations of parametric and non-parametric methods of regression. This combination can be in terms of additive models where e.g. one or more non-parametric term is added to a linear regression model. It can also be in terms of conditional parametric models where the coefficients...... considered. It is shown that adaptive estimation in conditional parametric models can be performed by combining the well known methods of local polynomial regression and recursive least squares with exponential forgetting. The approach used for estimation in conditional parametric models also highlights how...... networks is included. In this paper, neural networks are used for predicting the electricity production of a wind farm. The results are compared with results obtained using an adaptively estimated ARX-model. Finally, two papers on stochastic differential equations are included. In the first paper, among...

  18. Functional brain mapping using H215O positron emission tomography (I): statistical parametric mapping method

    International Nuclear Information System (INIS)

    Lee, Dong Soo; Lee, Jae Sung; Kim, Kyeong Min; Chung, June Key; Lee, Myung Chul

    1998-01-01

    We investigated the statistical methods to compose the functional brain map of human working memory and the principal factors that have an effect on the methods for localization. Repeated PET scans with successive four tasks, which consist of one control and three different activation tasks, were performed on six right-handed normal volunteers for 2 minutes after bolus injections of 925 MBq H 2 15 O at the intervals of 30 minutes. Image data were analyzed using SPM96 (Statistical Parametric Mapping) implemented with Matlab (Mathworks Inc., U.S.A.). Images from the same subject were spatially registered and were normalized using linear and nonlinear transformation methods. Significant difference between control and each activation state was estimated at every voxel based on the general linear model. Differences of global counts were removed using analysis of covariance (ANCOVA) with global activity as covariate. Using the mean and variance for each condition which was adjusted using ANCOVA, t-statistics was performed on every voxel. To interpret the results more easily, t-values were transformed to the standard Gaussian distribution (Z-score). All the subjects carried out the activation and control tests successfully. Average rate of correct answers was 95%. The numbers of activated blobs were 4 for verbal memory I, 9 for verbal memory II, 9 for visual memory, and 6 for conjunctive activation of these three tasks. The verbal working memory activates predominantly left-sided structures, and the visual memory activates the right hemisphere. We conclude that rCBF PET imaging and statistical parametric mapping method were useful in the localization of the brain regions for verbal and visual working memory

  19. SPM analysis of parametric (R)-[11C]PK11195 binding images: plasma input versus reference tissue parametric methods.

    Science.gov (United States)

    Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald

    2007-05-01

    (R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).

  20. A physiology-based parametric imaging method for FDG-PET data

    Science.gov (United States)

    Scussolini, Mara; Garbarino, Sara; Sambuceti, Gianmario; Caviglia, Giacomo; Piana, Michele

    2017-12-01

    Parametric imaging is a compartmental approach that processes nuclear imaging data to estimate the spatial distribution of the kinetic parameters governing tracer flow. The present paper proposes a novel and efficient computational method for parametric imaging which is potentially applicable to several compartmental models of diverse complexity and which is effective in the determination of the parametric maps of all kinetic coefficients. We consider applications to [18 F]-fluorodeoxyglucose positron emission tomography (FDG-PET) data and analyze the two-compartment catenary model describing the standard FDG metabolization by an homogeneous tissue and the three-compartment non-catenary model representing the renal physiology. We show uniqueness theorems for both models. The proposed imaging method starts from the reconstructed FDG-PET images of tracer concentration and preliminarily applies image processing algorithms for noise reduction and image segmentation. The optimization procedure solves pixel-wise the non-linear inverse problem of determining the kinetic parameters from dynamic concentration data through a regularized Gauss-Newton iterative algorithm. The reliability of the method is validated against synthetic data, for the two-compartment system, and experimental real data of murine models, for the renal three-compartment system.

  1. Comparison of parametric and bootstrap method in bioequivalence test.

    Science.gov (United States)

    Ahn, Byung-Jin; Yim, Dong-Seok

    2009-10-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

  2. Non-asymptotic fractional order differentiators via an algebraic parametric method

    KAUST Repository

    Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid

    2012-01-01

    Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie's modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.

  3. Non-asymptotic fractional order differentiators via an algebraic parametric method

    KAUST Repository

    Liu, Dayan

    2012-08-01

    Recently, Mboup, Join and Fliess [27], [28] introduced non-asymptotic integer order differentiators by using an algebraic parametric estimation method [7], [8]. In this paper, in order to obtain non-asymptotic fractional order differentiators we apply this algebraic parametric method to truncated expansions of fractional Taylor series based on the Jumarie\\'s modified Riemann-Liouville derivative [14]. Exact and simple formulae for these differentiators are given where a sliding integration window of a noisy signal involving Jacobi polynomials is used without complex mathematical deduction. The efficiency and the stability with respect to corrupting noises of the proposed fractional order differentiators are shown in numerical simulations. © 2012 IEEE.

  4. Cuckoo Search Algorithm with Lévy Flights for Global-Support Parametric Surface Approximation in Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Andrés Iglesias

    2018-03-01

    Full Text Available This paper concerns several important topics of the Symmetry journal, namely, computer-aided design, computational geometry, computer graphics, visualization, and pattern recognition. We also take advantage of the symmetric structure of the tensor-product surfaces, where the parametric variables u and v play a symmetric role in shape reconstruction. In this paper we address the general problem of global-support parametric surface approximation from clouds of data points for reverse engineering applications. Given a set of measured data points, the approximation is formulated as a nonlinear continuous least-squares optimization problem. Then, a recent metaheuristics called Cuckoo Search Algorithm (CSA is applied to compute all relevant free variables of this minimization problem (namely, the data parameters and the surface poles. The method includes the iterative generation of new solutions by using the Lévy flights to promote the diversity of solutions and prevent stagnation. A critical advantage of this method is its simplicity: the CSA requires only two parameters, many fewer than any other metaheuristic approach, so the parameter tuning becomes a very easy task. The method is also simple to understand and easy to implement. Our approach has been applied to a benchmark of three illustrative sets of noisy data points corresponding to surfaces exhibiting several challenging features. Our experimental results show that the method performs very well even for the cases of noisy and unorganized data points. Therefore, the method can be directly used for real-world applications for reverse engineering without further pre/post-processing. Comparative work with the most classical mathematical techniques for this problem as well as a recent modification of the CSA called Improved CSA (ICSA is also reported. Two nonparametric statistical tests show that our method outperforms the classical mathematical techniques and provides equivalent results to ICSA

  5. A general first-order global sensitivity analysis method

    International Nuclear Information System (INIS)

    Xu Chonggang; Gertner, George Zdzislaw

    2008-01-01

    Fourier amplitude sensitivity test (FAST) is one of the most popular global sensitivity analysis techniques. The main mechanism of FAST is to assign each parameter with a characteristic frequency through a search function. Then, for a specific parameter, the variance contribution can be singled out of the model output by the characteristic frequency. Although FAST has been widely applied, there are two limitations: (1) the aliasing effect among parameters by using integer characteristic frequencies and (2) the suitability for only models with independent parameters. In this paper, we synthesize the improvement to overcome the aliasing effect limitation [Tarantola S, Gatelli D, Mara TA. Random balance designs for the estimation of first order global sensitivity indices. Reliab Eng Syst Safety 2006; 91(6):717-27] and the improvement to overcome the independence limitation [Xu C, Gertner G. Extending a global sensitivity analysis technique to models with correlated parameters. Comput Stat Data Anal 2007, accepted for publication]. In this way, FAST can be a general first-order global sensitivity analysis method for linear/nonlinear models with as many correlated/uncorrelated parameters as the user specifies. We apply the general FAST to four test cases with correlated parameters. The results show that the sensitivity indices derived by the general FAST are in good agreement with the sensitivity indices derived by the correlation ratio method, which is a non-parametric method for models with correlated parameters

  6. A parametric level-set method for partially discrete tomography

    NARCIS (Netherlands)

    A. Kadu (Ajinkya); T. van Leeuwen (Tristan); K.J. Batenburg (Joost)

    2017-01-01

    textabstractThis paper introduces a parametric level-set method for tomographic reconstruction of partially discrete images. Such images consist of a continuously varying background and an anomaly with a constant (known) grey-value. We express the geometry of the anomaly using a level-set function,

  7. Multi-pulse orbits and chaotic dynamics in motion of parametrically excited viscoelastic moving belt

    International Nuclear Information System (INIS)

    Zhang Wei; Yao Minghui

    2006-01-01

    In this paper, the Shilnikov type multi-pulse orbits and chaotic dynamics of parametrically excited viscoelastic moving belt are studied in detail. Using Kelvin-type viscoelastic constitutive law, the equations of motion for viscoelastic moving belt with the external damping and parametric excitation are given. The four-dimensional averaged equation under the case of primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin's approach to the partial differential governing equation of viscoelastic moving belt. From the averaged equations obtained here, the theory of normal form is used to give the explicit expressions of normal form with a double zero and a pair of pure imaginary eigenvalues. Based on normal form, the energy-phrase method is employed to analyze the global bifurcations and chaotic dynamics in parametrically excited viscoelastic moving belt. The global bifurcation analysis indicates that there exist the heteroclinic bifurcations and the Silnikov type multi-pulse homoclinic orbits in the averaged equation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense in parametrically excited viscoelastic moving belt. The chaotic motions of viscoelastic moving belts are also found by using numerical simulation. A new phenomenon on the multi-pulse jumping orbits is observed from three-dimensional phase space

  8. The method of varying amplitudes for solving (non)linear problems involving strong parametric excitation

    DEFF Research Database (Denmark)

    Sorokin, Vladislav; Thomsen, Jon Juel

    2015-01-01

    Parametrically excited systems appear in many fields of science and technology, intrinsically or imposed purposefully; e.g. spatially periodic structures represent an important class of such systems [4]. When the parametric excitation can be considered weak, classical asymptotic methods like...... the method of averaging [2] or multiple scales [6] can be applied. However, with many practically important applications this simplification is inadequate, e.g. with spatially periodic structures it restricts the possibility to affect their effective dynamic properties by a structural parameter modulation...... of considerable magnitude. Approximate methods based on Floquet theory [4] for analyzing problems involving parametric excitation, e.g. the classical Hill’s method of infinite determinants [3,4], can be employed also in cases of strong excitation; however, with Floquet theory being applicable only for linear...

  9. Functional brain mapping using H{sub 2}{sup 15}O positron emission tomography (I): statistical parametric mapping method

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soo; Lee, Jae Sung; Kim, Kyeong Min; Chung, June Key; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    1998-08-01

    We investigated the statistical methods to compose the functional brain map of human working memory and the principal factors that have an effect on the methods for localization. Repeated PET scans with successive four tasks, which consist of one control and three different activation tasks, were performed on six right-handed normal volunteers for 2 minutes after bolus injections of 925 MBq H{sub 2}{sup 15}O at the intervals of 30 minutes. Image data were analyzed using SPM96 (Statistical Parametric Mapping) implemented with Matlab (Mathworks Inc., U.S.A.). Images from the same subject were spatially registered and were normalized using linear and nonlinear transformation methods. Significant difference between control and each activation state was estimated at every voxel based on the general linear model. Differences of global counts were removed using analysis of covariance (ANCOVA) with global activity as covariate. Using the mean and variance for each condition which was adjusted using ANCOVA, t-statistics was performed on every voxel. To interpret the results more easily, t-values were transformed to the standard Gaussian distribution (Z-score). All the subjects carried out the activation and control tests successfully. Average rate of correct answers was 95%. The numbers of activated blobs were 4 for verbal memory I, 9 for verbal memory II, 9 for visual memory, and 6 for conjunctive activation of these three tasks. The verbal working memory activates predominantly left-sided structures, and the visual memory activates the right hemisphere. We conclude that rCBF PET imaging and statistical parametric mapping method were useful in the localization of the brain regions for verbal and visual working memory.

  10. Parametric methods outperformed non-parametric methods in comparisons of discrete numerical variables

    Directory of Open Access Journals (Sweden)

    Sandvik Leiv

    2011-04-01

    Full Text Available Abstract Background The number of events per individual is a widely reported variable in medical research papers. Such variables are the most common representation of the general variable type called discrete numerical. There is currently no consensus on how to compare and present such variables, and recommendations are lacking. The objective of this paper is to present recommendations for analysis and presentation of results for discrete numerical variables. Methods Two simulation studies were used to investigate the performance of hypothesis tests and confidence interval methods for variables with outcomes {0, 1, 2}, {0, 1, 2, 3}, {0, 1, 2, 3, 4}, and {0, 1, 2, 3, 4, 5}, using the difference between the means as an effect measure. Results The Welch U test (the T test with adjustment for unequal variances and its associated confidence interval performed well for almost all situations considered. The Brunner-Munzel test also performed well, except for small sample sizes (10 in each group. The ordinary T test, the Wilcoxon-Mann-Whitney test, the percentile bootstrap interval, and the bootstrap-t interval did not perform satisfactorily. Conclusions The difference between the means is an appropriate effect measure for comparing two independent discrete numerical variables that has both lower and upper bounds. To analyze this problem, we encourage more frequent use of parametric hypothesis tests and confidence intervals.

  11. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    Science.gov (United States)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  12. Joint Parametric Fault Diagnosis and State Estimation Using KF-ML Method

    DEFF Research Database (Denmark)

    Sun, Zhen; Yang, Zhenyu

    2014-01-01

    The paper proposes a new method for a kind of parametric fault online diagnosis with state estimation jointly. The considered fault affects not only the deterministic part of the system but also the random circumstance. The proposed method first applies Kalman Filter (KF) and Maximum Likelihood (...

  13. A Novel Parametric Modeling Method and Optimal Design for Savonius Wind Turbines

    Directory of Open Access Journals (Sweden)

    Baoshou Zhang

    2017-03-01

    Full Text Available Under the inspiration of polar coordinates, a novel parametric modeling and optimization method for Savonius wind turbines was proposed to obtain the highest power output, in which a quadratic polynomial curve was bent to describe a blade. Only two design parameters are needed for the shape-complicated blade. Therefore, this novel method reduces sampling scale. A series of transient simulations was run to get the optimal performance coefficient (power coefficient C p for different modified turbines based on computational fluid dynamics (CFD method. Then, a global response surface model and a more precise local response surface model were created according to Kriging Method. These models defined the relationship between optimization objective Cp and design parameters. Particle swarm optimization (PSO algorithm was applied to find the optimal design based on these response surface models. Finally, the optimal Savonius blade shaped like a “hook” was obtained. Cm (torque coefficient, Cp and flow structure were compared for the optimal design and the classical design. The results demonstrate that the optimal Savonius turbine has excellent comprehensive performance. The power coefficient Cp is significantly increased from 0.247 to 0.262 (6% higher. The weight of the optimal blade is reduced by 17.9%.

  14. Variance in parametric images: direct estimation from parametric projections

    International Nuclear Information System (INIS)

    Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.

    2000-01-01

    Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)

  15. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    Energy Technology Data Exchange (ETDEWEB)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W. [College of Medicine, The Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2001-07-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages.

  16. Brain SPECT analysis using statistical parametric mapping in patients with transient global amnesia

    International Nuclear Information System (INIS)

    Kim, E. N.; Sohn, H. S.; Kim, S. H; Chung, S. K.; Yang, D. W.

    2001-01-01

    This study investigated alterations in regional cerebral blood flow (rCBF) in patients with transient global amnesia (TGA) using statistical parametric mapping 99 (SPM99). Noninvasive rCBF measurements using 99mTc-ethyl cysteinate dimer (ECD) SPECT were performed on 8 patients with TGA and 17 age matched controls. The relative rCBF maps in patients with TGA and controls were compared. In patients with TGA, significantly decreased rCBF was found along the left superior temporal extending to left parietal region of the brain and left thalamus. There were areas of increased rCBF in the right temporal, right frontal region and right thalamus. We could demonstrate decreased perfusion in left cerebral hemisphere and increased perfusion in right cerebral hemisphere in patients with TGA using SPM99. The reciprocal change of rCBF between right and left cerebral hemisphere in patients with TGA might suggest that imbalanced neuronal activity between the bilateral hemispheres may be important role in the pathogenesis of the TGA. For quantitative SPECT analysis in TGA patients, we recommend SPM99 rather than the ROI method because of its definitive advantages

  17. STATCAT, Statistical Analysis of Parametric and Non-Parametric Data

    International Nuclear Information System (INIS)

    David, Hugh

    1990-01-01

    1 - Description of program or function: A suite of 26 programs designed to facilitate the appropriate statistical analysis and data handling of parametric and non-parametric data, using classical and modern univariate and multivariate methods. 2 - Method of solution: Data is read entry by entry, using a choice of input formats, and the resultant data bank is checked for out-of- range, rare, extreme or missing data. The completed STATCAT data bank can be treated by a variety of descriptive and inferential statistical methods, and modified, using other standard programs as required

  18. A generalized parametric response mapping method for analysis of multi-parametric imaging: A feasibility study with application to glioblastoma.

    Science.gov (United States)

    Lausch, Anthony; Yeung, Timothy Pok-Chi; Chen, Jeff; Law, Elton; Wang, Yong; Urbini, Benedetta; Donelli, Filippo; Manco, Luigi; Fainardi, Enrico; Lee, Ting-Yim; Wong, Eugene

    2017-11-01

    Parametric response map (PRM) analysis of functional imaging has been shown to be an effective tool for early prediction of cancer treatment outcomes and may also be well-suited toward guiding personalized adaptive radiotherapy (RT) strategies such as sub-volume boosting. However, the PRM method was primarily designed for analysis of longitudinally acquired pairs of single-parameter image data. The purpose of this study was to demonstrate the feasibility of a generalized parametric response map analysis framework, which enables analysis of multi-parametric data while maintaining the key advantages of the original PRM method. MRI-derived apparent diffusion coefficient (ADC) and relative cerebral blood volume (rCBV) maps acquired at 1 and 3-months post-RT for 19 patients with high-grade glioma were used to demonstrate the algorithm. Images were first co-registered and then standardized using normal tissue image intensity values. Tumor voxels were then plotted in a four-dimensional Cartesian space with coordinate values equal to a voxel's image intensity in each of the image volumes and an origin defined as the multi-parametric mean of normal tissue image intensity values. Voxel positions were orthogonally projected onto a line defined by the origin and a pre-determined response vector. The voxels are subsequently classified as positive, negative or nil, according to whether projected positions along the response vector exceeded a threshold distance from the origin. The response vector was selected by identifying the direction in which the standard deviation of tumor image intensity values was maximally different between responding and non-responding patients within a training dataset. Voxel classifications were visualized via familiar three-class response maps and then the fraction of tumor voxels associated with each of the classes was investigated for predictive utility analogous to the original PRM method. Independent PRM and MPRM analyses of the contrast

  19. Synchronization of chaos in non-identical parametrically excited systems

    International Nuclear Information System (INIS)

    Idowu, B.A.; Vincent, U.E.; Njah, A.N.

    2009-01-01

    In this paper, we investigate the synchronization of chaotic systems consisting of non-identical parametrically excited oscillators. The active control technique is employed to design control functions based on Lyapunov stability theory and Routh-Hurwitz criteria so as to achieve global chaos synchronization between a parametrically excited gyroscope and each of the parametrically excited pendulum and Duffing oscillator. Numerical simulations are implemented to verify the results.

  20. Theoretical and algorithmic advances in multi-parametric programming and control

    KAUST Repository

    Pistikopoulos, Efstratios N.; Dominguez, Luis; Panos, Christos; Kouramas, Konstantinos; Chinchuluun, Altannar

    2012-01-01

    This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.

  1. Theoretical and algorithmic advances in multi-parametric programming and control

    KAUST Repository

    Pistikopoulos, Efstratios N.

    2012-04-21

    This paper presents an overview of recent theoretical and algorithmic advances, and applications in the areas of multi-parametric programming and explicit/multi-parametric model predictive control (mp-MPC). In multi-parametric programming, advances include areas such as nonlinear multi-parametric programming (mp-NLP), bi-level programming, dynamic programming and global optimization for multi-parametric mixed-integer linear programming problems (mp-MILPs). In multi-parametric/explicit MPC (mp-MPC), advances include areas such as robust multi-parametric control, multi-parametric nonlinear MPC (mp-NMPC) and model reduction in mp-MPC. A comprehensive framework for multi-parametric programming and control is also presented. Recent applications include a hydrogen storage device, a fuel cell power generation system, an unmanned autonomous vehicle (UAV) and a hybrid pressure swing adsorption (PSA) system. © 2012 Springer-Verlag.

  2. The inverse method parametric verification of real-time embedded systems

    CERN Document Server

    André , Etienne

    2013-01-01

    This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata.The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solv

  3. Assessing pupil and school performance by non-parametric and parametric techniques

    NARCIS (Netherlands)

    de Witte, K.; Thanassoulis, E.; Simpson, G.; Battisti, G.; Charlesworth-May, A.

    2010-01-01

    This paper discusses the use of the non-parametric free disposal hull (FDH) and the parametric multi-level model (MLM) as alternative methods for measuring pupil and school attainment where hierarchical structured data are available. Using robust FDH estimates, we show how to decompose the overall

  4. Speaker Linking and Applications using Non-Parametric Hashing Methods

    Science.gov (United States)

    2016-09-08

    nonparametric estimate of a multivariate density function,” The Annals of Math- ematical Statistics , vol. 36, no. 3, pp. 1049–1051, 1965. [9] E. A. Patrick...Speaker Linking and Applications using Non-Parametric Hashing Methods† Douglas Sturim and William M. Campbell MIT Lincoln Laboratory, Lexington, MA...with many approaches [1, 2]. For this paper, we focus on using i-vectors [2], but the methods apply to any embedding. For the task of speaker QBE and

  5. Hadron Energy Reconstruction for ATLAS Barrel Combined Calorimeter Using Non-Parametrical Method

    CERN Document Server

    Kulchitskii, Yu A

    2000-01-01

    Hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter in the framework of the non-parametrical method is discussed. The non-parametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to fast energy reconstruction in a first level trigger. The reconstructed mean values of the hadron energies are within \\pm1% of the true values and the fractional energy resolution is [(58\\pm 3)%{\\sqrt{GeV}}/\\sqrt{E}+(2.5\\pm0.3)%]\\bigoplus(1.7\\pm0.2) GeV/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74\\pm0.04. Results of a study of the longitudinal hadronic shower development are also presented.

  6. Planar Parametrization in Isogeometric Analysis

    DEFF Research Database (Denmark)

    Gravesen, Jens; Evgrafov, Anton; Nguyen, Dang-Manh

    2012-01-01

    Before isogeometric analysis can be applied to solving a partial differential equation posed over some physical domain, one needs to construct a valid parametrization of the geometry. The accuracy of the analysis is affected by the quality of the parametrization. The challenge of computing...... and maintaining a valid geometry parametrization is particularly relevant in applications of isogemetric analysis to shape optimization, where the geometry varies from one optimization iteration to another. We propose a general framework for handling the geometry parametrization in isogeometric analysis and shape...... are suitable for our framework. The non-linear methods we consider are based on solving a constrained optimization problem numerically, and are divided into two classes, geometry-oriented methods and analysis-oriented methods. Their performance is illustrated through a few numerical examples....

  7. A parametric model order reduction technique for poroelastic finite element models.

    Science.gov (United States)

    Lappano, Ettore; Polanz, Markus; Desmet, Wim; Mundo, Domenico

    2017-10-01

    This research presents a parametric model order reduction approach for vibro-acoustic problems in the frequency domain of systems containing poroelastic materials (PEM). The method is applied to the Finite Element (FE) discretization of the weak u-p integral formulation based on the Biot-Allard theory and makes use of reduced basis (RB) methods typically employed for parametric problems. The parametric reduction is obtained rewriting the Biot-Allard FE equations for poroelastic materials using an affine representation of the frequency (therefore allowing for RB methods) and projecting the frequency-dependent PEM system on a global reduced order basis generated with the proper orthogonal decomposition instead of standard modal approaches. This has proven to be better suited to describe the nonlinear frequency dependence and the strong coupling introduced by damping. The methodology presented is tested on two three-dimensional systems: in the first experiment, the surface impedance of a PEM layer sample is calculated and compared with results of the literature; in the second, the reduced order model of a multilayer system coupled to an air cavity is assessed and the results are compared to those of the reference FE model.

  8. Parametric instability analysis of truncated conical shells using the Haar wavelet method

    Science.gov (United States)

    Dai, Qiyi; Cao, Qingjie

    2018-05-01

    In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.

  9. Parametric methods of describing and extrapolating the characteristics of long-term strength of refractory materials

    International Nuclear Information System (INIS)

    Tsvilyuk, I.S.; Avramenko, D.S.

    1986-01-01

    This paper carries out the comparative analysis of the suitability of parametric methods for describing and extrapolating the results of longterm tests on refractory materials. Diagrams are presented of the longterm strength of niobium based alloys tested in a vacuum of 1.3 X 10 -3 Pa. The predicted values and variance of the estimate of endurance of refractory alloys are presented by parametric dependences. The longterm strength characteristics can be described most adequately by the Manson-Sakkop and Sherby-Dorn methods. Several methods must be used to ensure the reliable extrapolation of the longterm strength characteristics to the time period an order of magnitude longer than the experimental data. The most suitable method cannot always be selected on the basis of the correlation ratio

  10. Parametric Resonance in Dynamical Systems

    CERN Document Server

    Nijmeijer, Henk

    2012-01-01

    Parametric Resonance in Dynamical Systems discusses the phenomenon of parametric resonance and its occurrence in mechanical systems,vehicles, motorcycles, aircraft and marine craft, and micro-electro-mechanical systems. The contributors provide an introduction to the root causes of this phenomenon and its mathematical equivalent, the Mathieu-Hill equation. Also included is a discussion of how parametric resonance occurs on ships and offshore systems and its frequency in mechanical and electrical systems. This book also: Presents the theory and principles behind parametric resonance Provides a unique collection of the different fields where parametric resonance appears including ships and offshore structures, automotive vehicles and mechanical systems Discusses ways to combat, cope with and prevent parametric resonance including passive design measures and active control methods Parametric Resonance in Dynamical Systems is ideal for researchers and mechanical engineers working in application fields such as MEM...

  11. Local and global nonlinear dynamics of a parametrically excited rectangular symmetric cross-ply laminated composite plate

    International Nuclear Information System (INIS)

    Ye Min; Lu Jing; Zhang Wei; Ding Qian

    2005-01-01

    The present investigation deals with nonlinear dynamic behavior of a parametrically excited simply supported rectangular symmetric cross-ply laminated composite thin plate for the first time. The governing equation of motion for rectangular symmetric cross-ply laminated composite thin plate is derived by using von Karman equation. The geometric nonlinearity and nonlinear damping are included in the governing equations of motion. The Galerkin approach is used to obtain a two-degree-of-freedom nonlinear system under parametric excitation. The method of multiple scales is utilized to transform the second-order non-autonomous differential equations to the first-order averaged equations. Using numerical method, the averaged equations are analyzed to obtain the steady state bifurcation responses. The analysis of stability for steady state bifurcation responses in laminated composite thin plate is also given. Under certain conditions laminated composite thin plate may have two or multiple steady state bifurcation solutions. Jumping phenomenon occurs in the steady state bifurcation solutions. The chaotic motions of rectangular symmetric cross-ply laminated composite thin plate are also found by using numerical simulation. The results obtained here demonstrate that the periodic, quasi-periodic and chaotic motions coexist for a parametrically excited fore-edge simply supported rectangular symmetric cross-ply laminated composite thin plate under certain conditions

  12. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    Science.gov (United States)

    Feng, Jinchao; Lansford, Joshua; Mironenko, Alexander; Pourkargar, Davood Babaei; Vlachos, Dionisios G.; Katsoulakis, Markos A.

    2018-03-01

    We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data). The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  13. Non-parametric correlative uncertainty quantification and sensitivity analysis: Application to a Langmuir bimolecular adsorption model

    Directory of Open Access Journals (Sweden)

    Jinchao Feng

    2018-03-01

    Full Text Available We propose non-parametric methods for both local and global sensitivity analysis of chemical reaction models with correlated parameter dependencies. The developed mathematical and statistical tools are applied to a benchmark Langmuir competitive adsorption model on a close packed platinum surface, whose parameters, estimated from quantum-scale computations, are correlated and are limited in size (small data. The proposed mathematical methodology employs gradient-based methods to compute sensitivity indices. We observe that ranking influential parameters depends critically on whether or not correlations between parameters are taken into account. The impact of uncertainty in the correlation and the necessity of the proposed non-parametric perspective are demonstrated.

  14. Parametric effects on glass reaction in the unsaturated test method

    International Nuclear Information System (INIS)

    Woodland, A.B.; Bates, J.K.; Gerding, T.J.

    1991-12-01

    The Unsaturated Test Method has been applied to study glass reaction under conditions that may be present at the potential Yucca Mountain site, currently under evaluation for storage of reprocessed high-level nuclear waste. The results from five separate sets of parametric experiments are presented wherein test parameters ranging from water contact volume to sensitization of metal in contact with the glass were examined. The most significant effect was observed when the volume of water, as controlled by the water inject volume and interval period, was such to allow exfoliation of reacted glass to occur. The extent of reaction was also influenced to a lesser extent by the degree of sensitization of the 304L stainless steel. For each experiment, the release of cations from the glass and alteration of the glass were examined. The major alteration product is a smectite clay that forms both from precipitation from solution and from in-situ alteration of the glass itself. It is this clay that undergoes exfoliation as water drips from the glass. A comparison is made between the results of the parametric experiments with those of static leach tests. In the static tests the rates of release become progressively reduced through 39 weeks while, in contrast, they remain relatively constant in the parametric experiments for at least 300 weeks. This differing behavior may be attributable to the dripping water environment where fresh water is periodically added and where evaporation can occur

  15. A Dynamic Branch-Switching Method for Parametrically Excited Systems

    Directory of Open Access Journals (Sweden)

    A.Y.T. Leung

    1999-01-01

    Full Text Available The branch-switching algorithm in static is applied to steady state dynamic problems. The governing ordinary differential equations are transformed to nonlinear algebraic equations by means of harmonic balance method using multiple frequency components. The frequency components of the (irrational nonlinearity of oscillator are obtained by Fast Fourier Transform and Toeplitz Jacobian method (FFT/TJM. All singularities, folds, flips, period doubling and period bubbling, are computed accurately in an analytical manner. Coexisting solutions can be predicted without using initial condition search. The consistence of both stability criteria in time and frequency domains is discussed. A highly nonlinear parametrically excited system is given as example. All connected solution paths are predicted.

  16. The impact of parametrized convection on cloud feedback

    Science.gov (United States)

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  17. Semi-parametrical NAA method for paper analysis

    International Nuclear Information System (INIS)

    Medeiros, Ilca M.M.A.; Zamboni, Cibele B.; Cruz, Manuel T.F. da; Morel, Jose C.O.; Park, Song W.

    2007-01-01

    The semi-parametric Neutron Activation Analysis technique, using Au as flux monitor, was applied to determine element concentrations in white paper, usually commercialized, aiming to check the quality control of its production in industrial process. (author)

  18. How characterization and clearance process is planned to be optimized by combining MARSSIM methods with parametric statistics in decommissioning of Karolinska University Hospital in Stockholm

    International Nuclear Information System (INIS)

    Jiselmark, J.

    2017-01-01

    There are different standards for the characterization and clearance process used globally in the radiological industry. All of them have advantages and disadvantages. This paper is describing a decommissioning project which is combining two methods in order to use the advantages of both and minimizing the disadvantages. In Sweden there have been a standard since several years to use a method based on parametric Bayesian statistics for the characterization and clearance process. This method has great advantages close to the clearance limits due to few measurements per m"2, an ability to add extra measurements if needed and an ability to reshape area units without restarting the clearance process. Since the method is based on units with a normal or LOG-normal distribution of the contamination there can be several units far from the clearance limits. The American MARSSIM method use non parametric statistics instead of parametric. In comparison to the Bayesian methods this results in the disadvantage of less accuracy close to the clearance limits but also in the great advantage with few units far from the clearance limits. In the characterizing and clearance process of old radiological facilities at the Karolinska University Hospital in Stockholm the MARSSIM method is combined with the Bayesian statistics method to minimize the amount of measurements and by that the cost for clearance. By using Bayesian statistics close to the clearance limits, more areas will be approved for clearance and the risk of having to redo the survey is minimized. By using MARSSIM methods in the area with an assumed contamination below 25 % of the clearance limits, the areas are not needed to be divided into units with normal or LOG-normal distributed activity. Bigger areas can be handled as units which result in fewer measurements and a faster process. (authors)

  19. Sensitivity of Technical Efficiency Estimates to Estimation Methods: An Empirical Comparison of Parametric and Non-Parametric Approaches

    OpenAIRE

    de-Graft Acquah, Henry

    2014-01-01

    This paper highlights the sensitivity of technical efficiency estimates to estimation approaches using empirical data. Firm specific technical efficiency and mean technical efficiency are estimated using the non parametric Data Envelope Analysis (DEA) and the parametric Corrected Ordinary Least Squares (COLS) and Stochastic Frontier Analysis (SFA) approaches. Mean technical efficiency is found to be sensitive to the choice of estimation technique. Analysis of variance and Tukey’s test sugge...

  20. A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice.

    Science.gov (United States)

    Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah

    2016-01-01

    One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

  1. Efficient Characterization of Parametric Uncertainty of Complex (Biochemical Networks.

    Directory of Open Access Journals (Sweden)

    Claudia Schillings

    2015-08-01

    Full Text Available Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  2. An Online Method for Interpolating Linear Parametric Reduced-Order Models

    KAUST Repository

    Amsallem, David; Farhat, Charbel

    2011-01-01

    A two-step online method is proposed for interpolating projection-based linear parametric reduced-order models (ROMs) in order to construct a new ROM for a new set of parameter values. The first step of this method transforms each precomputed ROM into a consistent set of generalized coordinates. The second step interpolates the associated linear operators on their appropriate matrix manifold. Real-time performance is achieved by precomputing inner products between the reduced-order bases underlying the precomputed ROMs. The proposed method is illustrated by applications in mechanical and aeronautical engineering. In particular, its robustness is demonstrated by its ability to handle the case where the sampled parameter set values exhibit a mode veering phenomenon. © 2011 Society for Industrial and Applied Mathematics.

  3. Some advanced parametric methods for assessing waveform distortion in a smart grid with renewable generation

    Science.gov (United States)

    Alfieri, Luisa

    2015-12-01

    Power quality (PQ) disturbances are becoming an important issue in smart grids (SGs) due to the significant economic consequences that they can generate on sensible loads. However, SGs include several distributed energy resources (DERs) that can be interconnected to the grid with static converters, which lead to a reduction of the PQ levels. Among DERs, wind turbines and photovoltaic systems are expected to be used extensively due to the forecasted reduction in investment costs and other economic incentives. These systems can introduce significant time-varying voltage and current waveform distortions that require advanced spectral analysis methods to be used. This paper provides an application of advanced parametric methods for assessing waveform distortions in SGs with dispersed generation. In particular, the Standard International Electrotechnical Committee (IEC) method, some parametric methods (such as Prony and Estimation of Signal Parameters by Rotational Invariance Technique (ESPRIT)), and some hybrid methods are critically compared on the basis of their accuracy and the computational effort required.

  4. Detection of Parametric Roll on Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2012-01-01

    phenomenon could make the navigator change ship’s speed and heading, and these remedial actions could make the vessel escape the bifurcation. This chapter proposes non-parametric methods to detect the onset of parametric roll resonance. Theoretical conditions for parametric resonance are re...... on experimental data from towing tank tests and data from a container ship passing an Atlantic storm....

  5. A parametric model for the global thermodynamic behavior of fluids in the critical region

    International Nuclear Information System (INIS)

    Luettmer-Strathmann, J.; Tang, S.; Sengers, J.V.

    1992-01-01

    The asymptotic thermodynamic behavior of fluids near the critical point is described by scaling laws with universal scaling functions that can be represented by parametric equations. In this paper, we derive a more general parametric model that incorporates the crossover from singular thermodynamic behavior near the critical point to regular classical thermodynamic behavior far away from the critical point. Using ethane as an example, we show that such a parametric crossover model yields an accurate representation of the thermodynamic properties of fluids in a large region around the critical point

  6. A global multicenter study on reference values: 1. Assessment of methods for derivation and comparison of reference intervals.

    Science.gov (United States)

    Ichihara, Kiyoshi; Ozarda, Yesim; Barth, Julian H; Klee, George; Qiu, Ling; Erasmus, Rajiv; Borai, Anwar; Evgina, Svetlana; Ashavaid, Tester; Khan, Dilshad; Schreier, Laura; Rolle, Reynan; Shimizu, Yoshihisa; Kimura, Shogo; Kawano, Reo; Armbruster, David; Mori, Kazuo; Yadav, Binod K

    2017-04-01

    The IFCC Committee on Reference Intervals and Decision Limits coordinated a global multicenter study on reference values (RVs) to explore rational and harmonizable procedures for derivation of reference intervals (RIs) and investigate the feasibility of sharing RIs through evaluation of sources of variation of RVs on a global scale. For the common protocol, rather lenient criteria for reference individuals were adopted to facilitate harmonized recruitment with planned use of the latent abnormal values exclusion (LAVE) method. As of July 2015, 12 countries had completed their study with total recruitment of 13,386 healthy adults. 25 analytes were measured chemically and 25 immunologically. A serum panel with assigned values was measured by all laboratories. RIs were derived by parametric and nonparametric methods. The effect of LAVE methods is prominent in analytes which reflect nutritional status, inflammation and muscular exertion, indicating that inappropriate results are frequent in any country. The validity of the parametric method was confirmed by the presence of analyte-specific distribution patterns and successful Gaussian transformation using the modified Box-Cox formula in all countries. After successful alignment of RVs based on the panel test results, nearly half the analytes showed variable degrees of between-country differences. This finding, however, requires confirmation after adjusting for BMI and other sources of variation. The results are reported in the second part of this paper. The collaborative study enabled us to evaluate rational methods for deriving RIs and comparing the RVs based on real-world datasets obtained in a harmonized manner. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  7. On Parametric (and Non-Parametric Variation

    Directory of Open Access Journals (Sweden)

    Neil Smith

    2009-11-01

    Full Text Available This article raises the issue of the correct characterization of ‘Parametric Variation’ in syntax and phonology. After specifying their theoretical commitments, the authors outline the relevant parts of the Principles–and–Parameters framework, and draw a three-way distinction among Universal Principles, Parameters, and Accidents. The core of the contribution then consists of an attempt to provide identity criteria for parametric, as opposed to non-parametric, variation. Parametric choices must be antecedently known, and it is suggested that they must also satisfy seven individually necessary and jointly sufficient criteria. These are that they be cognitively represented, systematic, dependent on the input, deterministic, discrete, mutually exclusive, and irreversible.

  8. Efficient Characterization of Parametric Uncertainty of Complex (Bio)chemical Networks.

    Science.gov (United States)

    Schillings, Claudia; Sunnåker, Mikael; Stelling, Jörg; Schwab, Christoph

    2015-08-01

    Parametric uncertainty is a particularly challenging and relevant aspect of systems analysis in domains such as systems biology where, both for inference and for assessing prediction uncertainties, it is essential to characterize the system behavior globally in the parameter space. However, current methods based on local approximations or on Monte-Carlo sampling cope only insufficiently with high-dimensional parameter spaces associated with complex network models. Here, we propose an alternative deterministic methodology that relies on sparse polynomial approximations. We propose a deterministic computational interpolation scheme which identifies most significant expansion coefficients adaptively. We present its performance in kinetic model equations from computational systems biology with several hundred parameters and state variables, leading to numerical approximations of the parametric solution on the entire parameter space. The scheme is based on adaptive Smolyak interpolation of the parametric solution at judiciously and adaptively chosen points in parameter space. As Monte-Carlo sampling, it is "non-intrusive" and well-suited for massively parallel implementation, but affords higher convergence rates. This opens up new avenues for large-scale dynamic network analysis by enabling scaling for many applications, including parameter estimation, uncertainty quantification, and systems design.

  9. A Parametric k-Means Algorithm

    Science.gov (United States)

    Tarpey, Thaddeus

    2007-01-01

    Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692

  10. An automated four-point scale scoring of segmental wall motion in echocardiography using quantified parametric images

    International Nuclear Information System (INIS)

    Kachenoura, N; Delouche, A; Ruiz Dominguez, C; Frouin, F; Diebold, B; Nardi, O

    2010-01-01

    The aim of this paper is to develop an automated method which operates on echocardiographic dynamic loops for classifying the left ventricular regional wall motion (RWM) in a four-point scale. A non-selected group of 37 patients (2 and 4 chamber views) was studied. Each view was segmented according to the standardized segmentation using three manually positioned anatomical landmarks (the apex and the angles of the mitral annulus). The segmented data were analyzed by two independent experienced echocardiographists and the consensual RWM scores were used as a reference for comparisons. A fast and automatic parametric imaging method was used to compute and display as static color-coded parametric images both temporal and motion information contained in left ventricular dynamic echocardiograms. The amplitude and time parametric images were provided to a cardiologist for visual analysis of RWM and used for RWM quantification. A cross-validation method was applied to the segmental quantitative indices for classifying RWM in a four-point scale. A total of 518 segments were analyzed. Comparison between visual interpretation of parametric images and the reference reading resulted in an absolute agreement (Aa) of 66% and a relative agreement (Ra) of 96% and kappa (κ) coefficient of 0.61. Comparison of the automated RWM scoring against the same reference provided Aa = 64%, Ra = 96% and κ = 0.64 on the validation subset. Finally, linear regression analysis between the global quantitative index and global reference scores as well as ejection fraction resulted in correlations of 0.85 and 0.79. A new automated four-point scale scoring of RWM was developed and tested in a non-selected database. Its comparison against a consensual visual reading of dynamic echocardiograms showed its ability to classify RWM abnormalities.

  11. The parametrized simulation of electromagnetic showers

    International Nuclear Information System (INIS)

    Peters, S.

    1992-09-01

    The simulation of electromagnetic showers in calorimeters by detailed tracking of all secondary particles is extremely computer time consuming. Without loosing considerably in precision, the use of parametrizations for global shower properties may reduce the computing time by factors of 10 1 to 10 4 , depending on the energy, the degree of parametrization, and the complexity in the material description and the cut off energies in the detailed simulation. To arrive at a high degree of universality, parametrizations of individual electromagnetic showers in homogeneous media are developed, taking the dependence of the shower development on the material into account. In sampling calorimeters, the inhomogeneous material distribution leads to additional effects which can be taken into account by geometry dependent terms in the parametrization of the longitudinal and radial energy density distributions. Comparisons with detailed simulations of homogeneous and sampling calorimeters show very good agreement in the fluctuations, correlations, and signal averages of spatial energy distributions. Verifications of the algorithms for the simulation of the H1 detector are performed using calorimeter test data for different moduls of the H1 liquid argon calorimeter. Special attention has been paid to electron pion separation, which is of great importance for physics analysis. (orig.) [de

  12. A Comparison of Kernel Equating and Traditional Equipercentile Equating Methods and the Parametric Bootstrap Methods for Estimating Standard Errors in Equipercentile Equating

    Science.gov (United States)

    Choi, Sae Il

    2009-01-01

    This study used simulation (a) to compare the kernel equating method to traditional equipercentile equating methods under the equivalent-groups (EG) design and the nonequivalent-groups with anchor test (NEAT) design and (b) to apply the parametric bootstrap method for estimating standard errors of equating. A two-parameter logistic item response…

  13. Transition redshift: new constraints from parametric and nonparametric methods

    Energy Technology Data Exchange (ETDEWEB)

    Rani, Nisha; Mahajan, Shobhit; Mukherjee, Amitabha [Department of Physics and Astrophysics, University of Delhi, New Delhi 110007 (India); Jain, Deepak [Deen Dayal Upadhyaya College, University of Delhi, New Delhi 110015 (India); Pires, Nilza, E-mail: nrani@physics.du.ac.in, E-mail: djain@ddu.du.ac.in, E-mail: shobhit.mahajan@gmail.com, E-mail: amimukh@gmail.com, E-mail: npires@dfte.ufrn.br [Departamento de Física Teórica e Experimental, UFRN, Campus Universitário, Natal, RN 59072-970 (Brazil)

    2015-12-01

    In this paper, we use the cosmokinematics approach to study the accelerated expansion of the Universe. This is a model independent approach and depends only on the assumption that the Universe is homogeneous and isotropic and is described by the FRW metric. We parametrize the deceleration parameter, q(z), to constrain the transition redshift (z{sub t}) at which the expansion of the Universe goes from a decelerating to an accelerating phase. We use three different parametrizations of q(z) namely, q{sub I}(z)=q{sub 1}+q{sub 2}z, q{sub II} (z) = q{sub 3} + q{sub 4} ln (1 + z) and q{sub III} (z)=½+q{sub 5}/(1+z){sup 2}. A joint analysis of the age of galaxies, strong lensing and supernovae Ia data indicates that the transition redshift is less than unity i.e. z{sub t} < 1. We also use a nonparametric approach (LOESS+SIMEX) to constrain z{sub t}. This too gives z{sub t} < 1 which is consistent with the value obtained by the parametric approach.

  14. Machine learning-based dual-energy CT parametric mapping.

    Science.gov (United States)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-05-22

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρe), mean excitation energy (Ix), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 seconds. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency. . © 2018 Institute of Physics and Engineering in

  15. A New and General Formulation of the Parametric HFGMC Micromechanical Method for Three-Dimensional Multi-Phase Composites

    Science.gov (United States)

    Haj-Ali, Rami; Aboudi, Jacob

    2012-01-01

    The recent two-dimensional (2-D) parametric formulation of the high fidelity generalized method of cells (HFGMC) reported by the authors is generalized for the micromechanical analysis of three-dimensional (3-D) multiphase composites with periodic microstructure. Arbitrary hexahedral subcell geometry is developed to discretize a triply periodic repeating unit-cell (RUC). Linear parametric-geometric mapping is employed to transform the arbitrary hexahedral subcell shapes from the physical space to an auxiliary orthogonal shape, where a complete quadratic displacement expansion is performed. Previously in the 2-D case, additional three equations are needed in the form of average moments of equilibrium as a result of the inclusion of the bilinear terms. However, the present 3-D parametric HFGMC formulation eliminates the need for such additional equations. This is achieved by expressing the coefficients of the full quadratic polynomial expansion of the subcell in terms of the side or face average-displacement vectors. The 2-D parametric and orthogonal HFGMC are special cases of the present 3-D formulation. The continuity of displacements and tractions, as well as the equilibrium equations, are imposed in the average (integral) sense as in the original HFGMC formulation. Each of the six sides (faces) of a subcell has an independent average displacement micro-variable vector which forms an energy-conjugate pair with the transformed average-traction vector. This allows generating symmetric stiffness matrices along with internal resisting vectors for the subcells which enhances the computational efficiency. The established new parametric 3-D HFGMC equations are formulated and solution implementations are addressed. Several applications for triply periodic 3-D composites are presented to demonstrate the general capability and varsity of the present parametric HFGMC method for refined micromechanical analysis by generating the spatial distributions of local stress fields

  16. Impulse response identification with deterministic inputs using non-parametric methods

    International Nuclear Information System (INIS)

    Bhargava, U.K.; Kashyap, R.L.; Goodman, D.M.

    1985-01-01

    This paper addresses the problem of impulse response identification using non-parametric methods. Although the techniques developed herein apply to the truncated, untruncated, and the circulant models, we focus on the truncated model which is useful in certain applications. Two methods of impulse response identification will be presented. The first is based on the minimization of the C/sub L/ Statistic, which is an estimate of the mean-square prediction error; the second is a Bayesian approach. For both of these methods, we consider the effects of using both the identity matrix and the Laplacian matrix as weights on the energy in the impulse response. In addition, we present a method for estimating the effective length of the impulse response. Estimating the length is particularly important in the truncated case. Finally, we develop a method for estimating the noise variance at the output. Often, prior information on the noise variance is not available, and a good estimate is crucial to the success of estimating the impulse response with a nonparametric technique

  17. Comparison of Parametric and Nonparametric Methods for Analyzing the Bias of a Numerical Model

    Directory of Open Access Journals (Sweden)

    Isaac Mugume

    2016-01-01

    Full Text Available Numerical models are presently applied in many fields for simulation and prediction, operation, or research. The output from these models normally has both systematic and random errors. The study compared January 2015 temperature data for Uganda as simulated using the Weather Research and Forecast model with actual observed station temperature data to analyze the bias using parametric (the root mean square error (RMSE, the mean absolute error (MAE, mean error (ME, skewness, and the bias easy estimate (BES and nonparametric (the sign test, STM methods. The RMSE normally overestimates the error compared to MAE. The RMSE and MAE are not sensitive to direction of bias. The ME gives both direction and magnitude of bias but can be distorted by extreme values while the BES is insensitive to extreme values. The STM is robust for giving the direction of bias; it is not sensitive to extreme values but it does not give the magnitude of bias. The graphical tools (such as time series and cumulative curves show the performance of the model with time. It is recommended to integrate parametric and nonparametric methods along with graphical methods for a comprehensive analysis of bias of a numerical model.

  18. Classification rates: non‐parametric verses parametric models using ...

    African Journals Online (AJOL)

    This research sought to establish if non parametric modeling achieves a higher correct classification ratio than a parametric model. The local likelihood technique was used to model fit the data sets. The same sets of data were modeled using parametric logit and the abilities of the two models to correctly predict the binary ...

  19. A novel approach for multiple mobile objects path planning: Parametrization method and conflict resolution strategy

    International Nuclear Information System (INIS)

    Ma, Yong; Wang, Hongwei; Zamirian, M.

    2012-01-01

    We present a new approach containing two steps to determine conflict-free paths for mobile objects in two and three dimensions with moving obstacles. Firstly, the shortest path of each object is set as goal function which is subject to collision-avoidance criterion, path smoothness, and velocity and acceleration constraints. This problem is formulated as calculus of variation problem (CVP). Using parametrization method, CVP is converted to time-varying nonlinear programming problems (TNLPP) and then resolved. Secondly, move sequence of object is assigned by priority scheme; conflicts are resolved by multilevel conflict resolution strategy. Approach efficiency is confirmed by numerical examples. -- Highlights: ► Approach with parametrization method and conflict resolution strategy is proposed. ► Approach fits for multi-object paths planning in two and three dimensions. ► Single object path planning and multi-object conflict resolution are orderly used. ► Path of each object obtained with parameterization method in the first phase. ► Conflict-free paths gained by multi-object conflict resolution in the second phase.

  20. Bootstrapping the economy -- a non-parametric method of generating consistent future scenarios

    OpenAIRE

    Müller, Ulrich A; Bürgi, Roland; Dacorogna, Michel M

    2004-01-01

    The fortune and the risk of a business venture depends on the future course of the economy. There is a strong demand for economic forecasts and scenarios that can be applied to planning and modeling. While there is an ongoing debate on modeling economic scenarios, the bootstrapping (or resampling) approach presented here has several advantages. As a non-parametric method, it directly relies on past market behaviors rather than debatable assumptions on models and parameters. Simultaneous dep...

  1. A unified and comprehensible view of parametric and kernel methods for genomic prediction with application to rice

    Directory of Open Access Journals (Sweden)

    Laval Jacquin

    2016-08-01

    Full Text Available One objective of this study was to provide readers with a clear and unified understanding ofparametric statistical and kernel methods, used for genomic prediction, and to compare some ofthese in the context of rice breeding for quantitative traits. Furthermore, another objective wasto provide a simple and user-friendly R package, named KRMM, which allows users to performRKHS regression with several kernels. After introducing the concept of regularized empiricalrisk minimization, the connections between well-known parametric and kernel methods suchas Ridge regression (i.e. genomic best linear unbiased predictor (GBLUP and reproducingkernel Hilbert space (RKHS regression were reviewed. Ridge regression was then reformulatedso as to show and emphasize the advantage of the kernel trick concept, exploited by kernelmethods in the context of epistatic genetic architectures, over parametric frameworks used byconventional methods. Some parametric and kernel methods; least absolute shrinkage andselection operator (LASSO, GBLUP, support vector machine regression (SVR and RKHSregression were thereupon compared for their genomic predictive ability in the context of ricebreeding using three real data sets. Among the compared methods, RKHS regression and SVRwere often the most accurate methods for prediction followed by GBLUP and LASSO. An Rfunction which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression,with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time hasbeen developed. Moreover, a modified version of this function, which allows users to tune kernelsfor RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

  2. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  3. Multi-level approach for parametric roll analysis

    Science.gov (United States)

    Kim, Taeyoung; Kim, Yonghwan

    2011-03-01

    The present study considers multi-level approach for the analysis of parametric roll phenomena. Three kinds of computation method, GM variation, impulse response function (IRF), and Rankine panel method, are applied for the multi-level approach. IRF and Rankine panel method are based on the weakly nonlinear formulation which includes nonlinear Froude- Krylov and restoring forces. In the computation result of parametric roll occurrence test in regular waves, IRF and Rankine panel method show similar tendency. Although the GM variation approach predicts the occurrence of parametric roll at twice roll natural frequency, its frequency criteria shows a little difference. Nonlinear roll motion in bichromatic wave is also considered in this study. To prove the unstable roll motion in bichromatic waves, theoretical and numerical approaches are applied. The occurrence of parametric roll is theoretically examined by introducing the quasi-periodic Mathieu equation. Instability criteria are well predicted from stability analysis in theoretical approach. From the Fourier analysis, it has been verified that difference-frequency effects create the unstable roll motion. The occurrence of unstable roll motion in bichromatic wave is also observed in the experiment.

  4. The application of non-parametric statistical method for an ALARA implementation

    International Nuclear Information System (INIS)

    Cho, Young Ho; Herr, Young Hoi

    2003-01-01

    The cost-effective reduction of Occupational Radiation Dose (ORD) at a nuclear power plant could not be achieved without going through an extensive analysis of accumulated ORD data of existing plants. Through the data analysis, it is required to identify what are the jobs of repetitive high ORD at the nuclear power plant. In this study, Percentile Rank Sum Method (PRSM) is proposed to identify repetitive high ORD jobs, which is based on non-parametric statistical theory. As a case study, the method is applied to ORD data of maintenance and repair jobs at Kori units 3 and 4 that are pressurized water reactors with 950 MWe capacity and have been operated since 1986 and 1987, respectively in Korea. The results was verified and validated, and PRSM has been demonstrated to be an efficient method of analyzing the data

  5. Parametric form of QCD travelling waves

    OpenAIRE

    Peschanski, R.

    2005-01-01

    We derive parametric travelling-wave solutions of non-linear QCD equations. They describe the evolution towards saturation in the geometric scaling region. The method, based on an expansion in the inverse of the wave velocity, leads to a solvable hierarchy of differential equations. A universal parametric form of travelling waves emerges from the first two orders of the expansion.

  6. A global optimization method for evaporative cooling systems based on the entransy theory

    International Nuclear Information System (INIS)

    Yuan, Fang; Chen, Qun

    2012-01-01

    Evaporative cooling technique, one of the most widely used methods, is essential to both energy conservation and environment protection. This contribution introduces a global optimization method for indirect evaporative cooling systems with coupled heat and mass transfer processes based on the entransy theory to improve their energy efficiency. First, we classify the irreversible processes in the system into the heat transfer process, the coupled heat and mass transfer process and the mixing process of waters in different branches, where the irreversibility is evaluated by the entransy dissipation. Then through the total system entransy dissipation, we establish the theoretical relationship of the user demands with both the geometrical structures of each heat exchanger and the operating parameters of each fluid, and derive two optimization equation groups focusing on two typical optimization problems. Finally, an indirect evaporative cooling system is taken as an example to illustrate the applications of the newly proposed optimization method. It is concluded that there exists an optimal circulating water flow rate with the minimum total thermal conductance of the system. Furthermore, with different user demands and moist air inlet conditions, it is the global optimization, other than parametric analysis, will obtain the optimal performance of the system. -- Highlights: ► Introduce a global optimization method for evaporative cooling systems. ► Establish the direct relation between user demands and the design parameters. ► Obtain two groups of optimization equations for two typical optimization objectives. ► Solving the equations offers the optimal design parameters for the system. ► Provide the instruction for the design of coupled heat and mass transfer systems.

  7. Comparison of radiation parametrizations within the HARMONIE-AROME NWP model

    Science.gov (United States)

    Rontu, Laura; Lindfors, Anders V.

    2018-05-01

    Downwelling shortwave radiation at the surface (SWDS, global solar radiation flux), given by three different parametrization schemes, was compared to observations in the HARMONIE-AROME numerical weather prediction (NWP) model experiments over Finland in spring 2017. Simulated fluxes agreed well with each other and with the observations in the clear-sky cases. In the cloudy-sky conditions, all schemes tended to underestimate SWDS at the daily level, as compared to the measurements. Large local and temporal differences between the model results and observations were seen, related to the variations and uncertainty of the predicted cloud properties. The results suggest a possibility to benefit from the use of different radiative transfer parametrizations in a NWP model to obtain perturbations for the fine-resolution ensemble prediction systems. In addition, we recommend usage of the global radiation observations for the standard validation of the NWP models.

  8. Optimal Control for Bufferbloat Queue Management Using Indirect Method with Parametric Optimization

    Directory of Open Access Journals (Sweden)

    Amr Radwan

    2016-01-01

    Full Text Available Because memory buffers become larger and cheaper, they have been put into network devices to reduce the number of loss packets and improve network performance. However, the consequences of large buffers are long queues at network bottlenecks and throughput saturation, which has been recently noticed in research community as bufferbloat phenomenon. To address such issues, in this article, we design a forward-backward optimal control queue algorithm based on an indirect approach with parametric optimization. The cost function which we want to minimize represents a trade-off between queue length and packet loss rate performance. Through the integration of an indirect approach with parametric optimization, our proposal has advantages of scalability and accuracy compared to direct approaches, while still maintaining good throughput and shorter queue length than several existing queue management algorithms. All numerical analysis, simulation in ns-2, and experiment results are provided to solidify the efficiency of our proposal. In detailed comparisons to other conventional algorithms, the proposed procedure can run much faster than direct collocation methods while maintaining a desired short queue (≈40 packets in simulation and 80 (ms in experiment test.

  9. A soft double regularization approach to parametric blind image deconvolution.

    Science.gov (United States)

    Chen, Li; Yap, Kim-Hui

    2005-05-01

    This paper proposes a blind image deconvolution scheme based on soft integration of parametric blur structures. Conventional blind image deconvolution methods encounter a difficult dilemma of either imposing stringent and inflexible preconditions on the problem formulation or experiencing poor restoration results due to lack of information. This paper attempts to address this issue by assessing the relevance of parametric blur information, and incorporating the knowledge into the parametric double regularization (PDR) scheme. The PDR method assumes that the actual blur satisfies up to a certain degree of parametric structure, as there are many well-known parametric blurs in practical applications. Further, it can be tailored flexibly to include other blur types if some prior parametric knowledge of the blur is available. A manifold soft parametric modeling technique is proposed to generate the blur manifolds, and estimate the fuzzy blur structure. The PDR scheme involves the development of the meaningful cost function, the estimation of blur support and structure, and the optimization of the cost function. Experimental results show that it is effective in restoring degraded images under different environments.

  10. Parametric studies on automotive radiators

    International Nuclear Information System (INIS)

    Oliet, C.; Oliva, A.; Castro, J.; Perez-Segarra, C.D.

    2007-01-01

    This paper presents a set of parametric studies performed on automotive radiators by means of a detailed rating and design heat exchanger model developed by the authors. This numerical tool has been previously verified and validated using a wide experimental data bank. A first part of the analysis focuses on the influence of working conditions on both fluids (mass flows, inlet temperatures) and the impact of the selected coolant fluid. Following these studies, the influence of some geometrical parameters is analysed (fin pitch, louver angle) as well as the importance of coolant flow lay-out on the radiator global performance. This work provides an overall behaviour report of automobile radiators working at usual range of operating conditions, while significant knowledge-based design conclusions have also been reported. The results show the utility of this numerical model as a rating and design tool for heat exchangers manufacturers, being a reasonable compromise between classic ε - NTU methods and CFD

  11. Parametric FEM for geometric biomembranes

    Science.gov (United States)

    Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.

    2010-05-01

    We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

  12. Macromechanical Parametric Amplification

    DEFF Research Database (Denmark)

    Neumeyer, Stefan

    between the two peaks can be altered. The first experimental bistable amplified steady-state responses are also reported. The derived analytical models and experimental setups can readily be extended to investigate other factors. Some of the results are also applicable to the more general field of systems...... for energy harvesting. Using analytical, numerical, and experimental methods, the thesis focuses on superthreshold pumping (above the systems parametric instability threshold), nonlinear effects, frequency response backbones, and frequency detuning effects for parametric amplifiers. Part one of the thesis...... covers superthreshold pumping and nonlinear effects. Superthresh-old pumping produces some useful characteristics. For instance, strong superthreshold pumping yields a high gain even though nonlinear effects tend to reduce it. In addition, a narrower excitation phase range is realized for which...

  13. Mechanistic site-based emulation of a global ocean biogeochemical model (MEDUSA 1.0 for parametric analysis and calibration: an application of the Marine Model Optimization Testbed (MarMOT 1.1

    Directory of Open Access Journals (Sweden)

    J. C. P. Hemmings

    2015-03-01

    Full Text Available Biogeochemical ocean circulation models used to investigate the role of plankton ecosystems in global change rely on adjustable parameters to capture the dominant biogeochemical dynamics of a complex biological system. In principle, optimal parameter values can be estimated by fitting models to observational data, including satellite ocean colour products such as chlorophyll that achieve good spatial and temporal coverage of the surface ocean. However, comprehensive parametric analyses require large ensemble experiments that are computationally infeasible with global 3-D simulations. Site-based simulations provide an efficient alternative but can only be used to make reliable inferences about global model performance if robust quantitative descriptions of their relationships with the corresponding 3-D simulations can be established. The feasibility of establishing such a relationship is investigated for an intermediate complexity biogeochemistry model (MEDUSA coupled with a widely used global ocean model (NEMO. A site-based mechanistic emulator is constructed for surface chlorophyll output from this target model as a function of model parameters. The emulator comprises an array of 1-D simulators and a statistical quantification of the uncertainty in their predictions. The unknown parameter-dependent biogeochemical environment, in terms of initial tracer concentrations and lateral flux information required by the simulators, is a significant source of uncertainty. It is approximated by a mean environment derived from a small ensemble of 3-D simulations representing variability of the target model behaviour over the parameter space of interest. The performance of two alternative uncertainty quantification schemes is examined: a direct method based on comparisons between simulator output and a sample of known target model "truths" and an indirect method that is only partially reliant on knowledge of the target model output. In general, chlorophyll

  14. Curvature, metric and parametrization of origami tessellations: theory and application to the eggbox pattern

    Science.gov (United States)

    Nassar, H.; Lebée, A.; Monasse, L.

    2017-01-01

    Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.

  15. Curvature, metric and parametrization of origami tessellations: theory and application to the eggbox pattern.

    Science.gov (United States)

    Nassar, H; Lebée, A; Monasse, L

    2017-01-01

    Origami tessellations are particular textured morphing shell structures. Their unique folding and unfolding mechanisms on a local scale aggregate and bring on large changes in shape, curvature and elongation on a global scale. The existence of these global deformation modes allows for origami tessellations to fit non-trivial surfaces thus inspiring applications across a wide range of domains including structural engineering, architectural design and aerospace engineering. The present paper suggests a homogenization-type two-scale asymptotic method which, combined with standard tools from differential geometry of surfaces, yields a macroscopic continuous characterization of the global deformation modes of origami tessellations and other similar periodic pin-jointed trusses. The outcome of the method is a set of nonlinear differential equations governing the parametrization, metric and curvature of surfaces that the initially discrete structure can fit. The theory is presented through a case study of a fairly generic example: the eggbox pattern. The proposed continuous model predicts correctly the existence of various fittings that are subsequently constructed and illustrated.

  16. Acceleration of the direct reconstruction of linear parametric images using nested algorithms

    International Nuclear Information System (INIS)

    Wang Guobao; Qi Jinyi

    2010-01-01

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  17. A method of statistical analysis in the field of sports science when assumptions of parametric tests are not violated

    OpenAIRE

    Sandurska, Elżbieta; Szulc, Aleksandra

    2016-01-01

    Sandurska Elżbieta, Szulc Aleksandra. A method of statistical analysis in the field of sports science when assumptions of parametric tests are not violated. Journal of Education Health and Sport. 2016;6(13):275-287. eISSN 2391-8306. DOI http://dx.doi.org/10.5281/zenodo.293762 http://ojs.ukw.edu.pl/index.php/johs/article/view/4278 The journal has had 7 points in Ministry of Science and Higher Education parametric evaluation. Part B item 754 (09.12.2016). 754 Journal...

  18. Incorporating parametric uncertainty into population viability analysis models

    Science.gov (United States)

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  19. Parametric resonance in an expanding universe

    International Nuclear Information System (INIS)

    Zlatev, I.; Huey, G.; Steinhardt, P.J.

    1998-01-01

    Parametric resonance has been discussed as a mechanism for copious particle production following inflation. Here we present a simple and intuitive calculational method for estimating the efficiency of parametric amplification as a function of parameters. This is important for determining whether resonant amplification plays an important role in the reheating process. We find that significant amplification occurs only for a limited range of couplings and interactions. copyright 1998 The American Physical Society

  20. Controlling flexible rotor vibrations using parametric excitation

    Energy Technology Data Exchange (ETDEWEB)

    Atepor, L, E-mail: katepor@yahoo.co [Department of Mechanical Engineering, University of Glasgow, G12 8QQ (United Kingdom)

    2009-08-01

    This paper presents both theoretical and experimental studies of an active vibration controller for vibration in a flexible rotor system. The paper shows that the vibration amplitude can be modified by introducing an axial parametric excitation. The perturbation method of multiple scales is used to solve the equations of motion. The steady-state responses, with and without the parametric excitation terms, is investigated. An experimental test machine uses a piezoelectric exciter mounted on the end of the shaft. The results show a reduction in the rotor response amplitude under principal parametric resonance, and some good correlation between theory and experiment.

  1. Fast, Sequence Adaptive Parcellation of Brain MR Using Parametric Models

    DEFF Research Database (Denmark)

    Puonti, Oula; Iglesias, Juan Eugenio; Van Leemput, Koen

    2013-01-01

    In this paper we propose a method for whole brain parcellation using the type of generative parametric models typically used in tissue classification. Compared to the non-parametric, multi-atlas segmentation techniques that have become popular in recent years, our method obtains state-of-the-art ...

  2. Autonomous Supervision and Control of Parametric Roll Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto

    therefore two objectives. The first is to develop methods for detection of the inception of parametric roll resonance. The second is to develop control strategies to stabilize the motion after parametric roll has started. Stabilisation of parametric roll resonance points to two possible courses of action...... strategies are then combined to stabilise parametric roll resonance within few roll cycles. Limitations on the maximum stabilisable roll angle are analysed and linked to the ii slew rate saturation and hydrodynamic stall characteristics of the fin stabilisers. The study on maximum stabilisable roll angle...... leads to the requirements for early detection. Two novel detectors are proposed, which work within a shorttime prediction horizon, and issue early warnings of parametric roll inception within few roll cycles from its onset. The main idea behind these detection schemes is that of exploiting the link...

  3. Efficient scheme for parametric fitting of data in arbitrary dimensions.

    Science.gov (United States)

    Pang, Ning-Ning; Tzeng, Wen-Jer; Kao, Hisen-Ching

    2008-07-01

    We propose an efficient scheme for parametric fitting expressed in terms of the Legendre polynomials. For continuous systems, our scheme is exact and the derived explicit expression is very helpful for further analytical studies. For discrete systems, our scheme is almost as accurate as the method of singular value decomposition. Through a few numerical examples, we show that our algorithm costs much less CPU time and memory space than the method of singular value decomposition. Thus, our algorithm is very suitable for a large amount of data fitting. In addition, the proposed scheme can also be used to extract the global structure of fluctuating systems. We then derive the exact relation between the correlation function and the detrended variance function of fluctuating systems in arbitrary dimensions and give a general scaling analysis.

  4. Parametric analysis of ATM solar array.

    Science.gov (United States)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  5. Parametric Instability in Advanced Laser Interferometer Gravitational Wave Detectors

    International Nuclear Information System (INIS)

    Ju, L; Grass, S; Zhao, C; Degallaix, J; Blair, D G

    2006-01-01

    High frequency parametric instabilities in optical cavities are radiation pressure induced interactions between test mass mechanical modes and cavity optical modes. The parametric gain depends on the cavity power and the quality factor of the test mass internal modes (usually in ultrasonic frequency range), as well as the overlap integral for the mechanical and optical modes. In advanced laser interferometers which require high optical power and very low acoustic loss test masses, parametric instabilities could prevent interferometer operation if not suppressed. Here we review the problem of parametric instabilities in advanced detector configurations for different combinations of sapphire and fused silica test masses, and compare three methods for control or suppression of parametric instabilities-thermal tuning, surface damping and active feedback

  6. A multitemporal and non-parametric approach for assessing the impacts of drought on vegetation greenness

    DEFF Research Database (Denmark)

    Carrao, Hugo; Sepulcre, Guadalupe; Horion, Stéphanie Marie Anne F

    2013-01-01

    This study evaluates the relationship between the frequency and duration of meteorological droughts and the subsequent temporal changes on the quantity of actively photosynthesizing biomass (greenness) estimated from satellite imagery on rainfed croplands in Latin America. An innovative non-parametric...... and non-supervised approach, based on the Fisher-Jenks optimal classification algorithm, is used to identify multi-scale meteorological droughts on the basis of empirical cumulative distributions of 1, 3, 6, and 12-monthly precipitation totals. As input data for the classifier, we use the gridded GPCC...... for the period between 1998 and 2010. The time-series analysis of vegetation greenness is performed during the growing season with a non-parametric method, namely the seasonal Relative Greenness (RG) of spatially accumulated fAPAR. The Global Land Cover map of 2000 and the GlobCover maps of 2005/2006 and 2009...

  7. Magnetorheological fluid dampers: a review of parametric modelling

    International Nuclear Information System (INIS)

    Wang, D H; Liao, W H

    2011-01-01

    Due to the inherent nonlinear nature of magnetorheological (MR) dampers, one of the challenging aspects for developing and utilizing these devices to achieve high performance is the development of models that can accurately describe their unique characteristics. In this review, the characteristics of MR dampers are summarized according to the measured responses under different conditions. On these bases, the considerations and methods of the parametric dynamic modelling for MR dampers are given and the state-of-the-art parametric dynamic modelling, identification and validation techniques for MR dampers are reviewed. In the past two decades, the models for MR dampers have been focused on how to improve the modelling accuracy. Although the force–displacement behaviour is well represented by most of the proposed dynamic models for MR dampers, no simple parametric models with high accuracy for MR dampers can be found. In addition, the parametric dynamic models for MR dampers with on-line updating ability and the inverse parametric models for MR dampers are scarcely explored. Moreover, whether one dynamic model for MR dampers can portray the force–displacement and force–velocity behaviour is not only determined by the dynamic model itself but also determined by the identification method. (topical review)

  8. Semi-Parametric Maximum Likelihood Method for Interaction in Case-Mother Control-Mother Designs: Package SPmlficmcm

    Directory of Open Access Journals (Sweden)

    Moliere Nguile-Makao

    2015-12-01

    Full Text Available The analysis of interaction effects involving genetic variants and environmental exposures on the risk of adverse obstetric and early-life outcomes is generally performed using standard logistic regression in the case-mother and control-mother design. However such an analysis is inefficient because it does not take into account the natural family-based constraints present in the parent-child relationship. Recently, a new approach based on semi-parametric maximum likelihood estimation was proposed. The advantage of this approach is that it takes into account the parental relationship between the mother and her child in estimation. But a package implementing this method has not been widely available. In this paper, we present SPmlficmcm, an R package implementing this new method and we propose an extension of the method to handle missing offspring genotype data by maximum likelihood estimation. Our choice to treat missing data of the offspring genotype was motivated by the fact that in genetic association studies where the genetic data of mother and child are available, there are usually more missing data on the genotype of the offspring than that of the mother. The package builds a non-linear system from the data and solves and computes the estimates from the gradient and the Hessian matrix of the log profile semi-parametric likelihood function. Finally, we analyze a simulated dataset to show the usefulness of the package.

  9. Parametric Method Performance for Dynamic 3'-Deoxy-3'-18F-Fluorothymidine PET/CT in Epidermal Growth Factor Receptor-Mutated Non-Small Cell Lung Carcinoma Patients Before and During Therapy.

    Science.gov (United States)

    Kramer, Gerbrand Maria; Frings, Virginie; Heijtel, Dennis; Smit, E F; Hoekstra, Otto S; Boellaard, Ronald

    2017-06-01

    The objective of this study was to validate several parametric methods for quantification of 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT) PET in advanced-stage non-small cell lung carcinoma (NSCLC) patients with an activating epidermal growth factor receptor mutation who were treated with gefitinib or erlotinib. Furthermore, we evaluated the impact of noise on accuracy and precision of the parametric analyses of dynamic 18 F-FLT PET/CT to assess the robustness of these methods. Methods : Ten NSCLC patients underwent dynamic 18 F-FLT PET/CT at baseline and 7 and 28 d after the start of treatment. Parametric images were generated using plasma input Logan graphic analysis and 2 basis functions-based methods: a 2-tissue-compartment basis function model (BFM) and spectral analysis (SA). Whole-tumor-averaged parametric pharmacokinetic parameters were compared with those obtained by nonlinear regression of the tumor time-activity curve using a reversible 2-tissue-compartment model with blood volume fraction. In addition, 2 statistically equivalent datasets were generated by countwise splitting the original list-mode data, each containing 50% of the total counts. Both new datasets were reconstructed, and parametric pharmacokinetic parameters were compared between the 2 replicates and the original data. Results: After the settings of each parametric method were optimized, distribution volumes (V T ) obtained with Logan graphic analysis, BFM, and SA all correlated well with those derived using nonlinear regression at baseline and during therapy ( R 2 ≥ 0.94; intraclass correlation coefficient > 0.97). SA-based V T images were most robust to increased noise on a voxel-level (repeatability coefficient, 16% vs. >26%). Yet BFM generated the most accurate K 1 values ( R 2 = 0.94; intraclass correlation coefficient, 0.96). Parametric K 1 data showed a larger variability in general; however, no differences were found in robustness between methods (repeatability coefficient, 80

  10. GLOBAL AND STRICT CURVE FITTING METHOD

    NARCIS (Netherlands)

    Nakajima, Y.; Mori, S.

    2004-01-01

    To find a global and smooth curve fitting, cubic B­Spline method and gathering­ line methods are investigated. When segmenting and recognizing a contour curve of character shape, some global method is required. If we want to connect contour curves around a singular point like crossing points,

  11. Parametric Verification of Weighted Systems

    DEFF Research Database (Denmark)

    Christoffersen, Peter; Hansen, Mikkel; Mariegaard, Anders

    2015-01-01

    are themselves indexed with linear equations. The parameters change the model-checking problem into a problem of computing a linear system of inequalities that characterizes the parameters that guarantee the satisfiability. To address this problem, we use parametric dependency graphs (PDGs) and we propose...... a global update function that yields an assignment to each node in a PDG. For an iterative application of the function, we prove that a fixed point assignment to PDG nodes exists and the set of assignments constitutes a well-quasi ordering, thus ensuring that the fixed point assignment can be found after...

  12. Parametric instability in GEO 600 interferometer

    International Nuclear Information System (INIS)

    Gurkovsky, A.G.; Vyatchanin, S.P.

    2007-01-01

    We present analysis of undesirable effect of parametric instability in signal recycled GEO 600 interferometer. The basis for this effect is provided by excitation of additional (Stokes) optical mode, having frequency ω 1 , and mirror elastic mode, having frequency ω m , when the optical energy stored in the main FP cavity mode, having frequency ω 0 , exceeds a certain threshold and detuning Δ=ω 0 -ω 1 -ω m is small. We discuss the potential of observing parametric instability and its precursors in GEO 600 interferometer. This approach provides the best option to get familiar with this phenomenon, to develop experimental methods to depress it and to test the effectiveness of these methods in situ

  13. Parametric Resonance in a Time-Dependent Harmonic Oscillator

    Directory of Open Access Journals (Sweden)

    P. N. Nesterov

    2013-01-01

    Full Text Available In this paper, we study the phenomenon of appearance of new resonances in a timedependent harmonic oscillator under an oscillatory decreasing force. The studied equation belongs to the class of adiabatic oscillators and arises in connection with the spectral problem for the one-dimensional Schr¨odinger equation with Wigner–von Neumann type potential. We use a specially developed method for asymptotic integration of linear systems of differential equations with oscillatory decreasing coefficients. This method uses the ideas of the averaging method to simplify the initial system. Then we apply Levinson’s fundamental theorem to get the asymptotics for its solutions. Finally, we analyze the features of a parametric resonance phenomenon. The resonant frequencies of perturbation are found and the pointwise type of the parametric resonance phenomenon is established. In conclusion, we construct an example of a time-dependent harmonic oscillator (adiabatic oscillator in which the parametric resonances, mentioned in the paper, may occur.

  14. Non-parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods

    DEFF Research Database (Denmark)

    Høg, Esben

    In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean-reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...

  15. Non-Parametric Estimation of Diffusion-Paths Using Wavelet Scaling Methods

    DEFF Research Database (Denmark)

    Høg, Esben

    2003-01-01

    In continuous time, diffusion processes have been used for modelling financial dynamics for a long time. For example the Ornstein-Uhlenbeck process (the simplest mean--reverting process) has been used to model non-speculative price processes. We discuss non--parametric estimation of these processes...

  16. Global analysis and parametric dependencies for potential unintended hydrogen-fuel releases

    Energy Technology Data Exchange (ETDEWEB)

    Harstad, Kenneth; Bellan, Josette [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, M/S 125-109, Pasadena, CA 91109-8099 (United States)

    2006-01-01

    Global, simplified analyses of gaseous-hydrogen releases from a high-pressure vessel and liquid-hydrogen pools are conducted for two purposes: (1) establishing order-of-magnitude values of characteristic times and (2) determining parametric dependencies of these characteristic times on the physical properties of the configuration and on the thermophysical properties of hydrogen. According to the ratio of the characteristic release time to the characteristic mixing time, two limiting configurations are identified: (1) a rich cloud exists when this ratio is much smaller than unity, and (2) a jet exists when this ratio is much larger than unity. In all cases, it is found that the characteristic release time is proportional to the total released mass and inversely proportional to a characteristic area. The approximate size, convection velocity, and circulation time of unconfined burning-cloud releases scale with the cloud mass at powers 1/3, 1/6, and 1/6, respectively, multiplied by an appropriately dimensional constant; the influence of cross flow can only be important if its velocity exceeds that of internal convection. It is found that the fireball lifetime is approximately the maximum of the release time and thrice the convection-associated characteristic time. Transition from deflagration to detonation can occur only if the size of unconfined clouds exceeds by a factor of O(10) that of a characteristic detonation cell, which ranges from 0.015 m under stoichiometric conditions to approximately 1 m under extreme rich/lean conditions. For confined vapor pockets, transition occurs only for pocket sizes larger than the cell size. In jets, the release time is inversely proportional to the initial vessel pressure and has a square root dependence on the vessel temperature. Jet velocities are a factor of 10 larger than convective velocities in fireballs and combustion is possible only in the subsonic, downstream region where entrainment may occur.

  17. Parametric biomedical imaging - what defines the quality of quantitative radiological approaches?

    International Nuclear Information System (INIS)

    Glueer, C.C.; Barkmann, R.; Bolte, H.; Heller, M.; Hahn, H.K.; Dicken, V.; Majumdar, S.; Eckstein, F.; Nickelsen, T.N.

    2006-01-01

    Quantitative parametric imaging approaches provide new perspectives for radiological imaging. These include quantitative 2D, 3D, and 4D visualization options along with the parametric depiction of biological tissue properties and tissue function. This allows the interpretation of radiological data from a biochemical, biomechanical, or physiological perspective. Quantification permits the detection of small changes that are not yet visually apparent, thus allowing application in early disease diagnosis and monitoring therapy with enhanced sensitivity. This review outlines the potential of quantitative parametric imaging methods and demonstrates this on the basis of a few exemplary applications. One field of particular interest, the use of these methods for investigational new drug application studies, is presented. Assessment criteria for judging the quality of quantitative imaging approaches are discussed in the context of the potential and the limitations of these methods. While quantitative parametric imaging methods do not replace but rather supplement established visual interpretation methods in radiology, they do open up new perspectives for diagnosis and prognosis and in particular for monitoring disease progression and therapy. (orig.)

  18. A parametric method for assessing diversification-rate variation in phylogenetic trees.

    Science.gov (United States)

    Shah, Premal; Fitzpatrick, Benjamin M; Fordyce, James A

    2013-02-01

    Phylogenetic hypotheses are frequently used to examine variation in rates of diversification across the history of a group. Patterns of diversification-rate variation can be used to infer underlying ecological and evolutionary processes responsible for patterns of cladogenesis. Most existing methods examine rate variation through time. Methods for examining differences in diversification among groups are more limited. Here, we present a new method, parametric rate comparison (PRC), that explicitly compares diversification rates among lineages in a tree using a variety of standard statistical distributions. PRC can identify subclades of the tree where diversification rates are at variance with the remainder of the tree. A randomization test can be used to evaluate how often such variance would appear by chance alone. The method also allows for comparison of diversification rate among a priori defined groups. Further, the application of the PRC method is not restricted to monophyletic groups. We examined the performance of PRC using simulated data, which showed that PRC has acceptable false-positive rates and statistical power to detect rate variation. We apply the PRC method to the well-studied radiation of North American Plethodon salamanders, and support the inference that the large-bodied Plethodon glutinosus clade has a higher historical rate of diversification compared to other Plethodon salamanders. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  19. Non-Parametric Estimation of Correlation Functions

    DEFF Research Database (Denmark)

    Brincker, Rune; Rytter, Anders; Krenk, Steen

    In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...

  20. Value at risk (VaR in uncertainty: Analysis with parametric method and black & scholes simulations

    Directory of Open Access Journals (Sweden)

    Humberto Banda Ortiz

    2014-07-01

    Full Text Available VaR is the most accepted risk measure worldwide and the leading reference in any risk management assessment. However, its methodology has important limitations which makes it unreliable in contexts of crisis or high uncertainty. For this reason, the aim of this work is to test the VaR accuracy when is employed in contexts of volatility, for which we compare the VaR outcomes in scenarios of both stability and uncertainty, using the parametric method and a historical simulation based on data generated with the Black & Scholes model. VaR main objective is the prediction of the highest expected loss for any given portfolio, but even when it is considered a useful tool for risk management under conditions of markets stability, we found that it is substantially inaccurate in contexts of crisis or high uncertainty. In addition, we found that the Black & Scholes simulations lead to underestimate the expected losses, in comparison with the parametric method and we also found that those disparities increase substantially in times of crisis. In the first section of this work we present a brief context of risk management in finance. In section II we present the existent literature relative to the VaR concept, its methods and applications. In section III we describe the methodology and assumptions used in this work. Section IV is dedicated to expose the findings. And finally, in Section V we present our conclusions.

  1. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    Science.gov (United States)

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Parametric roll resonance monitoring using signal-based detection

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Falkenberg, Thomas

    2015-01-01

    Extreme roll motion of ships can be caused by several phenomena, one of which is parametric roll resonance. Several incidents occurred unexpectedly around the millennium and caused vast fiscal losses on large container vessels. The phenomenon is now well understood and some consider parametric roll...... algorithms in real conditions, and to evaluate the frequency of parametric roll events on the selected vessels. Detection performance is scrutinised through the validation of the detected events using owners’ standard methods, and supported by available wave radar data. Further, a bivariate statistical...... analysis of the outcome of the signal-based detectors is performed to assess the real life false alarm probability. It is shown that detection robustness and very low false warning rates are obtained. The study concludes that small parametric roll events are occurring, and that the proposed signal...

  3. Finite Sample Comparison of Parametric, Semiparametric, and Wavelet Estimators of Fractional Integration

    DEFF Research Database (Denmark)

    Nielsen, Morten Ø.; Frederiksen, Per Houmann

    2005-01-01

    In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods. The es...... the time domain parametric methods, and (4) without sufficient trimming of scales the wavelet-based estimators are heavily biased.......In this paper we compare through Monte Carlo simulations the finite sample properties of estimators of the fractional differencing parameter, d. This involves frequency domain, time domain, and wavelet based approaches, and we consider both parametric and semiparametric estimation methods....... The estimators are briefly introduced and compared, and the criteria adopted for measuring finite sample performance are bias and root mean squared error. Most importantly, the simulations reveal that (1) the frequency domain maximum likelihood procedure is superior to the time domain parametric methods, (2) all...

  4. Parametric Statistics of Individual Energy Levels in Random Hamiltonians

    OpenAIRE

    Smolyarenko, I. E.; Simons, B. D.

    2002-01-01

    We establish a general framework to explore parametric statistics of individual energy levels in disordered and chaotic quantum systems of unitary symmetry. The method is applied to the calculation of the universal intra-level parametric velocity correlation function and the distribution of level shifts under the influence of an arbitrary external perturbation.

  5. Non-parametric order statistics method applied to uncertainty propagation in fuel rod calculations

    International Nuclear Information System (INIS)

    Arimescu, V.E.; Heins, L.

    2001-01-01

    Advances in modeling fuel rod behavior and accumulations of adequate experimental data have made possible the introduction of quantitative methods to estimate the uncertainty of predictions made with best-estimate fuel rod codes. The uncertainty range of the input variables is characterized by a truncated distribution which is typically a normal, lognormal, or uniform distribution. While the distribution for fabrication parameters is defined to cover the design or fabrication tolerances, the distribution of modeling parameters is inferred from the experimental database consisting of separate effects tests and global tests. The final step of the methodology uses a Monte Carlo type of random sampling of all relevant input variables and performs best-estimate code calculations to propagate these uncertainties in order to evaluate the uncertainty range of outputs of interest for design analysis, such as internal rod pressure and fuel centerline temperature. The statistical method underlying this Monte Carlo sampling is non-parametric order statistics, which is perfectly suited to evaluate quantiles of populations with unknown distribution. The application of this method is straightforward in the case of one single fuel rod, when a 95/95 statement is applicable: 'with a probability of 95% and confidence level of 95% the values of output of interest are below a certain value'. Therefore, the 0.95-quantile is estimated for the distribution of all possible values of one fuel rod with a statistical confidence of 95%. On the other hand, a more elaborate procedure is required if all the fuel rods in the core are being analyzed. In this case, the aim is to evaluate the following global statement: with 95% confidence level, the expected number of fuel rods which are not exceeding a certain value is all the fuel rods in the core except only a few fuel rods. In both cases, the thresholds determined by the analysis should be below the safety acceptable design limit. An indirect

  6. Two non-parametric methods for derivation of constraints from radiotherapy dose–histogram data

    International Nuclear Information System (INIS)

    Ebert, M A; Kennedy, A; Joseph, D J; Gulliford, S L; Buettner, F; Foo, K; Haworth, A; Denham, J W

    2014-01-01

    Dose constraints based on histograms provide a convenient and widely-used method for informing and guiding radiotherapy treatment planning. Methods of derivation of such constraints are often poorly described. Two non-parametric methods for derivation of constraints are described and investigated in the context of determination of dose-specific cut-points—values of the free parameter (e.g., percentage volume of the irradiated organ) which best reflect resulting changes in complication incidence. A method based on receiver operating characteristic (ROC) analysis and one based on a maximally-selected standardized rank sum are described and compared using rectal toxicity data from a prostate radiotherapy trial. Multiple test corrections are applied using a free step-down resampling algorithm, which accounts for the large number of tests undertaken to search for optimal cut-points and the inherent correlation between dose–histogram points. Both methods provide consistent significant cut-point values, with the rank sum method displaying some sensitivity to the underlying data. The ROC method is simple to implement and can utilize a complication atlas, though an advantage of the rank sum method is the ability to incorporate all complication grades without the need for grade dichotomization. (note)

  7. Parametric number covariance in quantum chaotic spectra.

    Science.gov (United States)

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  8. Parametric design of silo steel framework of concrete mixing station based on the finite element method and MATLAB

    Directory of Open Access Journals (Sweden)

    Long Hui

    2016-01-01

    Full Text Available When the structure of the silo steel framework of concrete mixing station is designed, In most cases, the dimension parameters, shape parameters and position parameters of silo steel framework beams are changed as the productivity adjustment of the concrete mixing station, but the structure types of silo steel framework will remain the same. In order to acquire strength of silo steel framework rapidly and efficiently, it is need to provide specialized parametric strength computational software for engineering staff who does not understand the three-dimensional software such as PROE and finite element analysis software. By the finite element methods(FEM, the parametric stress calculation modal of the silo steel framework of concrete mixing station is established, which includes dimension parameters, shape parameters, position parameters and applied load parameters of each beams, and then the parametric calculation program is written with MATLAB. The stress equations reflect the internal relationship between the stress of the silo steel frames with the dimension parameters, shape parameters, position parameters and load parameters. Finally, an example is presented, the calculation results show the stress of all members and the size and location of the maximum stress, which agrees well with realistic cases.

  9. Applied CATIA Secondary Development to Parametric Design of Active Magnetic Bearing

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2016-01-01

    Full Text Available Based on the properties of active magnetic bearing, the electromagnetic parameters and structure parameters are analyzed, parametric design method is introduced to study the structure of active magnetic bearing. Through a program personalization process that is in accordance with active magnetic bearing is established. Personalization process aims to build the parametric model of active magnetic bearings and component library by use of CATIA secondary development. Component library is to build assembly model for a multiple degree of freedom magnetic bearing system. Parametric design is a method that provides the direction for its structural design.

  10. Dynamic PET Image reconstruction for parametric imaging using the HYPR kernel method

    Science.gov (United States)

    Spencer, Benjamin; Qi, Jinyi; Badawi, Ramsey D.; Wang, Guobao

    2017-03-01

    Dynamic PET image reconstruction is a challenging problem because of the ill-conditioned nature of PET and the lowcounting statistics resulted from short time-frames in dynamic imaging. The kernel method for image reconstruction has been developed to improve image reconstruction of low-count PET data by incorporating prior information derived from high-count composite data. In contrast to most of the existing regularization-based methods, the kernel method embeds image prior information in the forward projection model and does not require an explicit regularization term in the reconstruction formula. Inspired by the existing highly constrained back-projection (HYPR) algorithm for dynamic PET image denoising, we propose in this work a new type of kernel that is simpler to implement and further improves the kernel-based dynamic PET image reconstruction. Our evaluation study using a physical phantom scan with synthetic FDG tracer kinetics has demonstrated that the new HYPR kernel-based reconstruction can achieve a better region-of-interest (ROI) bias versus standard deviation trade-off for dynamic PET parametric imaging than the post-reconstruction HYPR denoising method and the previously used nonlocal-means kernel.

  11. A multiple-scaling method of the computation of threaded structures

    International Nuclear Information System (INIS)

    Andrieux, S.; Leger, A.

    1989-01-01

    The numerical computation of threaded structures usually leads to very large finite elements problems. It was therefore very difficult to carry out some parametric studies, especially in non-linear cases involving plasticity or unilateral contact conditions. Nevertheless, these parametric studies are essential in many industrial problems, for instance for the evaluation of various repairing processes of the closure studs of PWR. It is well known that such repairing generally involves several modifications of the thread geometry, of the number of active threads, of the flange clamping conditions, and so on. This paper is devoted to the description of a two-scale method, which easily allows parametric studies. The main idea of this method consists of dividing the problem into a global part, and a local part. The local problem is solved by F.E.M. on the precise geometry of the thread of some elementary loadings. The global one is formulated on the gudgeon scale and is reduced to a monodimensional one. The resolution of this global problem leads to the unsignificant computational cost. Then, a post-processing gives the stress field at the thread scale anywhere in the assembly. After recalling some principles of the two-scales approach, the method is described. The validation by comparison with a direct F.E. computation and some further applications are presented

  12. Model Adaptation in Parametric Space for POD-Galerkin Models

    Science.gov (United States)

    Gao, Haotian; Wei, Mingjun

    2017-11-01

    The development of low-order POD-Galerkin models is largely motivated by the expectation to use the model developed with a set of parameters at their native values to predict the dynamic behaviors of the same system under different parametric values, in other words, a successful model adaptation in parametric space. However, most of time, even small deviation of parameters from their original value may lead to large deviation or unstable results. It has been shown that adding more information (e.g. a steady state, mean value of a different unsteady state, or an entire different set of POD modes) may improve the prediction of flow with other parametric states. For a simple case of the flow passing a fixed cylinder, an orthogonal mean mode at a different Reynolds number may stabilize the POD-Galerkin model when Reynolds number is changed. For a more complicated case of the flow passing an oscillatory cylinder, a global POD-Galerkin model is first applied to handle the moving boundaries, then more information (e.g. more POD modes) is required to predicate the flow under different oscillatory frequencies. Supported by ARL.

  13. On the unlimited gain of a nonlinear parametric amplifier

    DEFF Research Database (Denmark)

    Sorokin, Vladislav

    2014-01-01

    The present paper is concerned with analysis of the response of a nonlinear parametric amplifier in abroad range of system parameters, particularly beyond resonance. Such analysis is of particular interestfor micro- and nanosystems, since many small-scale parametric amplifiers exhibit a distinctly...... nonlinearbehavior when amplitude of their response is sufficiently large. The modified method of direct separa-tion of motions is employed to study the considered system. As the result it is obtained that steady-stateamplitude of the nonlinear parametric amplifier response can reach large values in the case...... of arbitrarilysmall amplitude of external excitation, so that the amplifier gain tends to infinity. Very large amplifiergain can be achieved in a broad range of system parameters, in particular when the amplitude of para-metric excitation is comparatively small. The obtained results clearly demonstrate that very...

  14. Non-parametric PSF estimation from celestial transit solar images using blind deconvolution

    Directory of Open Access Journals (Sweden)

    González Adriana

    2016-01-01

    Full Text Available Context: Characterization of instrumental effects in astronomical imaging is important in order to extract accurate physical information from the observations. The measured image in a real optical instrument is usually represented by the convolution of an ideal image with a Point Spread Function (PSF. Additionally, the image acquisition process is also contaminated by other sources of noise (read-out, photon-counting. The problem of estimating both the PSF and a denoised image is called blind deconvolution and is ill-posed. Aims: We propose a blind deconvolution scheme that relies on image regularization. Contrarily to most methods presented in the literature, our method does not assume a parametric model of the PSF and can thus be applied to any telescope. Methods: Our scheme uses a wavelet analysis prior model on the image and weak assumptions on the PSF. We use observations from a celestial transit, where the occulting body can be assumed to be a black disk. These constraints allow us to retain meaningful solutions for the filter and the image, eliminating trivial, translated, and interchanged solutions. Under an additive Gaussian noise assumption, they also enforce noise canceling and avoid reconstruction artifacts by promoting the whiteness of the residual between the blurred observations and the cleaned data. Results: Our method is applied to synthetic and experimental data. The PSF is estimated for the SECCHI/EUVI instrument using the 2007 Lunar transit, and for SDO/AIA using the 2012 Venus transit. Results show that the proposed non-parametric blind deconvolution method is able to estimate the core of the PSF with a similar quality to parametric methods proposed in the literature. We also show that, if these parametric estimations are incorporated in the acquisition model, the resulting PSF outperforms both the parametric and non-parametric methods.

  15. A comparison of parametric and nonparametric methods for normalising cDNA microarray data.

    Science.gov (United States)

    Khondoker, Mizanur R; Glasbey, Chris A; Worton, Bruce J

    2007-12-01

    Normalisation is an essential first step in the analysis of most cDNA microarray data, to correct for effects arising from imperfections in the technology. Loess smoothing is commonly used to correct for trends in log-ratio data. However, parametric models, such as the additive plus multiplicative variance model, have been preferred for scale normalisation, though the variance structure of microarray data may be of a more complex nature than can be accommodated by a parametric model. We propose a new nonparametric approach that incorporates location and scale normalisation simultaneously using a Generalised Additive Model for Location, Scale and Shape (GAMLSS, Rigby and Stasinopoulos, 2005, Applied Statistics, 54, 507-554). We compare its performance in inferring differential expression with Huber et al.'s (2002, Bioinformatics, 18, 96-104) arsinh variance stabilising transformation (AVST) using real and simulated data. We show GAMLSS to be as powerful as AVST when the parametric model is correct, and more powerful when the model is wrong. (c) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  16. A parametric finite element method for solid-state dewetting problems with anisotropic surface energies

    Science.gov (United States)

    Bao, Weizhu; Jiang, Wei; Wang, Yan; Zhao, Quan

    2017-02-01

    We propose an efficient and accurate parametric finite element method (PFEM) for solving sharp-interface continuum models for solid-state dewetting of thin films with anisotropic surface energies. The governing equations of the sharp-interface models belong to a new type of high-order (4th- or 6th-order) geometric evolution partial differential equations about open curve/surface interface tracking problems which include anisotropic surface diffusion flow and contact line migration. Compared to the traditional methods (e.g., marker-particle methods), the proposed PFEM not only has very good accuracy, but also poses very mild restrictions on the numerical stability, and thus it has significant advantages for solving this type of open curve evolution problems with applications in the simulation of solid-state dewetting. Extensive numerical results are reported to demonstrate the accuracy and high efficiency of the proposed PFEM.

  17. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  18. Simulation-based optimization parametric optimization techniques and reinforcement learning

    CERN Document Server

    Gosavi, Abhijit

    2003-01-01

    Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning introduces the evolving area of simulation-based optimization. The book's objective is two-fold: (1) It examines the mathematical governing principles of simulation-based optimization, thereby providing the reader with the ability to model relevant real-life problems using these techniques. (2) It outlines the computational technology underlying these methods. Taken together these two aspects demonstrate that the mathematical and computational methods discussed in this book do work. Broadly speaking, the book has two parts: (1) parametric (static) optimization and (2) control (dynamic) optimization. Some of the book's special features are: *An accessible introduction to reinforcement learning and parametric-optimization techniques. *A step-by-step description of several algorithms of simulation-based optimization. *A clear and simple introduction to the methodology of neural networks. *A gentle introduction to converg...

  19. Parametric Method to Define Area of Allowable Configurations while Changing Position of Restricted Zones

    Science.gov (United States)

    Pritykin, F. N.; Nefedov, D. I.; Rogoza, Yu A.; Zinchenko, Yu V.

    2018-03-01

    The article presents the findings related to the development of the module for automatic collision detection of the manipulator with restricted zones for virtual motion modeling. It proposes the parametric method for specifying the area of allowable joint configurations. The authors study the cases when restricted zones are specified using the horizontal plane or front-projection planes. The joint coordinate space is specified by rectangular axes in the direction of which the angles defining the displacements in turning pairs are laid off. The authors present the results of modeling which enabled to develop a parametric method for specifying a set of cross-sections defining the shape and position of allowable configurations in different positions of a restricted zone. All joint points that define allowable configurations refer to the indicated sections. The area of allowable configurations is specified analytically by using several kinematic surfaces that limit it. A geometric analysis is developed based on the use of the area of allowable configurations characterizing the position of the manipulator and reported restricted zones. The paper presents numerical calculations related to virtual simulation of the manipulator path performed by the mobile robot Varan when using the developed algorithm and restricted zones. The obtained analytical dependencies allow us to define the area of allowable configurations, which is a knowledge pool to ensure the intelligent control of the manipulator path in a predefined environment. The use of the obtained region to synthesize a joint trajectory makes it possible to correct the manipulator path to foresee and eliminate deadlocks when synthesizing motions along the velocity vector.

  20. Efficiency Analysis of German Electricity Distribution Utilities : Non-Parametric and Parametric Tests

    OpenAIRE

    von Hirschhausen, Christian R.; Cullmann, Astrid

    2005-01-01

    Abstract This paper applies parametric and non-parametric and parametric tests to assess the efficiency of electricity distribution companies in Germany. We address traditional issues in electricity sector benchmarking, such as the role of scale effects and optimal utility size, as well as new evidence specific to the situation in Germany. We use labour, capital, and peak load capacity as inputs, and units sold and the number of customers as output. The data cover 307 (out of 553) ...

  1. [Detection of quadratic phase coupling between EEG signal components by nonparamatric and parametric methods of bispectral analysis].

    Science.gov (United States)

    Schmidt, K; Witte, H

    1999-11-01

    Recently the assumption of the independence of individual frequency components in a signal has been rejected, for example, for the EEG during defined physiological states such as sleep or sedation [9, 10]. Thus, the use of higher-order spectral analysis capable of detecting interrelations between individual signal components has proved useful. The aim of the present study was to investigate the quality of various non-parametric and parametric estimation algorithms using simulated as well as true physiological data. We employed standard algorithms available for the MATLAB. The results clearly show that parametric bispectral estimation is superior to non-parametric estimation in terms of the quality of peak localisation and the discrimination from other peaks.

  2. Statistical prediction of parametric roll using FORM

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Choi, Ju-hyuck; Nielsen, Ulrik Dam

    2017-01-01

    Previous research has shown that the First Order Reliability Method (FORM) can be an efficient method for estimation of outcrossing rates and extreme value statistics for stationary stochastic processes. This is so also for bifurcation type of processes like parametric roll of ships. The present...

  3. Parametric Fires for Structural Design

    DEFF Research Database (Denmark)

    Hertz, Kristian

    2012-01-01

    The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants and contra......The authorities, the construction association, and a number of companies in Denmark have supported the author writing a guide for design of building structures for parametric fires. The guide is published by the ministry as a supplement to the building regulations. However, consultants...... and contractors have asked for a reference in English in order to make the guide-lines and the background for them available internationally. The paper therefore presents recommendations from the design guide especially concerning how to assess parametric design fires based on the opening factor method for large...... compartments. Findings leading to the guide-lines are discussed, and it is indicated what a safe design fire model means for structural design and how it differs from a safe design fire model for evacuation. Furthermore, the paper includes some experiences from the application of the design guide in practise...

  4. Global/local methods for probabilistic structural analysis

    Science.gov (United States)

    Millwater, H. R.; Wu, Y.-T.

    1993-04-01

    A probabilistic global/local method is proposed to reduce the computational requirements of probabilistic structural analysis. A coarser global model is used for most of the computations with a local more refined model used only at key probabilistic conditions. The global model is used to establish the cumulative distribution function (cdf) and the Most Probable Point (MPP). The local model then uses the predicted MPP to adjust the cdf value. The global/local method is used within the advanced mean value probabilistic algorithm. The local model can be more refined with respect to the g1obal model in terms of finer mesh, smaller time step, tighter tolerances, etc. and can be used with linear or nonlinear models. The basis for this approach is described in terms of the correlation between the global and local models which can be estimated from the global and local MPPs. A numerical example is presented using the NESSUS probabilistic structural analysis program with the finite element method used for the structural modeling. The results clearly indicate a significant computer savings with minimal loss in accuracy.

  5. Parametric Design of Outdoor Broadcasting Studio Based on Schema Theory

    Directory of Open Access Journals (Sweden)

    Zhu Li

    2016-01-01

    Full Text Available This paper mainly demonstrates that the schema is an important way for the architect to cognize architecture form logic. It connects schema to algorithm of parametric design in order to seek the “algorithm schema” generation in parametric design of architecture. Meanwhile, this paper discusses the generative process and methods of the “algorithm schema” in parametric design of architecture by describing a case of outdoor broadcasting studio of Hunan Economic Radio. It also reveals the importance of “algorithm schema” for the cognition and architectural form logic generation.

  6. Global Convergence of a Modified LS Method

    Directory of Open Access Journals (Sweden)

    Liu JinKui

    2012-01-01

    Full Text Available The LS method is one of the effective conjugate gradient methods in solving the unconstrained optimization problems. The paper presents a modified LS method on the basis of the famous LS method and proves the strong global convergence for the uniformly convex functions and the global convergence for general functions under the strong Wolfe line search. The numerical experiments show that the modified LS method is very effective in practice.

  7. Comparison of Parametrization Techniques for an Electrical Circuit Model of Lithium-Sulfur Batteries

    DEFF Research Database (Denmark)

    Knap, Vaclav; Stroe, Daniel Loan; Teodorescu, Remus

    2015-01-01

    on the comparison of different parametrization methods of electrical circuit models (ECMs) for Li-S batteries. These methods are used to parametrize an ECM based on laboratory measurements performed on a Li-S pouch cell. Simulation results of ECMs are presented and compared against measurement values...

  8. Sparse-grid, reduced-basis Bayesian inversion: Nonaffine-parametric nonlinear equations

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Peng, E-mail: peng@ices.utexas.edu [The Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th Street, Stop C0200, Austin, TX 78712-1229 (United States); Schwab, Christoph, E-mail: christoph.schwab@sam.math.ethz.ch [Seminar für Angewandte Mathematik, Eidgenössische Technische Hochschule, Römistrasse 101, CH-8092 Zürich (Switzerland)

    2016-07-01

    We extend the reduced basis (RB) accelerated Bayesian inversion methods for affine-parametric, linear operator equations which are considered in [16,17] to non-affine, nonlinear parametric operator equations. We generalize the analysis of sparsity of parametric forward solution maps in [20] and of Bayesian inversion in [48,49] to the fully discrete setting, including Petrov–Galerkin high-fidelity (“HiFi”) discretization of the forward maps. We develop adaptive, stochastic collocation based reduction methods for the efficient computation of reduced bases on the parametric solution manifold. The nonaffinity and nonlinearity with respect to (w.r.t.) the distributed, uncertain parameters and the unknown solution is collocated; specifically, by the so-called Empirical Interpolation Method (EIM). For the corresponding Bayesian inversion problems, computational efficiency is enhanced in two ways: first, expectations w.r.t. the posterior are computed by adaptive quadratures with dimension-independent convergence rates proposed in [49]; the present work generalizes [49] to account for the impact of the PG discretization in the forward maps on the convergence rates of the Quantities of Interest (QoI for short). Second, we propose to perform the Bayesian estimation only w.r.t. a parsimonious, RB approximation of the posterior density. Based on the approximation results in [49], the infinite-dimensional parametric, deterministic forward map and operator admit N-term RB and EIM approximations which converge at rates which depend only on the sparsity of the parametric forward map. In several numerical experiments, the proposed algorithms exhibit dimension-independent convergence rates which equal, at least, the currently known rate estimates for N-term approximation. We propose to accelerate Bayesian estimation by first offline construction of reduced basis surrogates of the Bayesian posterior density. The parsimonious surrogates can then be employed for online data

  9. Towards Stabilizing Parametric Active Contours

    DEFF Research Database (Denmark)

    Liu, Jinchao; Fan, Zhun; Olsen, Søren Ingvor

    2014-01-01

    Numerical instability often occurs in evolving of parametric active contours. This is mainly due to the undesired change of parametrization during evolution. In this paper, we propose a new tangential diffusion term to compensate this undesired change. As a result, the parametrization will converge...

  10. EFFECTS OF PARAMETRIC VARIATIONS ON SEISMIC ANALYSIS METHODS FOR NON-CLASSICALLY DAMPED COUPLED SYSTEMS

    International Nuclear Information System (INIS)

    XU, J.; DEGRASSI, G.

    2000-01-01

    A comprehensive benchmark program was developed by Brookhaven National Laboratory (BNL) to perform an evaluation of state-of-the-art methods and computer programs for performing seismic analyses of coupled systems with non-classical damping. The program, which was sponsored by the US Nuclear Regulatory Commission (NRC), was designed to address various aspects of application and limitations of these state-of-the-art analysis methods to typical coupled nuclear power plant (NPP) structures with non-classical damping, and was carried out through analyses of a set of representative benchmark problems. One objective was to examine the applicability of various analysis methods to problems with different dynamic characteristics unique to coupled systems. The examination was performed using parametric variations for three simple benchmark models. This paper presents the comparisons and evaluation of the program participants' results to the BNL exact solutions for the applicable ranges of modeling dynamic characteristic parameters

  11. Parametric estimation in the wave buoy analogy - an elaborated approach based on energy considerations

    DEFF Research Database (Denmark)

    Montazeri, Najmeh; Nielsen, Ulrik Dam

    2014-01-01

    the ship’s wave-induced responses based on different statistical inferences including parametric and non-parametric approaches. This paper considers a concept to improve the estimate obtained by the parametric method for sea state estimation. The idea is illustrated by an analysis made on full-scale...

  12. Parametric optimization of CNC end milling using entropy ...

    African Journals Online (AJOL)

    Parametric optimization of CNC end milling using entropy measurement technique combined with grey-Taguchi method. ... International Journal of Engineering, Science and Technology ... Keywords: CNC end milling, surface finish, material removal rate (MRR), entropy measurement technique, Taguchi method ...

  13. Global sensitivity analysis in stochastic simulators of uncertain reaction networks.

    Science.gov (United States)

    Navarro Jimenez, M; Le Maître, O P; Knio, O M

    2016-12-28

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol's decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  14. Global sensitivity analysis in stochastic simulators of uncertain reaction networks

    KAUST Repository

    Navarro, María

    2016-12-26

    Stochastic models of chemical systems are often subjected to uncertainties in kinetic parameters in addition to the inherent random nature of their dynamics. Uncertainty quantification in such systems is generally achieved by means of sensitivity analyses in which one characterizes the variability with the uncertain kinetic parameters of the first statistical moments of model predictions. In this work, we propose an original global sensitivity analysis method where the parametric and inherent variability sources are both treated through Sobol’s decomposition of the variance into contributions from arbitrary subset of uncertain parameters and stochastic reaction channels. The conceptual development only assumes that the inherent and parametric sources are independent, and considers the Poisson processes in the random-time-change representation of the state dynamics as the fundamental objects governing the inherent stochasticity. A sampling algorithm is proposed to perform the global sensitivity analysis, and to estimate the partial variances and sensitivity indices characterizing the importance of the various sources of variability and their interactions. The birth-death and Schlögl models are used to illustrate both the implementation of the algorithm and the richness of the proposed analysis method. The output of the proposed sensitivity analysis is also contrasted with a local derivative-based sensitivity analysis method classically used for this type of systems.

  15. Influence of image reconstruction methods on statistical parametric mapping of brain PET images

    International Nuclear Information System (INIS)

    Yin Dayi; Chen Yingmao; Yao Shulin; Shao Mingzhe; Yin Ling; Tian Jiahe; Cui Hongyan

    2007-01-01

    Objective: Statistic parametric mapping (SPM) was widely recognized as an useful tool in brain function study. The aim of this study was to investigate if imaging reconstruction algorithm of PET images could influence SPM of brain. Methods: PET imaging of whole brain was performed in six normal volunteers. Each volunteer had two scans with true and false acupuncturing. The PET scans were reconstructed using ordered subsets expectation maximization (OSEM) and filtered back projection (FBP) with 3 varied parameters respectively. The images were realigned, normalized and smoothed using SPM program. The difference between true and false acupuncture scans was tested using a matched pair t test at every voxel. Results: (1) SPM corrected multiple comparison (P corrected uncorrected <0.001): SPM derived from the images with different reconstruction method were different. The largest difference, in number and position of the activated voxels, was noticed between FBP and OSEM re- construction algorithm. Conclusions: The method of PET image reconstruction could influence the results of SPM uncorrected multiple comparison. Attention should be paid when the conclusion was drawn using SPM uncorrected multiple comparison. (authors)

  16. Forced and free convection flow with viscous dissipation effects: The method of parametric differentiation

    International Nuclear Information System (INIS)

    Hossain, M.A.; Arbad, O.

    1988-07-01

    Effect of buoyancy force in a laminar uniform forced convection flow past a semi-infinite vertical plate has been analyzed near the leading edge, taking into account the viscous dissipation. The coupled non-linear locally similar equations, which govern the flow, are solved by the method of parametric differentiation. Effects of the buoyancy force and the heat due to viscous dissipation on the flow and the temperature fields as well as on the wall shear-stress and the heat transfer at the surface of the plate are shown graphically for the values of the Prandtl number σ ranging from 10 -1 to 1.0. (author). 20 refs, 3 figs, 2 tabs

  17. Direct 4D reconstruction of parametric images incorporating anato-functional joint entropy.

    Science.gov (United States)

    Tang, Jing; Kuwabara, Hiroto; Wong, Dean F; Rahmim, Arman

    2010-08-07

    We developed an anatomy-guided 4D closed-form algorithm to directly reconstruct parametric images from projection data for (nearly) irreversible tracers. Conventional methods consist of individually reconstructing 2D/3D PET data, followed by graphical analysis on the sequence of reconstructed image frames. The proposed direct reconstruction approach maintains the simplicity and accuracy of the expectation-maximization (EM) algorithm by extending the system matrix to include the relation between the parametric images and the measured data. A closed-form solution was achieved using a different hidden complete-data formulation within the EM framework. Furthermore, the proposed method was extended to maximum a posterior reconstruction via incorporation of MR image information, taking the joint entropy between MR and parametric PET features as the prior. Using realistic simulated noisy [(11)C]-naltrindole PET and MR brain images/data, the quantitative performance of the proposed methods was investigated. Significant improvements in terms of noise versus bias performance were demonstrated when performing direct parametric reconstruction, and additionally upon extending the algorithm to its Bayesian counterpart using the MR-PET joint entropy measure.

  18. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    2000-11-01

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  19. Estimating solar ultraviolet irradiance (290-385 nm by means of the spectral parametric models: SPCTRAL2 and SMARTS2

    Directory of Open Access Journals (Sweden)

    I. Foyo-Moreno

    Full Text Available Since the discovery of the ozone depletion in Antarctic and the globally declining trend of stratospheric ozone concentration, public and scientific concern has been raised in the last decades. A very important consequence of this fact is the increased broadband and spectral UV radiation in the environment and the biological effects and heath risks that may take place in the near future. The absence of widespread measurements of this radiometric flux has lead to the development and use of alternative estimation procedures such as the parametric approaches. Parametric models compute the radiant energy using available atmospheric parameters. Some parametric models compute the global solar irradiance at surface level by addition of its direct beam and diffuse components. In the present work, we have developed a comparison between two cloudless sky parametrization schemes. Both methods provide an estimation of the solar spectral irradiance that can be integrated spectrally within the limits of interest. For this test we have used data recorded in a radiometric station located at Granada (37.180°N, 3.580°W, 660 m a.m.s.l., an inland location. The database includes hourly values of the relevant variables covering the years 1994-95. The performance of the models has been tested in relation to their predictive capability of global solar irradiance in the UV range (290–385 nm. After our study, it appears that information concerning the aerosol radiative effects is fundamental in order to obtain a good estimation. The original version of SPCTRAL2 provides estimates of the experimental values with negligible mean bias deviation. This suggests not only the appropriateness of the model but also the convenience of the aerosol features fixed in it to Granada conditions. SMARTS2 model offers increased flexibility concerning the selection of different aerosol models included in the code and provides the best results when the selected models are those

  20. Travelling Methods: Tracing the Globalization of Qualitative Communication Research

    Directory of Open Access Journals (Sweden)

    Bryan C. Taylor

    2016-05-01

    Full Text Available Existing discussion of the relationships between globalization, communication research, and qualitative methods emphasizes two images: the challenges posed by globalization to existing communication theory and research methods, and the impact of post-colonial politics and ethics on qualitative research. We draw in this paper on a third image – qualitative research methods as artifacts of globalization – to explore the globalization of qualitative communication research methods. Following a review of literature which tentatively models this process, we discuss two case studies of qualitative research in the disciplinary subfields of intercultural communication and media audience studies. These cases elaborate the forces which influence the articulation of national, disciplinary, and methodological identities which mediate the globalization of qualitative communication research methods.

  1. Pi-kinks in a parametrically driven sine-Gordon chain

    DEFF Research Database (Denmark)

    Kivshar, Yuri S.; Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    1992-01-01

    We consider the sine-Gordon chain driven by a high-frequency parametric force in the presence of loss. Using an analytical approach based on the method of averaging in fast oscillations, we predict that such a parametric force may support propagation of π kinks, which are unstable in the standard...... sine-Gordon model. The steady-state velocity of the π kinks is calculated, and the analytical results are in good agreement with direct numerical simulations....

  2. Comparison of parametric methods for modeling corneal surfaces

    Science.gov (United States)

    Bouazizi, Hala; Brunette, Isabelle; Meunier, Jean

    2017-02-01

    Corneal topography is a medical imaging technique to get the 3D shape of the cornea as a set of 3D points of its anterior and posterior surfaces. From these data, topographic maps can be derived to assist the ophthalmologist in the diagnosis of disorders. In this paper, we compare three different mathematical parametric representations of the corneal surfaces leastsquares fitted to the data provided by corneal topography. The parameters obtained from these models reduce the dimensionality of the data from several thousand 3D points to only a few parameters and could eventually be useful for diagnosis, biometry, implant design etc. The first representation is based on Zernike polynomials that are commonly used in optics. A variant of these polynomials, named Bhatia-Wolf will also be investigated. These two sets of polynomials are defined over a circular domain which is convenient to model the elevation (height) of the corneal surface. The third representation uses Spherical Harmonics that are particularly well suited for nearly-spherical object modeling, which is the case for cornea. We compared the three methods using the following three criteria: the root-mean-square error (RMSE), the number of parameters and the visual accuracy of the reconstructed topographic maps. A large dataset of more than 2000 corneal topographies was used. Our results showed that Spherical Harmonics were superior with a RMSE mean lower than 2.5 microns with 36 coefficients (order 5) for normal corneas and lower than 5 microns for two diseases affecting the corneal shapes: keratoconus and Fuchs' dystrophy.

  3. Early Detection of Parametric Roll Resonance on Container Ships

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens; Poulsen, Niels Kjølstad

    2013-01-01

    Parametric roll resonance on ships is a nonlinear phenomenon where waves encountered at twice the natural roll frequency can bring the vessel dynamics into a bifurcation mode and lead to extreme values of roll. Recent years have seen several incidents with dramatic damage to container vessels...... the ship's speed and course, to escape from the bifurcation condition. This paper proposes nonparametric methods to detect the onset of roll resonance and demonstrates their performance. Theoretical conditions for parametric resonance are revisited and are used to develop efficient methods to detect its...... on experimental data from model tests and on data from a container ship crossing the Atlantic during a storm....

  4. The parametric resonance—from LEGO Mindstorms to cold atoms

    Science.gov (United States)

    Kawalec, Tomasz; Sierant, Aleksandra

    2017-07-01

    We show an experimental setup based on a popular LEGO Mindstorms set, allowing us to both observe and investigate the parametric resonance phenomenon. The presented method is simple but covers a variety of student activities like embedded software development, conducting measurements, data collection and analysis. It may be used during science shows, as part of student projects and to illustrate the parametric resonance in mechanics or even quantum physics, during lectures or classes. The parametrically driven LEGO pendulum gains energy in a spectacular way, increasing its amplitude from 10° to about 100° within a few tens of seconds. We provide also a short description of a wireless absolute orientation sensor that may be used in quantitative analysis of driven or free pendulum movement.

  5. The parametric resonance—from LEGO Mindstorms to cold atoms

    International Nuclear Information System (INIS)

    Kawalec, Tomasz; Sierant, Aleksandra

    2017-01-01

    We show an experimental setup based on a popular LEGO Mindstorms set, allowing us to both observe and investigate the parametric resonance phenomenon. The presented method is simple but covers a variety of student activities like embedded software development, conducting measurements, data collection and analysis. It may be used during science shows, as part of student projects and to illustrate the parametric resonance in mechanics or even quantum physics, during lectures or classes. The parametrically driven LEGO pendulum gains energy in a spectacular way, increasing its amplitude from 10° to about 100° within a few tens of seconds. We provide also a short description of a wireless absolute orientation sensor that may be used in quantitative analysis of driven or free pendulum movement. (paper)

  6. Method of development of the program of forming of parametrical drawings of details in the AutoCAD software product

    Science.gov (United States)

    Alshakova, E. L.

    2017-01-01

    The program in the AutoLISP language allows automatically to form parametrical drawings during the work in the AutoCAD software product. Students study development of programs on AutoLISP language with the use of the methodical complex containing methodical instructions in which real examples of creation of images and drawings are realized. Methodical instructions contain reference information necessary for the performance of the offered tasks. The method of step-by-step development of the program is the basis for training in programming on AutoLISP language: the program draws elements of the drawing of a detail by means of definitely created function which values of arguments register in that sequence in which AutoCAD gives out inquiries when performing the corresponding command in the editor. The process of the program design is reduced to the process of step-by-step formation of functions and sequence of their calls. The author considers the development of the AutoLISP program for the creation of parametrical drawings of details, the defined design, the user enters the dimensions of elements of details. These programs generate variants of tasks of the graphic works performed in educational process of "Engineering graphics", "Engineering and computer graphics" disciplines. Individual tasks allow to develop at students skills of independent work in reading and creation of drawings, as well as 3D modeling.

  7. Discrete non-parametric kernel estimation for global sensitivity analysis

    International Nuclear Information System (INIS)

    Senga Kiessé, Tristan; Ventura, Anne

    2016-01-01

    This work investigates the discrete kernel approach for evaluating the contribution of the variance of discrete input variables to the variance of model output, via analysis of variance (ANOVA) decomposition. Until recently only the continuous kernel approach has been applied as a metamodeling approach within sensitivity analysis framework, for both discrete and continuous input variables. Now the discrete kernel estimation is known to be suitable for smoothing discrete functions. We present a discrete non-parametric kernel estimator of ANOVA decomposition of a given model. An estimator of sensitivity indices is also presented with its asymtotic convergence rate. Some simulations on a test function analysis and a real case study from agricultural have shown that the discrete kernel approach outperforms the continuous kernel one for evaluating the contribution of moderate or most influential discrete parameters to the model output. - Highlights: • We study a discrete kernel estimation for sensitivity analysis of a model. • A discrete kernel estimator of ANOVA decomposition of the model is presented. • Sensitivity indices are calculated for discrete input parameters. • An estimator of sensitivity indices is also presented with its convergence rate. • An application is realized for improving the reliability of environmental models.

  8. Establishment of reference intervals of clinical chemistry analytes for the adult population in Saudi Arabia: a study conducted as a part of the IFCC global study on reference values.

    Science.gov (United States)

    Borai, Anwar; Ichihara, Kiyoshi; Al Masaud, Abdulaziz; Tamimi, Waleed; Bahijri, Suhad; Armbuster, David; Bawazeer, Ali; Nawajha, Mustafa; Otaibi, Nawaf; Khalil, Haitham; Kawano, Reo; Kaddam, Ibrahim; Abdelaal, Mohamed

    2016-05-01

    This study is a part of the IFCC-global study to derive reference intervals (RIs) for 28 chemistry analytes in Saudis. Healthy individuals (n=826) aged ≥18 years were recruited using the global study protocol. All specimens were measured using an Architect analyzer. RIs were derived by both parametric and non-parametric methods for comparative purpose. The need for secondary exclusion of reference values based on latent abnormal values exclusion (LAVE) method was examined. The magnitude of variation attributable to gender, ages and regions was calculated by the standard deviation ratio (SDR). Sources of variations: age, BMI, physical exercise and smoking levels were investigated by using the multiple regression analysis. SDRs for gender, age and regional differences were significant for 14, 8 and 2 analytes, respectively. BMI-related changes in test results were noted conspicuously for CRP. For some metabolic related parameters the ranges of RIs by non-parametric method were wider than by the parametric method and RIs derived using the LAVE method were significantly different than those without it. RIs were derived with and without gender partition (BMI, drugs and supplements were considered). RIs applicable to Saudis were established for the majority of chemistry analytes, whereas gender, regional and age RI partitioning was required for some analytes. The elevated upper limits of metabolic analytes reflects the existence of high prevalence of metabolic syndrome in Saudi population.

  9. Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings

    KAUST Repository

    Shaheen, Sara

    2017-12-25

    Convolutional sparse coding (CSC) plays an essential role in many computer vision applications ranging from image compression to deep learning. In this work, we spot the light on a new application where CSC can effectively serve, namely line drawing analysis. The process of drawing a line drawing can be approximated as the sparse spatial localization of a number of typical basic strokes, which in turn can be cast as a non-standard CSC model that considers the line drawing formation process from parametric curves. These curves are learned to optimize the fit between the model and a specific set of line drawings. Parametric representation of sketches is vital in enabling automatic sketch analysis, synthesis and manipulation. A couple of sketch manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a feasible solution.

  10. Wind‐gust parametrizations at heights relevant for wind energy: a study based on mast observations

    DEFF Research Database (Denmark)

    Suomi, I.; Vihma, T.; Gryning, Sven-Erik

    2013-01-01

    Wind gusts are traditionally observed and reported at the reference height of 10 m and most gust parametrization methods have been developed only for this height. In many practical applications, e.g. in wind energy, the relevant heights are, however, up to a few hundred metres. In this study, mean...... speed, which is parametrized on the basis of the surface friction velocity, the Obukhov length and height and the boundary‐layer height. The new gust parametrization method outperformed the two older methods: the effects of surface roughness, stability and the height above the surface were well...

  11. Semi-parametric estimation for ARCH models

    Directory of Open Access Journals (Sweden)

    Raed Alzghool

    2018-03-01

    Full Text Available In this paper, we conduct semi-parametric estimation for autoregressive conditional heteroscedasticity (ARCH model with Quasi likelihood (QL and Asymptotic Quasi-likelihood (AQL estimation methods. The QL approach relaxes the distributional assumptions of ARCH processes. The AQL technique is obtained from the QL method when the process conditional variance is unknown. We present an application of the methods to a daily exchange rate series. Keywords: ARCH model, Quasi likelihood (QL, Asymptotic Quasi-likelihood (AQL, Martingale difference, Kernel estimator

  12. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    Science.gov (United States)

    Germino, Mary; Carson, Richard E

    2018-02-01

    Cardiac perfusion PET data can be reconstructed as a dynamic sequence and kinetic modeling performed to quantify myocardial blood flow, or reconstructed as static gated images to quantify function. Parametric images from dynamic PET are conventionally not gated, to allow use of all events with lower noise. An alternative method for dynamic PET is to incorporate the kinetic model into the reconstruction algorithm itself, bypassing the generation of a time series of emission images and directly producing parametric images. So-called "direct reconstruction" can produce parametric images with lower noise than the conventional method because the noise distribution is more easily modeled in projection space than in image space. In this work, we develop direct reconstruction of cardiac-gated parametric images for 82 Rb PET with an extension of the Parametric Motion compensation OSEM List mode Algorithm for Resolution-recovery reconstruction for the one tissue model (PMOLAR-1T). PMOLAR-1T was extended to accommodate model terms to account for spillover from the left and right ventricles into the myocardium. The algorithm was evaluated on a 4D simulated 82 Rb dataset, including a perfusion defect, as well as a human 82 Rb list mode acquisition. The simulated list mode was subsampled into replicates, each with counts comparable to one gate of a gated acquisition. Parametric images were produced by the indirect (separate reconstructions and modeling) and direct methods for each of eight low-count and eight normal-count replicates of the simulated data, and each of eight cardiac gates for the human data. For the direct method, two initialization schemes were tested: uniform initialization, and initialization with the filtered iteration 1 result of the indirect method. For the human dataset, event-by-event respiratory motion compensation was included. The indirect and direct methods were compared for the simulated dataset in terms of bias and coefficient of variation as a

  13. A Hybrid Wind-Farm Parametrization for Mesoscale and Climate Models

    Science.gov (United States)

    Pan, Yang; Archer, Cristina L.

    2018-04-01

    To better understand the potential impact of wind farms on weather and climate at the regional to global scales, a new hybrid wind-farm parametrization is proposed for mesoscale and climate models. The proposed parametrization is a hybrid model because it is not based on physical processes or conservation laws, but on the multiple linear regression of the results of large-eddy simulations (LES) with the geometric properties of the wind-farm layout (e.g., the blockage ratio and blockage distance). The innovative aspect is that each wind turbine is treated individually based on its position in the farm and on the wind direction by predicting the velocity upstream of each turbine. The turbine-induced forces and added turbulence kinetic energy (TKE) are first derived analytically and then implemented in the Weather Research and Forecasting model. Idealized simulations of the offshore Lillgrund wind farm are conducted. The wind-speed deficit and TKE predicted with the hybrid model are in excellent agreement with those from the LES results, while the wind-power production estimated with the hybrid model is within 10% of that observed. Three additional wind farms with larger inter-turbine spacing than at Lillgrund are also considered, and a similar agreement with LES results is found, proving that the hybrid parametrization works well with any wind farm regardless of the spacing between turbines. These results indicate the wind-turbine position, wind direction, and added TKE are essential in accounting for the wind-farm effects on the surroundings, for which the hybrid wind-farm parametrization is a promising tool.

  14. Involute Spur Gear Template Development by Parametric Technique ...

    African Journals Online (AJOL)

    There are many methods available for developing profiles of gear and spline teeth. Most of the techniques are inaccurate because they use only an approximation of the involute curve profile. The parametric method developed in this paper provides accurate involute curve creation using formulas and exact geometric ...

  15. A non-parametric consistency test of the ΛCDM model with Planck CMB data

    Energy Technology Data Exchange (ETDEWEB)

    Aghamousa, Amir; Shafieloo, Arman [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Hamann, Jan, E-mail: amir@aghamousa.com, E-mail: jan.hamann@unsw.edu.au, E-mail: shafieloo@kasi.re.kr [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2017-09-01

    Non-parametric reconstruction methods, such as Gaussian process (GP) regression, provide a model-independent way of estimating an underlying function and its uncertainty from noisy data. We demonstrate how GP-reconstruction can be used as a consistency test between a given data set and a specific model by looking for structures in the residuals of the data with respect to the model's best-fit. Applying this formalism to the Planck temperature and polarisation power spectrum measurements, we test their global consistency with the predictions of the base ΛCDM model. Our results do not show any serious inconsistencies, lending further support to the interpretation of the base ΛCDM model as cosmology's gold standard.

  16. Motivations of parametric studies

    International Nuclear Information System (INIS)

    Birac, C.

    1988-01-01

    The paper concerns the motivations of parametric studies in connection with the Programme for the Inspection of Steel Components PISC II. The objective of the PISC II exercise is to evaluate the effectiveness of current and advanced NDT techniques for inspection of reactor pressure vessel components. The parametric studies were initiated to determine the influence of some parameters on defect detection and dimensioning, and to increase the technical bases of the Round Robin Tests. A description is given of the content of the parametric studies including:- the effect of the defects' characteristics, the effect of equipment characteristics, the effect of cladding, and possible use of electromagnetic techniques. (U.K.)

  17. Parametrically Guided Generalized Additive Models with Application to Mergers and Acquisitions Data.

    Science.gov (United States)

    Fan, Jianqing; Maity, Arnab; Wang, Yihui; Wu, Yichao

    2013-01-01

    Generalized nonparametric additive models present a flexible way to evaluate the effects of several covariates on a general outcome of interest via a link function. In this modeling framework, one assumes that the effect of each of the covariates is nonparametric and additive. However, in practice, often there is prior information available about the shape of the regression functions, possibly from pilot studies or exploratory analysis. In this paper, we consider such situations and propose an estimation procedure where the prior information is used as a parametric guide to fit the additive model. Specifically, we first posit a parametric family for each of the regression functions using the prior information (parametric guides). After removing these parametric trends, we then estimate the remainder of the nonparametric functions using a nonparametric generalized additive model, and form the final estimates by adding back the parametric trend. We investigate the asymptotic properties of the estimates and show that when a good guide is chosen, the asymptotic variance of the estimates can be reduced significantly while keeping the asymptotic variance same as the unguided estimator. We observe the performance of our method via a simulation study and demonstrate our method by applying to a real data set on mergers and acquisitions.

  18. Involute Spur Gear Template Development by Parametric Technique ...

    African Journals Online (AJOL)

    Nekky Umera

    cylindrical coordinate systems to create the involute curve profile. Since spur gear ... Template gear development using parametric method means that the dimensions control the ... and rapid prototyping of interlocking gears. Excel is a common ...

  19. Theory of fluctuations and parametric noise in a point nuclear reactor model

    International Nuclear Information System (INIS)

    Rodriguez, M.A.; San Miguel, M.; Sancho, J.M.

    1984-01-01

    We present a joint description of internal fluctuations and parametric noise in a point nuclear reactor model in which delayed neutrons and a detector are considered. We obtain kinetic equations for the first moments and define effective kinetic parameters which take into account the effect of parametric Gaussian white noise. We comment on the validity of Langevin approximations for this problem. We propose a general method to deal with weak but otherwise arbitrary non-white parametric noise. Exact kinetic equations are derived for Gaussian non-white noise. (author)

  20. REIONIZATION ON LARGE SCALES. I. A PARAMETRIC MODEL CONSTRUCTED FROM RADIATION-HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    Battaglia, N.; Trac, H.; Cen, R.; Loeb, A.

    2013-01-01

    We present a new method for modeling inhomogeneous cosmic reionization on large scales. Utilizing high-resolution radiation-hydrodynamic simulations with 2048 3 dark matter particles, 2048 3 gas cells, and 17 billion adaptive rays in a L = 100 Mpc h –1 box, we show that the density and reionization redshift fields are highly correlated on large scales (∼> 1 Mpc h –1 ). This correlation can be statistically represented by a scale-dependent linear bias. We construct a parametric function for the bias, which is then used to filter any large-scale density field to derive the corresponding spatially varying reionization redshift field. The parametric model has three free parameters that can be reduced to one free parameter when we fit the two bias parameters to simulation results. We can differentiate degenerate combinations of the bias parameters by combining results for the global ionization histories and correlation length between ionized regions. Unlike previous semi-analytic models, the evolution of the reionization redshift field in our model is directly compared cell by cell against simulations and performs well in all tests. Our model maps the high-resolution, intermediate-volume radiation-hydrodynamic simulations onto lower-resolution, larger-volume N-body simulations (∼> 2 Gpc h –1 ) in order to make mock observations and theoretical predictions

  1. Nonlinear dynamics of parametrically driven particles in a Φ6 potential

    International Nuclear Information System (INIS)

    Tchawoua, C; Siewe Siewe, M; Tchatchueng, S; Moukam Kakmeni, F M

    2008-01-01

    A general parametrically excited mechanical system is considered. Approximate solutions are determined by applying the method of multiple time scales. It is shown that only combination parametric resonance of the additive type is possible for the system examined. For this case, the existence and stability properties of the fixed points of the averaged equations corresponding to the nontrivial periodic solutions of the original system are investigated. Thus, emphasis is placed on understanding the chaotic behaviour of the extended Duffing oscillator in the Φ 6 potential under parametric excitation for a specific parameter choice. From the Melnikov-type technique, we obtain the conditions for the existence of homoclinic or heteroclinic bifurcation. Our analysis is carried out in the case of a triple well with a double hump which does not lead to unbounded motion; this analysis is complemented by numerical simulations from which we illustrate the fractality of the basins of attraction. The results show that the threshold amplitude of parametric excitation moves upwards as the parametric intensity increases. Numerical simulations including bifurcation diagrams, Lyapunov exponents, phase portraits and Poincaré maps are shown

  2. Two-parametric model of electron beam in computational dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Lazurik, V.M.; Lazurik, V.T.; Popov, G.; Zimek, Z.

    2016-01-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E 0 – energy mono-energetic and mono-directional electron source, X 0 – the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like E p – the most probably energy and R p – practical range) can be linked with characteristics of two-parametric model (E 0 , X 0 ), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed. - Highlights: • Experimental and computational methods of electron energy evaluation. • Development

  3. A novel algorithm for solving optimal path planning problems based on parametrization method and fuzzy aggregation

    International Nuclear Information System (INIS)

    Zamirian, M.; Kamyad, A.V.; Farahi, M.H.

    2009-01-01

    In this Letter a new approach for solving optimal path planning problems for a single rigid and free moving object in a two and three dimensional space in the presence of stationary or moving obstacles is presented. In this approach the path planning problems have some incompatible objectives such as the length of path that must be minimized, the distance between the path and obstacles that must be maximized and etc., then a multi-objective dynamic optimization problem (MODOP) is achieved. Considering the imprecise nature of decision maker's (DM) judgment, these multiple objectives are viewed as fuzzy variables. By determining intervals for the values of these fuzzy variables, flexible monotonic decreasing or increasing membership functions are determined as the degrees of satisfaction of these fuzzy variables on their intervals. Then, the optimal path planning policy is searched by maximizing the aggregated fuzzy decision values, resulting in a fuzzy multi-objective dynamic optimization problem (FMODOP). Using a suitable t-norm, the FMODOP is converted into a non-linear dynamic optimization problem (NLDOP). By using parametrization method and some calculations, the NLDOP is converted into the sequence of conventional non-linear programming problems (NLPP). It is proved that the solution of this sequence of the NLPPs tends to a Pareto optimal solution which, among other Pareto optimal solutions, has the best satisfaction of DM for the MODOP. Finally, the above procedure as a novel algorithm integrating parametrization method and fuzzy aggregation to solve the MODOP is proposed. Efficiency of our approach is confirmed by some numerical examples.

  4. The method of global learning in teaching foreign languages

    Directory of Open Access Journals (Sweden)

    Tatjana Dragovič

    2001-12-01

    Full Text Available The authors describe the method of global learning of foreign languages, which is based on the principles of neurolinguistic programming (NLP. According to this theory, the educator should use the method of the so-called periphery learning, where students learn relaxation techniques and at the same time they »incidentally « or subconsciously learn a foreign language. The method of global learning imitates successful strategies of learning in early childhood and therefore creates a relaxed attitude towards learning. Global learning is also compared with standard methods.

  5. SEMIPARAMETRIC VERSUS PARAMETRIC CLASSIFICATION MODELS - AN APPLICATION TO DIRECT MARKETING

    NARCIS (Netherlands)

    BULT, [No Value

    In this paper we are concerned with estimation of a classification model using semiparametric and parametric methods. Benefits and limitations of semiparametric models in general, and of Manski's maximum score method in particular, are discussed. The maximum score method yields consistent estimates

  6. Conventional method for the calculation of the global energy cost of buildings; Methode conventionnelle de calcul du cout global energetique des batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-05-01

    A working group driven by Electricite de France (EdF), Chauffage Fioul and Gaz de France (GdF) companies has been built with the sustain of several building engineering companies in order to clarify the use of the method of calculation of the global energy cost of buildings. This global cost is an economical decision help criterion among others. This press kit presents, first, the content of the method (input data, calculation of annual expenses, calculation of the global energy cost, display of results and limitations of the method). Then it fully describes the method and its appendixes necessary for its implementation: economical and financial context, general data of the project in progress, environmental data, occupation and comfort level, variants, investment cost of energy systems, investment cost for the structure linked with the energy system, investment cost for other invariant elements of the structure, calculation of consumptions (space heating, hot water, ventilation), maintenance costs (energy systems, structure), operation and exploitation costs, tariffs and consumption costs and taxes, actualized global cost, annualized global cost, comparison between variants. The method is applied to a council building of 23 flats taken as an example. (J.S.)

  7. Non-parametric Tuning of PID Controllers A Modified Relay-Feedback-Test Approach

    CERN Document Server

    Boiko, Igor

    2013-01-01

    The relay feedback test (RFT) has become a popular and efficient  tool used in process identification and automatic controller tuning. Non-parametric Tuning of PID Controllers couples new modifications of classical RFT with application-specific optimal tuning rules to form a non-parametric method of test-and-tuning. Test and tuning are coordinated through a set of common parameters so that a PID controller can obtain the desired gain or phase margins in a system exactly, even with unknown process dynamics. The concept of process-specific optimal tuning rules in the nonparametric setup, with corresponding tuning rules for flow, level pressure, and temperature control loops is presented in the text.   Common problems of tuning accuracy based on parametric and non-parametric approaches are addressed. In addition, the text treats the parametric approach to tuning based on the modified RFT approach and the exact model of oscillations in the system under test using the locus of a perturbedrelay system (LPRS) meth...

  8. Digital double random amplitude image encryption method based on the symmetry property of the parametric discrete Fourier transform

    Science.gov (United States)

    Bekkouche, Toufik; Bouguezel, Saad

    2018-03-01

    We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.

  9. Fractal Shapes Description with Parametric L-systems and Turtle Algebra

    OpenAIRE

    Ikbal Zammouri; Béchir Ayeb

    2007-01-01

    In this paper, we propose a new method to describe fractal shapes using parametric l-systems. First we introduce scaling factors in the production rules of the parametric l-systems grammars. Then we decorticate these grammars with scaling factors using turtle algebra to show the mathematical relation between l-systems and iterated function systems (IFS). We demonstrate that with specific values of the scaling factors, we find the exact relationship established by Prusinkiewicz and Hammel betw...

  10. Direct diffusion tensor estimation using a model-based method with spatial and parametric constraints.

    Science.gov (United States)

    Zhu, Yanjie; Peng, Xi; Wu, Yin; Wu, Ed X; Ying, Leslie; Liu, Xin; Zheng, Hairong; Liang, Dong

    2017-02-01

    To develop a new model-based method with spatial and parametric constraints (MB-SPC) aimed at accelerating diffusion tensor imaging (DTI) by directly estimating the diffusion tensor from highly undersampled k-space data. The MB-SPC method effectively incorporates the prior information on the joint sparsity of different diffusion-weighted images using an L1-L2 norm and the smoothness of the diffusion tensor using a total variation seminorm. The undersampled k-space datasets were obtained from fully sampled DTI datasets of a simulated phantom and an ex-vivo experimental rat heart with acceleration factors ranging from 2 to 4. The diffusion tensor was directly reconstructed by solving a minimization problem with a nonlinear conjugate gradient descent algorithm. The reconstruction performance was quantitatively assessed using the normalized root mean square error (nRMSE) of the DTI indices. The MB-SPC method achieves acceptable DTI measures at an acceleration factor up to 4. Experimental results demonstrate that the proposed method can estimate the diffusion tensor more accurately than most existing methods operating at higher net acceleration factors. The proposed method can significantly reduce artifact, particularly at higher acceleration factors or lower SNRs. This method can easily be adapted to MR relaxometry parameter mapping and is thus useful in the characterization of biological tissue such as nerves, muscle, and heart tissue. © 2016 American Association of Physicists in Medicine.

  11. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag2O nanoparticle

    International Nuclear Information System (INIS)

    Santillan, J M J; Scaffardi, L B; Schinca, D C

    2011-01-01

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory. The method

  12. Developing a Parametric Urban Design Tool

    DEFF Research Database (Denmark)

    Steinø, Nicolai; Obeling, Esben

    2014-01-01

    Parametric urban design is a potentially powerful tool for collaborative urban design processes. Rather than making one- off designs which need to be redesigned from the ground up in case of changes, parametric design tools make it possible keep the design open while at the same time allowing...... for a level of detailing which is high enough to facilitate an understan- ding of the generic qualities of proposed designs. Starting from a brief overview of parametric design, this paper presents initial findings from the development of a parametric urban design tool with regard to developing a structural...... logic which is flexible and expandable. It then moves on to outline and discuss further development work. Finally, it offers a brief reflection on the potentials and shortcomings of the software – CityEngine – which is used for developing the parametric urban design tool....

  13. Ionospheric modification and parametric instabilities

    International Nuclear Information System (INIS)

    Fejer, J.A.

    1979-01-01

    Thresholds and linear growth rates for stimulated Brillouin and Raman scattering and for the parametric decay instability are derived by using arguments of energy transfer. For this purpose an expression for the ponderomotive force is derived. Conditions under which the partial pressure force due to differential dissipation exceeds the ponderomotive force are also discussed. Stimulated Brillouin and Raman scattering are weakly excited by existing incoherent backscatter radars. The parametric decay instability is strongly excited in ionospheric heating experiments. Saturation theories of the parametric decay instability are therefore described. After a brief discussion of the purely growing instability the effect of using several pumps is discussed as well as the effects of inhomogenicity. Turning to detailed theories of ionospheric heating, artificial spread F is discussed in terms of a purely growing instability where the nonlinearity is due to dissipation. Field-aligned short-scale striations are explained in terms of dissipation of the parametrically excited Langmuir waves (plasma oscillations): they might be further amplified by an explosive instability (except the magnetic equator). Broadband absorption is probably responsible for the 'overshoot' effect: the initially observed level of parametrically excited Langmuir waves is much higher than the steady state level

  14. Constrained Convolutional Sparse Coding for Parametric Based Reconstruction of Line Drawings

    KAUST Repository

    Shaheen, Sara; Affara, Lama Ahmed; Ghanem, Bernard

    2017-01-01

    manipulation examples are demonstrated in this work. Consequently, our novel method is expected to provide a reliable and automatic method for parametric sketch description. Through experiments, we empirically validate the convergence of our method to a

  15. A method of statistical analysis in the field of sports science when assumptions of parametric tests are not violated

    Directory of Open Access Journals (Sweden)

    Elżbieta Sandurska

    2016-12-01

    Full Text Available Introduction: Application of statistical software typically does not require extensive statistical knowledge, allowing to easily perform even complex analyses. Consequently, test selection criteria and important assumptions may be easily overlooked or given insufficient consideration. In such cases, the results may likely lead to wrong conclusions. Aim: To discuss issues related to assumption violations in the case of Student's t-test and one-way ANOVA, two parametric tests frequently used in the field of sports science, and to recommend solutions. Description of the state of knowledge: Student's t-test and ANOVA are parametric tests, and therefore some of the assumptions that need to be satisfied include normal distribution of the data and homogeneity of variances in groups. If the assumptions are violated, the original design of the test is impaired, and the test may then be compromised giving spurious results. A simple method to normalize the data and to stabilize the variance is to use transformations. If such approach fails, a good alternative to consider is a nonparametric test, such as Mann-Whitney, the Kruskal-Wallis or Wilcoxon signed-rank tests. Summary: Thorough verification of the parametric tests assumptions allows for correct selection of statistical tools, which is the basis of well-grounded statistical analysis. With a few simple rules, testing patterns in the data characteristic for the study of sports science comes down to a straightforward procedure.

  16. Parametric inference for discretely sampled stochastic differential equations

    DEFF Research Database (Denmark)

    Sørensen, Michael

    A review is given of parametric estimation methods for discretely sampled mul- tivariate diffusion processes. The main focus is on estimating functions and asymp- totic results. Maximum likelihood estimation is briefly considered, but the emphasis is on computationally less demanding martingale...

  17. Parametric description of the quantum measurement process

    Science.gov (United States)

    Liuzzo-Scorpo, P.; Cuccoli, A.; Verrucchi, P.

    2015-08-01

    We present a description of the measurement process based on the parametric representation with environmental coherent states. This representation is specifically tailored for studying quantum systems whose environment needs being considered through the quantum-to-classical crossover. Focusing upon projective measures, and exploiting the connection between large-N quantum theories and the classical limit of related ones, we manage to push our description beyond the pre-measurement step. This allows us to show that the outcome production follows from a global-symmetry breaking, entailing the observed system's state reduction, and that the statistical nature of the process is brought about, together with the Born's rule, by the macroscopic character of the measuring apparatus.

  18. Hyperbolic and semi-parametric models in finance

    Science.gov (United States)

    Bingham, N. H.; Kiesel, Rüdiger

    2001-02-01

    The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.

  19. Assessing scenario and parametric uncertainties in risk analysis: a model uncertainty audit

    International Nuclear Information System (INIS)

    Tarantola, S.; Saltelli, A.; Draper, D.

    1999-01-01

    In the present study a process of model audit is addressed on a computational model used for predicting maximum radiological doses to humans in the field of nuclear waste disposal. Global uncertainty and sensitivity analyses are employed to assess output uncertainty and to quantify the contribution of parametric and scenario uncertainties to the model output. These tools are of fundamental importance for risk analysis and decision making purposes

  20. Parametric Representation of the Speaker's Lips for Multimodal Sign Language and Speech Recognition

    Science.gov (United States)

    Ryumin, D.; Karpov, A. A.

    2017-05-01

    In this article, we propose a new method for parametric representation of human's lips region. The functional diagram of the method is described and implementation details with the explanation of its key stages and features are given. The results of automatic detection of the regions of interest are illustrated. A speed of the method work using several computers with different performances is reported. This universal method allows applying parametrical representation of the speaker's lipsfor the tasks of biometrics, computer vision, machine learning, and automatic recognition of face, elements of sign languages, and audio-visual speech, including lip-reading.

  1. The Effects of Policy Guidance Emphasizing the Use of Parametric Methods in Cost Estimating

    National Research Council Canada - National Science Library

    Patton, James

    1996-01-01

    .... As one of many initiatives to improve the DoD acquisition process through use of commercial practices, parametric cost estimating has the potential to be helpful in many applications for which it...

  2. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    Science.gov (United States)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  3. Parametric estimation for reinforced concrete relief shelter for Aceh cases

    Science.gov (United States)

    Atthaillah; Saputra, Eri; Iqbal, Muhammad

    2018-05-01

    This paper was a work in progress (WIP) to discover a rapid parametric framework for post-disaster permanent shelter’s materials estimation. The intended shelters were reinforced concrete construction with bricks as its wall. Inevitably, in post-disaster cases, design variations were needed to help suited victims condition. It seemed impossible to satisfy a beneficiary with a satisfactory design utilizing the conventional method. This study offered a parametric framework to overcome slow construction-materials estimation issue against design variations. Further, this work integrated parametric tool, which was Grasshopper to establish algorithms that simultaneously model, visualize, calculate and write the calculated data to a spreadsheet in a real-time. Some customized Grasshopper components were created using GHPython scripting for a more optimized algorithm. The result from this study was a partial framework that successfully performed modeling, visualization, calculation and writing the calculated data simultaneously. It meant design alterations did not escalate time needed for modeling, visualization, and material estimation. Further, the future development of the parametric framework will be made open source.

  4. Maximum a posteriori reconstruction of the Patlak parametric image from sinograms in dynamic PET

    International Nuclear Information System (INIS)

    Wang Guobao; Fu Lin; Qi Jinyi

    2008-01-01

    Parametric imaging using the Patlak graphical method has been widely used to analyze dynamic PET data. Conventionally a Patlak parametric image is generated by reconstructing a sequence of dynamic images first and then performing Patlak graphical analysis on the time-activity curves pixel-by-pixel. However, because it is rather difficult to model the noise distribution in reconstructed images, the spatially variant noise correlation is simply ignored in the Patlak analysis, which leads to sub-optimal results. In this paper we present a Bayesian method for reconstructing Patlak parametric images directly from raw sinogram data by incorporating the Patlak plot model into the image reconstruction procedure. A preconditioned conjugate gradient algorithm is used to find the maximum a posteriori solution. The proposed direct method is statistically more efficient than the conventional indirect approach because the Poisson noise distribution in PET data can be accurately modeled in the direct reconstruction. The computation cost of the direct method is similar to reconstruction time of two dynamic frames. Therefore, when more than two dynamic frames are used in the Patlak analysis, the direct method is faster than the conventional indirect approach. We conduct computer simulations to validate the proposed direct method. Comparisons with the conventional indirect approach show that the proposed method results in a more accurate estimate of the parametric image. The proposed method has been applied to dynamic fully 3D PET data from a microPET scanner

  5. Global optimization methods for engineering design

    Science.gov (United States)

    Arora, Jasbir S.

    1990-01-01

    The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.

  6. New Parametric Imaging Algorithm for Quantification of Binding Parameter in non-reversible compartment model: MLAIR

    International Nuclear Information System (INIS)

    Kim, Su Jin; Lee, Jae Sung; Kim, Yu Kyeong; Lee, Dong Soo

    2007-01-01

    Parametric imaging allows us analysis of the entire brain or body image. Graphical approaches are commonly employed to generate parametric imaging through linear or multilinear regression. However, this linear regression method has limited accuracy due to bias in high level of noise data. Several methods have been proposed to reduce bias for linear regression estimation especially in reversible model. In this study, we focus on generating a net accumulation rate (K i ), which is related to binding parameter in brain receptor study, parametric imaging in an irreversible compartment model using multiple linear analysis. The reliability of a newly developed multiple linear analysis method (MLAIR) was assessed through the Monte Carlo simulation, and we applied it to a [ 11 C]MeNTI PET for opioid receptor

  7. Parametric nanomechanical amplification at very high frequency.

    Science.gov (United States)

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  8. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data

    DEFF Research Database (Denmark)

    Tan, Qihua; Thomassen, Mads; Burton, Mark

    2017-01-01

    the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray...... time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health....

  9. Unified triminimal parametrizations of quark and lepton mixing matrices

    International Nuclear Information System (INIS)

    He Xiaogang; Li Shiwen; Ma Boqiang

    2009-01-01

    We present a detailed study on triminimal parametrizations of quark and lepton mixing matrices with different basis matrices. We start with a general discussion on the triminimal expansion of the mixing matrix and on possible unified quark and lepton parametrization using quark-lepton complementarity. We then consider several interesting basis matrices and compare the triminimal parametrizations with the Wolfenstein-like parametrizations. The usual Wolfenstein parametrization for quark mixing is a triminimal expansion around the unit matrix as the basis. The corresponding quark-lepton complementarity lepton mixing matrix is a triminimal expansion around the bimaximal basis. Current neutrino oscillation data show that the lepton mixing matrix is very well represented by the tribimaximal mixing. It is natural to take it as an expanding basis. The corresponding zeroth order basis for quark mixing in this case makes the triminimal expansion converge much faster than the usual Wolfenstein parametrization. The triminimal expansion based on tribimaximal mixing can be converted to the Wolfenstein-like parametrizations discussed in the literature. We thus have a unified description between different kinds of parametrizations for quark and lepton sectors: the standard parametrizations, the Wolfenstein-like parametrizations, and the triminimal parametrizations.

  10. Influence of Variable Acceleration on Parametric Roll Motion of a Container Ship

    Directory of Open Access Journals (Sweden)

    Emre PEŞMAN

    2016-09-01

    Full Text Available Ship operators increase or decrease thrust force of ships to avoid parametric roll motion. These operations cause varying acceleration values. In this study, influence of variable acceleration and deceleration of ships on roll motion is investigated in longitudinal waves. The method which is referred as simple model is utilized for analysis. Simple Model is one degree of freedom nonlinear parametric roll motion equation which contains changing velocity and restoring moment in waves with respect to time. Ship velocities in waves are predicted by XFlow software for various thrust forces. Results indicate that variable acceleration has significant effect on parametric roll phenomenon.

  11. A Novel Parametric Model For The Human Respiratory System

    Directory of Open Access Journals (Sweden)

    Clara Mihaela IONESCU

    2003-12-01

    Full Text Available The purpose of this work is to present some recent results in an ongoing research project between Ghent University and Chess Medical Technology Company Belgium. The overall aim of the project is to provide a fast method for identification of the human respiratory system in order to allow for an instantaneously diagnosis of the patient by the medical staff. A novel parametric model of the human respiratory system as well as the obtained experimental results is presented in this paper. A prototype apparatus developed by the company, based on the forced oscillation technique is used to record experimental data from 4 patients in this paper. Signal processing is based on spectral analysis and is followed by the parametric identification of a non-linear mechanistic model. The parametric model is equivalent to the structure of a simple electrical RLC-circuit, containing a non-linear capacitor. These parameters have a useful and easy-to-interpret physical meaning for the medical staff members.

  12. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies

    Science.gov (United States)

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans—each containing 1/8th of the total number of events—were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other

  13. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in-vivo studies

    Science.gov (United States)

    Petibon, Yoann; Rakvongthai, Yothin; Fakhri, Georges El; Ouyang, Jinsong

    2017-01-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves -TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in-vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans - each containing 1/8th of the total number of events - were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard Ordered Subset Expectation Maximization (OSEM) reconstruction algorithm on one side, and the One-Step Late Maximum a Posteriori (OSL-MAP) algorithm on the other

  14. F.E.M. of PWR's control rod cluster. Parametrical study of vibrating behavior by an Experiment Design method

    International Nuclear Information System (INIS)

    Bosselut, D.; Soulier, B.

    1997-03-01

    Some finite element models have been performed at EDF to simulate the vibrations of rod cluster and to analyse the wear phenomenon of rods using parametrical studies. In the first part, one of the finite element models is presented. The location of excitation sources is described. The calculated values are: rod displacement in the guiding cards, shock forces on the guiding cards and wear power produced. In the second part, a parametrical study is presented for a given computer experiment domain with an Experimental Design method. The building of the computer experiment design is described. The used polynomial model has all linear, quadratic and interactive terms for each of the 6 parameters (26 coefficients), 34 polynomials have been built to approach the effective shock forces and the mean wear power at each of the 17 guiding points. In the last part, the influence of parameters on calculated mean wear power is shown along rods and some responses surfaces are visualized. Systematism and closeness of experiment design technique is underlined. Easy simulation of all the response domain by polynomial approach, allows comparison with experiment feedback. (author)

  15. Quantitative optical extinction-based parametric method for sizing a single core-shell Ag-Ag{sub 2}O nanoparticle

    Energy Technology Data Exchange (ETDEWEB)

    Santillan, J M J; Scaffardi, L B; Schinca, D C, E-mail: lucias@ciop.unlp.edu.ar [Centro de Investigaciones Opticas (CIOp), (CONICET La Plata-CIC) (Argentina)

    2011-03-16

    This paper develops a parametric method for determining the core radius and shell thickness in small silver-silver-oxide core-shell nanoparticles (Nps) based on single particle optical extinction spectroscopy. The method is based on the study of the relationship between plasmon peak wavelength, full width at half maximum (FWHM) and contrast of the extinction spectra as a function of core radius and shell thickness. This study reveals that plasmon peak wavelength is strongly dependent on shell thickness, whereas FWHM and contrast depend on both variables. These characteristics may be used for establishing an easy and fast stepwise procedure to size core-shell NPs from single particle absorption spectrum. The importance of the method lies in the possibility of monitoring the growth of the silver-oxide layer around small spherical silver Nps in real time. Using the electrostatic approximation of Mie theory, core-shell single particle extinction spectra were calculated for a silver particle's core size smaller than about 20 nm and different thicknesses of silver oxide around it. Analysis of the obtained curves shows a very particular characteristic of the plasmon peak of small silver-silver-oxide Nps, expressed in the fact that its position is strongly dependent on oxide thickness and weakly dependent on the core radius. Even a very thin oxide layer shifts the plasmon peak noticeably, enabling plasmon tuning with appropriate shell thickness. This characteristic, together with the behaviour of FWHM and contrast of the extinction spectra can be combined into a parametric method for sizing both core and shell of single silver Nps in a medium using only optical information. In turn, shell thickness can be related to oxygen content in the Np's surrounding media. The method proposed is applied to size silver Nps from single particle extinction spectrum. The results are compared with full optical spectrum fitting using the electrostatic approximation in Mie theory

  16. Parametric design of a part with free-form surfaces

    Institute of Scientific and Technical Information of China (English)

    KIM Yeoung-il; KIM Li-ra; JUN Cha-soo

    2006-01-01

    3D solid models for parts with regular-form surfaces (PRFSs) are effectively generated using traditional parametric design techniques. A new model is obtained by changing some parameters defining the model. The parts with free-form surfaces(PFFSs), however, cannot be defined by several parameters. Usually they are defined by some geometric elements like profile curves. The traditional parametric design approaches have not easily dealt with the PFFSs. A method for generating a solid model and an engineering drawing for PFFSs is proposed in this paper: First, the new profiles are generated from input point data. Second,the profile information is extracted from the existing model. Last, the old profiles are replaced with the new profiles. This method can preserve the associative information of the existing model and automatically generate the drawing including views, dimensions, and annotations. The proposed method has been implemented using a commercial CAD/CAM system, Unigraphics, and API functions written in C-language, and were applied to the blades of a turbine generator. Some illustrative examples are provided in order to show the effectiveness of the proposed method.

  17. A comparative study of non-parametric models for identification of ...

    African Journals Online (AJOL)

    However, the frequency response method using random binary signals was good for unpredicted white noise characteristics and considered the best method for non-parametric system identifica-tion. The autoregressive external input (ARX) model was very useful for system identification, but on applicati-on, few input ...

  18. A parametric level-set approach for topology optimization of flow domains

    DEFF Research Database (Denmark)

    Pingen, Georg; Waidmann, Matthias; Evgrafov, Anton

    2010-01-01

    of the design variables in the traditional approaches is seen as a possible cause for the slow convergence. Non-smooth material distributions are suspected to trigger premature onset of instationary flows which cannot be treated by steady-state flow models. In the present work, we study whether the convergence...... and the versatility of topology optimization methods for fluidic systems can be improved by employing a parametric level-set description. In general, level-set methods allow controlling the smoothness of boundaries, yield a non-local influence of design variables, and decouple the material description from the flow...... field discretization. The parametric level-set method used in this study utilizes a material distribution approach to represent flow boundaries, resulting in a non-trivial mapping between design variables and local material properties. Using a hydrodynamic lattice Boltzmann method, we study...

  19. Frequency of Deep Convective Clouds and Global Warming

    Science.gov (United States)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  20. Estimation of Parametric Fault in Closed-loop Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2015-01-01

    The aim of this paper is to present a method for estimation of parametric faults in closed-loop systems. The key technology applied in this paper is coprime factorization of both the dynamic system as well as the feedback controller. Using the Youla-Jabr-Bongiorno-Kucera (YJBK) parameterization...

  1. Absolute parametric instability in a nonuniform plane plasma

    Indian Academy of Sciences (India)

    The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is considered.

  2. Coupled oscillators in identification of nonlinear damping of a real parametric pendulum

    Science.gov (United States)

    Olejnik, Paweł; Awrejcewicz, Jan

    2018-01-01

    A damped parametric pendulum with friction is identified twice by means of its precise and imprecise mathematical model. A laboratory test stand designed for experimental investigations of nonlinear effects determined by a viscous resistance and the stick-slip phenomenon serves as the model mechanical system. An influence of accurateness of mathematical modeling on the time variability of the nonlinear damping coefficient of the oscillator is proved. A free decay response of a precisely and imprecisely modeled physical pendulum is dependent on two different time-varying coefficients of damping. The coefficients of the analyzed parametric oscillator are identified with the use of a new semi-empirical method based on a coupled oscillators approach, utilizing the fractional order derivative of the discrete measurement series treated as an input to the numerical model. Results of application of the proposed method of identification of the nonlinear coefficients of the damped parametric oscillator have been illustrated and extensively discussed.

  3. PARAMETRIC DIAGNOSTICS OF THE CENTRIFUGAL SUPERCHARGER'S TECHNICAL CONDITION DURING OPERATION

    Directory of Open Access Journals (Sweden)

    Regina A. Khuramshina

    2017-01-01

    Full Text Available Abstract. Objectives The main aim is to develop a mathematical model of a centrifugal compressor and carry out a parametric diagnostics of a centrifugal supercharger's technical condition during operation. Methods  A model is proposed for calculating the thermodynamic properties of natural gas, reducing the parameters of a centrifugal compressor to the initial conditions and to the rotation frequency, as well as the integral indicators of the supercharger's technical state. The technical state of the gas path of the centrifugal supercharger of the compressor unit is determined by the parametric diagnostic method. Results  The software implementation of the mathematical model of centrifugal compressor is carried out using a DVIGwT PC. The analysis of calculations indicates that the model is appropriate, with the error being due to taking into account the properties of iso-butane and i-hexane, in contrast with the VNIIGAZ technique. The evaluation studies of a centrifugal compressor's state are indicative of the presence or absence of its defects. Conclusion  Among a number of the diagnostic methods for evaluating a centrifugal supercharger, the most effective is vibrodiagnostics. However, the search for malfunctions and nascent defects in the flowing part of the centrifugal compressor cannot be limited only to vibrodiagnostic data, which provides about 60% of the reliable information about the state of the gas-air tract. About 20% of the compressor's malfunctions and approximately half of the dangerous modes of the supercharger's flow-through part is detected using thermogasdynamic parametric analysis (parametric diagnostics. The main difficulty of the control over the technical state of the flow-through part of the centrifugal supercharger is in the complication of the quantitative evaluation of the processes taking place in the supercharger, which leads to problems in providing reliable diagnosis during a reasonable period of time.

  4. Trends and associated uncertainty in the global mean temperature record

    Science.gov (United States)

    Poppick, A. N.; Moyer, E. J.; Stein, M.

    2016-12-01

    Physical models suggest that the Earth's mean temperature warms in response to changing CO2 concentrations (and hence increased radiative forcing); given physical uncertainties in this relationship, the historical temperature record is a source of empirical information about global warming. A persistent thread in many analyses of the historical temperature record, however, is the reliance on methods that appear to deemphasize both physical and statistical assumptions. Examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for natural variability in nonparametric rather than parametric ways. We show here that methods that deemphasize assumptions can limit the scope of analysis and can lead to misleading inferences, particularly in the setting considered where the data record is relatively short and the scale of temporal correlation is relatively long. A proposed model that is simple but physically informed provides a more reliable estimate of trends and allows a broader array of questions to be addressed. In accounting for uncertainty, we also illustrate how parametric statistical models that are attuned to the important characteristics of natural variability can be more reliable than ostensibly more flexible approaches.

  5. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms

    Directory of Open Access Journals (Sweden)

    Xin-Ping Wu

    2018-05-01

    Full Text Available Combined quantum mechanical and molecular mechanical (QM/MM methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM−MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM−MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM−MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  6. Parametrization of Combined Quantum Mechanical and Molecular Mechanical Methods: Bond-Tuned Link Atoms.

    Science.gov (United States)

    Wu, Xin-Ping; Gagliardi, Laura; Truhlar, Donald G

    2018-05-30

    Combined quantum mechanical and molecular mechanical (QM/MM) methods are the most powerful available methods for high-level treatments of subsystems of very large systems. The treatment of the QM-MM boundary strongly affects the accuracy of QM/MM calculations. For QM/MM calculations having covalent bonds cut by the QM-MM boundary, it has been proposed previously to use a scheme with system-specific tuned fluorine link atoms. Here, we propose a broadly parametrized scheme where the parameters of the tuned F link atoms depend only on the type of bond being cut. In the proposed new scheme, the F link atom is tuned for systems with a certain type of cut bond at the QM-MM boundary instead of for a specific target system, and the resulting link atoms are call bond-tuned link atoms. In principle, the bond-tuned link atoms can be as convenient as the popular H link atoms, and they are especially well adapted for high-throughput and accurate QM/MM calculations. Here, we present the parameters for several kinds of cut bonds along with a set of validation calculations that confirm that the proposed bond-tuned link-atom scheme can be as accurate as the system-specific tuned F link-atom scheme.

  7. Inhibition of chaotic escape from a potential well using small parametric modulations

    International Nuclear Information System (INIS)

    Chacon, R.; Balibrea, F.; Lopez, M.A.

    1996-01-01

    It is shown theoretically for the first time that, depending on its period, amplitude, and initial phase, a periodic parametric modulation can suppress a chaotic escape from a potential well. The instance of the Helmholtz oscillator is used to demonstrate, by means of Melnikov close-quote s method, that parametric modulations of the linear or quadratic potential terms inhibit chaotic escape when certain resonance conditions are met. copyright 1996 American Institute of Physics

  8. Absolute parametric instability in a nonuniform plane plasma ...

    Indian Academy of Sciences (India)

    Abstract. The paper reports an analysis of the effect of spatial plasma nonuniformity on absolute parametric instability (API) of electrostatic waves in magnetized plane waveguides subjected to an intense high-frequency (HF) electric field using the separation method. In this case the effect of strong static magnetic field is ...

  9. Numerical Solution of Uncertain Beam Equations Using Double Parametric Form of Fuzzy Numbers

    Directory of Open Access Journals (Sweden)

    Smita Tapaswini

    2013-01-01

    Full Text Available Present paper proposes a new technique to solve uncertain beam equation using double parametric form of fuzzy numbers. Uncertainties appearing in the initial conditions are taken in terms of triangular fuzzy number. Using the single parametric form, the fuzzy beam equation is converted first to an interval-based fuzzy differential equation. Next, this differential equation is transformed to crisp form by applying double parametric form of fuzzy number. Finally, the same is solved by homotopy perturbation method (HPM to obtain the uncertain responses subject to unit step and impulse loads. Obtained results are depicted in terms of plots to show the efficiency and powerfulness of the methodology.

  10. An empirical analysis of one, two, and three parametric logistic ...

    African Journals Online (AJOL)

    The purpose of this study was to determine the three parametric logistic IRT methods in dichotomous and ordinal test items due to differential item functioning using statistical DIF detection methods of SIBTEST, GMH, and LDFA. The study adopted instrumentation research design. The sample consisted of an intact class of ...

  11. PARAMETRIC DRAWINGS VS. AUTOLISP

    OpenAIRE

    PRUNĂ Liviu; SLONOVSCHI Andrei

    2015-01-01

    In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed...

  12. Flows method in global analysis

    International Nuclear Information System (INIS)

    Duong Minh Duc.

    1994-12-01

    We study the gradient flows method for W r,p (M,N) where M and N are Riemannian manifold and r may be less than m/p. We localize some global analysis problem by constructing gradient flows which only change the value of any u in W r,p (M,N) in a local chart of M. (author). 24 refs

  13. kruX: matrix-based non-parametric eQTL discovery.

    Science.gov (United States)

    Qi, Jianlong; Asl, Hassan Foroughi; Björkegren, Johan; Michoel, Tom

    2014-01-14

    The Kruskal-Wallis test is a popular non-parametric statistical test for identifying expression quantitative trait loci (eQTLs) from genome-wide data due to its robustness against variations in the underlying genetic model and expression trait distribution, but testing billions of marker-trait combinations one-by-one can become computationally prohibitive. We developed kruX, an algorithm implemented in Matlab, Python and R that uses matrix multiplications to simultaneously calculate the Kruskal-Wallis test statistic for several millions of marker-trait combinations at once. KruX is more than ten thousand times faster than computing associations one-by-one on a typical human dataset. We used kruX and a dataset of more than 500k SNPs and 20k expression traits measured in 102 human blood samples to compare eQTLs detected by the Kruskal-Wallis test to eQTLs detected by the parametric ANOVA and linear model methods. We found that the Kruskal-Wallis test is more robust against data outliers and heterogeneous genotype group sizes and detects a higher proportion of non-linear associations, but is more conservative for calling additive linear associations. kruX enables the use of robust non-parametric methods for massive eQTL mapping without the need for a high-performance computing infrastructure and is freely available from http://krux.googlecode.com.

  14. Global/local methods research using a common structural analysis framework

    Science.gov (United States)

    Knight, Norman F., Jr.; Ransom, Jonathan B.; Griffin, O. H., Jr.; Thompson, Danniella M.

    1991-01-01

    Methodologies for global/local stress analysis are described including both two- and three-dimensional analysis methods. These methods are being developed within a common structural analysis framework. Representative structural analysis problems are presented to demonstrate the global/local methodologies being developed.

  15. Effects of quadratic and cubic nonlinearities on a perfectly tuned parametric amplifier

    DEFF Research Database (Denmark)

    Neumeyer, Stefan; Sorokin, Vladislav; Thomsen, Jon Juel

    2016-01-01

    We consider the performance of a parametric amplifier with perfect tuning (two-to-one ratio between the parametric and direct excitation frequencies) and quadratic and cubic nonlinearities. A forced Duffing–Mathieu equation with appended quadratic nonlinearity is considered as the model system......, and approximate analytical steady-state solutions and corresponding stabilities are obtained by the method of varying amplitudes. Some general effects of pure quadratic, and mixed quadratic and cubic nonlinearities on parametric amplification are shown. In particular, the effects of mixed quadratic and cubic...... nonlinearities may generate additional amplitude–frequency solutions. In this case an increased response and a more phase sensitive amplitude (phase between excitation frequencies) is obtained, as compared to the case with either pure quadratic or cubic nonlinearity. Furthermore, jumps and bi...

  16. Estimating technical efficiency in the hospital sector with panel data: a comparison of parametric and non-parametric techniques.

    Science.gov (United States)

    Siciliani, Luigi

    2006-01-01

    Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.

  17. Connections between classical and parametric network entropies.

    Directory of Open Access Journals (Sweden)

    Matthias Dehmer

    Full Text Available This paper explores relationships between classical and parametric measures of graph (or network complexity. Classical measures are based on vertex decompositions induced by equivalence relations. Parametric measures, on the other hand, are constructed by using information functions to assign probabilities to the vertices. The inequalities established in this paper relating classical and parametric measures lay a foundation for systematic classification of entropy-based measures of graph complexity.

  18. Significance of application of the nine parametric coordinate transformation where local state network is not enough reliable

    Directory of Open Access Journals (Sweden)

    Ristić Kornelija T.

    2016-01-01

    Full Text Available The most commonly used method for establishing the mathematical basis of surveying and spatial data collection is the method of Global Navigation Satellite Positioning System (GNSS. However, these data relate to the World Geodetic Date WGS84 which is different from the State geodetic network,. As a part of realization the project of determining spatial local reference network Mrkonjić Grad the GNSS observations on 15 trigonometric points whose position is known to the State system of coordinates (x, y, h were made. For the purpose of coordinate transformation between the two system two different transformation models were anlyzed. Beside the most commonly used Helmert seven parameter transformation, afina nine parametric transformation was tested. Comparing the two transformations models, conclusion was made that showes some benefits of using affina nine parameter transformation models in Republic of Serpska.

  19. Parametric Portfolio Policies with Common Volatility Dynamics

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Taamouti, Abderrahim

    A parametric portfolio policy function is considered that incorporates common stock volatility dynamics to optimally determine portfolio weights. Reducing dimension of the traditional portfolio selection problem significantly, only a number of policy parameters corresponding to first- and second......-order characteristics are estimated based on a standard method-of-moments technique. The method, allowing for the calculation of portfolio weight and return statistics, is illustrated with an empirical application to 30 U.S. industries to study the economic activity before and after the recent financial crisis....

  20. Improved parametrization of K+ production in p-Be collisions at low energy using Feynman scaling

    International Nuclear Information System (INIS)

    Mariani, C.; Cheng, G.; Shaevitz, M. H.; Conrad, J. M.

    2011-01-01

    This paper describes an improved parametrization for proton-beryllium production of secondary K + mesons for experiments with primary proton beams from 8.89 to 24 GeV/c. The parametrization is based on Feynman scaling in which the invariant cross section is described as a function of x F and p T . This method is theoretically motivated and provides a better description of the energy dependence of kaon production at low beam energies than other parametrizations such as the commonly used modified Sanford-Wang model. This Feynman scaling parametrization has been used for the simulation of the neutrino flux from the Booster Neutrino Beam at Fermilab and has been shown to agree with the neutrino interaction data from the SciBooNE experiment. This parametrization will also be useful for future neutrino experiments with low primary beam energies, such as those planned for the Project X accelerator.

  1. Absolute decay parametric instability of high-temperature plasma

    International Nuclear Information System (INIS)

    Zozulya, A.A.; Silin, V.P.; Tikhonchuk, V.T.

    1986-01-01

    A new absolute decay parametric instability having wide spatial localization region is shown to be possible near critical plasma density. Its excitation is conditioned by distributed feedback of counter-running Langmuir waves occurring during parametric decay of incident and reflected pumping wave components. In a hot plasma with the temperature of the order of kiloelectronvolt its threshold is lower than that of a known convective decay parametric instability. Minimum absolute instability threshold is shown to be realized under conditions of spatial parametric resonance of higher orders

  2. Application of semi parametric modelling to times series forecasting: case of the electricity consumption

    International Nuclear Information System (INIS)

    Lefieux, V.

    2007-10-01

    Reseau de Transport d'Electricite (RTE), in charge of operating the French electric transportation grid, needs an accurate forecast of the power consumption in order to operate it correctly. The forecasts used everyday result from a model combining a nonlinear parametric regression and a SARIMA model. In order to obtain an adaptive forecasting model, nonparametric forecasting methods have already been tested without real success. In particular, it is known that a nonparametric predictor behaves badly with a great number of explanatory variables, what is commonly called the curse of dimensionality. Recently, semi parametric methods which improve the pure nonparametric approach have been proposed to estimate a regression function. Based on the concept of 'dimension reduction', one those methods (called MAVE : Moving Average -conditional- Variance Estimate) can apply to time series. We study empirically its effectiveness to predict the future values of an autoregressive time series. We then adapt this method, from a practical point of view, to forecast power consumption. We propose a partially linear semi parametric model, based on the MAVE method, which allows to take into account simultaneously the autoregressive aspect of the problem and the exogenous variables. The proposed estimation procedure is practically efficient. (author)

  3. Nonscaling parametrization of hadronic spectra and dual parton model

    International Nuclear Information System (INIS)

    Gaponenko, O.N.

    2001-01-01

    Using the popular Wdowczyk-Wolfendale parametrization (WW-parametrization) as an example one studies restrictions imposed by a dual parton model for different nonscaling parametrizations of the pulsed hadron spectra in soft hadron-hadron and hadron-nuclear interactions. One derived a new parametrization free from basic drawback of the WW-formulae. In the central range the determined parametrization show agreement with the Wdowczyk-Wolfendale formula, but in contrast to the last-named one it does not result in contradiction with the experiment due to fast reduction of inelastic factor reduction with energy increase [ru

  4. Explicit/multi-parametric model predictive control (MPC) of linear discrete-time systems by dynamic and multi-parametric programming

    KAUST Repository

    Kouramas, K.I.; Faí sca, N.P.; Panos, C.; Pistikopoulos, E.N.

    2011-01-01

    This work presents a new algorithm for solving the explicit/multi- parametric model predictive control (or mp-MPC) problem for linear, time-invariant discrete-time systems, based on dynamic programming and multi-parametric programming techniques

  5. Comparative Study of Parametric and Non-parametric Approaches in Fault Detection and Isolation

    DEFF Research Database (Denmark)

    Katebi, S.D.; Blanke, M.; Katebi, M.R.

    This report describes a comparative study between two approaches to fault detection and isolation in dynamic systems. The first approach uses a parametric model of the system. The main components of such techniques are residual and signature generation for processing and analyzing. The second...... approach is non-parametric in the sense that the signature analysis is only dependent on the frequency or time domain information extracted directly from the input-output signals. Based on these approaches, two different fault monitoring schemes are developed where the feature extraction and fault decision...

  6. Bioprocess iterative batch-to-batch optimization based on hybrid parametric/nonparametric models.

    Science.gov (United States)

    Teixeira, Ana P; Clemente, João J; Cunha, António E; Carrondo, Manuel J T; Oliveira, Rui

    2006-01-01

    This paper presents a novel method for iterative batch-to-batch dynamic optimization of bioprocesses. The relationship between process performance and control inputs is established by means of hybrid grey-box models combining parametric and nonparametric structures. The bioreactor dynamics are defined by material balance equations, whereas the cell population subsystem is represented by an adjustable mixture of nonparametric and parametric models. Thus optimizations are possible without detailed mechanistic knowledge concerning the biological system. A clustering technique is used to supervise the reliability of the nonparametric subsystem during the optimization. Whenever the nonparametric outputs are unreliable, the objective function is penalized. The technique was evaluated with three simulation case studies. The overall results suggest that the convergence to the optimal process performance may be achieved after a small number of batches. The model unreliability risk constraint along with sampling scheduling are crucial to minimize the experimental effort required to attain a given process performance. In general terms, it may be concluded that the proposed method broadens the application of the hybrid parametric/nonparametric modeling technique to "newer" processes with higher potential for optimization.

  7. A general approach to optomechanical parametric instabilities

    International Nuclear Information System (INIS)

    Evans, M.; Barsotti, L.; Fritschel, P.

    2010-01-01

    We present a simple feedback description of parametric instabilities which can be applied to a variety of optical systems. Parametric instabilities are of particular interest to the field of gravitational-wave interferometry where high mechanical quality factors and a large amount of stored optical power have the potential for instability. In our use of Advanced LIGO as an example application, we find that parametric instabilities, if left unaddressed, present a potential threat to the stability of high-power operation.

  8. Stochastic global optimization as a filtering problem

    International Nuclear Information System (INIS)

    Stinis, Panos

    2012-01-01

    We present a reformulation of stochastic global optimization as a filtering problem. The motivation behind this reformulation comes from the fact that for many optimization problems we cannot evaluate exactly the objective function to be optimized. Similarly, we may not be able to evaluate exactly the functions involved in iterative optimization algorithms. For example, we may only have access to noisy measurements of the functions or statistical estimates provided through Monte Carlo sampling. This makes iterative optimization algorithms behave like stochastic maps. Naive global optimization amounts to evolving a collection of realizations of this stochastic map and picking the realization with the best properties. This motivates the use of filtering techniques to allow focusing on realizations that are more promising than others. In particular, we present a filtering reformulation of global optimization in terms of a special case of sequential importance sampling methods called particle filters. The increasing popularity of particle filters is based on the simplicity of their implementation and their flexibility. We utilize the flexibility of particle filters to construct a stochastic global optimization algorithm which can converge to the optimal solution appreciably faster than naive global optimization. Several examples of parametric exponential density estimation are provided to demonstrate the efficiency of the approach.

  9. Non-parametric smoothing of experimental data

    International Nuclear Information System (INIS)

    Kuketayev, A.T.; Pen'kov, F.M.

    2007-01-01

    Full text: Rapid processing of experimental data samples in nuclear physics often requires differentiation in order to find extrema. Therefore, even at the preliminary stage of data analysis, a range of noise reduction methods are used to smooth experimental data. There are many non-parametric smoothing techniques: interval averages, moving averages, exponential smoothing, etc. Nevertheless, it is more common to use a priori information about the behavior of the experimental curve in order to construct smoothing schemes based on the least squares techniques. The latter methodology's advantage is that the area under the curve can be preserved, which is equivalent to conservation of total speed of counting. The disadvantages of this approach include the lack of a priori information. For example, very often the sums of undifferentiated (by a detector) peaks are replaced with one peak during the processing of data, introducing uncontrolled errors in the determination of the physical quantities. The problem is solvable only by having experienced personnel, whose skills are much greater than the challenge. We propose a set of non-parametric techniques, which allows the use of any additional information on the nature of experimental dependence. The method is based on a construction of a functional, which includes both experimental data and a priori information. Minimum of this functional is reached on a non-parametric smoothed curve. Euler (Lagrange) differential equations are constructed for these curves; then their solutions are obtained analytically or numerically. The proposed approach allows for automated processing of nuclear physics data, eliminating the need for highly skilled laboratory personnel. Pursuant to the proposed approach is the possibility to obtain smoothing curves in a given confidence interval, e.g. according to the χ 2 distribution. This approach is applicable when constructing smooth solutions of ill-posed problems, in particular when solving

  10. On Rigorous Drought Assessment Using Daily Time Scale: Non-Stationary Frequency Analyses, Revisited Concepts, and a New Method to Yield Non-Parametric Indices

    Directory of Open Access Journals (Sweden)

    Charles Onyutha

    2017-10-01

    Full Text Available Some of the problems in drought assessments are that: analyses tend to focus on coarse temporal scales, many of the methods yield skewed indices, a few terminologies are ambiguously used, and analyses comprise an implicit assumption that the observations come from a stationary process. To solve these problems, this paper introduces non-stationary frequency analyses of quantiles. How to use non-parametric rescaling to obtain robust indices that are not (or minimally skewed is also introduced. To avoid ambiguity, some concepts on, e.g., incidence, extremity, etc., were revisited through shift from monthly to daily time scale. Demonstrations on the introduced methods were made using daily flow and precipitation insufficiency (precipitation minus potential evapotranspiration from the Blue Nile basin in Africa. Results show that, when a significant trend exists in extreme events, stationarity-based quantiles can be far different from those when non-stationarity is considered. The introduced non-parametric indices were found to closely agree with the well-known standardized precipitation evapotranspiration indices in many aspects but skewness. Apart from revisiting some concepts, the advantages of the use of fine instead of coarse time scales in drought assessment were given. The links for obtaining freely downloadable tools on how to implement the introduced methods were provided.

  11. Integrable multi parametric SU(N) chain

    International Nuclear Information System (INIS)

    Foerster, Angela; Roditi, Itzhak; Rodrigues, Ligia M.C.S.

    1996-03-01

    We analyse integrable models associated to a multi parametric SU(N) R-matrix. We show that the Hamiltonians describe SU(N) chains with twisted boundary conditions and that the underlying algebraic structure is the multi parametric deformation of SU(N) enlarged by the introduction of a central element. (author). 15 refs

  12. Statistical time series methods for damage diagnosis in a scale aircraft skeleton structure: loosened bolts damage scenarios

    International Nuclear Information System (INIS)

    Kopsaftopoulos, Fotis P; Fassois, Spilios D

    2011-01-01

    A comparative assessment of several vibration based statistical time series methods for Structural Health Monitoring (SHM) is presented via their application to a scale aircraft skeleton laboratory structure. A brief overview of the methods, which are either scalar or vector type, non-parametric or parametric, and pertain to either the response-only or excitation-response cases, is provided. Damage diagnosis, including both the detection and identification subproblems, is tackled via scalar or vector vibration signals. The methods' effectiveness is assessed via repeated experiments under various damage scenarios, with each scenario corresponding to the loosening of one or more selected bolts. The results of the study confirm the 'global' damage detection capability and effectiveness of statistical time series methods for SHM.

  13. Parametric Thinking in Urban Design

    DEFF Research Database (Denmark)

    Steinø, Nicolai

    2010-01-01

    The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without the appli...... of the paper. The pros and cons of this simple approach is discussed, and the paper con- cludes, that while it does not represent a suitable solution in all cases, it fills a gap among the existing approaches to parametric urban de- sign.......The paper states that most applications of parametric mod- elling to architecture and urban design fall into one of two strands of either form for form’s sake, or the negotiation of environmental con- cerns, while approaches which allow scenarios to be easily tested and modified without...

  14. Towards a parametrization of multiparticle hadronic reactions

    International Nuclear Information System (INIS)

    Giffon, M.; Hama, Y.; Predazzi, E.

    1979-11-01

    An explicit parametrization of high energy exclusive production cross-sections is shown to give a reasonable account of inclusive data. This is a first step towards a phenomenological parametrization of multiparticle hadronic amplitudes

  15. Global methods for reinforced concrete slabs

    International Nuclear Information System (INIS)

    Hoffmann, A.; Lepareux, M.; Combescure, A.

    1985-08-01

    This paper develops the global method strategy to compute elastoplastic thin shells or beams. It is shown how this methodology can be applied to the case of reinforced concrete structures. Two cases of applications are presented: one static, the other dynamic. The numerical results are compared to experimental data

  16. Current-driven parametric resonance in magnetic multilayers

    International Nuclear Information System (INIS)

    Wang, C; Seinige, H; Tsoi, M

    2013-01-01

    Current-induced parametric excitations were observed in point-contact spin-valve nanodevices. Point contacts were used to inject high densities of direct and microwave currents into spin valves, thus producing oscillating spin-transfer and Oersted-field torques on magnetic moments. The resulting magnetodynamics were observed electrically by measuring rectified voltage signals across the contact. In addition to the spin-torque-driven ferromagnetic resonance we observe doubled-frequency signals which correspond to the parametric excitation of magnetic moments. Numerical simulations suggest that while both spin-transfer torque and ac Oersted field contribute to the parametrically excited dynamics, the ac spin torque dominates, and dc spin torque can switch it on and off. The dc bias dependence of the parametric resonance signal enabled the mapping of instability regions characterizing the nonlinearity of the oscillation. (paper)

  17. Similar estimates of temperature impacts on global wheat yield by three independent methods

    DEFF Research Database (Denmark)

    Liu, Bing; Asseng, Senthold; Müller, Christoph

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produ......-method ensemble, it was possible to quantify ‘method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.......The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce...... similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries...

  18. Global Optimization Ensemble Model for Classification Methods

    Science.gov (United States)

    Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab

    2014-01-01

    Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382

  19. Global Optimization Ensemble Model for Classification Methods

    Directory of Open Access Journals (Sweden)

    Hina Anwar

    2014-01-01

    Full Text Available Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity.

  20. Angular spectrum characters of high gain non-critical phase match optical parametric oscillators

    International Nuclear Information System (INIS)

    Liu Jian-Hui; Liu Qiang; Gong Ma-Li

    2011-01-01

    The angular spectrum gain characters and the power magnification characters of high gain non-walk-off colinear optical parametric oscillators have been studied using the non-colinear phase match method for the first time. The experimental results of the KTiOAsO 4 and the KTiOPO 4 crystals are discussed in detail. At the high energy single resonant condition, low reflective ratio of the output mirror for the signal and long non-linear crystal are beneficial for small divergence angles. This method can also be used for other high gain non-walk-off phase match optical parametric processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  1. Comparison of computed tomography based parametric and patient-specific finite element models of the healthy and metastatic spine using a mesh-morphing algorithm.

    Science.gov (United States)

    O'Reilly, Meaghan Anne; Whyne, Cari Marisa

    2008-08-01

    A comparative analysis of parametric and patient-specific finite element (FE) modeling of spinal motion segments. To develop patient-specific FE models of spinal motion segments using mesh-morphing methods applied to a parametric FE model. To compare strain and displacement patterns in parametric and morphed models for both healthy and metastatically involved vertebrae. Parametric FE models may be limited in their ability to fully represent patient-specific geometries and material property distributions. Generation of multiple patient-specific FE models has been limited because of computational expense. Morphing methods have been successfully used to generate multiple specimen-specific FE models of caudal rat vertebrae. FE models of a healthy and a metastatic T6-T8 spinal motion segment were analyzed with and without patient-specific material properties. Parametric and morphed models were compared using a landmark-based morphing algorithm. Morphing of the parametric FE model and including patient-specific material properties both had a strong impact on magnitudes and patterns of vertebral strain and displacement. Small but important geometric differences can be represented through morphing of parametric FE models. The mesh-morphing algorithm developed provides a rapid method for generating patient-specific FE models of spinal motion segments.

  2. Determination of global heart function parameters

    International Nuclear Information System (INIS)

    Adam, W.E.; Hoffmann, H.; Sigel, H.; Bitter, F.; Nechwatal, W.; Stauch, M.; Ulm Univ.; Freiburg Univ.

    1980-01-01

    1. ECG-triggered scintigraphy of the interior of the heart (radioactive ventriculography) is a reliable non-invasive technique for the acquisition of the global and regional function of the left ventricle. 2. The most important global parameter is the output function (OF) of the left ventricle. It can be measured exactly. The decrease of the OF under load is typical for coronary insufficience under load, but is not specifically. 3. A movement disturbance on the ground of a KHK is recognized with highest sensitivity at the decrease of the maximum relaxation velocity of the global left-ventricular time-activity characteristic (fast phase of filling). 4. Regional wall movement disturbances can be measured quantitatively by means of viewing the radioactive nucleid ventriculogramm at the display. 5. The quantitative measurement of the regional function needs an extensive analysis of the local time-activity characteristics of a representative coronary cycle. For this the amplitude and phase and the contraction and relaxation velocity of all time-activity characteristics is determined by Fourier analysis and their spatial distribution is drawn (parametric scan). 6. The parametric scans (distribution of amplitude, phase, contraction and relaxation velocities) describe the regional wall movement in detail, the reliability of its quantitative acquisition has to be approved by further investigations. (orig.) [de

  3. Nonlinear oscillations of the FitzHugh-Nagumo equations under combined external and two-frequency parametric excitations

    International Nuclear Information System (INIS)

    Tatchim Bemmo, D.; Siewe Siewe, M.; Tchawoua, C.

    2011-01-01

    The continuous FitzHugh-Nagumo (FHN for short) model is transformed into modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations. At the first, the dependence of the solutions on a combined external and two-frequency parametric stimulus forcing is investigated. By using the multiple scale method, ranges of applied current and/or parametric forcing in which nonlinear oscillations are observed are described. Second, when the multiple scale method cannot be used, we numerically prove that in the modified van der Pol oscillator with asymmetry under external and two-frequency parametric excitations, chaos and periodic solution depending on the combination between different frequencies of the model should appear. We also show that the amplitude of the oscillations can be reduced or increased. To do this, we perform the study of the FHN model by choosing a range of parameters exhibiting Hopf bifurcation and two qualitative different regimes in phase portrait. - Highlights: → We model both external and two-frequency parametric excitations in FHN equations. → We examine effects of harmonic forcing on coupled nonlinear oscillator. → Jump and hysteresis phenomena are observed in the dynamical response. → By increasing the constant stimulus we obtain limit cycle. → Some combinations of frequencies produce limit cycle and chaos for other.

  4. Developmental models for estimating ecological responses to environmental variability: structural, parametric, and experimental issues.

    Science.gov (United States)

    Moore, Julia L; Remais, Justin V

    2014-03-01

    Developmental models that account for the metabolic effect of temperature variability on poikilotherms, such as degree-day models, have been widely used to study organism emergence, range and development, particularly in agricultural and vector-borne disease contexts. Though simple and easy to use, structural and parametric issues can influence the outputs of such models, often substantially. Because the underlying assumptions and limitations of these models have rarely been considered, this paper reviews the structural, parametric, and experimental issues that arise when using degree-day models, including the implications of particular structural or parametric choices, as well as assumptions that underlie commonly used models. Linear and non-linear developmental functions are compared, as are common methods used to incorporate temperature thresholds and calculate daily degree-days. Substantial differences in predicted emergence time arose when using linear versus non-linear developmental functions to model the emergence time in a model organism. The optimal method for calculating degree-days depends upon where key temperature threshold parameters fall relative to the daily minimum and maximum temperatures, as well as the shape of the daily temperature curve. No method is shown to be universally superior, though one commonly used method, the daily average method, consistently provides accurate results. The sensitivity of model projections to these methodological issues highlights the need to make structural and parametric selections based on a careful consideration of the specific biological response of the organism under study, and the specific temperature conditions of the geographic regions of interest. When degree-day model limitations are considered and model assumptions met, the models can be a powerful tool for studying temperature-dependent development.

  5. Bianchi surfaces: integrability in an arbitrary parametrization

    International Nuclear Information System (INIS)

    Nieszporski, Maciej; Sym, Antoni

    2009-01-01

    We discuss integrability of normal field equations of arbitrarily parametrized Bianchi surfaces. A geometric definition of the Bianchi surfaces is presented as well as the Baecklund transformation for the normal field equations in an arbitrarily chosen surface parametrization.

  6. Renormalization group equation and scaling solutions for f(R) gravity in exponential parametrization

    International Nuclear Information System (INIS)

    Ohta, Nobuyoshi; Percacci, Roberto; Vacca, Gian Paolo

    2016-01-01

    We employ the exponential parametrization of the metric and a ''physical'' gauge fixing procedure to write a functional flow equation for the gravitational effective average action in an f(R) truncation. The background metric is a four-sphere and the coarse-graining procedure contains three free parameters. We look for scaling solutions, i.e. non-Gaussian fixed points for the function f. For a discrete set of values of the parameters, we find simple global solutions of quadratic polynomial form. For other values, global solutions can be found numerically. Such solutions can be extended in certain regions of parameter space and have two relevant directions. We discuss the merits and the shortcomings of this procedure. (orig.)

  7. Parametric Net Influx Rate Images of 68Ga-DOTATOC and 68Ga-DOTATATE: Quantitative Accuracy and Improved Image Contrast.

    Science.gov (United States)

    Ilan, Ezgi; Sandström, Mattias; Velikyan, Irina; Sundin, Anders; Eriksson, Barbro; Lubberink, Mark

    2017-05-01

    68 Ga-DOTATOC and 68 Ga-DOTATATE are radiolabeled somatostatin analogs used for the diagnosis of somatostatin receptor-expressing neuroendocrine tumors (NETs), and SUV measurements are suggested for treatment monitoring. However, changes in net influx rate ( K i ) may better reflect treatment effects than those of the SUV, and accordingly there is a need to compute parametric images showing K i at the voxel level. The aim of this study was to evaluate parametric methods for computation of parametric K i images by comparison to volume of interest (VOI)-based methods and to assess image contrast in terms of tumor-to-liver ratio. Methods: Ten patients with metastatic NETs underwent a 45-min dynamic PET examination followed by whole-body PET/CT at 1 h after injection of 68 Ga-DOTATOC and 68 Ga-DOTATATE on consecutive days. Parametric K i images were computed using a basis function method (BFM) implementation of the 2-tissue-irreversible-compartment model and the Patlak method using a descending aorta image-derived input function, and mean tumor K i values were determined for 50% isocontour VOIs and compared with K i values based on nonlinear regression (NLR) of the whole-VOI time-activity curve. A subsample of healthy liver was delineated in the whole-body and K i images, and tumor-to-liver ratios were calculated to evaluate image contrast. Correlation ( R 2 ) and agreement between VOI-based and parametric K i values were assessed using regression and Bland-Altman analysis. Results: The R 2 between NLR-based and parametric image-based (BFM) tumor K i values was 0.98 (slope, 0.81) and 0.97 (slope, 0.88) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. For Patlak analysis, the R 2 between NLR-based and parametric-based (Patlak) tumor K i was 0.95 (slope, 0.71) and 0.92 (slope, 0.74) for 68 Ga-DOTATOC and 68 Ga-DOTATATE, respectively. There was no bias between NLR and parametric-based K i values. Tumor-to-liver contrast was 1.6 and 2.0 times higher in the parametric

  8. PARAMETRIC DRAWINGS VS. AUTOLISP

    Directory of Open Access Journals (Sweden)

    PRUNĂ Liviu

    2015-06-01

    Full Text Available In this paper the authors make a critical analysis of the advantages offered by the parametric drawing use by comparison with the AutoLISP computer programs used when it comes about the parametric design. Studying and analysing these two work models the authors have got to some ideas and conclusions which should be considered in the moment in that someone must to decide if it is the case to elaborate a software, using the AutoLISP language, or to establish the base rules that must be followed by the drawing, in the idea to construct outlines or blocks which can be used in the projection process.

  9. THE METHOD OF GLOBAL READING FROM AN INTERDISCIPLINARY PERSPECTIVE

    Directory of Open Access Journals (Sweden)

    Jasmina Delcheva Dizdarevikj

    2018-04-01

    Full Text Available Primary literacy in Macedonian education is in decline. This assertion has been proved both by the abstract theory, and by the concrete empirical data. Educational reforms in the national curriculum are on their way, and the implementation of the method of global reading is one of the main innovations. Misunderstanding of this method has led it its being criticized as a foreign import and as unnatural and incongruous for the specificities of the Macedonian language. We think that this argument is wrong. That is why this paper is going to extrapolate and explain the method of global learning and its basis in pedagogy, philosophy, psychology, anthropology and linguistics. The main premise of this paper is the relation of the part to the whole, understood from the different perspectives of philosophy, psychology, linguistics and anthropology. The theories of Kant, Cassirer, Bruner, Benveniste and Geertz are going to be considered in the context of the part – whole problem, by themselves, and also in their relation to the method of global reading.

  10. Pump to signal noise transfer in parametric fiber amplifiers

    DEFF Research Database (Denmark)

    Lund-Hansen, Toke; Rottwitt, Karsten; Peucheret, Christophe

    2010-01-01

    Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal.......Fiber optic parametric amplifiers have been suggested due to their potential low spontaneous emission. However, by nature the parametric amplifier only work in a forward pumped configuration, which result in transfer of relative intensity noise in the pump to the signal....

  11. Pixel-based parametric source depth map for Cerenkov luminescence imaging

    International Nuclear Information System (INIS)

    Altabella, L.; Spinelli, A.E.; Boschi, F.

    2016-01-01

    Optical tomography represents a challenging problem in optical imaging because of the intrinsically ill-posed inverse problem due to photon diffusion. Cerenkov luminescence tomography (CLT) for optical photons produced in tissues by several radionuclides (i.e.: 32P, 18F, 90Y), has been investigated using both 3D multispectral approach and multiviews methods. Difficult in convergence of 3D algorithms can discourage to use this technique to have information of depth and intensity of source. For these reasons, we developed a faster 2D corrected approach based on multispectral acquisitions, to obtain source depth and its intensity using a pixel-based fitting of source intensity. Monte Carlo simulations and experimental data were used to develop and validate the method to obtain the parametric map of source depth. With this approach we obtain parametric source depth maps with a precision between 3% and 7% for MC simulation and 5–6% for experimental data. Using this method we are able to obtain reliable information about the source depth of Cerenkov luminescence with a simple and flexible procedure

  12. GLOBAL LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PROSUCTS

    Directory of Open Access Journals (Sweden)

    K. Fukue

    2016-06-01

    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  13. Parametric Human Movements

    DEFF Research Database (Denmark)

    Herzog, Dennis

    adapt the primitives to the actual appearance of the tracked motion, since the appearance of actions depends on the object locations. From the recognition perspective, it is necessary to recognize a performed action, but the understanding requires also the recovery of the action parameters, which can......The thesis aims at the learning of action primitives and their application on the perceptive side (tracking/recognition) and the generative side (synthesizing for robot control). A motivation is to use a unified primitive representation applicable on both sides. The thesis considers arm actions...... with an investigation of PHMM training methods and structures to utilize the PHMM as a unified representation of parametric primitives, which is adequate for recognition and for synthesis. This is evaluated on a large motion data set. Main contributions of the thesis are the development and evaluation of approaches...

  14. Nonlinear Dynamical Analysis for the Cable Excited with Parametric and Forced Excitation

    Directory of Open Access Journals (Sweden)

    C. Z. Qian

    2014-01-01

    Full Text Available Considering the deck vibration effect on the cable in cable-stayed bridge, using nonlinear structure dynamics theory, the nonlinear dynamical equation for the stayed cable excited with deck vibration is proposed. Research shows that the vertical vibration of the deck has a combined parametric and forced excitation effect on the cable when the angle of the cable is taken into consideration. Using multiscale method, the 1/2 principle parametric resonance is studied and the bifurcation equation is obtained. Despite the parameters analysis, the bifurcation characters of the dynamical system are studied. At last, by means of numerical method and software MATHMATIC, the effect rules of system parameters to the dynamical behavior of the system are studied, and some useful conclusions are obtained.

  15. Efficient primary and parametric resonance excitation of bistable resonators

    KAUST Repository

    Ramini, Abdallah

    2016-09-12

    We experimentally demonstrate an efficient approach to excite primary and parametric (up to the 4th) resonance of Microelectromechanical system MEMS arch resonators with large vibrational amplitudes. A single crystal silicon in-plane arch microbeam is fabricated such that it can be excited axially from one of its ends by a parallel-plate electrode. Its micro/nano scale vibrations are transduced using a high speed camera. Through the parallel-plate electrode, a time varying electrostatic force is applied, which is converted into a time varying axial force that modulates dynamically the stiffness of the arch resonator. Due to the initial curvature of the structure, not only parametric excitation is induced, but also primary resonance. Experimental investigation is conducted comparing the response of the arch near primary resonance using the axial excitation to that of a classical parallel-plate actuation where the arch itself forms an electrode. The results show that the axial excitation can be more efficient and requires less power for primary resonance excitation. Moreover, unlike the classical method where the structure is vulnerable to the dynamic pull-in instability, the axial excitation technique can provide large amplitude motion while protecting the structure from pull-in. In addition to primary resonance, parametrical resonances are demonstrated at twice, one-half, and two-thirds the primary resonance frequency. The ability to actuate primary and/or parametric resonances can serve various applications, such as for resonator based logic and memory devices. (C) 2016 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

  16. An algorithm for full parametric solution of problems on the statics of orthotropic plates by the method of boundary states with perturbations

    Science.gov (United States)

    Penkov, V. B.; Ivanychev, D. A.; Novikova, O. S.; Levina, L. V.

    2018-03-01

    The article substantiates the possibility of building full parametric analytical solutions of mathematical physics problems in arbitrary regions by means of computer systems. The suggested effective means for such solutions is the method of boundary states with perturbations, which aptly incorporates all parameters of an orthotropic medium in a general solution. We performed check calculations of elastic fields of an anisotropic rectangular region (test and calculation problems) for a generalized plane stress state.

  17. Bayesian non parametric modelling of Higgs pair production

    Directory of Open Access Journals (Sweden)

    Scarpa Bruno

    2017-01-01

    Full Text Available Statistical classification models are commonly used to separate a signal from a background. In this talk we face the problem of isolating the signal of Higgs pair production using the decay channel in which each boson decays into a pair of b-quarks. Typically in this context non parametric methods are used, such as Random Forests or different types of boosting tools. We remain in the same non-parametric framework, but we propose to face the problem following a Bayesian approach. A Dirichlet process is used as prior for the random effects in a logit model which is fitted by leveraging the Polya-Gamma data augmentation. Refinements of the model include the insertion in the simple model of P-splines to relate explanatory variables with the response and the use of Bayesian trees (BART to describe the atoms in the Dirichlet process.

  18. Climatic irregular staircases: generalized acceleration of global warming.

    Science.gov (United States)

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  19. Housing price prediction: parametric versus semi-parametric spatial hedonic models

    Science.gov (United States)

    Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema

    2018-01-01

    House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.

  20. Quantum tomography enhanced through parametric amplification

    Science.gov (United States)

    Knyazev, E.; Spasibko, K. Yu; Chekhova, M. V.; Khalili, F. Ya

    2018-01-01

    Quantum tomography is the standard method of reconstructing the Wigner function of quantum states of light by means of balanced homodyne detection. The reconstruction quality strongly depends on the photodetectors quantum efficiency and other losses in the measurement setup. In this article we analyze in detail a protocol of enhanced quantum tomography, proposed by Leonhardt and Paul [1] which allows one to reduce the degrading effect of detection losses. It is based on phase-sensitive parametric amplification, with the phase of the amplified quadrature being scanned synchronously with the local oscillator phase. Although with sufficiently strong amplification the protocol enables overcoming any detection inefficiency, it was so far not implemented in the experiment, probably due to the losses in the amplifier. Here we discuss a possible proof-of-principle experiment with a traveling-wave parametric amplifier. We show that with the state-of-the-art optical elements, the protocol enables high fidelity tomographic reconstruction of bright non-classical states of light. We consider two examples: bright squeezed vacuum and squeezed single-photon state, with the latter being a non-Gaussian state and both strongly affected by the losses.

  1. A semi-parametric within-subject mixture approach to the analyses of responses and response times.

    Science.gov (United States)

    Molenaar, Dylan; Bolsinova, Maria; Vermunt, Jeroen K

    2018-05-01

    In item response theory, modelling the item response times in addition to the item responses may improve the detection of possible between- and within-subject differences in the process that resulted in the responses. For instance, if respondents rely on rapid guessing on some items but not on all, the joint distribution of the responses and response times will be a multivariate within-subject mixture distribution. Suitable parametric methods to detect these within-subject differences have been proposed. In these approaches, a distribution needs to be assumed for the within-class response times. In this paper, it is demonstrated that these parametric within-subject approaches may produce false positives and biased parameter estimates if the assumption concerning the response time distribution is violated. A semi-parametric approach is proposed which resorts to categorized response times. This approach is shown to hardly produce false positives and parameter bias. In addition, the semi-parametric approach results in approximately the same power as the parametric approach. © 2017 The British Psychological Society.

  2. Entanglement in a parametric converter

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Su-Yong; Qamar, Shahid; Lee, Hai-Woong; Zubairy, M Suhail [Center for Quantum Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan)], E-mail: shahid_qamar@pieas.edu.pk, E-mail: zubairy@physics.tamu.edu

    2008-07-28

    In this paper, we consider a parametric converter as a source of entangled radiation. We examine recently derived conditions (Hillery and Zubairy 2006 Phys. Rev. Lett. 96 050503, Duan et al 2000 Phys. Rev. Lett. 84 2722) for determining when the two output modes in a parametric converter are entangled. We show that for different initial field states, the two criteria give different conditions that ensure that the output states are entangled. We also present an input-output calculation for the entanglement of the output field.

  3. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    International Nuclear Information System (INIS)

    Kimura, Masayuki; Matsushita, Yasuo; Hikihara, Takashi

    2016-01-01

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  4. Parametric resonance of intrinsic localized modes in coupled cantilever arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masayuki, E-mail: kimura.masayuki.8c@kyoto-u.ac.jp [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan); Matsushita, Yasuo [Advanced Mathematical Institute, Osaka City University, 3-3-138 Sughimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Hikihara, Takashi [Department of Electrical Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2016-08-19

    In this study, the parametric resonances of pinned intrinsic localized modes (ILMs) were investigated by computing the unstable regions in parameter space consisting of parametric excitation amplitude and frequency. In the unstable regions, the pinned ILMs were observed to lose stability and begin to fluctuate. A nonlinear Klein–Gordon, Fermi–Pasta–Ulam-like, and mixed lattices were investigated. The pinned ILMs, particularly in the mixed lattice, were destabilized by parametric resonances, which were determined by comparing the shapes of the unstable regions with those in the Mathieu differential equation. In addition, traveling ILMs could be generated by parametric excitation. - Highlights: • Destabilization of intrinsic localized modes (ILMs) by parametric excitation is investigated for FPU, NKG, and mixed lattices. • Frequency and amplitude of parametric excitation is determined based on characteristic multipliers of ILMs. • Unstable regions for the mixed lattice case show very similar shape to those of the Mathieu equation. • ILMs become unstable by causing parametric resonance.

  5. Linear Parametric Model Checking of Timed Automata

    DEFF Research Database (Denmark)

    Hune, Tohmas Seidelin; Romijn, Judi; Stoelinga, Mariëlle

    2001-01-01

    We present an extension of the model checker Uppaal capable of synthesize linear parameter constraints for the correctness of parametric timed automata. The symbolic representation of the (parametric) state-space is shown to be correct. A second contribution of this paper is the identication...... of a subclass of parametric timed automata (L/U automata), for which the emptiness problem is decidable, contrary to the full class where it is know to be undecidable. Also we present a number of lemmas enabling the verication eort to be reduced for L/U automata in some cases. We illustrate our approach...

  6. Getting agile methods to work for Cordys global software product development

    NARCIS (Netherlands)

    van Hillegersberg, Jos; Ligtenberg, Gerwin; Aydin, M.N.; Kotlarsky, J.; Willcocks, L.P.; Oshri, I.

    2011-01-01

    Getting agile methods to work in global software development is a potentially rewarding but challenging task. Agile methods are relatively young and still maturing. The application to globally distributed projects is in its early stages. Various guidelines on how to apply and sometimes adapt agile

  7. Continuous/discrete non parametric Bayesian belief nets with UNICORN and UNINET

    NARCIS (Netherlands)

    Cooke, R.M.; Kurowicka, D.; Hanea, A.M.; Morales Napoles, O.; Ababei, D.A.; Ale, B.J.M.; Roelen, A.

    2007-01-01

    Hanea et al. (2006) presented a method for quantifying and computing continuous/discrete non parametric Bayesian Belief Nets (BBN). Influences are represented as conditional rank correlations, and the joint normal copula enables rapid sampling and conditionalization. Further mathematical background

  8. MEMS digital parametric loudspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-03-23

    This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.

  9. MEMS digital parametric loudspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    This paper reports on the design and fabrication of MEMS actuator arrays suitable for Digital Sound reconstruction and Parametric Directional Loudspeakers. Two distinct versions of the device were fabricated: one using the electrostatic principle actuation and the other one, the piezoelectric principle. Both versions used similar membrane dimensions, with a diameter of 500 μm. These devices are the smallest Micro-Machined Ultrasound Transducer (MUT) arrays that can be operated for both modes: Digital Sound Reconstruction and Parametric Loudspeaker. The chips consist of an array with 256 transducers, in a footprint of 12 mm by 12 mm. The total single chip size is: 2.3 cm by 2.3 cm, including the contact pads. © 2016 IEEE.

  10. How important is biological ice nucleation in clouds on a global scale?

    International Nuclear Information System (INIS)

    Hoose, C; Kristjansson, J E; Burrows, S M

    2010-01-01

    The high ice nucleating ability of some biological particles has led to speculations about living and dead organisms being involved in cloud ice and precipitation formation, exerting a possibly significant influence on weather and climate. In the present study, the role of primary biological aerosol particles (PBAPs) as heterogeneous ice nuclei is investigated with a global model. Emission parametrizations for bacteria, fungal spores and pollen based on recent literature are introduced, as well as an immersion freezing parametrization based on classical nucleation theory and laboratory measurements. The simulated contribution of PBAPs to the global average ice nucleation rate is only 10 -5 %, with an uppermost estimate of 0.6%. At the same time, observed PBAP concentrations in air and biological ice nucleus concentrations in snow are reasonably well captured by the model. This implies that 'bioprecipitation' processes (snow and rain initiated by PBAPs) are of minor importance on the global scale.

  11. Robust Parametric Control of Spacecraft Rendezvous

    Directory of Open Access Journals (Sweden)

    Dake Gu

    2014-01-01

    Full Text Available This paper proposes a method to design the robust parametric control for autonomous rendezvous of spacecrafts with the inertial information with uncertainty. We consider model uncertainty of traditional C-W equation to formulate the dynamic model of the relative motion. Based on eigenstructure assignment and model reference theory, a concise control law for spacecraft rendezvous is proposed which could be fixed through solving an optimization problem. The cost function considers the stabilization of the system and other performances. Simulation results illustrate the robustness and effectiveness of the proposed control.

  12. Parametric resonance in neutrino oscillations in matter

    Indian Academy of Sciences (India)

    Neutrino oscillations in matter can exhibit a specific resonance enhancement - parametric resonance, which is different from the MSW resonance. Oscillations of atmospheric and solar neutrinos inside the earth can undergo parametric enhancement when neutrino trajectories cross the core of the earth. In this paper we ...

  13. On Algebraic Approach for MSD Parametric Estimation

    OpenAIRE

    Oueslati , Marouene; Thiery , Stéphane; Gibaru , Olivier; Béarée , Richard; Moraru , George

    2011-01-01

    This article address the identification problem of the natural frequency and the damping ratio of a second order continuous system where the input is a sinusoidal signal. An algebra based approach for identifying parameters of a Mass Spring Damper (MSD) system is proposed and compared to the Kalman-Bucy filter. The proposed estimator uses the algebraic parametric method in the frequency domain yielding exact formula, when placed in the time domain to identify the unknown parameters. We focus ...

  14. Parametric Conversion Using Custom MOS Varactors

    Directory of Open Access Journals (Sweden)

    Iniewski Krzysztof (Kris

    2006-01-01

    Full Text Available The possible role of customized MOS varactors in amplification, mixing, and frequency control of future millimeter wave CMOS RFICs is outlined. First, the parametric conversion concept is revisited and discussed in terms of modern RF communications systems. Second, the modeling, design, and optimization of MOS varactors are reconsidered in the context of their central role in parametric circuits. Third, a balanced varactor structure is proposed for robust oscillator frequency control in the presence of large extrinsic noise expected in tightly integrated wireless communicators. Main points include the proposal of a subharmonic pumping scheme based on the MOS varactor, a nonequilibrium elastance-voltage model, optimal varactor layout suggestions, custom m-CMOS varactor design and measurement, device-level balanced varactor simulations, and parametric circuit evaluation based on measured device characteristics.

  15. Parametric pendulum based wave energy converter

    Science.gov (United States)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  16. Fast and Sequence-Adaptive Whole-Brain Segmentation Using Parametric Bayesian Modeling

    DEFF Research Database (Denmark)

    Puonti, Oula; Iglesias, Juan Eugenio; Van Leemput, Koen

    2016-01-01

    the performance of a segmentation algorithm designed to meet these requirements, building upon generative parametric models previously used in tissue classification. The method is tested on four different datasets acquired with different scanners, field strengths and pulse sequences, demonstrating comparable...

  17. Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system

    Directory of Open Access Journals (Sweden)

    A. J. Geer

    2007-01-01

    Full Text Available This paper evaluates the performance of various linear ozone photochemistry parametrizations using the stratosphere-troposphere data assimilation system of the Met Office. A set of experiments were run for the period 23 September 2003 to 5 November 2003 using the Cariolle (v1.0 and v2.1, LINOZ and Chem2D-OPP (v0.1 and v2.1 parametrizations. All operational meteorological observations were assimilated, together with ozone retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Experiments were validated against independent data from the Halogen Occultation Experiment (HALOE and ozonesondes. Additionally, a simple offline method for comparing the parametrizations is introduced. It is shown that in the upper stratosphere and mesosphere, outside the polar night, ozone analyses are controlled by the photochemistry parametrizations and not by the assimilated observations. The most important factor in getting good results at these levels is to pay attention to the ozone and temperature climatologies in the parametrizations. There should be no discrepancies between the climatologies and the assimilated observations or the model, but there is also a competing demand that the climatologies be objectively accurate in themselves. Conversely, in the lower stratosphere outside regions of heterogeneous ozone depletion, the ozone analyses are dominated by observational increments and the photochemistry parametrizations have little influence. We investigate a number of known problems in LINOZ and Cariolle v1.0 in more detail than previously, and we find discrepancies in Cariolle v2.1 and Chem2D-OPP v2.1, which are demonstrated to have been removed in the latest available versions (v2.8 and v2.6 respectively. In general, however, all the parametrizations work well through much of the stratosphere, helped by the presence of good quality assimilated MIPAS observations.

  18. Fast determination of plasma parameters through function parametrization

    International Nuclear Information System (INIS)

    Braams, B.J.; Jilge, W.; Lackner, K.

    1985-09-01

    The method of function parametrization, developed by H. Wind for fast data evaluation in high energy physics, is demonstrated in the context of controlled fusion research. This method relies on a statistical analysis of a large data base of simulated experiments in order to obtain a functional representation for intrinsic physical parameters of a system in terms of the values of the measurements. Rapid determination of characteristic equilibrium parameters of a tokamak discharge is shown to be a particularly indicated application. The method is employed on the ASDEX experiment to determine the following parameters of the plasma: position of the magnetic axis, geometric center, and current center; minor radius, elongation, and area of the plasma column; a normalized safety factor at the plasma boundary; the Shafranov parameter βsub(p)+lsub(i)/2; the flux difference between the plasma boundary and an external reference value; the position of the lower and upper saddle points, and the intersections of the separatrix with the four divertor plates. The relevant measurements consist of three differential poloidal flux measurements, four poloidal field measurements, the current through the multipole shaping coils, and the total plasma current. Function parametrization supplies a very accurate interpretation of these data, which is now used for online data analysis, and is also sufficiently fast to be suitable for real-time control of the plasma. (orig.)

  19. Reliable Single Chip Genotyping with Semi-Parametric Log-Concave Mixtures

    NARCIS (Netherlands)

    R.C.A. Rippe (Ralph); J.J. Meulman (Jacqueline); P.H.C. Eilers (Paul)

    2012-01-01

    textabstractThe common approach to SNP genotyping is to use (model-based) clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method,

  20. Stellar parametrization from Gaia RVS spectra

    Science.gov (United States)

    Recio-Blanco, A.; de Laverny, P.; Allende Prieto, C.; Fustes, D.; Manteiga, M.; Arcay, B.; Bijaoui, A.; Dafonte, C.; Ordenovic, C.; Ordoñez Blanco, D.

    2016-01-01

    Context. Among the myriad of data collected by the ESA Gaia satellite, about 150 million spectra will be delivered by the Radial Velocity Spectrometer (RVS) for stars as faint as GRVS~ 16. A specific stellar parametrization will be performed on most of these RVS spectra, I.e. those with enough high signal-to-noise ratio (S/N), which should correspond to single stars that have a magnitude in the RVS band brighter than ~14.5. Some individual chemical abundances will also be estimated for the brightest targets. Aims: We describe the different parametrization codes that have been specifically developed or adapted for RVS spectra within the GSP-Spec working group of the analysis consortium. The tested codes are based on optimisation (FERRE and GAUGUIN), projection (MATISSE), or pattern-recognition methods (Artificial Neural Networks). We present and discuss each of their expected performances in the recovered stellar atmospheric parameters (effective temperature, surface gravity, overall metallicity) for B- to K-type stars. The performances for determining of [α/Fe] ratios are also presented for cool stars. Methods: Each code has been homogeneously tested with a large grid of RVS simulated synthetic spectra of BAFGK-spectral types (dwarfs and giants), with metallicities varying from 10-2.5 to 10+ 0.5 the solar metallicity, and taking variations of ±0.4 dex in the composition of the α-elements into consideration. The tests were performed for S/N ranging from ten to 350. Results: For all the stellar types we considered, stars brighter than GRVS~ 12.5 are very efficiently parametrized by the GSP-Spec pipeline, including reliable estimations of [α/Fe]. Typical internal errors for FGK metal-rich and metal-intermediate stars are around 40 K in Teff, 0.10 dex in log(g), 0.04 dex in [M/H], and 0.03 dex in [α/Fe] at GRVS = 10.3. They degrade to 155 K in Teff, 0.15 dex in log(g), 0.10 dex in [M/H], and 0.1 dex in [α/Fe] at GRVS~ 12. Similar accuracies in Teff and [M/H] are

  1. Parametric reduced models for the nonlinear Schrödinger equation.

    Science.gov (United States)

    Harlim, John; Li, Xiantao

    2015-05-01

    Reduced models for the (defocusing) nonlinear Schrödinger equation are developed. In particular, we develop reduced models that only involve the low-frequency modes given noisy observations of these modes. The ansatz of the reduced parametric models are obtained by employing a rational approximation and a colored-noise approximation, respectively, on the memory terms and the random noise of a generalized Langevin equation that is derived from the standard Mori-Zwanzig formalism. The parameters in the resulting reduced models are inferred from noisy observations with a recently developed ensemble Kalman filter-based parametrization method. The forecasting skill across different temperature regimes are verified by comparing the moments up to order four, a two-time correlation function statistics, and marginal densities of the coarse-grained variables.

  2. Developing Parametric Models for the Assembly of Machine Fixtures for Virtual Multiaxial CNC Machining Centers

    Science.gov (United States)

    Balaykin, A. V.; Bezsonov, K. A.; Nekhoroshev, M. V.; Shulepov, A. P.

    2018-01-01

    This paper dwells upon a variance parameterization method. Variance or dimensional parameterization is based on sketching, with various parametric links superimposed on the sketch objects and user-imposed constraints in the form of an equation system that determines the parametric dependencies. This method is fully integrated in a top-down design methodology to enable the creation of multi-variant and flexible fixture assembly models, as all the modeling operations are hierarchically linked in the built tree. In this research the authors consider a parameterization method of machine tooling used for manufacturing parts using multiaxial CNC machining centers in the real manufacturing process. The developed method allows to significantly reduce tooling design time when making changes of a part’s geometric parameters. The method can also reduce time for designing and engineering preproduction, in particular, for development of control programs for CNC equipment and control and measuring machines, automate the release of design and engineering documentation. Variance parameterization helps to optimize construction of parts as well as machine tooling using integrated CAE systems. In the framework of this study, the authors demonstrate a comprehensive approach to parametric modeling of machine tooling in the CAD package used in the real manufacturing process of aircraft engines.

  3. Two-parametric PT-symmetric quartic family

    International Nuclear Information System (INIS)

    Eremenko, Alexandre; Gabrielov, Andrei

    2012-01-01

    We describe a parametrization of the real spectral locus of the two-parametric family of PT-symmetric quartic oscillators. For this family, we find a parameter region where all eigenvalues are real, extending the results of Dorey et al (2007 J. Phys. A: Math Theor. 40 R205–83) and Shin (2005 J. Phys. A: Math. Gen. 38 6147–66; 2002 Commun. Math. Phys. 229 543–64). (paper)

  4. Solving Unconstrained Global Optimization Problems via Hybrid Swarm Intelligence Approaches

    Directory of Open Access Journals (Sweden)

    Jui-Yu Wu

    2013-01-01

    Full Text Available Stochastic global optimization (SGO algorithms such as the particle swarm optimization (PSO approach have become popular for solving unconstrained global optimization (UGO problems. The PSO approach, which belongs to the swarm intelligence domain, does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods. Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social parameter, and constriction coefficient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO method and an artificial immune algorithm-based PSO (AIA-PSO method. The specific parameters of the internal PSO algorithm are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems. The performances of the proposed RGA-PSO and AIA-PSO algorithms are then evaluated using a set of benchmark UGO problems. Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can be considered alternative SGO approaches for solving standard-dimensional UGO problems.

  5. GLOBAL STABILITY AND PERIODIC SOLUTION OF A VIRAL DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    Erhan COŞKUN

    2009-02-01

    Full Text Available Abstract:In this paper, we consider the classical viral dynamic mathematical model. Global dynamics of the model is rigorously established. We prove that, if the basic reproduction number, the HIV infection is cleared from the T-cell population; if , the HIV infection persists. For an open set of parameter values, the chronic-infection equilibrium can be unstable and periodic solutions may exist. We establish parameter regions for which is globally stable. Keywords: Global stability, HIV infection; CD4+ T cells; Periodic solution Mathematics Subject Classifications (2000: 65L10, 34B05 BİR VİRAL DİNAMİK MODELİN GLOBAL KARARLILIĞI VE PERİYODİK ÇÖZÜMÜ Özet: Bu makalede klasik viral dinamik modeli ele aldık. Modelin global dinamikleri oluşturuldu. Eğer temel üretim sayısı olur ise HIV enfeksiyonu T hücre nüfusundan çıkartılır, eğer olursa HIV enfeksiyonu çıkartılamaz. Parametre değerlerinin açık bir kümesi için kronik enfeksiyon dengesi kararsızdır ve periyodik çözüm oluşabilir. ın global kararlı olduğu parametre bölgeleri oluşturuldu. Anahtar Kelimeler: Global Kararlılık, HIV enfeksiyon, CD4+ T hücreler, Periyodik çözüm

  6. Design of parametric software tools

    DEFF Research Database (Denmark)

    Sabra, Jakob Borrits; Mullins, Michael

    2011-01-01

    The studies investigate the field of evidence-based design used in architectural design practice and propose a method using 2D/3D CAD applications to: 1) enhance integration of evidence-based design knowledge in architectural design phases with a focus on lighting and interior design and 2) assess...... fulfilment of evidence-based design criterion regarding light distribution and location in relation to patient safety in architectural health care design proposals. The study uses 2D/3D CAD modelling software Rhinoceros 3D with plug-in Grasshopper to create parametric tool prototypes to exemplify...... the operations and functions of the design method. To evaluate the prototype potentials, surveys with architectural and healthcare design companies are conducted. Evaluation is done by the administration of questionnaires being part of the development of the tools. The results show that architects, designers...

  7. Four-photon parametric light scattering of ultrashort laser pulses in water in case of weak self-phase modulation

    International Nuclear Information System (INIS)

    Babenko, V A; Sychev, Andrei A

    2009-01-01

    The hyper-Raman scattering (HRS) of light in water is detected reliably by the active spectroscopy method of coherent light scattering, in particular, by the method of four-photon parametric light scattering in a medium in which HRS is a 'signal' wave in the parametric process involving simultaneously two high-power laser photons and IR photons of an 'idler' wave. Hyper-Raman scattering by libration vibrations of water molecules, which virtually cannot be detected by conventional methods of Raman scattering, was observed. (nonlinear optical phenomena)

  8. GHz-rate optical parametric amplifier in hydrogenated amorphous silicon

    International Nuclear Information System (INIS)

    Wang, Ke-Yao; Foster, Amy C

    2015-01-01

    We demonstrate optical parametric amplification operating at GHz-rates at telecommunications wavelengths using a hydrogenated amorphous silicon waveguide through the nonlinear optical process of four-wave mixing. We investigate how the parametric amplification scales with repetition rate. The ability to achieve amplification at GHz-repetition rates shows hydrogenated amorphous silicon’s potential for telecommunication applications and a GHz-rate optical parametric oscillator. (paper)

  9. MTL-Model Checking of One-Clock Parametric Timed Automata is Undecidable

    Directory of Open Access Journals (Sweden)

    Karin Quaas

    2014-03-01

    Full Text Available Parametric timed automata extend timed automata (Alur and Dill, 1991 in that they allow the specification of parametric bounds on the clock values. Since their introduction in 1993 by Alur, Henzinger, and Vardi, it is known that the emptiness problem for parametric timed automata with one clock is decidable, whereas it is undecidable if the automaton uses three or more parametric clocks. The problem is open for parametric timed automata with two parametric clocks. Metric temporal logic, MTL for short, is a widely used specification language for real-time systems. MTL-model checking of timed automata is decidable, no matter how many clocks are used in the timed automaton. In this paper, we prove that MTL-model checking for parametric timed automata is undecidable, even if the automaton uses only one clock and one parameter and is deterministic.

  10. Parametric study on the behavior of an innovative subsurface tension leg platform in ultra-deep water

    Science.gov (United States)

    Zhen, Xing-wei; Huang, Yi

    2017-10-01

    This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.

  11. Parametric Audio Based Decoder and Music Synthesizer for Mobile Applications

    NARCIS (Netherlands)

    Oomen, A.W.J.; Szczerba, M.Z.; Therssen, D.

    2011-01-01

    This paper reviews parametric audio coders and discusses novel technologies introduced in a low-complexity, low-power consumption audiodecoder and music synthesizer platform developed by the authors. Thedecoder uses parametric coding scheme based on the MPEG-4 Parametric Audio standard. In order to

  12. Local and Global Path Generation for Autonomous Vehicles Using SplinesGeneración Local y Global de Trayectorias para Vehículo Autónomos Usando Splines

    Directory of Open Access Journals (Sweden)

    Randerson Lemos

    2016-05-01

    Full Text Available Abstract Context: Before autonomous vehicles being a reality in daily situations, outstanding issues regarding the techniques of autonomous mobility must be solved. Hence, relevant aspects of a path planning for terrestrial vehicles are shown. Method: The approached path planning technique uses splines to generate the global route. For this goal, waypoints obtained from online map services are used. With the global route parametrized in the arc-length, candidate local paths are computed and the optimal one is selected by cost functions. Results: Different routes are used to show that the number and distribution of waypoints are highly correlated to a satisfactory arc-length parameterization of the global route, which is essential to the proper behavior of the path planning technique. Conclusions: The cubic splines approach to the path planning problem successfully generates the global and local paths. Nevertheless, the use of raw data from the online map services showed to be unfeasible due the consistency of the data. Hence, a preprocessing stage of the raw data is proposed to guarantee the well behavior and robustness of the technique.

  13. Study of the long-term values and prices of plutonium; a simplified parametrized model; Etude des valeurs et des prix du plutonium a long terme; un modele parametre simplifie

    Energy Technology Data Exchange (ETDEWEB)

    Gaussens, J; Paillot, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The authors define the notions of use values and price of plutonium. They give a 'simplified parametrized model' simulating the equilibrium of the offer and the demand in time, concerning the plutonium and the price deriving from the relative scarcity of this metal, taking into account the technical and economic operating parameters of the various reactors confronted. This model is simple enough to allow direct computations and establish clear relations between the various parameters. The use of the linear programmes method allows on the other hand a wide extension of the model. This report includes three main parts: I - General description of the study (without detailed calculations) II - Mathematical development of the simplified parametrized model and application (the basic data and the results of the calculations are given) III - Appendices (giving the detailed computations of part II). (authors) [French] Les auteurs definissent les notions de valeurs d'usage et de prix du plutonium. Ils donnent un 'modele parametre simplifie' simulant l'equilibre de l'office et de la demande dans le temps concernant le plutonium et le prix qui decoule de la rarete relative de ce metal, compte tenu des parametres techniques et economiques de fonctionnement des divers reacteurs en presence. Ce modele est suffisamment simple pour permettre des calculs manuels et etablir des liaisons claires entre les divers parametres. L'utilisation de la technique des programmes lineaires permet par ailleurs une extension considerable du modele. Cette note comprend trois parties: I - Expose general de l'etude (sans expose du detail des calculs) II - Developpement mathematique du modele parametre simplifie et application (on precise les donnees de base et le resultat des calculs) III - Annexes (donnant le detail des calculs de la partie II). (auteurs)

  14. Theoretical Analysis of Penalized Maximum-Likelihood Patlak Parametric Image Reconstruction in Dynamic PET for Lesion Detection.

    Science.gov (United States)

    Yang, Li; Wang, Guobao; Qi, Jinyi

    2016-04-01

    Detecting cancerous lesions is a major clinical application of emission tomography. In a previous work, we studied penalized maximum-likelihood (PML) image reconstruction for lesion detection in static PET. Here we extend our theoretical analysis of static PET reconstruction to dynamic PET. We study both the conventional indirect reconstruction and direct reconstruction for Patlak parametric image estimation. In indirect reconstruction, Patlak parametric images are generated by first reconstructing a sequence of dynamic PET images, and then performing Patlak analysis on the time activity curves (TACs) pixel-by-pixel. In direct reconstruction, Patlak parametric images are estimated directly from raw sinogram data by incorporating the Patlak model into the image reconstruction procedure. PML reconstruction is used in both the indirect and direct reconstruction methods. We use a channelized Hotelling observer (CHO) to assess lesion detectability in Patlak parametric images. Simplified expressions for evaluating the lesion detectability have been derived and applied to the selection of the regularization parameter value to maximize detection performance. The proposed method is validated using computer-based Monte Carlo simulations. Good agreements between the theoretical predictions and the Monte Carlo results are observed. Both theoretical predictions and Monte Carlo simulation results show the benefit of the indirect and direct methods under optimized regularization parameters in dynamic PET reconstruction for lesion detection, when compared with the conventional static PET reconstruction.

  15. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D., E-mail: sergei.ivanov@uni-rostock.de; Kühn, Oliver [Institute of Physics, Rostock University, Universitätsplatz 3, 18055 Rostock (Germany)

    2015-06-28

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom.

  16. Parametrizing linear generalized Langevin dynamics from explicit molecular dynamics simulations

    International Nuclear Information System (INIS)

    Gottwald, Fabian; Karsten, Sven; Ivanov, Sergei D.; Kühn, Oliver

    2015-01-01

    Fundamental understanding of complex dynamics in many-particle systems on the atomistic level is of utmost importance. Often the systems of interest are of macroscopic size but can be partitioned into a few important degrees of freedom which are treated most accurately and others which constitute a thermal bath. Particular attention in this respect attracts the linear generalized Langevin equation, which can be rigorously derived by means of a linear projection technique. Within this framework, a complicated interaction with the bath can be reduced to a single memory kernel. This memory kernel in turn is parametrized for a particular system studied, usually by means of time-domain methods based on explicit molecular dynamics data. Here, we discuss that this task is more naturally achieved in frequency domain and develop a Fourier-based parametrization method that outperforms its time-domain analogues. Very surprisingly, the widely used rigid bond method turns out to be inappropriate in general. Importantly, we show that the rigid bond approach leads to a systematic overestimation of relaxation times, unless the system under study consists of a harmonic bath bi-linearly coupled to the relevant degrees of freedom

  17. Controlling Parametric Resonance

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Pettersen, Kristin Ytterstad

    2012-01-01

    the authors review the conditions for the onset of parametric resonance, and propose a nonlinear control strategy in order to both induce the resonant oscillations and to stabilize the unstable motion. Lagrange’s theory is used to derive the dynamics of the system and input–output feedback linearization...

  18. Ultrashort-pulse laser machining system employing a parametric amplifier

    Science.gov (United States)

    Perry, Michael D.

    2004-04-27

    A method and apparatus are provided for increasing the energy of chirped laser pulses to an output in the range 0.001 to over 10 millijoules at a repetition rate 0.010 to 100 kHz by using a two stage optical parametric amplifier utilizing a bulk nonlinear crystal wherein the pump and signal beam size can be independently adjusted in each stage.

  19. Evaluating a stochastic parametrization for a fast–slow system using the Wasserstein distance

    Directory of Open Access Journals (Sweden)

    G. Vissio

    2018-06-01

    Full Text Available Constructing accurate, flexible, and efficient parametrizations is one of the great challenges in the numerical modeling of geophysical fluids. We consider here the simple yet paradigmatic case of a Lorenz 84 model forced by a Lorenz 63 model and derive a parametrization using a recently developed statistical mechanical methodology based on the Ruelle response theory. We derive an expression for the deterministic and the stochastic component of the parametrization and we show that the approach allows for dealing seamlessly with the case of the Lorenz 63 being a fast as well as a slow forcing compared to the characteristic timescales of the Lorenz 84 model. We test our results using both standard metrics based on the moments of the variables of interest as well as Wasserstein distance between the projected measure of the original system on the Lorenz 84 model variables and the measure of the parametrized one. By testing our methods on reduced-phase spaces obtained by projection, we find support for the idea that comparisons based on the Wasserstein distance might be of relevance in many applications despite the curse of dimensionality.

  20. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  1. Similar estimates of temperature impacts on global wheat yield by three independent methods

    Science.gov (United States)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  2. Rapid computation of single PET scan rest-stress myocardial blood flow parametric images by table look up.

    Science.gov (United States)

    Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Ruskin, Jeremy N; Shoup, Timothy M; Woo, Jonghye; Ptaszek, Leon M; Fakhri, Georges El; Alpert, Nathaniel M

    2017-09-01

    We have recently reported a method for measuring rest-stress myocardial blood flow (MBF) using a single, relatively short, PET scan session. The method requires two IV tracer injections, one to initiate rest imaging and one at peak stress. We previously validated absolute flow quantitation in ml/min/cc for standard bull's eye, segmental analysis. In this work, we extend the method for fast computation of rest-stress MBF parametric images. We provide an analytic solution to the single-scan rest-stress flow model which is then solved using a two-dimensional table lookup method (LM). Simulations were performed to compare the accuracy and precision of the lookup method with the original nonlinear method (NLM). Then the method was applied to 16 single scan rest/stress measurements made in 12 pigs: seven studied after infarction of the left anterior descending artery (LAD) territory, and nine imaged in the native state. Parametric maps of rest and stress MBF as well as maps of left (f LV ) and right (f RV ) ventricular spill-over fractions were generated. Regions of interest (ROIs) for 17 myocardial segments were defined in bull's eye fashion on the parametric maps. The mean of each ROI was then compared to the rest (K 1r ) and stress (K 1s ) MBF estimates obtained from fitting the 17 regional TACs with the NLM. In simulation, the LM performed as well as the NLM in terms of precision and accuracy. The simulation did not show that bias was introduced by the use of a predefined two-dimensional lookup table. In experimental data, parametric maps demonstrated good statistical quality and the LM was computationally much more efficient than the original NLM. Very good agreement was obtained between the mean MBF calculated on the parametric maps for each of the 17 ROIs and the regional MBF values estimated by the NLM (K 1map LM  = 1.019 × K 1 ROI NLM  + 0.019, R 2  = 0.986; mean difference = 0.034 ± 0.036 mL/min/cc). We developed a table lookup method for fast

  3. Nanoscale electromechanical parametric amplifier

    Science.gov (United States)

    Aleman, Benjamin Jose; Zettl, Alexander

    2016-09-20

    This disclosure provides systems, methods, and apparatus related to a parametric amplifier. In one aspect, a device includes an electron source electrode, a counter electrode, and a pumping electrode. The electron source electrode may include a conductive base and a flexible conductor. The flexible conductor may have a first end and a second end, with the second end of the flexible conductor being coupled to the conductive base. A cross-sectional dimension of the flexible conductor may be less than about 100 nanometers. The counter electrode may be disposed proximate the first end of the flexible conductor and spaced a first distance from the first end of the flexible conductor. The pumping electrode may be disposed proximate a length of the flexible conductor and spaced a second distance from the flexible conductor.

  4. Parametric resonance and cooling on an atom chip

    International Nuclear Information System (INIS)

    Yan Bo; Li Xiaolin; Ke Min; Wang Yuzhu

    2008-01-01

    This paper observes the parametric excitation on atom chip by measuring the trap loss when applying a parametric modulation. By modulating the current in chip wires, it modulates not only the trap frequency but also the trap position. It shows that the strongest resonance occurs when the modulation frequency equals to the trap frequency. The resonance amplitude increases exponentially with modulation depth. Because the Z-trap is an anharmonic trap, there exists energy selective excitation which would cause parametric cooling. We confirm this effect by observing the temperature of atom cloud dropping

  5. The Direct Lighting Computation in Global Illumination Methods

    Science.gov (United States)

    Wang, Changyaw Allen

    1994-01-01

    Creating realistic images is a computationally expensive process, but it is very important for applications such as interior design, product design, education, virtual reality, and movie special effects. To generate realistic images, state-of-art rendering techniques are employed to simulate global illumination, which accounts for the interreflection of light among objects. In this document, we formalize the global illumination problem into a eight -dimensional integral and discuss various methods that can accelerate the process of approximating this integral. We focus on the direct lighting computation, which accounts for the light reaching the viewer from the emitting sources after exactly one reflection, Monte Carlo sampling methods, and light source simplification. Results include a new sample generation method, a framework for the prediction of the total number of samples used in a solution, and a generalized Monte Carlo approach for computing the direct lighting from an environment which for the first time makes ray tracing feasible for highly complex environments.

  6. Search of significant features in a direct non parametric pattern recognition method. Application to the classification of a multiwire spark chamber picture

    International Nuclear Information System (INIS)

    Buccheri, R.; Coffaro, P.; Di Gesu, V.; Salemi, S.; Colomba, G.

    1975-01-01

    Preliminary results are given of the application of a direct non parametric pattern recognition method to the classification of the pictures of a multiwire spark chamber. The method, developed in an earlier work for an optical spark chamber, looks promising. The picture sample used has with respect to the previous one, the following characteristis: a) the event pictures have a more complicated structure; b) the amount of background sparks in an event is greater; c) there exists a kind of noise which is almost always present in some structured way (double sparkling, bursts...). New features have been used to characterize the event pictures; the results show that the method could be also used as a super filter to reduce the cost of further analysis. (Auth.)

  7. On the parametric approximation in quantum optics

    Energy Technology Data Exchange (ETDEWEB)

    D' Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F. [Istituto Nazionale di Fisica Nucleare, Pavia (Italy); Pavia Univ. (Italy). Dipt. di Fisica ' Alessandro Volta'

    1999-03-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion.

  8. On the parametric approximation in quantum optics

    International Nuclear Information System (INIS)

    D'Ariano, G.M.; Paris, M.G.A.; Sacchi, M.F.; Pavia Univ.

    1999-01-01

    The authors perform the exact numerical diagonalization of Hamiltonians that describe both degenerate and nondegenerate parametric amplifiers, by exploiting the conservation laws pertaining each device. It is clarify the conditions under which the parametric approximation holds, showing that the most relevant requirements is the coherence of the pump after the interaction, rather than its un depletion

  9. Bayesian constraints on the global 21-cm signal from the Cosmic Dawn

    Science.gov (United States)

    Bernardi, G.; Zwart, J. T. L.; Price, D.; Greenhill, L. J.; Mesinger, A.; Dowell, J.; Eftekhari, T.; Ellingson, S. W.; Kocz, J.; Schinzel, F.

    2016-09-01

    The birth of the first luminous sources and the ensuing epoch of reionization are best studied via the redshifted 21-cm emission line, the signature of the first two imprinting the last. In this work, we present a fully Bayesian method, HIBAYES, for extracting the faint, global (sky-averaged) 21-cm signal from the much brighter foreground emission. We show that a simplified (but plausible) Gaussian model of the 21-cm emission from the Cosmic Dawn epoch (15 ≲ z ≲ 30), parametrized by an amplitude A_{H I}, a frequency peak ν _{H I} and a width σ _{H I}, can be extracted even in the presence of a structured foreground frequency spectrum (parametrized as a seventh-order polynomial), provided sufficient signal-to-noise (400 h of observation with a single dipole). We apply our method to an early, 19-min-long observation from the Large aperture Experiment to detect the Dark Ages, constraining the 21-cm signal amplitude and width to be -890 6.5 MHz (corresponding to Δz > 1.9 at redshift z ≃ 20) respectively at the 95-per cent confidence level in the range 13.2 ν > 50 MHz).

  10. Piezoelectric energy harvesting with parametric uncertainty

    International Nuclear Information System (INIS)

    Ali, S F; Friswell, M I; Adhikari, S

    2010-01-01

    The design and analysis of energy harvesting devices is becoming increasing important in recent years. Most of the literature has focused on the deterministic analysis of these systems and the problem of uncertain parameters has received less attention. Energy harvesting devices exhibit parametric uncertainty due to errors in measurement, errors in modelling and variability in the parameters during manufacture. This paper investigates the effect of parametric uncertainty in the mechanical system on the harvested power, and derives approximate explicit formulae for the optimal electrical parameters that maximize the mean harvested power. The maximum of the mean harvested power decreases with increasing uncertainty, and the optimal frequency at which the maximum mean power occurs shifts. The effect of the parameter variance on the optimal electrical time constant and optimal coupling coefficient are reported. Monte Carlo based simulation results are used to further analyse the system under parametric uncertainty

  11. Non-Intrusive Solution of Stochastic and Parametric Equations

    KAUST Repository

    Matthies, Hermann

    2015-01-07

    Many problems depend on parameters, which may be a finite set of numerical values, or mathematically more complicated objects like for example processes or fields. We address the situation where we have an equation which depends on parameters; stochastic equations are a special case of such parametric problems where the parameters are elements from a probability space. One common way to represent this dependability on parameters is by evaluating the state (or solution) of the system under investigation for different values of the parameters. But often one wants to evaluate the solution quickly for a new set of parameters where it has not been sampled. In this situation it may be advantageous to express the parameter dependent solution with an approximation which allows for rapid evaluation of the solution. Such approximations are also called proxy or surrogate models, response functions, or emulators. All these methods may be seen as functional approximations—representations of the solution by an “easily computable” function of the parameters, as opposed to pure samples. The most obvious methods of approximation used are based on interpolation, in this context often labelled as collocation. In the frequent situation where one has a “solver” for the equation for a given parameter value, i.e. a software component or a program, it is evident that this can be used to independently—if desired in parallel—solve for all the parameter values which subsequently may be used either for the interpolation or in the quadrature for the projection. Such methods are therefore uncoupled for each parameter value, and they additionally often carry the label “non-intrusive”. Without much argument all other methods— which produce a coupled system of equations–are almost always labelled as “intrusive”, meaning that one cannot use the original solver. We want to show here that this not necessarily the case. Another approach is to choose some other projection onto

  12. Non-Intrusive Solution of Stochastic and Parametric Equations

    KAUST Repository

    Matthies, Hermann

    2015-01-01

    Many problems depend on parameters, which may be a finite set of numerical values, or mathematically more complicated objects like for example processes or fields. We address the situation where we have an equation which depends on parameters; stochastic equations are a special case of such parametric problems where the parameters are elements from a probability space. One common way to represent this dependability on parameters is by evaluating the state (or solution) of the system under investigation for different values of the parameters. But often one wants to evaluate the solution quickly for a new set of parameters where it has not been sampled. In this situation it may be advantageous to express the parameter dependent solution with an approximation which allows for rapid evaluation of the solution. Such approximations are also called proxy or surrogate models, response functions, or emulators. All these methods may be seen as functional approximations—representations of the solution by an “easily computable” function of the parameters, as opposed to pure samples. The most obvious methods of approximation used are based on interpolation, in this context often labelled as collocation. In the frequent situation where one has a “solver” for the equation for a given parameter value, i.e. a software component or a program, it is evident that this can be used to independently—if desired in parallel—solve for all the parameter values which subsequently may be used either for the interpolation or in the quadrature for the projection. Such methods are therefore uncoupled for each parameter value, and they additionally often carry the label “non-intrusive”. Without much argument all other methods— which produce a coupled system of equations–are almost always labelled as “intrusive”, meaning that one cannot use the original solver. We want to show here that this not necessarily the case. Another approach is to choose some other projection onto

  13. Convergence in energy consumption per capita across the US states, 1970–2013: An exploration through selected parametric and non-parametric methods

    International Nuclear Information System (INIS)

    Mohammadi, Hassan; Ram, Rati

    2017-01-01

    Noting the paucity of studies of convergence in energy consumption across the US states, and the usefulness of a study that shares the spirit of the enormous research on convergence in energy-related variables in cross-country contexts, this paper explores convergence in per-capita energy consumption across the US states over the 44-year period 1970–2013. Several well-known parametric and non-parametric approaches are explored partly to shed light on the substantive question and partly to provide a comparative methodological perspective on these approaches. Several statements summarize the outcome of our explorations. First, the widely-used Barro-type regressions do not indicate beta-convergence during the entire period or any of several sub-periods. Second, lack of sigma-convergence is also noted in terms of standard deviation of logarithms and coefficient of variation which do not show a decline between 1970 and 2013, but show slight upward trends. Third, kernel density function plots indicate some flattening of the distribution which is consistent with the results from sigma-convergence scenario. Fourth, intra-distribution mobility (“gamma convergence”) in terms of an index of rank concordance suggests a slow decline in the index. Fifth, the general impression from several types of panel and time-series unit-root tests is that of non-stationarity of the series and thus the lack of stochastic convergence during the period. Sixth, therefore, the overall impression seems to be that of the lack of convergence across states in per-capita energy consumption. The present interstate inequality in per-capita energy consumption may, therefore, reflect variations in structural factors and might not be expected to diminish.

  14. Non-parametric estimation of the individual's utility map

    OpenAIRE

    Noguchi, Takao; Sanborn, Adam N.; Stewart, Neil

    2013-01-01

    Models of risky choice have attracted much attention in behavioural economics. Previous research has repeatedly demonstrated that individuals' choices are not well explained by expected utility theory, and a number of alternative models have been examined using carefully selected sets of choice alternatives. The model performance however, can depend on which choice alternatives are being tested. Here we develop a non-parametric method for estimating the utility map over the wide range of choi...

  15. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation.

    Science.gov (United States)

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-10-21

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (~15-20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate Ki and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final Ki parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion study

  16. Dynamic whole-body PET parametric imaging: II. Task-oriented statistical estimation

    International Nuclear Information System (INIS)

    Karakatsanis, Nicolas A; Lodge, Martin A; Zhou, Y; Wahl, Richard L; Rahmim, Arman

    2013-01-01

    In the context of oncology, dynamic PET imaging coupled with standard graphical linear analysis has been previously employed to enable quantitative estimation of tracer kinetic parameters of physiological interest at the voxel level, thus, enabling quantitative PET parametric imaging. However, dynamic PET acquisition protocols have been confined to the limited axial field-of-view (∼15–20 cm) of a single-bed position and have not been translated to the whole-body clinical imaging domain. On the contrary, standardized uptake value (SUV) PET imaging, considered as the routine approach in clinical oncology, commonly involves multi-bed acquisitions, but is performed statically, thus not allowing for dynamic tracking of the tracer distribution. Here, we pursue a transition to dynamic whole-body PET parametric imaging, by presenting, within a unified framework, clinically feasible multi-bed dynamic PET acquisition protocols and parametric imaging methods. In a companion study, we presented a novel clinically feasible dynamic (4D) multi-bed PET acquisition protocol as well as the concept of whole-body PET parametric imaging employing Patlak ordinary least squares (OLS) regression to estimate the quantitative parameters of tracer uptake rate K i and total blood distribution volume V. In the present study, we propose an advanced hybrid linear regression framework, driven by Patlak kinetic voxel correlations, to achieve superior trade-off between contrast-to-noise ratio (CNR) and mean squared error (MSE) than provided by OLS for the final K i parametric images, enabling task-based performance optimization. Overall, whether the observer's task is to detect a tumor or quantitatively assess treatment response, the proposed statistical estimation framework can be adapted to satisfy the specific task performance criteria, by adjusting the Patlak correlation-coefficient (WR) reference value. The multi-bed dynamic acquisition protocol, as optimized in the preceding companion

  17. Generalized Correlation Coefficient for Non-Parametric Analysis of Microarray Time-Course Data.

    Science.gov (United States)

    Tan, Qihua; Thomassen, Mads; Burton, Mark; Mose, Kristian Fredløv; Andersen, Klaus Ejner; Hjelmborg, Jacob; Kruse, Torben

    2017-06-06

    Modeling complex time-course patterns is a challenging issue in microarray study due to complex gene expression patterns in response to the time-course experiment. We introduce the generalized correlation coefficient and propose a combinatory approach for detecting, testing and clustering the heterogeneous time-course gene expression patterns. Application of the method identified nonlinear time-course patterns in high agreement with parametric analysis. We conclude that the non-parametric nature in the generalized correlation analysis could be an useful and efficient tool for analyzing microarray time-course data and for exploring the complex relationships in the omics data for studying their association with disease and health.

  18. Global Convergence of Schubert’s Method for Solving Sparse Nonlinear Equations

    Directory of Open Access Journals (Sweden)

    Huiping Cao

    2014-01-01

    Full Text Available Schubert’s method is an extension of Broyden’s method for solving sparse nonlinear equations, which can preserve the zero-nonzero structure defined by the sparse Jacobian matrix and can retain many good properties of Broyden’s method. In particular, Schubert’s method has been proved to be locally and q-superlinearly convergent. In this paper, we globalize Schubert’s method by using a nonmonotone line search. Under appropriate conditions, we show that the proposed algorithm converges globally and superlinearly. Some preliminary numerical experiments are presented, which demonstrate that our algorithm is effective for large-scale problems.

  19. Design and development of a parametrically excited nonlinear energy harvester

    International Nuclear Information System (INIS)

    Yildirim, Tanju; Ghayesh, Mergen H.; Li, Weihua; Alici, Gursel

    2016-01-01

    Highlights: • A parametrically broadband energy harvester was fabricated. • Strong softening-type nonlinear behaviour was observed. • Experiments were conducted showing the large bandwidth of the device. - Abstract: An energy harvester has been designed, fabricated and tested based on the nonlinear dynamical response of a parametrically excited clamped-clamped beam with a central point-mass; magnets have been used as the central point-mass which pass through a coil when parametrically excited. Experiments have been conducted for the energy harvester when the system is excited (i) harmonically near the primary resonance; (ii) harmonically near the principal parametric resonance; (iii) by means of a non-smooth periodic excitation. An electrodynamic shaker was used to parametrically excite the system and the corresponding displacement of the magnet and output voltages of the coil were measured. It has been shown that the system displays linear behaviour at the primary resonance; however, at the principal parametric resonance, the motion characteristic of the magnet substantially changed displaying a strong softening-type nonlinearity. Theoretical simulations have also been conducted in order to verify the experimental results; the comparison between theory and experiment were within very good agreement of each other. The energy harvester developed in this paper is capable of harvesting energy close to the primary resonance as well as the principal parametric resonance; the frequency-band has been broadened significantly mainly due to the nonlinear effects as well as the parametric excitation.

  20. Parametric modeling for damped sinusoids from multiple channels

    DEFF Research Database (Denmark)

    Zhou, Zhenhua; So, Hing Cheung; Christensen, Mads Græsbøll

    2013-01-01

    frequencies and damping factors are then computed with the multi-channel weighted linear prediction method. The estimated sinusoidal poles are then matched to each channel according to the extreme value theory of distribution of random fields. Simulations are performed to show the performance advantages......The problem of parametric modeling for noisy damped sinusoidal signals from multiple channels is addressed. Utilizing the shift invariance property of the signal subspace, the number of distinct sinusoidal poles in the multiple channels is first determined. With the estimated number, the distinct...... of the proposed multi-channel sinusoidal modeling methodology compared with existing methods....

  1. Direct reconstruction of cardiac PET kinetic parametric images using a preconditioned conjugate gradient approach.

    Science.gov (United States)

    Rakvongthai, Yothin; Ouyang, Jinsong; Guerin, Bastien; Li, Quanzheng; Alpert, Nathaniel M; El Fakhri, Georges

    2013-10-01

    Our research goal is to develop an algorithm to reconstruct cardiac positron emission tomography (PET) kinetic parametric images directly from sinograms and compare its performance with the conventional indirect approach. Time activity curves of a NCAT phantom were computed according to a one-tissue compartmental kinetic model with realistic kinetic parameters. The sinograms at each time frame were simulated using the activity distribution for the time frame. The authors reconstructed the parametric images directly from the sinograms by optimizing a cost function, which included the Poisson log-likelihood and a spatial regularization terms, using the preconditioned conjugate gradient (PCG) algorithm with the proposed preconditioner. The proposed preconditioner is a diagonal matrix whose diagonal entries are the ratio of the parameter and the sensitivity of the radioactivity associated with parameter. The authors compared the reconstructed parametric images using the direct approach with those reconstructed using the conventional indirect approach. At the same bias, the direct approach yielded significant relative reduction in standard deviation by 12%-29% and 32%-70% for 50 × 10(6) and 10 × 10(6) detected coincidences counts, respectively. Also, the PCG method effectively reached a constant value after only 10 iterations (with numerical convergence achieved after 40-50 iterations), while more than 500 iterations were needed for CG. The authors have developed a novel approach based on the PCG algorithm to directly reconstruct cardiac PET parametric images from sinograms, and yield better estimation of kinetic parameters than the conventional indirect approach, i.e., curve fitting of reconstructed images. The PCG method increases the convergence rate of reconstruction significantly as compared to the conventional CG method.

  2. Schwinger-type parametrization of open string worldsheets

    Directory of Open Access Journals (Sweden)

    Sam Playle

    2017-03-01

    Full Text Available A parametrization of (super moduli space near the corners corresponding to bosonic or Neveu–Schwarz open string degenerations is introduced for worldsheets of arbitrary topology. With this parametrization, Feynman graph polynomials arise as the α′→0 limit of objects on moduli space. Furthermore, the integration measures of string theory take on a very simple and elegant form.

  3. Observation of Parametric Instability in Advanced LIGO.

    Science.gov (United States)

    Evans, Matthew; Gras, Slawek; Fritschel, Peter; Miller, John; Barsotti, Lisa; Martynov, Denis; Brooks, Aidan; Coyne, Dennis; Abbott, Rich; Adhikari, Rana X; Arai, Koji; Bork, Rolf; Kells, Bill; Rollins, Jameson; Smith-Lefebvre, Nicolas; Vajente, Gabriele; Yamamoto, Hiroaki; Adams, Carl; Aston, Stuart; Betzweiser, Joseph; Frolov, Valera; Mullavey, Adam; Pele, Arnaud; Romie, Janeen; Thomas, Michael; Thorne, Keith; Dwyer, Sheila; Izumi, Kiwamu; Kawabe, Keita; Sigg, Daniel; Derosa, Ryan; Effler, Anamaria; Kokeyama, Keiko; Ballmer, Stefan; Massinger, Thomas J; Staley, Alexa; Heinze, Matthew; Mueller, Chris; Grote, Hartmut; Ward, Robert; King, Eleanor; Blair, David; Ju, Li; Zhao, Chunnong

    2015-04-24

    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this Letter, we describe the first observation of parametric instability in a gravitational wave detector, and the means by which it has been removed as a barrier to progress.

  4. Observational Signatures of Parametric Instability at 1AU

    Science.gov (United States)

    Bowen, T. A.; Bale, S. D.; Badman, S.

    2017-12-01

    Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.

  5. A capacitive ultrasonic transducer based on parametric resonance

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F.

    2017-07-01

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of fo. When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2fo with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at fo frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  6. The Tunneling Method for Global Optimization in Multidimensional Scaling.

    Science.gov (United States)

    Groenen, Patrick J. F.; Heiser, Willem J.

    1996-01-01

    A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)

  7. An equivalent method for optimization of particle tuned mass damper based on experimental parametric study

    Science.gov (United States)

    Lu, Zheng; Chen, Xiaoyi; Zhou, Ying

    2018-04-01

    A particle tuned mass damper (PTMD) is a creative combination of a widely used tuned mass damper (TMD) and an efficient particle damper (PD) in the vibration control area. The performance of a one-storey steel frame attached with a PTMD is investigated through free vibration and shaking table tests. The influence of some key parameters (filling ratio of particles, auxiliary mass ratio, and particle density) on the vibration control effects is investigated, and it is shown that the attenuation level significantly depends on the filling ratio of particles. According to the experimental parametric study, some guidelines for optimization of the PTMD that mainly consider the filling ratio are proposed. Furthermore, an approximate analytical solution based on the concept of an equivalent single-particle damper is proposed, and it shows satisfied agreement between the simulation and experimental results. This simplified method is then used for the preliminary optimal design of a PTMD system, and a case study of a PTMD system attached to a five-storey steel structure following this optimization process is presented.

  8. Interplay between parametric instabilities in fusion - relevant laser plasmas

    International Nuclear Information System (INIS)

    Huller, St.

    2003-01-01

    The control of parametric instabilities plays an important role in laser fusion. They are driven by the incident laser beams in the underdense plasma surrounding a fusion capsule and hinder the absorption process of incident laser light which is necessary to heat the fusion target. Due to its high intensity and power, the laser light modifies the plasma density dynamically, such that two or more parametric instabilities compete, in particular stimulated Brillouin scattering and the filamentation instability. The complicated interplay between these parametric instabilities is studied in detail by developing an adequate model accompanied by numerical simulations with multidimensional codes. The model is applied to generic and to smoothed laser beams, which are necessary to limit parametric instabilities, with parameters close to experimental conditions. (author)

  9. Generation of daily global solar irradiation with support vector machines for regression

    International Nuclear Information System (INIS)

    Antonanzas-Torres, F.; Urraca, R.; Antonanzas, J.; Fernandez-Ceniceros, J.; Martinez-de-Pison, F.J.

    2015-01-01

    Highlights: • New methodology for estimation of daily solar irradiation with SVR. • Automatic procedure for training models and selecting meteorological features. • This methodology outperforms other well-known parametric and numeric techniques. - Abstract: Solar global irradiation is barely recorded in isolated rural areas around the world. Traditionally, solar resource estimation has been performed using parametric-empirical models based on the relationship of solar irradiation with other atmospheric and commonly measured variables, such as temperatures, rainfall, and sunshine duration, achieving a relatively high level of certainty. Considerable improvement in soft-computing techniques, which have been applied extensively in many research fields, has lead to improvements in solar global irradiation modeling, although most of these techniques lack spatial generalization. This new methodology proposes support vector machines for regression with optimized variable selection via genetic algorithms to generate non-locally dependent and accurate models. A case of study in Spain has demonstrated the value of this methodology. It achieved a striking reduction in the mean absolute error (MAE) – 41.4% and 19.9% – as compared to classic parametric models; Bristow & Campbell and Antonanzas-Torres et al., respectively

  10. Performance Analysis Of Single-Pumped And Dual-Pumped Parametric Optical Amplifier

    Directory of Open Access Journals (Sweden)

    Sandar Myint

    2015-06-01

    Full Text Available Abstract In this study we present a performance analysis of single-pumped and dual- pumped parametric optical amplifier and present the analysis of gain flatness in dual- pumped Fiber Optical Parametric Amplifier FOPA based on four-wave mixing FWM. Result shows that changing the signal power and pump power give the various gains in FOPA. It is also found out that the parametric gain increase with increase in pump power and decrease in signal power. .Moreover in this paper the phase matching condition in FWM plays a vital role in predicting the gain profile of the FOPAbecause the parametric gain is maximum when the total phase mismatch is zero.In this paper single-pumped parametric amplification over a 50nm gain bandwidth is demonstrated using 500 nm highly nonlinear fiber HNLF and signal achieves about 31dB gain. For dual-pumped parametric amplification signal achieves 26.5dB gains over a 50nm gain bandwidth. Therefore dual-pumped parametric amplifier can provide relatively flat gain over a much wider bandwidth than the single-pumped FOPA.

  11. A parametric visualization software for the assignment problem

    Directory of Open Access Journals (Sweden)

    Papamanthou Charalampos

    2005-01-01

    Full Text Available In this paper we present a parametric visualization software used to assist the teaching of the Network Primal Simplex Algorithm for the assignment problem (AP. The assignment problem is a special case of the balanced transportation problem. The main functions of the algorithm and design techniques are also presented. Through this process, we aim to underline the importance and necessity of using such educational methods in order to improve the teaching of Computer Algorithms.

  12. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  13. The torus parametrization of quasiperiodic LI-classes

    CERN Document Server

    Baake, M; Pleasants, P A B

    2002-01-01

    The torus parametrization of quasiperiodic local isomorphism classes is introduced and used to determine the number of elements in such a class with special symmetries or inflation properties. The method is explained in an illustrative fashion for some widely used tiling classes with golden mean rescaling, namely for the Fibonacci chain (1D), the triangle and Penrose patterns (2D) and for Kramer's and Danzer's icosahedral tilings (3D). We obtain a rather complete picture of the orbit structure within these classes, but discuss also various general results.

  14. Parametric resonance in acoustically levitated water drops

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Wei, B.

    2010-01-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  15. Parametric resonance in acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-05-10

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  16. Exercise in Configurable Products using Creo parametric

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg

    2017-01-01

    Family tables is a long know method with ProEngineer/Creo parametric to make families of products – like families of bolts and roller bearings. Configurable Products expand these possibilities in two major ways: First it makes configurable assemblies possible where one topologically different com...... been available as: configurable assemblies in earlier versions of Creo) An example of a practical application of configurable products is shown below where an outdoor Play/Exercise system is transferred from AutoCAD 2D to a 3D configurable product in Creo 3.0....

  17. Non-parametric system identification from non-linear stochastic response

    DEFF Research Database (Denmark)

    Rüdinger, Finn; Krenk, Steen

    2001-01-01

    An estimation method is proposed for identification of non-linear stiffness and damping of single-degree-of-freedom systems under stationary white noise excitation. Non-parametric estimates of the stiffness and damping along with an estimate of the white noise intensity are obtained by suitable...... of the energy at mean-level crossings, which yields the damping relative to white noise intensity. Finally, an estimate of the noise intensity is extracted by estimating the absolute damping from the autocovariance functions of a set of modified phase plane variables at different energy levels. The method...

  18. Global positioning method based on polarized light compass system

    Science.gov (United States)

    Liu, Jun; Yang, Jiangtao; Wang, Yubo; Tang, Jun; Shen, Chong

    2018-05-01

    This paper presents a global positioning method based on a polarized light compass system. A main limitation of polarization positioning is the environment such as weak and locally destroyed polarization environments, and the solution to the positioning problem is given in this paper which is polarization image de-noising and segmentation. Therefore, the pulse coupled neural network is employed for enhancing positioning performance. The prominent advantages of the present positioning technique are as follows: (i) compared to the existing position method based on polarized light, better sun tracking accuracy can be achieved and (ii) the robustness and accuracy of positioning under weak and locally destroyed polarization environments, such as cloudy or building shielding, are improved significantly. Finally, some field experiments are given to demonstrate the effectiveness and applicability of the proposed global positioning technique. The experiments have shown that our proposed method outperforms the conventional polarization positioning method, the real time longitude and latitude with accuracy up to 0.0461° and 0.0911°, respectively.

  19. The Knowledge Base Interface for Parametric Grid Information

    International Nuclear Information System (INIS)

    Hipp, James R.; Simons, Randall W.; Young, Chris J.

    1999-01-01

    The parametric grid capability of the Knowledge Base (KBase) provides an efficient robust way to store and access interpolatable information that is needed to monitor the Comprehensive Nuclear Test Ban Treaty. To meet both the accuracy and performance requirements of operational monitoring systems, we use an approach which combines the error estimation of kriging with the speed and robustness of Natural Neighbor Interpolation. The method involves three basic steps: data preparation, data storage, and data access. In past presentations we have discussed in detail the first step. In this paper we focus on the latter two, describing in detail the type of information which must be stored and the interface used to retrieve parametric grid data from the Knowledge Base. Once data have been properly prepared, the information (tessellation and associated value surfaces) needed to support the interface functionality, can be entered into the KBase. The primary types of parametric grid data that must be stored include (1) generic header information; (2) base model, station, and phase names and associated ID's used to construct surface identifiers; (3) surface accounting information; (4) tessellation accounting information; (5) mesh data for each tessellation; (6) correction data defined for each surface at each node of the surfaces owning tessellation (7) mesh refinement calculation set-up and flag information; and (8) kriging calculation set-up and flag information. The eight data components not only represent the results of the data preparation process but also include all required input information for several population tools that would enable the complete regeneration of the data results if that should be necessary

  20. Empirical validation of statistical parametric mapping for group imaging of fast neural activity using electrical impedance tomography.

    Science.gov (United States)

    Packham, B; Barnes, G; Dos Santos, G Sato; Aristovich, K; Gilad, O; Ghosh, A; Oh, T; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) allows for the reconstruction of internal conductivity from surface measurements. A change in conductivity occurs as ion channels open during neural activity, making EIT a potential tool for functional brain imaging. EIT images can have  >10 000 voxels, which means statistical analysis of such images presents a substantial multiple testing problem. One way to optimally correct for these issues and still maintain the flexibility of complicated experimental designs is to use random field theory. This parametric method estimates the distribution of peaks one would expect by chance in a smooth random field of a given size. Random field theory has been used in several other neuroimaging techniques but never validated for EIT images of fast neural activity, such validation can be achieved using non-parametric techniques. Both parametric and non-parametric techniques were used to analyze a set of 22 images collected from 8 rats. Significant group activations were detected using both techniques (corrected p  <  0.05). Both parametric and non-parametric analyses yielded similar results, although the latter was less conservative. These results demonstrate the first statistical analysis of such an image set and indicate that such an analysis is an approach for EIT images of neural activity.

  1. Parametric dependence of density limits in the Tokamak Experiment for Technology Oriented Research (TEXTOR): Comparison of thermal instability theory with experiment

    International Nuclear Information System (INIS)

    Kelly, F.A.; Stacey, W.M.; Rapp, J.

    2001-01-01

    The observed dependence of the TEXTOR [Tokamak Experiment for Technology Oriented Research: E. Hintz, P. Bogen, H. A. Claassen et al., Contributions to High Temperature Plasma Physics, edited by K. H. Spatschek and J. Uhlenbusch (Akademie Verlag, Berlin, 1994), p. 373] density limit on global parameters (I, B, P, etc.) and wall conditioning is compared with the predicted density limit parametric scaling of thermal instability theory. It is necessary first to relate the edge parameters of the thermal instability theory to n(bar sign) and the other global parameters. The observed parametric dependence of the density limit in TEXTOR is generally consistent with the predicted density limit scaling of thermal instability theory. The observed wall conditioning dependence of the density limit can be reconciled with the theory in terms of the radiative emissivity temperature dependence of different impurities in the plasma edge. The thermal instability theory also provides an explanation of why symmetric detachment precedes radiative collapse for most low power shots, while a multifaceted asymmetric radiation from the edge MARFE precedes detachment for most high power shots

  2. Breast-Lesion Characterization using Textural Features of Quantitative Ultrasound Parametric Maps.

    Science.gov (United States)

    Sadeghi-Naini, Ali; Suraweera, Harini; Tran, William Tyler; Hadizad, Farnoosh; Bruni, Giancarlo; Rastegar, Rashin Fallah; Curpen, Belinda; Czarnota, Gregory J

    2017-10-20

    This study evaluated, for the first time, the efficacy of quantitative ultrasound (QUS) spectral parametric maps in conjunction with texture-analysis techniques to differentiate non-invasively benign versus malignant breast lesions. Ultrasound B-mode images and radiofrequency data were acquired from 78 patients with suspicious breast lesions. QUS spectral-analysis techniques were performed on radiofrequency data to generate parametric maps of mid-band fit, spectral slope, spectral intercept, spacing among scatterers, average scatterer diameter, and average acoustic concentration. Texture-analysis techniques were applied to determine imaging biomarkers consisting of mean, contrast, correlation, energy and homogeneity features of parametric maps. These biomarkers were utilized to classify benign versus malignant lesions with leave-one-patient-out cross-validation. Results were compared to histopathology findings from biopsy specimens and radiology reports on MR images to evaluate the accuracy of technique. Among the biomarkers investigated, one mean-value parameter and 14 textural features demonstrated statistically significant differences (p feature selection method could classify the legions with a sensitivity of 96%, a specificity of 84%, and an AUC of 0.97. Findings from this study pave the way towards adapting novel QUS-based frameworks for breast cancer screening and rapid diagnosis in clinic.

  3. Physiological responses at short distances from a parametric speaker

    Directory of Open Access Journals (Sweden)

    Lee Soomin

    2012-06-01

    Full Text Available Abstract In recent years, parametric speakers have been used in various circumstances. In our previous studies, we verified that the physiological burden of the sound of parametric speaker set at 2.6 m from the subjects was lower than that of the general speaker. However, nothing has yet been demonstrated about the effects of the sound of a parametric speaker at the shorter distance between parametric speakers the human body. Therefore, we studied this effect on physiological functions and task performance. Nine male subjects participated in this study. They completed three consecutive sessions: a 20-minute quiet period as a baseline, a 30-minute mental task period with general speakers or parametric speakers, and a 20-minute recovery period. We measured electrocardiogram (ECG photoplethysmogram (PTG, electroencephalogram (EEG, systolic and diastolic blood pressure. Four experiments, one with a speaker condition (general speaker and parametric speaker, the other with a distance condition (0.3 m and 1.0 m, were conducted respectively at the same time of day on separate days. To examine the effects of the speaker and distance, three-way repeated measures ANOVA (speaker factor x distance factor x time factor were conducted. In conclusion, we found that the physiological responses were not significantly different between the speaker condition and the distance condition. Meanwhile, it was shown that the physiological burdens increased with progress in time independently of speaker condition and distance condition. In summary, the effects of the parametric speaker at the 2.6 m distance were not obtained at the distance of 1 m or less.

  4. Rayleigh-type parametric chemical oscillation

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Shyamolina; Ray, Deb Shankar, E-mail: pcdsr@iacs.res.in [Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032 (India)

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  5. Rayleigh-type parametric chemical oscillation.

    Science.gov (United States)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  6. Parametric embedding for class visualization.

    Science.gov (United States)

    Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B

    2007-09-01

    We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.

  7. Parametric instabilities in inhomogeneous plasma

    International Nuclear Information System (INIS)

    Nicholson, D.R.

    1975-01-01

    The nonlinear coupling of three waves in a plasma is considered. One of the waves is assumed large and constant; its amplitude is the parameter of the parametric instability. The spatial-temporal evolution of the other two waves is treated theoretically, in one dimension, by analytic methods and by direct numerical integration of the basic equations. Various monotonic forms of inhomogeneity are considered; agreement with previous work is found and new results are established. Nonmonotonic inhomogeneities are considered, in the form of turbulence and, as a model problem, in the form of a simple sinusoidal modulation. Relatively small amounts of nonmonotonic inhomogeneity, in the presence of a linear density gradient, are found to destabilize the well-known convective saturation, absolute growth occurring instead. (U.S.)

  8. Parametric instabilities in magnetized bi-ion and dusty plasmas

    Indian Academy of Sciences (India)

    -ion or dusty plasma with parametric pumping of the magnetic field is analysed. The equation of motion governing the perturbed plasma is derived and parametrically excited transverse modes propagating along the magnetic field are found.

  9. A capacitive ultrasonic transducer based on parametric resonance.

    Science.gov (United States)

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  10. Reference interval computation: which method (not) to choose?

    Science.gov (United States)

    Pavlov, Igor Y; Wilson, Andrew R; Delgado, Julio C

    2012-07-11

    When different methods are applied to reference interval (RI) calculation the results can sometimes be substantially different, especially for small reference groups. If there are no reliable RI data available, there is no way to confirm which method generates results closest to the true RI. We randomly drawn samples obtained from a public database for 33 markers. For each sample, RIs were calculated by bootstrapping, parametric, and Box-Cox transformed parametric methods. Results were compared to the values of the population RI. For approximately half of the 33 markers, results of all 3 methods were within 3% of the true reference value. For other markers, parametric results were either unavailable or deviated considerably from the true values. The transformed parametric method was more accurate than bootstrapping for sample size of 60, very close to bootstrapping for sample size 120, but in some cases unavailable. We recommend against using parametric calculations to determine RIs. The transformed parametric method utilizing Box-Cox transformation would be preferable way of RI calculation, if it satisfies normality test. If not, the bootstrapping is always available, and is almost as accurate and precise as the transformed parametric method. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Robust Stability Clearance of Flight Control Law Based on Global Sensitivity Analysis

    Directory of Open Access Journals (Sweden)

    Liuli Ou

    2014-01-01

    Full Text Available To validate the robust stability of the flight control system of hypersonic flight vehicle, which suffers from a large number of parametrical uncertainties, a new clearance framework based on structural singular value (μ theory and global uncertainty sensitivity analysis (SA is proposed. In this framework, SA serves as the preprocess of uncertain model to be analysed to help engineers to determine which uncertainties affect the stability of the closed loop system more slightly. By ignoring these unimportant uncertainties, the calculation of μ can be simplified. Instead of analysing the effect of uncertainties on μ which involves solving optimal problems repeatedly, a simpler stability analysis function which represents the effect of uncertainties on closed loop poles is proposed. Based on this stability analysis function, Sobol’s method, the most widely used global SA method, is extended and applied to the new clearance framework due to its suitability for system with strong nonlinearity and input factors varying in large interval, as well as input factors subjecting to random distributions. In this method, the sensitive indices can be estimated via Monte Carlo simulation conveniently. An example is given to illustrate the efficiency of the proposed method.

  12. A parametric reconstruction of the deceleration parameter

    Energy Technology Data Exchange (ETDEWEB)

    Al Mamon, Abdulla [Manipal University, Manipal Centre for Natural Sciences, Manipal (India); Visva-Bharati, Department of Physics, Santiniketan (India); Das, Sudipta [Visva-Bharati, Department of Physics, Santiniketan (India)

    2017-07-15

    The present work is based on a parametric reconstruction of the deceleration parameter q(z) in a model for the spatially flat FRW universe filled with dark energy and non-relativistic matter. In cosmology, the parametric reconstruction technique deals with an attempt to build up a model by choosing some specific evolution scenario for a cosmological parameter and then estimate the values of the parameters with the help of different observational datasets. In this paper, we have proposed a logarithmic parametrization of q(z) to probe the evolution history of the universe. Using the type Ia supernova, baryon acoustic oscillation and the cosmic microwave background datasets, the constraints on the arbitrary model parameters q{sub 0} and q{sub 1} are obtained (within 1σ and 2σ confidence limits) by χ{sup 2}-minimization technique. We have then reconstructed the deceleration parameter, the total EoS parameter ω{sub tot}, the jerk parameter and have compared the reconstructed results of q(z) with other well-known parametrizations of q(z). We have also shown that two model selection criteria (namely, the Akaike information criterion and Bayesian information criterion) provide a clear indication that our reconstructed model is well consistent with other popular models. (orig.)

  13. On the Feasibility of Stabilizing Parametric Roll with Active Bifurcation Control

    DEFF Research Database (Denmark)

    Galeazzi, Roberto; Blanke, Mogens

    2007-01-01

    When parametric resonance occurs on a ship, large roll motion develops rapidly and severe damage on cargo is likely. Some vessels have even capsized in moderate seas for reasons believed to be parametric resonance. This paper revisits the analysis of parametric resonance and assess the possibility...

  14. A global calibration method for multiple vision sensors based on multiple targets

    International Nuclear Information System (INIS)

    Liu, Zhen; Zhang, Guangjun; Wei, Zhenzhong; Sun, Junhua

    2011-01-01

    The global calibration of multiple vision sensors (MVS) has been widely studied in the last two decades. In this paper, we present a global calibration method for MVS with non-overlapping fields of view (FOVs) using multiple targets (MT). MT is constructed by fixing several targets, called sub-targets, together. The mutual coordinate transformations between sub-targets need not be known. The main procedures of the proposed method are as follows: one vision sensor is selected from MVS to establish the global coordinate frame (GCF). MT is placed in front of the vision sensors for several (at least four) times. Using the constraint that the relative positions of all sub-targets are invariant, the transformation matrix from the coordinate frame of each vision sensor to GCF can be solved. Both synthetic and real experiments are carried out and good result is obtained. The proposed method has been applied to several real measurement systems and shown to be both flexible and accurate. It can serve as an attractive alternative to existing global calibration methods

  15. Parametric cost models for space telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtnay

    2017-11-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  16. Parametric Cost Models for Space Telescopes

    Science.gov (United States)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  17. PISC II: Parametric studies. Monitoring of PISC-II parametric studies in ultrasonic NDT for PWR

    International Nuclear Information System (INIS)

    Toft, M.W.

    1989-09-01

    The CEGB NDT Applications Centre is partipating in the EEC-funded international Programme for the Inspection of Steel Components (PISC) on account of its relevance to the inspection of Sizewell B and future PWRs. This report describes an inspection monitoring exercise undertaken by NDTAC under partial funding from JRC Ispra, at the initiation of the PISC-III Ultrasonic Modelling Group. Experimental studies have been carried out under PISC-II to investigate ultrasonic defect response as a function of various parameters which characterise the inspection situation. Some of these parametric studies are potentially useful for the validation of theoretical models of ultrasonic inspection and are consequently relevant to the work of the PISC-III Modelling Group. The aim of the present exercise was to ensure that data obtained by the various contract organizations participating in the PISC-II Parametric Studies was of high quality, was a complete record of the inspection and would yield valid comparisons with the predictions of theoretical models. The exercise entailed visits by a nominated CEGB observer to 4 European NDT Laboratories at which the parametric studies were in progress; CISE (Milan); UKAEA (Harwell); UKAEA (Risley) and Vincotte (Brussels). This report presents the findings of those visits

  18. Parametric Portfolio Selection: Evaluating and Comparing to Markowitz Portfolios

    Directory of Open Access Journals (Sweden)

    Marcelo C. Medeiros

    2014-10-01

    Full Text Available In this paper we exploit the parametric portfolio optimization in the Brazilian market. Our data consists of monthly returns of 306 Brazilian stocks in the period between 2001 and 2013. We tested the model both in and out of sample and compared the results with the value and equal weighted portfolios and with a Markowitz based portfolio. We performed statistical inference in the parametric optimization using bootstrap techniques in order to build the parameters empirical distributions. Our results showed that the parametric optimization is a very efficient technique out of sample. It consistently showed superior results when compared with the VW, EW and Markowitz portfolios even when transaction costs were included. Finally, we consider the parametric approach to be very flexible to the inclusion of constraints in weights, transaction costs and listing and delisting of stocks.

  19. Model developments in TERRA_URB, the upcoming standard urban parametrization of the atmospheric numerical model COSMO(-CLM)

    Science.gov (United States)

    Wouters, Hendrik; Blahak, Ulrich; Helmert, Jürgen; Raschendorfer, Matthias; Demuzere, Matthias; Fay, Barbara; Trusilova, Kristina; Mironov, Dmitrii; Reinert, Daniel; Lüthi, Daniel; Machulskaya, Ekaterina

    2015-04-01

    In order to address urban climate at the regional scales, a new efficient urban land-surface parametrization TERRA_URB has been developed and coupled to the atmospheric numerical model COSMO-CLM. Hereby, several new advancements for urban land-surface models are introduced which are crucial for capturing the urban surface-energy balance and its seasonal dependency in the mid-latitudes. This includes a new PDF-based water-storage parametrization for impervious land, the representation of radiative absorption and emission by greenhouse gases in the infra-red spectrum in the urban canopy layer, and the inclusion of heat emission from human activity. TERRA_URB has been applied in offline urban-climate studies during European observation campaigns at Basel (BUBBLE), Toulouse (CAPITOUL), and Singapore, and currently applied in online studies for urban areas in Belgium, Germany, Switzerland, Helsinki, Singapore, and Melbourne. Because of its computational efficiency, high accuracy and its to-the-point conceptual easiness, TERRA_URB has been selected to become the standard urban parametrization of the atmospheric numerical model COSMO(-CLM). This allows for better weather forecasts for temperature and precipitation in cities with COSMO, and an improved assessment of urban outdoor hazards in the context of global climate change and urban expansion with COSMO-CLM. We propose additional extensions to TERRA_URB towards a more robust representation of cities over the world including their structural design. In a first step, COSMO's standard EXTernal PARarameter (EXTPAR) tool is updated for representing the cities into the land cover over the entire globe. Hereby, global datasets in the standard EXTPAR tool are used to retrieve the 'Paved' or 'sealed' surface Fraction (PF) referring to the presence of buildings and streets. Furthermore, new global data sets are incorporated in EXTPAR for describing the Anthropogenic Heat Flux (AHF) due to human activity, and optionally the

  20. Implementing quantum optics with parametrically driven superconducting circuits

    Science.gov (United States)

    Aumentado, Jose

    Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.

  1. Crossing statistic: Bayesian interpretation, model selection and resolving dark energy parametrization problem

    International Nuclear Information System (INIS)

    Shafieloo, Arman

    2012-01-01

    By introducing Crossing functions and hyper-parameters I show that the Bayesian interpretation of the Crossing Statistics [1] can be used trivially for the purpose of model selection among cosmological models. In this approach to falsify a cosmological model there is no need to compare it with other models or assume any particular form of parametrization for the cosmological quantities like luminosity distance, Hubble parameter or equation of state of dark energy. Instead, hyper-parameters of Crossing functions perform as discriminators between correct and wrong models. Using this approach one can falsify any assumed cosmological model without putting priors on the underlying actual model of the universe and its parameters, hence the issue of dark energy parametrization is resolved. It will be also shown that the sensitivity of the method to the intrinsic dispersion of the data is small that is another important characteristic of the method in testing cosmological models dealing with data with high uncertainties

  2. Frequency domain analysis and design of nonlinear systems based on Volterra series expansion a parametric characteristic approach

    CERN Document Server

    Jing, Xingjian

    2015-01-01

    This book is a systematic summary of some new advances in the area of nonlinear analysis and design in the frequency domain, focusing on the application oriented theory and methods based on the GFRF concept, which is mainly done by the author in the past 8 years. The main results are formulated uniformly with a parametric characteristic approach, which provides a convenient and novel insight into nonlinear influence on system output response in terms of characteristic parameters and thus facilitate nonlinear analysis and design in the frequency domain.  The book starts with a brief introduction to the background of nonlinear analysis in the frequency domain, followed by recursive algorithms for computation of GFRFs for different parametric models, and nonlinear output frequency properties. Thereafter the parametric characteristic analysis method is introduced, which leads to the new understanding and formulation of the GFRFs, and nonlinear characteristic output spectrum (nCOS) and the nCOS based analysis a...

  3. Parametric motivation bases of floranimic nomination

    Directory of Open Access Journals (Sweden)

    Olga P. Ryabko

    2016-09-01

    Full Text Available The period of further development in the cognitive theory of nomination has been extensive in recent years. Our research has been concentrated on the formation of conceptual foundations in cognitive theory of flora nomination. The macrofield of flora namings embraces three microfields: parametric, pragmatic and locative-temporal ones. They determine motivation processes in cognitive theory of flora nomination, i.e., the presentation of systematic qualities in flora namings in the English language. The description and characterization of such qualities presupposes the existence of their taxonomic organization and methodology criteria, both general and practical ones. Flora namings on the phenomenological level are considered to be the products of naöve-cognitive consciousness of language speakers. They are determined, from the one hand, by the external perceptive adaptations (parametric nomination and, from the other hand, by practical needs (pure pragmatic nomination and local-temporal nomination. In this article we have concentrated on the complex parametric motivated basis of flora nomination. It is presented by a number of qualities, firstly, by dominative qualities («form», «appearance and manner of growth», «color», secondly, by peripheral qualities («odour», «taste», «size» and, finally, by minor qualities («sound», «weight», «genger». In the structure of complex parametric nomination the only one conerete qualitative element from the whole combination of qualities becomes the leading one. The cultural-archetypal dominant element determines. In each concrete situation, the choice of preferable prototypal motivated quality.

  4. A general three-dimensional parametric geometry of the native aortic valve and root for biomechanical modeling.

    Science.gov (United States)

    Haj-Ali, Rami; Marom, Gil; Ben Zekry, Sagit; Rosenfeld, Moshe; Raanani, Ehud

    2012-09-21

    The complex three-dimensional (3D) geometry of the native tricuspid aortic valve (AV) is represented by select parametric curves allowing for a general construction and representation of the 3D-AV structure including the cusps, commissures and sinuses. The proposed general mathematical description is performed by using three independent parametric curves, two for the cusp and one for the sinuses. These curves are used to generate different surfaces that form the structure of the AV. Additional dependent curves are also generated and utilized in this process, such as the joint curve between the cusps and the sinuses. The model's feasibility to generate patient-specific parametric geometry is examined against 3D-transesophageal echocardiogram (3D-TEE) measurements from a non-pathological AV. Computational finite-element (FE) mesh can then be easily constructed from these surfaces. Examples are given for constructing several 3D-AV geometries by estimating the needed parameters from echocardiographic measurements. The average distance (error) between the calculated geometry and the 3D-TEE measurements was only 0.78±0.63mm. The proposed general 3D parametric method is very effective in quantitatively representing a wide range of native AV structures, with and without pathology. It can also facilitate a methodical quantitative investigation over the effect of pathology and mechanical loading on these major AV parameters. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Estimating trends in the global mean temperature record

    Science.gov (United States)

    Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.

    2017-06-01

    Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the

  6. A non-parametric framework for estimating threshold limit values

    Directory of Open Access Journals (Sweden)

    Ulm Kurt

    2005-11-01

    Full Text Available Abstract Background To estimate a threshold limit value for a compound known to have harmful health effects, an 'elbow' threshold model is usually applied. We are interested on non-parametric flexible alternatives. Methods We describe how a step function model fitted by isotonic regression can be used to estimate threshold limit values. This method returns a set of candidate locations, and we discuss two algorithms to select the threshold among them: the reduced isotonic regression and an algorithm considering the closed family of hypotheses. We assess the performance of these two alternative approaches under different scenarios in a simulation study. We illustrate the framework by analysing the data from a study conducted by the German Research Foundation aiming to set a threshold limit value in the exposure to total dust at workplace, as a causal agent for developing chronic bronchitis. Results In the paper we demonstrate the use and the properties of the proposed methodology along with the results from an application. The method appears to detect the threshold with satisfactory success. However, its performance can be compromised by the low power to reject the constant risk assumption when the true dose-response relationship is weak. Conclusion The estimation of thresholds based on isotonic framework is conceptually simple and sufficiently powerful. Given that in threshold value estimation context there is not a gold standard method, the proposed model provides a useful non-parametric alternative to the standard approaches and can corroborate or challenge their findings.

  7. Parametric instabilities of rotor-support systems with application to industrial ventilators

    Science.gov (United States)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  8. Parametric instabilities in shallow water magnetohydrodynamics of astrophysical plasma in external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Klimachkov, D.A., E-mail: klimachkovdmitry@gmail.com [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Petrosyan, A.S. [Space Research Institute of Russian Academy of Science, 84/32, Profsoyuznaya str., Moscow, 117997 (Russian Federation); Moscow Institute of Physics and Technology (State University), 9 Institutskyi per., Dolgoprudny, Moscow Region, 141700 (Russian Federation)

    2017-01-15

    This article deals with magnetohydrodynamic (MHD) flows of a thin rotating layer of astrophysical plasma in external magnetic field. We use the shallow water approximation to describe thin rotating plasma layer with a free surface in a vertical external magnetic field. The MHD shallow water equations with external vertical magnetic field are revised by supplementing them with the equations that are consequences of the magnetic field divergence-free conditions and reveal the existence of third component of the magnetic field in such approximation providing its relation with the horizontal magnetic field. It is shown that the presence of a vertical magnetic field significantly changes the dynamics of the wave processes in astrophysical plasma compared to the neutral fluid and plasma layer in a toroidal magnetic field. The equations for the nonlinear wave packets interactions are derived using the asymptotic multiscale method. The equations for three magneto-Poincare waves interactions, for three magnetostrophic waves interactions, for the interactions of two magneto-Poincare waves and for one magnetostrophic wave and two magnetostrophic wave and one magneto-Poincare wave interactions are obtained. The existence of parametric decay and parametric amplifications is predicted. We found following four types of parametric decay instabilities: magneto-Poincare wave decays into two magneto-Poincare waves, magnetostrophic wave decays into two magnetostrophic waves, magneto-Poincare wave decays into one magneto-Poincare wave and one magnetostrophic wave, magnetostrophic wave decays into one magnetostrophic wave and one magneto-Poincare wave. Following mechanisms of parametric amplifications are found: parametric amplification of magneto-Poincare waves, parametric amplification of magnetostrophic waves, magneto-Poincare wave amplification in magnetostrophic wave presence and magnetostrophic wave amplification in magneto-Poincare wave presence. The instabilities growth rates

  9. Noise-enhanced Parametric Resonance in Perturbed Galaxies

    Science.gov (United States)

    Sideris, Ioannis V.; Kandrup, Henry E.

    2004-02-01

    This paper describes how parametric resonances associated with a galactic potential subjected to relatively low-amplitude, strictly periodic time-dependent perturbations can be impacted by pseudo-random variations in the pulsation frequency, modeled as colored noise. One aim thereby is to allow for the effects of a changing oscillation frequency as the density distribution associated with a galaxy evolves during violent relaxation. Another is to mimic the possible effects of internal substructures, satellite galaxies, and/or a high-density environment. The principal conclusions are that allowing for a variable frequency does not vitiate the effects of parametric resonance, and that, in at least some cases, such variations can increase the overall importance of parametric resonance associated with systematic pulsations. In memory of Professor H. E. Kandrup, a brilliant scientist, excellent teacher, and good friend. His genius and sense of humor will be greatly missed.

  10. Multidimensional Scaling Visualization Using Parametric Similarity Indices

    Directory of Open Access Journals (Sweden)

    J. A. Tenreiro Machado

    2015-03-01

    Full Text Available In this paper, we apply multidimensional scaling (MDS and parametric similarity indices (PSI in the analysis of complex systems (CS. Each CS is viewed as a dynamical system, exhibiting an output time-series to be interpreted as a manifestation of its behavior. We start by adopting a sliding window to sample the original data into several consecutive time periods. Second, we define a given PSI for tracking pieces of data. We then compare the windows for different values of the parameter, and we generate the corresponding MDS maps of ‘points’. Third, we use Procrustes analysis to linearly transform the MDS charts for maximum superposition and to build a globalMDS map of “shapes”. This final plot captures the time evolution of the phenomena and is sensitive to the PSI adopted. The generalized correlation, theMinkowski distance and four entropy-based indices are tested. The proposed approach is applied to the Dow Jones Industrial Average stock market index and the Europe Brent Spot Price FOB time-series.

  11. Parametric and factor analyses of dynamic scintigraphic studies

    International Nuclear Information System (INIS)

    Surova, H.; Samal, M.; Karny, M.

    1986-01-01

    Processing dynamic examinations in nuclear medicine is done as a rule with regard to the regions of interest and dynamic curves or by means of parametric images. The disadvantage of both methods is the processing of the summation of all processes in overlapping anatomical structures. This disadvantage is eliminated by processing using factor analysis. A different approach from those used formerly makes it possible to use information relating to both time and space, as well as direct quantification of the results in imp./pix./sec. (author)

  12. Dirac delta representation by exact parametric equations.. Application to impulsive vibration systems

    Science.gov (United States)

    Chicurel-Uziel, Enrique

    2007-08-01

    A pair of closed parametric equations are proposed to represent the Heaviside unit step function. Differentiating the step equations results in two additional parametric equations, that are also hereby proposed, to represent the Dirac delta function. These equations are expressed in algebraic terms and are handled by means of elementary algebra and elementary calculus. The proposed delta representation complies exactly with the values of the definition. It complies also with the sifting property and the requisite unit area and its Laplace transform coincides with the most general form given in the tables. Furthermore, it leads to a very simple method of solution of impulsive vibrating systems either linear or belonging to a large class of nonlinear problems. Two example solutions are presented.

  13. PRESS-based EFOR algorithm for the dynamic parametrical modeling of nonlinear MDOF systems

    Science.gov (United States)

    Liu, Haopeng; Zhu, Yunpeng; Luo, Zhong; Han, Qingkai

    2017-09-01

    In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESS-based EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5-DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.

  14. Stock price forecasting for companies listed on Tehran stock exchange using multivariate adaptive regression splines model and semi-parametric splines technique

    Science.gov (United States)

    Rounaghi, Mohammad Mahdi; Abbaszadeh, Mohammad Reza; Arashi, Mohammad

    2015-11-01

    One of the most important topics of interest to investors is stock price changes. Investors whose goals are long term are sensitive to stock price and its changes and react to them. In this regard, we used multivariate adaptive regression splines (MARS) model and semi-parametric splines technique for predicting stock price in this study. The MARS model as a nonparametric method is an adaptive method for regression and it fits for problems with high dimensions and several variables. semi-parametric splines technique was used in this study. Smoothing splines is a nonparametric regression method. In this study, we used 40 variables (30 accounting variables and 10 economic variables) for predicting stock price using the MARS model and using semi-parametric splines technique. After investigating the models, we select 4 accounting variables (book value per share, predicted earnings per share, P/E ratio and risk) as influencing variables on predicting stock price using the MARS model. After fitting the semi-parametric splines technique, only 4 accounting variables (dividends, net EPS, EPS Forecast and P/E Ratio) were selected as variables effective in forecasting stock prices.

  15. Path integral quantization of parametrized field theory

    International Nuclear Information System (INIS)

    Varadarajan, Madhavan

    2004-01-01

    Free scalar field theory on a flat spacetime can be cast into a generally covariant form known as parametrized field theory in which the action is a functional of the scalar field as well as the embedding variables which describe arbitrary, in general curved, foliations of the flat spacetime. We construct the path integral quantization of parametrized field theory in order to analyze issues at the interface of quantum field theory and general covariance in a path integral context. We show that the measure in the Lorentzian path integral is nontrivial and is the analog of the Fradkin-Vilkovisky measure for quantum gravity. We construct Euclidean functional integrals in the generally covariant setting of parametrized field theory using key ideas of Schleich and show that our constructions imply the existence of nonstandard 'Wick rotations' of the standard free scalar field two-point function. We develop a framework to study the problem of time through computations of scalar field two-point functions. We illustrate our ideas through explicit computation for a time independent (1+1)-dimensional foliation. Although the problem of time seems to be absent in this simple example, the general case is still open. We discuss our results in the contexts of the path integral formulation of quantum gravity and the canonical quantization of parametrized field theory

  16. Parametric system identification of catamaran for improving controller design

    Science.gov (United States)

    Timpitak, Surasak; Prempraneerach, Pradya; Pengwang, Eakkachai

    2018-01-01

    This paper presents an estimation of simplified dynamic model for only surge- and yaw- motions of catamaran by using system identification (SI) techniques to determine associated unknown parameters. These methods will enhance the performance of designing processes for the motion control system of Unmanned Surface Vehicle (USV). The simulation results demonstrate an effective way to solve for damping forces and to determine added masses by applying least-square and AutoRegressive Exogenous (ARX) methods. Both methods are then evaluated according to estimated parametric errors from the vehicle’s dynamic model. The ARX method, which yields better estimated accuracy, can then be applied to identify unknown parameters as well as to help improving a controller design of a real unmanned catamaran.

  17. Assessment of left ventricular contraction by parametric analysis of main motion (PAMM): theory and application for echocardiography

    International Nuclear Information System (INIS)

    Dominguez, C Ruiz; Kachenoura, N; Cesare, A De; Delouche, A; Lim, P; Gerard, O; Herment, A; Diebold, B; Frouin, F

    2005-01-01

    The computerized study of the regional contraction of the left ventricle has undergone numerous developments, particularly in relation to echocardiography. A new method, parametric analysis of main motion (PAMM), is proposed in order to synthesize the information contained in a cine loop of images in parametric images. PAMM determines, for the intensity variation time curves (IVTC) observed in each pixel, two amplitude coefficients characterizing the continuous component and the alternating component; the variable component is generated from a mother curve by introducing a time shift coefficient and a scale coefficient. Two approaches, a PAMM data driven and a PAMM model driven (simpler and faster), are proposed. On the basis of the four coefficients, an amplitude image and an image of mean contraction time are synthesized and interpreted by a cardiologist. In all cases, both PAMM methods allow better IVTC adjustment than the other methods of parametric imaging used in echocardiography. A preliminary database comprising 70 segments is scored and compared with the visual analysis, taken from a consensus of two expert interpreters. The levels of absolute and relative concordance are 79% and 97%. PAMM model driven is a promising method for the rapid detection of abnormalities in left ventricle contraction

  18. Study on Semi-Parametric Statistical Model of Safety Monitoring of Cracks in Concrete Dams

    Directory of Open Access Journals (Sweden)

    Chongshi Gu

    2013-01-01

    Full Text Available Cracks are one of the hidden dangers in concrete dams. The study on safety monitoring models of concrete dam cracks has always been difficult. Using the parametric statistical model of safety monitoring of cracks in concrete dams, with the help of the semi-parametric statistical theory, and considering the abnormal behaviors of these cracks, the semi-parametric statistical model of safety monitoring of concrete dam cracks is established to overcome the limitation of the parametric model in expressing the objective model. Previous projects show that the semi-parametric statistical model has a stronger fitting effect and has a better explanation for cracks in concrete dams than the parametric statistical model. However, when used for forecast, the forecast capability of the semi-parametric statistical model is equivalent to that of the parametric statistical model. The modeling of the semi-parametric statistical model is simple, has a reasonable principle, and has a strong practicality, with a good application prospect in the actual project.

  19. Nonparametric predictive inference for combining diagnostic tests with parametric copula

    Science.gov (United States)

    Muhammad, Noryanti; Coolen, F. P. A.; Coolen-Maturi, T.

    2017-09-01

    Measuring the accuracy of diagnostic tests is crucial in many application areas including medicine and health care. The Receiver Operating Characteristic (ROC) curve is a popular statistical tool for describing the performance of diagnostic tests. The area under the ROC curve (AUC) is often used as a measure of the overall performance of the diagnostic test. In this paper, we interest in developing strategies for combining test results in order to increase the diagnostic accuracy. We introduce nonparametric predictive inference (NPI) for combining two diagnostic test results with considering dependence structure using parametric copula. NPI is a frequentist statistical framework for inference on a future observation based on past data observations. NPI uses lower and upper probabilities to quantify uncertainty and is based on only a few modelling assumptions. While copula is a well-known statistical concept for modelling dependence of random variables. A copula is a joint distribution function whose marginals are all uniformly distributed and it can be used to model the dependence separately from the marginal distributions. In this research, we estimate the copula density using a parametric method which is maximum likelihood estimator (MLE). We investigate the performance of this proposed method via data sets from the literature and discuss results to show how our method performs for different family of copulas. Finally, we briefly outline related challenges and opportunities for future research.

  20. Parametric fault estimation based on H∞ optimization in a satellite launch vehicle

    DEFF Research Database (Denmark)

    Soltani, Mohsen; Izadi-Zamanabadi, Roozbeh; Stoustrup, Jakob

    2008-01-01

    Correct diagnosis under harsh environmental conditions is crucial for space vehiclespsila health management systems to avoid possible hazardous situations. Consequently, the diagnosis methods are required to be robust toward these conditions. Design of a parametric fault detector, where the fault...... for the satellite launch vehicle and the results are discussed....

  1. Ordered and isomorphic mapping of periodic structures in the parametrically forced logistic map

    Energy Technology Data Exchange (ETDEWEB)

    Maranhão, Dariel M., E-mail: dariel@ifsp.edu.br [Departamento de Ciências e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo (Brazil); Diretoria de Informática, Universidade Nove de Julho, São Paulo (Brazil)

    2016-09-23

    Highlights: • A direct description of the internal structure of a periodic window in terms of winding numbers is proposed. • Periodic structures in parameter spaces are mapped in a recurrent and isomorphic way. • Sequences of winding numbers show global and local organization of periodic domains. - Abstract: We investigate the periodic domains found in the parametrically forced logistic map, the classical logistic map when its control parameter changes dynamically. Phase diagrams in two-parameter spaces reveal intricate periodic structures composed of patterns of intersecting superstable orbits curves, defining the cell of a periodic window. Cells appear multifoliated and ordered, and they are isomorphically mapped when one changes the map parameters. Also, we identify the characteristics of simplest cell and apply them to other more complex, discussing how the topography on parameter space is affected. By use of the winding number as defined in periodically forced oscillators, we show that the hierarchical organization of the periodic domains is manifested in global and local scales.

  2. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    Science.gov (United States)

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  3. Casas-Ibarra parametrization and leptogenesis

    International Nuclear Information System (INIS)

    Xing Zhizhong

    2010-01-01

    The Casas-Ibarra parametrization is a description of the Dirac neutrino mass matrix M D in terms of the neutrino mixing matrix V, an orthogonal matrix O and the diagonal mass matrices of light and heavy Majorana neutrinos in the type-I seesaw mechanism. Because M D + M D is apparently independent of V but dependent on O in this parametrization, a number of authors have claimed that unflavored leptogenesis has nothing to do with CP violation at low energies. Here we question this logic by clarifying the physical meaning of O. We establish a clear relationship between O and the observable quantities, and find that O does depend on V. We show that both unflavored leptogenesis and flavored leptogenesis have no direct connection with low-energy CP violation. (authors)

  4. Parametric studies in ohmically heated plasmas in Heliotron E

    International Nuclear Information System (INIS)

    Mutoh, T.; Besshou, S.; Ijiri, Y.

    1983-01-01

    Parametric studies of volume averaged electron temperature and global electron energy confinement time /tau/epsilon /SUB e/ of ohmically heated Heliotron E plasmas have been performed using a data acquisition computer system. The scaling laws α (I /SUB OH/ x B/n /SUB e/) /SUP 1/2/ and /tau/epsilon /SUB e/ α n /SUP -1/2/ /SUB e/ x B/I /SUP 3/2/ /SUB OH/ are obtained directly by a code which fits the exponents of the plasma parameters ponents of the plasma parameters to the electron temperature and confinement time. The ohmically heated plasma confinement time /tau/epsilon /SUB e/ is shown to be related to the drift parameters xi (= V /SUB De/ /V /SUB Te/). The dependences of the energy confinement time on other plasma parameters is also presented. An investigation is made of the correlation between MHD activity and the confinement

  5. Parametric trapping of electromagnetic waves in an inhomogeneous plasma

    International Nuclear Information System (INIS)

    Silin, V.P.; Starodub, A.N.

    1977-01-01

    Considered is parametric instability in an inhomogeneous plasma at which a pumping wave is transformed to an electromagnetic wave and aperiodically in-time-growing disturbances. It is shown that after achievement of some boundary pumping value by electric field intensity an absolute parametric instability evolution becomes possible. In-time growing plasma disturbances are localized near electric field extremums of a pumping wave. Such localization areas are small as compared to characteristic size of pumping inhomogeneity in a plasma. The secondary electromagnetic waves stay within the localization areas and, therefore, are not scattered by a plasma. As following from this it has been established, that due to parametric instability electromagnetic radiation trapping by a plasma occurs. Such a trapping is considerably connected with a spatial structure of a pumping field and it cannot arise within the field of a running wave in the theoretical model considered. However parametric trapping turns out to be possible even with very small reflection coefficients

  6. Possibilities and limitations of parametric Rietveld refinement on high pressure data. The case study of LaFeO3

    International Nuclear Information System (INIS)

    Etter, Martin; Mueller, Melanie; Dinnebier, Robert E.; Hanfland, Michael

    2014-01-01

    Parametric Rietveld refinement is a powerful technique to apply directly physical or empirical equations to the refinement of in situ powder diffraction data. In order to investigate the possibilities and limitations of parametric Rietveld refinements for high pressure data four competitive crystallographic approaches were used to carry out a full structural investigation of the orthoferrite LaFeO 3 (Pbnm at ambient conditions) under high pressure up to 47 GPa. Approach A with traditional Rietveld refinement using atomic coordinates, Approach B where the Rietveld refinement was done by using the rigid body method, Approach C where symmetry modes were used and Approach D where the newly developed method of the rotational symmetry mode description for a rigid body was used. For all approaches sequential as well as parametric refinements were carried out, confirming a second order phase transition of LaFeO 3 to a higher symmetric phase (space group Ibmm) at around 21.1?GPa and an isostructural first order phase transition at around 38 GPa. Limitations due to non-hydrostatic conditions as well as the possibilities of a direct modeling of phase transitions with parametric Rietveld refinement are discussed in detail. (orig.)

  7. On mass-shell parametric space renormalization of PHI3 theory in six dimensions

    International Nuclear Information System (INIS)

    Smith, A.W.

    1977-05-01

    An on mass shell, parametric space renormalization procedure for phi 3 theory in six dimensions is defined and its formal equivalence to the usual Lagrangian counter procedure demonstrated. Two loop contributions to the self-energy are used as an illustration of the method. (author)

  8. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet [Carnegie Institution for Science, Stanford, CA; Michalak, Anna M. [Carnegie Institution for Science, Stanford, CA; van Bloemen Waanders, Bart Gustaaf [Sandia National Laboratories, Albuquerque, NM; McKenna, Sean Andrew [IBM Research, Mulhuddart, Dublin 15, Ireland

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  9. Logistic discriminant parametric mapping: a novel method for the pixel-based differential diagnosis of Parkinson's disease

    International Nuclear Information System (INIS)

    Acton, P.D.; Mozley, P.D.; Kung, H.F.; Pennsylvania Univ., Philadelphia, PA

    1999-01-01

    Positron emission tomography (PET) and single-photon emission tomography (SPET) imaging of the dopaminergic system is a powerful tool for distinguishing groups of patients with neurodegenerative disorders, such as Parkinson's disease (PD). However, the differential diagnosis of individual subjects presenting early in the progress of the disease is much more difficult, particularly using region-of-interest analysis where small localized differences between subjects are diluted. In this paper we present a novel pixel-based technique using logistic discriminant analysis to distinguish between a group of PD patients and age-matched healthy controls. Simulated images of an anthropomorphic head phantom were used to test the sensitivity of the technique to striatal lesions of known size. The methodology was applied to real clinical SPET images of binding of technetium-99m labelled TRODAT-1 to dopamine transporters in PD patients (n=42) and age-matched controls (n=23). The discriminant model was trained on a subset (n=17) of patients for whom the diagnosis was unequivocal. Logistic discriminant parametric maps were obtained for all subjects, showing the probability distribution of pixels classified as being consistent with PD. The probability maps were corrected for correlated multiple comparisons assuming an isotropic Gaussian point spread function. Simulated lesion sizes measured by logistic discriminant parametric mapping (LDPM) gave strong correlations with the known data (r 2 =0.985, P<0.001). LDPM correctly classified all PD patients (sensitivity 100%) and only misclassified one control (specificity 95%). All patients who had equivocal clinical symptoms associated with early onset PD (n=4) were correctly assigned to the patient group. Statistical parametric mapping (SPM) had a sensitivity of only 24% on the same patient group. LDPM is a powerful pixel-based tool for the differential diagnosis of patients with PD and healthy controls. The diagnosis of disease even

  10. Reliable single chip genotyping with semi-parametric log-concave mixtures.

    Directory of Open Access Journals (Sweden)

    Ralph C A Rippe

    Full Text Available The common approach to SNP genotyping is to use (model-based clustering per individual SNP, on a set of arrays. Genotyping all SNPs on a single array is much more attractive, in terms of flexibility, stability and applicability, when developing new chips. A new semi-parametric method, named SCALA, is proposed. It is based on a mixture model using semi-parametric log-concave densities. Instead of using the raw data, the mixture is fitted on a two-dimensional histogram, thereby making computation time almost independent of the number of SNPs. Furthermore, the algorithm is effective in low-MAF situations.Comparisons between SCALA and CRLMM on HapMap genotypes show very reliable calling of single arrays. Some heterozygous genotypes from HapMap are called homozygous by SCALA and to lesser extent by CRLMM too. Furthermore, HapMap's NoCalls (NN could be genotyped by SCALA, mostly with high probability. The software is available as R scripts from the website www.math.leidenuniv.nl/~rrippe.

  11. Worst-case Throughput Analysis for Parametric Rate and Parametric Actor Execution Time Scenario-Aware Dataflow Graphs

    Directory of Open Access Journals (Sweden)

    Mladen Skelin

    2014-03-01

    Full Text Available Scenario-aware dataflow (SADF is a prominent tool for modeling and analysis of dynamic embedded dataflow applications. In SADF the application is represented as a finite collection of synchronous dataflow (SDF graphs, each of which represents one possible application behaviour or scenario. A finite state machine (FSM specifies the possible orders of scenario occurrences. The SADF model renders the tightest possible performance guarantees, but is limited by its finiteness. This means that from a practical point of view, it can only handle dynamic dataflow applications that are characterized by a reasonably sized set of possible behaviours or scenarios. In this paper we remove this limitation for a class of SADF graphs by means of SADF model parametrization in terms of graph port rates and actor execution times. First, we formally define the semantics of the model relevant for throughput analysis based on (max,+ linear system theory and (max,+ automata. Second, by generalizing some of the existing results, we give the algorithms for worst-case throughput analysis of parametric rate and parametric actor execution time acyclic SADF graphs with a fully connected, possibly infinite state transition system. Third, we demonstrate our approach on a few realistic applications from digital signal processing (DSP domain mapped onto an embedded multi-processor architecture.

  12. Conceptual Framework for Parametrically Measuring the Desirability of Open Educational Resources using D-Index

    Directory of Open Access Journals (Sweden)

    S. Raviraja

    2012-04-01

    Full Text Available Open educational resources (OER are a global phenomenon that is fast gaining credibility in many academic circles as a possible solution for bridging the knowledge divide. With increased funding and advocacy from governmental and nongovernmental organisations paired with generous philanthropy, many OER repositories, which host a vast array of resources, have mushroomed over the years. As the inkling towards an open approach to education grows, many academics are contributing to these OER repositories, making them expand exponentially in volume. However, despite the volume of available OER, the uptake of the use and reuse of OER still remains slow. One of the major limitations inhibiting the wider adoption of OER is the inability of current search mechanisms to effectively locate OER that are most suitable for use and reuse within a given scenario. This is mainly due to the lack of a parametric measure that could be used by search technologies to autonomously identify desirable resources. As a possible solution to this limitation, this concept paper introduces a parametric measure of desirability of OER named the D-index, which can aid search mechanisms in better identifying resources suitable for use and reuse.

  13. Universal parametrization for quark and lepton substructure

    International Nuclear Information System (INIS)

    Akama, Keiichi; Terazawa, Hidezumi.

    1994-01-01

    A universal parametrization for possible quark and lepton substructure is advocated in terms of quark and lepton form factors. It is emphasized that the lower bounds on compositeness scale, Λ c , to be determined experimentally strongly depend on their definitions in composite models. From the recent HERA data, it is estimated to be Λ c > 50 GeV, 0.4 TeV and 10 TeV, depending on the parametrizations with a single-pole form factor, a contact interaction and a logarithmic form factor, respectively. (author)

  14. Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems

    Science.gov (United States)

    Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain

    2018-01-01

    Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.

  15. Parametric Modelling of As-Built Beam Framed Structure in Bim Environment

    Science.gov (United States)

    Yang, X.; Koehl, M.; Grussenmeyer, P.

    2017-02-01

    A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.

  16. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor

    2010-01-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  17. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian

    2010-08-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  18. Lattice Boltzmann methods for global linear instability analysis

    Science.gov (United States)

    Pérez, José Miguel; Aguilar, Alfonso; Theofilis, Vassilis

    2017-12-01

    Modal global linear instability analysis is performed using, for the first time ever, the lattice Boltzmann method (LBM) to analyze incompressible flows with two and three inhomogeneous spatial directions. Four linearization models have been implemented in order to recover the linearized Navier-Stokes equations in the incompressible limit. Two of those models employ the single relaxation time and have been proposed previously in the literature as linearization of the collision operator of the lattice Boltzmann equation. Two additional models are derived herein for the first time by linearizing the local equilibrium probability distribution function. Instability analysis results are obtained in three benchmark problems, two in closed geometries and one in open flow, namely the square and cubic lid-driven cavity flow and flow in the wake of the circular cylinder. Comparisons with results delivered by classic spectral element methods verify the accuracy of the proposed new methodologies and point potential limitations particular to the LBM approach. The known issue of appearance of numerical instabilities when the SRT model is used in direct numerical simulations employing the LBM is shown to be reflected in a spurious global eigenmode when the SRT model is used in the instability analysis. Although this mode is absent in the multiple relaxation times model, other spurious instabilities can also arise and are documented herein. Areas of potential improvements in order to make the proposed methodology competitive with established approaches for global instability analysis are discussed.

  19. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    Energy Technology Data Exchange (ETDEWEB)

    Slapa, Rafal Z., E-mail: rz.slapa@gmail.com [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Kasperlik–Zaluska, Anna A. [Endocrinology Department, Center for Postgraduate Medical Education, Bielanski Hospital, Warsaw (Poland); Migda, Bartosz [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland); Otto, Maciej [Department of General, Vascular and Transplant Surgery, Medical University of Warsaw, First Faculty of Medicine, Warsaw (Poland); Jakubowski, Wiesław S. [Diagnostic Imaging Department, Medical University of Warsaw, Second Faculty of Medicine with English and Physiotherapy Divisions, Warsaw (Poland)

    2015-08-15

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients.

  20. Application of parametric ultrasound contrast agent perfusion studies for differentiation of hyperplastic adrenal nodules from adenomas—Initial study

    International Nuclear Information System (INIS)

    Slapa, Rafal Z.; Kasperlik–Zaluska, Anna A.; Migda, Bartosz; Otto, Maciej; Jakubowski, Wiesław S.

    2015-01-01

    Highlights: • Adrenal masses may differ on parametric perfusion ultrasound. • Hyperplastic nodules present distinctive patterns on CEUS in regard to adenomas. • Adrenal lesions perfusion should be further investigated with different modalities. - Abstract: Objectives: To evaluate the possibilities of differentiation of non-malignant adrenal masses with the application of the new technique for the evaluation of enhancement after administration of an ultrasound contrast agent: parametric imaging. Patients and Methods: 34 non-malignant adrenal masses in 29 patients were evaluated in a dynamic examination after the administration of ultrasound contrast agent with parametric imaging. Patterns on parametric imaging of arrival time were evaluated. The final diagnosis was based on CT, MRI, biochemical studies, follow up and/or histopathology examination. Results: The study included: 12 adenomas, 10 hyperplastic nodules, 7 myelolipomas, 3 pheochromocytomas, hemangioma with hemorrhage and cyst. The pattern of peripheral laminar inflow of Sonovue on parametric images of arrival time of was 100% sensitive for hyperplastic nodules and 83% specific in regard to adenomas. Conclusions: Parametric contrast enhanced ultrasound may accurately differentiate hyperplastic adrenal nodules from adenomas and could be complementary to CT or MRI. Incorporation of perfusion studies to CT or MRI could possibly enable one-shop complete characterization of adrenal masses. This could deliver additional information in diagnostics of patients with Conn Syndrome and warrants further studies in this cohort of patients

  1. Facial Performance Transfer via Deformable Models and Parametric Correspondence.

    Science.gov (United States)

    Asthana, Akshay; de la Hunty, Miles; Dhall, Abhinav; Goecke, Roland

    2012-09-01

    The issue of transferring facial performance from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, deformable face models, such as the Active Appearance Model (AAM), have made it possible to track and synthesize faces in real time. Not surprisingly, deformable face model-based approaches for facial performance transfer have gained tremendous interest in the computer vision and graphics community. In this paper, we focus on the problem of real-time facial performance transfer using the AAM framework. We propose a novel approach of learning the mapping between the parameters of two completely independent AAMs, using them to facilitate the facial performance transfer in a more realistic manner than previous approaches. The main advantage of modeling this parametric correspondence is that it allows a "meaningful" transfer of both the nonrigid shape and texture across faces irrespective of the speakers' gender, shape, and size of the faces, and illumination conditions. We explore linear and nonlinear methods for modeling the parametric correspondence between the AAMs and show that the sparse linear regression method performs the best. Moreover, we show the utility of the proposed framework for a cross-language facial performance transfer that is an area of interest for the movie dubbing industry.

  2. Parametric instabilities in advanced gravitational wave detectors

    International Nuclear Information System (INIS)

    Gras, S; Zhao, C; Blair, D G; Ju, L

    2010-01-01

    As the LIGO interferometric gravitational wave detectors have finished gathering a large observational data set, an intense effort is underway to upgrade these observatories to improve their sensitivity by a factor of ∼10. High circulating power in the arm cavities is required, which leads to the possibility of parametric instability due to three-mode opto-acoustic resonant interactions between the carrier, transverse optical modes and acoustic modes. Here, we present detailed numerical analysis of parametric instability in a configuration that is similar to Advanced LIGO. After examining parametric instability for a single three-mode interaction in detail, we examine instability for the best and worst cases, as determined by the resonance condition of transverse modes in the power and signal recycling cavities. We find that, in the best case, the dual recycling detector is substantially less susceptible to instability than a single cavity, but its susceptibility is dependent on the signal recycling cavity design, and on tuning for narrow band operation. In all cases considered, the interferometer will experience parametric instability at full power operation, but the gain varies from 3 to 1000, and the number of unstable modes varies between 7 and 30 per test mass. The analysis focuses on understanding the detector complexity in relation to opto-acoustic interactions, on providing insights that can enable predictions of the detector response to transient disturbances, and of variations in thermal compensation conditions.

  3. The Global Optimal Algorithm of Reliable Path Finding Problem Based on Backtracking Method

    Directory of Open Access Journals (Sweden)

    Liang Shen

    2017-01-01

    Full Text Available There is a growing interest in finding a global optimal path in transportation networks particularly when the network suffers from unexpected disturbance. This paper studies the problem of finding a global optimal path to guarantee a given probability of arriving on time in a network with uncertainty, in which the travel time is stochastic instead of deterministic. Traditional path finding methods based on least expected travel time cannot capture the network user’s risk-taking behaviors in path finding. To overcome such limitation, the reliable path finding algorithms have been proposed but the convergence of global optimum is seldom addressed in the literature. This paper integrates the K-shortest path algorithm into Backtracking method to propose a new path finding algorithm under uncertainty. The global optimum of the proposed method can be guaranteed. Numerical examples are conducted to demonstrate the correctness and efficiency of the proposed algorithm.

  4. A method for improving global pyranometer measurements by modeling responsivity functions

    Energy Technology Data Exchange (ETDEWEB)

    Lester, A. [Smith College, Northampton, MA 01063 (United States); Myers, D.R. [National Renewable Energy Laboratory, 1617 Cole Blvd., Golden, CO 80401 (United States)

    2006-03-15

    Accurate global solar radiation measurements are crucial to climate change research and the development of solar energy technologies. Pyranometers produce an electrical signal proportional to global irradiance. The signal-to-irradiance ratio is the responsivity (RS) of the instrument (RS=signal/irradiance=microvolts/(W/m{sup 2})). Most engineering measurements are made using a constant RS. It is known that RS varies with day of year, zenith angle, and net infrared radiation. This study proposes a method to find an RS function to model a pyranometer's changing RS. Using a reference irradiance calculated from direct and diffuse instruments, we found instantaneous RS for two global pyranometers over 31 sunny days in a two-year period. We performed successive independent regressions of the error between the constant and instantaneous RS with respect to zenith angle, day of year, and net infrared to obtain an RS function. An alternative method replaced the infrared regression with an independently developed technique to account for thermal offset. Results show improved uncertainties with the function method than with the single-calibration value. Lower uncertainties also occur using a black-and-white (8-48), rather than all-black (PSP), shaded pyranometer as the diffuse reference instrument. We conclude that the function method is extremely effective in reducing uncertainty in the irradiance measurements for global PSP pyranometers if they are calibrated at the deployment site. Furthermore, it was found that the function method accounts for the pyranometer's thermal offset, rendering further corrections unnecessary. The improvements in irradiance data achieved in this study will serve to increase the accuracy of solar energy assessments and atmospheric research. (author)

  5. Additivity for parametrized topological Euler characteristic and Reidemeister torsion

    OpenAIRE

    Badzioch, Bernard; Dorabiala, Wojciech

    2005-01-01

    Dwyer, Weiss, and Williams have recently defined the notions of parametrized topological Euler characteristic and parametrized topological Reidemeister torsion which are invariants of bundles of compact topological manifolds. We show that these invariants satisfy additivity formulas paralleling the additive properties of the classical Euler characteristic and Reidemeister torsion of finite CW-complexes.

  6. Interactive Dimensioning of Parametric Models

    KAUST Repository

    Kelly, T.

    2015-06-22

    We propose a solution for the dimensioning of parametric and procedural models. Dimensioning has long been a staple of technical drawings, and we present the first solution for interactive dimensioning: A dimension line positioning system that adapts to the view direction, given behavioral properties. After proposing a set of design principles for interactive dimensioning, we describe our solution consisting of the following major components. First, we describe how an author can specify the desired interactive behavior of a dimension line. Second, we propose a novel algorithm to place dimension lines at interactive speeds. Third, we introduce multiple extensions, including chained dimension lines, controls for different parameter types (e.g. discrete choices, angles), and the use of dimension lines for interactive editing. Our results show the use of dimension lines in an interactive parametric modeling environment for architectural, botanical, and mechanical models.

  7. Real time implementation of the parametric imaging correlation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bogorodski, Piotr; Wolek, Tomasz; Wasielewski, Jaroslaw; Piatkowski, Adam [Medical and Nuclear Electronics Division, Institute of Radioelectronics, Warsaw University of Technology, 00-665 Warsaw, Nowowiejska 15/19 (Poland)

    1999-12-31

    A novel method for functional image evaluation from image set obtained in contrast aided Ultrafast Computed Tomography and Magnetic Resonance Imaging will be presented. The method converts temporal set of images of first-pass transit of injected contrast, to a single parametric image. The main difference between proposed procedure and other widely accepted methods is fast, that our method applies correlation and discrimination analysis to each concentration-time curve, instead of fitting them to the given a priori tracer kinetics model. A stress will be put on execution speed (i.e. shortening of the time required to obtain a perfusion relevant image), and easiest user interface allowing the physician to utilize the system without any technical assistance. Both execution speed and user interface should satisfy requirements in the interventional procedures. (authors)

  8. Parametric Linear Dynamic Logic

    Directory of Open Access Journals (Sweden)

    Peter Faymonville

    2014-08-01

    Full Text Available We introduce Parametric Linear Dynamic Logic (PLDL, which extends Linear Dynamic Logic (LDL by temporal operators equipped with parameters that bound their scope. LDL was proposed as an extension of Linear Temporal Logic (LTL that is able to express all ω-regular specifications while still maintaining many of LTL's desirable properties like an intuitive syntax and a translation into non-deterministic Büchi automata of exponential size. But LDL lacks capabilities to express timing constraints. By adding parameterized operators to LDL, we obtain a logic that is able to express all ω-regular properties and that subsumes parameterized extensions of LTL like Parametric LTL and PROMPT-LTL. Our main technical contribution is a translation of PLDL formulas into non-deterministic Büchi word automata of exponential size via alternating automata. This yields a PSPACE model checking algorithm and a realizability algorithm with doubly-exponential running time. Furthermore, we give tight upper and lower bounds on optimal parameter values for both problems. These results show that PLDL model checking and realizability are not harder than LTL model checking and realizability.

  9. Parametric Cost Estimates for an International Competitive Edge

    International Nuclear Information System (INIS)

    Murphy, L.T.; Hickey, M.

    2006-01-01

    This paper summarizes the progress to date by CH2M HILL and the UKAEA in development of a parametric modelling capability for estimating the costs of large nuclear decommissioning projects in the United Kingdom (UK) and Europe. The ability to successfully apply parametric cost estimating techniques will be a key factor to commercial success in the UK and European multi-billion dollar waste management, decommissioning and environmental restoration markets. The most useful parametric models will be those that incorporate individual components representing major elements of work: reactor decommissioning, fuel cycle facility decommissioning, waste management facility decommissioning and environmental restoration. Models must be sufficiently robust to estimate indirect costs and overheads, permit pricing analysis and adjustment, and accommodate the intricacies of international monetary exchange, currency fluctuations and contingency. The development of a parametric cost estimating capability is also a key component in building a forward estimating strategy. The forward estimating strategy will enable the preparation of accurate and cost-effective out-year estimates, even when work scope is poorly defined or as yet indeterminate. Preparation of cost estimates for work outside the organizations current sites, for which detailed measurement is not possible and historical cost data does not exist, will also be facilitated. (authors)

  10. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

    CERN Document Server

    Aleksa, Martin; Völlinger, Christine

    2002-01-01

    The program package ROXIE has been developed at CERN for the design and optimization of accelerator magnets. The necessity of extremely uniform fields in the superconducting accelerator magnets for LHC requires very accurate methods of field computation. For this purpose the coupled boundary-element / finite-element technique (BEM-FEM) is used. Quadrilateral higher order finite-element meshes are generated for the discretization of the iron domain (yoke) and stainless steel collars. A new mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation. The structure of the magnet cross-section can be modeled using parametric objects such as holes of different forms, elliptic, parabolic or hyperbolic arcs, notches, slots, .... For sensitivity analysis and parametric studies, point based morphing algorithms are applied to guarantee smooth adaptatio...

  11. Parametric Level Statistics in Random Matrix Theory: Exact Solution

    International Nuclear Information System (INIS)

    Kanzieper, E.

    1999-01-01

    During recent several years, the theory of non-Gaussian random matrix ensembles has experienced a sound progress motivated by new ideas in quantum chromodynamics (QCD) and mesoscopic physics. Invariant non-Gaussian random matrix models appear to describe universal features of low-energy part of the spectrum of Dirac operator in QCD, and electron level statistics in normal conducting-superconducting hybrid structures. They also serve as a basis for constructing the toy models of universal spectral statistics expected at the edge of the metal-insulator transition. While conventional spectral statistics has received a detailed study in the context of RMT, quite a bit is known about parametric level statistics in non-Gaussian random matrix models. In this communication we report about exact solution to the problem of parametric level statistics in unitary invariant, U(N), non-Gaussian ensembles of N x N Hermitian random matrices with either soft or strong level confinement. The solution is formulated within the framework of the orthogonal polynomial technique and is shown to depend on both the unfolded two-point scalar kernel and the level confinement through a double integral transformation which, in turn, provides a constructive tool for description of parametric level correlations in non-Gaussian RMT. In the case of soft level confinement, the formalism developed is potentially applicable to a study of parametric level statistics in an important class of random matrix models with finite level compressibility expected to describe a disorder-induced metal-insulator transition. In random matrix ensembles with strong level confinement, the solution presented takes a particular simple form in the thermodynamic limit: In this case, a new intriguing connection relation between the parametric level statistics and the scalar two-point kernel of an unperturbed ensemble is demonstrated to emerge. Extension of the results obtained to higher-order parametric level statistics is

  12. A PARAMETRIC STUDY OF THE INFLUENCE OF SHORT-TERM ...

    African Journals Online (AJOL)

    (b). (•). Figure I a) The building embedded in a layered formation; b) The building model with base springs. PARAMETRIC STUDY. 'fhe parametric study carried out in this work aims at investigating the effect of the soil flexibility on the internal force distribution of selected structural systems of buildings that are founded on soil.

  13. Parametric Cost and Schedule Modeling for Early Technology Development

    Science.gov (United States)

    2018-04-02

    Research NoteNational Security Rep rt PARAMETRIC MODELING FOR EARLY TECHNOLOGY DEVELOPMENT COST AND SCHEDULE Chuck...Alexander NSR_11x17_Cover_CostModeling_v8.indd 1 11/20/17 3:15 PM PARAMETRIC COST AND SCHEDULE MODELING FOR EARLY  TECHNOLOGY DEVELOPMENT Chuck...COST AND SCHEDULE MODELING FOR EARLY  TECHNOLOGY DEVELOPMENT iii Contents Figures

  14. Wind Farm parametrization in the mesoscale model WRF

    DEFF Research Database (Denmark)

    Volker, Patrick; Badger, Jake; Hahmann, Andrea N.

    2012-01-01

    , but are parametrized as another sub-grid scale process. In order to appropriately capture the wind farm wake recovery and its direction, two properties are important, among others, the total energy extracted by the wind farm and its velocity deficit distribution. In the considered parametrization the individual...... the extracted force is proportional to the turbine area interfacing a grid cell. The sub-grid scale wake expansion is achieved by adding turbulence kinetic energy (proportional to the extracted power) to the flow. The validity of both wind farm parametrizations has been verified against observational data. We...... turbines produce a thrust dependent on the background velocity. For the sub-grid scale velocity deficit, the entrainment from the free atmospheric flow into the wake region, which is responsible for the expansion, is taken into account. Furthermore, since the model horizontal distance is several times...

  15. Probing the dynamics of dark energy with novel parametrizations

    International Nuclear Information System (INIS)

    Ma Jingzhe; Zhang Xin

    2011-01-01

    We point out that the CPL parametrization has a problem that the equation of state w(z) diverges in the far future, so that this model can only properly describe the past evolution but cannot depict the future evolution. To overcome such a difficulty, in this Letter we propose two novel parametrizations for dark energy, the logarithm form w(z)=w 0 +w 1 ((ln(2+z))/(1+z) -ln2) and the oscillating form w(z)=w 0 +w 1 ((sin(1+z))/(1+z) -sin(1)), successfully avoiding the future divergency problem in the CPL parametrization, and use them to probe the dynamics of dark energy in the whole evolutionary history. Our divergency-free parametrizations are proven to be very successful in exploring the dynamical evolution of dark energy and have powerful prediction capability for the ultimate fate of the universe. Constraining the CPL model and the new models with the current observational data, we show that the new models are more favored. The features and the predictions for the future evolution in the new models are discussed in detail.

  16. Possibilities and limitations of parametric Rietveld refinement on high pressure data. The case study of LaFeO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Etter, Martin; Mueller, Melanie; Dinnebier, Robert E. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Hanfland, Michael [European Synchrotron Radiation Facility (ESRF), Grenoble (France)

    2014-04-01

    Parametric Rietveld refinement is a powerful technique to apply directly physical or empirical equations to the refinement of in situ powder diffraction data. In order to investigate the possibilities and limitations of parametric Rietveld refinements for high pressure data four competitive crystallographic approaches were used to carry out a full structural investigation of the orthoferrite LaFeO{sub 3} (Pbnm at ambient conditions) under high pressure up to 47 GPa. Approach A with traditional Rietveld refinement using atomic coordinates, Approach B where the Rietveld refinement was done by using the rigid body method, Approach C where symmetry modes were used and Approach D where the newly developed method of the rotational symmetry mode description for a rigid body was used. For all approaches sequential as well as parametric refinements were carried out, confirming a second order phase transition of LaFeO{sub 3} to a higher symmetric phase (space group Ibmm) at around 21.1?GPa and an isostructural first order phase transition at around 38 GPa. Limitations due to non-hydrostatic conditions as well as the possibilities of a direct modeling of phase transitions with parametric Rietveld refinement are discussed in detail. (orig.)

  17. Proposal of Evolutionary Simplex Method for Global Optimization Problem

    Science.gov (United States)

    Shimizu, Yoshiaki

    To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.

  18. Quantum theory of novel parametric devices

    International Nuclear Information System (INIS)

    Drummond, P.D.; Reid, M.D.; Dechoum, K.; Chaturvedi, S.; Olsen, M.; Kheruntsyan, K.; Bradley, A.

    2005-01-01

    While the parametric amplifier is a widely used and important source of entangled and squeezed photons, there are many possible ways to investigate the physics of intracavity parametric devices. Novel quantum theory of parametric devices in this talk will cover several new types of unconventional devices, including the following topics:- Critical intracavity paramp - We calculate intrinsic limits to entanglement of a quantum paramp, caused by nonlinear effects originating in phase noise of the pump. - Degenerate planar paramp - We obtain universal quantum critical fluctuations in a planar paramp device by mapping to the equations of magnetic Lifshitz points Nondegenerate planar paramp - The Mermin-Wagner theorem is used to demonstrate that there is no phase transition in the case of a nondegenerate planar device - Coupled channel paramp - A robust and novel integrated entanglement source can be generated using type I waveguides coupled inside a cavity to generate spatial entanglement - Cascade paramps - This possible 'GHZ-type' source is obtained by cascading successive down conversion crystals inside the same cavity, giving two thresholds Parallel paramps - Tripartite entanglement can be generated if three intracavity paramp crystals are operated in parallel, each idler mode acting as a signal for the next. Finally, we briefly treat the relevant experimental developments. (author)

  19. Parametric Room Acoustic workflows with real-time acoustic simulation

    DEFF Research Database (Denmark)

    Parigi, Dario

    2017-01-01

    The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages......The paper investigates and assesses the opportunities that real-time acoustic simulation offer to engage in parametric acoustics workflow and to influence architectural designs from early design stages...

  20. The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    Science.gov (United States)

    Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  1. Stochastic identification of temperature effects on the dynamics of a smart composite beam: assessment of multi-model and global model approaches

    International Nuclear Information System (INIS)

    Hios, J D; Fassois, S D

    2009-01-01

    The temperature effects on the dynamics of a smart composite beam are experimentally studied via conventional multi-model and novel global model identification approaches. The multi-model approaches are based on non-parametric and parametric VARX representations, whereas the global model approaches are based on novel constant coefficient pooled (CCP) and functionally pooled (FP) VARX parametric representations. The analysis indicates that the obtained multi-model and global model representations are in rough overall agreement. Nevertheless, the latter simultaneously use all available data records offering more compact descriptions of the dynamics, improved numerical robustness and estimation accuracy, which is reflected in significantly reduced modal parameter uncertainties. Although the CCP-VARX representations provide only 'averaged' descriptions of the structural dynamics over temperature, their FP-VARX counterparts allow for the explicit, analytical modeling of temperature dependence exhibiting a 'smooth' deterministic dependence of the dynamics on temperature which is compatible with the physics of the problem. In accordance with previous studies, the obtained natural frequencies decrease with temperature in a weakly nonlinear or approximately linear fashion. The damping factors are less affected, although their dependence on temperature may be of a potentially more complex nature

  2. Prediction of Parametric Roll Resonance by Multilayer Perceptron Neural Network

    DEFF Research Database (Denmark)

    Míguez González, M; López Peña, F.; Díaz Casás, V.

    2011-01-01

    Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been acknowle......Parametric roll resonance is a ship stability related phenomenon that generates sudden large amplitude oscillations up to 30-40 degrees of roll. This can cause severe damage, and it can put the crew in serious danger. The need for a parametric rolling real time prediction system has been...... acknowledged in the last few years. This work proposes a prediction system based on a multilayer perceptron (MP) neural network. The training and testing of the MP network is accomplished by feeding it with simulated data of a three degrees-of-freedom nonlinear model of a fishing vessel. The neural network...

  3. A Strategy for a Parametric Flood Insurance Using Proxies

    Science.gov (United States)

    Haraguchi, M.; Lall, U.

    2017-12-01

    Traditionally, the design of flood control infrastructure and flood plain zoning require the estimation of return periods, which have been calculated by river hydraulic models with rainfall-runoff models. However, this multi-step modeling process leads to significant uncertainty to assess inundation. In addition, land use change and changing climate alter the potential losses, as well as make the modeling results obsolete. For these reasons, there is a strong need to create parametric indexes for the financial risk transfer for large flood events, to enable rapid response and recovery. Hence, this study examines the possibility of developing a parametric flood index at the national or regional level in Asia, which can be quickly mobilized after catastrophic floods. Specifically, we compare a single trigger based on rainfall index with multiple triggers using rainfall and streamflow indices by conducting case studies in Bangladesh and Thailand. The proposed methodology is 1) selecting suitable indices of rainfall and streamflow (if available), 2) identifying trigger levels for specified return periods for losses using stepwise and logistic regressions, 3) measuring the performance of indices, and 4) deriving return periods of selected windows and trigger levels. Based on the methodology, actual trigger levels were identified for Bangladesh and Thailand. Models based on multiple triggers reduced basis risks, an inherent problem in an index insurance. The proposed parametric flood index can be applied to countries with similar geographic and meteorological characteristics, and serve as a promising method for ex-ante risk financing for developing countries. This work is intended to be a preliminary work supporting future work on pricing risk transfer mechanisms in ex-ante risk finance.

  4. Robust Adaptive Exponential Synchronization of Stochastic Perturbed Chaotic Delayed Neural Networks with Parametric Uncertainties

    Directory of Open Access Journals (Sweden)

    Yang Fang

    2014-01-01

    Full Text Available This paper investigates the robust adaptive exponential synchronization in mean square of stochastic perturbed chaotic delayed neural networks with nonidentical parametric uncertainties. A robust adaptive feedback controller is proposed based on Gronwally’s inequality, drive-response concept, and adaptive feedback control technique with the update laws of nonidentical parametric uncertainties as well as linear matrix inequality (LMI approach. The sufficient conditions for robust adaptive exponential synchronization in mean square of uncoupled uncertain stochastic chaotic delayed neural networks are derived in terms of linear matrix inequalities (LMIs. The effect of nonidentical uncertain parameter uncertainties is suppressed by the designed robust adaptive feedback controller rapidly. A numerical example is provided to validate the effectiveness of the proposed method.

  5. Technical issues relating to the statistical parametric mapping of brain SPECT studies

    International Nuclear Information System (INIS)

    Hatton, R.L.; Cordato, N.; Hutton, B.F.; Lau, Y.H.; Evans, S.G.

    2000-01-01

    Full text: Statistical Parametric Mapping (SPM) is a software tool designed for the statistical analysis of functional neuro images, specifically Positron Emission Tomography and functional Magnetic Resonance Imaging, and more recently SPECT. This review examines some problems associated with the analysis of SPECT. A comparison of a patient group with normal studies revealed factors that could influence results, some that commonly occur, others that require further exploration. To optimise the differences between two groups of subjects, both spatial variability and differences in global activity must be minimised. The choice and effectiveness of co registration method and approach to normalisation of activity concentration can affect the optimisation. A small number of subject scans were identified as possessing truncated data resulting in edge effects that could adversely influence the analysis. Other problems included unusual areas of significance possibly related to reconstruction methods and the geometry associated with nonparallel collimators. Areas of extra cerebral significance are a point of concern - and may result from scatter effects, or mis registration. Difficulties in patient positioning, due to postural limitations, can lead to resolution differences. SPM has been used to assess areas of statistical significance arising from these technical factors, as opposed to areas of true clinical significance when comparing subject groups. This contributes to a better understanding of the effects of technical factors so that these may be eliminated, minimised, or incorporated in the study design. Copyright (2000) The Australian and New Zealand Society of Nuclear Medicine Inc

  6. Polyaffine parametrization of image registration based on geodesic flows

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Thorup, Signe Strann; Warfield, Simon K.

    2012-01-01

    Image registration based on geodesic flows has gained much popularity in recent years. We describe a novel parametrization of the velocity field in a stationary flow equation. We show that the method offers both precision, flexibility, and simplicity of evaluation. With our representation, which ...... of geodesic shooting for computational anatomy. We avoid to do warp field convolution by interpolation in a dense field, we can easily calculate warp derivatives in a reference frame of choice, and we can consequently avoid interpolation in the image space altogether....

  7. Enhancement and suppression of opto-acoustic parametric interactions using optical feedback

    International Nuclear Information System (INIS)

    Zhang Zhongyang; Zhao Chunnong; Ju, L.; Blair, D. G.

    2010-01-01

    A three mode opto-acoustic parametric amplifier (OAPA) is created when two orthogonal optical modes in a high finesse optical cavity are coupled via an acoustic mode of the cavity mirror. Such interactions are predicted to occur in advanced long baseline gravitational wave detectors. They can have high positive gain, which leads to strong parametric instability. Here we show that an optical feedback scheme can enhance or suppress the parametric gain of an OAPA, allowing exploration of three-mode parametric interactions, especially in cavity systems that have insufficient optical power to achieve spontaneous instability. We derive analytical equations and show that optical feedback is capable of controlling predicted instabilities in advanced gravitational wave detectors within a time scale of 13∼10 s.

  8. Critical sets in one-parametric mathematical programs with complementarity constraints

    NARCIS (Netherlands)

    Bouza Allende, G.; Guddat, J.; Still, Georg J.

    2008-01-01

    One-parametric mathematical programs with complementarity constraints are considered. The structure of the set of generalized critical points is analysed for the generic case. It is shown how this analysis can locally be reduced to the study of appropriate standard one-parametric finite problems. By

  9. Parametric Landau damping of space charge modes

    Energy Technology Data Exchange (ETDEWEB)

    Macridin, Alexandru [Fermilab; Burov, Alexey [Fermilab; Stern, Eric [Fermilab; Amundson, James [Fermilab; Spentzouris, Panagiotis [Fermilab

    2016-09-23

    Landau damping is the mechanism of plasma and beam stabilization; it arises through energy transfer from collective modes to the incoherent motion of resonant particles. Normally this resonance requires the resonant particle's frequency to match the collective mode frequency. We have identified an important new damping mechanism, parametric Landau damping, which is driven by the modulation of the mode-particle interaction. This opens new possibilities for stability control through manipulation of both particle and mode-particle coupling spectra. We demonstrate the existence of parametric Landau damping in a simulation of transverse coherent modes of bunched accelerator beams with space charge.

  10. Parametric frequency conversion in long Josephson junctions

    International Nuclear Information System (INIS)

    Irie, F.; Ashihara, S.; Yoshida, K.

    1976-01-01

    Current steps at voltages corresponding to the parametric coupling between an applied r.f. field and junction resonant modes have been observed in long Josephson tunnel junctions in the flux-flow state. The observed periodic variations of the step height due to the applied magnetic field are explained quantitatively by a perturbational analysis using Josephson phase equations. The present study demonstrates that the moving vortex array can serve as a coherent pump wave for signal waves propagating in the barrier region, which indicates, as a result, the possibility of traveling-wave parametric devices with long Josephson tunnel junctions. (author)

  11. Suppression of Growth by Multiplicative White Noise in a Parametric Resonant System

    Science.gov (United States)

    Ishihara, Masamichi

    2015-02-01

    The growth of the amplitude in a Mathieu-like equation with multiplicative white noise is studied. To obtain an approximate analytical expression for the exponent at the extremum on parametric resonance regions, a time-interval width is introduced. To determine the exponents numerically, the stochastic differential equations are solved by a symplectic numerical method. The Mathieu-like equation contains a parameter α determined by the intensity of noise and the strength of the coupling between the variable and noise; without loss of generality, only non-negative α can be considered. The exponent is shown to decrease with α, reach a minimum and increase after that. The minimum exponent is obtained analytically and numerically. As a function of α, the minimum at α≠0, occurs on the parametric resonance regions of α=0. This minimum indicates suppression of growth by multiplicative white noise.

  12. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission

    OpenAIRE

    Longhi, Stefano

    2016-01-01

    Optical parametric amplification/oscillation provide a powerful tool for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency {\\it down-conversion} process, and thus it can not be realized for signal waves at a frequency $\\omega_3$ {\\it higher} than the frequency of the pump wave $\\omega_1$. In this work we suggest a route toward the realization of {\\it up-conversion} optical parametric amplification and oscillation, i.e. amplification ...

  13. Comparison of parametric and linear mass detection in the presence of detection noise

    International Nuclear Information System (INIS)

    Yie, Zi; Zielke, Mark A; Burgner, Christopher B; Turner, Kimberly L

    2011-01-01

    We experimentally investigate the performance of a nonlinear parametrically driven mass sensor in the presence of detection noise. Mass detection is achieved by measuring the amount of methanol vapor adsorption on the sensor. To demonstrate the advantage of parametric sensing in counteracting the influence of detection noise, we operate the sensor in both the parametric and harmonic resonance mode. Comparison of the results shows that in contrast to conventional linear harmonic sensing, the detection sensitivity does not deteriorate for the parametric case when a tenfold increase in detection noise is introduced. Furthermore, we demonstrate additional functionality of the parametric sensor by utilizing it as a threshold detector, whose performance remains the same despite the added detection noise. Taken together, these results suggest that for mass detection in the presence of detection noise, a parametrically operated sensor may offer better performance over one operated harmonically in the linear regime.

  14. Direct reconstruction of parametric images for brain PET with event-by-event motion correction: evaluation in two tracers across count levels

    Science.gov (United States)

    Germino, Mary; Gallezot, Jean-Dominque; Yan, Jianhua; Carson, Richard E.

    2017-07-01

    Parametric images for dynamic positron emission tomography (PET) are typically generated by an indirect method, i.e. reconstructing a time series of emission images, then fitting a kinetic model to each voxel time activity curve. Alternatively, ‘direct reconstruction’, incorporates the kinetic model into the reconstruction algorithm itself, directly producing parametric images from projection data. Direct reconstruction has been shown to achieve parametric images with lower standard error than the indirect method. Here, we present direct reconstruction for brain PET using event-by-event motion correction of list-mode data, applied to two tracers. Event-by-event motion correction was implemented for direct reconstruction in the Parametric Motion-compensation OSEM List-mode Algorithm for Resolution-recovery reconstruction. The direct implementation was tested on simulated and human datasets with tracers [11C]AFM (serotonin transporter) and [11C]UCB-J (synaptic density), which follow the 1-tissue compartment model. Rigid head motion was tracked with the Vicra system. Parametric images of K 1 and distribution volume (V T  =  K 1/k 2) were compared to those generated by the indirect method by regional coefficient of variation (CoV). Performance across count levels was assessed using sub-sampled datasets. For simulated and real datasets at high counts, the two methods estimated K 1 and V T with comparable accuracy. At lower count levels, the direct method was substantially more robust to outliers than the indirect method. Compared to the indirect method, direct reconstruction reduced regional K 1 CoV by 35-48% (simulated dataset), 39-43% ([11C]AFM dataset) and 30-36% ([11C]UCB-J dataset) across count levels (averaged over regions at matched iteration); V T CoV was reduced by 51-58%, 54-60% and 30-46%, respectively. Motion correction played an important role in the dataset with larger motion: correction increased regional V T by 51% on average in the [11C

  15. Kinetic parametric estimation in animal PET molecular imaging based on artificial immune network

    International Nuclear Information System (INIS)

    Chen Yuting; Ding Hong; Lu Rui; Huang Hongbo; Liu Li

    2011-01-01

    Objective: To develop an accurate,reliable method without the need of initialization in animal PET modeling for estimation of the tracer kinetic parameters based on the artificial immune network. Methods: The hepatic and left ventricular time activity curves (TACs) were obtained by drawing ROIs of liver tissue and left ventricle on dynamic 18 F-FDG PET imaging of small mice. Meanwhile, the blood TAC was analyzed by sampling the tail vein blood at different time points after injection. The artificial immune network for parametric optimization of pharmacokinetics (PKAIN) was adapted to estimate the model parameters and the metabolic rate of glucose (K i ) was calculated. Results: TACs of liver,left ventricle and tail vein blood were obtained.Based on the artificial immune network, K i in 3 mice was estimated as 0.0024, 0.0417 and 0.0047, respectively. The average weighted residual sum of squares of the output model generated by PKAIN was less than 0.0745 with a maximum standard deviation of 0.0084, which indicated that the proposed PKAIN method can provide accurate and reliable parametric estimation. Conclusion: The PKAIN method could provide accurate and reliable tracer kinetic modeling in animal PET imaging without the need of initialization of model parameters. (authors)

  16. Anybody can do Value at Risk: A Teaching Study using Parametric Computation and Monte Carlo Simulation

    Directory of Open Access Journals (Sweden)

    Yun Hsing Cheung

    2012-12-01

    Full Text Available The three main Value at Risk (VaR methodologies are historical, parametric and Monte Carlo Simulation.Cheung & Powell (2012, using a step-by-step teaching study, showed how a nonparametric historical VaRmodel could be constructed using Excel, thus benefitting teachers and researchers by providing them with areadily useable teaching study and an inexpensive and flexible VaR modelling option. This article extends thatwork by demonstrating how parametric and Monte Carlo Simulation VaR models can also be constructed inExcel, thus providing a total Excel modelling package encompassing all three VaR methods.

  17. Time-Depending Parametric Variational Approach for an Economic General Equilibrium Problem of Pure Exchange with Application

    International Nuclear Information System (INIS)

    Scaramuzzino, F.

    2009-01-01

    This paper considers a qualitative analysis of the solution of a pure exchange general economic equilibrium problem according to two independent parameters. Some recently results obtained by the author in the static and the dynamic case have been collected. Such results have been applied in a particular parametric case: it has been focused the attention on a numerical application for which the existence of the solution of time-depending parametric variational inequality that describes the equilibrium conditions has been proved by means of the direct method. By using MatLab computation after a linear interpolation, the curves of equilibrium have been visualized.

  18. A method to determine the necessity for global signal regression in resting-state fMRI studies.

    Science.gov (United States)

    Chen, Gang; Chen, Guangyu; Xie, Chunming; Ward, B Douglas; Li, Wenjun; Antuono, Piero; Li, Shi-Jiang

    2012-12-01

    In resting-state functional MRI studies, the global signal (operationally defined as the global average of resting-state functional MRI time courses) is often considered a nuisance effect and commonly removed in preprocessing. This global signal regression method can introduce artifacts, such as false anticorrelated resting-state networks in functional connectivity analyses. Therefore, the efficacy of this technique as a correction tool remains questionable. In this article, we establish that the accuracy of the estimated global signal is determined by the level of global noise (i.e., non-neural noise that has a global effect on the resting-state functional MRI signal). When the global noise level is low, the global signal resembles the resting-state functional MRI time courses of the largest cluster, but not those of the global noise. Using real data, we demonstrate that the global signal is strongly correlated with the default mode network components and has biological significance. These results call into question whether or not global signal regression should be applied. We introduce a method to quantify global noise levels. We show that a criteria for global signal regression can be found based on the method. By using the criteria, one can determine whether to include or exclude the global signal regression in minimizing errors in functional connectivity measures. Copyright © 2012 Wiley Periodicals, Inc.

  19. Parametric Quadrilateral Meshes for the Design and Optimization of Superconducting Magnets

    CERN Document Server

    Aleksa, Martin; Völlinger, Christine

    2000-01-01

    The program package ROXIE [1] has been developed at CERN for the design and optimization of the superconducting magnets for the LHC.The necessity of extremely uniform (coil dominated) fields in accelerator magnets requires very accurate methods of .eld computation. For this purpose a coupled boundary-element/ finite-element technique (BEM-FEM) is used [2]. Quadrilateral higher order finite-elements are used for the discretization of the iron domain.This is necessary for the accurate modeling of the iron contours and is favorable for 3D meshes. A new quadrilateral mesh generator using geometrically optimized domain decomposition which was developed at the University of Stuttgart, Germany [3] has been implemented into the ROXIE program providing fully automatic and user friendly mesh generation.The frequent application of mathematical optimization techniques requires parametric models which are set-up using a feature-based approach.The structure of the magnet cross-section can be modeled using parametric object...

  20. Relativistic parametric instabilities in extended extragalactic radio sources

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Trussoni, E; Zaninetti, L

    1978-01-01

    A general discussion is presented of parametric instabilities of electromagnetic waves in cold plasmas. Previous results for f = eE/msub(e)c..omega../sub 0/ >> 1 and << 1 are extended and the intermediate range f approximately 1, which could be relevant in some astrophysical applications, is analysed by numerical techniques. In the final section a model for particle acceleration and radiation emission by turbulent plasma modes excited in extended radiosources by parametric absorption of strong electromagnetic waves is tentatively discussed.

  1. Applying Parametric Fault Detection to a Mechanical System

    DEFF Research Database (Denmark)

    Felício, P.; Stoustrup, Jakob; Niemann, H.

    2002-01-01

    A way of doing parametric fault detection is described. It is based on the representation of parameter changes as linear fractional transformations (lfts). We describe a model with parametric uncertainty. Then a stabilizing controller is chosen and its robustness properties are studied via mu. Th....... The parameter changes (faults) are estimated based on estimates of the fictitious signals that enter the delta block in the lft. These signal estimators are designed by H-infinity techniques. The chosen example is an inverted pendulum....

  2. On the parametrization of lateral dose profiles in proton radiation therapy

    CERN Document Server

    Embriaco, A

    2015-01-01

    Hadrontherapy requires a good knowledge of the physical interactions of the particles when they cross the biological tissue: one of the aspects that determine the characterization of the beam is the study of the lateral profile. We study different parametrizations for the lateral dose profile of protons beam in water considering different energies at different depth. We compare six functions: we start from the well known Gaussian and Double Gaussian parametrizations and also analyse more recent parametrization obtained with Triple Gaussian and Double Gaussian Lorentz-Cauchy functions. Finally we propose alternative parametrizations based on the Gauss-Rutherford and Gauss-Levy functions. The goal is to improve the performances of the actual treatment planning used in proton beam therapy by suggesting alternative approaches to the Gaussian description typically employed.

  3. QCD parametrizations of the parton distribution of deep inelastic scattering

    International Nuclear Information System (INIS)

    Kotikov, A.V.; Maksimov, S.J.; Parobij, I.S.

    1993-01-01

    A realistic parametrization of the gluon and quarks distributions is suggested. It is shown that the solutions of the Gribov-Lipatov-Altarelli-Paris equations can be presented by these parametrizations and these equations unambiguously lead to the constraints on the Q 2 -evolution of the parameters. (author). 10 refs

  4. Parametric Equations: Push 'Em Back, Push 'Em Back, Way Back!

    Science.gov (United States)

    Cieply, Joseph F.

    1993-01-01

    Stresses using the features of graphing calculators to teach parametric equations much earlier in the curriculum than is presently done. Examples using parametric equations to teach slopes and lines in beginning algebra, inverse functions in advanced algebra, the wrapping function, and simulations of physical phenomena are presented. (MAZ)

  5. Parametric Architecture in the Urban Space

    Science.gov (United States)

    Januszkiewicz, Krystyna; Kowalski, Karol G.

    2017-10-01

    The paper deals with the parametric architecture which is trying to introduce a new spatial language in the context for urban tissue that correspond to the artistic consciousness and the attitude of information and digital technologies era. The first part of the paper defines the main features of parametric architecture (such as: folding, continuity and curvilinearity) which are are characteristic of the new style of named the “parametricism”. This architecture is a strong emphasis on geometry, materiality, feasibility and sustainability, what emerges is an explicit agenda promoting material ornamentation, spatial spectacle and formal theatricality. The second part presents result of case study, especially parametric public use buildings, within the tissue of city. The analyzed objects are: The Sage Gateshead (1998-2004) in Gateshead, Kunsthaus in Graz (2000-2003), the Weltstadthaus (2003-2005) in Cologne, The Golden Terraces in Warsaw (2000-2007), the Metropol Parasol in Seville (2005-2011) the King Cross Station (2005-2012) in London, the headquarters of the Pathé Foundation (2006-2014) in Paris. Each of the enumerated examples shows a diverse approach to designing in the urban space, which reflect the age of digital technologies and the information society. In conclusion emphasizes, that new concept of the spatialization of architecture is the equivalent of the democratization of the political system, the liberalization of the economy, among other examples.

  6. The package PAKPDF ver. 1.1 of parametrizations of parton distribution functions in the proton

    International Nuclear Information System (INIS)

    Charchula, K.

    1991-08-01

    A FORTRAN package containing parametrizations of parton distribution functions (PDFS) in the proton is described. It allows an easy access to PDFS provided by several recent parametrizations and to some parameters characterizing particular parametrization. Some comments about the use of various parametrizations are also included. (orig.)

  7. Parametric uncertainty modeling for robust control

    DEFF Research Database (Denmark)

    Rasmussen, K.H.; Jørgensen, Sten Bay

    1999-01-01

    The dynamic behaviour of a non-linear process can often be approximated with a time-varying linear model. In the presented methodology the dynamics is modeled non-conservatively as parametric uncertainty in linear lime invariant models. The obtained uncertainty description makes it possible...... to perform robustness analysis on a control system using the structured singular value. The idea behind the proposed method is to fit a rational function to the parameter variation. The parameter variation can then be expressed as a linear fractional transformation (LFT), It is discussed how the proposed...... point changes. It is shown that a diagonal PI control structure provides robust performance towards variations in feed flow rate or feed concentrations. However including both liquid and vapor flow delays robust performance specifications cannot be satisfied with this simple diagonal control structure...

  8. Parametric resonance and cosmological gravitational waves

    International Nuclear Information System (INIS)

    Sa, Paulo M.; Henriques, Alfredo B.

    2008-01-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  9. Parametric resonance and cosmological gravitational waves

    Science.gov (United States)

    Sá, Paulo M.; Henriques, Alfredo B.

    2008-03-01

    We investigate the production of gravitational waves due to quantum fluctuations of the vacuum during the transition from the inflationary to the radiation-dominated eras of the universe, assuming this transition to be dominated by the phenomenon of parametric resonance. The energy spectrum of the gravitational waves is calculated using the method of continuous Bogoliubov coefficients, which avoids the problem of overproduction of gravitons at large frequencies. We found, on the sole basis of the mechanism of quantum fluctuations, that the resonance field leaves no explicit and distinctive imprint on the gravitational-wave energy spectrum, apart from an overall upward or downward translation. Therefore, the main features in the spectrum are due to the inflaton field, which leaves a characteristic imprint at frequencies of the order of MHz/GHz.

  10. Statistical parametric mapping in the detection of rCBF changes in mild Alzheimer's disease

    International Nuclear Information System (INIS)

    Rowe, C.; Barnden, L.; Boundy, K.; McKinnon, J.; Liptak, M.

    1998-01-01

    Full text: Reduction in temporoparietal regional cerebral blood flow (rCBF) is proportional to the degree of cognitive deficit in patients with Alzheimer's Disease (AD). The characteristic pattern is readily apparent in advanced disease but is often subtle in early stage AD, reducing the clinical value of SPECT in the management of this condition. We have previously reported that Statistical Parametric Mapping (SPM95) revealed significant temporoparietal hypoperfusion when 10 patients with mild AD (classified by the Clinical Dementia Rating Scale) were compared to 10 age matched normals. We have now begun to evaluate the sensitivity and specificity of SPM95 in individuals with mild AD by comparison to our bank of 39 normals (30 female, 9 male, age range 26 to 74, mean age 52). Preliminary results reveal low sensitivity (<40%) when the standard reference region for normalization (i.e. global brain counts) is used. Better results are expected from normalizing to the cerebellum or basal ganglia and this is under investigation. An objective method to improve the accuracy of rCBF imaging for the diagnosis of early AD would be very useful in clinical practice. This study will demonstrate whether SPM can fulfill this role

  11. Epicyclic helical channels for parametric resonance ionization cooling

    Energy Technology Data Exchange (ETDEWEB)

    Johson, Rolland Paul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Derbenev, Yaroslav [Muons, Inc., Batavia, IL (United States)

    2015-08-23

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parameter range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.

  12. Improved parametric fits for the HeH2 ab initio energy surface

    International Nuclear Information System (INIS)

    Muchnick, P.

    1992-01-01

    A brief history of the development of ab initio calculations for the HeH 2 quasi-molecule energy surface, and the parametric fits to these ab initio calculations, is presented. The concept of 'physical reasonableness' of the parametric fit is discussed. Several new improved parametric fits for the energy surface, meeting these requirements, are then proposed. One fit extends the Russek-Garcia parametric fit for the deep repulsion region to include r-dependent parameters, resulting in a more physically reasonable fit with smaller average error. This improved surface fit is applied to quasi-elastic collisions of He on H 2 in the impulse approximation. Previous classical calculations of the scaled inelastic vibrorotational excitation energy distributions are improved with this more accurate parametric fit of the energy surface and with the incorporation of quantum effects in vibrational excitation. It is shown that Sigmund's approach in developing his scaling law is incomplete in the contribution of the three-body interactions to vibrational excitation of the H 2 molecule is concerned. The Sigmund theory is extended to take into account for r-dependency of three-body interactions. A parametric fit for the entire energy surface from essentially 0 ≤R≤∞ and 1.2≤r≤1.6 a.u., where R is the intermolecular spacing and r is the hydrogen bonding length, is also presented. This fit is physically reasonable in all asymptotic limits. This first, full surface parametric fit is based primarily upon a composite of ab initio studies by Russek and Garcia and Meyer, Hariharan and Kutzelnigg. Parametric fits for the H 2 (1sσ g ) 2 , H 2 + (1sσ g ), H 2 + (2pσ u ) and (LiH 2 ) + energy surfaces are also presented. The new parametric fits for H 2 , H 2 + (1sσ g ) are shown to be improvements over the well-known Morse potentials for these surfaces

  13. Global exergetic dimension of hydrogen use in reducing fossil fuel consumption

    International Nuclear Information System (INIS)

    Adnan Midilli; Ibrahim Dincer

    2009-01-01

    In this paper, hydrogen is considered as a renewable and sustainable solution for minimizing the fossil fuel based-global irreversibility coefficient of global fossil fuel consumption and combating global warming and studied exergetically through a parametric performance analysis. The environmental impact results are then compared with the ones obtained for fossil fuels. In this regard, some exergetic expressions such as global waste exergy factor, global irreversibility coefficient and hydrogen based-global exergetic indicator. In order to investigate the role of hydrogen use at minimizing the fossil fuel based global irreversibility, the actual fossil fuel consumption data are taken from the literature. Due to the unavailability of appropriate hydrogen data for analysis, it is assumed that the utilization ratios of hydrogen are ranged between 0 and 1. Consequently, if exergetic utilization ratio of hydrogen from non-fossil fuel sources at a certain exergetic utilization ratio of fossil fuels increases, the fossil fuel based-global irreversibility coefficient will decrease. (author)

  14. Four-Wave Optical Parametric Amplification in a Raman-Active Gas

    Directory of Open Access Journals (Sweden)

    Yuichiro Kida

    2015-08-01

    Full Text Available Four-wave optical parametric amplification (FWOPA in a Raman-active medium is experimentally investigated by use of an air-filled hollow fiber. A femtosecond pump pulse shorter than the period of molecular motion excites the coherent molecular motion of the Raman-active molecules during the parametric amplification of a signal pulse. The excited coherent motion modulates the frequency of the signal pulse during the parametric amplification, and shifts it to lower frequencies. The magnitude of the frequency redshift depends on the pump intensity, resulting in intensity-dependent spectral characteristics that are different from those in the FWOPA induced in a noble-gas-filled hollow fiber.

  15. Circulation and Directional Amplification in the Josephson Parametric Converter

    Science.gov (United States)

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  16. An Optimal Method for Developing Global Supply Chain Management System

    Directory of Open Access Journals (Sweden)

    Hao-Chun Lu

    2013-01-01

    Full Text Available Owing to the transparency in supply chains, enhancing competitiveness of industries becomes a vital factor. Therefore, many developing countries look for a possible method to save costs. In this point of view, this study deals with the complicated liberalization policies in the global supply chain management system and proposes a mathematical model via the flow-control constraints, which are utilized to cope with the bonded warehouses for obtaining maximal profits. Numerical experiments illustrate that the proposed model can be effectively solved to obtain the optimal profits in the global supply chain environment.

  17. Parametrization of contrails in a comprehensive climate model

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M; Brinkop, S; Sausen, R; Schumann, U [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    A contrail parametrization scheme for a general circulation model (GCM) is presented. Guidelines for its development were that it should be based on the thermodynamic theory of contrail formation and that it should be consistent with the cloud parametrization scheme of the GCM. Results of a six-year test integration indicate reasonable results concerning the spatial and temporal development of both contrail coverage and contrail optical properties. Hence, the scheme forms a promising basis for the quantitative estimation of the contrail climatic impact. (author) 9 refs.

  18. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    Science.gov (United States)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  19. Parametrization of contrails in a comprehensive climate model

    Energy Technology Data Exchange (ETDEWEB)

    Ponater, M.; Brinkop, S.; Sausen, R.; Schumann, U. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    A contrail parametrization scheme for a general circulation model (GCM) is presented. Guidelines for its development were that it should be based on the thermodynamic theory of contrail formation and that it should be consistent with the cloud parametrization scheme of the GCM. Results of a six-year test integration indicate reasonable results concerning the spatial and temporal development of both contrail coverage and contrail optical properties. Hence, the scheme forms a promising basis for the quantitative estimation of the contrail climatic impact. (author) 9 refs.

  20. Impact of signal scattering and parametric uncertainties on receiver operating characteristics

    Science.gov (United States)

    Wilson, D. Keith; Breton, Daniel J.; Hart, Carl R.; Pettit, Chris L.

    2017-05-01

    The receiver operating characteristic (ROC curve), which is a plot of the probability of detection as a function of the probability of false alarm, plays a key role in the classical analysis of detector performance. However, meaningful characterization of the ROC curve is challenging when practically important complications such as variations in source emissions, environmental impacts on the signal propagation, uncertainties in the sensor response, and multiple sources of interference are considered. In this paper, a relatively simple but realistic model for scattered signals is employed to explore how parametric uncertainties impact the ROC curve. In particular, we show that parametric uncertainties in the mean signal and noise power substantially raise the tails of the distributions; since receiver operation with a very low probability of false alarm and a high probability of detection is normally desired, these tails lead to severely degraded performance. Because full a priori knowledge of such parametric uncertainties is rarely available in practice, analyses must typically be based on a finite sample of environmental states, which only partially characterize the range of parameter variations. We show how this effect can lead to misleading assessments of system performance. For the cases considered, approximately 64 or more statistically independent samples of the uncertain parameters are needed to accurately predict the probabilities of detection and false alarm. A connection is also described between selection of suitable distributions for the uncertain parameters, and Bayesian adaptive methods for inferring the parameters.

  1. Hooke–Jeeves Method-used Local Search in a Hybrid Global Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    V. D. Sulimov

    2014-01-01

    Full Text Available Modern methods for optimization investigation of complex systems are based on development and updating the mathematical models of systems because of solving the appropriate inverse problems. Input data desirable for solution are obtained from the analysis of experimentally defined consecutive characteristics for a system or a process. Causal characteristics are the sought ones to which equation coefficients of mathematical models of object, limit conditions, etc. belong. The optimization approach is one of the main ones to solve the inverse problems. In the main case it is necessary to find a global extremum of not everywhere differentiable criterion function. Global optimization methods are widely used in problems of identification and computation diagnosis system as well as in optimal control, computing to-mography, image restoration, teaching the neuron networks, other intelligence technologies. Increasingly complicated systems of optimization observed during last decades lead to more complicated mathematical models, thereby making solution of appropriate extreme problems significantly more difficult. A great deal of practical applications may have the problem con-ditions, which can restrict modeling. As a consequence, in inverse problems the criterion functions can be not everywhere differentiable and noisy. Available noise means that calculat-ing the derivatives is difficult and unreliable. It results in using the optimization methods without calculating the derivatives.An efficiency of deterministic algorithms of global optimization is significantly restrict-ed by their dependence on the extreme problem dimension. When the number of variables is large they use the stochastic global optimization algorithms. As stochastic algorithms yield too expensive solutions, so this drawback restricts their applications. Developing hybrid algo-rithms that combine a stochastic algorithm for scanning the variable space with deterministic local search

  2. Chaotic parametric soliton-like pulses in ferromagnetic-film active ring resonators

    International Nuclear Information System (INIS)

    Grishin, S. V.; Golova, T. M.; Morozova, M. A.; Romanenko, D. V.; Seleznev, E. P.; Sysoev, I. V.; Sharaevskii, Yu. P.

    2015-01-01

    The generation of quasi-periodic sequences of parametric soliton-like pulses in an active ring resonator with a ferromagnetic film via the three-wave parametric instability of a magnetostatic surface wave is studied theoretically and experimentally. These dissipative structures form in time due to the competition between the cubic nonlinearity caused by parametric coupling between spin waves and the time dispersion caused by the resonant cavity that is present in a self-oscillatory system. The development of dynamic chaos due to the parametric instability of a magnetostatic surface wave results in irregular behavior of a phase. However, this behavior does not break a quasi-periodic pulse sequence when the gain changes over a wide range. The generated soliton-like pulses have a chaotic nature, which is supported by the maximum Lyapunov exponent estimated from experimental time series

  3. Excess quantum noise in optical parametric chirped-pulse amplification

    OpenAIRE

    Manzoni, C.; Moses, J.; Kärtner, F. X.; Cerullo, G.

    2011-01-01

    Noise evolution in an optical parametric chirped-pulse amplifier (OPCPA) differs essentially from that of an optical parametric or a conventional laser amplifier, in that an incoherent pedestal is produced by superfluorescence that can overwhelm the signal under strong saturation. Using a model for the nonlinear dynamics consistent with quantum mechanics, we numerically study the evolution of excess noise in an OPCPA. The observed dynamics explain the macroscopic characteristics seen previous...

  4. Energy dependent track structure parametrizations for protons and carbon ions based on nano-metric simulations

    International Nuclear Information System (INIS)

    Frauke, A.; Wilkens, J.J.; Villagrasa, C.; Rabus, H.

    2015-01-01

    The BioQuaRT project within the European Metrology Research Programme aims at correlating ion track structure characteristics with the biological effects of radiation and develops measurement and simulation techniques for determining ion track structure on different length scales from about 2 nm to about 10 μm. Within this framework, we investigate methods to translate track-structure quantities derived on a nanometer scale to macroscopic dimensions. Input data sets were generated by simulations of ion tracks of protons and carbon ions in liquid water using the Geant-4 Monte Carlo tool-kit with the Geant-4-DNA processes. Based on the energy transfer points - recorded with nanometer resolution - we investigated parametrizations of overall properties of ion track structure. Three different track structure parametrizations have been developed using the distances to the 10 next neighbouring ionizations, the radial energy distribution and ionisation cluster size distributions. These parametrizations of nanometer-scale track structure build a basis for deriving biologically relevant mean values which are essential in the clinical situation where each voxel is exposed to a mixed radiation field. (authors)

  5. Parametric amplification of metric fluctuations during reheating in two field models

    International Nuclear Information System (INIS)

    Finelli, F.; Brandenberger, R.

    2000-01-01

    We study the parametric amplification of super-Hubble-scale scalar metric fluctuations at the end of inflation in some specific two-field models of inflation, a class of which is motivated by hybrid inflation. We demonstrate that there can indeed be a large growth of fluctuations due to parametric resonance and that this effect is not taken into account by the conventional theory of isocurvature perturbations. Scalar field interactions play a crucial role in this analysis. We discuss the conditions under which there can be nontrivial parametric resonance effects on large scales

  6. A parametric study of microjet assisted methane/air turbulent flames

    International Nuclear Information System (INIS)

    Chouaieb, Sirine; Kriaa, Wassim; Mhiri, Hatem; Bournot, Philippe

    2017-01-01

    Highlights: • Microjet assisted methane/air turbulent flames are numerically investigated. • A parametric study concerning the microjet velocity and diameter is carried out. • Previous validation of temperature, mixture fraction and soot is enhanced. • Mixing and soot emission are controlled for higher velocities and lower diameters. • Soot production is reduced by 94% for a microjet velocity equal to 1 m/s. - Abstract: A parametric study of microjet assisted methane/air turbulent flames characteristics is numerically investigated. The Presumed Probability Density Function model and the Discrete Ordinates model are respectively considered for combustion and radiation modeling. The k-epsilon Standard model with Pope Correction is adopted as a turbulence closure model. The two step Tesner model is used to quantify the soot particle production in the flame configuration. Comparison with our previous work using the k-epsilon Realizable model shows that the k-epsilon Standard model with Pope Correction ensures better predictions. The microjet velocity and diameter effects on thermal field, mixing process and soot emission are then discussed. Numerical findings show that the microjet can be used as an efficient tool controlling methane/air turbulent flames. On the one hand, it is shown that the microjet creates an inner flame in the vicinity of the central nozzle exit but does not globally alter the methane/air flame shape. On the other hand, mixing process can be enhanced for high microjet Reynolds number either by increasing the microjet velocity or by decreasing its nozzle diameter for a constant microjet mass flow rate. Soot production can be consequently reduced for low microjet diameter and high velocity values.

  7. Optimal Design of Experiments for Parametric Identification of Civil Engineering Structures

    DEFF Research Database (Denmark)

    Kirkegaard, Poul Henning

    Optimal Systems of experiments for parametric identification of civil engineering structures is investigated. Design of experiments for parametric identification of dynamic systems is usually done by minimizing a scalar measure, e.g the determinant, the trace ect., of an estimated parameter...

  8. Absolute parametric instability of low frequency waves in a 2-D nonuniform anisotropic warm plasma

    International Nuclear Information System (INIS)

    Zaki, N.G.

    2004-01-01

    Using the separation method, the problem of absolute parametric instability (API) of electrostatic waves in magnetized pumped warm plasma is investigated. In this case the effect of static strong magnetic field is considered. The problem of strong magnetic field is solved in 2-D nonuniform plane plasma. The equations which describe the spatial part of the electric potential are obtained. Also the growth rates and conditions of the parametric instability for periodic cases are obtained. It is found that the spatial nonuniformity of the plasma exerts a stabilizing effect on the API. It is shown that the growth rates of periodic and aperiodic API in warm plasma are reduced in comparison with a cold plasma case

  9. Global spacetime symmetries in the functional Schroedinger picture

    International Nuclear Information System (INIS)

    Halliwell, J.J.

    1991-01-01

    In the conventional functional Schroedinger quantization of field theory, the background spacetime manifold is foliated into a set of three-surfaces and the quantum state of the field is represented by a wave functional of the field configurations on each three-surface. Although this procedure may be covariantly described, the wave functionals generally fail to carry a representation of the complete spacetime symmetry group of the background, such as the Poincare group in Minkowski spacetime, because spacetime symmetries generally involve distortions or motions of the three-surfaces themselves within that spacetime. In this paper, we show that global spacetime symmetries in the functional Schroedinger picture may be represented by parametrizing the field theory---raising to the status of dynamical variables the embedding variables describing the spacetime location of each three-surface. In particular, we show that the embedding variables provide a connection between the purely geometrical operation of an isometry group on the spacetime and the operation of the usual global symmetry generators (constructed from the energy-momentum tensor) on the wave functionals of the theory. We study the path-integral representation of the wave functionals of the parametrized field theory. We show how to construct, from the path integral, wave functionals that are annihilated by the global symmetry generators, i.e., that are invariant under global spacetime symmetry groups. The invariance of the class of histories summed over in the path integral is identified as the source of the invariance of the wave functionals. We apply this understanding to a study of vacuum states in the de Sitter spacetime. We make mathematically precise a previously given heuristic argument for the de Sitter invariance of the matter wave functionals defined by the no-boundary proposal of Hartle and Hawking

  10. Parametric excitation of drift waves in a sheared slab geometry

    International Nuclear Information System (INIS)

    Vranjes, J.; Weiland, J.

    1992-01-01

    The threshold for parametric excitation of drift waves in a sheared slab geometry is calculated for a pump wave that is a standing wave along the magnetic field, using the Hasegawa-Mima nonlinearity. The shear damping is counteracted by the parametric coupling and the eigenvalue problem is solved analytically using Taylor's strong coupling approximation. (au)

  11. Parametric estimation of time varying baselines in airborne interferometric SAR

    DEFF Research Database (Denmark)

    Mohr, Johan Jacob; Madsen, Søren Nørvang

    1996-01-01

    A method for estimation of time varying spatial baselines in airborne interferometric synthetic aperture radar (SAR) is described. The range and azimuth distortions between two images acquired with a non-linear baseline are derived. A parametric model of the baseline is then, in a least square...... sense, estimated from image shifts obtained by cross correlation of numerous small patches throughout the image. The method has been applied to airborne EMISAR imagery from the 1995 campaign over the Storstrommen Glacier in North East Greenland conducted by the Danish Center for Remote Sensing. This has...... reduced the baseline uncertainties from several meters to the centimeter level in a 36 km scene. Though developed for airborne SAR the method can easily be adopted to satellite data...

  12. Brownian parametric oscillators

    Science.gov (United States)

    Zerbe, Christine; Jung, Peter; Hänggi, Peter

    1994-05-01

    We discuss the stochastic dynamics of dissipative, white-noise-driven Floquet oscillators, characterized by a time-periodic stiffness. Thus far, little attention has been paid to these exactly solvable nonstationary systems, although they carry a rich potential for several experimental applications. Here, we calculate and discuss the mean values and variances, as well as the correlation functions and the Floquet spectrum. As one main result, we find for certain parameter values that the fluctuations of the position coordinate are suppressed as compared to the equilibrium value of a harmonic oscillator (parametric squeezing).

  13. Similar estimates of temperature impacts on global wheat yield by three independent methods

    NARCIS (Netherlands)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Supit, Iwan; Wolf, Joost

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO 2 fertilization effects,

  14. A parametric LTR solution for discrete-time systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Jannerup, Ole Erik

    1989-01-01

    A parametric LTR (loop transfer recovery) solution for discrete-time compensators incorporating filtering observers which achieve exact recovery is presented for both minimum- and non-minimum-phase systems. First the recovery error, which defines the difference between the target loop transfer...... and the full loop transfer function, is manipulated into a general form involving the target loop transfer matrix and the fundamental recovery matrix. A parametric LTR solution based on the recovery matrix is developed. It is shown that the LQR/LTR (linear quadratic Gaussian/loop transfer recovery) solution...

  15. Conditions of equilibrium of a rotating ideal fluid in the parametrized post-Newtonian formalism

    International Nuclear Information System (INIS)

    Bondarenko, N.P.

    1986-01-01

    Conditions of equilibrium of a rotating ideal fluid in parametrized post-Newtonian hydrodynamics are obtained by the variational method. They generalize the analogous equilibrium conditions in the post-Newtonian approximation of the general theory of relativity. A conservation law for the total energy is obtained by integrating the equations of motion

  16. Ionization Cooling using Parametric Resonances

    International Nuclear Information System (INIS)

    Johnson, Rolland P.

    2008-01-01

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  17. Ionization Cooling using Parametric Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Rolland P.

    2008-06-07

    Ionization Cooling using Parametric Resonances was an SBIR project begun in July 2004 and ended in January 2008 with Muons, Inc., (Dr. Rolland Johnson, PI), and Thomas Jefferson National Accelerator Facility (JLab) (Dr. Yaroslav Derbenev, Subcontract PI). The project was to develop the theory and simulations of Parametric-resonance Ionization Cooling (PIC) so that it could be used to provide the extra transverse cooling needed for muon colliders in order to relax the requirements on the proton driver, reduce the site boundary radiation, and provide a better environment for experiments. During the course of the project, the theoretical understanding of PIC was developed and a final exposition is ready for publication. Workshops were sponsored by Muons, Inc. in May and September of 2007 that were devoted to the PIC technique. One outcome of the workshops was the interesting and somewhat unexpected realization that the beam emittances using the PIC technique can get small enough that space charge forces can be important. A parallel effort to develop our G4beamline simulation program to include space charge effects was initiated to address this problem. A method of compensating for chromatic aberrations by employing synchrotron motion was developed and simulated. A method of compensating for spherical aberrations using beamline symmetry was also developed and simulated. Different optics designs have been developed using the OptiM program in preparation for applying our G4beamline simulation program, which contains all the power of the Geant4 toolkit. However, no PIC channel design that has been developed has had the desired cooling performance when subjected to the complete G4beamline simulation program. This is believed to be the consequence of the difficulties of correcting the aberrations associated with the naturally large beam angles and beam sizes of the PIC method that are exacerbated by the fringe fields of the rather complicated channel designs that have been

  18. Parametric resonance in the early Universe—a fitting analysis

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Daniel G. [Theoretical Physics Department, CERN, Geneva (Switzerland); Torrentí, Francisco, E-mail: daniel.figueroa@cern.ch, E-mail: f.torrenti@csic.es [Instituto de Física Teórica IFT-UAM/CSIC, Universidad Autónoma de Madrid, Cantoblanco 28049, Madrid (Spain)

    2017-02-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  19. Parametric resonance in the early Universe—a fitting analysis

    International Nuclear Information System (INIS)

    Figueroa, Daniel G.; Torrentí, Francisco

    2017-01-01

    Particle production via parametric resonance in the early Universe, is a non-perturbative, non-linear and out-of-equilibrium phenomenon. Although it is a well studied topic, whenever a new scenario exhibits parametric resonance, a full re-analysis is normally required. To avoid this tedious task, many works present often only a simplified linear treatment of the problem. In order to surpass this circumstance in the future, we provide a fitting analysis of parametric resonance through all its relevant stages: initial linear growth, non-linear evolution, and relaxation towards equilibrium. Using lattice simulations in an expanding grid in 3+1 dimensions, we parametrize the dynamics' outcome scanning over the relevant ingredients: role of the oscillatory field, particle coupling strength, initial conditions, and background expansion rate. We emphasize the inaccuracy of the linear calculation of the decay time of the oscillatory field, and propose a more appropriate definition of this scale based on the subsequent non-linear dynamics. We provide simple fits to the relevant time scales and particle energy fractions at each stage. Our fits can be applied to post-inflationary preheating scenarios, where the oscillatory field is the inflaton, or to spectator-field scenarios, where the oscillatory field can be e.g. a curvaton, or the Standard Model Higgs.

  20. Identification of metabolic system parameters using global optimization methods

    Directory of Open Access Journals (Sweden)

    Gatzke Edward P

    2006-01-01

    Full Text Available Abstract Background The problem of estimating the parameters of dynamic models of complex biological systems from time series data is becoming increasingly important. Methods and results Particular consideration is given to metabolic systems that are formulated as Generalized Mass Action (GMA models. The estimation problem is posed as a global optimization task, for which novel techniques can be applied to determine the best set of parameter values given the measured responses of the biological system. The challenge is that this task is nonconvex. Nonetheless, deterministic optimization techniques can be used to find a global solution that best reconciles the model parameters and measurements. Specifically, the paper employs branch-and-bound principles to identify the best set of model parameters from observed time course data and illustrates this method with an existing model of the fermentation pathway in Saccharomyces cerevisiae. This is a relatively simple yet representative system with five dependent states and a total of 19 unknown parameters of which the values are to be determined. Conclusion The efficacy of the branch-and-reduce algorithm is illustrated by the S. cerevisiae example. The method described in this paper is likely to be widely applicable in the dynamic modeling of metabolic networks.