WorldWideScience

Sample records for global nuclear energy

  1. Regional and global significance of nuclear energy

    International Nuclear Information System (INIS)

    Schilling, H.D.

    1995-01-01

    Measures to combat poverty and improve the standard of living in countries of the Third World will inevitably boost global demand for energy, and energy conservation measures will not be able to offset this increase. Nuclear energy will regain significance in the framework of approaches adopted to resolve the energy problem, which primarily is an ecologic problem created by an extremely large flow of materials. The extraordinarily high energy density of nuclear fuels can contribute to markedly reduce the flow of materials; and at that, electric energy is an efficient substitute for primary energy forms. Thus nuclear electricity generation is of double benefit to the ecology. Engineering goals in nuclear technology thus gain a service aspect, with progress in power plant engineering and design aiming not only at enhanced engineered safety, but also at regaining public acceptance of and confidence in nuclear power plant technology. (orig./UA) [de

  2. Global perspectives on future nuclear energy utilisation

    International Nuclear Information System (INIS)

    Watts, G.L.

    1998-01-01

    This paper is presented as an overview of the nuclear sector from a global perspective. The aim is to show that nuclear power does have a future but that this will only be fully realised when the industry is able to demonstrate that it is part of the solution to the world's energy and environmental difficulties rather than part of the problem. The paper looks at the projected world energy demand as the population increases and countries develop, showing that nuclear power is required to meet this demand. In presenting nuclear power as a solution, the paper addresses the challenges facing us such as public confidence, environmental opposition, political issues and finance. It addresses the debate over reprocessing and direct disposal of irradiated nuclear fuel and looks at the competition from other fuels. The paper suggests how the industry might approach these issues such that nuclear power is indeed regarded globally as a solution to some of the worlds most pressing problems. (author)

  3. Global architecture of innovative nuclear energy

    International Nuclear Information System (INIS)

    Andreeva-Andrievskaya, L.N.; Kagramanyan, V.S.; Usanov, V.I.; )

    2011-01-01

    The study Global Architecture of Innovative Nuclear Energy Systems Based on Thermal and Fast Reactors including a Closed Fuel Cycle (GAINS), aimed at harmonization of tools used to assess various options for innovative development of nuclear energy, modeling of jointly defined scenarios and analysis of obtained results is presented in the paper. Objectives and methods of the study, issues of spent fuel and fissile materials management are discussed. Investment risks and economic indicators are also described [ru

  4. Does nuclear energy save global environment?

    International Nuclear Information System (INIS)

    Matsui, Kazuaki

    2006-01-01

    Since the ecological footprint analysis in 1970s suggested changing consumption patterns and overpopulation concerns, energy policy such as energy conservation and use of renewable energy has become of prime importance. Several results of the long-term energy demand and supply analysis in 2050 or 2100 to reduce drastically carbon dioxide emission as a measure against global warming, showed the necessity of nuclear power deployment as well as maximum efforts to save energy, exploitation of the separation and disposal of carbon dioxide, and shifting energy sources to fuels that emit less greenhouse gases or non-fossil fuels. As a promising means to contribute to long-term energy supply, nuclear power generation is expected with improving safety, economic efficiency, environmental adaptability, and nuclear proliferation resistance of the technologies. (T.Tanaka)

  5. Global Energy Challenges of the 21. Century and Nuclear Energy

    International Nuclear Information System (INIS)

    Gagarinskiy, Andrey

    2008-01-01

    The paper considers the world energy demand till the middle of the century, as well as possible forecasting solution for this challenge. On the base of the mathematical model developed in the Kurchatov Institute in 2003- 2006, the vision of the global nuclear energy system and its potential contribution in the energy mix was analyzed. The rate of rapprochement between specific energy consumptions in different countries of the world is a key parameter determining the energy market strain. It was shown that a continuation of the current world trends of this rapprochement would result in an energy resource deficit already in the nearest future. The energy mix picture would contain an 'unsatisfied demand' area of about 10 000 Mtoe of total energy to be consumed by the mid-century Supposing that the mankind has to meet the 'unsatisfied demand' by nuclear energy, the global energy challenges of the 21. century energy do not impose any upper limit on nuclear energy development, the scale of which would be determined by development opportunities. Russia, as one of the pioneers of the First Nuclear Era, possesses great experience of solving the key issues of nuclear energy of the 20. century, and is capable to play an important role in dealing with the challenges faced by nuclear in the 21. century. (authors)

  6. Global Nuclear Energy Partnership Waste Treatment Baseline

    International Nuclear Information System (INIS)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John

    2008-01-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  7. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Gombert, Dirk; Ebert, William; Marra, James; Jubin, Robert; Vienna, John [Idaho National laboratory, 2525 Fremont Ave., Idaho Falls, ID 83402 (United States)

    2008-07-01

    The Global Nuclear Energy Partnership (GNEP) program is designed to demonstrate that a proliferation-resistant and sustainable integrated nuclear fuel cycle can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline set of waste forms was recommended for the safe disposition of waste streams. Specific waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and expected performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms. (authors)

  8. Global Nuclear Energy Partnership Waste Treatment Baseline

    Energy Technology Data Exchange (ETDEWEB)

    Dirk Gombert; William Ebert; James Marra; Robert Jubin; John Vienna

    2008-05-01

    The Global Nuclear Energy Partnership program (GNEP) is designed to demonstrate a proliferation-resistant and sustainable integrated nuclear fuel cycle that can be commercialized and used internationally. Alternative stabilization concepts for byproducts and waste streams generated by fuel recycling processes were evaluated and a baseline of waste forms was recommended for the safe disposition of waste streams. Waste forms are recommended based on the demonstrated or expected commercial practicability and technical maturity of the processes needed to make the waste forms, and performance of the waste form materials when disposed. Significant issues remain in developing technologies to process some of the wastes into the recommended waste forms, and a detailed analysis of technology readiness and availability may lead to the choice of a different waste form than what is recommended herein. Evolving regulations could also affect the selection of waste forms.

  9. Transmutation and the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Bresee, James

    2007-01-01

    In the January 2006 State of the Union address, President Bush announced a new Advanced Energy Initiative, a significant part of which is the Global Nuclear Energy Initiative. Its details were described on February 6, 2006 by the U.S. Secretary of Energy. In summary, it has three parts: (1) a program to expand nuclear energy use domestically and in foreign countries to support economic growth while reducing the release of greenhouse gases such as carbon dioxide. (2) an expansion of the U.S. nuclear infrastructure that will lead to the recycling of spent fuel and a closed fuel cycle and, through transmutation, a reduction in the quantity and radiotoxicity of nuclear waste and its proliferation concerns, and (3) a partnership with other fuel cycle nations to support nuclear power in additional nations by providing small nuclear power plants and leased fuel with the provision that the resulting spent fuel would be returned by the lessee to the lessor. The final part would have the effect of stabilizing the number of fuel cycle countries with attendant non-proliferation value. Details will be given later in the paper. Commercial spent fuel recycling, pioneered in the U.S., has not been carried out since the nineteen seventies following a decision by President Carter to forego fuel reprocessing and to recommend similar practices by other countries. However, many nations have continued spent fuel reprocessing, generally using the U.S.-developed PUREX process. The latest to do so are Japan, which began operations of an 800 metric tons (tonnes) per year PUREX reprocessing plant at Rokkasho-mura in northern Honshu in 2006 and China, which recently began operations of a separations pilot plant, also using PUREX. Countries using the PUREX process, recycle the separated plutonium to light water reactors (LWRs) in a mixed plutonium/uranium oxide fuel called MOX. Plutonium recycling in LWRs, which are used for electricity production in all nuclear power nations, reduces

  10. Global Warming; Can Nuclear Energy Help?

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    Kyoto conference is setting the targets and limits for CO 2 emission. In the same time energy consumption is increasing, especially in developing world. If developing countries attain even a moderate fraction of energy consumption of developed countries, this will lead into large increase of total CO 2 emission, unless there is a strong increase of energy production by CO 2 non-emitting sources. Of two major candidates, solar and nuclear energy, the second is technically and economically much closer to ability to accomplish the task. The requirements for a large scale use of nuclear energy and the role of IAEA are discussed. (author)

  11. Nuclear energy - a green energy solution to global warming

    International Nuclear Information System (INIS)

    Malhotra, S.K.

    2013-01-01

    The manner in which the world has conducted itself in exploiting energy resources so far particularly in the post industrial revolution period, is now looming as one of the greatest challenges to the sustainability of development or even sustainability of life. Global climate change is no more a perceived threat, it is now a reality and we are not in a position to engage ourselves to debate on the issue. It is in fact a little late in taking the right corrective action if we have any concern for our future generations. The efforts of the scientists and engineers are to gradually replace the energy from burning of carbonaceous material to clean and intense source of energy i.e. nuclear fission and fusion

  12. Our global energy future and the role of nuclear energy

    International Nuclear Information System (INIS)

    Foster, J.S.

    1991-01-01

    An extension in the use of energy, on even a fairly moderate basis, will, for several decades at least, require the use of all our present energy sources at rates that are a natural extension of historical rates, trending toward maximum practicable exploitation for all but nuclear energy. Regardless of what happens with the fossil hydrocarbons nuclear energy will play a major role in the supply of energy. When the fossil hydrocarbons have run their course nuclear and possibly some solar energy, through the media of electricity, hydrogen and synthetic hydrocarbons, will provide the bulk of the world's controlled energy and in sufficient quantity to provide ample energy for all. The burning question, however, is what will happen in the next few decades. There is a wonderful opportunity for nuclear energy, as the world requirement for energy, and particularly electrical energy, grows

  13. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E 3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E 3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E 3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  14. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  15. Nuclear energy and global governance to 2030 : an action plan

    International Nuclear Information System (INIS)

    Frechette, L.; Findlay, T.; Brem, M.; Hanson, J.; Bunch, M.; McCausland, T.

    2010-01-01

    This document presented the key findings of the Nuclear Energy Futures project that was initiated in May 2006 to consider global governance of nuclear energy. The five-point action plan presented in this document included: (1) nuclear safety whereby all nuclear states are committed to and capable of implementing the highest nuclear safety standards, (2) nuclear security whereby all nuclear material and facilities are secure from unauthorized access or terrorist seizure or attack, (3) nuclear nonproliferation whereby a nuclear revival does not contribute to the proliferation of nuclear weapons, (4) the re-enforcement of the International Atomic Energy Agency's centrality through increased funding, modernization and reform, and (5) stakeholder involvement whereby all partners, especially industry, participate in judiciously managing a nuclear revival. This document suggested that despite some powerful drivers, the revival of nuclear energy faces too many barriers compared to other means of electricity production. These barriers include high costs; fewer subsidies; too slow for meeting the threat of climate change; inadequate power grids; unresolved nuclear waste issue; and fears about safety, security and nuclear weapons.

  16. Nuclear energy and global governance to 2030 : an action plan

    Energy Technology Data Exchange (ETDEWEB)

    Frechette, L.; Findlay, T. (comps.); Brem, M.; Hanson, J.; Bunch, M.; McCausland, T. (eds.)

    2010-07-01

    This document presented the key findings of the Nuclear Energy Futures project that was initiated in May 2006 to consider global governance of nuclear energy. The five-point action plan presented in this document included: (1) nuclear safety whereby all nuclear states are committed to and capable of implementing the highest nuclear safety standards, (2) nuclear security whereby all nuclear material and facilities are secure from unauthorized access or terrorist seizure or attack, (3) nuclear nonproliferation whereby a nuclear revival does not contribute to the proliferation of nuclear weapons, (4) the re-enforcement of the International Atomic Energy Agency's centrality through increased funding, modernization and reform, and (5) stakeholder involvement whereby all partners, especially industry, participate in judiciously managing a nuclear revival. This document suggested that despite some powerful drivers, the revival of nuclear energy faces too many barriers compared to other means of electricity production. These barriers include high costs; fewer subsidies; too slow for meeting the threat of climate change; inadequate power grids; unresolved nuclear waste issue; and fears about safety, security and nuclear weapons.

  17. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    International Nuclear Information System (INIS)

    Wigeland, R.A.

    2008-01-01

    The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President's Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle - in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository - to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  18. Global Nuclear Energy Partnership Programmatic Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Wigeland

    2008-10-01

    Abstract: The proposed Global Nuclear Energy Partnership (GNEP) Program, which is part of the President’s Advanced Energy Initiative, is intended to support a safe, secure, and sustainable expansion of nuclear energy, both domestically and internationally. Domestically, the GNEP Program would promote technologies that support economic, sustained production of nuclear-generated electricity, while reducing the impacts associated with spent nuclear fuel disposal and reducing proliferation risks. The Department of Energy (DOE) proposed action envisions changing the United States nuclear energy fuel cycle from an open (or once-through) fuel cycle—in which nuclear fuel is used in a power plant one time and the resulting spent nuclear fuel is stored for eventual disposal in a geologic repository—to a closed fuel cycle in which spent nuclear fuel would be recycled to recover energy-bearing components for use in new nuclear fuel. At this time, DOE has no specific proposed actions for the international component of the GNEP Program. Rather, the United States, through the GNEP Program, is considering various initiatives to work cooperatively with other nations. Such initiatives include the development of grid-appropriate reactors and the development of reliable fuel services (to provide an assured supply of fresh nuclear fuel and assist with the management of the used fuel) for nations who agree to employ nuclear energy only for peaceful purposes, such as electricity generation.

  19. The global greenhouse effect and the advanced nuclear energy system

    International Nuclear Information System (INIS)

    Byong Whi Lee

    1998-01-01

    In spite of future uncertainty, Korea is very much committed to nuclear energy as a major source of electric power expansion, because of its lack of domestic energy resources. A long term nuclear power program has resulted in 11 nuclear power plants of 9.6 GWe in operation, 2 units under construction and 7 planned. This means that the share of nuclear power in Korean electricity production would be about 38% in 2006. Many other countries were faced with the problem of global warming which is related to carbondioxide emission from the use of fossil fuels. According to Korean experience, it could be concluded that substitution of fossil fuels would be the most efficient and economic means of reducing the greenhouse gas emissions. In addition to nuclear and hydropower, the most promising other non-fossil sources are geothermal energy, biomass, solar thermal energy, photovoltaic systems, wind power, tidal power, wave power and ocean thermal electric conversion

  20. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  1. Nuclear weapons and nuclear energy - A study in global governance

    International Nuclear Information System (INIS)

    Imai, R.

    1999-01-01

    The projects of the two superpowers concerning the nuclear armament and intercontinental ballistic missiles, the policy of the two governments in monopoly of these armaments and prohibiting other countries from owning them, treaties signed by the governments, and the role of the United Nations and the International Atomic Energy Agency were presented

  2. Double or quits?: The global future of civil nuclear energy

    International Nuclear Information System (INIS)

    Beck, Peter; Grimston, Malcolm

    2004-01-01

    Among the many disputes in the field of energy, in many countries none appear to be as acrimonious as those surrounding nuclear power. Its supporters are confident that nuclear power will have an important long-term future on the global energy scene, while its critics are equally confident that its days are numbered and that it was only developed to provide a political fig-leaf for a nuclear weapons programme. Both sides believe the other to be thoroughly biased or stupid and there is little constructive debate between them. As the disputes rage, especially over such issues as the management of nuclear waste, the economics and safety of nuclear power compared with other sources of electricity, the possible links with nuclear weapons and the attitude of the public towards the industry, decision-making is either paralysed or dominated by those who shout loudest. As a result, governments, industry and the financial sector have in recent years found it increasingly difficult to develop policy in this field. Deciding about future energy developments requires balanced and trustworthy information about issues such as the relative environmental effects of different options, the safety of installations, economics and the availability of resources. This is of particular importance now because world energy use is expected to continue to grow significantly during this century, particularly in less developed countries. In the same period, global emissions of greenhouse gases, especially carbon dioxide, will have to be severely curbed. To meet both these requirements may well involve a step change away from being able to meet growing energy needs by depending on an ever increasing supply of carboniferous fossil fuel. To address this situation, the Royal Institute of International Affairs undertook a two-year research project, aimed at providing information from the standpoint of an organization with no vested interest in either the pro or the anti camp, but close connections to

  3. Nuclear Energy is the Answer to Cope with the Lack of Energy and Global Warming

    International Nuclear Information System (INIS)

    Wisnu Arya Wardhana

    2009-01-01

    This paper of nuclear energy is the answer to cope with the lack of energy and global warming based on the analysis of energy demand which is increasing rapidly, meanwhile the energy reserve is limited and decreased. Mostly world′s energy is generated by fossil fuel energy, mainly oil and coal. Fossil fuel energy and industrial activities produce green house gases (GHG) such as : COx, CH 4 , N 2 O, and CFC which cause of global warming. Global warming gives bad impact to environment and to human being. Every country in the world needs sufficient energy, but the energy resources is limited and decreased. The answer for this solution must be an energy source which does not produce green house gases. Why nuclear energy is chosen to cope with the lack of energy and global warming will be explained briefly in this paper. (author)

  4. Effect of the Fukushima nuclear disaster on global public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Kim, Younghwan; Kim, Minki; Kim, Wonjoon

    2013-01-01

    The Fukushima nuclear disaster has significantly changed public attitudes toward nuclear energy. It is important to understand how this change has occurred in different countries before the global community revises existing nuclear policies. This study examines the effect of the Fukushima disaster on public acceptance of nuclear energy in 42 countries. We find that the operational experience of nuclear power generation which has significantly affected positive public opinion about nuclear energy became considerably negative after the disaster, suggesting fundamental changes in public acceptance regardless of the level of acceptance before the disaster. In addition, contrary to our expectation, the proportion of nuclear power generation is positively and significantly related to public acceptance of nuclear energy after the Fukushima accident and government pressure on media content led to a greater decrease in the level of public acceptance after the accident. Nuclear energy policymakers should consider the varied factors affecting public acceptance of nuclear energy in each country depending on its historical, environmental, and geographical circumstances before they revise nuclear policy in response to the Fukushima accident. - Highlights: • Fukushima accident has negatively changed public attitudes toward nuclear energy. • Effect of operational experience became considerably negative after the accident. • Effect of proportion of nuclear power generation is positive after the accident. • Effect of government pressure on media content became negative after the accident. • Country specific policy responses on nuclear public acceptance are required

  5. KEYNOTE: Simulation, computation, and the Global Nuclear Energy Partnership

    Science.gov (United States)

    Reis, Victor, Dr.

    2006-01-01

    Dr. Victor Reis delivered the keynote talk at the closing session of the conference. The talk was forward looking and focused on the importance of advanced computing for large-scale nuclear energy goals such as Global Nuclear Energy Partnership (GNEP). Dr. Reis discussed the important connections of GNEP to the Scientific Discovery through Advanced Computing (SciDAC) program and the SciDAC research portfolio. In the context of GNEP, Dr. Reis talked about possible fuel leasing configurations, strategies for their implementation, and typical fuel cycle flow sheets. A major portion of the talk addressed lessons learnt from ‘Science Based Stockpile Stewardship’ and the Accelerated Strategic Computing Initiative (ASCI) initiative and how they can provide guidance for advancing GNEP and SciDAC goals. Dr. Reis’s colorful and informative presentation included international proverbs, quotes and comments, in tune with the international flavor that is part of the GNEP philosophy and plan. He concluded with a positive and motivating outlook for peaceful nuclear energy and its potential to solve global problems. An interview with Dr. Reis, addressing some of the above issues, is the cover story of Issue 2 of the SciDAC Review and available at http://www.scidacreview.org This summary of Dr. Reis’s PowerPoint presentation was prepared by Institute of Physics Publishing, the complete PowerPoint version of Dr. Reis’s talk at SciDAC 2006 is given as a multimedia attachment to this summary.

  6. The future of nuclear power worldwide and the role of the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Spurgeon, D.R.

    2008-01-01

    This presentation is entitled, 'The Future of Nuclear Power Worldwide and the Role of the Global Nuclear Energy Partnership', and the core message in one sentence is: When we look at the challenges of meeting our growing energy demands, providing for energy security and reducing greenhouse gas emissions, we must conclude that nuclear power has to play a significant and growing role in meeting these challenges. Similarly, the mission of the Global Nuclear Energy Partnership is to foster the safe and secure worldwide expansion of nuclear energy. GNEP comes at a crucial time in the burgeoning expansion of nuclear power. It is the only comprehensive proposal to close the nuclear fuel cycle in the United States, and engage the international community to minimize proliferation risks as well as provide and benefit from cooperation in policy formation, technical support, and technology and infrastructure development. Nuclear power's poised renaissance is encouraging, but it will require public support, expanded R and D activities and facilities, and increases in human capital needed for wide-scale construction and operation of new nuclear plants. Despite recent political currents, Germany can, too, become a part of this renaissance and become a full partner in the global partnership that shares a common vision for nuclear power's expansion. (orig.)

  7. Nuclear energy - the global solution for sustainable development in Romania

    International Nuclear Information System (INIS)

    Gorea, Valica; Popescu, Dan; Cristescu, Catalin

    2006-01-01

    The global population growth of the planet during the next 50 years will be accompanied by a dramatic increase in the demand for energy. Almost two-thirds of the world's population today has no access to electricity in developing countries. Without energy, the entire infrastructure would collapse: agriculture, transportation, waste collection. Developing and industrialized nations alike must address - both individually and collectively - how they can achieve sustainable growth. To date about 16 % of the world's electricity is produced by 443 reactors in 31 countries. They have a combined total capacity of 362 GW of electricity and produced a combined total of 2618 TWh in 2004, according to the International Atomic Energy Agency statistics. These reactors produce electricity for their respective countries safely, reliably and with the lowest environmental impact of any major energy source. Nuclear power provides steady energy at a consistent price without competing for resources from other countries. Some deficient in fossil fuels large countries (like France) rely on nuclear power up to about 80 % of their power necessities. United States (US) has the greatest number of commercial reactors in operation, but the share of nuclear power doesn't exceed 20 %, because of their abundant oil resources. On a percentage basis, Romania is one of the smaller users of nuclear energy. In Romania, according to the official data of the Romanian Ministry of Economy and Trade, nuclear energy share is only 10% of the gross power generation structure, with 5.560 GWh during the year 2004. Construction of the first unit of the Nuclear Power Plant (NPP) Cernavoda started in 1980 and of units 2-5 in 1982. Unit 1 was connected to the grid in mid of 1996 and entered commercial operation in December 1996. The state nuclear power corporation, Societatea Nationala Nuclearelectrica (SNN), established in 1998, operates Cernavoda NPP. Its capacity factor has averaged over 86 % so far and

  8. Nuclear energy: The need for responsible global management

    International Nuclear Information System (INIS)

    Hill, C.; Mechelynck, A.

    1999-01-01

    The problems posed by nuclear power generation have been discussed in earlier Pugwash meetings and, more recently, participants in at least one working group (Hiroshima, 1995) have urged that the issue should be taken up again in a specially convened workshop. Subsequently, at Lahti in 1996, Working Group 6 (Global action on the energy/climate interaction) asked the present authors to follow up this recommendation. The present paper reports on the modest progress that has been made in this direction. It is intended to form the basis for discussion, in Lillehammer Working Group 6, on whether further Pugwash action should be taken and, if so, how?

  9. Regulatory challenges facing the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Lyman, Edwin S.

    2007-01-01

    In January 2006 the Department of Energy (DOE) announced the creation of the Global Nuclear Energy Partnership (GNEP), an ambitious plan to reshape the nuclear energy production sector both in the United States and worldwide. If fully realized in the United States, GNEP would entail the construction of a large number of sodium-cooled fast reactors utilizing actinide-based fuels, multiple commercial-scale reprocessing plants for both light-water and fast reactors, and fast reactor fuel fabrication plants. It appears likely that the first commercial-scale GNEP facilities, as well as a future full-scale GNEP complex, would fall under the licensing jurisdiction of the Nuclear Regulatory Commission (NRC). This will be a challenging endeavor for the NRC, primarily because the proposed GNEP facilities will in large part be based on novel and untested designs and processes that have not been developed on a commercial scale. In order to effectively regulate the GNEP complex, the NRC will have to quickly address the many technical and policy questions that will arise in any GNEP licensing scheme. This paper identifies some difficult issues that will be encountered in GNEP licensing by examining the potential implications of NRC's current policies and regulatory requirements, and analyzing the impacts of some emerging post-9/11 security issues. (author)

  10. Global economics/energy/environmental (E3) modeling of long-term nuclear energy futures

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    A global energy, economics, environment (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors

  11. Global nuclear waste repository proposal highlights Australia's nuclear energy vacuum

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  12. Nuclear energy the best alternative in alleviating global warming

    International Nuclear Information System (INIS)

    Malaki Khoshkbijari, M.; Moghadam, M. Kh.

    2008-01-01

    During the last century, the average temperature of the earth has abnormally increased by 0.74 c, causing concern among scientists. Some experts believe that the earth has experienced the warmest years during the last decades of 20 century, to the extent that the last 400 years have been the warmest years. The reports 2007 suggest that the hottest periods recorded occur a 1990 - 2007 which was a record high during the past 150 years. It seems that industrialization has contributed significantly to the global warming. The measurement of earth temperature dates hack to 1880 which has continued up to the present time. It is also predicted that the year 2014 would witness an unprecedented high air temperature. Moreover, scientists have expressed grave concern about the occurrence of severe droughts, scorching heat and formidable storms which are yet to strike the earth in the year 2100. According to the I nternational atomic agency , nuclear energy is by far, the best and safest production source of electricity in the future due to it's low emission rate of carbon dioxide. However , prior to making any commitment, it seem imperative to increase public awareness about the dire consequences of the continued utilization of fossil fuels. Based on research carried out by International atomic agency, nuclear energy is superior to other sources of energy in two major respects: lack of any so-called greenhouse gas emission and the utilization of uranium as the single source the energy production. The study aims at first; probing into the causes of global warming, the outcomes and ultimately provision of a way out of the problem and identifying the means to seriously cope with the problem. 5

  13. Commercialization of the global nuclear energy partnership (GNEP)

    International Nuclear Information System (INIS)

    Loewen Eric P.; Boaz, Jeffery; Saito, Earl; Boardman, Chuck

    2007-01-01

    In February 2006 President Bush announced the Advanced Energy Initiative, which included the Department of Energy's (DOE) Global Nuclear Energy Partnership (GNEP). GNEP has seven broad goals, one of the major elements being to develop and deploy advanced nuclear fuel recycling technology. DOE is contemplating accelerating the deployment of these technologies to achieve the construction of a commercial scale application of these technologies. DOE now defines this approach as 'two simultaneous tracks: (1) deployment of commercial scale facilities for which advanced technologies are available now or in the near future, and (2) further research and development of transmutation fuels technologies'. GE believes an integrated technical solution, using existing reactor and fuel reprocessing technologies, is achievable in the near term to accelerate the commercial demonstration of GNEP infrastructure. The concept involves a single, integrated, commercial scale, recycling facility consisting of the Consolidated Fuel Treatment Center (CFTC), capable of processing LWR and fast reactor Spent Nuclear Fuel (SNF) and fabricating Advanced Recycling Reactor (ARR) actinide fuel. The integrated facility would include a fast reactor that uses actinide-bearing fuel to produce electricity. For optimal performance, GE believes this integrated facility should be co-located to eliminate transportation between the CFTC and ARR, and enhance proliferation resistance. This Advanced Recycling Center takes advantage of previous investments by government and industry in fast reactor technology research and development. To allow for commercial acceptance, a prototypical demonstration reactor and associated fuel cycle facility will be constructed, tested, and licensed. Taking advantage of GE's NRC-reviewed modular sodium-cooled PRISM reactor, only a single reactor will be needed and the cost and risk minimized in the initial phase of the program. This paper outlines a process and a schedule to

  14. Nuclear energy industry in Russia promoting global strategy

    International Nuclear Information System (INIS)

    Kobayashi, Masaharu

    2001-01-01

    Since former USSR disintegrated to birth new Russia on December, 1991, it already passed ten years. As Russian economic hardship affected its nuclear energy development, No.1 reactor of the Rostov nuclear power station (VVER-1000) established its full power operation on September, 2001 after passing eight years of pausing period as a Russian nuclear power station, at dull development of nuclear energy in the world. When beginning of its commercial operation, scale of nuclear power generation under operation in Russia will reach to the fourth one in the world by getting over the one in Germany. Russia also begins international business on reprocessing of spent fuel and intermittent storage. And, Russia positively develops export business of concentrated uranium and nuclear fuel, too. Furthermore, Russia shows some positive initiatives on export of nuclear power station to China, Iran and India, and development on advanced nuclear reactor and nuclear fuel cycle forecast to future. Here was introduced on international developmental development of nuclear energy industry activated recently at delayed time for this ten years. (G.K.)

  15. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems

    Directory of Open Access Journals (Sweden)

    Kuznetsov Vladimir

    2015-01-01

    Full Text Available The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21st century in a sustainable manner. The INPRO task titled “Global scenarios” is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21st century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries’ different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies.

  16. Heterogeneous world model and collaborative scenarios of transition to globally sustainable nuclear energy systems - 15483

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.

    2015-01-01

    The International Atomic Energy Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) is to help ensure that nuclear energy is available to contribute to meeting global energy needs of the 21. century in a sustainable manner. The INPRO task titled 'Global scenarios' is to develop global and regional nuclear energy scenarios that lead to a global vision of sustainable nuclear energy in the 21. century. Results of multiple studies show that the criteria for developing sustainable nuclear energy cannot be met without innovations in reactor and nuclear fuel cycle technologies. Combining different reactor types and associated fuel chains creates a multiplicity of nuclear energy system arrangements potentially contributing to global sustainability of nuclear energy. In this, cooperation among countries having different policy regarding fuel cycle back end would be essential to bring sustainability benefits from innovations in technology to all interested users. INPRO has developed heterogeneous global model to capture countries' different policies regarding the back end of the nuclear fuel cycle in regional and global scenarios of nuclear energy evolution and applied in a number of studies performed by participants of the project. This paper will highlight the model and major conclusions obtained in the studies. (authors)

  17. The future role of nuclear power in the global energy balance

    International Nuclear Information System (INIS)

    Semenov, B.A.; Guthrie, D.; Tatsuta, Y.

    1991-01-01

    A sound judgement on the role of nuclear power in the global energy balance within the time span of the next 30 years should logically be based on the consideration of at least a number of factors such as global trends in energy and electricity demand, practically available or estimated sources of supply, major requirements that these energy sources should meet, nuclear power's own potential, a realistic assessment of nuclear power's present status, and problems related to nuclear power. The conclusion of such an analysis is that nuclear power will retain, and may even enhance, its position as an important element in the world's energy supply mix

  18. Nuclear power prospects up to 2020 in global energy context

    International Nuclear Information System (INIS)

    Naudet, G.; Capron, J.M.

    1993-01-01

    Today nuclear energy is a significant component of the electricity generation in the world; its role in the future has to be estimated as an answer to the issues concerning both energy supply and atmosphere pollution. Taking into account the lead-times observed in the energy field, the year 2020 appears a convenient time horizon to appreciate the contrast of significant differences in nuclear power expansion. The approach consists in considering one by one all the countries which have already implemented a nuclear program or could be able to launch a program before this date. However, to be clear, the results are presented according to either the five regions defined in appendix or the World Energy Council regions for comparison with the WEC results. (author). 8 tabs., 2 figs

  19. Role of nuclear produced hydrogen for global environment and energy

    International Nuclear Information System (INIS)

    Tashimo, M.; Kurosawa, A.; Ikeda, K.

    2004-01-01

    Sustainability on economical growth, energy supply and environment are major issues for the 21. century. Within this context, one of the promising concepts is the possibility of nuclear-produced hydrogen. In this study, the effect of nuclear-produced hydrogen on the environment is discussed, based on the output of the computer code 'Grape', which simulates the effects of the energy, environment and economy in 21. century. Five cases are assumed in this study. The first case is 'Business as usual by Internal Combustion Engine (ICE)', the second 'CO 2 limited to 550 ppm by ICE', the third 'CO 2 limited to 550 ppm by Hybrid Car', the fourth 'CO 2 limited to 550 ppm by Fuel Cell Vehicle (FCV) with Hydrogen produced by conventional Steam Methane Reforming (SMR)' and the fifth 'CO 2 limited to 550 ppm by FCV with Nuclear Produced-Hydrogen'. The energy used for transportation is at present about 25% of the total energy consumption in the world and is expected to be the same in the future, if there is no improvement of energy efficiency for transportation. On this point, the hybrid car shows the much better efficiency, about 2 times better than traditional internal combustion engines. Fuel Cell powered Vehicles are expected to be a key to resolving the combined issue of the environment and energy in this century. The nuclear-produced hydrogen is a better solution than conventional hydrogen production method using steam methane reforming. (author)

  20. Nuclear energy and global warming: a new economic view

    International Nuclear Information System (INIS)

    Rokhshad Hejazi

    2009-01-01

    This paper tries to state energy situation and then energy policy globally in economic view and then offer the practical solution. Besides above questions, the most important questions that will be answered are: What is the energy position, in economic view? and what is the most important priority among environmental issues? According to present conditions and environmental challenges what is the way map for energy supply? Is the priority for environment and energy with an economic sight, in present and future, same as the past? (Author)

  1. Key role for nuclear energy in global biodiversity conservation.

    Science.gov (United States)

    Brook, Barry W; Bradshaw, Corey J A

    2015-06-01

    Modern society uses massive amounts of energy. Usage rises as population and affluence increase, and energy production and use often have an impact on biodiversity or natural areas. To avoid a business-as-usual dependence on coal, oil, and gas over the coming decades, society must map out a future energy mix that incorporates alternative sources. This exercise can lead to radically different opinions on what a sustainable energy portfolio might entail, so an objective assessment of the relative costs and benefits of different energy sources is required. We evaluated the land use, emissions, climate, and cost implications of 3 published but divergent storylines for future energy production, none of which was optimal for all environmental and economic indicators. Using multicriteria decision-making analysis, we ranked 7 major electricity-generation sources (coal, gas, nuclear, biomass, hydro, wind, and solar) based on costs and benefits and tested the sensitivity of the rankings to biases stemming from contrasting philosophical ideals. Irrespective of weightings, nuclear and wind energy had the highest benefit-to-cost ratio. Although the environmental movement has historically rejected the nuclear energy option, new-generation reactor technologies that fully recycle waste and incorporate passive safety systems might resolve their concerns and ought to be more widely understood. Because there is no perfect energy source however, conservation professionals ultimately need to take an evidence-based approach to consider carefully the integrated effects of energy mixes on biodiversity conservation. Trade-offs and compromises are inevitable and require advocating energy mixes that minimize net environmental damage. Society cannot afford to risk wholesale failure to address energy-related biodiversity impacts because of preconceived notions and ideals. © 2014 The Authors Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  2. Nuclear energy development in the 21st century: Global scenarios and regional trends

    International Nuclear Information System (INIS)

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000, on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21). INPRO helps ensure that sustainable nuclear energy is available in the twenty-first century and seeks to bring together all interested Member States - both technology holders and technology users - to consider joint actions to achieve desired innovations. As of July 2010, 30 countries and the European Commission are members of INPRO. Programme Area B of INPRO, Global Vision - Scenarios and Pathways to Sustainable Nuclear Power Development, is aimed at providing a better understanding of the role of nuclear energy in the context of long term sustainable development. Its objective is to develop global and regional nuclear energy scenarios on the basis of a scientific-technical pathway analysis that lead to a global vision on sustainable nuclear energy development in the twenty-first century, and to support Member States in working towards that vision. This report presents the results of a study undertaken under Programme Area B in INPRO on Nuclear Energy Development in the Twenty-first Century: Global Scenarios and Regional Trends Studies on Nuclear Capacity Growth and Material Flow between Regions. The report does not develop a global vision for nuclear deployment per se, but presents a limited set of technical scenarios of nuclear deployment and considers their implications. It considers a global energy supply system composed of several reactor and fuel cycle types available today and of fast reactors that may be developed in the future to illustrate a possible modelling approach to identify the potential role of interregional transfer of nuclear fuel resources in supporting the global growth of nuclear energy. The study was performed with the participation of sixteen experts from nine INPRO Member States and included a dynamic simulation of material flows in nuclear energy systems using

  3. Role of nuclear energy to a future society of shortage of energy resources and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Shinzo, E-mail: saito.shinzo@jaea.go.j [Japan Atomic Energy Research Institute (Japan)

    2010-03-15

    Human society entered into the society of large energy consumption since the industrial revolution and consumes more than 10 billion tons of oil equivalent energy a year in the world in the present time, in which over 80% is provided by fossil fuels such as coal, oil and natural gas. Total energy consumption is foreseen to increase year by year from now on due to significant economical and population growth in the developing countries such as China and India. However, fossil fuel resources are limited with conventional crude oil estimated to last about 40 years, and it is said that the peak oil production time has come now. On the other hand, global warming due to green house gases (GHG) emissions, especially carbon dioxide, has become a serious issue. Nuclear energy plays an important role as means to resolve energy security and global warming issues. Four hundred twenty-nine nuclear power plants are operating world widely producing 16% of the total electric power with total plant capacity of 386 GWe without emission of CO{sub 2} as of 2006. It is estimated that another 250 GWe nuclear power is needed to keep the same level contribution of electricity generation in 2030. On the other hand, the Japan Atomic Energy Research Institute (JAERI) developed the very high temperature gas-cooled reactor (HTGR) named high temperature gas-cooled engineering test reactor (HTTR) and carbon free hydrogen production process (IS process). Nuclear energy utilization will surely widen in, not only electricity generation, but also various industries such as steel making, chemical industries, together with hydrogen production for transportation by introduction of HTGRs. The details of development of the HTTR and IS process are also described.

  4. Global flow of glasma in high energy nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guangyao; Fries, Rainer J., E-mail: rjfries@comp.tamu.edu

    2013-06-25

    We discuss the energy flow of the classical gluon fields created in collisions of heavy nuclei at collider energies. We show how the Yang–Mills analog of Faraday's Law and Gauss' Law predicts the initial gluon flux tubes to expand or bend. The resulting transverse and longitudinal structure of the Poynting vector field has a rich phenomenology. Besides the well-known radial and elliptic flow in transverse direction, classical quantum chromodynamics predicts a rapidity-odd transverse flow that tilts the fireball for non-central collisions, and it implies a characteristic flow pattern for collisions of non-symmetric systems A+B. The rapidity-odd transverse flow translates into a directed particle flow v{sub 1} which has been observed at RHIC and LHC. The global flow fields in heavy ion collisions could be a powerful check for the validity of classical Yang–Mills dynamics in high energy collisions.

  5. Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 2.

    Energy Technology Data Exchange (ETDEWEB)

    Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.; Goldberg, S. M.

    2007-03-26

    Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclear Energy Partnership (GNEP) as an emerging nuclear energy country.

  6. The Global Nuclear Futures Model: A Dynamic Simulation Tool for Energy Strategies

    International Nuclear Information System (INIS)

    Bixler, N.E.

    2002-01-01

    The Global Nuclear Futures Model (GNFM) is a dynamic simulation tool that provides an integrated framework to model key aspects of nuclear energy, nuclear materials storage and disposition, global nuclear materials management, and nuclear proliferation risk. It links nuclear energy and other energy shares dynamically to greenhouse gas emissions and twelve other measures of environmental impact. It presents historical data from 1990 to 2000 and extrapolates energy demand through the year 2050. More specifically, it contains separate modules for energy, the nuclear fuel cycle front end, the nuclear fuel cycle back end, defense nuclear materials, environmental impacts, and measures of the potential for nuclear proliferation. It is globally integrated but also breaks out five regions of the world so that environmental impacts and nuclear proliferation concerns can be evaluated on a regional basis. The five regions are the United States of America (USA), The Peoples Republic of China (China), the former Soviet Union (FSU), the OECD nations excluding the USA, and the rest of the world (ROW). (author)

  7. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  8. Fission nuclear power prospects and its role in meeting global energy needs

    International Nuclear Information System (INIS)

    Golan, S.

    1992-01-01

    Nuclear power currently makes an important contribution to world's energy requirements providing 17% of its electricity. But as global warming becomes of greater concern, many ask whether nuclear power can and should contribute more. The author, who is involved in the nuclear power enterprise for 35 years, tries to answer this question affirmative. He holds the view that: a) nuclear fission power is essential to meeting world's energy needs without unduly impairing the global environment; b) by possessing the required attributes discussed in this paper, nuclear fission power can be made societally acceptable; c) the industrialized world should accelerate LMFR deployment while fostering more convenient energy alternatives for the developing world; and d) the HTGR is unique in its ability to augment non-electricity energy needs and could become the technology choice of developing countries for nuclear electricity production. (author). 5 refs., 5 figs., 4 tabs

  9. Global measure for energy + environmental problems by thorium molten-salt nuclear energy synergetics

    International Nuclear Information System (INIS)

    Furukawa, K.; Lecocq, A.; Mitachi, K.; Kato, Y.

    1991-01-01

    The new global fission industry as a measure for energy and environmental problems of the next century should keep a strong public acceptance, which means to ensure an enough rational safety feature not only in the engineering issue but also in the all issues of integral fuel-cycle system. In these sense, the rational characteristics of the Thorium Molten-Salt Nuclear Energy Synergetic System (THORIMS-NES) is widely explained relating with a) resources and environmental problems, b) safety, c) nuclear-proliferation and -terrorism, d) breeding fuel-cycle, chemical processing and radio-wastes, and e) social acceptability and economy, including 'North-South' problems. The basic technology of Molten-Salt Reactor system has been established, and the practical and economical development program of THORIMS-NES is also proposed. (author) 3 figs., 1 tab., 16 refs

  10. Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications.

    Science.gov (United States)

    Prăvălie, Remus; Bandoc, Georgeta

    2018-03-01

    For decades, nuclear energy has been considered an important option for ensuring global energy security, and it has recently started being promoted as a solution for climate change mitigation. However, nuclear power remains highly controversial due to its associated risks - nuclear accidents and problematic radioactive waste management. This review aims to assess the viability of global nuclear energy economically (energy-wise), climatically and environmentally. To this end, the nuclear sector's energy- and climate-related advantages were explored alongside the downsides that mainly relate to radioactive pollution. Economically, it was found that nuclear energy is still an important power source in many countries around the world. Climatically, nuclear power is a low-carbon technology and can therefore be a viable option for the decarbonization of the world's major economies over the following decades, if coupled with other large-scale strategies such as renewable energies. These benefits are however outweighed by the radioactive danger associated to nuclear power plants, either in the context of the nuclear accidents that have already occurred or in that of the large amounts of long-lived nuclear waste that have been growing for decades and that represent a significant environmental and societal threat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A lead for transvaluation of global nuclear energy research and funded projects in Japan

    International Nuclear Information System (INIS)

    Kiriyama, Eriko; Kajikawa, Yuya; Fujita, Katsuhide; Iwata, Shuichi

    2013-01-01

    Highlights: • Chernobyl accident had limited influence on basic research in nuclear energy. • Budget allocation to R and D and number of published papers have recently decreased. • Citation network analysis revealed reactor safety and fusion as current research trend. • Nuclear energy research policy will change after Fukushima disaster. - Abstract: The decision-making process that precedes the introduction of a new energy system should strive for a balance among human security, environmental safeguards, energy security, proliferation risk, economic risks, etc. For nuclear energy, the Fukushima Daiichi nuclear disaster (Fukushima disaster) has brought forth a strong need for transvaluation of the present technology. Here, we analyzed bibliographic records of publications in nuclear science and technology to illustrate an overview and trends in nuclear energy technology and related fields by using citation network analysis. We also analyzed funding data and keywords assigned for each project by co-occurrence network analysis. This research integrates citation network analysis and bibliometric keyword analysis to compare the global trends in nuclear energy research and characteristics of research conducted at universities and institutes in Japan. We show that the Chernobyl accident had only a limited influence on basic research. The results of papers are dispersed in diverse areas of nuclear energy technology research, and the results of KAKEN projects in Japan are highly influenced by national energy policy with a focus on nuclear fuel cycle for energy security, although KAKEN allows much freedom in the selection of research projects to academic community

  12. Nuclear energy as a contribution to the solution of energetic and environmental global problems

    International Nuclear Information System (INIS)

    Huttl, A.

    1993-01-01

    The sharp population growth has turned energy and environment problems into global problems. The yearly consumption of primary energy in the world is currently 11 billion TCE (Tons of Coal Equivalent). At the present time 88.1% of energy supply is produced by fossil fuels and nuclear only 5.2%. Fossil fuels are responsible for air pollutants like SO 2 , NO, NO 2 , CO 2 , and VOC. Most of them are responsible of the Greenhouse effect and global warming. Only two solutions may avoid this situation: Renewable energies (sun, water and wind) and Nuclear Energy. At the end of 1990 there were 424 nuclear power plants in the world with 1800 million Tu/year of CO 2 avoided (8% of the total emitted). New future scenarios of CO 2 avoided may only be reached with nuclear power contribution

  13. Nuclear energy, a solution in the struggle against global warming in quest of recognition

    International Nuclear Information System (INIS)

    Faudon, Valerie

    2014-01-01

    In this article, the author first comments assessments of the continuous increase of greenhouse gas emissions as they appear in the IPCC report of September 2013 and in the results published by the Global Carbon Project. She also evokes the commitments in emission reductions in compliance with the Kyoto Protocol and some dramatic consequences global warming may have according to the IPCC scenarios. Then, she addresses the share of nuclear energy in energy production and outlines its stakes and benefits in terms of greenhouse gas emissions. She notices that international bodies (European Commission, World Bank) do not mention nuclear energy in their plan for energy production development, but mainly rely on the development of renewable energies. The author then outlines the reasons why the development of renewable energies does not necessarily goes with the reduction of greenhouse gas emissions. She also notices that a new generation of ecologists considers nuclear energy as a tool to struggle against climate warming

  14. Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-09-01

    A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

  15. Analysis on long-term perspective of nuclear energy in the global energy system in terms of CO2 mitigation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Uotani, M.

    2001-01-01

    The value of nuclear energy is analyzed for prevention of global warming and climate change by means of a global energy model, which finds the cost minimum energy system over the time range of 2000 - 2100. Six scenarios are examined in this analysis, considering two scenarios of economic growth rate, two scenarios of electrification rate, and FBR introduction or not. The results indicate that progress of electricity generation is the key to reduce the global CO 2 emission, and the role of FBRs with its nuclear fuel cycle is very robust against any economic conditions. (author)

  16. Nuclear energy and global warning - looking ahead to the 21st century

    International Nuclear Information System (INIS)

    Ion, M.

    1994-01-01

    As the 20th century draws to a close, both individual countries and the world community face challenging problems related to the supply and use of energy. These include the fossil fuels consumption and nuclear energy proliferation, local and original environmental impacts, the prospect of global climate and sea level change associated with the greenhouse effect. Having in view the world population dynamics the future of energy use, and supply is less clear and predictable. Energy scenarios assuming explicit contributions from nuclear power to energy supply clearly show that global emissions of CO 2 - one of the most important gases linked to the greenhouse effect - can be substantially reduced if nuclear energy can further penetrate the electricity market. (Author)

  17. Analysis on long-term perspectives of sustainable nuclear energy towards global warming protection

    International Nuclear Information System (INIS)

    Yamazawa, M.; Ichimura, E.; Shibata, Y.; Kobayashi, K.; Wajima, T.

    1998-01-01

    Study of long-term perspectives of the nuclear power generation was made from the point of views of both CO 2 emission constraints and sustainability of nuclear energy. To this end, STREAM (Semi-empirical TRiple E Analysis Model) program, as a social model, has been developed by Tokyo Electric Power Co. and Hitachi, Ltd. Using this program, long-term world demands of primary and nuclear energy were deduced, in view of the protection against the global warming due to the CO 2 gas accumulation. The inevitable conclusion has been drawn that nuclear energy plays an indispensable role in the reduction of green house effect. Evaluations were then made on conditions that the nuclear power system would be the long-term major sustainable energy source. (author)

  18. The Fukushima nuclear accident and its effect on global energy security

    International Nuclear Information System (INIS)

    Hayashi, Masatsugu; Hughes, Larry

    2013-01-01

    The March 2011 nuclear accident at the Fukushima Daiichi nuclear power station affected both short- and long-term energy-security in Japan, resulting in crisis-driven, ad hoc energy policy and, because of the decision to shutter all nuclear reactors, increased the country’s demand for fossil fuels, primarily natural gas. However, the effects of the accident on energy security were not restricted to Japan; for example, the worldwide availability and affordability of liquefied natural gas were affected by Japan’s increased demand; while the accident itself resulted in the loss of public acceptability of nuclear power and led countries, such as Germany and Italy, to immediately shut down some of the nuclear reactors or abandon plans to build new ones. This paper examines some of the short-term effects on global energy security following the accident at Fukushima, focusing on the main replacement fuel, liquefied natural gas. It shows, amongst other things, that the accident increased investment in liquefied natural gas projects around the world. The paper shows that despite Fukushima contributing to nuclear power’s loss of acceptability in most developed countries, it is still seen as an essential way of improving energy security in many countries and, despite what its critics may say, will probably continue to be used as a significant source of low-carbon electricity. - Highlights: ► Japan’s demands for fossil fuels raised the price of LNG and low-sulfur crudes. ► The accident affected the global price of uranium and producer share prices. ► The accident accelerated foreign-direct investment in LNG projects worldwide. ► The change in public perception toward nuclear power was relatively limited. ► A radical shift in global nuclear policy seems to be unrealistic after Fukushima

  19. Nuclear energy-an essential option for sustainable development of global economy

    International Nuclear Information System (INIS)

    Tokio Kanoh

    2005-01-01

    Increased use of nuclear energy is an essential option for us to take the sustainable development of the global economy. The reasons are as follows: 1. Energy demand, especially in oil demand; 2. Environmental impact, especially greenhouse effect and carbon dioxide emissions, CO 2 emissions to be reduced 40% by increased use of nuclear power; 3. In the era of hydrogen, nuclear power can contribute in two ways. One is hydrogen production by electrolysis of water in conventional light water reactors powered by less costly late night electricity and the other by paralysis using high temperature gas produced in a high temperature testing reactor, Electric power consumption will increase 50% from 1990 to 2050. What is striking about his projection is types of fuels in use for power generation at that time which will consist of 60% nuclear, 10% hydro and 10% of other renewable energies. In other words, nearly 80% of fuels will be non-fossil sources

  20. Nuclear energy worldwide

    International Nuclear Information System (INIS)

    Fertel, M.

    2000-01-01

    In this short paper the author provides a list of tables and charts concerning the nuclear energy worldwide, the clean air benefits of nuclear energy, the nuclear competitiveness and the public opinion. He shows that the nuclear energy has a vital role to play in satisfying global energy and environmental goals. (A.L.B)

  1. Global zero-carbon energy pathways using viable mixes of nuclear and renewables

    International Nuclear Information System (INIS)

    Hong, Sanghyun; Bradshaw, Corey J.A.; Brook, Barry W.

    2015-01-01

    Highlights: • A proper mix of nuclear power and renewables achieves sustainable energy future. • A high nuclear share provides cost and land effectiveness compared to nuclear-free. • Only-renewable mix will increase negative economic and environmental impacts. • A deployment of advanced reactor technologies is essential to overcome limitations. - Abstract: What are the most viable global pathways for a major expansion of zero-carbon emissions electricity sources given the diversity of regional technical, socio-political and economic constraints? We modelled a range of zero-emissions energy scenarios across nations that were designed to meet projected final energy demand in 2060, and optimised to derive the best globally aggregated results in terms of minimising costs and land use (a surrogate for environmental impacts). We found that a delayed energy transition to a zero-emissions pathway will decrease investment costs (−$3,431 billion), but increase cumulative CO 2 emissions (additional 696 Gt). A renewable-only scenario would convert >7.4% of the global land area to energy production, whereas a maximum nuclear scenario would affect <0.4% of land area, including mining, spent-fuel storage, and buffer zones. Moreover, a nuclear-free pathway would involve up to a 50% greater cumulative capital investment compared to a high nuclear penetration scenario ($73.7 trillion). However, for some nations with a high current share of renewables and a low projected future energy demand (e.g., Norway), pursuit of a higher nuclear share is suboptimal. In terms of the time frame for replacement of fossil fuels, achieving a global nuclear share of about 50% by 2060 would be a technically and economically plausible target if progressing at a pace of the average historical growth of nuclear power penetration in France from 1970 to 1986 (0.28 MWh person −1 year -1 ). For effective climate-change mitigation, a high penetration of nuclear in association with a nationally

  2. Refurbish research and test reactors corresponding to global age of nuclear energy

    International Nuclear Information System (INIS)

    Mishima, Kaichiro; Oyama, Yukio; Okamoto, Koji; Yamana, Hajime; Yamaguchi, Akira

    2011-01-01

    This special article featured arguments for refurbishment of research and test reactors corresponding to global age of nuclear energy, based on the report: 'Investigation of research facilities necessary for future joint usage' issued by the special committee of Atomic Energy Society of Japan (AESJ) in September 2010. It consisted of six papers titled as 'Introduction-establishment of AESJ special committee for investigation', 'State of research and test reactors in Japan', 'State of overseas research and test reactors', 'Needs analysis for research and test reactors', 'Proposal of AESJ special committee' and 'Summary and future issues'. In order to develop human resources and promote research and development needed in global age of nuclear energy, research and test reactors would be refurbished as an Asian regional center of excellence. (T. Tanaka)

  3. GNES-R: Global nuclear energy simulator for reactors task 1: High-fidelity neutron transport

    International Nuclear Information System (INIS)

    Clarno, K.; De Almeida, V.; D'Azevedo, E.; De Oliveira, C.; Hamilton, S.

    2006-01-01

    A multi-laboratory, multi-university collaboration has formed to advance the state-of-the-art in high-fidelity, coupled-physics simulation of nuclear energy systems. We are embarking on the first-phase in the development of a new suite of simulation tools dedicated to the advancement of nuclear science and engineering technologies. We seek to develop and demonstrate a new generation of multi-physics simulation tools that will explore the scientific phenomena of tightly coupled physics parameters within nuclear systems, support the design and licensing of advanced nuclear reactors, and provide benchmark quality solutions for code validation. In this paper, we have presented the general scope of the collaborative project and discuss the specific challenges of high-fidelity neutronics for nuclear reactor simulation and the inroads we have made along this path. The high-performance computing neutronics code system utilizes the latest version of SCALE to generate accurate, problem-dependent cross sections, which are used in NEWTRNX - a new 3-D, general-geometry, discrete-ordinates solver based on the Slice-Balance Approach. The Global Nuclear Energy Simulator for Reactors (GNES-R) team is embarking on a long-term simulation development project that encompasses multiple laboratories and universities for the expansion of high-fidelity coupled-physics simulation of nuclear energy systems. (authors)

  4. Role of nuclear energy in the global energy picture of the 21st century

    International Nuclear Information System (INIS)

    Knizia, K.; Schwarz, D.

    1991-01-01

    Problems associated with fossil fuel (Gulf crisis, ecology, conservation, global warming) cannot be solved with saving and renewables alone. A larger nuclear share of electricity, electricity for more applications, and nuclear heat are needed. For the last, the high-temperature gas-cooled reactor (HTGR) is best suited. Its most important contribution would be the production of methanol as a motor fuel. Also nuclear steel-making, H 2 and CO for chemistry and refineries, A1 2 O 3 kilns, process steam for industry, oil production and desalination, district heating or production of H 2 , substitute natural gas, and liquefied coal for space heating should be considered. Later on, nuclear current and HTGR heat can be used to split water to produce hydrogen. An international effort is recommended to exploit these possibilities. (Author)

  5. Eliciting public preference for nuclear energy against the backdrop of global warming

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Shu-Yi; Tseng, Wei-Chun; Chen, Chi-Chung [Department of Applied Economics, National Chung-Hsing University, 250 Kuo Kuang Road, Taichung 40246 (China)

    2010-11-15

    One of the most important issues related to sustainability is to reduce the use of fossil fuels due to the reduction in greenhouse gases (GHG) emission. Nuclear power results in low carbon emissions and is thus important to mitigating the adverse effects of global warming and climate change. However, the downside of nuclear power cannot be overlooked, and consequently nuclear power is a controversial issue in many countries around the world. Thus an important question concerns how people should support nuclear power. Do the climate and energy security benefits of nuclear power outweigh its risks and costs? Therefore, we use a modified double-bounded contingent valuation model to explore the attitudes and the willingness to pay (WTP) of a country in order to demonstrate its implications for policy. We confirm that supporters and opponents of nuclear power are balanced both in terms of their numbers and in terms of their WTP. The policy implication is that people do not support any dramatic increase or reduction in nuclear power, and that nuclear power should still be an important means of generating electricity in Taiwan. The current share of nuclear power in electricity generation of 20% should be maintained in the near future. (author)

  6. The Potential Of Fission Nuclear Energy In Resolving Global Climate Change

    International Nuclear Information System (INIS)

    Pevec, D.

    2015-01-01

    There is an international consensus on the need of drastic reduction of carbon emission if very serious global climate changes are to be avoided. At present target is to limit global temperature increase to 2 Degrees of C and to keep CO 2 concentration below 450 ppm, though some recent request by climatologists argue for lower limit of 1.5 Degrees of C. The carbon emission reduction has to be done in the next few decades, as climate effects are essentially determined by integral emission. The integral emissions should not exceed 1000 Gt CO 2 to keep the probability of exceeding global temperature by 2 Degrees of C below 25 percent. Consequently, when we consider energy sources that could produce carbon free energy we have to concentrate on the period not later than 2060-2065. The sources that can take the burden of reduction in the years up to 2065 are Renewable Energy Sources (RES) and nuclear fission energy. The potential of RES has been estimated by many organizations and individuals. Their predictions indicate that RES are not likely to be sufficient to replace carbon emitters and fulfill the 2 Degrees of C limit requirements. The nuclear fission energy can give a very serious and hopefully timely (unlike nuclear fusion) contribution to reduction of emission. Even with proven conventional reactors using once through fuel cycle without fuel reprocessing the nuclear build-up in the years 2025-2065 could reach 3330 GW. With this concept nuclear contribution of 94.5 EJ/y would be reached by 2065, while integral CO 2 emission savings would be about 500 Gt CO 2 by 2065. This shows that essential nuclear contribution is possible without the use of plutonium and fast breeders, technology not ready for climate-critical next 50 years and not acceptable in present political environment. This nuclear fission energy contribution along with contributions from renewable sources, energy saving, and increased efficiency in energy use can solve the climate problems. (author).

  7. Development or Deployment of 'Grid-Appropriate' Reactors for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, D. T.

    2008-01-01

    The world energy demand is expected to nearly double by 2030, largely driven by rapidly increasing demand in the developing parts of the world. Many of the countries that will experience the greatest growth in energy demand have little or no current nuclear power experience and have significant constraints on the size and type of power plant that can be accommodated. Although a few reactor vendors are beginning to address this market need, most traditional vendors continue to offer only very large nuclear power plants with capacities exceeding 1500 MWe per unit. The Global Nuclear Energy Partnership (GNEP), which was initiated in the United States and now includes a partnership of 20 countries, seeks to facilitate the large-scale global growth in nuclear power. Within the GNEP program, the 'grid-appropriate' reactors (GAR) campaign has been initiated to coordinate and facilitate the development, demonstration, and deployment of reactor designs that are better suited for those countries that need or prefer smaller power plant capacities. The GNEP/GAR program addresses the full spectrum of issues for the deployment of new reactor designs to new nuclear power countries, including: reactor technology and engineering, licensing and regulatory impacts, and infrastructure needs (physical, workforce, and institutional). Initially, the program is focused on meeting the current global demand for small or medium-sized reactors using demonstrated technologies. The program will also address the development of new reactor technologies that will further enhance the safety, security, and proliferation resistance of future designs. International collaborations are being established to: (1) develop suitable requirements and criteria for GAR designs, (2) conduct R and D for longer-term reactor technologies and innovative designs, and (3) assisting new nuclear power countries in assessing their infrastructure needs. The status of these activities will be presented and future program

  8. The Necessity of Developing Nuclear Energy in Romania in the Context of Global Economy Expansion

    Directory of Open Access Journals (Sweden)

    Dana-Elena MARCEAN HOLBAN

    2015-12-01

    Full Text Available Energy is one of the most important elements of the global economy, being the basic unit of world economic development. In the energy mix, nuclear energy - more than any other type of energy - has generated and will always generate a series of controversies. This article aims to emphasize the economic and social implications, further than the general purpose of developing nuclear energy: national energetic security. With the starting point clearly defined – the history already written by the operation of Unit 1 and 2 – the path to discover all its elements seems to be clear, although a whole range of unknown issues can rise many different interpretations. In Romania, nuclear energy produces 18% of Romania's electricity supplies. Development of Units 3 and 4 of the Cernavoda site could more than double this capacity. This will have major implications in the trading market, significantly influencing the price of electricity not only nationally, but, in the context coupling energy markets, as well as at regional level. It is also risen the question of using this additional production. Depending on the time of commissioning, this quantity of energy that now seems overmuch, can be used for export, to reduce the use of fossil fuels and to continue to obtain electricity in the context of a system based on power plants that use fossil fuels, whose lifespan is nearing completion.

  9. Nuclear energy

    International Nuclear Information System (INIS)

    Kuhn, W.

    1986-01-01

    This loose-leaf collection is made up of five didactically prepared units covering the following subjects: basic knowledge on nuclear energy, nuclear energy in relation to energy economy, site issues, environmental compatibility of nuclear energy, and nuclear energy in the focus of political and social action. To this was added a comprehensive collection of material: specific scientific background material, a multitude of tables, diagrams, charts etc. for copying, as well as 44 transparent charts, mostly in four colours. (orig./HP) [de

  10. Special course for global nuclear human resource development in cooperation with Hitachi-GE nuclear energy in Tokyo institute of technology

    International Nuclear Information System (INIS)

    Ujita, H.; Futami, T.; Saito, M.; Murata, F.; Shimizu, M.

    2012-01-01

    Many Asian countries are willing to learn Japanese nuclear power plants experiences, and are interested in introducing nuclear power generation to meet their future energy demand. Special course for Global Nuclear Human Resource Development was established in April, 2011 in the Department of Nuclear Engineering at Graduate School of Tokyo Institute of Technology in cooperation with Hitachi-GE Nuclear Energy. Purpose of the special course is to develop global nuclear engineers and researchers not only in the Tokyo Institute of Technology but also in the educational institutes of Southeast Asian countries

  11. Computational studies of global nuclear energy development under the assumption of the world's heterogeneous development

    International Nuclear Information System (INIS)

    Egorov, A.F.; Korobejnikov, V.V.; Poplavskaya, E.V.; Fesenko, G.A.

    2013-01-01

    Authors study the mathematical model of Global nuclear energy development until the end of this century. For comparative scenarios analysis of transition to sustainable nuclear energy systems, the models of heterogeneous world with an allowance for specific national development are under investigation [ru

  12. Advanced Safeguards Technology Road-map for the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Miller, M.C.; Tobin, S.; Smith, L.E.; Ehinger, M.; Dougan, A.; Cipiti, B.; Bakel, A.; Bean, R.

    2008-01-01

    Strengthening the nonproliferation regime, including advanced safeguards, is a cornerstone of the Global Nuclear Energy Partnership (GNEP). To meet these challenges, the Safeguards Campaign was formed, whose mission is to provide research and technology development for the foundation of next generation safeguards systems for implementation in U.S. GNEP facilities. The Safeguards Campaign works closely with the Nuclear Nonproliferation and International Security department (NA-24) of NNSA (National Nuclear Safety Administration) to ensure that technology developed for domestic safeguards applications are optimum with respect to international safeguards use. A major milestone of the program this year has been the development of the advanced safeguards technology road-map. This paper will broadly describe the road-map, which provides a path to next generation safeguards systems including advanced instrumentation; process monitoring; data integration, protection, and analysis; and system level evaluation and knowledge extraction for real time applications. (authors)

  13. Energy globalization

    International Nuclear Information System (INIS)

    Tierno Andres

    1997-01-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum

  14. Outlook for Global Nuclear Power: Energy, Electricity and Nuclear Power Estimates for the Period up to 2050

    International Nuclear Information System (INIS)

    Gritsevskyi, A.

    2016-01-01

    Nuclear power's global expansion is projected to continue in the coming decades - albeit at a slowing pace - amid challenges including low fossil fuel prices, a sluggish world economy and the legacy of Japan's Fukushima Daiichi accident. Each year, the IAEA publishes projections of the world's nuclear power generating capacity in Energy, Electricity and Nuclear Power Estimates for the Period up to 2050, now in its 35th edition.The latest projections point to slower growth in nuclear power, in keeping with the trend since the 2011 Fukushima Daiichi accident. The world's nuclear power generating capacity is projected to expand by 2.4 percent by 2030, according to the low projections, compared with 7.7 percent estimated in 2014. In the high case, generating capacity is estimated to grow by 68 percent by 2030, versus 88 percent forecast last year. Uncertainty related to energy policy, license renewals, shutdowns and future constructions accounts for the wide range.The estimates also factor in the likely future retirement of many of the world's 438 nuclear reactors currently in operation, more than half of which are over 30 years old. Despite the need to replace scores of retiring reactors, nuclear power is still set to maintain - and possibly increase - its role in the world's low-carbon energy mix. It's important to understand that these projections, while carefully derived, are not predictions.The estimates should be viewed as very general growth trends, whose validity must be constantly subjected to critical review.(author).

  15. Nuclear power and the global challenges of energy security, 6 September 2007, London, England, World Nuclear Association Annual Symposium

    International Nuclear Information System (INIS)

    ElBaradei, M.

    2007-01-01

    In the Atoms for Peace speech given by US President Eisenhower in 1953 - the speech that paved the way for the creation of the IAEA - he declared that a special purpose of Atoms for Peace would be 'to provide abundant electrical energy in the power-starved areas of the world'. That vision has yet to be realized. And it should not be taken to mean that nuclear power is the solution for all countries, or for all developing countries. But I would reiterate what I said at the outset - that the global challenges of security and development are interlinked, and that addressing the energy security needs of all countries will be a key to progress on both fronts. It is incumbent upon us to see to it that nuclear power will fulfil its potential in addressing these challenges

  16. Nuclear fusion as new energy option in a global single-regional energy system model

    International Nuclear Information System (INIS)

    Eherer, C.; Baumann, M.; Dueweke, J.; Hamacher, T.

    2005-01-01

    Is there a window of opportunity for fusion on the electricity market under 'business as usual' conditions, and if not, how do the boundary conditions have to look like to open such a window? This question is addressed within a subtask of the Socio-Economic Research on Fusion (SERF) programme of the European Commission. The most advanced energy-modelling framework, the TIMES model generator developed by the Energy Technology System Analysis Project group of the IEA (ETSAP) has been used to implement a global single-regional partial equilibrium energy model. Within the current activities the potential role of fusion power in various future energy scenarios is studied. The final energy demand projections of the baseline of the investigations are based on IIASA-WEC Scenario B. Under the quite conservative baseline assumptions fusion only enters the model solution with 35 GW in 2100 and it can be observed that coal technologies dominate electricity production in 2100. Scenario variations show that the role of fusion power is strongly affected by the availability of GEN IV fission breeding technologies as energy option and by CO 2 emission caps. The former appear to be a major competitor of fusion power while the latter open a window of opportunity for fusion power on the electricity market. An interesting outcome is furthermore that the possible share of fusion electricity is more sensitive to the potential of primary resources like coal, gas and uranium, than to the share of solar and wind power in the system. This indicates that both kinds of technologies, renewables and fusion power, can coexist in future energy systems in case of CO 2 emission policies and/or resource scarcity scenarios. It is shown that Endogenous Technological Learning (ETL), a more consistent description of technological progress than mere time series, has an impact on the model results. (author)

  17. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-05-15

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  18. International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). 2011 Progress Report. Enhancing Global Nuclear Energy Sustainability

    International Nuclear Information System (INIS)

    2012-05-01

    When INPRO was established in 2000, some key characteristics and main objectives for the project were determined and remain basically unchanged to this day: to help ensure that nuclear energy is available to contribute to satisfying energy needs in the 21st century in a sustainable manner and to bring together technology holders, technology users and other stakeholders to consider jointly the national and international actions required to achieve desired innovations in nuclear reactors and fuel cycles. I wish to use the occasion of this INPRO Progress Report to review some of the key highlights of the past year and share with you my views and vision of INPRO's future. The ''Great East Japan Earthquake and Tsunami'' and the resulting accident at TEPCO's Fukushima Daiichi nuclear power plant occurred on 11 March 2011. In response to this accident and at the request of its Member States, the IAEA drafted an Action Plan which defines a programme of work o strengthen the global nuclear safety framework. The activities proposed in the Action Plan are meant to be implemented in the near term, to assess the safety of operating nuclear power plants n the light of lessons learned from the Fukushima Daiichi accident. The assessment covers both technical elements, specifically the design of nuclear power plants with regard to site specific extreme natural hazards, and institutional elements, such as the effectiveness of regulatory bodies, operating organizations and the international legal framework in regard to the implementation of IAEA Safety tandards and Conventions. The lessons learned in the medium and long terms will also be reflected n a periodic update of the design requirements for nuclear power plants, international safety tandards, regulations issued by national supervisory authorities, operational procedures, emergency planning and safety assessment methodologies. INPRO has a long term perspective and provides an assessment of the whole nuclear system. Ensuring

  19. Globalization of nuclear activities and global governance

    International Nuclear Information System (INIS)

    Sefidvash, Farhang

    1997-01-01

    The safe production of nuclear energy as well as the disarmament of nuclear weapons and the peaceful utilization of nuclear materials resulting from dismantling of such weapons are some of the formidable problems of global governance. The Commission on Global Governance was established in 1992 in the belief that international developments had created a unique opportunity for strengthening global co-operation to meet the challenge of securing peace, achieving sustainable development, and universalizing democracy. Here a summary of their proposals on the globalization of nuclear activities to face challenges of the coming century is given. To follow up their activities by the worlds community in general. The research Centre for Global Governance (RCGG) at the Federal University of Rio Grande do Sul was established. Already a great number of researchers from many different countries have adhered to the Centre. Here the program of the RCGG is described. (author)

  20. Globalization of nuclear activities and global governance

    Energy Technology Data Exchange (ETDEWEB)

    Sefidvash, Farhang [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Dept. de Engenharia Nuclear

    1997-07-01

    The safe production of nuclear energy as well as the disarmament of nuclear weapons and the peaceful utilization of nuclear materials resulting from dismantling of such weapons are some of the formidable problems of global governance. The Commission on Global Governance was established in 1992 in the belief that international developments had created a unique opportunity for strengthening global co-operation to meet the challenge of securing peace, achieving sustainable development, and universalizing democracy. Here a summary of their proposals on the globalization of nuclear activities to face challenges of the coming century is given. To follow up their activities by the worlds community in general. The research Centre for Global Governance (RCGG) at the Federal University of Rio Grande do Sul was established. Already a great number of researchers from many different countries have adhered to the Centre. Here the program of the RCGG is described. (author)

  1. Nuclear energy

    International Nuclear Information System (INIS)

    Wethe, Per Ivar

    2009-01-01

    Today we know two forms of nuclear energy: fission and fusion. Fission is the decomposition of heavy nuclei, while fusion is the melting together of light nuclei. Both processes create a large surplus of energy. Technologically, we can currently only use fission to produce energy in today's nuclear power plants, but there is intense research worldwide in order to realize a controlled fusion process. In a practical context, today's nuclear energy is a sustained source of energy since the resource base is virtually unlimited. When fusion technology is realized, the resource supply will be a marginal problem. (AG)

  2. Energy choices and risk beliefs: is it just global warming and fear of a nuclear power plant accident?

    Science.gov (United States)

    Greenberg, Michael; Truelove, Heather Barnes

    2011-05-01

    A survey of 3,200 U.S. residents focused on two issues associated with the use of nuclear and coal fuels to produce electrical energy. The first was the association between risk beliefs and preferences for coal and nuclear energy. As expected, concern about nuclear power plant accidents led to decreased support for nuclear power, and those who believed that coal causes global warming preferred less coal use. Yet other risk beliefs about the coal and nuclear energy fuel cycles were stronger or equal correlates of public preferences. The second issue is the existence of what we call acknowledged risk takers, respondents who favored increased reliance on nuclear energy, although also noting that there could be a serious nuclear plant accident, and those who favored greater coal use, despite acknowledging a link to global warming. The pro-nuclear group disproportionately was affluent educated white males, and the pro-coal group was relatively poor less educated African-American and Latino females. Yet both shared four similarities: older age, trust in management, belief that the energy facilities help the local economy, and individualistic personal values. These findings show that there is no single public with regard to energy preferences and risk beliefs. Rather, there are multiple populations with different viewpoints that surely would benefit by hearing a clear and comprehensive national energy life cycle policy from the national government. © 2010 Society for Risk Analysis.

  3. The self-consistent energy system with an enhanced non-proliferated core concept for global nuclear energy utilization

    International Nuclear Information System (INIS)

    Kawashima, Masatoshi; Arie, Kazuo; Araki, Yoshio; Sato, Mitsuyoshi; Mori, Kenji; Nakayama, Yoshiyuki; Nakazono, Ryuichi; Kuroda, Yuji; Ishiguma, Kazuo; Fujii-e, Yoichi

    2008-01-01

    A sustainable nuclear energy system was developed based on the concept of Self-Consistent Nuclear Energy System (SCNES). Our study that trans-uranium (TRU) metallic fuel fast reactor cycle coupled with recycling of five long-lived fission products (LLFP) as well as actinides is the most promising system for the sustainable nuclear utilization. Efficient utilization of uranium-238 through the SCNES concept opens the doors to prolong the lifetime of nuclear energy systems towards several tens of thousand years. Recent evolution of the concept revealed compatibility of fuel sustainability, minor actinide (MA) minimization and non-proliferation aspects for peaceful use of nuclear energy systems through the discussion. As for those TRU compositions stabilized under fast neutron spectra, plutonium isotope fractions are remained in the range of reactor grade classification with high fraction of Pu240 isotope. Recent evolution of the SCNES concept has revealed that TRU recycling can cope with enhancing non-proliferation efforts in peaceful use with the 'no-blanket and multi-zoning core' concept. Therefore, the realization of SCNES is most important. In addition, along the process to the goals, a three-step approach is proposed to solve concurrent problems raised in the LWR systems. We discussed possible roles and contribution to the near future demand along worldwide expansion of LWR capacities by applying the 1st generation SCNES. MA fractions in TRU are more than 10% from LWR discharged fuels and even higher up to 20% in fuels from long interim storages. TRU recycling in the 1st generation SCNES system can reduce the MA fractions down to 4-5% in a few decades. This capability significantly releases 'MA' pressures in down-stream of LWR systems. Current efforts for enhancing capabilities for energy generation by LWR systems are efficient against the global warming crisis. In parallel to those movements, early realization of the SCNES concept can be the most viable decision

  4. Electric energy: global perspective, the brazilian desires and the nuclear generation role

    International Nuclear Information System (INIS)

    Barroso, Antonio Carlos de Oliveira; Dieguez, Jose Antonio Diaz; Imakuma, Kengo

    2003-01-01

    An evaluation of nuclear power perspectives considering the concepts of sustainable development and energy needs for developed and under development countries was made. It is clear that the role of nuclear energy - as an economical, safe and emissions-free source of electric energy - will depend on the solution of some fundamental questions. Expanding capacity of nuclear energy should focus primarily on the need for innovation in nuclear fuel cycles and nuclear power plants. In connection with these evaluations a foresight study on the nuclear area was conducted in Brazil with a small group of experts in order to find out the requirements for the future reactors. This paper describes the purpose, methodology, results and conclusions of this prospective exercise. A comparison is also made with the preliminary results obtained by GIF and INPRO international initiatives whose main objective is to identify the mos promising technologies for future generations of nuclear reactors. (author)

  5. Global warming and nuclear power

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1999-01-01

    The problems of pollution, global warming and renewable energy sources are not going to go away. Governments need to act with urgency if they are to produce a long-term energy policy. This paper looks at the current energy situation, and how this would project into the future without the instigation of radical changes. It concludes that nuclear is the best option available for averting a growing energy, pollution and global warming crisis. (author)

  6. Network computing infrastructure to share tools and data in global nuclear energy partnership

    International Nuclear Information System (INIS)

    Kim, Guehee; Suzuki, Yoshio; Teshima, Naoya

    2010-01-01

    CCSE/JAEA (Center for Computational Science and e-Systems/Japan Atomic Energy Agency) integrated a prototype system of a network computing infrastructure for sharing tools and data to support the U.S. and Japan collaboration in GNEP (Global Nuclear Energy Partnership). We focused on three technical issues to apply our information process infrastructure, which are accessibility, security, and usability. In designing the prototype system, we integrated and improved both network and Web technologies. For the accessibility issue, we adopted SSL-VPN (Security Socket Layer - Virtual Private Network) technology for the access beyond firewalls. For the security issue, we developed an authentication gateway based on the PKI (Public Key Infrastructure) authentication mechanism to strengthen the security. Also, we set fine access control policy to shared tools and data and used shared key based encryption method to protect tools and data against leakage to third parties. For the usability issue, we chose Web browsers as user interface and developed Web application to provide functions to support sharing tools and data. By using WebDAV (Web-based Distributed Authoring and Versioning) function, users can manipulate shared tools and data through the Windows-like folder environment. We implemented the prototype system in Grid infrastructure for atomic energy research: AEGIS (Atomic Energy Grid Infrastructure) developed by CCSE/JAEA. The prototype system was applied for the trial use in the first period of GNEP. (author)

  7. How much can nuclear energy do about global warming? (To be published in 'International Journal for Global Energy Issues')

    International Nuclear Information System (INIS)

    Berger, Andre; Blees, Tom; Breon, Francois-Marie; Prevot, Henri; Richet, Sebastien; Schneeberger, Michael; Brook, Barry W.; Hansen, Philippe; Grover, Ravi; Guet, Claude; Liu, Weiping; Livet, Frederic; Nifenecker, Herve; Petit, Michel; Pierre, Gerard; Safa, Henri; Salvatores, Massimo; Zhou, Suyan

    2016-01-01

    The reference framework MESSAGE devised by the 'International Institute for Applied Systems Analysis (IIASA), Austria' is one of the two frameworks reported by the Intergovernmental Panel on Climate Change (IPCC) as potentially able to limit the global surface temperature increase to 2 degrees Celsius (RCPi 2.6). To achieve this, it proposes the use of massive deployment of carbon dioxide capture and storage (CCS), dealing with tens of billion tons of CO 2 . However, present knowledge of this process rests on a few experiments at the annual million tons level, with global storage capacity not yet established as being adequate. The use of CCS is limited to 24 billion tons/y, based on the assumption of either a large-scale development of nuclear energy between 2060 and 2100 or else a severe contraction of energy supply. It includes three potential scenarios: 'Supply' with a high energy consumption, 'Efficiency' which implies the end of nuclear energy, paid for by a decrease in energy consumption of 45% with respect to the 'Supply scenario', and the intermediary 'MIX' scenario. All three scenarios propose a high contribution of solar energy and biomass. In the 'Supply' scenario 7000 GWe nuclear power start operation between 2060 and 2100. Since technical requisites for nuclear energy exist today (which is the case neither for massive CCS nor for extensive use of intermittent renewable electricity production), here we propose, as a variant of the MESSAGE framework, to initiate a sustained deployment of nuclear production in 2020, rather than 2060, reaching a total nuclear power around 20,000 GWe by the year 2100. We study in detail how such a deployment is physically possible with the generalization of breeder reactors. It appears that such a large-scale deployment needs significant improvement in the throughput of reprocessing or a switch from a PWR dominated nuclear fleet to a fleet equilibrated between PWR

  8. Nuclear energy

    International Nuclear Information System (INIS)

    Hesketh, Ross.

    1985-01-01

    The subject is treated under the headings: nuclear energy -what is it; fusion (principles; practice); fission (principles); reactor types and systems (fast (neutron) reactors as breeders; fast reactors; thermal reactors; graphite-moderated thermal reactors; the CANDU reactor; light water reactors - the BWR and the PWR); the nuclear fuel cycle (waste storage; fuel element manufacture; enrichment processes; uranium mining); safety and risk assessment; the nuclear power industry and the economy (regulating authorities; economics; advantages and disadvantages). (U.K.)

  9. Nuclear energy

    International Nuclear Information System (INIS)

    1996-01-01

    Several issues concerning nuclear energy in France during 1996 are presented: permission of a demand for installing underground laboratories in three sites (Marcoule, Bure and Chapelle-Baton); a report assessing the capacity of Superphenix plant to operate as a research tool; the project of merging between Framatome and Gec-Alsthom companies; the revision of a general report on nuclear energy in France; the issue of military plutonium management

  10. Global nuclear waste repository proposal highlights Australia`s nuclear energy vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-06-01

    The Pangea proposal is disscused and considered relevant to Australia. A five-year research program by the company has identified Australia and Argentina as having the appropriate geological, economic and democratic credentials for such a deep repository, with Australia being favoured. A deep repository would be located where the geology has been stable for several hundred million years, so that there need not be total reliance on a robust engineered barrier system to keep the waste securely isolated for thousands of years. It would be a commercial undertaking and would have dedicated port and rail infrastructure. It would take spent fuel and other wastes from commercial reactors, and possibly also waste from weapons disposal programs. Clearly, while the primary ethical and legal principle is that each country is entirely responsible for its own waste, including nuclear waste (polluter pays etc), the big question is whether the concept of an international waste repository is acceptable ethically. Political and economic questions are secondary to this. By taking a fresh look at the reasons for the difficulties which have faced most national repository programs, and discarding the preconception that each country must develop its own disposal facilities, it is possible to define a class of simple, superior high isolation sites which may provide a multi-national basis for solving the nuclear waste disposal problem. The relatively small volumes of high-level wastes or spent fuel which arise from nuclear power production make shared repositories a feasible proposition. For small countries, the economies of scale which can be achieved make the concept attractive. For all countries, objective consideration of the relative merits of national and multi-national solutions is a prudent part of planning the management of long-lived radioactive wastes

  11. Nuclear energy

    International Nuclear Information System (INIS)

    Hladky, S.

    1985-01-01

    This booklet appeared in a series on technical history. It tries to communicate some of the scientific, technical and social stresses, which have been connected with the application of nuclear energy since its discovery. The individual sections are concerned with the following subjects: the search for the 'smallest particles'; the atomic nucleus; nuclear fission; the 'Manhattan Project'; the time after this - from the euphoria of the 1950's via disillusionment and change of opinion to the state of nuclear energy at the start of the 1980's. The booklet contains many details and is generously illustrated. (HSCH) [de

  12. Nuclear energy

    International Nuclear Information System (INIS)

    Rippon, S.

    1984-01-01

    Do we need nuclear energy. Is it safe. What are the risks. Will it lead to proliferation. The questions are endless, the answers often confused. In the vigorous debates that surround the siting and operation of nuclear power plants, it is all too easy to lose sight of the central issues amid the mass of arguments and counter-arguments put forward. And there remains the doubt, who do we believe. This book presents the facts, simply, straightforwardly, and comprehensibly. It describes the different types of nuclear reactor, how they work, how energy is produced and transformed into usable power, how nuclear waste is handled, what safeguards are built in to prevent accident, contamination and misuse. More important, it does this in the context of the real world, examining the benefits as well as the dangers of a nuclear power programme, quantifying the risks, and providing an authoritative account of the nuclear industry worldwide. Technically complex and politically controversial, the contribution of nuclear energy to our future energy requirements is a crucial topic of our time. (author)

  13. Nuclear energy

    International Nuclear Information System (INIS)

    Seidel, J.

    1990-01-01

    This set of questions is based on an inquiry from the years 1987 to 1989. About 250 people af all age groups - primarily, however, young people between 16 and 25 years of age - were asked to state the questions they considered particularly important on the subject of nuclear energy. The survey was carried out without handicaps according to the brain-storming principle. Although the results cannot claim to be representative, they certainly reflect the areas of interest of many citizens and also their expectations, hopes and fears in connection with nuclear energy. The greater part of the questions were aimed at three topic areas: The security of nuclear power-stations, the effects of radioactivity on people and the problem of waste disposal. The book centres around these sets of questions. The introduction gives a general survey of the significance of nuclear energy as a whole. After this follow questions to do with the function of nuclear power stations, for the problems of security and waste disposal - which are dealt with in the following chapters - are easier to explain and to understand if a few physical and technical basics are understood. In the final section of the book there are questions on the so-called rejection debate and on the possibility of replacing nuclear energy with other energy forms. (orig./HP) [de

  14. Nuclear energy

    International Nuclear Information System (INIS)

    Panait, A.

    1994-01-01

    This is a general report presenting the section VII entitled Nuclear Power of the National Conference on Energy (CNE '94) held in Neptun, Romania, on 13-16 June 1994. The problems addressed were those relating to electric power produced by nuclear power plant, to heat secondary generation, to quality assurance, to safety, etc. A special attention was paid to the commissioning of the first Romanian nuclear power unit, the Cernavoda-1 reactor of CANDU type. The communications were grouped in four subsections. These were: 1. Quality assurance, nuclear safety, and environmental protection; 2. Nuclear power plant, commissioning, and operation; 3. Nuclear power plant inspection, maintenance, and repairs, heavy water technology; 4. Public opinion education. There were 22 reports, altogether

  15. The advanced fuel cycle facility (AFCF) role in the global nuclear energy partnership

    International Nuclear Information System (INIS)

    Griffith, Andrew

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP), launched in February, 2006, proposes to introduce used nuclear fuel recycling in the United States with improved proliferation-resistance and a more effective waste management approach. This program is evaluating ways to close the fuel cycle in a manner that builds on recent laboratory breakthroughs in U.S. national laboratories and draws on international and industry partnerships. Central to moving this advanced fuel recycling technology from the laboratory to commercial implementation is a flexible research, development and demonstration facility, called the Advanced Fuel Cycle Facility (AFCF). The AFCF was introduced as one of three projects under GNEP and will provide the U.S. with the capabilities to evaluate technologies that separate used fuel into reusable material and waste in a proliferation-resistant manner. The separations technology demonstration capability is coupled with a remote transmutation fuel fabrication demonstration capability in an integrated manner that demonstrates advanced safeguard technologies. This paper will discuss the key features of AFCF and its support of the GNEP objectives. (author)

  16. Nuclear energy

    International Nuclear Information System (INIS)

    Reuss, Paul

    2012-01-01

    With simple and accessible explanations, this book presents the physical principles, the history and industrial developments of nuclear energy. More than 25 years after the Chernobyl accidents and few months only after the Fukushima one, it discusses the pros and cons of this energy source with its assets and its risks. (J.S.)

  17. The global nuclear energy partnership and the spent fuel take-back provision

    International Nuclear Information System (INIS)

    Bresee, James C.

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP) was announced by Secretary of Energy Samuel Bodman in February 2006 (1). Its purpose is to expand the use of nuclear energy throughout the world under conditions which would help reduce the threat of nuclear weapons proliferation. Its success would be based on agreements among certain nations that are signatories to the Non- Proliferation Treaty and have extensive current fuel cycle capabilities. The agreements would be for such fuel cycle nations to provide other non-fuel cycle nations with power reactors sized to match their energy needs and power distribution characteristics, fresh nuclear reactor fuel (perhaps under a leasing arrangement), and waste management services, provided that the non-fuel cycle countries agree to refrain from obtaining fuel cycle capabilities. The waste management services would include taking back the non-fuel cycle spent nuclear fuel for processing within the fuel cycle country followed by fast spectrum power reactor consumption of the spent fuel's contained transuranic elements (TRU, including neptunium, plutonium, americium and curium). All agreements between fuel cycle countries and non-fuel cycle countries would be under the auspices of the International Atomic Energy Agency (IAEA) and may involve three-party contracts involving the fuel-cycle state, the non-fuel cycle state and the IARA (2). To be a full participant in such a world-wide program, the United States will need to add to its current uranium enrichment and reactor construction capabilities two no-longer available capabilities: a facility or facilities for reprocessing of spent power reactor fuel and fast spectrum reactors to fission the spent fuel's transuranic contents. In addition, an Advanced Fuel Cycle Facility at a national laboratory will be needed to provide research and development support for the closed fuel cycles of the future. Ironically, both the processing of irradiated nuclear fuel and the operation of fast

  18. Nuclear energy

    International Nuclear Information System (INIS)

    Luxo, Armand.

    1977-01-01

    The reasons and conditions of utilizing nuclear power in developing countries are examined jointly with the present status and future uses already evaluated by some organizations. Some consequences are deduced in the human, financial scientific and technological fields, with provisional suggestions for preparing the nuclear industry development in these countries. As a conclusion trends are given to show how the industrialized countries having gained a long scientific and technological experience in nuclear energy can afford their assistance in this field, to developing countries [fr

  19. Energy: nuclear energy

    International Nuclear Information System (INIS)

    Lung, M.

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  20. EDF decommissioning programme: A global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Grenouillet, J.-J.

    2002-01-01

    Nowadays, decommissioning of nuclear power plants has become a key issue for the nuclear industry in Europe. The phasing out of nuclear energy in Germany, Belgium and Sweden, as well as the early closure of nuclear units in applicant countries in the frame of EU enlargement, has largely contributed to consider decommissioning as the next challenge to face. The situation is slightly different in France: Nuclear energy is still considered as a safe, cost-effective and environment friendly energy source and EDF is still working on the development of a new generation of reactors to replace the existing ones. Nevertheless, to achieve this objective, it will be necessary to get the support of political decision-makers and the acceptance of public opinion. (author)

  1. EDF decommissioning programme: A global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Chatry, Jean-Paul

    2002-01-01

    Nowadays, decommissioning of nuclear power plants has become a key issue for nuclear industry in Europe. The phasing out of nuclear energy in Germany, Belgium and Sweden, as well as the early closure of nuclear units in applicant countries in the frame of EU enlargement, has largely contributed to consider decommissioning as the next challenge to face. The situation is slightly different in France: nuclear energy is still considered as a safe, cost-effective and environment friendly energy source and EDF is still working on the development of a new generation of reactor to replace the existing one. Nevertheless, to achieve this objective, it will be necessary to get the support of political decision-makers and the acceptance of public opinion. The increasing mobilisation of EDF for the decommissioning of its already shutdown NPPs shows its willingness to demonstrate its capacity to control the nuclear life cycle from end to end. The successful implementation of its decommissioning programme will not mean the end of nuclear energy as an efficient way to generate electricity but it will constitute a prerequisite for the erection of new nuclear power plants in France

  2. Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership

    International Nuclear Information System (INIS)

    Ingersoll, Daniel T.

    2007-01-01

    The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scale Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are 'right sized' for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral

  3. NO global warming = YES nuclear energy. The International Nuclear Forum and the United Nations Framework Convention on Climate Change

    International Nuclear Information System (INIS)

    Cornish, Emma

    2000-01-01

    The nuclear industry sits along side the renewable energy sector in its role as a non carbon emitting technology. But persuading international political leaders of this fact presents a challenge. Generating electricity from nuclear fuel avoids at least 2 billion tonnes of carbon dioxide every year through its 16% share of world wide electricity generation. Nuclear energy is essential to minimising greenhouse gas emissions. This presentation highlights the main issues resulting from the climate change negotiations that are highly relevant to the industry; explains the activities of the International Nuclear Forum and our interaction with the delegates to the process; outlines future activities. The International Nuclear Forum (INF) was formed to provide a collective voice lobbying for nuclear at the climate change negotiations. It's internationally representative of the industry and comprises of: the Uranium Institute; the Nuclear Energy Institute; the Japan Atomic Industry Forum; the Canadian Nuclear Association; the European Nuclear Society, and Foratom. All are accredited non governmental observers to the negotiations of the United Nations Framework Convention on Climate Change

  4. Globally sustainable and stable nuclear energy resources for the next millennium

    Energy Technology Data Exchange (ETDEWEB)

    Duffey, Romney B.

    2010-09-15

    We address the issues of future resource unsustainability, energy demand uncertainty and supply unpredictability. Inexorably growing global energy demand increases the costs of energy sources, and raises concerns about security of energy supply and environmental emissions of carbon dioxide and other greenhouse gases (GHGs). Taking the viewpoint of developing a sustainable global fuel cycle, we propose alternate paths outside the present rather traditional thinking. Nevertheless, they still represent existing and known technology opportunities that may run counter to many current national positions, and today's commercial and technical interests, while still presenting very large opportunities.

  5. The development of global energy supply as a succession of energy-related innovation processes. A qualitative model approach to assess the use of nuclear power

    International Nuclear Information System (INIS)

    Herrmann, Dieter

    2017-01-01

    Often, the development of the world energy supply is adopted as a painful sequence of the exhaustible and polluting use of primary energy sources. Therefore the expectations in practically inexhaustible and environmentally neutral renewable energy sources are high. However, in fact, it depends on the available production, conversion, and utilization technology, which sources of energy are suitable to meet given demands and requirements. In particular, the development of the energy demand requires energy technology innovations to use new energy sources, to use known energy sources more efficient and to replace exhaustible energy sources at an early stage by others. The historical development of the global energy supply is a sequence of interrelated energy technology innovation processes. This makes it also possible, to analyse the historical development of nuclear power and to derive a model on the future role of nuclear power worldwide.

  6. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options

    International Nuclear Information System (INIS)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J.; Parma, Edward J.Jr; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-01-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents

  7. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  8. Axiology of nuclear energy

    International Nuclear Information System (INIS)

    Sawada, Tetsuo

    2003-01-01

    Nuclear energy was born in World War II and it has grown within the regime of Cold War. When the Cold War came to the end around early 1990 s, we who have benefited by the development of nuclear energy must have been challenged with a new tide of civilization change. Although it has not been so much closely questioned since then, such a new movement, that was submerging, abruptly manifested on September 11, 2001. Then, many of us realized that global circumstances, especially concerned with security, must have actually changed with the reordering of the world basic structures. This paper describes on the thoughts to reveal the cause and background of the event on September 11 with the linkage to nuclear energy development, or nuclear civilization in pursuit of the future regime of nuclear in harmonization with the global society in 21st century. (author)

  9. Clean energy : nuclear energy world

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-10-15

    This book explains the nuclear engineering to kids with easy way. There are explanations of birth of nuclear energy such as discover of nuclear and application of modern technology of nuclear energy, principles and structure of nuclear power plant, fuel, nuclear waste management, use of radiation for medical treatment, food supplies, industry, utilization of neutron. It indicates the future of nuclear energy as integral nuclear energy and nuclear fusion energy.

  10. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    2 1/2 years ago a consultation group was formed to help the Section for Social Questions of the Council of Churches in the Netherlands, to answer questions in the area of nuclear energy. During this time the character of the questions has changed considerably. In the beginning people spoke of fear and anxiety over the plans for the application of this new technical development but later this fear and anxiety turned to protest and opposition. This brochure has been produced to enlighten people and try and answer their alarm, by exploring the many facets of the problems. Some of these problems are already being deeply discussed by the public, others play no role in the forming of public opinion. The points of view of the churches over nuclear energy are not expressed, the brochure endeavours to express that nuclear energy problems are a concern for the churches. Technical and economic information and the most important social questions are discussed. (C.F.)

  11. Major Findings of the IAEA/INPRO Collaborative Project on Global Architectures of Innovative Nuclear Energy Systems with Thermal and Fast Reactors and a Closed Nuclear Fuel Cycle

    International Nuclear Information System (INIS)

    Kuznetsov, V.; Fesenko, G.; Kriachko, M.; Dixon, B.; Hayashi, H.; Usanov, V.

    2013-01-01

    GAINS objectives: Rationale: • Increasing interest in MSs in joint modelling of global and regional trends in nuclear power taking into account technical innovations and multilateral cooperation; • Modelling of the kind requires agreed methodological platform to analyse transition strategies from the present to future nuclear energy system (NES). Overall objectives: Address technical & institutional issues of developing a global architecture for the sustainable NES in the 21st century: • develop a framework (common methodological platform, databases, assumptions & boundary conditions); • perform sample studies; • indicate potential areas for application of GAINS framework

  12. Global nuclear safety culture

    International Nuclear Information System (INIS)

    1997-01-01

    As stated in the Nuclear Safety Review 1996, three components characterize the global nuclear safety culture infrastructure: (i) legally binding international agreements; (ii) non-binding common safety standards; and (iii) the application of safety standards. The IAEA has continued to foster the global nuclear safety culture by supporting intergovernmental collaborative efforts; it has facilitated extensive information exchange, promoted the drafting of international legal agreements and the development of common safety standards, and provided for the application of safety standards by organizing a wide variety of expert services

  13. Nuclear Energy General Objectives

    International Nuclear Information System (INIS)

    2011-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way it achieves this objective is to issue publications in various series. Two of these series are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III, paragraph A.6, of the IAEA Statute, the IAEA safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are primarily written in a regulatory style, and are binding on the IAEA for its own activities. The principal users are Member State regulatory bodies and other national authorities. The IAEA Nuclear Energy Series consists of reports designed to encourage and assist research on, and development and practical application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia and politicians, among others. The information is presented in guides, reports on the status of technology and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The series complements the IAEA's safety standards, and provides detailed guidance, experience, good practices and examples on the five areas covered in the IAEA Nuclear Energy Series. The Nuclear Energy Basic Principles is the highest level publication in the IAEA Nuclear Energy Series and describes the rationale and vision for the peaceful uses of nuclear energy. It presents eight Basic Principles on which nuclear energy systems should be based to fulfil nuclear energy's potential to help meet growing global energy needs. The Nuclear Energy Series Objectives are the second level publications. They describe what needs to be

  14. Energy and global environment

    International Nuclear Information System (INIS)

    Fyfe, W.S.; Powell, M.A.

    1991-01-01

    At present about 90% of the world's energy consumption is met by the fossil carbon fuel used in the form of coal, oil and natural gas. This results into release of vast amounts of waste gas CO 2 into the atmosphere posing a threat to the global environment. Moreover this energy source is not sustainable (renewable) and its use amounts to spending Earth's capital resources. The options to this energy source are biomass energy, hydro power, solar energy, geothermal energy and nuclear energy. The potentials, limitations, geological impact and environmental dangers, if any, of these sources are discussed in brief. Energy conservation through energy efficient systems is also one more option. Problems and potential for change to sustainable energy systems with respect to India and Canada are examined. Finally it is pointed out that the ultimate solution to the world's energy problem lies in population control and population reduction. This will make possible for the world to have a sustainable energy system primarily based on solar energy. (M.G.B.). 15 refs

  15. Status, progress and plans for the U.S. Department of Energy, National Nuclear Security Administration, Global Threat Reduction Initiative

    International Nuclear Information System (INIS)

    Bieniawski, Andrew

    2005-01-01

    This presentation discusses the efforts under the US Department of Energy/National Nuclear Security Administration's Global Threat Reduction Initiative, also known as GTRI. On May 26, 2004, then Secretary of Energy Abraham established GTRI. GTRI is a cooperative program to provide international support for countries' national programs to identify, secure, recover or facilitate the disposition of vulnerable nuclear and radiological materials around the world that pose a potential threat to the international community. The formation of GTRI consolidated a number of nonproliferation programs you may be familiar with that work together to minimize and, to the extent possible, eliminate the use of highly enriched uranium (HEU) in civil nuclear applications worldwide. In particular, the Office of Global Threat Reduction, which was set up to implement GTRI, has oversight of the Reduced Enrichment for Research and Test Reactors program, the Foreign Research Reactor Spent Nuclear Fuel Acceptance program, and the Russian Research Reactor Fuel Return program. This consolidation allows these three programs to work in concert to bring about the elimination of research reactor materials as a source of proliferation concern. This speech is highlighting the work that these programs have undertaken in cooperation with the global research reactor community and the importance placed on fuel development under the RERTR program It contains an update on the work done to support the US - Russian Presidential Bratislava Summit Statement

  16. Nuclear energy and security

    International Nuclear Information System (INIS)

    Blejwas, Thomas E.; Sanders, Thomas L.; Eagan, Robert J.; Baker, Arnold B.

    2000-01-01

    Nuclear power is an important and, the authors believe, essential component of a secure nuclear future. Although nuclear fuel cycles create materials that have some potential for use in nuclear weapons, with appropriate fuel cycles, nuclear power could reduce rather than increase real proliferation risk worldwide. Future fuel cycles could be designed to avoid plutonium production, generate minimal amounts of plutonium in proliferation-resistant amounts or configurations, and/or transparently and efficiently consume plutonium already created. Furthermore, a strong and viable US nuclear infrastructure, of which nuclear power is a large element, is essential if the US is to maintain a leadership or even participatory role in defining the global nuclear infrastructure and controlling the proliferation of nuclear weapons. By focusing on new fuel cycles and new reactor technologies, it is possible to advantageously burn and reduce nuclear materials that could be used for nuclear weapons rather than increase and/or dispose of these materials. Thus, the authors suggest that planners for a secure nuclear future use technology to design an ideal future. In this future, nuclear power creates large amounts of virtually atmospherically clean energy while significantly lowering the threat of proliferation through the thoughtful use, physical security, and agreed-upon transparency of nuclear materials. The authors must develop options for policy makers that bring them as close as practical to this ideal. Just as Atoms for Peace became the ideal for the first nuclear century, they see a potential nuclear future that contributes significantly to power for peace and prosperity

  17. Development of a model to optimize global use of nuclear energy considering competition of seawater uranium and reprocessing

    International Nuclear Information System (INIS)

    Undarmaa, Baatarkhuu; Horio, Kenta; Fujii, Yasumasa; Komiyama, Ryoichi

    2017-01-01

    In order to sustain long-term energy security and to mitigate the climate change, nuclear power remains an important baseload option for the global power generation mix. To utilize nuclear power in long-term, some important concerns such as economics, stability of fuel supply and spent fuel amount should be evaluated. Model developed in this study optimizes the global use nuclear power considering such issues. The Model is based on linear programming and calculates the best mix of nuclear reactor types by minimizing the current value of total power generation cost within the target period (next 100 years). Possibility of fuel cycle options such as reprocessing, seawater uranium and thorium utilization are also taken in to account, along with remaining spent fuel and plutonium stock. As result. reprocessing and uranium from seawater become essential part of nuclear fuel cycle in the long run. Amount of stored spent fuel is reduced following the deployment of Fast Breeder Reactor. Also, as an extension of current model, a baseload power generation mix model, which estimates the optimal mix of nuclear and coal-fired power generation will be introduced. (author)

  18. Environmentalists for nuclear energy

    International Nuclear Information System (INIS)

    Comby, B.

    2001-01-01

    Fossil fuels such as coal oil, and gas, massively pollute the Earth atmosphere (CO, CO 2 , SOX, NOX...), provoking acid rains and changing the global climate by increasing the greenhouse effect, while nuclear energy does not participate in these pollutions and presents well-founded environmental benefits. Renewable energies (solar, wind) not being able to deliver the amount of energy required by populations in developing and developed countries, nuclear energy is in fact the only clean and safe energy available to protect the planet during the 21 century. The first half of the book, titled The Atomic Paradox, describes in layman language the risks of nuclear power, its environmental impact, quality and safety standards, waste management, why a power reactor is not a bomb, energy alternatives, nuclear weapons, and other major global and environmental problems. In each case the major conclusions are framed for greater emphasis. Although examples are taken from the French nuclear power program, the conclusions are equally valid elsewhere. The second half of the book is titled Information on Nuclear Energy and the Environment and briefly provides a historical survey, an explanation of the different types of radiation, radioactivity, dose effects of radiation, Chernobyl, medical uses of radiation, accident precautions, as well as a glossary of terms and abbreviations and a bibliography. (author)

  19. Global nuclear-structure calculations

    International Nuclear Information System (INIS)

    Moeller, P.; Nix, J.R.

    1990-01-01

    The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε 2 and ε 4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential

  20. Global nuclear cleanout initiative 2004

    International Nuclear Information System (INIS)

    Edlow, J.; Gruber, G.

    2004-01-01

    Full text: During more than 50 years of Atoms for Peace programmes nuclear materials were spread out worldwide. Stranded nuclear materials from nuclear research are left over without any safe back-end solution. 'Dirty Bombs' or so-called 'Radioactive Dispersal Devices (RDD)' are no longer science fiction since the world experienced the 9/11 attack. Governmental, NGO's and private industry organizations having discussed Global Nuclear Cleanout since then and start to take actions. The US Department of Energy (DOE) has announced to establish a dedicated organization in cooperation with IAEA and start the 'Global Threat Reduction Initiative (GTRI)'. The US government will allocate to that program USD 450 M over the next 10 years. Besides the historical development the paper will focus on the progress of the different initiatives and perspectives to threat reduction. (author)

  1. I wonder nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Cheol

    2009-04-15

    This book consists seven chapters, which are powerful nuclear energy, principle of nuclear fission, nuclear energy in our daily life, is nuclear energy safe?, what is radiation?, radiation spread in pur daily life and radiation like a spy. It adds nuclear energy story through quiz. This book with pictures is for kids to explain nuclear energy easily.

  2. Global energy demand outlook

    International Nuclear Information System (INIS)

    Hatcher, S.R.

    1999-01-01

    Perhaps the most compelling issue the world will face in the next century is the quality of life of the increasing populations of the poorer regions of the world. Energy is the key to generating wealth and protecting the environment. Today, most of the energy generated comes from fossil fuels and there should be enough for an increase in consumption over the next half century. However, this is likely to be impacted by the Kyoto Protocol on carbon dioxide emissions. Various authoritative studies lead to a global energy demand projection of between 850 to 1070 EJ per year in the mid-21 st century, which is nearly three times as much as the world uses today. The studies further indicate that, unless there is a major thrust by governments to create incentives and/or to levy heavy taxes, the use of fossil fuels will continue to increase and there will be a major increase in carbon dioxide emissions globally. Most of the increase will come from the newly industrializing countries which do not have the technology or financial resources to install non-carbon energy sources such as nuclear power, and the new renewable energy technologies. The real issue for the nuclear industry is investment cost. Developing countries, in particular will have difficulty in raising capital for energy projects with a high installed cost and will have difficulties in raising large blocks of capital. A reduction in investment costs of the order of 50% with a short construction schedule is in order if nuclear power is to compete and contribute significantly to energy supply and the reduction of carbon dioxide emissions. Current nuclear power plants and methods are simply not suited to the production of plants that will compete in this situation. Mass production designs are needed to get the benefits of cost reduction. Water cooled reactors are well demonstrated and positioned to achieve the cost reduction necessary but only via some radical thinking on the part of the designers. The reactors of

  3. Approximate albedo boundary conditions for energy multigroup X,Y-geometry discrete ordinates nuclear global calculations

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Davi J.M.; Nunes, Carlos E.A.; Alves Filho, Hermes; Barros, Ricardo C., E-mail: davijmsilva@yahoo.com.br, E-mail: ceanunes@yahoo.com.br, E-mail: rcbarros@pq.cnpq.br [Secretaria Municipal de Educacao de Itaborai, RJ (Brazil); Universidade Estacio de Sa (UNESA), Rio de Janeiro, RJ (Brazil); Universidade do Estado do Rio de Janeiro (UERJ), Novra Friburgo, RJ (Brazil). Instituto Politecnico. Departamento de Modelagem Computacional

    2017-11-01

    Discussed here is the accuracy of approximate albedo boundary conditions for energy multigroup discrete ordinates (S{sub N}) eigenvalue problems in two-dimensional rectangular geometry for criticality calculations in neutron fission reacting systems, such as nuclear reactors. The multigroup (S{sub N}) albedo matrix substitutes approximately the non-multiplying media around the core, e.g., baffle and reflector, as we neglect the transverse leakage terms within these non-multiplying regions. Numerical results to a typical model problem are given to illustrate the accuracy versus the computer running time. (author)

  4. Potential applications for nuclear energy besides electricity generation: A global perspective

    International Nuclear Information System (INIS)

    Gauthier, Jean Claude; Ballot, Bernard; Lebrun, Jean Philippe; Lecomte, Michel; Hittner, Dominique; Carre, Frank

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will be developed. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat sources free of Greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  5. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    International Nuclear Information System (INIS)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-01-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  6. Nuclear energy

    International Nuclear Information System (INIS)

    2007-01-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  7. Nuclear energy supports sustainable development

    International Nuclear Information System (INIS)

    Koprda, V.

    2005-01-01

    The article is aimed at acceptability, compatibility and sustainability of nuclear energy as non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy , radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously abjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  8. Nuclear energy in Korea

    International Nuclear Information System (INIS)

    Ahn, J.-H.

    2000-01-01

    The total electricity generated in 1998 was 215,300 GWh with 43,261 MWe of total installed capacity of electric power, while in 1978 when the first Nuclear Power Plant began operation it was 31,510 GWh with 6,916 MWe installed capacity. The share of nuclear power generation in 1998 increased up to 41.7%. Currently, 16 units of nuclear power are operating with an additional four units under construction. Nuclear power has contributed to enhancing energy security and supplying stable energy for Korea. The government's strong commitment to the nuclear power program together with a long-term national policy resulted in favorable conditions for KEPCO to manage the program and promote increasing levels of national participation in successive nuclear power projects. The role of nuclear power as a sustainable energy resource can not be emphasized enough with respect to global environmental issues. Increasing the share of nuclear power in the total installed capacity for electricity generation will undoubtedly play a very important role. (author)

  9. Nuclear stockpiles globalization

    International Nuclear Information System (INIS)

    Jouffray, Fabien

    2016-01-01

    For technological reasons, but more importantly political ones, the spread of nuclear weapons is foreseen as inevitable especially with the multiplication of so-called 'threshold states'. On the one hand, technological barriers will gradually disappear with globalization and information sharing in our societies. Furthermore, becoming a threshold power appears today as key to get freedom of action, a tool of counter-deterrence or blackmail according to the camp you belong to, like in the Iranian and north Korean cases. For proliferant countries, it will now consist in an enforcement of an embryonic, even though rather deterrent or even threatening, nuclear program thanks to new technologies, reducing completion times and even allowing to skip the final nuclear test

  10. Hydrogen energy based on nuclear energy

    International Nuclear Information System (INIS)

    2002-06-01

    A concept to produce hydrogen of an energy carrier using nuclear energy was proposed since 1970s, and a number of process based on thermochemical method has been investigated after petroleum shock. As this method is used high temperature based on nuclear reactors, these researches are mainly carried out as a part of application of high temperature reactors, which has been carried out at an aim of the high temperature reactor application in the Japan Atomic Energy Research Institute. On October, 2000, the 'First International Conference for Information Exchange on Hydrogen Production based on Nuclear Energy' was held by auspice of OECD/NEA, where hydrogen energy at energy view in the 21st Century, technology on hydrogen production using nuclear energy, and so on, were published. This commentary was summarized surveys and researches on hydrogen production using nuclear energy carried out by the Nuclear Hydrogen Research Group established on January, 2001 for one year. They contains, views on energy and hydrogen/nuclear energy, hydrogen production using nuclear energy and already finished researches, methods of hydrogen production using nuclear energy and their present conditions, concepts on production plants of nuclear hydrogen, resources on nuclear hydrogen production and effect on global environment, requests from market and acceptability of society, and its future process. (G.K.)

  11. Nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    This brochure is intended as a contribution to a better and more general understanding of one of the most urgent problems of present society. Emphasis is laid on three issues that are always raised in the nuclear debate: 1) Fuel cycle, 2) environmental effects of nuclear power plants, 3) waste disposal problems. (GL) [de

  12. Nuclear energy: potentiality and implications

    International Nuclear Information System (INIS)

    Bahgat, Gawdat

    2008-01-01

    After a discussion about a broad definition of energy security and about the main challenges facing a potential nuclear renaissance, the article analyses how the European Union and the United States have addressed these challenges. There is no doubt that nuclear power will remain an important component of global energy mix, but it should not be seen as a panacea to the flows in the global energy markets [it

  13. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    Seo, Du Hwan

    1987-01-01

    This book gives descriptions of explanations of terminologies concerning to nuclear energy such as analysis of financial safety of nuclear energy, radwaste disposal, fast breeder reactor, nuclear reactor and device, nuclear fuel and technique for concentration, using of nuclear energy radiation and measurement, plan for development of nuclear energy and international institution. This book includes 160 terms on nuclear energy and arranges in Korean alphabetical order.

  14. Global view of energy

    International Nuclear Information System (INIS)

    Kursunoglu, B.N.; Millunzi, A.C.; Perlmutter, A.

    1982-01-01

    This book contains selected papers presented at the fourth interdisciplinary international forum on the Geopolitics of Energy. Topics included: energy demand; energy modeling; urgency of world energy problems; nuclear fission; progress in nuclear fusion; financing energy investments; conservation of energy in developed countries; public safety - risks and benefits; and atmospheric carbon dioxide. A separate abstract was prepared for each of the 25 papers for inclusion in the Energy Data Base; all will appear in Energy Abstracts for Policy Analysis and five in Energy Research Abstracts (ERA)

  15. Energy the security of supply in question. Combating global warming: what role for nuclear power. Warning issued by the International Energy Agency

    Energy Technology Data Exchange (ETDEWEB)

    Montbrial, T. de [Areva, Paris (France); Moore, P. [Greenspirit Strategies Ltd, Vancouver (Canada); Cambell, N. [Greenpeace (Canada)

    2007-07-01

    This issue of Alternatives newsletter put the question of energy supplies security. The unequal distribution of the world's energy resources raises the problem of energy independence and the security of supply. This question is particularly pertinent for Europe which, along with the Far East, possesses only a meager share of the planet's store of fossil fuels. Europe must learn how to live with its energy dependency, knowing that independence is an unrealistic objective in a world built on the interdependence of trade. The world's energy system is vulnerable to disruptions in supply and to geopolitical tensions. Given this context of instability, how can the security of supply and energy independence be increased? The challenge for western countries with few fossil fuel resources is to secure reliable supply while reducing energy dependency. One solution consists in diversifying power generation sources to lower dependency on oil and gas. The nuclear question is analyzed through the different point of views of Greenpeace and Greenspirit Strategies. Greenpeace refuses even the slightest involvement of nuclear power and considers that energy efficiency and renewable technologies are the only solution to both global warming and energy questions. On the other hand, Greenspirit Strategies sees nuclear power, combined with increased efforts to develop renewable energies, playing an essential role in the sustainable production of electricity. A last article devoted to the World Energy Outlook 2006 - the report published by the International Energy Agency - presents the hypotheses advanced by the Agency regarding future energy supply and its recommendations for counteracting a scenario for 2030 that is, to say the least, very alarming.

  16. Energy the security of supply in question. Combating global warming: what role for nuclear power. Warning issued by the International Energy Agency

    International Nuclear Information System (INIS)

    Montbrial, T. de; Moore, P.; Cambell, N.

    2007-01-01

    This issue of Alternatives newsletter put the question of energy supplies security. The unequal distribution of the world's energy resources raises the problem of energy independence and the security of supply. This question is particularly pertinent for Europe which, along with the Far East, possesses only a meager share of the planet's store of fossil fuels. Europe must learn how to live with its energy dependency, knowing that independence is an unrealistic objective in a world built on the interdependence of trade. The world's energy system is vulnerable to disruptions in supply and to geopolitical tensions. Given this context of instability, how can the security of supply and energy independence be increased? The challenge for western countries with few fossil fuel resources is to secure reliable supply while reducing energy dependency. One solution consists in diversifying power generation sources to lower dependency on oil and gas. The nuclear question is analyzed through the different point of views of Greenpeace and Greenspirit Strategies. Greenpeace refuses even the slightest involvement of nuclear power and considers that energy efficiency and renewable technologies are the only solution to both global warming and energy questions. On the other hand, Greenspirit Strategies sees nuclear power, combined with increased efforts to develop renewable energies, playing an essential role in the sustainable production of electricity. A last article devoted to the World Energy Outlook 2006 - the report published by the International Energy Agency - presents the hypotheses advanced by the Agency regarding future energy supply and its recommendations for counteracting a scenario for 2030 that is, to say the least, very alarming

  17. Nuclear energy and renewable energies

    International Nuclear Information System (INIS)

    1994-01-01

    The nuclear energy and the renewable energies namely: solar energy, wind energy, geothermal energy and biomass are complementary. They are not polluting and they are expected to develop in the future to replace the fossil fuels

  18. Nuclear energy

    International Nuclear Information System (INIS)

    Lotter, A.C.

    1979-01-01

    The recent, terrifying threat of a major calamity at Pennsylvania's Three Mile Island power plant near Harrisburg reverberated across practically the whole of the civilised world. An almost incredible sequence of human and mechanical failures at this installation had stopped just short of disaster and had brought the unthinkable perilously close to happening. The accident had sprayed radioactive waste into the air and had led to the large scale evacuation of people from the endangered area, disrupted hundreds of thousands of lives and caused a crippling setback to the nuclear industry. In this article the author discusses the impact the Harrisburg incident has had on the nuclear industry

  19. Recent Activities on Global Nuclear Safety Regime

    International Nuclear Information System (INIS)

    Cho, Kun-Woo; Park, Jeong-Seop; Kim, Do-Hyoung

    2006-01-01

    Recently, rapid progress on the globalization of the nuclear safety issues is being made in IAEA (International Atomic Energy Agency) and its member states. With the globalization, the need for international cooperation among international bodies and member states continues to grow for resolving these universal nuclear safety issues. Furthermore, the importance of strengthening the global nuclear safety regime is emphasized through various means, such as efforts in application of IAEA safety standards to all nuclear installations in the world and in strengthening the code of conduct and the convention on nuclear safety. In this regards, it is important for us to keep up with the activities related with the global nuclear safety regime as an IAEA member state and a leading country in nuclear safety regulation

  20. Nuclear Energy

    International Nuclear Information System (INIS)

    1982-11-01

    A brief indication is given of the United Kingdom nuclear power programme including descriptions of the fission process, the Magnox, AGR and PWR type reactors, the recycling process, waste management and decommissioning, safety precautions, the prototype fast reactor at Dounreay, and the JET fusion experiment. (U.K.)

  1. Nuclear energy and energy security

    International Nuclear Information System (INIS)

    Mamasakhlisi, J.

    2010-01-01

    Do Georgia needs nuclear energy? Nuclear energy is high technology and application of such technology needs definite level of industry, science and society development. Nuclear energy is not only source of electricity production - application of nuclear energy increases year-by-year for medical, science and industrial use. As an energy source Georgia has priority to extend hydro-power capacity by reasonable use of all available water resources. In parallel regime the application of energy efficiency and energy conservation measures should be considered but currently this is not prioritized by Government. Meanwhile this should be taken into consideration that attempts to reduce energy consumption by increasing energy efficiency would simply raise demand for energy in the economy as a whole. The Nuclear energy application needs routine calculation and investigation. For this reason Government Commission is already established. But it seems in advance that regional nuclear power plant for South-Caucasus region would be much more attractive for future

  2. Producing in France: nuclear energy in the service of buying power and of the fight against global warming

    International Nuclear Information System (INIS)

    2011-01-01

    While maintaining a strong industry in France is agreed by the vast majority, it appears irresponsible to advocate the phasing-out of nuclear energy in the French territory. Nuclear energy is undoubtedly France's best competitive advantage. The Concorde foundation recommends to avoid any change in France's energy mix which would have a significant impact on French citizens' standard of living

  3. Nuclear energy. Selective bibliography

    International Nuclear Information System (INIS)

    2011-07-01

    This bibliography gathers articles and books from the French National Library about civil nuclear energy, its related risks, and its perspectives of evolution: general overview (figures, legal framework, actors and markets, policies); what price for nuclear energy (environmental and health risks, financing, non-proliferation policy); future of nuclear energy in energy policies (nuclear energy versus other energies, nuclear phase-out); web sites selection

  4. The Global Energy Challenge

    DEFF Research Database (Denmark)

    Connolly, David

    2011-01-01

    This report gives a brief overview of the global energy challenge and subsequently outlines how and where renewable energy could be developed to solve these issues. The report does not go into a lot of detail on these issues and hence, it is meant as an overview only. The report begins by outlining...... the causes of global climate change, concluding that energy-related emissions are the primary contributors to the problem. As a result, global energy production is analysed in more detail, discussing how it has evolved over the last 30 years and also, how it is expected to evolve in the coming 30 years....... Afterwards, the security of the world’s energy supply is investigated and it becomes clear that there is both an inevitable shortage of fossil fuels and a dangerous separation of supply and demand. The final topic discussed is renewable energy, since it is one sustainable solution to the global energy...

  5. Nuclear energy, environmental protection and international conflicts

    International Nuclear Information System (INIS)

    Menke-Glueckert, P.

    1975-01-01

    Some general and some critical remarks on: nuclear energy as an image for politics; nuclear energy as a model for research planning; nuclear controversy; the principle of precaution in nuclear and radiation protection law; reactor safety on probation; advantages and economy of nuclear energy; communication difficulties; the special role of nuclear energy; the need for European site planning; supervision of fissionable materials; the world's energy household in danger; global structure politics and nuclear energy; nuclear energy with a capacity for social innovations. (HP/LN) [de

  6. Nuclear energy

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    The Administrative Court of Braunschweig judges the Ordinance on Advance Funding of Repositories (EndlagervorausleistungsVO) to be void. The Hannover Regional Court passes a basic judgment concerning the Gorleben salt mine (repository) and an action for damages. The Federal Administrative Court dismisses actions against part-permits for the Hanau fuel element fabrication plant. The Koblenz Higher Administrative Court dismisses actions against a part-permit for the Muelheim-Kaerlich reactor. 31st Amendment of the German Criminal Code passed, involving amendments in environmental criminal code, defined in the 2nd amendment to the Act on Unlowful Practices Causing Damage to the Environment (UKG); here: Amendments to the law relating to the criminal code and penal provisions governing unlawful conduct in the operation of nuclear installations. (orig.) [de

  7. Nuclear energy and nuclear weapons

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1983-06-01

    We all want to prevent the use of nuclear weapons. The issue before us is how best to achieve this objective; more specifically, whether the peaceful applications of nuclear energy help or hinder, and to what extent. Many of us in the nuclear industry are working on these applications from a conviction that without peaceful nuclear energy the risk of nuclear war would be appreciably greater. Others, however, hold the opposite view. In discussing the subject, a necessary step in allaying fears is understanding some facts, and indeed facing up to some unpalatable facts. When the facts are assessed, and a balance struck, the conclusion is that peaceful nuclear energy is much more part of the solution to preventing nuclear war than it is part of the problem

  8. Nuclear energy data

    International Nuclear Information System (INIS)

    1990-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of basic statistics on electricity generation and nuclear power in OECD countries. The reader will find quick and easy reference to the present status of and projected trends in total electricity generating capacity, nuclear generating capacity, and actual electricity production as well as on supply and demand for nuclear fuel cycle services [fr

  9. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L., LLNL

    1998-07-10

    Nuclear fission power reactors represent a potential solution to many aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth`s atmosphere. Of proven technological feasibility, they presently produce high-grade heat for large-scale electricity generation, space heating and industrial process-energizing around the world, without emitting greenhouse gases or atmospheric particulates; importantly, electricity production costs from the best nuclear plants presently are closely comparable with those of the best fossil-fired plants. However, a substantial number of issues currently stand between nuclear power and widespread substitution for large stationary fossil fuel-fired systems. These include perceptual ones regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps most seriously- readily quantifiable concerns regarding long-term fuel supply and total unit electrical energy cost. We sketch a road-map for proceeding from the present situation toward a nuclear power-intensive world, addressing along the way each of the concerns which presently impede widespread nuclear substitution for fossil fuels, particularly for coal in the most populous and rapidly developing portions of the world, e.g., China and India. This `design to societal specifications` approach to large-scale nuclear fission power systems may lead to energy sources meeting essentially all stationary demands for high-temperature heat. Such advanced options offer a human population of ten billion the electricity supply levels currently enjoyed by Americans for 10,000 years. Nuclear power systems tailored to local needs-and-interests and having a common advanced technology base could reduce present-day world-wide C0{sub 2} emissions by two-fold, if universally employed. By application to small mobile demands, a second two

  10. Global risks from energy consumption

    International Nuclear Information System (INIS)

    von Hippel, F.

    1983-01-01

    A discussion of some of the global risks associated with current and frequently proposed future levels of consumption of energy from oil, coal, fission, fusion, and renewable sources points out the the dangers are serious and relatively near term. These include world war over Persian Gulf oil, climate change due to the buildup of atmospheric carbon dioxide, the accelerated proliferation of nuclear weapons, and competition between food and energy for land and water. The author urges placing a greater emphasis on how we use energy and how to reduce energy waste. At the levels of consumption which economically justified levels of energy efficiency could bring about, enough flexibility could develop in our choice of a future energy-supply mix to dramatically reduce the associated global risks. 47 references, 3 figures

  11. Nuclear energy data 2010

    CERN Document Server

    2010-01-01

    This 2010 edition of Nuclear Energy Data , the OECD Nuclear Energy Agency's annual compilation of official statistics and country reports on nuclear energy, provides key information on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035 in OECD member countries. This comprehensive overview provides authoritative information for policy makers, experts and other interested stakeholders.

  12. Review of nuclear energy

    International Nuclear Information System (INIS)

    Mattila, L.; Anttila, M.; Pirilae, P.; Vuori, S.

    1997-05-01

    The report is an overview on the production of the nuclear energy all over the world. The amount of production at present and in future, availability of the nuclear fuel, development of nuclear technology, environmental and safety issues, radioactive waste management and commissioning of the plants and also the competitivity of nuclear energy compared with other energy forms are considered. (91 refs.)

  13. Global nuclear material control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.A.

    1996-01-01

    The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of a disposition program for special nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool that treats the nuclear fuel cycle as a complete system. Such a tool must represent the fundamental data, information, and capabilities of the fuel cycle including an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, and a framework supportive of national or international perspective. They have developed a prototype global nuclear material management and control systems analysis capability, the Global Nuclear Material Control (GNMC) model. The GNMC model establishes the framework for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material

  14. Simulation analysis of the possibility of introducing massive renewable energy and nuclear fuel cycle in the scenario to halve global CO2 emissions by the year 2050

    International Nuclear Information System (INIS)

    Hosoya, Yoshifumi; Komiyama, Ryoichi; Fujii, Yasumasa

    2011-01-01

    There is growing attention to the regulation of greenhouse gas (GHG) emissions to mitigate the global warming. Hence, the target of 50% reduction of global GHG emissions by the year 2050 has been investigated in this paper. The authors have been revising the regionally disaggregated world energy model which is formulated as a large scale linear optimization model from the aspect of nuclear and photovoltaic power generation technologies. This paper explains the structure of the revised world energy model considering the intermittent characteristics of photovoltaic power generation derived from the changes in weather conditions. And also this paper shows the simulation results to halve global CO 2 emissions by the year 2050 and evaluates the long-term technological options such as nuclear fuel cycle and renewable energies. Finally the authors discuss the future step for extensive revision of the energy model. (author)

  15. Nuclear energy data

    International Nuclear Information System (INIS)

    2002-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (authors)

  16. Nuclear energy data

    International Nuclear Information System (INIS)

    2003-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional textual and graphical information as compared with previous editions. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  17. Albedo boundary conditions for global calculations of thermal nuclear reactors with the model of discrete ordinates to two energy groups

    International Nuclear Information System (INIS)

    Nunes, Carlos Eduardo de Araujo

    2011-01-01

    As neutron fission events do not take place in the non-multiplying regions of nuclear reactors, e.g., moderator, reflector, and structural core, these regions do not generate power and the computational efficiency of nuclear reactor global calculations can hence be improved by eliminating the explicit numerical calculations within the non-multiplying regions around the active domain. Discussed here is the computational efficiency of approximate discrete ordinates (SN) albedo boundary conditions for two-energy group eigenvalue problems in X, Y geometry. Albedo, the Latin word for w hiteness , was originally defined as the fraction of incident light reflected diffusely by a surface. This Latin word has remained the usual scientific term in astronomy and in this dissertation this concept is extended for the reflection of neutrons. The non-standard SN albedo substitutes approximately the reflector region around the active domain, as we neglect the transverse leakage terms within the non-multiplying reflector. Should the problem have no transverse leakage terms, i.e., one dimensional slab geometry, then the offered albedo boundary conditions are exact. By computational efficiency we mean analyzing the accuracy of the numerical results versus the CPU execution time of each run for a given model problem. Numerical results to two 1/4 symmetric test problems are shown to illustrate this efficiency analysis. (author)

  18. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2007-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. One proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of bio-fuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. A large part of this paper follows chapters of the monograph 'L'energie de demain: technique, environnement, economie', EDP Sciences, 2005. (author)

  19. Nuclear energy and the nuclear energy industry

    International Nuclear Information System (INIS)

    Bromova, E.; Vargoncik, D.; Sovadina, M.

    2013-01-01

    A popular interactive multimedia publication on nuclear energy in Slovak. 'Nuclear energy and energy' is a modern electronic publication that through engaging interpretation, combined with a number of interactive elements, explains the basic principles and facts of the peaceful uses of nuclear energy. Operation of nuclear power plants, an important part of the energy resources of developed countries, is frequently discussed topic in different social groups. Especially important is truthful knowledgeability of the general public about the benefits of technical solutions, but also on the risks and safety measures throughout the nuclear industry. According to an online survey 'Nuclear energy and energy' is the most comprehensive electronic multimedia publication worldwide, dedicated to the popularization of nuclear energy. With easy to understand texts, interactive and rich collection of accessories stock it belongs to modern educational and informational titles of the present time. The basic explanatory text of the publication is accompanied by history and the present time of all Slovak nuclear installations, including stock photos. For readers are presented the various attractions legible for the interpretation, which help them in a visual way to make a more complete picture of the concerned issue. Each chapter ends with a test pad where the readers can test their knowledge. Whole explanatory text (72 multimedia pages, 81,000 words) is accompanied by a lot of stock of graphic materials. The publication also includes 336 photos in 60 thematic photo galleries, 45 stock charts and drawings, diagrams and interactive 31 videos and 3D models.

  20. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2008-01-01

    The booklet provides and up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear or energy sector in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. In the booklet nuclear energy is described as part of the Finnish electricity market

  1. Nuclear energy in Japan

    International Nuclear Information System (INIS)

    Guillemard, B.

    1978-01-01

    After having described the nuclear partners in Japan, the author analyzes the main aspects of Japan's nuclear energy: nuclear power plants construction program; developping of light water reactors; fuel cycle politics [fr

  2. Nuclear energy data 2011

    CERN Document Server

    2011-01-01

     . Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of statistics and country reports on nuclear energy, contains official information provided by OECD member country governments on plans for new nuclear plant construction, nuclear fuel cycle developments as well as current and projected nuclear generating capacity to 2035. For the first time, it includes data for Chile, Estonia, Israel and Slovenia, which recently became OECD members. Key elements of this edition show a 2% increase in nuclear and total electricity production and a 0.5% increase in nuclear generating ca

  3. The contribution of nuclear energy co-operation to a new global age, OECD Headquarters, Paris, 30 September 1998

    International Nuclear Information System (INIS)

    ElBaradei, M.

    1998-01-01

    The document reproduces the text of the conference given by the Director General of the IAEA at the Special Session to mark the Fortieth Anniversary of the OECD Nuclear Energy Agency (NEA), held at the OECD Headquarters in Paris, on 30 September 1998. The conference emphasizes the role of the IAEA in enlarging the contribution of nuclear energy for peace and development, and ensuring that atomic energy is used at a high level of security and exclusively for peaceful purposes. The Agency was never intended to 'promote' nuclear energy in any commercial sense. Its role is to be an objective institution that serves as a centre for international norm development, standard setting, independent analysis, expert advice, technology transfer, and impartial oversight and verification. From this perspective, the Director General offers some views on why the international nuclear co-operation, complemented by regional and national activities, is an indispensable part of way forward, highlighting the following areas: energy, safety, verification, and technology transfer

  4. Non-nuclear energies

    International Nuclear Information System (INIS)

    Nifenecker, Herve

    2006-01-01

    The different meanings of the word 'energy', as understood by economists, are reviewed and explained. Present rates of consumption of fossil and nuclear fuels are given as well as corresponding reserves and resources. The time left before exhaustion of these reserves is calculated for different energy consumption scenarios. On finds that coal and nuclear only allow to reach the end of this century. Without specific dispositions, the predicted massive use of coal is not compatible with any admissible value of global heating. Thus, we discuss the clean coal techniques, including carbon dioxide capture and storage. On proceeds with the discussion of availability and feasibility of renewable energies, with special attention to electricity production. One distinguishes controllable renewable energies from those which are intermittent. Among the first we find hydroelectricity, biomass, and geothermal and among the second, wind and solar. At world level, hydroelectricity will, most probably, remain the main renewable contributor to electricity production. Photovoltaic is extremely promising for providing villages remote deprived from access to a centralized network. Biomass should be an important source of biofuels. Geothermal energy should be an interesting source of low temperature heat. Development of wind energy will be inhibited by the lack of cheap and massive electricity storage; its contribution should not exceed 10% of electricity production. Its present development is totally dependent upon massive public support. (author)

  5. EDF decommissioning programme a global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Grenouillet, J.-J.

    2002-01-01

    EDF has 9 NPPs permanently shutdown and under decommissioning. EDF considers that if the nuclear option is to remain open, it is necessary to deal with increasing public concerns for environmental and waste management issues. Therefore EDF has decided to achieve total dismantling of all shutdown reactor in the next 25 years. The Decommissioning Program has been developed including 2 stages of activities. The first stage consists of: 1) Final dismantling of Brennilis in 2015; 2) A dismantling demonstration of a PWR reactor building (Chooz A) before starting replacing the population of PWRs currently in operation; 3) Final dismantling of reactor containment of a GCR (Bugey 1) as a first of its kind. The second stage includes: 1)Dismantling of following 5 GCR (Saint Laurent A1 and A2, Chinon A1, A2 and A3); 2) Final dismantling of Chooz A and Bugey 1 in 2025. The successful implementation relies on the simplification of the regulatory process; availability of treatment, conditioning and disposal facilities and effective nuclear industry. The main issue is availability of time and waste solutions such as opening of a Very Low Waste disposal in 2003 (130 000 tons); opening of a new disposal for graphite and radiferous wastes (17 000 tons) in 2010 and opening in 2007-2008 of a centralized interim storage (BANEDA) facility for long-lived Medium Level Wastes (500 tons including filters, control rods etc)Three investigations are to be carried out for high level radioactive waste before 2006

  6. Nuclear energy data 2005

    CERN Document Server

    Publishing, OECD

    2005-01-01

    This 2005 edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers a projection horizon lengthened to 2025 for the first time.  It presents the reader with a comprehensive overview on the status and trends in nuclear electricity generation in OECD countries and in the various sectors of the nuclear fuel cycle.

  7. Nuclear energy basic knowledge

    International Nuclear Information System (INIS)

    Volkmer, Martin

    2013-11-01

    The following topics are dealt with: Atoms, nuclear decays and radioactivity, energy, nuclear fission and the chain reaction, controlled nuclear fission, nuclear power plants, safety installations in nuclear power plants, fuel supply and disposal, radiation measurement and radiation exposition of man. (HSI)

  8. Nuclear energy - some aspects

    International Nuclear Information System (INIS)

    Bandeira, Fausto de Paula Menezes

    2005-05-01

    This work presents a brief history of research and development concerning to nuclear technology worldwide and in Brazil, also information about radiations and radioactive elements as well; the nuclear technology applications; nuclear reactor types and functioning of thermonuclear power plants; the number of existing nuclear power plants; the nuclear hazards occurred; the national fiscalization of nuclear sector; the Brazilian legislation in effect and the propositions under proceduring at House of Representatives related to the nuclear energy

  9. Nuclear energy. Economical aspects

    International Nuclear Information System (INIS)

    Legee, F.

    2010-01-01

    This document present 43 slides of a power point presentation containing detailed data on economical and cost data for nuclear energy and nuclear power plants: evolution from 1971 to 2007 of world total primary energy supply, development of nuclear energy in the world, nuclear power plants in the world in 2009, service life of nuclear power plants and its extension; nuclear energy market and perspectives at 2030, the EPR concept (generation III) and its perspectives at 2030 in the world; cost assessment (power generation cost, nuclear power generation cost, costs due to nuclear safety, comparison of investment costs for gas, coal and nuclear power generation, costs for building a nuclear reactor and general cost; cost for the entire fuel cycle, the case of the closed cycle with recycling (MOX); costs for radioactive waste storage; financial costs and other costs such as environmental impacts, strategic stocks, comparative evaluation of the competitiveness of nuclear versus coal and gas

  10. Technology Roadmaps: Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    This nuclear energy roadmap has been prepared jointly by the IEA and the OECD Nuclear Energy Agency (NEA). Unlike most other low-carbon energy sources, nuclear energy is a mature technology that has been in use for more than 50 years. The latest designs for nuclear power plants build on this experience to offer enhanced safety and performance, and are ready for wider deployment over the next few years. Several countries are reactivating dormant nuclear programmes, while others are considering nuclear for the first time. China in particular is already embarking on a rapid nuclear expansion. In the longer term, there is great potential for new developments in nuclear energy technology to enhance nuclear's role in a sustainable energy future.

  11. Sustainable nuclear energy dilemma

    Directory of Open Access Journals (Sweden)

    Afgan Naim H.

    2013-01-01

    Full Text Available Sustainable energy development implies the need for the emerging potential energy sources which are not producing adverse effect to the environment. In this respect nuclear energy has gained the complimentary favor to be considered as the potential energy source without degradation of the environment. The sustainability evaluation of the nuclear energy systems has required the special attention to the criteria for the assessment of nuclear energy system before we can make firm justification of the sustainability of nuclear energy systems. In order to demonstrate the sustainability assessment of nuclear energy system this exercise has been devoted to the potential options of nuclear energy development, namely: short term option, medium term option, long term option and classical thermal system option. Criteria with following indicators are introduced in this analysis: nuclear indicator, economic indicator, environment indicator, social indicator... The Sustainability Index is used as the merit for the priority assessment among options under consideration.

  12. Nuclear energy: the European way

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    The dossier published in this issue deals with the present and future situation of nuclear energy in Europe. What could be the trends of the nuclear development in the Europe of tomorrows. That global question is answered by pointing out the different data related to the present state of european nuclear programmes. Such an overview is followed by a serie of articles dealing with definite items: the actions implemented by the European Communities Commission: the electricity market and EDF policy in the field of european electric grids; the trends of nuclear cycle industry and the perfecting of the future european nuclear reactor

  13. Electricity and nuclear energy

    International Nuclear Information System (INIS)

    Krafft, P.

    1987-01-01

    Consequences of getting out from nuclear energy are discussed. It is concluded that the Chernobyl accident is no reason to withdraw confidence from Swiss nuclear power plants. There are no sufficient economizing potential and other energies at disposal to substitute nuclear energy. Switching to coal, oil and gas would increase environmental damages. Economic and social cost of getting out would be too high

  14. Nuclear energy and energy outlook to October 2011

    International Nuclear Information System (INIS)

    Torre, A. de la; Mansilla, J. L.; Lopez Jimenez, J.

    2011-01-01

    This article shows a general overview about the nuclear in the world and in Spain. It is also presented a summary on the primary and electrical energy consumption and the nuclear part in the global and in the Spanish energy mix. Data on behaviour of nuclear power plants, emission saving, life extension, the planned and proposed new nuclear plants, etc., are also included. (Author)

  15. Nuclear energy data

    International Nuclear Information System (INIS)

    2004-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers additional graphical information as compared with previous editions allowing a rapid comparison between capacity and requirements in the various phases of the nuclear fuel cycle. It provides the reader with a comprehensive but easy-to-access overview on the status of and trends in the nuclear power and fuel cycle sector. This publication is an authoritative information source of interest to policy makers, experts and academics involved in the nuclear energy field. (author)

  16. International nuclear energy law - present and future

    International Nuclear Information System (INIS)

    Barrie, G.N.

    1988-01-01

    International nuclear energy law, as discussed in this article, is the law relating to the global, peaceful uses of nuclear science and technology. The position of nuclear law in the wide realm of law itself as well as the present status of nuclear legislation is assessed. This article also covers the development of international nuclear energy law, from the first nuclear law - the New Zealand Atomic Energy Act of 1945-, the present and the future. National and international organizations concerned with nuclear energy and their contribribution to nuclear law are reviewed

  17. The state of energy resources and role of nuclear energy

    International Nuclear Information System (INIS)

    Rosen, M.; )

    1999-01-01

    The present and future global energy demand has been assessed. The nuclear energy contribution in world energy balance has been discussed taking into account economical, social and environmental circumstances

  18. Nuclear energy dictionary

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-15

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  19. Nuclear energy dictionary

    International Nuclear Information System (INIS)

    1978-03-01

    This book is a dictionary for nuclear energy which lists the technical terms in alphabetical order. It adds four appendixes. The first appendix is about people involved with nuclear energy. The second one is a bibliography and the third one is a checklist of German, English and Korean. The last one has an index. This book gives explanations on technical terms of nuclear energy such as nuclear reaction and atomic disintegration.

  20. Nuclear energy in Spain

    International Nuclear Information System (INIS)

    Villota, C. de

    2007-01-01

    Carlos Villota. Director of Nuclear Energy of UNESA gave an overview of the Spanish nuclear industry, the utility companies and the relevant institutions. Companies of the nuclear industry include firms that produce heavy components or equipment (ENSA), manufacturers of nuclear fuel (ENUSA), engineering companies, the National Company for Radioactive Waste Management (ENRESA), and nuclear power plants (nine units at seven sites). Nuclear energy is a significant component of the energy mix in Spain: 11% of all energy produced in Spain is of nuclear origin, whilst the share of nuclear energy in the total electricity generation is approximately 23%. The five main players of the energy sector that provide for the vast majority of electricity production, distribution, and supply have formed the Spanish Electricity Industry Association (UNESA). The latter carries out co-ordination, representation, management and promotion tasks for its members, as well as the protection of their business and professional interests. In the nuclear field, UNESA through its Nuclear Energy Committee co-ordinates aspects related to nuclear safety and radiological protection, regulation, NPP operation and R and D. Regarding the institutional framework of the nuclear industry, ENSA, ENUSA and ENRESA are controlled by the national government through the Ministry of Economy and Finance and the Ministry of Science and Technology. All companies of the nuclear industry are licensed by the Ministry of Industry, Tourism and Trade (MITYC), while the regulatory body is the Nuclear Safety Council (CSN). It is noteworthy that CSN is independent of the government, as it reports directly to Parliament. (author)

  1. Energy: global prospects 1985-2000

    International Nuclear Information System (INIS)

    Wilson, C.L.

    1978-01-01

    The results from the evaluation of global energy resources up to year 2000, done by the Group of Energetic Strategy of Energy Studies are presented. The studies were concentrated in the fuel supply and demand for the next 25 years, such as: petroleum, natural gas, coal and nuclear energy. The national and international energy policy are studied. (E.G.) [pt

  2. Soft energy vs nuclear energy

    International Nuclear Information System (INIS)

    Ando, Yoshio

    1981-01-01

    During the early 1960s, a plentiful, inexpensive supply of petroleum enabled Japanese industry to progress rapidly; however, almost all of this petroleum was imported. Even after the first oil crisis of 1973, the recent annual energy consumption of Japan is calculated to be about 360 million tons in terms of petroleum, and actual petroleum forms 73% of total energy. It is necessary for Japan to reduce reliance on petroleum and to diversify energy resources. The use of other fossil fuels, such as coal, LNG and LPG, and hydraulic energy, is considered as an established alternative. In this presentation, the author deals with new energy, namely soft energy and nuclear energy, and discusses their characteristics and problems. The following kinds of energy are dealt with: a) Solar energy, b) Geothermal energy, c) Ocean energy (tidal, thermal, wave), d) Wind energy, e) Biomass energy, f) Hydrogen, g) Nuclear (thermal, fast, fusion). To solve the energy problem in future, assiduous efforts should be made to develop new energy systems. Among them, the most promising alternative energy is nuclear energy, and various kinds of thermal reactor systems have been developed for practical application. As a solution to the long-term future energy problem, research on and development of fast breeder reactors and fusion reactors are going on. (author)

  3. Nuclear power: tomorrow's energy source

    International Nuclear Information System (INIS)

    2002-01-01

    In France, 76% of electricity is produced by nuclear power. The industry's pricing levels are among the most competitive in Europe. Thanks to its 58 nuclear reactors France enjoys almost 50% energy autonomy thus ensuring a highly stable supply. Equally, as a non-producer of greenhouse gases, the nuclear sector can rightfully claim to have an environmentally friendly impact. Against a background to increasing global demand with predictions that fossil fuels will run out and global warming a central issue, it is important to use production methods which face up to problems of this nature. There is no question that nuclear energy has a vital role to play alongside other energy sources. (authors)

  4. Feeding the nuclear pipeline: Enabling a global nuclear future

    International Nuclear Information System (INIS)

    Walter, A.E.

    2004-01-01

    Nuclear energy, which exhibits a unique combination of environmental and sustainable attributes, appears strongly positioned to play a much larger and more pivotal role in the mix of future global energy supplies than it has played in the past. Unfortunately, enrolment patterns in nuclear engineering programmes have seriously eroded over the past decade - causing alarmingly low enrolment levels in many countries by the turn of the century and a sobering concern that the nuclear manpower pipeline cannot keep up with the emerging needs of the nuclear industry. On the positive side, enrolment patterns within the United States are now generally on the rise, at least at the undergraduate level. A few of the particularly successful efforts initiated by various sectors of the U.S. nuclear infrastructure to stimulate this rebound are shared in this paper with the hope that some of them might be beneficially employed in other global settings. (author)

  5. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    2011-01-01

    The purpose of the booklet is to provide an up-to-date overview of the use of nuclear energy in Finland as well as future plans regarding the nuclear energy sector. It is intended for people working in the nuclear energy or other energy sectors in other countries, as well as for those international audiences and decision-makers who would like to have extra information on this particular energy sector. Nuclear energy is described as part of the Finnish electricity market. (orig.)

  6. Nuclear energy significantly reduces carbon dioxide emissions

    International Nuclear Information System (INIS)

    Koprda, V.

    2006-01-01

    This article is devoted to nuclear energy, to its acceptability, compatibility and sustainability. Nuclear energy is non-dispensable part of energy sources with vast innovation potential. The safety of nuclear energy, radioactive waste deposition, and prevention of risk from misuse of nuclear material have to be very seriously adjudged and solved. Nuclear energy is one of the ways how to decrease the contamination of atmosphere with carbon dioxide and it solves partially also the problem of global increase of temperature and climate changes. Given are the main factors responsible for the renaissance of nuclear energy. (author)

  7. FLUIDIZED BED STEAM REFORMING MINERALIZATION FOR HIGH ORGANIC AND NITRATE WASTE STREAMS FOR THE GLOBAL NUCLEAR ENERGY PARTNERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C; Michael Williams, M

    2008-01-11

    Waste streams that may be generated by the Global Nuclear Energy Partnership (GNEP) Advanced Energy Initiative may contain significant quantities of organics (0-53 wt%) and/or nitrates (0-56 wt%). Decomposition of high nitrate streams requires reducing conditions, e.g. organic additives such as sugar or coal, to reduce the NO{sub x} in the off-gas to N{sub 2} to meet the Clean Air Act (CAA) standards during processing. Thus, organics will be present during waste form stabilization regardless of which GNEP processes are chosen, e.g. organics in the feed or organics for nitrate destruction. High organic containing wastes cannot be stabilized with the existing HLW Best Developed Available Technology (BDAT) which is HLW vitrification (HLVIT) unless the organics are removed by preprocessing. Alternative waste stabilization processes such as Fluidized Bed Steam Reforming (FBSR) operate at moderate temperatures (650-750 C) compared to vitrification (1150-1300 C). FBSR converts organics to CAA compliant gases, creates no secondary liquid waste streams, and creates a stable mineral waste form that is as durable as glass. For application to the high Cs-137 and Sr-90 containing GNEP waste streams a single phase mineralized Cs-mica phase was made by co-reacting illite clay and GNEP simulated waste. The Cs-mica accommodates up to 30% wt% Cs{sub 2}O and all the GNEP waste species, Ba, Sr, Rb including the Cs-137 transmutation to Ba-137. For reference, the cesium mineral pollucite (CsAlSi{sub 2}O{sub 6}), currently being studied for GNEP applications, can only be fabricated at {ge} 1000 C. Pollucite mineralization creates secondary aqueous waste streams and NO{sub x}. Pollucite is not tolerant of high concentrations of Ba, Sr or Rb and forces the divalent species into different mineral host phases. The pollucite can accommodate up to 33% wt% Cs{sub 2}O.

  8. Nuclear energy and environment

    International Nuclear Information System (INIS)

    Alves, R.N.

    1987-01-01

    A general view about the use of energy for brazilian development is presented. The international situation of the nuclear field and the pacific utilization of nuclear energy in Brazil are commented. The safety concepts used for reactor and nuclear facilities licensing, the environmental monitoring program and radiation protection program used in Brazil are described. (E.G.) [pt

  9. Nuclear energy data 2007

    International Nuclear Information System (INIS)

    2007-01-01

    This new edition of Nuclear Energy Data, the OECD Nuclear Energy Agency's annual compilation of essential statistics on nuclear energy in OECD countries, offers projections lengthened to 2030 for the first time and information on the development of new centrifuge enrichment capacity in member countries. The compilation gives readers a comprehensive and easy-to-access overview of the current situation and expected trends in various sectors of the nuclear fuel cycle, providing authoritative information to policy makers, experts and academics working in the nuclear energy field

  10. Studies of global warming and global energy

    International Nuclear Information System (INIS)

    Inaba, Atsushi

    1993-01-01

    Global warming caused by increase in atmospheric CO 2 concentration has been the focus of many recent global energy studies. CO 2 is emitted to the atmosphere mainly from the combustion of fossil fuels. This means that global warming is fundamentally a problem of the global energy system. An analysis of the findings of recent global energy studies is made in this report. The results are categorized from the viewpoint of concern about global warming. The analysis includes energy use and CO 2 emissions, measures taken to restrain CO 2 emissions and the cost of such measure, and suggestions for long term global energy generation. Following this comparative analysis, each of the studies is reviewed in detail. (author) 63 refs

  11. Can global warming save nuclear power?

    International Nuclear Information System (INIS)

    Pearce, D.

    1994-01-01

    Nuclear powered electricity generation in the United Kingdom has an uncertain future. The relative costs of generating electricity by nuclear fission compared to other means and the need for a desirable mixture or ''portfolio'' of energy sources in the electricity industry are identified as the key to this uncertainty. The author argues that Government commitments to reducing Carbon Monoxide (CO) emissions, and hence global warming, may strengthen arguments in favour of a firm commitment to nuclear power, as even modern fossil-fuelled power plants emit nearly 90 times as much CO as nuclear plants. (UK)

  12. Global challenges in energy

    International Nuclear Information System (INIS)

    Dorian, James P.; Franssen, Herman T.; Simbeck, Dale R. MD

    2006-01-01

    Environmental and security concerns are stimulating global interest in hydrogen power, renewable energy, and advanced transportation technologies, but no significant movement away from oil and a carbon-based world economy is expected soon. Over the longer-term, however, a transition from fossil fuels to a non-carbon-based economy will likely occur, affecting the type of environment future generations may encounter. Key challenges will face the world's energy industry over the next few decades to ensure a smooth transition-challenges which will require government and industry solutions beginning as early as today. This paper identifies four critical challenges in energy and the choices which will have to be made on how best to confront growing pollution caused by fossil fuels and how to facilitate an eventual revolutionary-like transition to a non-carbon-based global economy

  13. Nuclear energy has a future

    International Nuclear Information System (INIS)

    Sorin, F.

    2012-01-01

    Nuclear energy appears to be a main asset to France in the context of the worldwide economic slump. Nuclear power provides a cheap electricity that spares the buying power of households and increases the competitiveness of French enterprises. Nuclear industry with major companies like EDF, AREVA and CEA and 450 small and medium-sized enterprises, represents a core resistant to industrial decline. Nuclear industry is a good provider of work and globally it represents 2% of all the jobs in France. Concerning the trade balance, nuclear power plays twice; first by exporting equipment and services for a value of 7 billions euros a year and secondly by sparing the cost of energy imports that would be necessary if nuclear power was not here which is estimated to 20 billions euros a year. (A.C.)

  14. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Kim, S. S.; Lee, M. K.; Moon, K. H.; Nam, J. H.; Noh, B. C.; Kim, H. R.

    2008-12-01

    The concerns on the global warming issues in the international community are bringing about a paradigm shift in the national economy including energy technology development. In this connection, the green growth mainly utilizing green technology, which emits low carbon, is being initiated by many advanced countries including Korea. The objective of the study is to evaluate the contribution to the national economy from nuclear energy attributable to the characteristics of green technology, to which nuclear energy belongs. The study covers the role of nuclear in addressing climate change issues, the proper share of nuclear in the electricity sector, the cost analyses of decommissioning and radioactive waste management, and the analysis on the economic performance of nuclear R and D including cost benefit analysis

  15. Global warming and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, P.E. [Nuclear and Particle Physics Laboratory, Department of Physics, Oxford Univ., Oxford (United Kingdom)

    1999-09-01

    The concentration of carbon dioxide in the atmosphere is steadily increasing and it is widely believed that this will lead to global warming that will have serious consequences for life on earth. The Intergovernmental Panel on Climate Change has estimated that the temperature of the earth will increase by between 1 and 3.5 degrees in the next century. This will melt some of the Antarctic ice cap, raise the sea level and flood many low-lying countries, and also produce unpredictable changes in the earth's climate. The possible ways of reducing carbon dioxide emission are discussed. It is essential to reduce the burning of fossil fuels, but then how are we to obtain the energy we need? We can try to reduce energy use, but we will still need to generate large amounts energy. Some possible ways of doing this are by using wind and solar generators, by hydroelectric and tidal plants, and also by nuclear power. These possibilities will be critically examined. (author)

  16. Global warming and nuclear power

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1999-01-01

    The concentration of carbon dioxide in the atmosphere is steadily increasing and it is widely believed that this will lead to global warming that will have serious consequences for life on earth. The Intergovernmental Panel on Climate Change has estimated that the temperature of the earth will increase by between 1 and 3.5 degrees in the next century. This will melt some of the Antarctic ice cap, raise the sea level and flood many low-lying countries, and also produce unpredictable changes in the earth's climate. The possible ways of reducing carbon dioxide emission are discussed. It is essential to reduce the burning of fossil fuels, but then how are we to obtain the energy we need? We can try to reduce energy use, but we will still need to generate large amounts energy. Some possible ways of doing this are by using wind and solar generators, by hydroelectric and tidal plants, and also by nuclear power. These possibilities will be critically examined. (author)

  17. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    Skjoeldebrand, R.

    1994-01-01

    The thesis of this paper is that the world will need more energy and not less in the coming decades but that this enormous energy consumption entails dangers to the environment not only locally but regionally and internationally through the emissions from the burning of fossil fuels which now provide 85% of the world's commercial energy supply. The solution to this problem is nuclear power. It does not contribute to global warming. 12 figs

  18. Nuclear energy and society

    International Nuclear Information System (INIS)

    Bakacs, Istvan; Czeizel, Endre; Hajdu, Janos; Marx, Gyoergy.

    1984-01-01

    The text of a round-table discussion held on the occasion of the 50th anniversary of the discovery of neutron is given. The participants were the Chief Engineer of the Paks Nuclear Power Plant, the first nuclear power plant in Hungary started in November 1982, a geneticist treating the problems of genetic damages caused by nuclear and chemical effects, a nuclear physicist and a journalist interested in the social aspects of nuclear energy. They discussed the political, economical and social problems of nuclear energy in the context of its establishment in Hungary. (D.Gy.)

  19. Nuclear energy and nuclear technology

    International Nuclear Information System (INIS)

    Luescher, E.

    1982-01-01

    This book originated in the training courses for teachers of grammar- and secondary schools in Dillingen (Bavaria). The aim of these courses is to become informed about the latest state in one field of physics. The lectures are well-known experts in the respective fields. In the latest study (1980) of the National Academy of Sciences the experts came to the conclusion that without further development nuclear power plants the utilization of too much coal would become necessary and involve irreversible environmental damage (see chapter 6). There are two important obstacles impeding the further extension of nuclear energy. The first problem to be solved is the processing and storage of radioactive waste. This is a more technical task and can be treated in a satisfactory way. The second obstacle is less easy to take as the population has to be convinced that a nuclear power plant can be operated with almost unbelievable safety (see chapter 5) and be shut down safely in the case of incidents. The most promising possibility of controlled nuclear fusion as energy source is still many decades- if feasible at all- away from being performed (see chapter. 7). In the Soviet Union 25% of the electric energy production shall be proceed from nuclear power plants by the year 1990. (orig./GL) [de

  20. Nuclear energy questions

    International Nuclear Information System (INIS)

    This work pack contains illustrated booklets entitled: 'Uranium mining'; 'Reactors and radiation'; 'Nuclear waste'; 'Work book on energy'; 'Alternatives now'; 'Future energy choices'; 'Resources handbook'; and 'Tutors' guidelines': a map entitled 'Nuclear power in Britain': and two coloured pictures entitled 'Nuclear prospects' and 'Safe energy'. A cover note states that the material has been prepared for use in schools and study groups. (U.K.)

  1. Germany bars nuclear energy

    International Nuclear Information System (INIS)

    Gaullier, V.

    1999-01-01

    Germany wants a future without nuclear energy, the different steps about the going out of nuclear programs are recalled. The real choice is either fossil energies with their unquestionable safety levels but with an increase of the greenhouse effect or nuclear energy with its safety concerns and waste management problems but without pollutant emission. The debate will have to be set in most European countries. (A.C.)

  2. Energy and globalization

    Science.gov (United States)

    Birjandi, Hossein Saremi

    Before the Industrial Revolution, nations required no energy fuel. People relied on human, animal, and wind and waterpower for energy need. Energy (oil) has resettled populations, elected officials in the free world, or changed the governments of the energy rich countries by force. Energy fueled wars, played the major factor in the might of those who have it or more importantly the abilities to acquire it by force. This dissertation researches the primacy of oil as an energy source from the time of oil's discovery to the present times. Between 1945 and 1960, the use of oil and gas doubled as power was generated for industries as steel, cement, metalworking and more important of all filling station hoses into automobiles gas tanks, thus energy swept people and societies quite literally off their feet. One in every six jobs in the industrial world hired by the giant automotive industries. The big five American oil companies spurred on by special tax benefit, these companies grew to gigantic sizes by taking out the best part of the nation's oil. Then, for greater growth, they leaped overseas and built up an immensely profitable system, in alliance with Anglo-Dutch Shell and British Petroleum, known as seven sisters. On the other side of the world, the energy producing nations form an alliance mainly to protect themselves from downward price fluctuations of oil. The struggle for survival in the global energy market forced those countries to get together and form OPEC, which is referred as an "oil cartel".

  3. Future of nuclear energy research

    International Nuclear Information System (INIS)

    Fuketa, Toyojiro

    1989-09-01

    In spite of the easing of worldwide energy supply and demand situation in these years, we believe that research efforts towards the next generation nuclear energy are indispensably necessary. Firstly, the nuclear colleagues believe that nuclear energy is the best major energy source from many points of view including the global environmental viewpoint. Secondly, in the medium- and long-range view, there will once again be a high possibility of a tight supply and demand situation for oil. Thirdly, nuclear energy is the key energy source to overcome the vulnerability of the energy supply structure in industrialized countries like Japan where virtually no fossil energy source exists. In this situation, nuclear energy is a sort of quasi-domestic energy as a technology-intensive energy. Fourthly, the intensive efforts to develop the nuclear technology in the next generation will give rise to a further evolution in science and technology in the future. A few examples of medium- and long-range goals of the nuclear energy research are development of new types of reactors which can meet various needs of energy more flexibly and reliably than the existing reactors, fundamental and ultimate solution of the radioactive waste problems, creation and development of new types of energy production systems which are to come beyond the fusion, new development in the biological risk assessment of the radiation effects and so on. In order to accomplish those goals it is quite important to introduce innovations in such underlying technologies as materials control in more microscopic manners, photon and particle beam techniques, accelerator engineering, artificial intelligence, and so on. 32 refs, 2 figs

  4. Nuclear energy and society

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Shimooka, Hiroshi; Tanaka, Yasumasa; Fujii, Yasuhiko; Misima, Tsuyoshi

    2004-01-01

    Nuclear energy has a strong relation to a society. However, due to accidents and scandals having occurred in recent years, people's reliability to nuclear energy has significantly swayed and is becoming existence of a worry. Analyzing such a situation and grasping the problem contained are serious problems for people engaging in nuclear field. In order that nuclear energy is properly used in society, communication with general public and in nuclear power plant site area are increasingly getting important as well as grasping the situation and surveying measures for overcoming the problems. On the basis of such an analysis, various activities for betterment of public acceptance of nuclear energy by nuclear industry workers, researchers and the government are proposed. (J.P.N.)

  5. The Future of Nuclear Energy

    International Nuclear Information System (INIS)

    Alonso, A.

    2005-01-01

    Current nuclear energy represents 23.5% of the total electrical power available within the OECD countries. This is the energy offering the lowest costs to generate, it does not emit greenhouse-effect fumes nor does it contribute to global warming, however, it does generate radioactive and toxic waste which society perceives as an unacceptable risk. For this reason the development of new nuclear installation in Europe is at a stand still or moving backward. Truthful information and social participation in decisions is the best way to achieve the eradication of the social phobia produced by this energy source. (Author)

  6. Proceedings of the INAC 2005: International nuclear atlantic conference. Nuclear energy reducing global warming; 14. Brazilian national meeting on reactor physics and thermal hydraulics; 7. Brazilian national meeting on nuclear applications

    International Nuclear Information System (INIS)

    2005-01-01

    Following the success of INAC 2002 which was inaugurated in Rio de Janeiro, INAC 2005 has been held with the 14th Meeting on Reactor Physics and Thermal Hydraulics (XIV ENFIR) and the 7th Meeting on Nuclear Applications (VII ENAN). A key goal of these joint meetings is to bring together scientists to exchange the latest research and development (R and D) information in nuclear science and technology. In the INAC 2005 technical program, plenary sessions, such as round table discussions and keynote lectures, has held to present to the general public the recent advances of peaceful nuclear energy usage, reducing the global warming. Besides, INAC 2005 has offered a poster technical session on Management Systems for Nuclear Organizations. The XIV ENFIR has covered all aspects of interdisciplinary R and D related to nuclear reactors, and the VII ENAN has offered a forum for discussion on nuclear applications in industry, geology, agriculture, medicine, biology and environmental sciences. Both ENFIR and ENAN have also organized oral and poster technical sessions

  7. Innovative global architecture for sustainable nuclear power

    International Nuclear Information System (INIS)

    Wheeler, John; Kagramanyan, Vladimir; Poplavskaya, Elena; Edwards, Geoffrey; Dixon, Brent; Usanov, Vladimir; Hayashi, Hideyuki; Beatty, Randall

    2011-01-01

    The INPRO collaborative project 'Global architecture of innovative nuclear energy systems based on thermal and fast reactors with the inclusion of a closed nuclear fuel cycle (GAINS)' was one of several scenario studies implemented in the IAEA in recent years. The objective of GAINS was to develop a standard framework for assessing future nuclear energy systems (NESs) taking into account sustainable development, and to validate the results through sample analyses. Belgium, Canada, China, the Czech Republic, France, India, Italy, Japan, the Republic of Korea, the Russian Federation, Slovakia, Ukraine, USA, the European Commission and Argentina as an observer participated in the project. The results received are discussed in the paper, including: development of a heterogeneous multi-group model of a global NES, estimation of nuclear energy demand, identification of a representative set of reactors and fuel cycles, evaluation capability of available analytical and modelling tools, and quantitative analysis of the different options of the global architecture. It was shown that the approach used contributes to development of a coherent vision of driving forces for nuclear energy system development and deployment. (author)

  8. Global energy and technology trends

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2008-01-01

    Economic development translates into growing demand for energy services. However, more than 1.6 billion people at present still do not have access to modern energy services. Continued population growth compounds this demand for energy, which is central to achieving sustainable development goals. Poverty eradication calls for affordable energy services. There is a need to minimize health and environmental impacts of energy use. Nuclear power's share of global electricity rose to 16% in 1986. Near the end of the 1980s growth stagnated. Regulatory interventions often stretched out licensing times and increased costs. Inflation and rising energy costs resulting from the oil shocks of 1973 and 1979 brought about a significant drop in electricity demand and raised the costs of capital intensive power plants, like nuclear power plants. Some utilities found the regulatory and transaction costs of nuclear power simply too high to manage costs-effectively. The 1979 Three Mile Island accident and the Chernobyl accident in 1986 retarded the expansion of nuclear power. The electricity market liberalization and privatization exposed excess capacity, pushed electricity prices lower and made power plant investments more risky. Other things being equal, nuclear power's front-loaded cost structure was a disadvantage in markets that emphasize short term profits and rapid returns. In the 1990s, growth in nuclear electricity generation exceeded the growth in nuclear capacity as management efficiencies and technological advances progressively raised the average energy availability of the world's nuclear plants. The energy availability factor measures the percentage of time that a power reactor is available to generate electricity, rather than being shutdown for refuelling, maintenance and other reasons. The global average for nuclear power reactors has risen from 67% in 1990 to 81% in 2004. This increase is equivalent to the addition of 34 new 1000 MW reactors. Electricity generation

  9. Introduction to nuclear energy

    International Nuclear Information System (INIS)

    2004-01-01

    After some descriptions about atoms, fission and fusion, explanations are given about the functioning of a nuclear power plant. The safety with the different plans of emergency and factors that lead to a better nuclear safety are exposed, then comes a part for the environmental protection; the fuel cycle is tackled. Some historical aspects of nuclear energy finish this file. (N.C.)

  10. Nuclear energy technology

    Science.gov (United States)

    Buden, David

    1992-01-01

    An overview of space nuclear energy technologies is presented. The development and characteristics of radioisotope thermoelectric generators (RTG's) and space nuclear power reactors are discussed. In addition, the policy and issues related to public safety and the use of nuclear power sources in space are addressed.

  11. Global outlook for nuclear power

    International Nuclear Information System (INIS)

    Southworth, F.H.

    2010-01-01

    'Full text:' The global nuclear power forecast, the North American outlook and the effect of nuclear power growth on greenhouse gas emissions in North America will be discussed. The construction of Generation III reactors will replace aging power plants and, further, add capacity that is environmentally sustainable. The outlook for Generation IV reactors also may significantly improve the environmental balance after 2030, both in electrical markets, waste reduction, and in non-traditional markets such as process heat. (author)

  12. Radioactivity and nuclear energy

    International Nuclear Information System (INIS)

    Hoffmann, J.; Kuczera, B.

    2001-05-01

    The terms radioactivity and nuclear energy, which have become words causing irritation in the political sphere, actually represent nothing but a large potential for innovative exploitation of natural resources. The contributions to this publication of the Karlsruhe Research Center examine more closely three major aspects of radioactivity and nuclear energy. The first paper highlights steps in the history of the discovery of radioactivity in the natural environment and presents the state of the art in health physics and research into the effects of exposure of the population to natural or artificial radionuclides. Following contributions focus on: Radiochemical methods applied in the medical sciences (diagnostic methods and devices, therapy). Nuclear energy and electricity generation, and the related safety policies, are an important subject. In this context, the approaches and pathways taken in the field of nuclear science and technology are reported and discussed from the angle of nuclear safety science, and current trends are shown in the elaboration of advanced safety standards relating to nuclear power plant operation and ultimate disposal of radioactive wastes. Finally, beneficial aspects of nuclear energy in the context of a sustainable energy policy are emphasized. In particular, the credentials of nuclear energy in the process of building an energy economy based on a balanced energy mix which combines economic and ecologic advantages are shown. (orig./CB) [de

  13. Nuclear energy in view

    International Nuclear Information System (INIS)

    1982-01-01

    This leaflet advertises the availability of the following from UKAEA: film and video titles (nuclear fuel cycle; energy for all; power from the atom; using radioactivity; fast reactor; energy - the nuclear option; principles of fission; radiation); slide-tape packs (16 titles); other information services. (U.K.)

  14. Nuclear energy in China

    International Nuclear Information System (INIS)

    Gourievidis, G.

    1984-01-01

    Having first outlined the main problems China must resolve in the field of energy supply, this paper presents the nuclear option trends established by the government, recalls the different stages in the nuclear Chinese development programme, achievements and projects. The organization of nuclear research and industry, as also the fuel cycle situation and uranium resources are then described. Finally, the international nuclear cooperation policy carried out by the chinese government and more particularly the agreement settled with France are presented [fr

  15. Nuclear energy, economy, ecology

    International Nuclear Information System (INIS)

    Stoffaes, C.

    1995-01-01

    As its operating role, its economic competitiveness and its technological control in the area of nuclear energy, the France has certainly to take initiatives in a nuclear renewal activity. The France is criticized in the world for its exclusive position about nuclear energy, but it is well situated to attract attention on the coal risks and particularly about its combustion for environment. (N.C.)

  16. Nuclear energy inquiries

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1993-02-01

    Our choice of energy sources has important consequences for the economy and the environment. Nuclear energy is a controversial energy source, subject to much public debate. Most individuals find it difficult to decide between conflicting claims and allegations in a variety of technical subjects. Under these circumstances, knowledge of various relevant inquiries can be helpful. This publication summarizes the composition and major findings of more than thirty nuclear energy inquiries. Most of the these are Canadian, but others are included where they have relevance. The survey shows that, contrary to some claims, virtually every aspect of nuclear energy has been subject to detailed scrutiny. The inquiries' reports include many recommendations on how nuclear energy can be exploited safely, but none rejects it as an acceptable energy source when needed. (Author) 38 refs

  17. Nuclear Energy Data 2013

    International Nuclear Information System (INIS)

    2013-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants declined in 2012 as a result of operational issues at some facilities and suspended operation at all but two reactors in Japan. Nuclear safety was further strengthened in 2012 following safety reviews prompted by the Fukushima Daiichi nuclear power plant accident. Governments committed to maintaining nuclear power in the energy mix pursued initiatives to increase nuclear generating capacity. In Turkey, plans were finalised for the construction of the first four reactors for commercial electricity production. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Statlinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link [fr

  18. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  19. Global energy perspective of Turkey

    International Nuclear Information System (INIS)

    Sen, H. Mete

    2006-01-01

    Global energy demand is growing rapidly at an average rate of 4% per year in parallel with the economy while EU-25 has only 0,8% during the last decade. Total primary energy supply is 87 818 000 toe of which 72% was imported; in comparison the average dependency rate is 49,5% in the EU. Such excessive dependency creates harmful effects on the national economy. Oil and natural gas imports bill was 19,5 billion US $ in 2005. Primary energy demand growth rate is twice as much of the production rate in the period 1980 2004. Fossil fuels accounts for 86% of Turkeys global energy supply in 2004. Population growth rate is one of the major parameters affecting the energy balance. Energy and electricity consumptions per capita are still one third of the EUs average.. Turkeys coal reserves needs to be utilized at higher rate and hydropower, wind power and geothermal energy potentials should be developed in order to decrease the imported energy dependence, soon. Due to the buy or pay bilateral agreements with suppliers, storage capabilities should be realized for excessive natural gas supply. Turkeys average growth rate of electricity production is 8,1% while installed capacity has 8,5% for the last 25 years. The present total installed capacity is 39 020 MW in which renewables has a share of 34%. Total electricity production was 162 TWh in 2005 of which 75,4% was supplied by thermal power plants. Share of natural gas is 44% of the annual electricity production. Considering the present power plants and the ones under construction, electricity supply and demand will be in balance till the year of 2010 (with high demand scenario) or 2015 (with low demand scenario). Nuclear power is being considered for electricity supply security after 2015. But, the general approach for supply security is first to develop the domestic coal reserves, renewable energy resources.

  20. Is nuclear energy justifiable?

    International Nuclear Information System (INIS)

    Roth, E.

    1988-01-01

    This is a comment on an article by Prof. Haerle a theologist, published earlier under the same heading, in which the use of nuclear energy is rejected for ethical reasons. The comment contents the claim mode by the first author that theologists, because they have general ethical competency, must needs have competency to decide on the fittest technique (of energy conversion) for satisfying, or potentially satisfying, the criteria of responsible action. Thus, an ethical comment on, for instance, nuclear energy is beyond the scope of the competency of the churches. One is only entitled as a private person to objecting to nuclear energy, not because of one's position in the church. (HSCH) [de

  1. Nuclear Energy Stakeholders in Argentina

    International Nuclear Information System (INIS)

    Gadano, Julian

    2017-01-01

    Mr Gadano, Undersecretary for Nuclear Energy, Argentina spoke from the perspective of a country looking forward to becoming a member of the NEA. He reviewed the place of nuclear energy in his country's energy mix and called attention to its role in positively addressing the global challenges of climate change and energy security. Mr Gadano also described the federal system which governs Argentina. Drawing on his expertise as a lawmaker and nuclear regulator but also as an academic sociologist, he stressed that reaching agreement on siting initiatives for example requires a sustainable relation with stakeholders, including regional governments. This is important because in the end, 'the best project is the one you can finish'

  2. Nuclear energy today

    International Nuclear Information System (INIS)

    2003-01-01

    Energy is the power of the world's economies, whose appetite for this commodity is increasing as the leading economies expand and developing economies grow. How to provide the energy demanded while protecting our environment and conserving natural resources is a vital question facing us today. Many parts of our society are debating how to power the future and whether nuclear energy should play a role. Nuclear energy is a complex technology with serious issues and a controversial past. Yet it also has the potential to provide considerable benefits. In pondering the future of this imposing technology, people want to know. - How safe is nuclear energy? - Is nuclear energy economically competitive? - What role can nuclear energy play in meeting greenhouse gas reduction targets? - What can be done with the radioactive waste it generates? - Does its use increase the risk of proliferation of nuclear weapons? - Are there sufficient and secure resources to permit its prolonged exploitation? - Can tomorrow's nuclear energy be better than today's? This publication provides authoritative and factual replies to these questions. Written primarily to inform policy makers, it will also serve interested members of the public, academics, journalists and industry leaders. (author)

  3. Perspectives for nuclear energy

    International Nuclear Information System (INIS)

    Baugnet, J.-M.; Abderrahim, H.A.; Dekeyser, J.; Meskens, G.

    1998-09-01

    In Belgium, approximately 60 percent of the produced electricity is generated by nuclear power. At present, nuclear power production tends to stagnate in Europe and North America but is still growing in Asia. The document gives an overview of the present status and the future energy demand with emphasis on electric power. Different evaluation criteria including factors hindering and factors promoting the expansion of nuclear power as well as requirements of new nuclear power plants are discussed. The extension of the lifetime of existing facilities as well as fuel supply are taken into consideration. A comparative assesment of nuclear power with other energy sources is made. The report concludes with estimating the contribution and the role of nuclear power in future energy demand as well as with an overview of future reactors and research and development programmes

  4. Nuclear Energy Data - 2014

    International Nuclear Information System (INIS)

    2014-01-01

    Nuclear Energy Data is the OECD Nuclear Energy Agency's annual compilation of statistics and country reports documenting the status of nuclear power in the OECD area. Information provided by member country governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projected generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants remained steady in 2013 despite the progressive shutdown of all reactors in Japan leading up to September and the permanent closure of six reactors in the OECD area. Governments committed to maintaining nuclear power in the energy mix advanced plans for increasing nuclear generating capacity, and progress was made in the development of deep geological repositories for spent nuclear fuel, with Finland expected to have the first such facility in operation in the early 2020's. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'StatLinks'. For each StatLink, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  5. Nuclear Energy Data - 2016

    International Nuclear Information System (INIS)

    2016-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on installed generating capacity, total electricity produced by all sources and by nuclear power, nuclear energy policies and fuel cycle developments, as well as projections of nuclear generating capacity and electricity production to 2035, where available. Total electricity generation at nuclear power plants and the share of electricity production from nuclear power plants increased slightly in 2015, by 0.2% and 0.1%, respectively. Two new units were connected to the grid in 2015, in Russia and Korea; two reactors returned to operation in Japan under the new regulatory regime; and seven reactors were officially shut down - five in Japan, one in Germany and one in the United Kingdom. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects progressing in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports. This publication contains 'Stat Links'. For each Stat Link, the reader will find a URL which leads to the corresponding spreadsheet. These links work in the same way as an Internet link. (authors)

  6. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Separate abstracts are included for each of the papers presented concerning current technical and economical events in the nuclear field. Twelve papers have been abstracted and input to the data base. The ''international nuclear energy guide'' gives a general directory of the name, the address and the telephone number of the companies and bodies quoted in this guide; a chronology of the main events 1982. The administrative and professional organization, the nuclear courses and research centers in France are presented, as also the organization of protection and safety, and of nuclear fuel cycle. The firms concerned by the design and the construction of NSSS and the allied nuclear firms are also presented. The last part of this guide deals with the nuclear energy in the world: descriptive list of international organizations, and, the nuclear activities throughout the world (alphabetical order by countries) [fr

  7. Dossier nuclear energy

    International Nuclear Information System (INIS)

    1993-11-01

    The present Dutch government compiled the title document to enable the future Dutch government to declare its opinion on the nuclear energy problemacy. The most important questions which occupy the Dutch society are discussed: safe application and risks of nuclear energy, radioactive wastes and other environmental aspects, and the possible danger of misusing nuclear technology. In chapter two attention is paid to the policy, as formulated by the Dutch government, with regard to risks of nuclear power plants. Next the technical safety regulations that have to be met are dealt with. A brief overview is given of the state of the art of commercially available nuclear reactors, as well as reactors under development. The nuclear waste problem is the subject of chapter three. Attention is paid to the Dutch policy that has been formulated and is executed, the OPLA-program, in which the underground storage of radioactive wastes is studied, the research on the conversion of long-lived radioactive isotopes to short-lived radioactive isotopes, and planned research programs. In chapter four, other environmental effects of the use of nuclear power are taken into consideration, focusing on the nuclear fuel cycle. International obligations and agreements to guarantee the peaceful use of nuclear energy (non-proliferation) are mentioned and discussed in chapter four. In chapter six the necessity to carry out surveys to determine public support for the use of nuclear energy is outlined. In the appendices nuclear energy reports in the period 1986-present are listed. Also the subject of uranium supplies is discussed and a brief overview of the use of nuclear energy in several other countries is given. 2 tabs., 5 annexes, 63 refs

  8. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M. K.; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Song, K. D.; Oh, K. B.

    2002-12-01

    This study deals with current energy issues, environmental aspects of energy, project feasibility evaluation, and activities of international organizations. Current energy issues including activities related with UNFCCC, sustainable development, and global concern on energy issues were surveyed with focusing on nuclear related activities. Environmental aspects of energy includes various topics such as, inter- industrial analysis of nuclear sector, the role of nuclear power in mitigating GHG emission, carbon capture and sequestration technology, hydrogen production by using nuclear energy, Life Cycle Analysis as a method of evaluating environmental impacts of a technology, and spent fuel management in the case of introducing fast reactor and/or accelerator driven system. Project feasibility evaluation includes nuclear desalination using SMART reactor, and introduction of COMFAR computer model, developed by UNIDO to carry out feasibility analysis in terms of business attitude. Activities of international organizations includes energy planning activities of IAEA and OECD/NEA, introduction of the activities of FNCA, one of the cooperation mechanism among Asian countries. In addition, MESSAGE computer model was also introduced. The model is being developed by IAEA to effectively handle liberalization of electricity market combined with environmental constraints

  9. Nuclear Energy Data - 2017

    International Nuclear Information System (INIS)

    2017-01-01

    Nuclear Energy Data is the Nuclear Energy Agency's annual compilation of statistics and country reports documenting nuclear power status in NEA member countries and in the OECD area. Information provided by governments includes statistics on total electricity produced by all sources and by nuclear power, fuel cycle capacities and requirements, and projections to 2035, where available. Country reports summarise energy policies, updates of the status in nuclear energy programs and fuel cycle developments. In 2016, nuclear power continued to supply significant amounts of low-carbon baseload electricity, despite strong competition from low-cost fossil fuels and subsidised renewable energy sources. Three new units were connected to the grid in 2016, in Korea, Russia and the United States. In Japan, an additional three reactors returned to operation in 2016, bringing the total to five under the new regulatory regime. Three reactors were officially shut down in 2016 - one in Japan, one in Russia and one in the United States. Governments committed to having nuclear power in the energy mix advanced plans for developing or increasing nuclear generating capacity, with the preparation of new build projects making progress in Finland, Hungary, Turkey and the United Kingdom. Further details on these and other developments are provided in the publication's numerous tables, graphs and country reports

  10. The nuclear energy debate

    International Nuclear Information System (INIS)

    Hardy, D.

    1984-01-01

    We have not been able to obtain closure in the nuclear energy debate because the public perception of nuclear energy is out of sync with reality. The industry has not been about to deal with the concerns of those opposed to nuclear energy because its reaction has been to generate and disseminate more facts rather than dealing with the serious moral and ethical questions that are being asked. Nuclear proponents and opponents appeal to different moral communities, and those outside each community cannot concede that the other might be right. The Interfaith Program for Public Awareness of Nuclear Issues (IPPANI) has been formed, sponsored by members of the Jewish, Baha'i, Roman Catholic, United, and Anglican faiths, to provide for a balanced discussion of the ethical aspects of energy. (L.L.)

  11. Nuclear energy and jobs

    International Nuclear Information System (INIS)

    Goldfinger, N.

    1976-01-01

    Mr. Goldfinger, Research Director of AFL-CIO, examines the problem of energy in general, nuclear in particular, and the employment relationship. The energy shortages in the U.S. and its dependence on oil are cited. Directly connected with this serious problem relating to energy are jobs, income, and living standards. If energy is not available, industries will be unable to expand to meet the needs of the growing population; and prices of goods will rise. From an evaluation of what experts have said, Mr. Goldfinger concludes that increased coal production and better coal technology cannot meet energy demands; so the sharp increase both in volume and as a percentage of total energy needed in the future will have to come from nuclear power. Development of alternative sources is necessary, he feels, and intense research on these is needed now. The employment impact in the nuclear energy scenario is analyzed according to the trades involved. It is estimated that 1.5 million jobs in the nuclear industry would be open by the year 2000 if nuclear is to provide one-fourth of energy supplies. The employment picture, assuming abandonment of nuclear energy, is then discussed

  12. Integrated Global Nuclear Materials Management Preliminary Concepts

    International Nuclear Information System (INIS)

    Jones, E; Dreicer, M.

    2006-01-01

    The world is at a turning point, moving away from the Cold War nuclear legacy towards a future global nuclear enterprise; and this presents a transformational challenge for nuclear materials management. Achieving safety and security during this transition is complicated by the diversified spectrum of threat 'players' that has greatly impacted nonproliferation, counterterrorism, and homeland security requirements. Rogue states and non-state actors no longer need self-contained national nuclear expertise, materials, and equipment due to availability from various sources in the nuclear market, thereby reducing the time, effort and cost for acquiring a nuclear weapon (i.e., manifestations of latency). The terrorist threat has changed the nature of military and national security requirements to protect these materials. An Integrated Global Nuclear Materials Management (IGNMM) approach would address the existing legacy nuclear materials and the evolution towards a nuclear energy future, while strengthening a regime to prevent nuclear weapon proliferation. In this paper, some preliminary concepts and studies of IGNMM will be presented. A systematic analysis of nuclear materials, activities, and controls can lead to a tractable, integrated global nuclear materials management architecture that can help remediate the past and manage the future. A systems approach is best suited to achieve multi-dimensional and interdependent solutions, including comprehensive, end-to-end capabilities; coordinated diverse elements for enhanced functionality with economy; and translation of goals/objectives or standards into locally optimized solutions. A risk-informed basis is excellent for evaluating system alternatives and performances, and it is especially appropriate for the security arena. Risk management strategies--such as defense-in-depth, diversity, and control quality--help to weave together various technologies and practices into a strong and robust security fabric. Effective

  13. Nuclear power, useful energy source

    International Nuclear Information System (INIS)

    Sorin, F.

    2003-01-01

    This article is a reprint of an article published in a newspaper named 'Liberation Champagne' from October 7, 2003. It makes a brief analysis of the future world energy needs, of the need to fight against the global warming and to find a substitution to fossil fuels on the way to depletion. The mankind has to face a contradictory problem: increasing the energy production and saving the fossil fuels. The only solution is to accelerate the development of nuclear energy and of renewable energy sources. This is also the only way to fulfill the Kyoto protocol commitments. Short paper. (J.S.)

  14. Global Risk of Nuclear Terrorism

    Directory of Open Access Journals (Sweden)

    Emily Diez

    2010-01-01

    Full Text Available The emergence of nuclear terrorism, a threat that President Obama called "the gravest danger we face," has signaled a paradigm shift in international security. Since the collapse of the Soviet Union, sensitive nuclear technologies and materials have become increasingly available. Globalization and the inadequate enforcement of treaties and export controls have allowed the proliferation of nuclear weapons materials. Today, international terrorist organizations seek to employ weapons of mass destruction (WMD as a means to influence national policies around the world. AlQaida spokesman Suleiman Abu Gheith declared that in order to balance the injustices that have been inflicted on the Muslim population worldwide, al-Qaida's new objective is "to kill 4 million Americans–2 million of them children." As political scientist Graham Allison notes, this could be achieved with either 1,334 attacks similar in magnitude to those of 9/11, or one nuclear bomb.Building a nuclear program is an arduous task that requires tacit knowledge, the recruitment of nuclear scientists, engineers, and machinists, and the resources and time to obtain nuclear materials and components. While it is unlikely that terrorist organizations have the capacity to develop full-fledged programs in the near term, terrorist development and acquisition of nuclear weapons remains a long-term threat that requires international action.

  15. Energy supply - a global problem

    International Nuclear Information System (INIS)

    Rittstieg, G.

    1980-12-01

    A briefly commented data collection is presented. The following diagrams are related to energy requirements and consumption as well as primary energy reserves. Finally some comments referring to nuclear energy are given. (UA) [de

  16. Nuclear re-think [The case for nuclear energy

    International Nuclear Information System (INIS)

    Moore, P.

    2006-01-01

    In the early 1970s, Patrick Moore, a co-founder of Greenpeace, believed that nuclear energy was synonymous with nuclear holocaust. Thirty years on, his views have changed because nuclear energy is the only non-greenhouse-gas-emitting power source that can effectively replace fossil fuels while satisfying the world's increasing demand for energy. Today, 441 nuclear plants operating globally avoid the release of nearly 3 billion tonnes of CO 2 emissions annually-the equivalent of the exhaust from more than 428 million cars. Concerns associated with nuclear energy are discussed including costs of nuclear energy, safety of nuclear plants, radioactive waste management, vulnerability of nuclear plants to terrorist attacks and diversion of nuclear fuel for weaponization. It is concluded that nuclear energy is the best way to produce safe, clean, reliable baseload electricity, and will play a key role in achieving global energy security. With climate change at the top of the international agenda, we must all do our part to encourage a nuclear energy renaissance

  17. Nuclear energy from radioactive waste

    International Nuclear Information System (INIS)

    Schwarzenberg, M.

    1998-01-01

    The global energy demand is increasing. Sound forecasts indicate that by the year 2020 almost eight thousand million people will be living on our planet, and generating their demand for energy will require conversion of about 20 thousand million tonnes of coal equivalents a year. Against this background scenario, a new concept for energy generation elaborated by nuclear scientists at CERN attracts particular interest. The concept describing a new nuclear energy source and technology intends to meet the following principal requirements: create a new energy source that can be exploited in compliance with extremely stringent safety requirements; reduce the amount of long-lived radioactive waste; substantially reduce the size of required radwaste repositories; use easily available natural fuels that will not need isotopic separation; prevent the risk of proliferation of radioactive materials; process and reduce unwanted actinides as are generated by the operation of current breeder reactors; achieve high efficiency both in terms of technology and economics. (orig./CB) [de

  18. Development of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Wakeham, John [Secretary of State for Energy, London (UK)

    1991-06-01

    The Government's views on the development of nuclear energy are outlined. In this country, we continue to see some important advantages in maintaining nuclear power generation. It increases diversity, and so helps to maintain security of energy supply. It does not produce greenhouse gases or contribute to acid rain. But it is equally clear that nuclear costs must be brought under control whilst at the same time maintaining the high standards of safety and environmental protection which we have come to expect in the UK. The three main elements which the nuclear industry must address in the future are summarized. First the costs of nuclear generation must be reduced. Secondly, once the feasibility and costings of PWRs have been established consideration must be given to the choices for the future energy policy and thirdly new reactor designs should be standardized so the benefits of replication can be realised. (author).

  19. Energy strategies and nuclear power

    International Nuclear Information System (INIS)

    Hafele, W.

    1983-01-01

    The results of two quantitative scenarios balancing global energy supply with demand for the period 1980-2030 are reviewed briefly. The results suggest that during these 50 years there will be a persistent demand worldwide for liquid fuels, a continuing reliance on ever more expensive and ''dirty'' fossil fuels, and a limited penetration rate of nuclear generated electricity into the energy market. The paper therefore addresses a possible ''second'' grid driven by nuclear heat - a grid based not on electricity but on ''clean'' liquid fuels manufactured from gaseous and solid fossil fuels using nuclear power. Such a second grid would be an important complement to the electricity grid if the world is to progress towards a truly sustainable energy system after 2030

  20. Nuclear power and the logic of globalization

    International Nuclear Information System (INIS)

    Weizsaecker, C.C. von

    2000-01-01

    The article discusses effects and results of globalization for nuclear power and other options of electricity generation. According to the present state of knowledge, it will not be possible to meet the growing worldwide energy requirement with fossil and renewable energy sources only - also because of the CO 2 problem. Consequently, nuclear power will remain an important alternative. On an international scale, this applies in particular to large countries, such as China and India, as large national economies particularly benefit from the economies of scale offered by nuclear power. This could well make Chinese nuclear technology a product for the world market. Thinking along these lines has not really gained ground in Germany, as nuclear power, being a technology requiring considerably capital outlay, is considered unsuitable for southern countries. It is an illusion to believe that Germany's opting out of the use of nuclear power could be a model to others. Instead, we are faced by the ethical question of how we can help to minimize the accident risks of nuclear facilities worldwide. We can do so only by maintaining the use of nuclear power and exporting our level of safety, for the risks will not become any smaller merely as a result of our opting out. (orig.) [de

  1. Nuclear Energy and the Environment.

    Science.gov (United States)

    International Atomic Energy Agency, Vienna (Austria).

    "Nuclear Energy and the Environment" is a pocket folder of removable leaflets concerned with two major topics: Nuclear energy and Nuclear Techniques. Under Nuclear Energy, leaflets concerning the topics of "Radiation--A Fact of Life,""The Impact of a Fact: 1963 Test Ban Treaty,""Energy Needs and Nuclear Power,""Power Reactor Safety,""Transport,"…

  2. Journalism and nuclear energy

    International Nuclear Information System (INIS)

    Mills, M.P.

    1987-01-01

    The question as to why nuclear energy is a point of friction between journalists and the expert community is discussed. The areas in which the two communities fail to communicate are highlighted and the opportunities that exist for improved nuclear journalism are identified briefly. (author)

  3. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, Pertti

    1989-03-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1989. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  4. Nuclear energy and medicine

    International Nuclear Information System (INIS)

    1988-01-01

    The applications of nuclear energy on medicine, as well as the basic principles of these applications, are presented. The radiological diagnosis, the radiotherapy, the nuclear medicine, the radiological protection and the production of radioisotopes are studied. (M.A.C.) [pt

  5. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.; Mattila, L.

    1990-08-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out at the Technical Research Centre of Finland (VTT) in 1990. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Utilities and industry also contribute to some projects

  6. Nuclear energy related research

    International Nuclear Information System (INIS)

    Mattila, L.; Vanttola, T.

    1991-10-01

    The annual Research Programme Plan describes the publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1991. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  7. Nuclear energy related research

    International Nuclear Information System (INIS)

    Rintamaa, R.

    1992-05-01

    The annual Research Programme Plan describes publicly funded nuclear energy related research to be carried out mainly at the Technical Research Centre of Finland (VTT) in 1992. The research is financed primarily by the Ministry of Trade and Industry (KTM), the Finnish Centre for Radiation and Nuclear Safety (STUK) and VTT itself. Other research institutes, utilities and industry also contribute to many projects

  8. Nuclear energy related research

    International Nuclear Information System (INIS)

    Salminen, P.

    1988-02-01

    This annual Research Programme Plan covers the publicly funded nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) in 1988. The research will be financed by the Ministry of Trade and Industry, the Finnish Centre for Radiation and Nuclear Safety, the Nordic Council of Ministers and VTT itself

  9. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  10. Centring radiological protection on today's global challenges in energy, climate change, environment and health-with nuclear energy playing a key role

    International Nuclear Information System (INIS)

    Saint-Pierre, S.

    2011-01-01

    The climate change issue includes meeting the growing demand for electricity while reducing the impacts from energy sources. Applying carbon capture and storage technology to fossil fuel energy and increasing renewable energy pose greater challenges than increasing nuclear energy. International Energy Agency's (IEA) electricity demand of 30 000 TWh by 2030 can be met with 10 000 TWh each from renewable, nuclear and fossil fuel energy. However, the ill-imposed very strict control of tiny public exposure to ionising radiation from nuclear energy continues to pose a serious hindrance. Effort needs to be re-balanced to produce an even-handed control of public exposure with emphasis on the most significant sources (i.e. natural background radiation and medical use) and vice versa. The on-going revision of the International Atomic Energy Agency Basic Safety Standards (BSS) provides an opportunity to achieve this internationally so that national regulations can be subsequently remediated. There can be no urgency in a BSS revision that fails to encompass such perspective. (authors)

  11. Centring radiological protection on today's global challenges in energy, climate change, environment and health--with nuclear energy playing a key role.

    Science.gov (United States)

    Saint-Pierre, Sylvain

    2011-07-01

    The climate change issue includes meeting the growing demand for electricity while reducing the impacts from energy sources. Applying carbon capture and storage technology to fossil fuel energy and increasing renewable energy pose greater challenges than increasing nuclear energy. International Energy Agency's (IEA) electricity demand of 30 000 TWh by 2030 can be met with 10 000 TWh each from renewable, nuclear and fossil fuel energy. However, the ill-imposed very strict control of tiny public exposure to ionising radiation from nuclear energy continues to pose a serious hindrance. Effort needs to be re-balanced to produce an even-handed control of public exposure with emphasis on the most significant sources (i.e. natural background radiation and medical use) and vice versa. The on-going revision of the International Atomic Energy Agency Basic Safety Standards (BSS) provides an opportunity to achieve this internationally so that national regulations can be subsequently remediated. There can be no urgency in a BSS revision that fails to encompass such perspective.

  12. Nuclear energy: a reassessment

    International Nuclear Information System (INIS)

    McClure, J.A.; Nader, R.; Udall, M.K.; Walske, C.

    1980-01-01

    This edited transcript of a televised American Enterprise Institute Public Poicy Forum explores the role of nuclear technology in energy production in the US today. A panel made up of Senator James A. McClure, Ralph Nader, Representative Morris K. Udall, and Dr. Carl Walske and moderated by John Charles Daly examines the lessons learned from the accident at the Three Mile Island Nuclear Plant and the public attitudes toward nuclear energy, particularly in light of this accident. The experts discuss alternative energy sources, such as coal, gas, biomass, and solar power as well as conservation and more efficient use of present facilities. The issues of nuclear waste disposal and transport and US commitments to countries not self-sufficient in their energy needs are also explored

  13. Nuclear energy in Europe

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    A country by country study of nuclear energy in the various European countries: Austria, Belgium, Bulgaria, Czechoslovakia, Denmark, Federal German Republic, Finland, German Democratic Republic, Great Britain, Holland, Hungary, Italy, Poland, Rumania, Spain, Sweden, Switzerland, USSR and Yugoslavia [fr

  14. Desalting and Nuclear Energy

    Science.gov (United States)

    Burwell, Calvin C.

    1971-01-01

    Future use of nuclear energy to produce electricity and desalted water is outlined. Possible desalting processes are analyzed to show economic feasibility and the place in planning in world's economic growth. (DS)

  15. Nuclear energy in Armenia

    International Nuclear Information System (INIS)

    Gevorgyan, S.; Kharazyan, V.

    2000-01-01

    This summary represents an overview of the energy situation in Armenia and, in particular, the nuclear energy development during the last period of time. the energy sector of Armenia is one of the most developed economy branches of the country. The main sources of energy are oil products, natural gas, nuclear energy, hydropower, and coal. In the period of 1985-1988 the consumption of these energy resources varied between 12-13 million tons per year of oil equivalent. Imported energy sources accounted for 96% of the consumption. During the period 1993-1995 the consumption dropped to 3 million tons per year. Electricity in Armenia is produced by three thermal, one nuclear, and two major hydroelectric cascades together with a number small hydro units. The total installed capacity is 3558 MW. Nuclear energy in Armenia began its development during the late 1960's. Since the republic was not rich in natural reserves of primary energy sources and the only domestic source of energy was hydro resource, it was decided to build a nuclear power plant in Armenia. The Armenian Nuclear Power Plant (ANPP) Unit 1 was commissioned in 1996 and Unit 2 in 1980. The design of the ANPP was developed in 1968-1969 and was based on the project of Units 3 and 4 of the Novovoronezh NPP. Both units of the plant are equipped with reactors WWER-440 (V -270) type, which are also in use in some power stations in Russian Federation, Bulgaria, and Slovakia. Currently in Armenia, 36% of the total electricity production is nuclear power electricity. (authors)

  16. Nuclear energy and information

    International Nuclear Information System (INIS)

    Chen Baisong

    1996-01-01

    The information tells us that since the first chain reaction discovery about 50 years ago up to now, there are more than 400 commercial nuclear power plants connected to electricity supply net works. The electricity supplied by nuclear power plants has exceeded 2000 TWH, which represents almost 17% of the total electricity generated in the world and this proportion is still increasing. The accumulated operating experience of nuclear power plants reach more than 6000 reactor-year. Quite high average life time energy availability factors demonstrate the good reliability of nuclear power plants. The present status of the electricity development in the world shows that nuclear power has become an imperative and exclusively realistic alternative energy source. All of these information demonstrate that nuclear power as a safe, clean and less cost power source has already been widely accepted in the world. In Asia and Pacific region, the fast development of economy provides a vast possibility for the development of nuclear power. In China, shortage of electricity has become the 'bottle neck' which retards the economic development nowadays. China has already drawn up the plan for the development of nuclear power. The information is of great significance to promote the development of nuclear power. It could be said that without information, nuclear power could not be smoothly introduced in any country or region. (J.P.N.)

  17. That compromising nuclear energy

    International Nuclear Information System (INIS)

    Mink, E.

    1981-01-01

    This book discusses a wide range of aspects of nuclear energy and its problems. Social and ideological as well as more technical sides of the nuclear controversy are dealt with. The author argues that just more information on the subject cannot solve the problem anyhow, as technologists naively hold. Being a christian, the author believes that the Bible can show us a way out, even as to these energy problems. (G.J.P.)

  18. Risk communication: Nuclear energy

    International Nuclear Information System (INIS)

    Peters, H.P.

    1991-01-01

    The emphasis is put on communication processes, here in particular with regard to nuclear energy. Not so much dealt with are questions concerning political regulation, the constellation of power between those becoming active and risk perception by the population. Presented are individual arguments, political positions and decision-making processes. Dealt with in particular are safety philosophies, risk debates, and attempts to 'channel' all sides to the subject of nuclear energy. (DG) [de

  19. Deliberations about nuclear energy

    International Nuclear Information System (INIS)

    Boskma, P.; Smit, W.A.; Vries, G.H. de; Dijk, G. van; Groenewold, H.J.; Jelsma, J.; Tans, P.P.; Doorn, W. van

    1975-01-01

    This report is a discussion of points raised in three safety studies dealing with nuclear energy. It reviews the problems that must be faced in order to form a safe and practical energy policy with regard to health and the environment (potential hazards, biological effects and radiation dose norms), the proliferation of nuclear weapons, reactor accidents (including their causes, consequences and evacuation problems that arise), the fallout and contamination problems, and security (both reactor security and national security)

  20. Nuclear energy outlook 2008

    International Nuclear Information System (INIS)

    2008-01-01

    With the launch today of its first Nuclear Energy Outlook, the OECD Nuclear Energy Agency (NEA) makes an important contribution to ongoing discussions of nuclear energy's potential role in the energy mixes of its member countries. As world energy demand continues to grow unabated, many countries face serious concerns about the security of energy supplies, rising energy prices and climate change stemming from fossil fuel consumption. In his presentation, the NEA Director-General Luis Echavarri is emphasizing the role that nuclear power could play in delivering cost-competitive and stable supplies of energy, while also helping to reduce greenhouse gas emissions. In one Outlook scenario, existing nuclear power technologies could provide almost four times the current supply of nuclear-generated electricity by 2050. Under this scenario, 1400 reactors of the size commonly in use today would be in operation by 2050. But in order to accomplish such an expansion, securing political and societal support for the choice of nuclear energy is vital. An ongoing relationship between policy makers, the nuclear industry and society to develop knowledge building and public involvement will become increasingly important, the publication notes. Moreover, governments have a clear responsibility to maintain continued effective safety regulation, advance efforts to develop radioactive waste disposal solutions and uphold and reinforce the international non-proliferation regime. The authors find that the security of energy from nuclear power is more reliable than that for oil or gas. Additionally, uranium's high energy density means that transport is less vulnerable to disruption, and storing a large energy reserve is easier than for fossil fuels. One tonne of uranium produces the same energy as 10 000 to 16 000 tonnes of oil using current technology. Ongoing technological developments are likely to improve that performance even more. Until the middle of the century the dominant reactor

  1. Nuclear energy - basis for hydrogen economy

    International Nuclear Information System (INIS)

    Gyoshev, G.

    2004-01-01

    The development of human civilization in general as well as that of every country in particular is in direct relation to the assurance of a cost effective energy balance encompassing all industrial spheres and everyday activities. Unfortunately, the uncontrolled utilization of Earth's energy resources is already causing irreversible damage to various components of the eco-system of the Earth. Nuclear energy used for electricity and hydrogen production has the biggest technological potential for solving of the main energy outstanding issues of the new century: increasing of energy dependence; global warming. Because of good market position the political basis is assured for fast development of new generation nuclear reactors and fuel cycles which can satisfy vigorously increasing needs of affordable and clean energy. Political conditions are created for adequate participation of nuclear energy in the future global energy mix. They must give chance to the nuclear industry to take adequate part in the new energy generation capacity.(author)

  2. A global nuclear safety culture

    International Nuclear Information System (INIS)

    1996-01-01

    The article discusses three components characterizing the infrastructure of a global nuclear safety culture, each one satisfying special needs. These are: (a) legally binding international agreements, which were drawn up at an accelerated pace in the 1980s following the Chernobyl accident, with its transboundary implications; (b) non-binding common safety standards, which were developed rapidly during the 1960s and 1970s, a period which saw a desire for harmonized safety approaches as nuclear power and the use of radiation and radioactive materials expanded globally; and (c) review and advisory services, which are provided by international experts, the need for which was underscored by the accident at Chernobyl. 5 refs, 1 fig

  3. Energy supply - a global problem

    International Nuclear Information System (INIS)

    Barthelt, K.

    1990-01-01

    The text of a speech celebrating the 10 years operation of the nuclear power plant in Goesgen. The author expresses his opinion on the future of nuclear energy, on the responsibility towards the next generation and on the energy supply for the Third World. He draws attention to the gap between north and south and to the limited amount of resources and mention the CO2-problem and the potential of nuclear energy

  4. Nuclear energy and the greenhouse problem

    International Nuclear Information System (INIS)

    Kemeny, L.G.

    2001-01-01

    Last November - almost in parallel with the Hague Meeting on Climate Change - more than 1,500 of the world's top nuclear scientists and energy technologists met in Washington DC, at the Joint Conference of the American Nuclear Society, the European Nuclear Society, the Nuclear Energy Institute and the International Nuclear Energy Academy. Unlike the United Nations follow up to the Kyoto protocol, which ended in disarray, a note of high optimism and informed realism pervaded the nuclear conference which, among its multiple streams of subject material and papers by international experts, carried the two main themes of Long Term Globally Sustainable Energy Options and Nuclear Energy and the Greenhouse Problem. This paper considers the immense contribution to Greenhouse gas emission minimisation made by nuclear energy in 1999. In that year the global electricity production by the world's 435 nuclear power stations was 2,398 TWh or 16% of total electricity generation or 5% of total primary energy production. The amount of avoided carbon dioxide emission because of the use of nuclear energy in 1999 was 2.4 billion tonnes. This is 10% of total emissions. Japan's 54 nuclear power stations alone save the equivalent of Australia's total Greenhouse emissions. The secret of this success is Australia's uranium fuel

  5. Progress towards a global nuclear liability regime

    International Nuclear Information System (INIS)

    2014-01-01

    During its April 2014 meeting, the Steering Committee for Nuclear Energy held a policy debate on 'Progress towards a Global Nuclear Liability Regime'. The Steering Committee heard presentations from several experts on nuclear liability issues. To prepare the delegates to the Steering Committee for the policy debate, the NEA Secretariat prepared a background note on the status of the nuclear liability regimes, as well as on current issues and challenges in implementing the regimes. This article is based on the background note and is intended to provide basic information on the relevant international conventions and an overview of recent developments to enhance the understanding of the legal framework in which policy-makers and practitioners are engaging to respond to the call for broader adherence to the international liability instruments. (authors)

  6. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    1979-01-01

    These notes have been prepared by the Department of Energy to provide information and to answer questions often raised about nuclear energy and the nuclear industry and in the hope that they will contribute to the public debate about the future of nuclear energy in the UK. The subject is dealt with under the headings; contribution of nuclear power, energy forecasts, nuclear fuels and reactor types, cost, thermal reactor strategy, planning margin, safety, nuclear licensing, unlike an atomic bomb, radiation, waste disposal, transport of nuclear materials, emergency arrangements at nuclear sites, siting of nuclear stations, security of nuclear installations, world nuclear programmes, international regulation and non-proliferation, IAEA safeguards arrangements in the UK, INFCE, and uranium supplies. (U.K.)

  7. Nuclear energy and the environment

    International Nuclear Information System (INIS)

    El-Hinnawi, E.E.

    1980-01-01

    Chapters are presented concerning the environmental impact of mining and milling of radioactive ores, upgrading processes, and fabrication of nuclear fuels; environmental impacts of nuclear power plants; non-radiological environmental implications of nuclear energy; radioactive releases from nuclear power plant accidents; environmental impact of reprocessing; nuclear waste disposal; fuel cycle; and the future of nuclear energy

  8. Nuclear energy terms

    Energy Technology Data Exchange (ETDEWEB)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy.

  9. Nuclear energy terms

    International Nuclear Information System (INIS)

    1976-01-01

    This is an English-Afrikaans / Afrikaans-English dictionary compiled by the Technical Language Committee of the Atomic Energy Board in collaboration with the Vaktaalburo of the Suid-Afrikaanse Akademie vir Wetenskap en Kuns containing 8515 terms on nuclear energy

  10. Feeding the nuclear pipeline: Enabling a global nuclear future

    International Nuclear Information System (INIS)

    Waltar, Alan E.

    2002-01-01

    Full text: There is nothing more vital to the advancement of human civilization than the abundance of usable and affordable energy. It underpins national security, economic prosperity, and global stability. Nuclear energy, which exhibits a unique combination of environmental and sustainable attributes, appears strongly positioned to play a much larger and more pivotal role in the mix of future global energy supplies than it has played in the past. Unfortunately, after a fairly rapid growth period within the industrialized nations in the 1960 to 1980 time frame, a variety of factors led to a substantial reduction in commercial nuclear power plant construction (with the possible exception of several Pacific Rim countries). This, in turn, led to a serious erosion in the enrollment patterns of nuclear engineering programs - causing alarmingly low enrollment levels in many counties by the turn of the century. Numerous studies conducted over the past five years have soberly come to the consistent conclusion that the nuclear pipeline cannot keep up with the needs of the nuclear industry. In fact, when combining the aging work force with low matriculation rates in most nuclear engineering academic programs, a huge (and unacceptable) mismatch between needs and supply is strikingly evident. This is further exasperated by the lack of meaningful efforts to capture the knowledge of the 'first nuclear era' professionals in a form that can be effectively transferred to the upcoming generation. Methods must be found to better capture the enormous body of experience already accumulated and both document it and then mentor the new nuclear engineers that do enter the work force to enable them to build upon this experience, rather than having to re-create it. On the positive side, enrollment patterns in the majority of nuclear engineering programs still in existence within the United States are now generally on the rise, at least at the undergraduate level. Some programs have

  11. Nuclear energy versus coal

    International Nuclear Information System (INIS)

    Storm van Leeuwen, J.W.

    1980-01-01

    An analysis is given of the consequences resulting from the Dutch government's decision to use both coal and uranium for electricity production. The energy yields are calculated for the total conversion processes, from the mine to the processing of waste and the demolition of the installations. The ecological aspects considered include the nature and quantity of the waste produced and its effect on the biosphere. The processing of waste is also considered here. Attention is given to the safety aspects of nuclear energy and the certainties and uncertainties attached to nuclear energy provision, including the value of risk-analyses. Employment opportunities, the economy, nuclear serfdom and other social aspects are discussed. The author concludes that both sources have grave disadvantages and that neither can become the energy carrier of the future. (C.F.)

  12. Parliament and nuclear energy

    International Nuclear Information System (INIS)

    Laermann, K.H.

    1993-01-01

    The paper provides a historical review of the behaviour of Parliament in the discussion about utilizing nuclear energy. An analysis of the positions taken and reasons advanced so far is necessary, because it is only from its results that promising strategies appropriate to bring about a consensus can be derived. There is no doubt that it is a genuine task of the democratically legitimated bodies to strive for a consensus in energy policy, in particular nuclear energy, in the interest of the whole State, with the legislative, executive and economic bodies combining their efforts. The reservedness of Parliament is regrettable. At the moment, however, there is the positive effect of the discussion being revived. It should be conducted rationally in the joint interest of reaching a political consensus and, on that basis, a broad acceptance of nuclear energy utilization. (orig./HSCH) [de

  13. Nuclear energy and society

    International Nuclear Information System (INIS)

    Baiquni, A.

    1982-01-01

    A great deal of energy will be needed for industrial development. The risks of energy production can be either individual or social in nature. Individual risk occurs in different places and different times to individuals in a certain period of time. Social risk occurs to several people in a time. People tend to refuse a nuclear power plant because of its social risk. This attitude is based more on feelings than reason. In fact radiation from a nuclear power plant is only 0.15% while radiation from medical instruments and from the environment is 99%. From the safety, pollution effect, price, and uses point of view, it can be concluded that nuclear energy is the most appropriate energy to face the future of the nation. (RUW)

  14. World nuclear energy paths

    International Nuclear Information System (INIS)

    Connolly, T.J.; Hansen, U.; Jaek, W.; Beckurts, K.H.

    1979-01-01

    In examing the world nuclear energy paths, the following assumptions were adopted: the world economy will grow somewhat more slowly than in the past, leading to reductions in electricity demand growth rates; national and international political impediments to the deployment of nuclear power will gradually disappear over the next few years; further development of nuclear power will proceed steadily, without serious interruption but with realistic lead times for the introduction of advanced technologies. Given these assumptions, this paper attempts a study of possible world nuclear energy developments, disaggregated on a regional and national basis. The scenario technique was used and a few alternative fuel-cycle scenarios were developed. Each is an internally consistent model of technically and economically feasible paths to the further development of nuclear power in an aggregate of individual countries and regions of the world. The main purpose of this modeling exercise was to gain some insight into the probable international locations of reactors and other nuclear facilities, the future requirements for uranium and for fuel-cycle services, and the problems of spent-fuel storage and waste management. The study also presents an assessment of the role that nuclear power might actually play in meeting future world energy demand

  15. Freedom from nuclear energy myth

    International Nuclear Information System (INIS)

    Kim, Wonsik

    2001-09-01

    This book generalizes the history of nuclear energy with lots of myths. The contents of this book are a fundamental problem of nuclear power generation, the myth that nuclear energy is infinite energy, the myth that nuclear energy overcomes the crisis of oil, the myth that nuclear energy is cheap, safe and clean, the myth that nuclear fuel can be recycled, the myth that nuclear technology is superior and the future and present of nuclear energy problem related radiation waste and surplus of plutonium.

  16. Nuclear Energy in Romania

    International Nuclear Information System (INIS)

    Biro, L.

    2003-01-01

    The new energy approach towards nuclear, due to the growing political support at the beginning of this century, is the result of a complexity of economical, social, political and technological factors. The history of peaceful use of nuclear energy in Romania goes back 45 years. Considering the strategic importance of the energy sector in developing the national economy on sustainable basis, the sector evolution should be outlined through prognosis and strategies on different horizons of time, so that the development perspectives and the energy supply to be correctly estimated. This necessity is emphasized in the Governmental Program of the present administration, which takes into consideration Romanian Economic Strategy on medium term and also The Government Action Plan on 2000-2004, agreed with the European Commission. In order to implement the Governmental Program, the Ministry of Industries and Resources elaborates the National Energy Strategy. The Government Action Plan draw up the conclusion that Unit 2 from Cernavoda NPP must be finalized. This solution fits the least-cost energy development planning and answers to environment requirements. Romania became a Member State of the Agency in 1957. From the mid-1960s to the mid-1970s its technical co-operation program with the Agency covered mainly research in nuclear physics and some medical and other applications of radiation and isotopes. Since 1976, when the Romanian nuclear power program was embarking to use CANDU-type reactors, the Agency has supported mainly the activities related to the Cernavoda NPP. In the framework of the Romanian accession process to the European structures, CNCAN co-operates with European Commission for transposition of the communautaire acquis in the field of nuclear activities. Romania has had laws in place governing the regulation of nuclear activities since 1974. They were remained in force throughout and subsequent to the national constitutional changes started in 1989 until 1996

  17. Nuclear energy is promising

    International Nuclear Information System (INIS)

    Spitz, H.

    2000-02-01

    This document summarizes the different talks given by the participants to the winter meeting on nuclear energy which took place in Germany on January 27 and 28 2000. Representatives of the following companies and organisations attended the meeting: Deutsches Atomforum e.V., Bayernwerk AG, IG Bergau, Chemie und Energie, Siemens AG - energy production, VEBA AG and one public opinion poll institute. (J.S.)

  18. White paper on nuclear energy, 1996

    International Nuclear Information System (INIS)

    1996-01-01

    Japan has scant energy resources, and more than 80% of its energy demand depends on other countries. The energy problem should be considered not only from the domestic viewpoint of energy supply and demand but also from the global viewpoint. Japanese nuclear power generation accounts for about 30% of its total electric power. The main strategy of Japan is to secure stable energy supply through the establishment of nuclear fuel cycle, and to efficiently use the plutonium and residual uranium recovered from spent nuclear fuel. The sodium leakage from the prototype FBR 'Monju' in December, 1995 raised the anxiety about the nuclear policy. People living in Japan should be assured the peace of mind about the development and utilization of nuclear energy. Regarding coexistence of nuclear energy and people, stronger demand of clearer reflection of public opinion to nuclear policy, holding of the round table conferences on nuclear policy, various efforts toward the coexistence of nuclear energy and people and so on are discussed. The development and utilization of nuclear energy in Japan and overseas are reported on nuclear nonproliferation, safety assurance, information disclosure, present and future of nuclear power generation, international cooperation and others. (K.I.)

  19. Nuclear energy and process heating

    Energy Technology Data Exchange (ETDEWEB)

    Kozier, K.S

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a

  20. Nuclear energy and process heating

    International Nuclear Information System (INIS)

    Kozier, K.S.

    1999-10-01

    Nuclear energy generated in fission reactors is a versatile commodity that can, in principle, satisfy any and all of mankind's energy needs through direct or indirect means. In addition to its dominant current use for electricity generation and, to a lesser degree, marine propulsion, nuclear energy can and has been used for process heat applications, such as space heating, industrial process heating and seawater desalination. Moreover, a wide variety of reactor designs has been employed to this end in a range of countries. From this spectrum of experience, two design approaches emerge for nuclear process heating (NPH): extracting a portion of the thermal energy from a nuclear power plant (NPP) (i.e., creating a combined heat and power, or CHP, plant) and transporting it to the user, or deploying dedicated nuclear heating plants (NHPs) in generally closer proximity to the thermal load. While the former approach is the basis for much of the current NPH experience, considerable recent interest exists for the latter, typically involving small, innovative reactor plants with enhanced and passive safety features. The high emphasis on inherent nuclear safety characteristics in these reactor designs reflects the need to avoid any requirement for evacuation of the public in the event of an accident, and the desire for sustained operation and investment protection at minimum cost. Since roughly 67% of mankind's primary energy usage is not in the form of electricity, a vast potential market for NPH systems exists, particularly at the low-to-moderate end-use temperatures required for residential space heating and several industrial applications. Although only About 0.5% of global nuclear energy production is presently used for NPH applications, an expanded role in the 21st century seems inevitable, in part, as a measure to reduce greenhouse gas emissions and improve air quality. While the technical aspects of many NPH applications are considered to be well proven, a determined

  1. Development of a model for strategic evaluation of the global performance of the Brazilian Nuclear Energy Commission

    International Nuclear Information System (INIS)

    Staude, Fabio

    2003-01-01

    A conscious, effective course of action, now essential to several areas and organizations, has become a must in the public administration. In this sense, modem managerial practices may contribute significantly for governmental organism to take up an attitude shifted to results in the society, without losing its eminently public function. In order to measure the social impact of the activities of the State as a whole, institutions must use mechanisms that allow self-evaluations of their performance, so as to verify the return obtained as a result of their efforts. However, most institutions do not have structured tools for such evaluation. The present study proposes to the Comissao Nacional de Energia Nuclear a model to measure its global performance, offering a proposed architecture for the measurement system in accordance with the results of the planning process of the Institution. The methodology presented also comprises the definition of cause-and-effect critical models between the strategic objectives of the organization and its respective factors critic ai for success, as well as related performance indicators. This work also includes the breakdown of the measurement system for the macro processes of the organization, optimizing resource sharing and the flow of information, avoiding redundant efforts and bringing forth further advantages aiming at creating a organizational 'unit'. Within this context, the developed model may offer substantial help for the improvement of the maturity of the organization in goal-oriented management, considering that the proposed global performance measurement follows a planned structure, with a systemic approach of the organization, allowing that the process be carried out in a way that is transparent and objective. (author)

  2. Nuclear hybrid energy infrastructure

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Vivek; Tawfik, Magdy S.

    2015-02-01

    The nuclear hybrid energy concept is becoming a reality for the US energy infrastructure where combinations of the various potential energy sources (nuclear, wind, solar, biomass, and so on) are integrated in a hybrid energy system. This paper focuses on challenges facing a hybrid system with a Small Modular Reactor at its core. The core of the paper will discuss efforts required to develop supervisory control center that collects data, supports decision-making, and serves as an information hub for supervisory control center. Such a center will also be a model for integrating future technologies and controls. In addition, advanced operations research, thermal cycle analysis, energy conversion analysis, control engineering, and human factors engineering will be part of the supervisory control center. Nuclear hybrid energy infrastructure would allow operators to optimize the cost of energy production by providing appropriate means of integrating different energy sources. The data needs to be stored, processed, analyzed, trended, and projected at right time to right operator to integrate different energy sources.

  3. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Ekener, H.

    1997-01-01

    It examines the technical, scientific and legal issues relating to the peaceful use of atomic energy in Turkey. The first fifteen chapters give a general overview of the atom and radioactivity; the chapters which follow this section are more technical and deal with the causes of nuclear accidents in reactors.A number of chapters cover legal issues, for example the conditions and procedures involved in the insurance market and the risks linked to operation of a nuclear power plant.The following subjects are examined in relation to nuclear insurance: risks during construction; fire during operation of the plants and other causes of accidents; risks due to the transport of radioactive materials and waste etc. The final chapters reproduce the principle legislative texts in force in Turkey in the field of nuclear energy, and also certain regulations which establish competent regulatory bodies

  4. Energy supply and nuclear energy

    International Nuclear Information System (INIS)

    Heitzer, H.

    1977-01-01

    The author emphasizes the necessity and importance of nuclear energy for the energy supply and stresses the point that it is extremely important to return to objective arguments instead of having emotional disputes. In this connection, it would be necessary for the ministries in question to have clear-cut political responsibility from which, under no circumstances, they may escape, and which they cannot pass on to the courts either. Within the framework of listing present problems, the author is concerned with the possibility of improved site planning, the introduction of a plan approval procedure and questions concerning immediately enforceable nuclear licences. He also deals with a proposal, repeatedly made, to improve nuclear licensing procedures on the one hand by introducing a project-free site-appointment procedure, and on the other hand by introducing a simplified licensing procedure for facilities of the same kind. Splitting the procedure into site and facility would make sense solely for the reason that in many cases the objections are, above all, directed against the site. (HP) [de

  5. Alternatives to nuclear energy

    International Nuclear Information System (INIS)

    Terrado, E.N.

    1981-01-01

    This article discusses several possibilities as alternatives to nuclear energy and their relevance to the Philippine case. The major present and future fuel alternatives to petroleum and nuclear energy are coal, geothermal heat, solar energy and hydrogen, the first two of which are being used. Different conversion technologies are also discussed for large scale electricity production namely solar thermal electric conversion (STC), photovoltaic electric power system (PEPS) and ocean thermal energy conversion (OTEC). Major environmental considerations affect the choice of energy sources and technologies. We have the problem of long term accumulation of radioactive waste in the case of nuclear energy; in geothermal and fossil-fuels carbon dioxide uranium and accumulation may cause disastrous consequences. With regard to Philippine option, the greatest considerations in selecting alternative energy options would be resources availability - both energy and financial and technology status. For the country's energy plan, coal and geothermal energy are expected to play a significant role. The country's coal resources are 1.4 billion metric tons. For geothermal energy, 25 volcanic centers were identified and has a potential equivalent to 2.5 x 10 6 million barrels of oil. Solar energy if harnessed, being in the sunbelt, averaging some 2000 hours a year could be an energy source. The present dilemma of the policy maker is whether national resources are better spent on large scale urban-based energy projects or whether those should be focused on small scale, rural oriented installations which produced benefits to the more numerous and poorer members of the population. (RTD)

  6. Nuclear energy and environment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-12-31

    The film stresses that a drastic reduction in carbon dioxide emissions, mainly from the burning of fossil fuels, must be achieved to limit a dangerous concentration of greenhouse gases in the atmosphere. It compares the environmental costs of different energy sources, in particular the wastes of a coal-fired versus a nuclear plant, and mentions the measures taken to reinforce protection against the risk of nuclear accidents

  7. Teachers and nuclear energy

    International Nuclear Information System (INIS)

    1994-01-01

    The aims of the seminar were: to exchange national experience in informing and assisting teachers in the nuclear field, and to determine the conditions for improving the effectiveness of these programmes; to develop an international understanding on the basic training and information requirements to assist secondary-school teachers in discussing nuclear energy in an appropriately wide and balanced context at school; to study the respective contributions of national authorities, industry and relevant institutes in this endeavour

  8. International nuclear energy guide

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The aim of this French-English bilingual Guide is to present a synthesis embracing all the aspects and all the implications of the development of nuclear energy by situating it both within the French administrative and professional framework and in the world context. Special attention has been paid to the protection of man and the environment and to safety and security problems; most of the other questions -technological, economic, industrial- which arise at all points in the nuclear cycle. Teaching and research are outlined and a special appendix is devoted to nuclear information [fr

  9. Nuclear energy in Finland

    International Nuclear Information System (INIS)

    Kilpi, K.; Palmen, B.

    1983-01-01

    Finland currently generates about 40% of its electricity from nuclear power. This achievement of worldwide record magnitude is based on long-lasting efforts to build and maintain the competent infrastructure and close international cooperation required by this demanding technology. This booklet published by the Finnish Atomic Energy Commission gives an overview of nuclear energy and related organizations in Finland. It describes the utility companies and nuclear power production, the manufacturing industry and its export potential, research and educational activities and the legal framework and authorities for nuclear safety and administration. International cooperation has been essential for Finland in developing its nuclear energy capacity and appreciation is espressed to many countries and international organizations which have contributed to this. At the same time Finnish organizations are willing to share the experiences and know-how they have gained in building nuclear power in a small country. This is a road which will be followed by many other countries in the decades to come. It is hoped that this booklet will also help to open new channels of cooperation in such efforts

  10. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  11. French nuclear energy policy

    International Nuclear Information System (INIS)

    Ferrari, A.; Bertel, E.

    1980-11-01

    The French energy policy is supported by a lucid view of the situation of our country and the constraints linked to the international context. This statement implies, the definition of a French policy or energy production essentially based on national resources, uranium, and especially for long term, technical know how which allows using plutonium in breeder reactors. This policy implies an effort in R and D, and industrial development of nuclear field, both in reactor construction and at all levels of fuel cycle. This coherent scientific and financial effort has been pursued since the beginning of years 60, and has placed France among the first nuclear countries in the world. Now this effort enables the mastership of a strong nuclear industry capable to assure the energy future of the country [fr

  12. Nuclear energy and development

    International Nuclear Information System (INIS)

    1991-01-01

    Today, about 80 developing countries are using nuclear techniques in various sectors of their national economies. In the sector of industry, the radiation processing using gamma rays of high energy electrons has grown. While in the sector of health care, an estimated 10000 gamma cameras-imaging instruments are used in combination with radioisotopes in medical diagnosis. In the field of agriculture there is, nearly, 1000 crop varieties derived from radiaton-induced mutations which are grown worldwide. Furthermore and concerning the energy sector there is 417 nuclear power plants operating in 26 countries, accounting for just 16% of the world's total electricity production; the nuclear energy helped in developing and supporting a variety of sciences. 2 tabs

  13. Hydrogen economy and nuclear energy

    International Nuclear Information System (INIS)

    Knapp, V.

    2004-01-01

    Global energy outlooks based on present trends, such as WETO study, give little optimism about fulfilling Kyoto commitments in controlling CO2 emissions and avoiding unwanted climate consequences. Whilst the problem of radioactive waste has a prominence in public, in spite of already adequate technical solutions of safe storage for future hundreds and thousands of years, there s generally much less concern with influence of fossil fuels on global climate. In addition to electricity production, process heat and transportation are approximately equal contributors to CO2 emission. Fossil fuels in transportation present also a local pollution problem in congested regions. Backed by extensive R and D, hydrogen economy is seen as the solution, however, often without much thought where from the hydrogen in required very large quantities may come. With welcome contributions from alternative sources, nuclear energy is the only source of energy capable of producing hydrogen in very large amounts, without parallel production of CO2. Future high temperature reactors could do this most efficiently. In view of the fact that nuclear weapon proliferation is not under control, extrapolation from the present level of nuclear power to the future level required by serious attempts to reduce global CO2 emission is a matter of justified concern. Finding the sites for many hundreds of new reactors would, alone, be a formidable problem in developed regions with high population density. What is generally less well understood and not validated is that the production of nuclear hydrogen allows the required large increases of nuclear power without the accompanied increase of proliferation risks. Unlike electricity, hydrogen can be economically shipped or transported by pipelines to places very far from the place of production. Thus, nuclear production of hydrogen can be located and concentrated at few remote, controllable sites, far from the population centers and consumption regions. At such

  14. Nuclear energy and civilization

    International Nuclear Information System (INIS)

    Soentono, S.

    1996-01-01

    The role of energy is indeed very important since without it there will be no living-things in this world. A country's ability to cultivate energy determines the levels of her civilization and wealth. Sufficient energy supply is needed for economic growth, industrialization, and modernization. In a modern civilization, the prosperity and security of a country depends more on the capability of her people rather than the wealth of her natural resources. Energy supplies the wealth, prosperity and security, and sufficient reliable continuous supply of energy secures the sustainable development. The energy supply to sustain the development has to improve the quality of life covering also the quality of environment to support the ever increasing demand of human race civilization. Energy has a closer relationship with civilization in a modern society and will have to become even closer in the future more civilized and more modern society. The utilization of nuclear energy has, however, some problems and challenges, e.g. misleading information and understanding which need serious efforts for public information, public relation, and public acceptance, and possible deviation of nuclear materials for non-peaceful uses which needs serious efforts for technological and administrative barriers, precaution, prevention, safety, physical protection, safeguard, and transparency. These require cooperation among nuclear community. The cooperation should be more pronounced by heterogeneous growing Asian countries to reach harmony for mutual benefits toward better civilization. (J.P.N.)

  15. Nuclear energy from a viewpoint of women

    International Nuclear Information System (INIS)

    Ogawa, Junko

    2004-01-01

    This is interview with Junko Ogawa, the president of WIN-Global and WIN-Japan. WIN-Japan is a national constitution of WIN-Global, which established in 1993. Three objects of WIN consists of expediting the progress of understanding of nuclear energy for women and children, developing member's ability and increasing international exchange as an international women group. The activity of WIN-Japan and WIN-Global are explained. She told that the nuclear energy is indispensable energy and Japan has to establish atomic fuel cycle as a peaceful cycle. (S.Y.)

  16. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  17. [Intermediate energy nuclear physics

    International Nuclear Information System (INIS)

    1989-01-01

    This report summarizes work in experimental Intermediate Energy Nuclear Physics carried out between October 1, 1988 and October 1, 1989 at the Nuclear Physics Laboratory of the University of Colorado, Boulder, under grant DE-FG02-86ER-40269 with the United States Department of Energy. The experimental program is very broadly based, including pion-nucleon studies at TRIUMF, inelastic pion scattering and charge exchange reactions at LAMPF, and nucleon charge exchange at LAMPF/WNR. In addition, a number of other topics related to accelerator physics are described in this report

  18. Society response to nuclear energy

    International Nuclear Information System (INIS)

    Santamaria, N. C.

    2007-01-01

    . For this reason, it is very important to tell the truth to public opinion leaving out tendentious and demagogic positions. The energetic future will be based on nuclear fusion, since one of its fuels is deuterium, found in the water and accessible to any country in the world. Nuclear fusion is the best alternative to the present dependence of primary energies based on fossil fuel sources. This paper presents different alternatives to improve the image of nuclear energy among population in a moment in which several countries present an onset of crisis in the energetic sector due to the economic growth. The fact is that the demand may start to be overcome by the offer and this circumstance, together with the global warming of our planet as reported by the United Nations, have provoked a new perspective in the debate of boosting nuclear energy as a fundamental source because it is ecologically and economically sound

  19. The nuclear energy debate

    International Nuclear Information System (INIS)

    Rippon, S.

    1976-01-01

    With reference to the public discussion which is taking place at the moment concerning the future of nuclear energy in the UK, the document from the Advisory Council on Research and Development for Fuel and Power and also the report of the Royal Commission on Environmental Pollution are considered. Although there have been many other projections of UK and world energy requirements prepared by many different organisations, few cover such a wide range of scenarios in such detail as the ACORD report. The Royal Commission report contains many reassuring findings on the more extreme claims of the worldwide anti-nuclear movement, but one cannot read it without gaining the impression that the nuclear option is the energy source they would most like to do without. It is felt that against this background, it would seem to be time for the power industry to stop defending nuclear energy as an acceptable necessity and rather promoting it as the best energy option. (U.K.)

  20. The geometry of nuclear energy

    International Nuclear Information System (INIS)

    Robertson, J.A.L.

    1992-01-01

    In a personal assessment of the ethics of nuclear energy, the author challenges some of the conventional wisdom surrounding the subject, and concludes that for many applications nuclear energy is the energy source of ethical choice

  1. Nuclear energy + solar energy, why not?

    International Nuclear Information System (INIS)

    Hernandez C, I.; Nelson E, P.

    2016-09-01

    Clean energies such as nuclear and solar are part of the solution to the energy dependence that we face today and also help us to reduce the greenhouse gas emissions, thus avoiding a global average temperature increase that is irreversible and harmful to all living beings on the planet. Independently the nuclear and solar energies have had a great development in recent years, so in this work we set ourselves the task of creating a synergy between them. First, we conducted a survey of different people involved in the area of energy (energy efficiency, clean energy and renewable sources) in order to know if the area of which they are part influences with respect to the impression that they have of safety in terms of supply, return on investment and safety to the health and environment of another energy source for which we use a correlation analysis. With the results obtained we propose to use photo thermic solar energy as a support to reduce the frequency of accidents by station blackout and we perform the analysis of the combination using the methodology of Probabilistic Analysis of Security with the help of SAPHIRE 7 software to realize the event trees by station blackout of a nuclear power plant and faults for a photo-thermal solar plant. Finally, the decrease in the probability of station blackout from the proposed combination is quantified. The results were favorable to indicate that the probability of station blackout is reduced in half and that is why is suggested to continue studying the combination. (Author)

  2. Worldwide energy prospects and nuclear contribution

    International Nuclear Information System (INIS)

    1999-04-01

    With a growing up worldwide population and a better standard of living, the global energy consumption will rise. The CO 2 emissions will increase too because of todays share of fossil fuels in the energy sources. This paper analyzes the possible contribution of nuclear energy in this context: economical and environmental aspects, political aspects (distribution of energy resources, energy dependence), energy efficiency, reduction of CO 2 emissions. (J.S.)

  3. Special symposium for the IAEA 50th anniversary: Global challenges for the future of nuclear energy and the IAEA

    International Nuclear Information System (INIS)

    2007-01-01

    The objective of the symposium was to review the 50 years history of the activities of the IAEA and the current status of nuclear power and fuel cycle in the world and discuss the future vision regarding development and safety of nuclear power and fuel cycle and international cooperation. Topics covered were nuclear power and fuel cycle, nuclear safety and security, non proliferation, and national, regional, and IAEA's challenges for the future

  4. Nuclear energy and nuclear technology in Switzerland

    International Nuclear Information System (INIS)

    Graf, P.

    1975-01-01

    The energy crisis, high fuel costs and slow progress in the development of alternative energy sources, e.g. solar energy have given further impetus to nuclear power generation. The Swiss nuclear energy programme is discussed and details are given of nuclear station in operation, under construction, in the project stage and of Swiss participation in foreign nuclear stations. Reference is made to the difficulties, delays and resulting cost increases caused by local and regional opposition to nuclear power stations. The significant contributions made by Swiss industry and Swiss consulting engineers are discussed. (P.G.R.)

  5. Nuclear energy and communication

    International Nuclear Information System (INIS)

    1998-01-01

    This article contains information related to the support that the Latin-American countries have counted, from the International Atomic Energy Agency, for the development and application of the nuclear energy in different fields. In the particular case of Costa Rica, it mentions some projects included in the program ARCAL. The achievements reached in the year 1998 and the goals proposed for 1999-2000. (S. Grainger) [es

  6. High energy nuclear excitations

    International Nuclear Information System (INIS)

    Gogny, D.; Decharge, J.

    1983-09-01

    The main purpose of this talk is to see whether a simple description of the nuclear excitations permits one to characterize some of the high energy structures recently observed. The discussion is based on the linear response to different external fields calculated using the Random Phase Approximation. For those structure in heavy ion collisions at excitation energies above 50 MeV which cannot be explained with such a simple approach, we discuss a possible mechanism for this heavy ion scattering

  7. Vision of nuclear energy

    International Nuclear Information System (INIS)

    1987-01-01

    A study about the perspectives of nuclear energy, in Japan, for the next 40 years is shown. The present tendencies are analyzed as well as the importance that the subject adquires for the economy and the industry. At the same time, the parameters of the governmental, private and foreign participation are established in the frame of the technological development. The aim fixed for the year 2030 can be divided into; 1: from 1986 to 2010-development of the technology of nuclear fuel cycle already stablished and in process of maturity. The LWR technology will reach a very advanced stage. The fast breeder reactors (FBRs) will become commercially available, and the nuclear fuel cycle will reach its maturity in Japan; 2: from 2011 to 2030-commercial use of the FBRS and further advance in the nuclear fuel cycle. (M.E.L.) [es

  8. The development of global energy supply as a succession of energy-related innovation processes. A qualitative model approach to assess the use of nuclear power; Die Entwicklung globaler Energieversorgung als Abfolge energietechnischer Innovationsprozesse. Ein qualitativer Modellansatz zur historischen Einordnung der Kernenergie

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Dieter

    2017-04-15

    Often, the development of the world energy supply is adopted as a painful sequence of the exhaustible and polluting use of primary energy sources. Therefore the expectations in practically inexhaustible and environmentally neutral renewable energy sources are high. However, in fact, it depends on the available production, conversion, and utilization technology, which sources of energy are suitable to meet given demands and requirements. In particular, the development of the energy demand requires energy technology innovations to use new energy sources, to use known energy sources more efficient and to replace exhaustible energy sources at an early stage by others. The historical development of the global energy supply is a sequence of interrelated energy technology innovation processes. This makes it also possible, to analyse the historical development of nuclear power and to derive a model on the future role of nuclear power worldwide.

  9. Nuclear energy related research

    International Nuclear Information System (INIS)

    Toerroenen, K.; Kilpi, K.

    1985-01-01

    This research programme plan for 1985 covers the nuclear energy related research planned to be carried out at the Technical Research Centre of Finland (VTT) and funded by the Ministry of Trade and Industry in Finland, the Nordic Council of Ministers and VTT

  10. Nuclear energy and German foreign policy

    International Nuclear Information System (INIS)

    Kaiser, K.

    1979-01-01

    The author shows that the present foreign-policy situation with regard to the nuclear-energy complex is due to political and energy-policy origins. He is further of the opinion that the expansion of nuclear energy - in spite of internal political difficulties - will continue in the long term. Hence breeders and reconditioning will become realities. For German foreign policy this means that it must also carry responsibilities on a global scale in this respect. (orig.) [de

  11. Nuclear energy in Turkey. Recent developments

    International Nuclear Information System (INIS)

    Alper, Z.

    2014-01-01

    Full text : The global demand for electricity is rapidly increasing. There is growing uncertainty in regard to the supply and prices of oil and natural gas. These considerations have opened new prospects for the development of nuclear energy on a global state. Despite the negative impact of the Fukushima Daichi accident, still some countries are considering or have expressed interest in developing nuclear power programmes. As the country using nuclear technology is primarily responsible for safety and as operational safety cannot be out sourced, building of sound safety expertise and strong safety culture is an essential precondition for the country introducing nuclear technology. Turkey's energy policy is naturally focused on the security, sustainability and competitiveness of energy supply. It is designed to sustain targeted economic and social growth in the long run. Turkey remains resolutely committed to the goal of ensuring safe, secure and peaceful utilization of nuclear energy

  12. Towards a global nuclear safety culture

    International Nuclear Information System (INIS)

    Rosen, M.

    1997-01-01

    This paper discusses the evolution of the global nuclear safety culture and the role in which the IAEA has played in encouraging its development. There is also a look ahead to what the future challenges of the world-wide nuclear industry might be and to the need for a continued and improved global nuclear safety culture to meet these changing needs. (Author)

  13. Future development of nuclear energy systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Nuclear energy development in Japan has passed about 30 years, and reaches to a step to supply about 35 % of total electric power demand. However, together with globalization of economic and technical development, its future progressing method is required for its new efforts. Among such conditions, when considering a state of future type nuclear energy application, its contribution to further environmental conservation and international cooperation is essential, and it is required for adoption to such requirement how it is made an energy source with excellent economics.The Research Committee on 'Engineering Design on Nuclear Energy Systems' established under recognition in 1998 has been carried out some discussions on present and future status of nuclear energy development. And so forth under participation of outer specialists. Here were summarized on two year's committee actions containing them and viewpoints of nuclear industries, popularization of nuclear system technology, and so forth. (G.K.)

  14. Intermediate energy nuclear fission

    International Nuclear Information System (INIS)

    Hylten, G.

    1982-01-01

    Nuclear fission has been investigated with the double-kinetic-energy method using silicon surface barrier detectors. Fragment energy correlation measurements have been made for U, Th and Bi with bremsstrahlung of 600 MeV maximum energy. Distributions of kinetic energy as a function of fragment mass are presented. The results are compared with earlier photofission data and in the case of bismuth, with calculations based on the liquid drop model. The binary fission process in U, Yb, Tb, Ce, La, Sb, Ag and Y induced by 600 MeV protons has been investigated yielding fission cross sections, fragment kinetic energies, angular correlations and mass distributions. Fission-spallation competition calculations are used to deduce values of macroscopic fission barrier heights and nuclear level density parameter values at deformations corresponding to the saddle point shapes. We find macroscopic fission barriers lower than those predicted by macroscopic theories. No indication is found of the Businaro Gallone limit expected to occur somewhere in the mass range A = 100 to A = 140. For Ce and La asymmetric mass distributions similar to those in the actinide region are found. A method is described for the analysis of angular correlations between complementary fission products. The description is mainly concerned with fission induced by medium-energy protons but is applicable also to other projectiles and energies. It is shown that the momentum and excitation energy distributions of cascade residuals leading to fission can be extracted. (Author)

  15. The church and nuclear energy

    International Nuclear Information System (INIS)

    Phillips, G.O.

    1978-03-01

    The subject is covered in sections, entitled: foreword (explaining that report is a synopsis of the Hearing on Nuclear Energy arranged by the World Council of Churches, held in Sigtune, Sweden, June 24 to 29, 1975); humanity's energy needs); alternative sources of energy (nuclear fission, nuclear fusion, non-nuclear processes; some generalisations (concerning the advantages and disadvantages of nuclear energy to various sections of the world); what risks are acceptable (radiation hazards, reactor safety, radioactive wastes, misuse of Pu, safeguarding); nuclear weapons; nuclear energy - a challenge to the Churches; social and ethical issues; certain conclusions; postscript -the American move. (U.K.)

  16. India's nuclear energy programme: prospects and challenges

    International Nuclear Information System (INIS)

    Gupta, Arvind

    2011-01-01

    India has announced ambitious plans to expand its nuclear energy programme nearly 15 fold in the next 20 years, from the current 4,500 MWe to about 62,000 MWe by 2032. By 2020, India's Department of Atomic Energy (DAE) plans to install 20,000 MWe of nuclear power generation capacity (the fifth largest in the world). The department has plans beyond 2030 too. According to these plans India will have the capacity to produce 275 GWe (Giga Watt of electricity) of nuclear power by the year 2052. The DAE's projections are summarised. This is a truly ambitious plan. Without sufficient quantities of energy, India cannot hope to become a global power. Its dream of registering eight to nine per cent economic growth per annum will remain just that, a dream. Even with such ambitious plans on the nuclear energy front, the share of nuclear power in the overall energy mix will remain small. Currently nuclear energy constitutes only about three per cent of the total energy consumed in India. If the current projections are realised, the share of nuclear energy in the total energy output will still be about 20 per cent. India takes pride in its nuclear programme. Over the years, successive governments have fully supported the DAE's plans. This support is likely to continue in the future. In fact, following the Indo-US civil nuclear deal and the Nuclear Suppliers Group (NSG) waiver in 2008, the mood in India has turned upbeat. India is now getting integrated into the global nuclear regime even though it has not signed the Nuclear Non Proliferation Treaty (NNPT). The NSG waiver has, however, allowed India to enter into civil nuclear cooperation with several countries

  17. Department of Nuclear Energy

    International Nuclear Information System (INIS)

    2002-01-01

    Full text: The activities of Department was engaged in the selected topics in nuclear fission reactor science and engineering. Present and future industry competitiveness, economic prosperity and living standards within the world are strongly dependent on maintaining the availability of energy at reasonable prices and with security of supply. Also, protection of man and the environment from the harmful effects of all uses of energy is an important element of the quality of life especially in Europe. It is unrealistic to assume that the technology for renewable (hydro, wind, solar and biomass) available within a 20-30 year perspective could provide the production capacity to replace present use of nuclear power and at the same time substantially reduce the use of fossil fuels, especially when considering that energy demand in industrialized countries can be expected to continue to increase even within a framework of overall energy conservation and continued improvement of efficiency in energy usage. In the area of nuclear fission, we continue support to maintain and develop the competence needed to ensure the safety of existing and future reactors and other nuclear installations. In addition support is given to explore the potential for improving present fission technology from a sustainable development point of view. The focus on advanced modelling of improved reactor and fuel cycle concepts, including supporting experimental research, with a view to improving the utilisation of the inherent energy content of uranium and other nuclear fuels, whilst at the same time reducing the amount of long-lived radioactive waste produced. A common scientific understanding of the frequently used concept of ''reasonable assurance of safety'' for the long-term, post-closure phase of repositories for spent fuel and high-level waste developed in order to ensure reasonably equivalent legal interpretations in environmental impact assessment and licensing procedures. Also, research is

  18. Is nuclear energy acceptable

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1977-01-01

    Nuclear hazards are assessed as being unique only in the sense of their unfamiliarity, with future development of nuclear energy dependent on overcoming public fears. Economics is clearly in favor of properly operated nuclear energy facilities for long-term power generation. Risks arise over the potential for human error to permit improper operation and for an industry shutdown because of a reactor accident. Attempts to ascertain accident probabilities have revealed that emergency core cooling systems and containment are not simply parallel, but operate in series and provide more safety than was thought. Insurance liability, resting on the small probability of very costly damage, is felt to be best placed on the utility with the government providing ultimate protection in the event of a potentially bankrupting accident. Problems of nuclear waste handling and low-level release are felt to be solvable with present technology. Proliferation is felt to be a political problem that is incidental to power plants. Public concern is blamed on possible diversion of materials for weapons, unfamiliarity with radiation, and the demand for meticulous handling of materials and operations. Burner reactors are projected to phase out and be replaced by breeder reactors that are operated in physical isolation under strict security by a professional cadre aware of its responsibility. A restructuring of the nuclear industry is called for so that the generation of power can be insulated from the distribution and marketing functions. (13 references)

  19. West Europe without Nuclear Energy

    International Nuclear Information System (INIS)

    1999-01-01

    This document contains basic conclusions of discussion if West Europe can exist without nuclear energy: 1. Presumptions for the nuclear energy removal 2. Regional and international consulting 3. Economic competition 4. Role of the nuclear energy 5. Situation in the energetic industry 6. Costs, safety and public relations 7. Energy policy

  20. Development of an Integrated Global Energy Model

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1999-01-01

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E 3 ) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term (approximately2,100) context. The E 3 model so developed was applied to create a Los Alamos presence in this E 3 area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E 3 model have been presented at a variety of national and international conferences and workshops. Through use of the E 3 model Los Alamos was afforded the opportunity to participate in a multi-national E 3 study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E 3 model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project

  1. Nuclear energy and radiation

    International Nuclear Information System (INIS)

    Myers, D.K.; Johnson, J.R.

    1980-01-01

    Both the light water reactor and the Canadian heavy water reactor systems produce electricity cheaply and efficiently. They produce some fissionable byproducts, which can be recycled to extend energy sources many-fold. Besides the production of electrical power, the nuclear industry produces various radioistopes used for treatment of cancer, in diagnostic procedures in nuclear medicine, in ionization smoke detectors, and as radioactive tracers with various technological applications including the study of the mechanisms of life. The increment in environmental radiation levels resulting from operation of nuclear power reactors represents a very small fraction of the radiation levels to which we are all exposed from natural sources, and of the average radiation exposures resulting from diagnostic procedures in the healing arts. The total health hazard of the complete nuclear power cycle is generally agreed to be smaller than the hazards associated with the generation of an equal amount of electricity from most other currently available sources of energy. The hazards from energy production in terms of shortened life expectancy are much smaller in all cases than the resulting increase in health and life expectancy. (auth)

  2. Global status of nuclear power and the needed human resources

    International Nuclear Information System (INIS)

    Bernido, Corazon C.

    2009-01-01

    According to projections of the OECD/IEA, the world energy demand will expand by 45% from now until 2030, with coal accounting for more than a third of the overall rise. To reduce greenhouse gases and mitigate climate change, many countries are resorting to renewables and nuclear power. Some statistics about nuclear energy in the global energy mix and about nuclear power plants worldwide, as well as the energy situation in the country are presented. According to sources from the Department of Energy on the Philippine Energy Plan, nuclear power is a long-term energy option and will likely enter the energy mix by 2025. Preparation of the infrastructure for nuclear power has to start ten to fifteen years before the first plant comes online. The needed human resources, the education and training required are present. (Author)

  3. Nuclear energy, the climate and nuclear disarmament

    International Nuclear Information System (INIS)

    Knapp, V.

    1998-01-01

    The main concern of Pugwash, with very good reason, is nuclear disarmament, but a negative attitude towards nuclear energy is not only futile, but counterproductive as it misses opportunities to appropriately influence its development. Since nuclear energy cannot be abandoned for ecological (decrease in greenhouse gases emission) and economic reasons as a long term energy source, then efforts should be devoted to make it safe from proliferation, which is possible from scientific and technological point of view

  4. Nuclear energy and nuclear weapons proliferation

    International Nuclear Information System (INIS)

    1989-01-01

    A summary of the report dispatched in the middle of 1978 by the Atlantic Council of United States, organized by North American citizens, is presented. The report considers the relation between the production of nucleoelectric energy and the capacity of proliferation of nuclear weapons. The factors which affect the grade of proliferation risk represented by the use of nuclear energy in the world comparing this risk with the proliferation risks independently of nuclear energy, are examined. (M.C.K.) [pt

  5. 2007 Global Energy Survey

    Energy Technology Data Exchange (ETDEWEB)

    Lauzon, Jean-Claude; Preng, Richard; Sutton, Bob; Pavlovic, Bojan

    2007-06-15

    The World Energy Council (WEC), in partnership with Korn/Ferry International undertook a survey focussing on the topic ''Tackling the Three S's: Sustainability, Security and Strategy.'' More than 50 senior executives from the world's leading energy companies and their strategic suppliers were interviewed by Korn/Ferry International.

  6. Public acceptance of nuclear energy

    International Nuclear Information System (INIS)

    Reis, J.S.B.

    1984-01-01

    Man, being unacquainted with the advantages of Nuclear Energy associates it with the manufacture of weaponry. However, the benefits of Nuclear Energy is received daily. In Brazil the public has not taken an anti-nuclear position; it is recognized that the Nuclear Plan exists exclusively for peaceful purposes and the authorities keep the community well informed. The Comision Nacional de Energia Nuclear along with the Instituto de Radioproteccion y Dosimetria, Instituto de Ingenieria Nuclear and the Instituto de Investigaciones Energeticas y Nucleares has developed in 27 years of existence, a gradual, accute and effective long term programme for the formation of potentially receptive opinion of Nuclear Energy. (Author)

  7. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  8. Enhancement of the Public Acceptance of Nuclear Energy

    International Nuclear Information System (INIS)

    Song, K. C.; Jeong, S. M.; Noh, T. W.

    2010-02-01

    To enhance the public acceptance of nuclear energy in Korea we translate the 'The Power to Save the World - The Truth about Nuclear Energy' written by the American novelist Gwyneth Cravens into Korean. 'Power to Save the World' is an eloquent, convincing argument for nuclear power as a safe energy source and an essential deterrent to global warming. To promote national power by keeping nuclear industry healthy, we need to supply the variety of material which enhances the public acceptance of nuclear energy

  9. Nuclear energy as an instrument of economic policy

    International Nuclear Information System (INIS)

    Thiriet, L.

    1984-01-01

    This chapter is a review of how nuclear power can help achieve energy policy objectives, illustrated with examples based on experience in France. It is preceded by a preliminary consideration of the global economic background for the development of nuclear power today. Headings are: introduction; world-wide economic environment; nuclear energy and inflation; nuclear energy and external constraints; nuclear energy, foreign currency and employment in the French context. (U.K.)

  10. The nuclear, an efficient tool against global warming

    International Nuclear Information System (INIS)

    2009-01-01

    Proposing and commenting some extracts of a book by Francis Sorin (Le nucleaire et la planete), this document aims at showing that nuclear energy production is a tool to struggle against global warming because of its low carbon emission. Some assessments of this characteristic are given and discussed, as well as figures on carbon emissions in different western countries. This document also criticises the statements made by ecologists against nuclear energy. The author put nuclear energy at the same level as energy savings and renewable energies, as means to reach the desirable CO 2 saving level

  11. Nuclear energy: a necessary option

    International Nuclear Information System (INIS)

    Robles N, A. G.; Ramirez S, J. R.; Esquivel E, J.

    2017-09-01

    With the decree of the Energy Reform and with the creation of the Electricity Industry and Energy Transition Laws; nuclear energy is incorporated into these as a source of clean energy. Currently, the share of electricity generation using conventional technologies is 80% and clean technologies of 20% of which hydroelectric plants represent 50% of these. While the operation of hydroelectric, wind, solar plants, etc. have contributed to reduce greenhouse gas emissions (GGE), the global effort to mitigate climate change has not observed the expected results, according to the meeting of COP 21 in Paris, where 196 countries agreed, unanimously, to limit the increase of the temperature at 2 degrees Celsius or less for before the year 2100. In Paris, Mexico voluntarily submitted its national mitigation and adaptation contribution to climate change by issuing 162 M ton of CO 2eq as a goal to 2030, that is a ΔGGE of -22%. This means that the electricity sector should contribute to the reduction of 139 M ton of CO 2eq and a ΔGGE of -31%. According to some experts, the goal of reducing gases for the sector could be achieved during the period defined in the Agreement, provided that the share of clean energies is added as established in the Energy Reform and the Development Program of the National Electric System 2016-2030, which establishes the addition of 35,532 MW (62%) of installed capacity in clean technologies, where nuclear energy participates with 4,191 MW (7%) that is, 2,651 MW more. Thus, this article aims to show the importance of the use of nuclear energy in the electricity sector to reduce GGE, achieve international commitments and combat climate change. (Author)

  12. Global Energy Trends - 2016 edition

    International Nuclear Information System (INIS)

    2016-01-01

    : if coal remains at a stable and dominant position (43%), renewable energies (+6 points since 2000) and gas (+3 points) gain market share, mainly against nuclear (-6 points). Investments in renewable energy continue, particularly in Asia. Wind power production becomes significant in the global power mix (4%), while solar PV represents 1%

  13. A global nuclear waste repository

    Science.gov (United States)

    Lin, Wunan

    As a concerned scientist, I think that having a global nuclear waste repository is a reachable goal for human beings. Maybe through this common goal, mankind can begin to treat each other as brothers and sisters. So far, most human activities are framed by national boundaries, which are purely arbitrary. Breaking through these national boundaries will be very beneficial to human beings.Formation of the International Geosphere-Biosphere Program in 1986 indicates a growing awareness on the part of scientists regarding Earth as a system. The Apollo missions gave us a chance to look back at Earth from space. That perspective emphasized that our Earth is just one system: our only home. It is in deed a lonely boat in the high sea of dark space. We must take good care of our “boat.”

  14. A century of nuclear energy

    International Nuclear Information System (INIS)

    Hug, M.

    2009-01-01

    The author proposes a history of the French nuclear industry and nuclear energy since the Nobel prizes of 1903 and 1911. He describes and comments the context of the energy production sector before the development of the nuclear energy, the development of the institutional context, the successive and different nuclear technologies, the main characteristics of the French program at its beginning, the relationship between the nuclear energy and the public, the main accidents and lessons learned from them, the perspectives of evolution of nuclear energy

  15. The Brazilian Nuclear Energy Program

    International Nuclear Information System (INIS)

    Carvalho, H.G. de

    1980-01-01

    A survey is initially of the international-and national situation regarding energetic resources. The Brazilian Nuclear Energy Policy and the Brazilian Nuclear Program are dealt with, as well as the Nuclear Cooperation agreement signed with the Federal Republic of Germany. The situation of Brazil regarding Uranium and the main activities of the Brazilian Nuclear Energy Commission are also discussed [pt

  16. Energy: nuclear energy; Energies: l'energie nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Lung, M. [Societe Generale pour les Techniques Nouvelles (SGN), 78 - Saint-Quentin-en-Yvelines (France)

    2000-11-01

    Convinced that the nuclear energy will be the cleaner, safer, more economical and more respectful of the environment energy of the future, the author preconizes to study the way it can be implemented, to continue to improve its production, to understand its virtues and to better inform the public. He develops this opinion in the presentation of the principal characteristics of the nuclear energy: technology, radioactive wastes, radiation protection, the plutonium, the nuclear accidents, the proliferation risks, the economics and nuclear energy and competitiveness, development and sustainability. (A.L.B.)

  17. Nuclear Energy: Combating Climate Change

    International Nuclear Information System (INIS)

    Keppler, Jan Horst; Paillere, Henri; )

    2015-10-01

    Global electricity demand is expected to increase strongly over the coming decades, even assuming much improved end-use efficiency. Meeting this demand while drastically reducing CO 2 emissions from the electricity sector will be a major challenge. Given that the once-significant expectations placed on carbon capture and storage are rapidly diminishing, and given that hydropower resources are in limited supply, there are essentially only two options to de-carbonise an ever increasing electricity sector: nuclear power and renewable energy sources such as wind and solar PV. Of these two options, only nuclear provides firmly dispatchable base-load electricity, since the variability of wind and solar PV requires flexible back-up that is frequently provided by carbon-intensive peak-load plants. The declining marginal value of electricity production and the security of electricity supply are additional issues that must be taken into account. Nuclear power plants do, however, face challenges due to their large up-front capital costs, complex project management requirements and difficulties in siting. As technologies with high fixed costs, both nuclear power and renewables must respond to the challenge of acquiring long-term financing, since investments in capital-intensive low-carbon technologies are unlikely to be forthcoming in liberalised wholesale markets. In order to substantially de-carbonise the electricity systems of OECD countries, policy-makers must understand the similarities, differences and complementarities between nuclear and renewables in the design of future low-carbon electricity systems. The value of dispatchable low-carbon technologies, such as hydro and nuclear, for the safe and reliable functioning of electricity systems must also be recognised. Should the de-carbonisation of electricity sectors in the wake of COP 21 become a reality, nuclear power might well be the single most important source of electricity by 2050, thanks mainly to the

  18. Full of energy. A vision: The global factor-of-four strategy for mitigating greenhouse gas emissions and opting out of nuclear power

    International Nuclear Information System (INIS)

    Lovins, A.; Hennicke, P.

    1999-01-01

    Here it is at last: A sustainable global energy system. Based on a ''factor-of- four'' approach, the authors, who are experts in all matters of energy systems, explain the evolution of their energy strategy which is fit for global implementation and realization. It is technically feasible, ecologically justifiable, and economically attractive, as it relies on enhanced energy efficiency and enhanced use of renewable energy sources. (orig./CB) [de

  19. Economic Globalization and a Nuclear Renaissance

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Thomas W; Johnson, Wayne L; Parker, Brian M

    2001-10-22

    The phenomenon of globalization has become increasingly well recognized, documented, and analyzed in the last several years. Globalization, the integration of markets and intra-firm competition on a worldwide basis, involves complex behavioral and mindset changes within a firm that facilitate global competition. The changes revolve around efficient information flow and rapid deployment of technology. The objective of this report is to examine the probable characteristics of a global nuclear renaissance and its broad implications for industry structure and export control relative to nuclear technology. The question of how a modern renaissance would affect the trend toward globalization of the nuclear industry is addressed.

  20. Economic Globalization and a Nuclear Renaissance

    International Nuclear Information System (INIS)

    Wood, Thomas W.; Johnson, Wayne L.; Parker, Brian M.

    2001-01-01

    The phenomenon of globalization has become increasingly well recognized, documented, and analyzed in the last several years. Globalization, the integration of markets and intra-firm competition on a worldwide basis, involves complex behavioral and mindset changes within a firm that facilitate global competition. The changes revolve around efficient information flow and rapid deployment of technology. The objective of this report is to examine the probable characteristics of a global nuclear renaissance and its broad implications for industry structure and export control relative to nuclear technology. The question of how a modern renaissance would affect the trend toward globalization of the nuclear industry is addressed

  1. Nuclear energy and insurance

    International Nuclear Information System (INIS)

    Dow, J.C.

    1989-01-01

    It was the risk of contamination of ships from the Pacific atmospheric atomic bomb tests in the 1940's that seems first to have set insurers thinking that a limited amount of cover would be a practical possibility if not a commercially-attractive proposition. One Chapter of this book traces the early, hesitant steps towards the evolution of ''nuclear insurance'', as it is usually called; a term of convenience rather than exactitude because it seems to suggest an entirely new branch of insurance with a status of its own like that of Marine, Life or Motor insurance. Insurance in the field of nuclear energy is more correctly regarded as the application of the usual, well-established forms of cover to unusual kinds of industrial plant, materials and liabilities, characterised by the peculiar dangers of radioactivity which have no parallel among the common hazards of industry and commerce. It had, and still has, the feature that individual insurance underwriters are none too keen to look upon nuclear risks as a potential source of good business and profit. Only by joining together in Syndicates or Pools have the members of the national insurance markets been able to make proper provision for nuclear risks; only by close international collaboration among the national Pools have the insurers of the world been able to assemble adequate capacity - though still, even after thirty years, not sufficient to provide complete coverage for a large nuclear installation. (author)

  2. Glossary of nuclear energy

    International Nuclear Information System (INIS)

    1990-01-01

    TNC 90 focuses on nuclear energy technology. Some more basic or less central terms which were included in the previous glossary, TNC 55, have not been included in this version. About 1200 definitions in swedish included together with translations to english, german and french. The terms have been listed in alphabetical order. To make it easier to look up a certain term or terms that stand for related concepts the terms have been systematically arranged in a special index. (L.E.)

  3. Global power and Brazilian nuclear decisions

    Energy Technology Data Exchange (ETDEWEB)

    Metri, Paulo, E-mail: pmetri@terra.com.br [Clube de Engenharia, Rio de Janeiro, RJ (Brazil)

    2017-07-01

    Brazilian society declares no intention to development a nuclear artifact. This is on its Constitution. The submarine of nuclear propulsion may be used as a weapon of defense and, therefore, has a peaceful objective. Nationalism must be applied only to benefit the society. Nationalist attention has always been devoted, at various occasions, to the Brazilian nuclear sector. However, since Brazilian society has many needs and the Brazilian government always had numerous energy options, this sector has not been developed as it could be. Other successful applications of nuclear technology, besides electric generation, are not considered here. At present, the country is experiencing a moment of harassment of liberal forces. It is difficult to know if the population understands what is going on, due to the traditional media control. This media belongs to the capital. The rise and the fall of the nationalist strand in a country follow a global tendency and also depend of actions of the international capital. In nationalist periods, more decisions with positive social impact are taken. Therefore, sovereignty is necessary to increase the benefits to society. Unfortunately, the Brazilians deceived by the companies of mass communication and corrupt political leaderships allow the country to be dominated. Even the armed forces had their projects paralyzed. The nuclear sector, as all other, suffers with the low budget and the future is difficult to predict. (author)

  4. Global power and Brazilian nuclear decisions

    International Nuclear Information System (INIS)

    Metri, Paulo

    2017-01-01

    Brazilian society declares no intention to development a nuclear artifact. This is on its Constitution. The submarine of nuclear propulsion may be used as a weapon of defense and, therefore, has a peaceful objective. Nationalism must be applied only to benefit the society. Nationalist attention has always been devoted, at various occasions, to the Brazilian nuclear sector. However, since Brazilian society has many needs and the Brazilian government always had numerous energy options, this sector has not been developed as it could be. Other successful applications of nuclear technology, besides electric generation, are not considered here. At present, the country is experiencing a moment of harassment of liberal forces. It is difficult to know if the population understands what is going on, due to the traditional media control. This media belongs to the capital. The rise and the fall of the nationalist strand in a country follow a global tendency and also depend of actions of the international capital. In nationalist periods, more decisions with positive social impact are taken. Therefore, sovereignty is necessary to increase the benefits to society. Unfortunately, the Brazilians deceived by the companies of mass communication and corrupt political leaderships allow the country to be dominated. Even the armed forces had their projects paralyzed. The nuclear sector, as all other, suffers with the low budget and the future is difficult to predict. (author)

  5. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  6. Nuclear energy in Malaysia

    International Nuclear Information System (INIS)

    Jacob, F.X.

    1996-01-01

    The Malaysian Vision 2020 envisages doubling of the its economy every ten years for the next three decades. The Second Outline Perspective plan 1991-2000 (OPP2), also known as the National Development Policy (NDP) will set the pace to enable Malaysia to become a fully developed nation by the year 2020. The Malaysian economy is targeted to grow at 7 percent per annum in the decade of OPP2. In view of the targets set under Vision 2020, it is important to ensure that energy does not become a constraint to growth, and this sector develops in a least cost basis. Energy is crucial for industrialization and no modern industrial state can function without it. The paper presents a description of the main utilities in the country. Their installed capacities, maximum demand, generation mix and customers served are discussed. The electricity demand forecast till the year 2020 is presented. The paper presents this for 4 scenarios - a low growth, business as usual scenario, a moderate growth, business as usual scenario, a moderate growth, energy efficient scenario and a targeted growth, energy efficient scenario. The energy resources in the country is described together with its energy policy. The country's four-fuel policy is elaborated with the various options discussed. The environmental and pricing policies with regards to energy is also briefly given. Finally the nuclear option is presented in this context of the country's energy policy. The country had undertaken various studies for the nuclear option. These studies are given in the paper. The purpose of these studies and what the government decided is also discussed. Finally the prospects for the nuclear option in the future for the country is discussed. It is concluded that while, for the present, the nuclear option is not considered by the government, this may not be so in the future. The various reasons for this is given and the paper concludes that it may be prudent to keep this option under constant review. (J.P.N.)

  7. Global Status of Nuclear Power: Prospects and Challenges

    International Nuclear Information System (INIS)

    Tayobeka, B. M.

    2010-01-01

    Global energy requirements and the share of electricity in total energy consumption are increasing rapidly, and the contribution of nuclear power is projected to increase significantly. Out of the 29 countries currently using nuclear power for electricity generation, 22 intend to allow new plants to be built, and, of those, the majority are actively supporting the increased use of nuclear power, some by providing incentives. Most of these countries are expected to build reactors with a generating capacity of over 1000 MW(e). Only three countries continue to have a policy to phase out the use of nuclear energy in the future by not replacing existing operating nuclear power plants and with no consideration of the option of new nuclear plants.In addition, a growing number of countries are expressing interest in introducing nuclear power. Of the more than 60 countries that have expressed such an interest in recent years, over 20 are actively considering nuclear power programmes to meet their energy needs and the others have expressed interest in understanding the issues associated with the introduction of nuclear power.The drivers for rising expectations for nuclear power include: growing energy demand, concern over national energy supply security, the increasingly volatile price of fossil fuels and global environmental concerns. The drivers appear to be the same for countries expanding existing nuclear programmes and those seeking to introduce programmes. The projections made by different international organizations indicate a significant growth in the use of nuclear power. The IAEA projections indicate a world total for nuclear electrical generating capacity of between 445 and 543 GW(e) by 2020 and between 511 and 807 GW(e) by 2030. This paper takes a detailed look into the global status of nuclear power, highlighting challenges and prospects of the technology going into the next century.(author).

  8. Nuclear energy achievements and prospects

    International Nuclear Information System (INIS)

    Lewiner, Colette

    1992-01-01

    Within half a century nuclear energy achieved very successful results. Only for European Community, nuclear energy represents 30% in electricity generation. At this stage, one state that the nuclear energy winning cards are competitiveness and Gentleness to the environment. Those winning cards will still be master cards for the 21st century, provided nuclear energy handles rigorously: Safety in concept and operation of power plants; radioactive waste management, and communication

  9. Dictionary of nuclear energy termination

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-04-15

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  10. Dictionary of nuclear energy termination

    International Nuclear Information System (INIS)

    1983-04-01

    This book lists termination of nuclear energy such as abbreviation, symbol, unit of nuclear energy, radiological unit, the symbol for element, isotope chart and the periodic table. This book contains about 5500 words involving to nuclear energy with index in Korean and English. It arranges alphabetically. So, with this book, it is easy and fast to find out the glossary, unit and symbol on nuclear energy.

  11. Nuclear power - an inevitable component of a sustainable energy mix

    International Nuclear Information System (INIS)

    Mesarovic, M.

    2000-01-01

    Nuclear power plants already add consequential amounts of energy to the global energy supply and continue to offer advantages for large additions of capacity. If increased, the nuclear share in world's energy mix would reduce the environmental damages as well as the climate change threats caused by the use of fossil fuels, thus providing an essential element of sustainable development. Such a potential contribution of nuclear power on large scale in a sustainable energy mix is considered, with its actual burdens and challenges discussed. Sustainable energy development with or without nuclear power is presented, with public acceptance of nuclear energy and global warming issues discussed in more details. (author)

  12. The economics of nuclear energy

    International Nuclear Information System (INIS)

    Wilmer, P.

    2004-01-01

    In common with many of the issues surrounding nuclear energy, there is some truth in the popular claim that nuclear energy is 'not economic', but this is far from being a universal truth. This paper puts forward the view that, overall, nuclear energy can be a competitive source of electricity and a realistic economic option for the future. (author)

  13. Nuclear energy and society Russian dimension

    International Nuclear Information System (INIS)

    Gagarinski, A.Yu.

    2010-01-01

    Since the very beginning of its brief history, nuclear energy was doomed to public attention - because of its first application. For 50 years of existence it failed to become one of traditional energy technologies, which the society would assess on the basis of its actual advantages (such as energy efficiency, resource availability and environmental acceptability). Nuclear weapons and crisis of confidence resulting from severe accidents have both formed the attitude to nuclear. This paper considers the basic antinuclear arguments, such as proliferation, waste and severe accidents. The current status of relations between nuclear energy and the public is still close (not only in Russia, but also in almost all European countries) to this state of politicization of nuclear and constant irrational fear radiation causes among people. Nevertheless, the positive trend in the attitude towards nuclear energy is obvious, both in Russia and in the world. In 2006, the long-expected 'new nuclear energy policy' (with returned budgetary financing of the new nuclear build) was announced in Russia at the highest governmental level. After that the worldwide recognition of the need to develop nuclear energy was only growing. The scale of global energy development is so large that all sources capable of making a contribution will find their demand. In the same time, public opinion in the world inseparably connects the issue of energy security with measures to combat climate changes. The '2 deg. C problem', if solvable at all, could be addressed only by simultaneous implementation of all possible emission reduction measures (including carbon-free energy technologies) on an unprecedented scale. Emission-free nuclear energy can actually become a system capable of sustainable and prompt development. This paper considers the issues, which could hamper nuclear development and negatively impact the public attitude towards nuclear. (authors)

  14. Energy transition and phasing out nuclear

    International Nuclear Information System (INIS)

    Laponche, Bernard

    2013-05-01

    In the first part of this report, the author outlines and comments the need of an energy transition in the world: overview of world challenges (world energy consumption and its constraints, a necessary energy transition, new actors and new responsibilities), and describes the German example of an energy transition policy. In the second part, he presents and discusses the main reasons for phasing out nuclear: description of a nuclear plant operation (fission and chain reaction, heat production, production of radioactive elements, how to stop a nuclear reactor), safety and risk issues (protection arrangements, risk and consequence of a nuclear accident), issue of radioactive wastes, relationship between civil techniques and proliferation of nuclear weapons. In a third part, the author proposes an overview of the energy issue in France: final energy consumption, electricity production and consumption, primary energy consumption, characteristics of the French energy system (oil dependency, electricity consumption, and high share of nuclear energy in electricity production). In a last part, the author addresses the issue of energy transition in a perspective of phasing out nuclear: presentation of the Negawatt scenario, assessments made by Global Chance, main programmes of energy transition

  15. Nuclear energy prospects to 2000

    International Nuclear Information System (INIS)

    1982-01-01

    This report describes the potential and trends of electricity use in OECD-countries as the main parameter of nuclear power development, including oil displacement and future generation mix, gives a most recent assessment of nuclear power growth to the year 2000, deals with supply and demand considerations covering the whole fuel cycle, assesses the impact of the nuclear contribution on the overall energy situation according to three energy scenarios and the consequences of a possible nuclear shortfall, and finally reviews other factors influencing nuclear energy growth such as security of supply, economics of nuclear power production as wells as public and utility confidence in nuclear power

  16. Economic Analysis of Nuclear Energy

    International Nuclear Information System (INIS)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B.

    2006-12-01

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics

  17. Economic Analysis of Nuclear Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Man Ki; Moon, K. H.; Kim, S. S.; Lim, C. Y.; Oh, K. B

    2006-12-15

    It has been well recognized that securing economic viabilities along with technologies are very important elements in the successful implementation of nuclear R and D projects. The objective of the Project is to help nuclear energy to be utilized in an efficient way by analyzing major issues related with nuclear economics. The study covers following subjects: the role of nuclear in the future electric supply system, economic analysis of nuclear R and D project, contribution to the regional economy from nuclear power. In addition, the study introduces the international cooperation in the methodological area of efficient use of nuclear energy by surveying the international activities related with nuclear economics.

  18. Does nuclear energy have a future?

    International Nuclear Information System (INIS)

    Kienle, F.

    1989-01-01

    Nuclear energy contributes 17% to global electricity production and almost 40% to the public supply in Germany. Operators of nuclear power plants are having to invest considerable effort in trying to set the public thinking and boring public opinion away from an emotional rejection towards a rational consideration of the risks of different energy systems. It is argued that in view of the specific problems of environmental pollution through CO 2 it should be possible to bring about public acceptance of nuclear energy utilization. (DG) [de

  19. Nuclear energy and the nuclear industry

    International Nuclear Information System (INIS)

    Chester, K.

    1982-01-01

    In order to make a real contribution to the nuclear energy debate (is nuclear energy the limitless solution to man's energy problems or the path to man's destruction) people must be aware of the facts. The Science Reference Library (SRL) has a collection of the primary sources of information on nuclear energy - especially journals. This guideline aims to draw attention to the up-to-date literature on nuclear energy and its technology, freely available for consultation in the main Holborn reading room. After explanations of where to look for particular types of information and the SRL classification, the booklet gives lists and brief notes on the sources held. These are abstracting and indexing periodicals and periodicals. Reports, conference proceedings, patents, bibliographies, directories, year-books and buyer's guides are covered very briefly but not listed. Nuclear reactor data and organisations are also listed with brief details of each. (U.K.)

  20. Nuclear power generation and global heating

    International Nuclear Information System (INIS)

    Taboada, Horacio

    1999-01-01

    The Professionals Association and Nuclear Activity of National Atomic Energy Commission (CNEA) are following with great interest the worldwide discussions on global heating and the role that nuclear power is going to play. The Association has an active presence, as part of the WONUC (recognized by the United Nations as a Non-Governmental Organization) in the COP4, which was held in Buenos Aires in November 1998. The environmental problems are closely related to human development, the way of power production, the techniques for industrial production and exploitation fields. CO 2 is the most important gas with hothouse effects, responsible of progressive climatic changes, as floods, desertification, increase of average global temperature, thermal expansion in seas and even polar casks melting and ice falls. The consequences that global heating will have on the life and economy of human society cannot be sufficiently emphasized, great economical impact, destruction of ecosystems, loss of great coast areas and complete disappearance of islands owing to water level rise. The increase of power retained in the atmosphere generates more violent hurricanes and storms. In this work, the topics presented in the former AATN Meeting is analyzed in detail and different technological options and perspectives to mitigate CO 2 emission, as well as economical-financial aspects, are explored. (author)

  1. Institute for Nuclear Research and Nuclear Energy and Nuclear Science

    International Nuclear Information System (INIS)

    Stamenov, J.

    2004-01-01

    The Institute for Nuclear Research and Nuclear Energy (INRNE) of the Bulgarian Academy of Sciences is the leading Bulgarian Institute for scientific investigations and applications of nuclear science. The main Institute's activities in the field of elementary particles and nuclear physics, high energy physics and nuclear energy, radiochemistry, radioecology, radioactive wastes treatment, monitoring of the environment, nuclear instruments development ect. are briefly described. Several examples for: environmental radiation monitoring; monitoring of the radioactivity and heavy metals in aerosols, 99m Tc clinical use, Boron Neutron Capture Therapy application of IRT-2000 Research Reactor, neutron fluence for reactor vessel embrittlement, NPP safety analysis, nuclear fuel modelling are also presented

  2. Nuclear energy for a sustainable development

    International Nuclear Information System (INIS)

    Guerrini, B.; Oriolo, F.

    2001-01-01

    Nuclear power currently produces over 628 M tep of the generated energy in 1997 avoiding about 1978 Mt of CO 2 emission and gives a significant contribution to reducing greenhouse gas emission. The competitive position of nuclear power might be strengthened, if market forces or government policy were able to give energy security and to control greenhouse gas, relying upon market mechanism and including environmental costs in economic analysis. In this case, taking into account the entire up-stream and down-stream chains for electricity generation, it can be seen that the greenhouse emission from nuclear plants, is lower than that of renewable energy chains. This paper investigates the potential role of nuclear power in global energy supply up to 2020 and analyzes the opportunities and the challenges for research, governments and nuclear industries of a broad nuclear power development in response to environmental concerns. The authors think that nuclear energy will have to compete in the same framework and under the same conditions as all other energy sources and so analyze the possibility of re-launching nuclear energy: it will have to couple nuclear safety and economic competitiveness [it

  3. Energy, electricity and nuclear power

    International Nuclear Information System (INIS)

    Reuss, P.; Naudet, G.

    2008-01-01

    After an introduction recalling what energy is, the first part of this book presents the present day energy production and consumption and details more particularly the electricity 'vector' which is an almost perfect form of energy despite the fact that it is not a primary energy source: it must be generated from another energy source and no large scale storage of this energy is possible. The second part of the book is devoted to nuclear energy principles and to the related technologies. Content: 1 - What does energy mean?: the occurrence of the energy concept, the classical notion of energy, energy notion in modern physics, energy transformations, energy conservation, irreversibility of energy transformations, data and units used in the energy domain; 2 - energy production and consumption: energy systems, energy counting, reserves and potentialities of energy resources, production of primary energies, transport and storage of primary energies, energy consumption, energy saving, energy markets and prices, energy indicators; 3 - electric power: specificity of electricity and the electric system, power networks, power generation, electricity storage, power consumption and demand, power generation economics, electricity prices and market; 4 - physical principles of nuclear energy: nuclei structure and binding energy, radioactivity and nuclear reactions, nuclear reactions used in energy generation, basics of fission reactors physics; 5 - nuclear techniques: historical overview, main reactor types used today, perspectives; 6 - fuel cycle: general considerations, uranium mining, conversion, enrichment, fuel fabrication, back-end of the cycle, plutonium recycle in water cooled reactors; 7 - health and environmental aspects of nuclear energy: effects on ionizing radiations, basics of radiation protection, environmental impacts of nuclear energy, the nuclear wastes problem, specific risks; 8 - conclusion; 9 - appendixes (units, physics constants etc..)

  4. Symposium on Nuclear Energy. Proceedings

    International Nuclear Information System (INIS)

    1981-01-01

    The energy problem poses a big challenge to a developing country like the Philippines. The development of renewable energy sources is not enough. Aware then of the limitations of these energy sources, in spite of arguments against nuclear energy we have no other recourse but to go nuclear. This symposium emphasizes the importance of energy development to attain the country's progress and discusses the pros and economics of nuclear power. (RTD)

  5. The black book of nuclear energy

    International Nuclear Information System (INIS)

    Zavaglia, David

    2011-01-01

    Nuclear partisans and opponents have been fighting for years. On one side, the energy autonomy of France, its electricity exports and the 70000 people employed in the nuclear industry are put forward. On the other side, the accident risk, the cost and dangerousness of waste management are the key words. But, can France, like Germany, really phase out nuclear energy? Is there other solutions? Since the Fukushima accident, what has changed in the pro-nuclear discourse? How strong is the nuclear lobby in France? Can we really have an unbiased debate on this question? The author analyzes the global question of nuclear energy, both in France and abroad, without partiality and political ideology

  6. Inevitability of nuclear energy

    International Nuclear Information System (INIS)

    Ramanna, R.

    1997-01-01

    The Indian atomic energy programme that has been launched in the late 1940s, with the courageous vision of Homi Bhabha, had made remarkable progress during the fifties, sixties and till the mid-seventies, leading to the establishment of a comprehensive base of nuclear science, technology and engineering, and the setting up of nuclear power stations. After the Pokharan experiment in 1974, the programme had to face a hostile attitude from the Western powers, with the stoppage of flow of technology and equipment from the West. The programme had shown the resilience to face the challenge, and march ahead, developing a range of indigenous capabilities both within the Department and in the Indian industry, though with a certain loss in the momentum. The successful design, construction and operation of the 100 Mw(t) research reactor Dhruva in Trombay, and the successful commissioning of the Fast Breeder Test Reactor in Kalpakkam, with a unique plutonium-uranium carbide fuel of Indian design, are significant capability demonstrations in the latter phase. On the power front, the twin-unit power stations at Narora (UP) and Kakrapar (Gujarat) have shown excellent performance, with respect to plant availability and capacity factor. This article presents an assessment of the progress achieved so far, amidst the difficulties encountered. Factors accounting for the apparently slow pace of growth are discussed, and the public concerns regarding nuclear safety and safety regulations are also addressed. In a situation where acute power shortages have become a fact of life, and difficulties can be foreseen in the development of coal and hydel resources (which are also limited in extent), the importance of pursuing the nuclear energy option is re-iterated. The need for unstinted government support to the program at this stage is also emphasized. (author)

  7. Nuclear energy and independence

    International Nuclear Information System (INIS)

    Rotblat, J.

    1978-01-01

    The pro-nuclear lobby in the United Kingdom won its battle. The Report on the Windscale Inquiry strongly endorsed the application by British Nuclear Fuels (a company owned by the government) to set up a plant to reprocess spent oxide fuels from thermal reactors; a motion in Parliament to postpone a decision was heavily defeated. The Windscale Inquiry was an attempt to settle in a civilized manner what has been tried in other countries by demonstrations and violence. In this exercise, a High Court Judge was given the task of assessing an enormous mass of highly complex technical and medical material, as well as economic, social, and political arguments. The outcome is bitterly disappointing to the objectors, all of whose arguments were rejected. Although the question of whether Britain should embark on a fast breeder reactor program was specifically excluded from the Inquiry, it clearly had a bearing on it. A decision not to proceed with the reprocessing plant would have made a fast breeder program impossible; indeed, the Report argues that such a decision would involve throwing away large indigenous energy resources, a manifest advocacy of the fast breeder. Other arguments for the decision to go ahead with the reprocessing plant included the need to keep the nuclear industry alive, and the profit which Britain will make in processing fuels from other countries, particularly Japan. The author comments further on present UK policy, taking a dissenting view, and then comments on the paper, Nuclear Energy and the Freedom of the West, by A.D. Sakharov

  8. Nuclear power in societal flux. The renewal of nuclear power in Finland in the context of global concern over energy security

    International Nuclear Information System (INIS)

    Litmanen, Tapio

    2010-01-01

    This paper will address nuclear power's relationship with societal flux. The history of nuclear power indicates that this type of technology is unusually to societal flux. Instability in nuclear power's societal status is created by the ambiguous nature of the technology itself, changing public opinion, the fluidity of political judgments, the flow of cultural meanings attaching to nuclear power and the unpredictability of media processing. Even though the risks of nuclear technology are highly regulated by the companies themselves and by the state and public administration, it remains capable of inflaming political debate and igniting controversy. One public opinion survey after another reveals how divisive nuclear power is. Unlike most other industrial activities nuclear power decision-making involves extraordinary levels of political consideration, societal processing and cultural valuation by stakeholders and the media. In order to illustrate the idea of societal flux, the paper will deal with major shifts in Finnish nuclear power policy since the 1950s, focusing particularly, however, on changes between 1986-2010. The recent changes in the country's nuclear power policy prove interesting having proceeded from a phase of rejection during the period 1986-1993, to a revival between 1994-2002 and renewal between 2002-2009. The rejection period ended in 1993 during which time the Parliament of Finland had rejected the further construction of nuclear power plants in the wake of the Chernobyl accident. In less than a decade, however, nuclear power policy changed. The revival period ended in 2001 as Parliament ratified a Decision in Principle for the final disposal of spent nuclear fuel and in 2002 for the construction of a new nuclear power plant unit, Olkiluoto 3. Characteristic of the ongoing renewal period is that in 2008-2009 the nuclear industry submitted three further applications for the construction of new NPP units. Thus Finland today has acquired a

  9. EDF decommissioning and dismantling policy a global commitment to safety, environment and cost efficiency of nuclear energy

    International Nuclear Information System (INIS)

    Rondeau, J.

    2001-01-01

    Until recently, EDF's policy regarding the dismantling of its decommissioned nuclear power plants was to reach 'level 2' (release of non-nuclear facilities) and to postpone final dismantling for another 30-40 years. Today, some studies suggest that a full deconstruction program of the first generation NPPs (9 units) could be optimized over the period 2000 - 2025. EDF has acquired during the last ten years an unique experience, both as an operator and as an engineering company, in the frame of the decommissioning programme of its own NPPs. Many types of reactors, including graphite moderated one, PWR, are at varying stages of the dismantling process.Plant operation quality is at the core of a satisfactory control of releases. Over the last decade, as a result of the efforts of all operating sites associated with good in-house operating practice feedback, the overall release volume has been divided by two, and the release activity by one hundred. Another issue given increased attention is radiological cleanliness. EDF-DPN launched a 'radiological cleanliness' action plan revolving around two main themes: increased monitoring of nuclear-related transportations, site entrance and access to controlled areas, along with on-site radiological cleanliness, particularly during maintenance work tasks. Progress is already apparent in several points at issue and the overall objective of the action plan should be attained. (author)

  10. Innovation in nuclear energy technology

    International Nuclear Information System (INIS)

    Dujardin, Th.; Bertel, E.; Kwang Seok, Lee; Foskolos, K.

    2007-01-01

    Innovation has been a driving force for the success of nuclear energy and remains essential for its sustainable future. Many research and development programmes focus on enhancing the performance of power plants in operation, current fuel design and characteristics, and fuel cycle processes used in existing facilities. Generally performed under the leadership of the industry. Some innovation programmes focus on evolutionary reactors and fuel cycles, derived from systems of the current generation. Such programmes aim at achieving significant improvements, in the field of economics or resource management for example, in the medium term. Often, they are undertaken by the industry with some governmental support as they require basic research together with technological development and adaptation. Finally, large programmes, often undertaken in an international, intergovernmental framework are devoted to design and development of a new generation of systems meeting the goals of sustainable development in the long term. Driving forces for nuclear innovation vary depending on the target technology, the national framework and the international context surrounding the research programme. However, all driving factors can be grouped in three categories: market drivers, political drivers and technology drivers. Globally, innovation in the nuclear energy sector is a success story but is a lengthy process that requires careful planning and adequate funding to produce successful outcomes

  11. Low Energy Nuclear Reactions?

    CERN Multimedia

    CERN. Geneva; Faccini, R.

    2014-01-01

    After an introduction to the controversial problem of Low Energy Nuclear Reactions (LENR) catalyzed by neutrons on metallic hydride surfaces we present the results of an experiment, made in collaboration with ENEA Labs in Frascati, to search neutrons from plasma discharges in electrolytic cells. The negative outcome of our experiment goes in the direction of ruling out those theoretical models expecting LENR to occur in condensed matter systems under specific conditions. Our criticism on the theoretical foundations of such models will also be presented.

  12. Desalination and nuclear energy

    International Nuclear Information System (INIS)

    Romeijn, A.A.

    1992-01-01

    The techniques for fresh water production from seawater have matured and capacities have increased considerably over the past decades. It is feasible to combine seawater desalination with the generation of electricity since power stations can provide energy and low grade heat during off peak periods for the purpose of fresh water production. A dual purpose installation, combining a seawater desalination facility with a light water reactor power generation station promises interesting possibilities. The case in South Africa, where nuclear power stations are most economically sited far from the inland coal fields, is discussed. 1 ill

  13. Ethics and Nuclear Energy

    International Nuclear Information System (INIS)

    Nezic, N.; Dodig, D.

    2000-01-01

    Should the scientist be a morally unbiased person? This is the eternal question asked by many great thinkers interested in science. The answer is hard to find. Scientists are expected to take into consideration the consequences of their actions before they actually start ot act. Sometimes they have to make certain sacrifices in order to help mankind. Unfortunately, we are witnesses of some intelligent, but inhuman and selfish people carrying out their even most destructive ideas. In this paper the relation between scientists and experts in the field of nuclear energy and the public will be discussed. (author)

  14. Nuclear energy outlook: a GE perspective

    International Nuclear Information System (INIS)

    Fuller, J.

    2006-01-01

    Full text: Full text: As one of the world's leading suppliers of power generation and energy delivery technologies, GE Energy provides comprehensive solutions for coal, oil, natural gas and nuclear energy; renewable resources such as wind, solar and biogas, along with other alternative fuels. With the ever increasing demand for energy and pressures to decrease greenhouse gas emissions, global trends indicate a move towards building more base line nuclear generation capacity. As a reliable, cost-competitive option for commercial power generation, nuclear energy also addresses many of the issues the world faces when it comes to the environment. Since developing nuclear reactor technology in the 1950s, GE's Boiling Water Reactor (BWR) technology accounts for more than 90 operating plants in the world today. Building on that success, GE's ABWR design is now the first and only Generation 111 nuclear reactor in operation today. This advanced reactor technology, coupled with current construction experience and a qualified global supply chain, make ESBWR, GE's Generation III+ reactor design, an attractive option for owners considering adding nuclear generation capacity. In pursuit of new technologies, GE has teamed with Silex to develop, commercialize and license third generation laser enrichment technology. By acquiring the exclusive rights to develop and commercialize this technology, GE is positioned to support the anticipated global demands for enriched uranium. At GE, we are continuing to develop imaginative ideas and investing in products that are cost effective, increase productivity, limit greenhouse gas emissions, and improve safety and security for our customers

  15. Nuclear Energy Literature Review

    International Nuclear Information System (INIS)

    Simic, Z.; Wastin, F.

    2016-01-01

    In the light of five years after a major accident at the Fukushima Daiichi nuclear power plant it is interesting to make nuclear energy related literature review. There is a number of accidents related reports from all major international institutions (like the IAEA and OECD NEA) and research organizations have drawn conclusions and lessons to learn from this terrible accident. These reports are the result of expert and scientific analyses carried out during these five years and they present ideal sources for both understanding what has happened and what can be learned in order to avoid and mitigate effects of such events in the future. From a wider perspective it is also interesting to analyze the impact on research and development (R and D) activities. This literature review is performed with hope to gain some useful insights from the analysis of the volume and topics in all research activities related to the Fukushima accident and nuclear energy (NE) altogether. This kind of review should at least provide an overview of trends and provide base for better planning of future activities. This paper analyzes the published NE related research of over more than 50 years with focus on three major nuclear accidents (TMI, Chernobyl and Fukushima). It has been performed using Scopus tools and database, and mainly focuses on statistics related to the subjects, countries, keywords and type of publishing. It also analyses how responsive is nuclear energy related R and D regarding the volume and subjects, and how is that research spread among most active countries. Nuclear power accidents influence increase and change of research. Both accidents, Chernobyl and Fukushima had maximum share in all nuclear power related papers at similar yearly level (9 percent in 1991 and 12 percent in 2015 respectively). TMI peaked at the 2.5 percent share in 1982. Engineering is the most frequent subjects for TMI and cumulative NE related publishing. Medicine and environmental science subjects

  16. Global wind energy outlook 2006

    International Nuclear Information System (INIS)

    2006-09-01

    The global market for wind power has been expanding faster than any other source of renewable energy. From just 4,800 MW in 1995 the world total has multiplied more than twelve-fold to reach over 59,000 MW at the end of 2005. The international market is expected to have an annual turnover in 2006 of more than euro 13 billion, with an estimated 150,000 people employed around the world. The success of the industry has attracted investors from the mainstream finance and traditional energy sectors. In a number of countries the proportion of electricity generated by wind power is now challenging conventional fuels. The Global Wind Energy Outlook 2006 reports that over a third of the world's electricity - crucially including that required by industry - can realistically be supplied by wind energy by the middle of the century. The report provides an industry blueprint that explains how wind power could supply 34% of the world's electricity by 2050. Most importantly, it concludes that if wind turbine capacity implemented on this scale it would save 113 billion tonnes of CO2 from entering the atmosphere by 2050. This places wind power as one of the world's most important energy sources for the 21st century. The 'Global Wind Energy Outlook 2006' runs three different scenarios for wind power - a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an advanced version assuming that all policy options in favour of renewables have been adopted. These are then set against two scenarios for global energy demand. Under the Reference scenario, growth in demand is again based on IEA projections; under the High Energy Efficiency version, a range of energy efficiency measures result in a substantial reduction in demand

  17. Nuclear energy - a professional assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments.

  18. Nuclear energy - a professional assessment

    International Nuclear Information System (INIS)

    1984-01-01

    The report falls under the headings: the role of the Watt Committee in nuclear energy; supply and demand, and economics of nuclear power; technical means (types of reactor; fuel cycle; nuclear energy for applications other than large-scale electricity generation); availability of resources (nuclear fuel; British industrial capacity; manpower requirements for a British nuclear power programme); environment (environmental issues; disposal of radioactive wastes); balance of risk and advantage in the peaceful use of nuclear energy (proliferation; safety and risk; benefits; public acceptability, awareness, education); summary and general comments. (U.K.)

  19. Circular economy and nuclear energy

    International Nuclear Information System (INIS)

    2017-01-01

    This article first recalls what circular economy is, and its main principles (sustainable supply, eco-design, industrial and territorial ecology, economy of function rather than of possession, extension of product lifetime, recycling). It outlines its different benefits: improved resilience, inclusion of all actors of the territory, creation of local jobs, a global vision. In the next part, the nuclear industry is presented as a pioneer in this respect through various trends and developments: closure of the fuel cycle and saving of uranium and energy in the upstream part, reduction of wastes in the downstream part, exploitation of plants on a longer term, management of the production of conventional wastes, reduction of energy consumption, evolution of the doctrine in terms of management of very low level radioactive wastes

  20. Nuclear energy: Promise and problems

    International Nuclear Information System (INIS)

    Richter, B.

    2005-01-01

    Nuclear energy is having a renaissance driven by both old fashioned supply and demand, and environmental concerns. Oil and gas prices have exploded and show no signs of returning to the levels of only a few years ago. Coal is not in short supply, but the pollution it generates has severe economic and health consequences. Concern about greenhouse gases and global warming has caused the environmental movement to begin a reassessment of the role of nuclear in the world's energy portfolio. The full potential of nuclear energy will be achieved only if governments and the public are satisfied that it is safe, that the radioactive waste can be safely disposed of, and that the risk of the proliferation of nuclear weapons is low. The first criterion has been met with designs that are inherently safer than current LWRs, primarily through design simplification, reducing the number of critical components, and advanced control and monitoring technologies. Operating safety has to be assured through good practices and a rigorous, independent inspection process. The second criterion, waste disposal, is a problem where the science and technology (S and T) communities have the primary role in a solution. Many believe that it is solved in principle, but there has as yet been no solution in practice. I will report on where I think we have gotten and what needs to be done. The third criterion, proliferation resistance, is one that the S and T communities cannot solve on their own. The best that S and T can do is to make proliferation difficult, and to make sure that any attempts are discovered early. The rest can be handled only by enforceable international agreements. Safeguards technology needs more attention. (author)

  1. The present global financial and economic crisis and the oil crises of the 1970s. Opposite turning points in the development of economic growth, energy supply, and the role of nuclear power?

    International Nuclear Information System (INIS)

    Herrmann, Dieter

    2012-01-01

    After decades of extensive economic growth, the oil crises in the 1970s enforced the transition to intensive growth in a manner conserving resources, combined with a fundamental turnaround in the development of global energy supply and the role of nuclear power. Meanwhile, the world has changed considerably as a result of population growth, technical progress, and globalization - and it is in the throes of another crisis. The contribution shows, on the basis of empirical indicators, that higher commodity prices halted the period of intense growth already in late 2007. The following global financial and economic crisis can be interpreted plausibly as a return to extensive economic growth worldwide. This is likely to have far-reaching consequences for the future development of global energy supply and the role of nuclear power. (orig.)

  2. Present Status of Nuclear Energy

    Czech Academy of Sciences Publication Activity Database

    Wagner, Vladimír

    2013-01-01

    Roč. 2013, SI (2013), s. 89-94 ISSN 0375-8842. [European Nuclear Forum. Praha, 12.05.2013-13.05.2013] Institutional support: RVO:61389005 Keywords : nuclear energy * nuclear reactors * electricity production Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders

  3. High energy nuclear physics

    International Nuclear Information System (INIS)

    Meyer, J.

    1988-01-01

    The 1988 progress report of the High Energy Nuclear Physics laboratory (Polytechnic School, France), is presented. The Laboratory research program is focused on the fundamental physics of interactions, on the new techniques for the acceleration of charged particles and on the nuclei double beta decay. The experiments are performed on the following topics: the measurement of the π 0 inclusive production and the photons production in very high energy nuclei-nuclei interactions and the nucleon stability. Concerning the experiments under construction, a new detector for LEP, the study and simulation of the hadronic showers in a calorimeter and the H1 experiment (HERA), are described. The future research programs and the published papers are listed [fr

  4. Solar nuclear energy

    International Nuclear Information System (INIS)

    Tlalka, R.

    1977-01-01

    Brief characteristics are given of solar radiation and of its spectral range. The relation is derived for the gas pressure in the centre of the Sun and the mechanism is described of particle interactions in the Sun. Using the Eddington model the basic nuclear reactions in the Sun are described, namely the proton-proton chain and the C-N cycle. The energy transfer is discussed from the Sun to the boundaries of the Earth atmosphere and inside the atmosphere. The measurement of solar energy is conducted with actinometers, i.e., pyrheliometers, pyranometers and combinations thereof. The results of solar radiation measurement in different weather conditions are graphically represented. (J.B.)

  5. Speaking of nuclear energy

    International Nuclear Information System (INIS)

    Gillen, V.A.

    1992-01-01

    At the 1989 International Atomic Energy Agency (IAEA) General Conference, the Japanese Government pledged an extra-budgetary contribution for a three-year enhanced public information programme. On this basis the programme was developed centering on a series of two-day regional media seminars. It was determined that these seminars were to be informative and educational, and provide balanced, honest background material on the subject of nuclear energy. The speakers chosen were a mix of IAEA and outside experts from around the world. About 500 participants from 20 countries took part over the initial three years of the programme. This document contains a selection of speeches and topics that, is believed, captured the essence of the information presented during the regional seminars

  6. Topical subjects of nuclear energy

    International Nuclear Information System (INIS)

    Baumgaertel, G.; Borsch, P.; Halaszovich, S.; Laser, M.; Paschke, M.; Richter, B.; Stein, G.; Stippler, R.; Wagner, H.J.

    1990-01-01

    The report supplements and extends basic information contained in the seminar report 'Use and risk of nuclear energy' (Juel-Conf-17). The contributions deal with nuclear waste management, measures to avoid the misuse of nuclear fuels, and the properties and use of plutonium. As against the last edition, the subject 'Energy and environment' has been added. (orig.) [de

  7. Communication techniques and nuclear energy

    International Nuclear Information System (INIS)

    Carpintero Santamaria, N.

    2005-01-01

    The paper presents some thoughts on several factors related to nuclear energy and the way they are presented by the mass media, usually provoking controversy to the Spanish society and thus, undermining public acceptance. Some possibilities for boosting nuclear energy among public opinion are suggested, emphasizing the fact that nuclear power is essential because it is both ecologically and economically sound. (Author)

  8. Education of nuclear energy specialists

    International Nuclear Information System (INIS)

    Paulikas, V.

    1999-01-01

    Preparation system of nuclear energy specialists in Lithuania is presented. Nuclear engineers are being prepared at Kaunas University of Technology. Post-graduates students usually continue studies at Obninsk Nuclear Energy Institute in Russia. Many western countries like Sweden, Finland and US is providing assistance in education of Lithuanian specialists. Many of them were trained in these countries

  9. Nuclear energy and the public

    International Nuclear Information System (INIS)

    Kyd, D.R.

    1994-01-01

    This paper is the opening speech from a national seminar on the uses for nuclear energy in everyday life. The speaker, the public information director for the International Atomic Energy Agency (IAEA), stresses the peaceful uses of nuclear energy. He points out that used for peaceful purposes, and prudently, nuclear energy applications have, tremendous benefits to offer mankind in both the industrial world and developing nations

  10. Quantum nuclear pasta and nuclear symmetry energy

    Science.gov (United States)

    Fattoyev, F. J.; Horowitz, C. J.; Schuetrumpf, B.

    2017-05-01

    Complex and exotic nuclear geometries, collectively referred to as "nuclear pasta," are expected to appear naturally in dense nuclear matter found in the crusts of neutron stars and supernovae environments. The pasta geometries depend on the average baryon density, proton fraction, and temperature and are critically important in the determination of many transport properties of matter in supernovae and the crusts of neutron stars. Using a set of self-consistent microscopic nuclear energy density functionals, we present the first results of large scale quantum simulations of pasta phases at baryon densities 0.03 ≤ρ ≤0.10 fm-3 , proton fractions 0.05 ≤Yp≤0.40 , and zero temperature. The full quantum simulations, in particular, allow us to thoroughly investigate the role and impact of the nuclear symmetry energy on pasta configurations. We use the Sky3D code that solves the Skyrme Hartree-Fock equations on a three-dimensional Cartesian grid. For the nuclear interaction we use the state-of-the-art UNEDF1 parametrization, which was introduced to study largely deformed nuclei, hence is suitable for studies of the nuclear pasta. Density dependence of the nuclear symmetry energy is simulated by tuning two purely isovector observables that are insensitive to the current available experimental data. We find that a minimum total number of nucleons A =2000 is necessary to prevent the results from containing spurious shell effects and to minimize finite size effects. We find that a variety of nuclear pasta geometries are present in the neutron star crust, and the result strongly depends on the nuclear symmetry energy. The impact of the nuclear symmetry energy is less pronounced as the proton fractions increase. Quantum nuclear pasta calculations at T =0 MeV are shown to get easily trapped in metastable states, and possible remedies to avoid metastable solutions are discussed.

  11. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1988-01-01

    Nuclear technology brings the chance to provide an essential long term contribution to the energy supply of the world population and to use the raw materials uranium and thorium which have no other use. The use of nuclear energy is ethically justifiable providing certain simple fundamental rules for the design of nuclear facilities are observed. Such rules were clearly violated before the reactor accident at Chernobyl. They are, however, observed in our existing nuclear power plants. Compared with other energy systems nuclear energy has, with the exception of natural gas, the lowest risk. The consideration of the ethical justification of nuclear energy must also include the question of withdrawal. A withdrawal would have considerable social consequences for the industrial nations as well as for the developing countries. The problem of spreading alarm (and concern) by the opponents of nuclear energy should also be included in the ethical justification. 8 refs., 2 figs

  12. Nuclear energy: a sensible alternative

    International Nuclear Information System (INIS)

    Ott, K.O.; Spinrad, B.I.

    1985-01-01

    This book presents information on energy futures; energy demand, energy supplies; exclusive paths and difficult choices--hard, soft, and moderate energy paths; an energy-deficient society; energy shortages; economics of light-water reactors; fast breeder reactor economics; international cooperation in the nuclear field; nuclear recycling; alternative fuels, fuel cycles, and reactors; the nuclear weapons proliferation issue; paths to a world with more reliable nuclear safeguards; the homemade bomb issue; LWR risk assessment; accident analysis and risk assessment; the waste disposal risk; radon problems; risks in our society; health effects of low-level radiation; routine releases of radioactivity from the nuclear industry; low-level radioactivity and infant mortality; the myth of plutonium toxicity; myths about high-level radioactive waste; the aging reactor myth; the police state myth; insurance and nuclear power--the Price-Anderson Act; and solar and nuclear power as partners

  13. Nuclear energy in the world

    International Nuclear Information System (INIS)

    Grippi, Sidney

    2006-01-01

    The chapter reports the nuclear energy beginning in the world including a chronology of the atomic bomb birth, the annual growth rate of electronuclear energy in the world, a comparison of energy production in thermoelectric bases

  14. Nuclear reactions video (knowledge base on low energy nuclear physics)

    International Nuclear Information System (INIS)

    Zagrebaev, V.; Kozhin, A.

    1999-01-01

    The NRV (nuclear reactions video) is an open and permanently extended global system of management and graphical representation of nuclear data and video-graphic computer simulation of low energy nuclear dynamics. It consists of a complete and renewed nuclear database and well known theoretical models of low energy nuclear reactions altogether forming the 'low energy nuclear knowledge base'. The NRV solves two main problems: 1) fast and visualized obtaining and processing experimental data on nuclear structure and nuclear reactions; 2) possibility for any inexperienced user to analyze experimental data within reliable commonly used models of nuclear dynamics. The system is based on the realization of the following principal things: the net and code compatibility with the main existing nuclear databases; maximal simplicity in handling: extended menu, friendly graphical interface, hypertext description of the models, and so on; maximal visualization of input data, dynamics of studied processes and final results by means of real three-dimensional images, plots, tables and formulas and a three-dimensional animation. All the codes are composed as the real Windows applications and work under Windows 95/NT

  15. Is nuclear energy ethically justifiable?

    International Nuclear Information System (INIS)

    Zuend, H.

    1987-01-01

    Nuclear technology offers the chance to make an extremely long term contribution to the energy supply of the earth. The use of nuclear energy is ethically justifiable, provided that several fundamental rules are obeyed during the technical design of nuclear installations. Such fundamental rules were unequivocally violated in the nuclear power plant Chernobyl. They are, however, fulfilled in the existing Swiss nuclear power plants. Improvements are possible in new nuclear power plants. Compared to other usable energy systems nuclear energy is second only to natural gas in minimal risk per generated energy unit. The question of ethical justification also may rightly be asked of the non-use of nuclear energy. The socially weakest members of the Swiss population would suffer most under a renunciation of nuclear energy. Future prospects for the developing countries would deteriorate considerably with a renunciation by industrial nations of nuclear energy. The widely spread fear concerning the nuclear energy in the population is a consequence of non-objective discussion. 8 refs., 2 figs

  16. Nuclear security: A global response to a global threat

    International Nuclear Information System (INIS)

    Amano, Yukiya

    2016-01-01

    The threat of nuclear terrorism is real. The possibility of criminals getting hold of nuclear and other radioactive material cannot be ruled out. Much progress has been made in tackling this threat nationally, regionally and globally, but more needs to be done. International cooperation is vital. As the global platform for cooperation in nuclear security, the IAEA helps countries to establish and maintain robust and sustainable national nuclear security regimes. We help ensure that measures are taken to protect nuclear and other radioactive material, as well as the facilities in which such material is housed, from malicious acts. This has been an important year for nuclear security with the entry into force of the Amendment to the Convention on the Physical Protection of Nuclear Material. This establishes legally binding commitments for countries to protect nuclear facilities as well as nuclear material in domestic use, storage and transport. I encourage all countries that have not yet done so to adhere to this Amendment and thereby contribute to a stronger global nuclear security regime. In this edition of the IAEA Bulletin, you will learn about the different areas of security where our work is making a real difference. We highlight the progress made in a number of countries.

  17. Hydrogen and nuclear energy

    International Nuclear Information System (INIS)

    Duffey, R.B.; Miller, A.I.; Hancox, W.T.; Pendergast, D.R.

    1999-01-01

    The current world-wide emphasis on reducing greenhouse gas (GHG) emissions provides an opportunity to revisit how energy is produced and used, consistent with the need for human and economic growth. Both the scale of the problem and the efforts needed for its resolution are extremely large. We argue that GHG reduction strategies must include a greater penetration of electricity into areas, such as transportation, that have been the almost exclusive domain of fossil fuels. An opportunity for electricity to displace fossil fuel use is through electrolytic production of hydrogen. Nuclear power is the only large-scale commercially proven non-carbon electricity generation source, and it must play a key role. As a non-carbon power source, it can also provide the high-capacity base needed to stabilize electricity grids so that they can accommodate other non-carbon sources, namely low-capacity factor renewables such as wind and solar. Electricity can be used directly to power standalone hydrogen production facilities. In the special case of CANDU reactors, the hydrogen streams can be preprocessed to recover the trace concentrations of deuterium that can be re-oxidized to heavy water. World-wide experience shows that nuclear power can achieve high standards of public safety, environmental protection and commercially competitive economics, and must . be an integral part of future energy systems. (author)

  18. Nuclear energy education scenario around the world

    International Nuclear Information System (INIS)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane

    2013-01-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  19. Nuclear energy education scenario around the world

    Energy Technology Data Exchange (ETDEWEB)

    Barabas, Roberta de Carvalho; Sabundjian, Gaiane, E-mail: praroberta@uol.com.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear energy has been used as a source of clean energy with many benefits. Nevertheless, it is still addressed with prejudice. The atomic bombing of Hiroshima and Nagasaki during World War II (1945), the Three Mile Island accident (1979), Chernobyl accident (1986), the crash of the cesium-137 in Goiana, Brazil (1987), and the recent accident in Fukushima (2011) may have been responsible for the negative image of nuclear energy. Researches on education have been conducted with students concerning the conceptual and practical issues of nuclear energy. This work aims to review the literature about nuclear energy education around the world in both, elementary school and high school. Since most educational researches on nuclear energy were published after 1980, this literature review covered the researches that have been published since 1980. The data were presented in chronological order. The results from the literature review provided a clear visualization of the global nuclear energy educational scenario, showing that the theme is still addressed with prejudice due to an incorrect view of nuclear energy and a limited view of its benefits. Concerning the science textbooks, the literature reports that the theme should be better addressed, encouraging students to research more about it. The data from this literature review will serve as a reference for a future proposal for a teaching training program for Brazilian science/physics high school teachers using a new teaching approach. (author)

  20. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes `IAEA Handbook`, which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author).

  1. A study on international nuclear organizations and conventions for the globalization of Korean nuclear community

    International Nuclear Information System (INIS)

    Lee, Kwang Seok; Oh, Keun Bae; Lee, Byung Wook; Cho, Il Hoon; Lee, Jae Sung; Choi, Young Rok; Ko, Han Seok; Ham, Chul Hoon; Lee, Byung Woon

    1995-12-01

    The objective of this study is to analyze the current status of international nuclear organizations and conventions in systems perspective and suggest national strategies for utilizing them for the globalization of Korean nuclear community. This study analyzes the current status of international nuclear organizations such as IAEA(International Atomic Energy Agency) and international nuclear conventions related to nuclear accidents, nuclear liability, physical protection or nuclear safety. Based on the analysis, this study suggests national strategies, in general and specific terms, to utilize international nuclear organizations and conventions for the globalization of Korean nuclear community. Separately from this report this study publishes 'IAEA Handbook', which contains all about IAEA such as statute, membership, organizational structure, main activities, finance and budget, etc.. 9 tabs., 2 figs., 35 refs. (Author)

  2. An innovative nuclear reactor as a solution to global warming

    International Nuclear Information System (INIS)

    Silva, Robson Silva da; Sefidvash, Farhang

    2007-01-01

    The problem of global warming is no longer a philosophical discussion, but it is a fact seriously threatening the future of humanity. In this paper a practical solution to the problem of global warming resulting from the fossil fuelled energy suppliers is presented. The energy conservation and alternative forms of energy such as solar, wind, and bio even though having important roles, do not satisfy the energy demand generated by an increasing world population that desires to increase its standard of living. The fission process in the nuclear reactors does not produce greenhouse gases that cause global warming. The new paradigm in nuclear energy is the future innovative reactors that meet the new standards set by the INPRO Program of the IAEA. One such a reactor is presented in this paper, namely the Fixed Bed Nuclear Reactor (FBNR) that is supported by the International Atomic Energy (IAEA) in its program of Small Reactors Without On-Site Refuelling (SRWOSR), being one of the four water cooled reactors in this program. The other three reactor concepts are PFPWR50 of Japan, BWRPB of Russia and AFPR-100 of USA. It is shown that the nuclear energy of the future is totally different than what is today in respect to safety, economics, environmental impact and proliferation. In this manner, the public perception of nuclear energy will change and its acceptability is promoted. (author)

  3. The nuclear energy in France

    International Nuclear Information System (INIS)

    Pedroso, L.J.

    1983-01-01

    An overview of the nuclear energy in France is done. The great centers and the great research lines of the French nuclear program, as well as its present status and prospects for the future are presented. (EG) [pt

  4. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  5. Nuclear energy and public acceptance

    International Nuclear Information System (INIS)

    El Osery, I.A.

    1988-01-01

    The soundness of use of nuclear energy in electric energy generation has received public concern due to the public highly exaggerated fear of nuclear power. It is the purpose of this paper to clear up some issues of public misunderstanding of nuclear power. Those of most importance are the unjustified fears about safety of nuclear power plants and the misunderstanding of nuclear risks and fears of nuclear power plants environmental impact. The paper is addressed to the public and aims at clarifying these issues in simple, correct, and convincing terms in such a way that links the gap between the scientists of nuclear energy and the general public; this gap which the media has failed to cover and failed to convey honestly and correctly the scientific facts about nuclear energy from the scientists standards to the public

  6. Present market for nuclear energy

    International Nuclear Information System (INIS)

    Marzo, M.A.S.

    1987-01-01

    The present market for nuclear energy is present since nuclear production and electric power generation to the utilization of radioisotopes in medicine and biology. Some data about the main world suppliers to this market are shown. (E.G.) [pt

  7. Energy paper II: Nuclear energy revival

    International Nuclear Information System (INIS)

    Anonymous

    2008-01-01

    ESI Energy paper is called 'Issue Paper' awarded by think-tank Energy Security Institute. The second issue focuses on the energy security of countries from the perspective of Renaissance of construction of nuclear power plants. Topicality is documented by fluctuations in fossil fuel prices on the world commodity markets and by extortionate potential, disposed by their main producers. The Slovak Republic is actively engaged into international dialogue on the need for the development of nuclear energy.

  8. Nuclear power from a long term global perspective

    International Nuclear Information System (INIS)

    Davis, D.A.

    1994-01-01

    The global problem with energy, now and into the longer term, is the same as the global problem with food. There is no absolute shortage of either and nor is there likely to be. But the pattern of availability is such that large numbers of people have inadequate supplies of one or the other, or of both. Thus, in considering global energy futures the problems are more about energy distribution than about its absolute availability: it is important that in arguing its case for expansion the nuclear industry bears that fact in mind. (Author)

  9. Ultimate Choice for Energy: The Nuclear Energy

    Directory of Open Access Journals (Sweden)

    Metin Yıldırım*

    2007-06-01

    Full Text Available Increases in the prices of oil, hard coal and natural gas, emergence of Russia as a not reliable resource for the natural and the developments in the security of the energy supply again have been started the nuclear energy as a hotly debated issue in the world. This is also a sensitive topic among the opponents and proponents of the nuclear energy in Turkey. Nuclear energy is very important since it provides about 17 % of the electric energy in the world and is used in industry and medical area. However, Turkey has not declared any policy about this yet, because of the worries about the environmental reasons and has not gained any progress about nuclear energy. First of all, Turkey must use her geothermal, hydropower, hard coal, solar and wind energies. Otherwise, Turkey may find herself in a competition with her neighboring countries

  10. Nuclear energy. Risk or advantage

    International Nuclear Information System (INIS)

    Boettiger, Helmut

    2011-01-01

    Nuclear energy is controversial. But what's all about really in the controversy? It's about more than safty or electricity prices. Nuclear energy is not only a technical or political question, but also a moral, a human. The discussion enter various rational and irrational arguments, beside straightforward arguments various misleading and mendacious exist. The present publication is comprehensively dedicated to the thema of nuclear energy - its pro and contra - and considers its risks and advantages. Thereby the sources of energy, the processes in the nuclear reactor, and the risk potentials (Harrisburg, Chernobyl, Fukushima) are illustratively and reproducibly presented. Extensively the text explains the forms of the radiation, its doses, and the tolerance of it. Also to the theme waste and final disposal an explaining chapter is dedicated and the question for the exit from nuclear energy elucidated. Finally the author appoints with the question ''How considers mankind nuclear energy world-wide'' the international comparison.

  11. Economic analysis of nuclear energy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation.

  12. Economic analysis of nuclear energy

    International Nuclear Information System (INIS)

    Lee, Han Myung; Lee, M.K.; Moon, K.H.; Kim, S.S.; Lim, C.Y.; Song, K.D.; Kim, H.

    2001-12-01

    The objective of this study is to evaluate the contribution of nuclear energy to the energy use in the economical way, based on the factor survey performed on the internal and external environmental changes occurred recent years. Internal and external environmental changes are being occurred recent years involving with using nuclear energy. This study summarizes the recent environmental changes in nuclear energy such as sustainable development issues, climate change talks, Doha round and newly created electricity fund. This study also carried out the case studies on nuclear energy, based on the environmental analysis performed above. The case studies cover following topics: role of nuclear power in energy/environment/economy, estimation of environmental external cost in electric generation sector, economic comparison of hydrogen production, and inter-industrial analysis of nuclear power generation

  13. Should we embrace nuclear energy?

    International Nuclear Information System (INIS)

    Nolch, Guy

    2006-01-01

    During his recent tour of North America, Australian Prime Minister John Howard called for a 'full-blooded debate' about the place of nuclear power in the nation's energy mix. 'I have a very open mind on the development of nuclear energy in my own country,' he said. Treasurer Peter Costello said that only economic arguments precluded Australia's move to nuclear energy. 'If it becomes commercial, we should have it,' he said on 23 May. But in reality the 'debate' had already been adjudicated. Three days later the Australian Nuclear Science and Technology Organisation (ANSTO) presented Science Minister Julie Bishop with a report that delivered Costello's economic justification for nuclear power

  14. Energy situation and nuclear power

    Energy Technology Data Exchange (ETDEWEB)

    Megahid, M R [Reactor and Neutron physics Department Nuclear Research Center A.E., Cairo (Egypt)

    1997-12-31

    A brief general review is given concerning the requirements of power throughout history with an indication to the world capital reserves of energy. The energy released from the conversion of mass in chemical and nuclear processes is also discussed with comparative analysis between conventional fuel fired plant and nuclear power plant having the same energy output. The advantages and disadvantages arising from having a nuclear power programme are also discussed. 1 fig.

  15. Nuclear energy, understand the future

    International Nuclear Information System (INIS)

    Bauquis, P.R.; Barre, B.

    2006-01-01

    In spite of its first use for military needs, the nuclear became a substitution energy, especially for the electric power production. For many scientist the nuclear seems to be the main part to the world energy supply in an economic growth context, provided the radioactive wastes problems is solved. From the military origins to the electric power generation, this book explains the technical economical and political aspects of the nuclear energy. (A.L.B.)

  16. Emerging nuclear energy systems: Economic challenge: Revision 1

    International Nuclear Information System (INIS)

    Nuckolls, J.H.

    1986-01-01

    Future nuclear energy systems may achieve substantially lower energy costs than those of existing fossil energy systems and comparable capital costs. Such low cost nuclear energy would provide a strong economic incentive to minimize the use of fossil fuels. If these low cost nuclear energy systems emerge in the next few decades, 21st century civilization may be able to avert potentially disastrous CO 2 induced global climate changes. 12 refs., 1 fig

  17. A study on the globalization of nuclear development

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Hwan Sam; Kim, Hyun Jun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-05-01

    Nuclear power technology in Korea has been reached at about 95 % level to self-reliance, which has developed energetically since mid of 1980s. Nowadays, it is required to set up globalization of nuclear policy to ensure the introduction of more advanced technologies and to enlarge the use of their developed technologies. In this study, prospects of nuclear power and wastes management, international safeguards, and international co-operation were analyzed focusing on the International Atomic Energy Agency to support timely the introduction of advanced technologies and assure international nuclear communities of Korean nuclear transparency in order to enhance the national policy for self-reliance on their future technology development. This study can be applied to the efficient implementation of Korean nuclear development policy and globalization policy as well. 3 tabs., 1 fig., 13 refs. (Author).

  18. A study on the globalization of nuclear development

    International Nuclear Information System (INIS)

    Jeong, Hwan Sam; Kim, Hyun Jun

    1996-05-01

    Nuclear power technology in Korea has been reached at about 95 % level to self-reliance, which has developed energetically since mid of 1980s. Nowadays, it is required to set up globalization of nuclear policy to ensure the introduction of more advanced technologies and to enlarge the use of their developed technologies. In this study, prospects of nuclear power and wastes management, international safeguards, and international co-operation were analyzed focusing on the International Atomic Energy Agency to support timely the introduction of advanced technologies and assure international nuclear communities of Korean nuclear transparency in order to enhance the national policy for self-reliance on their future technology development. This study can be applied to the efficient implementation of Korean nuclear development policy and globalization policy as well. 3 tabs., 1 fig., 13 refs. (Author)

  19. Global Protest Against Nuclear Power

    DEFF Research Database (Denmark)

    Kirchhof, Astrid Mignon; Meyer, Jan-Henrik

    2014-01-01

    Protest against nuclear power plants, uranium mining and nuclear testing played a pivotal role in the rise of a mass environmental movement around the globe in the 1970s and 1980s. Nevertheless, the history of anti-nuclear activism has largely been told from a strictly national perspective...... that anti-nuclear movements across the globe were transnationally connected. First, scientific expertise and protest practices were transferred between movements, and subsequently adapted to local requirements. Secondly, transnational cooperation and networks did indeed emerge, playing an important role...

  20. Nuclear energy in the future

    International Nuclear Information System (INIS)

    Chaussade, J.P.

    1994-01-01

    Nuclear energy plays a major role in the French economy because of the lack of fossil fuels on the French territory. About 75% of the French electric power is of nuclear origin. This paper gives an analysis of the French public attitude about nuclear energy and the methods used by the nuclear industrialists to better the electro-nuclear image. Communication, advertising and transparency are the best attitudes for a suitable public information and are necessary to reduce the public anxiety after the Chernobyl accident. Television advertising, magazines and organized visits of nuclear installations have allowed to explain the interest of nuclear energy in the environmental reduction of pollutants. However, public information must include the topic about nuclear wastes to remain credible. (J.S.)

  1. Climatic change and nuclear energy

    International Nuclear Information System (INIS)

    Schneider, M.

    2000-08-01

    The data presented in the different chapters lead to show that nuclear energy ids not a sustainable energy sources for the following reasons: investments in nuclear energy account financing that lacks to energy efficiency programmes. The nuclear programmes have negative effects such the need of great electric network, the need of highly qualified personnel, the freezing of innovation in the fields of supply and demand, development of small performing units. The countries resort to nuclear energy are among the biggest carbon dioxide emitters, because big size nuclear power plants lead to stimulate electric power consumption instead of inducing its rational use. Nuclear energy produces only electric power then a part of needs concerns heat (or cold) and when it is taken into account nuclear energy loses its advantages to the profit of cogeneration installations. Finally nuclear energy is a dangerous energy source, difficult to control as the accident occurring at Tokai MURA showed it in 1998. The problem of radioactive wastes is not still solved and the nuclear proliferation constitutes one of the most important threat at the international level. (N.C.)

  2. Energy principle with global invariants

    International Nuclear Information System (INIS)

    Bhattacharjee, A.; Dewar, R.L.

    1981-04-01

    A variational principle is proposed for constructing equilibria with minimum energy in a toroidal plasma. The total energy is minimized subject to global invariants which act as constraints during relaxation of the plasma. These global integrals of motion are preserved exactly for all idea motions and approximately for a wide class of resistive motions. We assume, specifically, that relaxation of the plasma is dominated by a tearing mode of single helicity. Equilibria with realistic current density and pressure profiles may be constructed in this theory, which is also used here to study current penetration in tokamaks. The second variation of the free energy functional is computed. It is shown that if the second variation of any equilibrium constructed in this theory is positive, the equilibrium satisfies the necessary and sufficient conditions for ideal stability

  3. Energy from nuclear fission()

    Science.gov (United States)

    Ripani, M.

    2015-08-01

    The main features of nuclear fission as physical phenomenon will be revisited, emphasizing its peculiarities with respect to other nuclear reactions. Some basic concepts underlying the operation of nuclear reactors and the main types of reactors will be illustrated, including fast reactors, showing the most important differences among them. The nuclear cycle and radioactive-nuclear-waste production will be also discussed, along with the perspectives offered by next generation nuclear assemblies being proposed. The current situation of nuclear power in the world, its role in reducing carbon emission and the available resources will be briefly illustrated.

  4. Nuclear energy: a vital energy choice

    International Nuclear Information System (INIS)

    Pecqueur, Michel

    1980-01-01

    Speaking from the platform of the XIIIth annual session of the International Atomic Energy Agency, at New Delhi, AEC managing director Michel Pecqueur made a solemn appeal to the world community for the decisions which are needed on energy. The present energy crisis can lead the world to a recession and be a factor in grave troubles for peace and balance in the world. The crisis cannot be resolved without accrued recourse to the use of nuclear energy. Two essential themes were outlined: the development of nuclear energy in the world, and the increased reduction of proliferation risks. In concluding, he expressed the hop that with a greater effort in information media, the nuclear fact-of-life would be better accepted by the general public in future, for it is there that lies a brake which may hinder nuclear energy development [fr

  5. Finnish energy outlook - role of nuclear energy

    International Nuclear Information System (INIS)

    Santaholma, J.

    2004-01-01

    In this presentation author deals with production a consumption of electricity in the Finland. New nuclear power partly covers additional electricity demand and replaces retiring power plants in coming decades after 2010. Nuclear energy secures stable, economical and predictable electricity price as well as operation environment for the electricity intensive industry for coming decades. Nuclear energy also reduces the dependence on electricity import of Finland. Nuclear energy partly enables, together with renewable, fulfilment of Finland's Kyoto commitments. Solutions for nuclear waste management are a condition sine qua non for sound nuclear programmes. Funding has been arranged. All this is carried out in Finland in a transparent way and in accordance with any democratic requirements. (author)

  6. G-8 leaders tackle global energy security

    International Nuclear Information System (INIS)

    Quevenco, R.

    2006-01-01

    Leaders of the Group of 8 countries backed the IAEA's work at their annual summit held 15-17 July 2006 in St. Petersburg, Russia. A concluding summary statement endorsed IAEA programmes and initiatives in areas of nuclear safety, security, and safeguards. The G8 nations adopted a St. Petersburg Plan of Action to increase transparency, predictability and stability of the global energy markets, improve the investment climate in the energy sector, promote energy efficiency and energy saving, diversify energy mix, ensure physical safety of critical energy infrastructure, reduce energy poverty and address climate change and sustainable development. In a statement on global energy security, the G8 said countries who have or are considering plans for nuclear energy believe it will contribute to global energy security while reducing air pollution and addressing climate change. The G8 said it acknowledged the efforts made in development by the Generation IV International Forum (GIF) and the IAEA's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). GIF and INPRO both bring together countries to develop next generation nuclear energy systems, including small reactors, very high temperature reactors and supercritical water-cooled reactors. The G8 reaffirmed its full commitment to all three pillars of the NPT and called on all States to comply with their NPT obligations, including IAEA safeguards as well as developing effective measures aimed at preventing trafficking in nuclear equipment, technology and materials. The G8 is seeking universal adherence to IAEA comprehensive safeguards agreements and is actively engaged in efforts to make comprehensive safeguards agreements together with an Additional Protocol the universally accepted verification standard. The G8 noted that an expansion of the peaceful use of nuclear energy must be carried forward in a manner consistent with nuclear non-proliferation commitments and standards. It discussed concrete

  7. Innovative nuclear energy systems roadmap

    International Nuclear Information System (INIS)

    2007-12-01

    Developing nuclear energy that is sustainable, safe, has little waste by-product, and cannot be proliferated is an extremely vital and pressing issue. To resolve the four issues through free thinking and overall vision, research activities of 'innovative nuclear energy systems' and 'innovative separation and transmutation' started as a unique 21st Century COE Program for nuclear energy called the Innovative Nuclear Energy Systems for Sustainable Development of the World, COE-INES. 'Innovative nuclear energy systems' include research on CANDLE burn-up reactors, lead-cooled fast reactors and using nuclear energy in heat energy. 'Innovative separation and transmutation' include research on using chemical microchips to efficiently separate TRU waste to MA, burning or destroying waste products, or transmuting plutonium and other nuclear materials. Research on 'nuclear technology and society' and 'education' was also added in order for nuclear energy to be accepted into society. COE-INES was a five-year program ending in 2007. But some activities should be continued and this roadmap detailed them as a rough guide focusing inventions and discoveries. This technology roadmap was created for social acceptance and should be flexible to respond to changing times and conditions. (T. Tanaka)

  8. Nuclear energy in the European energy mix operation

    International Nuclear Information System (INIS)

    Gueldner, R.

    2009-01-01

    The world nuclear energy is on the upswing. This is shown by lifetime extensions up to 60 years and the construction of new nuclear power plants. Especially, the progressive climate change requires new, definitive, fast and decisive solutions. Europe has to find the right energy mix for the future having the magic triangle of environmental sustainability, security of supply and economic affordability in mind. At the centre of all the efforts made by many countries all over the world, nuclear is one vital key technology to face and combat global warming. Nuclear has a positive eco-balance, nuclear gives security of supply and nuclear power generation is competitive. Beside this the most important fact is and will be the high safety to run a nuclear power plant. The energy mix in the EU of the next decades will be defined today. It is vital to consider every option, which can contribute to a sustainable energy mix. Nuclear alone is not the solution for all problems but there will be no sustainable solution without nuclear. (author)

  9. Nuclear energy in a sustainable development perspective

    International Nuclear Information System (INIS)

    2000-01-01

    The concept of sustainable development, which emerged from the report of the 1987 World Commission on Environment and Development (the Brundtland report), is of increasing interest to policy makers and the public. In the energy sector, sustainable development policies need to rely on a comparative assessment of alternative options, taking into account their economic, health, environmental and social aspects, at local, regional and global levels. This publication by the OECD Nuclear Energy Agency investigates nuclear energy from a sustainable development perspective, and highlights the opportunities and challenges that lie ahead in this respect. It provides data and analyses that may help in making trades-off and choices in the energy and electricity sectors at the national level, taking into account country-specific circumstances and priorities. It will be of special interest to policy makers in the nuclear and energy fields

  10. Problem free nuclear power and global change

    International Nuclear Information System (INIS)

    Teller, E.; Wood, L.; Nuckolls, J.; Ishikawa, M.; Hyde, R.

    1997-01-01

    Nuclear fission power reactors represent a solution-in-principle to all aspects of global change possibly induced by inputting of either particulate or carbon or sulfur oxides into the Earth's atmosphere. Of proven technological feasibility, they presently produce high- grade heat for electricity generation, space heating and industrial process-driving around the world, without emitting greenhouse gases or atmospheric particulates. However, a substantial number of major issues currently stand between nuclear power implemented with light- water reactors and widespread substitution for large stationary fossil fuel-fired systems, including long-term fuel supply, adverse public perceptions regarding both long-term and acute operational safety, plant decommissioning, fuel reprocessing, radwaste disposal, fissile materials diversion to military purposes and - perhaps more seriously - cost. We describe a GW-scale, high-temperature nuclear reactor heat source that can operate with no human intervention for a few decades and that may be widely acceptable, since its safety features are simple, inexpensive and easily understood. We provide first-level details of a reactor system designed to satisfy these requirements. Such a back-solving approach to realizing large-scale nuclear fission power systems potentially leads to an energy source capable of meeting all large-scale stationary demands for high- temperature heat. If widely employed to support such demands, it could, for example, directly reduce present-day world-wide CO 2 emissions by two-fold; by using it to produce non-carbonaceous fuels for small mobile demands, a second two-fold reduction could be attained. Even the first such reduction would permit continued slow power-demand growth in the First World and rapid development of the Third World, both without any governmental suppression of fossil fuel usage

  11. Development of a model for strategic evaluation of the global performance of the Brazilian Nuclear Energy Commission; Desenvolvimento de um modelo para avaliacao estrategica do desempenho global da Comissao Nacional de Energia Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Staude, Fabio

    2003-07-01

    A conscious, effective course of action, now essential to several areas and organizations, has become a must in the public administration. In this sense, modem managerial practices may contribute significantly for governmental organism to take up an attitude shifted to results in the society, without losing its eminently public function. In order to measure the social impact of the activities of the State as a whole, institutions must use mechanisms that allow self-evaluations of their performance, so as to verify the return obtained as a result of their efforts. However, most institutions do not have structured tools for such evaluation. The present study proposes to the Comissao Nacional de Energia Nuclear a model to measure its global performance, offering a proposed architecture for the measurement system in accordance with the results of the planning process of the Institution. The methodology presented also comprises the definition of cause-and-effect critical models between the strategic objectives of the organization and its respective factors critic ai for success, as well as related performance indicators. This work also includes the breakdown of the measurement system for the macro processes of the organization, optimizing resource sharing and the flow of information, avoiding redundant efforts and bringing forth further advantages aiming at creating a organizational 'unit'. Within this context, the developed model may offer substantial help for the improvement of the maturity of the organization in goal-oriented management, considering that the proposed global performance measurement follows a planned structure, with a systemic approach of the organization, allowing that the process be carried out in a way that is transparent and objective. (author)

  12. Development of a model for strategic evaluation of the global performance of the Brazilian Nuclear Energy Commission; Desenvolvimento de um modelo para avaliacao estrategica do desempenho global da Comissao Nacional de Energia Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Staude, Fabio

    2003-07-01

    A conscious, effective course of action, now essential to several areas and organizations, has become a must in the public administration. In this sense, modem managerial practices may contribute significantly for governmental organism to take up an attitude shifted to results in the society, without losing its eminently public function. In order to measure the social impact of the activities of the State as a whole, institutions must use mechanisms that allow self-evaluations of their performance, so as to verify the return obtained as a result of their efforts. However, most institutions do not have structured tools for such evaluation. The present study proposes to the Comissao Nacional de Energia Nuclear a model to measure its global performance, offering a proposed architecture for the measurement system in accordance with the results of the planning process of the Institution. The methodology presented also comprises the definition of cause-and-effect critical models between the strategic objectives of the organization and its respective factors critic ai for success, as well as related performance indicators. This work also includes the breakdown of the measurement system for the macro processes of the organization, optimizing resource sharing and the flow of information, avoiding redundant efforts and bringing forth further advantages aiming at creating a organizational 'unit'. Within this context, the developed model may offer substantial help for the improvement of the maturity of the organization in goal-oriented management, considering that the proposed global performance measurement follows a planned structure, with a systemic approach of the organization, allowing that the process be carried out in a way that is transparent and objective. (author)

  13. Global initiatives to prevent nuclear terrorism

    International Nuclear Information System (INIS)

    2010-01-01

    The fight against nuclear and radiological terrorism - someone to blow up a nuclear weapon or spread radioactive material as a 'dirty bomb' that act of terrorism - is one of the most serious threats to international security. The Global Initiative to prevent nuclear terrorism is a Norwegian-sponsored initiative that is aimed directly at combating terrorism by non-state actors. NRPA follow up Norwegian measures, including in Kazakhstan, and verifies that they are implemented and functioning as intended. (AG)

  14. 76 FR 67717 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2011-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear...: [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  15. 77 FR 26274 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2012-05-03

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  16. 78 FR 70932 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-11-27

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee (NEAC...

  17. 75 FR 67351 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-11-02

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy, Department of Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear... [email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory...

  18. 75 FR 13269 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2010-03-19

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Department of Energy, Office of Nuclear Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Nuclear[email protected]nuclear.energy.gov . SUPPLEMENTARY INFORMATION: Background: The Nuclear Energy Advisory Committee...

  19. The global mission of nuclear power

    International Nuclear Information System (INIS)

    Neumann, J.

    1991-01-01

    The contribution of nuclear power to satisfying the future energy needs of mankind and to alleviating the greenhouse effect problem is discussed. It is concluded that in addition to fossil fuels and the hydro-energy, nuclear power is the only macroeconomic source of energy for the majority of countries in this and the next centuries. In the first decade of the 21th century the production capacity of nuclear engineering shall roughly double, and high-temperature and fast-breeding reactors shall play an important role. It is expected that the research into nuclear fusion will progress. (Z.M.). 5 figs., 4 tabs., 8 refs

  20. Nuclear energy in question

    International Nuclear Information System (INIS)

    Simon, D.N.; Carvalho, J.F. de; Goldemberg, J.; Menezes, L.C.; Rosa, L.P.; Oliveira, R.G. de.

    1981-01-01

    The basic requirements demanded for the physical protection of nuclear operational units, is established. These units can be, production, utilization, processing, reprocessing, handling, transport or storage of materials of interesting to Brazilian Nuclear Program. (E.G.) [pt

  1. Expert judgment for nuclear energy

    International Nuclear Information System (INIS)

    Choi, Young Sung; Lee, Sun Ho; Lee, Byong Whi

    2000-01-01

    Public perception on nuclear energy is much influenced by subjective impressions mostly formed through sensational and dramatic news of mass media or anti-nuclear groups. However, nuclear experts, those who have more relevant knowledge and information about nuclear energy, may have reasonable opinion based on scientific facts or inferences. Thus their opinion and consensus should be examined and taken into account during the process of nuclear energy policy formulation. For the purpose of eliciting experts' opinion, the web-based on-line survey system (eBOSS) was developed. Using the survey system, experts' views on nuclear energy were tallied, analyzed and compared with the public's. Based on the survey results, the paper suggests some recommendations about the future direction of the public information program in Korea

  2. Nuclear energy promise or peril?

    International Nuclear Information System (INIS)

    Van der Zwaan, B.C.C.; Hill, C.R.; Ripka, G.

    1999-01-01

    Nuclear energy will inevitably become an important worldwide issue in the 21. century. The authors are authorities in their own fields and their contributions have been read, discussed and criticized by a wide, international group of experts. The today status of nuclear power is exposed, the authors weigh the pros and cons of nuclear energy. In a near future nuclear energy could play a major role in preventing climate change and atmospheric pollution. The main challenges that put at risk nuclear energy are: nuclear safety, radiation protection, the management of radioactive wastes, the problem of plutonium stocks and the risk of proliferation. For each of these open questions, a specialist makes a precise survey of the situation

  3. Nuclear: an energy in territories

    International Nuclear Information System (INIS)

    Le Ngoc, Boris

    2016-01-01

    After having briefly outlined that introducing a relationship between geography and nuclear energy is a quite recent approach, and by often quoting a researcher (Teva Meyer) specialised in Swedish energy issues, the author briefly discusses how nuclear energy structures territories through meshing and 'polarisation' effects, and economic and social impacts. He also discusses whether territories then become dependent on nuclear activity, what happens when a nuclear plant stops, how the existence of a nuclear plant becomes an identity market for a territory, and how material flows also deal with geography. In the last part, the author notices that in Germany, nuclear industry is considered as an industry like any other one. He finally outlines that geography could be useful to achieve energy transition

  4. 2012 Global Energy Competitiveness Index

    International Nuclear Information System (INIS)

    Lorot, Pascal; Lauriano do Rego, Wilfrid

    2012-01-01

    The 2012 Global Energy Competitiveness Index, a survey jointly conducted by Institut Choiseul and KPMG, is the first of its kind. It ranks 146 countries, grouping them into 5 categories ranging from the best performers to under-performers. The first edition of this annual study ranks the countries surveyed not only by continent but also according to the quality of their energy mix, electricity access and availability levels and the compatibility of their energy policies with environmental challenges. The governing bodies of the countries in the panel (relevant ministries and regulatory authorities) can gain much from this decision-making support tool that fosters dialogue on energy-related issues. The targeted audience also includes industry professionals, NGOs, international organisations and other economic players such as banks, consulting firms and specialist commercial law firms commercial law firms. Europe is by far the best performing continent ahead of the best performing continent, ahead of the Americas and Americas and even further ahead of Asia/Oceania and Africa. Generally speaking, the Nordic countries are among the best performers: Norway, Canada, Iceland, Denmark, Sweden and Finland rank, in this order, in the global Top 10. Four EU countries are among the global Top 10 (Denmark, Sweden, Finland and France) and five others (the United Kingdom, Austria, Germany, Slovakia and Spain) are in the Top 20. Surprisingly, Colombia stood out as the fifth most competitive country in terms of energy. Its outstanding performance is due to a strong energy mix (ranked second worldwide) and an energy strategy compatible with today's key environmental challenges. The apparent domination of Northern-hemisphere countries needs to be considered in conjunction with the results achieved by the other Seeming domination of be considered in conjunction with the results achieved by the other countries with regard to their energy mix and the environmental compatibility of

  5. Nuclear energy facing the future

    International Nuclear Information System (INIS)

    Laue, H.J.

    1982-01-01

    In conjunction with the 25th anniversary of the establishment of the IAEA, the contribution that nuclear energy can make to future world energy requirements is discussed and nuclear power generation statistics examined with especial reference to data on capacity and outages. (U.K.)

  6. Nuclear energy: basics, present, future

    Directory of Open Access Journals (Sweden)

    Ricotti M. E

    2013-06-01

    Full Text Available The contribution is conceived for non-nuclear experts, intended as a synthetic and simplified overview of the technology related to energy by nuclear fission. At the end of the paper, the Reader will find a minimal set of references, several of them on internet, useful to start deepening the knowledge on this challenging, complex, debated albeit engaging energy source.

  7. Social Institutions and Nuclear Energy

    Science.gov (United States)

    Weinberg, Alvin M.

    1972-01-01

    Nuclear technologists can offer an all but infinite source of relatively cheap and clean energy" but society must decide whether the price of eternal vigilance needed to ensure proper and safe operation of its nuclear energy system" is worth the benefits. (Author/AL)

  8. Symmetry energy in nuclear surface

    International Nuclear Information System (INIS)

    Danielewicz, P.; Lee, Jenny

    2009-01-01

    Interplay between the dependence of symmetry energy on density and the variation of nucleonic densities across nuclear surface is discussed. That interplay gives rise to the mass dependence of the symmetry coefficient in an energy formula. Charge symmetry of the nuclear interactions allows to introduce isoscalar and isovector densities that are approximately independent of the magnitude of neutron-proton asymmetry. (author)

  9. Nuclear energy national plan. The directions for nuclear energy policy in Japan

    International Nuclear Information System (INIS)

    2006-11-01

    Nuclear energy is a key attaining an integrated solution for energy security and global warming issues. Under the Framework for Nuclear Energy Policy Japan aims to (1) maintain the 30 to 40% or more share of nuclear energy on electricity generation up to 2030 and afterwards, (2) promote the nuclear fuel cycle and (3) commercialize the fast-breeder reactors. As for policies to realize the basic targets, the 'Nuclear Energy National Plan' was compiled in August 2006 as follows: (1) Investment to construct new nuclear power plants and replace existing reactors in an era of electric power liberalization, 2) Appropriate use of existing nuclear power plants with assuring safety as a key prerequisite, (3) Steady advancement of the nuclear fuel cycle and strategic reinforcement of nuclear fuel cycle industries, (4) Strategy to secure uranium supplied, (5) Early commercialization of the fast breeder reactor cycle, (6) Achieving and developing advanced, technologies, industries and personnel, (7) Assisting the Japanese nuclear industry in promoting the international development, (8) Involved in and/or creating international frameworks to uphold both nonproliferation and expansion of nuclear power generation, (9) Fostering trust between the sates and communities where plants are located by making public hearings and public relations highly detailed and (10) Steady promotion of measures for disposal of radioactive wastes. Implementation policies were presented in details in this book with relevant data and documents. (T. Tanaka)

  10. Development of nuclear energy and nuclear policy in China

    International Nuclear Information System (INIS)

    You Deliang

    1993-11-01

    Status of nuclear power development in China, nuclear policy and nuclear power programme are described. Issues regarding nuclear fuel cycle system, radioactive waste management and international cooperation in the field of peaceful use of nuclear energy are discussed

  11. Nuclear Energy in Perspective

    International Nuclear Information System (INIS)

    1989-01-01

    This report provides the interested non-specialist reader with insights on five major issues associated with nuclear power generation: nuclear development and economics, protection of man and the environment, power plant safety, radioactive waste management and compensation for damage from a nuclear accident

  12. Nuclear energy - myth and reality

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Michael C. [Illinois Dept. of Nuclear Safety, IL (United States). Emergency Planning Section

    1997-12-31

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world`s political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  13. Nuclear energy - myth and reality

    International Nuclear Information System (INIS)

    Sinclair, Michael C.

    1997-01-01

    Socio-political aspects of the use of nuclear energy and radiation are presented. The behaviour of the general population, and many of the world's political organizations who still resist or reject nuclear energy as a viable resource is discussed. The benefits from the production of electricity, medical diagnostics and treatment, engineering accomplishments, and scientific research applications involving the use of nuclear technology and radioactive materials are emphasized

  14. Proceedings of GLOBAL 2007 conference on advanced nuclear fuel cycles and systems

    International Nuclear Information System (INIS)

    2007-01-01

    In keeping with the 12-year history of this conference, GLOBAL 2007 focuses on future nuclear energy systems and fuel cycles. With the increasing public acceptance and political endorsement of nuclear energy, it is a pivotal time for nuclear energy research. Significant advances have been made in development of advanced nuclear fuels and materials, reactor designs, partitioning, transmutation and reprocessing technologies, and waste management strategies. In concert with the technological advances, it is more important than ever to develop sensible nuclear proliferation policies, to promote sustainability, and to continue to increase international collaboration. To further these aims, GLOBAL 2007 highlights recent developments in the following areas: advanced integrated fuel cycle concepts, spent nuclear fuel reprocessing, advanced reprocessing technology, advanced fuels and materials, advanced waste management technology, novel concepts for waste disposal and repository development, advanced reactors, partitioning and transmutation, developments in nuclear non-proliferation technology, policy, and implementation, sustainability and expanded global utilization of nuclear energy, and international collaboration on nuclear energy

  15. Nuclear energy: considerations about nuclear trade

    International Nuclear Information System (INIS)

    Goes Fischer, M.D. de.

    1988-01-01

    A general view of historical aspects of nuclear energy and the arrangements to assure its use for peaceful purposes are presented. Then the internal character of nuclear energy in a juride context is demonstrated; some consideration about the international organizations and conventions and the Brazilian Legislation in the nuclear area are examined. It also deals with the political aspects of nuclear trade and the function of IAEA in this are. Furthermore the restrictions imposed by Non-Proliferation Treaty-NPT, the objectures of the Tlatelolco Treaty and ''London Club'' guidelines. Afterwards the bilateral cooperation under taken by countries and its agreements are discussed. Besides some aspects of agreements made between United States, France Germany and Brazil are discussed [pt

  16. Open discussions on nuclear energy

    International Nuclear Information System (INIS)

    1978-01-01

    In the first part, economic prospects in the world and in the European Community and their repercussions on energy demand are examined. Supply structure and growth scenari are outlined. Present and potential contribution of nuclear energy to energy supply is developed. The pros and cons are given. In the second part is examined how the production and use of various form of energy including nuclear energy, can affect health and the environment, with special reference to waste of all kinds. Safety problems and risk of accidents are examined in both non nuclear and nuclear sectors. Prospects for a low energy society and economic and social implications of the use of new forms of energy are also discussed

  17. Global Energy Forecasting Competition 2012

    DEFF Research Database (Denmark)

    Hong, Tao; Pinson, Pierre; Fan, Shu

    2014-01-01

    The Global Energy Forecasting Competition (GEFCom2012) attracted hundreds of participants worldwide, who contributed many novel ideas to the energy forecasting field. This paper introduces both tracks of GEFCom2012, hierarchical load forecasting and wind power forecasting, with details...... on the aspects of the problem, the data, and a summary of the methods used by selected top entries. We also discuss the lessons learned from this competition from the organizers’ perspective. The complete data set, including the solution data, is published along with this paper, in an effort to establish...

  18. Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    of the oceanic lithosphere. An entire modelling of the shallow Geopotential Energy is hereby approached, not taking into account possible deeper signals but all lithospheric signals for the subsequent stress calculation. Therefore a global lithospheric density model is necessary to calculate the corresponding...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  19. Nuclear winter: Global consequences of multiple nuclear explosions

    International Nuclear Information System (INIS)

    Turco, R.P.; Toon, O.B.; Ackerman, T.P.; Pollack, J.B.; Sagan, C.

    1984-01-01

    Concern has been raised over the short- and long-term consequences of the dust, smoke, radioactivity, and toxic vapors that would be generated by a nuclear war. The discovery that dense clouds of soil particles may have played a major role in past mass extinctions of life on Earth has encouraged the reconsideration of nuclear war effects. These developments have led the authors to calculate, using new data and improved models, the potential global environmental effects of dust and smoke clouds (henceforth referred to as nuclear dust and smoke) generated in a nuclear war. They neglect the short-term effects of blast, fire, and radiation. Most of the world's population could probably survive the initial nuclear exchange and would inherit the postwar environment. Accordingly, the longer-term and global-scale aftereffects of nuclear war might prove to be as important as the immediate consequences of the war

  20. Global wind energy outlook 2008

    International Nuclear Information System (INIS)

    2008-10-01

    An overview is given of the global potential of wind power up to 2050. This potential could play a key part in achieving a decline in emissions by 2020, which the IPCC indicates is necessary to avoid the worst consequences of climate change. By 2020, wind power could save as much as 1.5 billion tonnes of CO2 every year, which would add up to over 10 billion tonnes in this timeframe. The report also explains how wind energy can provide up to 30% of the word's electricity by the middle of the century. More importantly, wind power could save as much as 1.5 billion tonnes of CO2 every year by 2020. GWEO 2008 explores three different scenarios for wind power: a Reference scenario based on figures from the International Energy Agency (IEA); a Moderate version which assumes that current targets for renewable energy are successful; and an Advanced Scenario which assumes that all policy options in favour of renewables have been adopted. These are then set against two demand projections for global energy demand. Wind energy has already become a mainstream power generation source in many regions around the world, and it is being deployed in over 70 countries. In addition to environmental benefits, wind energy also provides a sustainable answer to increasing concerns about security of energy supply and volatile fossil fuel prices. Moreover, wind energy is becoming a substantial factor in economic development, providing more than 350,000 'green collar' jobs today both in direct and indirect employment. By 2020, this figure is projected to increase to over 2 million

  1. Nuclear energy and international cooperation

    International Nuclear Information System (INIS)

    Oshima, Keiichi

    1981-01-01

    There is no need to emphasize that nuclear energy cannot be developed without international cooperation at either the industrial or the academic level. In the meanwhile, there have been some marked political, economic and social changes in recent years which are posing constraints to the international cooperation in nuclear energy. The problems and constraints impeding nuclear power programs cannot be overcome by only one nation; international cooperation with common efforts to solve the problems is essential. Nuclear energy is different from fossil energy resources in that it is highly technology-intensive while others are resource-intensive. International cooperation in technology has an entirely different importance in the field of nuclear energy. Educational institutions will play a role in a new era of the international cooperation. (Mori, K.)

  2. Nuclear energy; Le nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This digest document was written by members of the union of associations of ex-members and retired people of the Areva group (UARGA). It gives a comprehensive overview of the nuclear industry world, starting from radioactivity and its applications, and going on with the fuel cycle (front-end, back-end, fuel reprocessing, transports), the nuclear reactors (PWR, BWR, Candu, HTR, generation 4 systems), the effluents from nuclear facilities, the nuclear wastes (processing, disposal), and the management and safety of nuclear activities. (J.S.)

  3. Nuclear energy and sustainability: Understanding ITER

    International Nuclear Information System (INIS)

    Fiore, Karine

    2006-01-01

    Deregulation and new environmental requirements combined with the growing scarcity of fossil resources and the increasing world energy demand lead to a renewal of the debate on tomorrow's energies. Specifically, nuclear energy, which has undeniable assets, faces new constraints. On the one hand, nuclear energy is very competitive and harmless to greenhouse effect. From this point, it seems to be an ideal candidate to reach future objectives of sustainability, availability and acceptability. On the other hand, its technology of production - based on fission - remains imperfect and generates risks for environment and health. In this respect, it is less desirable. Therefore, world researchers turn today towards another type of nuclear technique, fusion, on which the project ITER is founded. This worldwide project is interesting for our analysis because, as a technological revolution, it takes into consideration all the global challenges of nuclear energy for the future, and particularly its capacity to meet the increasing energy needs of developing countries. It is the example par excellence of a successful international scientific collaboration oriented towards very long-run energy ends that involve huge technological, economic and political stakes. Focusing on this project, we thus have to reconsider the future place of nuclear energy in a more and more demanding world. Considering the magnitude of the efforts undertaken to implement ITER, this paper aims at analysing, in a detailed way, its goals, its challenges and its matter

  4. Global nuclear material flow/control model

    International Nuclear Information System (INIS)

    Dreicer, J.S.; Rutherford, D.S.; Fasel, P.K.; Riese, J.M.

    1997-01-01

    This is the final report of a two-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The nuclear danger can be reduced by a system for global management, protection, control, and accounting as part of an international regime for nuclear materials. The development of an international fissile material management and control regime requires conceptual research supported by an analytical and modeling tool which treats the nuclear fuel cycle as a complete system. The prototype model developed visually represents the fundamental data, information, and capabilities related to the nuclear fuel cycle in a framework supportive of national or an international perspective. This includes an assessment of the global distribution of military and civilian fissile material inventories, a representation of the proliferation pertinent physical processes, facility specific geographic identification, and the capability to estimate resource requirements for the management and control of nuclear material. The model establishes the foundation for evaluating the global production, disposition, and safeguards and security requirements for fissile nuclear material and supports the development of other pertinent algorithmic capabilities necessary to undertake further global nuclear material related studies

  5. Acceptance of nuclear energy in developed countries

    International Nuclear Information System (INIS)

    Sobajima, Makoto

    1999-03-01

    This paper focuses on the presence of problems, governmental efforts and the state of each people's awareness in accepting nuclear energy especially in developed countries and reviews the past circumstances and recent activities. Significant differences among countries in the popularity of nuclear power depend largely on the environment of the particular country such as energy circumstances and also on the execution of the energy policy. Also it is pointed out that the difference comes from the consciousness of the execution of the people in such a policy they establish and decide whether they accept or not. The analysis, that the French people traditionally believe they cannot control risks and give high degree of trust to their government and specialists, whereas Americans conversely intervene in administration to control risks by themselves and try to change specialist's Judgment, explains one side of polarization in popularity of nuclear energy in the world. Japanese have tended to not to believe the administration probably due to recent continuous scandals of officials and motivation to require disclosure of information and to dispute, which lays on the background of retard of nuclear energy. For resolving the global issues such as warming, it is becoming more important that at least specialists of nuclear technology recover the loosing trust owing to the accidents and scandals through steady activities, show the whole view of trust worthy development plan of nuclear energy and regain the confidence by the people. (author)

  6. Nuclear energy and sustainable development

    International Nuclear Information System (INIS)

    Arts, F.; De Ruiter, W.; Turkenburg, W.C.

    1994-01-01

    The purposes of the title workshop were to exchange ideas on the possible impact of nuclear energy on the sustainable development of the society, to outline the marginal conditions that have to be fulfilled by nuclear energy technology to fit in into sustainable development, to asses and determine the differences or agreements of the workshop participants and their argumentations, and to determine the part that the Netherlands could or should play with respect to a further development and application of nuclear energy. 35 Dutch experts in the field of energy and environment attended the workshop which is considered to be a success. It is recommended to organize a follow-up workshop

  7. Outlook for nuclear fission energy

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1978-01-01

    The electric utility industry has made a substantial commitment to nuclear power. The industrial capability to produce nuclear plants is large and well established. Nevertheless, nuclear energy in the United States is at the crossroad, and the direction it will take is not at all assured. The postponements, cancellations, and lack of orders for new plants over the past three years raise some serious questions about the future. The present problems of nuclear energy are primarily nontechnical in nature. If the nontechnical issues can be resolved, the future for nuclear looks bright indeed. The LWR and other converters could provide strong competition for coal and other electric power options for a half century or more. If development goals are met, the nuclear breeder offers the prospect of a very large supply of energy at stabilized prices over a time span of centuries

  8. Global movement in reviewing nuclear power generation

    International Nuclear Information System (INIS)

    Kimura, Yoshiyasu

    2007-01-01

    The price of crude oil, natural gas and coal has increased since 2004 with the rapid increase of primary energy demand in China, India and other developing countries. Moreover due to the political uncertainty in the Middle East, and the state control of energy resources in countries like Russia, the issue of energy security has become a critical issue. Nuclear power has been reconsidered in recent years in the US and European countries, because nuclear power is one of the cheapest sources of low carbon energy and also has relatively stable costs, and is thereby useful to energy security and to prevent climate change. Electricity demand is growing very rapidly in China and additional reactors are planned to give a fivefold increase in nuclear capacity to 40,000 MWe by 2020. India has a largely indigenous nuclear power program and expects to have 20,000 MWe nuclear capacity by 2020. Russia is moving steadily forward with plans for a much expanded role of nuclear energy, and the restructuring of nuclear industries has begun to strengthen competitiveness in international nuclear markets. (author)

  9. Nuclear transportation: The global vision

    International Nuclear Information System (INIS)

    Lowry, D.; Blowers, A.

    1996-01-01

    The movement of nuclear materials - spent fuel, plutonium and uranium and radioactive wastes - has become an issue of international political significance. It has generated considerable attention from a developing network of NGOs focussing on movements between France and Japan. The paper discusses the conflicts and their implications for six basic principles of radioactive waste management

  10. The future of nuclear energy

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Europe is one of the world leaders in nuclear technology advancement. The development of spent fuel reprocessing is but one example of this. This process continues today with the development by France and Germany of the European Pressurised-Water Reactor. Nuclear research and development work is continuing in Europe, and must be continued in the future, if Europe is to retain its world leadership position in the technological field and on the commercial front. If we look at the benefits, which nuclear energy has to offer, in economic and environmental terms, 1 support the view that nuclear is an energy source whose time has come again. This is not some fanciful notion or wishful thinking. There is clear evidence of greater long-term reliance on nuclear energy. Perhaps we do not see new nuclear plants springing up in Europe, but we do see ambitious nuclear power development programmes underway in places like China, Japan and Korea. Closer to home, Finland is seriously considering the construction of a new nuclear unit. Elsewhere, in Europe and the US, we see a growing trend towards nuclear plant life extension and plant upgrades geared towards higher production capacity. These are all signs that nuclear will be around for a long time to come and that nuclear will indeed have a future

  11. Nuclear Energy and European Union

    International Nuclear Information System (INIS)

    Picamal, B.

    2010-01-01

    The interest shown by the European Institutions in the energy debates, in which the nuclear energy is included as a key component within the energy mix, is obvious. Climate change and energy supply have pushed some countries to publicly express their interest for developing the nuclear energy. These positions are however in contradiction with some others within the European Union which are a lot more critical towards this type of energy and where face-out policies still prevail. Despite the fact that the use of the nuclear energy will remain within the competence of each Member State, the European Union will continue to play a prominent role in the development of an energy strategy based on a low carbon economy. (Author)

  12. Nuclear Energy Research in Europe

    International Nuclear Information System (INIS)

    Schenkel, Roland; Haas, Didier

    2008-01-01

    The energy situation in Europe is mainly characterized by a growth in consumption, together with increasing import dependence in all energy resources. Assuring security of energy supply is a major goal at European Union level, and this can best be achieved by an adequate energy mix, including nuclear energy, producing now 32 % of our electricity. An increase of this proportion would not only improve our independence, but also reduce greenhouse gases emissions in Europe. Another major incentive in favor of nuclear is its competitiveness, as compared to other energy sources, and above all the low dependence of the electricity price on variation of the price of the raw material. The European Commission has launched a series of initiatives aiming at better coordinating energy policies and research. Particular emphasis in future European research will be given on the long-term sustainability of nuclear energy through the development of fast reactors, and to potential industrial heat applications. (authors)

  13. Energy, the environment and nuclear power

    International Nuclear Information System (INIS)

    Hodgson, Peter E.

    2005-01-01

    The paper describes the author's view on the environmental problems and nuclear power. The world demand for energy has increased rapidly due to the increase of population and the overall rise in living standards, resulting in many signs that the world is experiencing a growing shortage of energy and continuing need for flexible planning and the search for new sources. Fossil fuels are polluting the atmosphere, leading to climate change, acid rain and global warming. This has led many countries to look again at nuclear power. For the widespread opposition to nuclear power, the author lists up the fear of nuclear weapons, the fear of nuclear radiations including reprocessing plants as well as natural radioactivity and cosmic rays, the fear about the safety of nuclear reactors, and production of large amount of radioactive wastes. The author compares various energy sources, and insists that there is a strong reluctance to face the truth, as Governments knowing that nuclear power is politically so unpopular would not advocate the construction of new nuclear stations. (S. Ohno)

  14. Nuclear energy - the future climate

    International Nuclear Information System (INIS)

    Ash, Eric Sir

    2000-01-01

    In June 1999, a report entitled Nuclear Energy-The Future Climate was published and was the result of a collaboration between the Royal Society and the Royal Academy of Engineering. The report was the work of a group of nine people, made up of scientists, engineers and an economist, whose purpose was to attempt a new and objective look at the total energy scene and specifically the future role of nuclear energy. This paper discusses the findings of that report. (author)

  15. Nuclear power: energy security and supply assurances

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2008-01-01

    Expectations are high for nuclear power. This paper first summarizes recent global and regional projections for the medium-term, including the 2007 updates of IAEA projections plus International Energy Agency and World Energy Technology Outlook projections to 2030 and 2050. One driving force for nuclear power is concern about energy supply security. Two potential obstacles are concerns about increased nuclear weapon proliferation risks, and concerns by some countries about potential politically motivated nuclear fuel supply interruptions. Concerning supply security, the paper reviews different definitions, strategies and costs. Supply security is not free; nor does nuclear power categorically increase energy supply security in all situations. Concerning proliferation and nuclear fuel cut-off risks, the IAEA and others are exploring possible 'assurance of supply' mechanisms with 2 motivations. First, the possibility of a political fuel supply interruption is a non-market disincentive discouraging investment in nuclear power. Fuel supply assurance mechanisms could reduce this disincentive. Second, the risk of interruption creates an incentive for a country to insure against that risk by developing a national enrichment capability. Assurance mechanisms could reduce this incentive, thereby reducing the possible spread of new national enrichment capabilities and any associated weapon proliferation risks. (orig.)

  16. The future of nuclear energy in Europe

    International Nuclear Information System (INIS)

    Schmidt-Kuester, W.J.

    2000-01-01

    Are concerns about global warming of the Earth's atmosphere going to rekindle interest in nuclear power and in building new nuclear power plants in Europe? As a consequence of the discussions about the climate, the use of nuclear power as an important energy source is currently being re-evaluated, finds Dr. Wolf-J. Schmidt-Kuester, Secretary General of FORATOM, the European Atomic Forum, headquartered in Brussels. In his article, he argues that a renaissance of nuclear power will be possible also in Europe once politics supports resuming an unbiased discussion of all topics associated with the energy problem. Europe must face two problems in the energy sector for which solutions must be found: the growing dependence on fossil energy resources, and the need to curb greenhouse gas emissions, especially those of carbon dioxide. Nuclear power is already making a sizable contribution towards the solution of these problems, but its future potential has hardly been tapped. Public acceptance of nuclear power shows that the intention to opt out of the peaceful uses of nuclear power is not based on an identical attitude of the public, but is motivated politically, finding only little public support, as in the cases of Sweden and Germany. (orig.) [de

  17. Nuclear energy: a reasonable choice?

    International Nuclear Information System (INIS)

    Nifenecker, H.

    2011-01-01

    While nuclear energy appears today as a powerful and carbon-free energy, it generates at the same time doubts and apprehension in the general public. Are these fears justified? Is France the most advanced country in the nuclear domain? Should we fear a Chernobyl-like accident in France? Is any irradiation dangerous? What would be the consequences of a terror attack against a reactor? Will nuclear energy be powerful enough to take up the energy reserves challenge? Will the waste management and the nuclear facilities dismantlement be extremely expensive in comparison with the electricity production costs? Do we know how to manage nuclear wastes on the long-term? This book tries to supply some relevant arguments in order to let the reader answering these questions himself and making his own opinion on this topic. (J.S.)

  18. Nuclear power: an essential energy

    International Nuclear Information System (INIS)

    Agnew, H.M.

    1980-01-01

    Dr. Agnew notes that the public fails to remember that the electric utilities and equipment manufacturers did not invent nuclear energy; they only choose whether or not to use it to generate power. The effort to regain world leadership in nuclear energy will require recognizing that the rest of the world needs it too. Opposition to the use of nuclear power has been politically effective, in spite of the need to move to a non-petroleum fuel base and without coming up with a viable alternative. The nuclear industry responded to the Three Mile Island accident by taking steps to improve reactor safety, but the industry continues to be threatened because of the suspended reprocessing and breeder programs. The industry must make a compelling case for energy independence to persuade the public that all energy sources, including nuclear, must be developed

  19. Informing parliamentarians on nuclear energy

    International Nuclear Information System (INIS)

    1995-01-01

    This publication contains a selection of the papers presented at an international seminar on informing parliamentarians in the nuclear field. This seminar has been organized by the OECD Nuclear Energy Agency to respond to important information needs. As a matter of fact, providing clear and accurate information to decision-makers is a key element that contributes to the quality of work for legislation for a safe use of nuclear energy. The sessions dealt with : meeting the information needs of parliamentarians and other elected representatives on nuclear energy questions, actors and their respective roles in the information process, means and tools for communicating information on nuclear energy, case studies in communication with elected officials. Abstracts have been prepared for all of the papers in this volume. (TEC)

  20. Nuclear energy and sustainable development: recent trends

    International Nuclear Information System (INIS)

    Singh, B.P.

    2012-01-01

    During the last 50 years or so there is enormous development in various fields like agriculture, industry, medicine, etc. Further, the population on this globe has increased many folds. In order to cater to the needs of the present population there is an increasing demand of electricity in the society. Per capita electricity consumption also is an index of development in the country. Considering the facts like green house effect and global warming, nuclear energy is the better option. But at the same time there are some critical issues like nuclear waste management globally and availability of fissile material in the context of our country. Research and development are going on to take care of these issues where scientists and engineers are working on alternative fuel cycle and new reactor types, for example Accelerator Driven Subcritical (ADS) System is one of them. Since, ADS reactor is a subcritical system, safety related issues are in fact of low concern relative to existing critical reactors. As a matter of fact, the ADS system is the combination of a particle accelerator and a nuclear reactor. In this talk, a detailed description of the need of energy in our country, which can only be met if nuclear energy contributes a substantial energy requirement, will be presented. Further, how the nuclear waste management issues may be addressed, with the new ADS system will also be presented. (author)

  1. Nuclear Energy in Space Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Seaborg, Glenn T.

    1968-01-01

    Nuclear space programs under development by the Atomic Energy Commission are reviewed including the Rover Program, systems for nuclear rocket propulsion and, the SNAP Program, systems for generating electric power in space. The letters S-N-A-P stands for Systems for Nuclear Auxiliary Power. Some of the projected uses of nuclear systems in space are briefly discussed including lunar orbit, lunar transportation from lunar orbit to lunar surface and base stations; planetary exploration, and longer space missions. The limitations of other sources of energy such as solar, fuel cells, and electric batteries are discussed. The excitement and visionary possibilities of the Age of Space are discussed.

  2. Nuclear energy, future of ecology?

    International Nuclear Information System (INIS)

    Comby, B.

    1995-01-01

    This work can surprise; because it is said that nuclear energy is the only one that will allow to satisfy the energy needs of the planet by reducing the pollution. It gives answers on: Chernobyl accident, the existence of natural radioactivity, the comparison between natural radioactivity and medical, military and industrial irradiation, the pollution of our environment, the petroleum whom reserves are going to decrease, the advantages of the 'clever' nuclear and the disadvantages of the 'dustbin' nuclear, why some of ecologists are favourable to the nuclear, the effects of radiations on health, the foods irradiation, the wastes processing and the future of our planet. (N.C.)

  3. Energy from nuclear reactors

    International Nuclear Information System (INIS)

    Hospe, J.

    1977-01-01

    This VDI-Nachrichten series has the target to provide a technical-objective basis for the discussion of the pros and cons of nuclear power. The first part deals with LWR-type reactors which so far have prevailed in nuclear power generation. (orig.) [de

  4. Global nuclear markets in the context of climate change and sustainable development. Chapter 2

    International Nuclear Information System (INIS)

    Morrison, R.

    2001-01-01

    This article (Chapter Two) focuses on the global nuclear markets in the context of policies regarding climate change and sustainable development. The global market realities and the export potential of the canadian nuclear industry are becoming crucial features of the nuclear political economy. The article examines the role of exports in the evolution of nuclear policy in Canada, and looks more closely at nuclear power and CANDU projects in the specific context of global competitive markets. It examines the trends in electricity and nuclear energy in the market for nuclear reactors. Finally, this article locates these changes in the context of the issues that are inherent in climate change and sustainable development

  5. Nuclear energy. Social-humanitarian aspects

    International Nuclear Information System (INIS)

    Komleva, Elena

    2005-01-01

    The work is aimed at identifying the main social-humanitarian aspects and giving grounds for the imperative of humanitarian reflection of nuclear energy, development of the concept of 'human dimension' in this sphere. Historical-philosophical and futurological as well as rational-irrational approaches are used. There are suggested several possible chains to consider the interrelation between some global phenomena with the nuclear one, as well as their impact on the fate of humankind. There is shown the meaning of cultural, historical and religious perspectives as tools for reaching better understanding on the issue of possession of nuclear energy and improving the contemporary communication nuclear technosphere - society. There is determined the humanitarian task of the nearest future and designated the cultural-historical potential of Germany, Japan and Russia to increase international cooperation on the issue. (author)

  6. Energy Outlook and Nuclear Energy in China

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Mooneon; Kang, Jun-young; Song, Kiwon; Park, Hyun Sun; Park, Chang Kue [Pohang university of science and technology, Pohang (Korea, Republic of)

    2015-05-15

    China receives attention from the whole world as not only have they become a country spending the most energy in the world, but also the amount of energy they need is still increasing. Consequently, many problems related to environmental pollution have occurred in China. Recently, China agreed to reduce carbon emission in order to deal with this issue. Therefore, they need to find energy sources other than fossil fuel; the nuclear energy could be an alternative. In addition, it is considered to be a base load owing to its low fuel cost and continuation of electricity generation. In reality, the Chinese government is planning to build about 400 Nuclear Power Plants (NPPs) up to 2050. Therefore, it is expected that China will become a giant market in the nuclear industry. It could give us either chances to join the huge market or challenges to meet not merely nuclear fuel price crisis but competitors from China in the world nuclear power plant market. In any case, it is obvious that the energy policy of China would influence us significantly. Accordingly, we need appropriate prediction of the Chinese nuclear industry to cope with the challenges.

  7. Nuclear energy such as an alternative energy source

    International Nuclear Information System (INIS)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S

    2013-01-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  8. Nuclear energy such as an alternative energy source

    Energy Technology Data Exchange (ETDEWEB)

    Domingos, D.B.; Stecher, L.C.; Menzel, F.; Coelho, T.S.; Giariola, R.S, E-mail: douglasborgesdomingos@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Nuclear power is still an unknown subject to many and ends up being left out when it comes to alternative energy sources and environmental preservation. Unfamiliarity and the disclosures information that are not always correct end up not to show the public the true risks and benefits of this source. The strength of public opinion is the main barrier to the advancement of this technology. So, this paper aims to demystify the villain aspect of nuclear energy that could become a major source for power generation. For this, will be made a historical retrospective of the theories that enabled the field of nuclear fission, the authors and key points, such as will be described how nuclear fission reaction is produced, controlled and sustained and how energy is produced, will be also made an argument on key facts that lead public opinion to stand up against nuclear power, as the generation of radioactive waste and nuclear weapons. Are presented possible solutions beyond the learning and improvements resulting from the occurred accidents. After these analyzes was observed that, besides being a potentially clean source for power generation, it can be safe in order that the waste generated are already safely managed and intelligence groups also monitor terrorist groups, seeking to ensure global security in relation to nuclear weapons and, at the issue of accidents, each event has brought learning and became the nuclear industry today, one of the safest. (author)

  9. Nuclear energy in transition countries

    International Nuclear Information System (INIS)

    Knapp, V.

    2000-01-01

    Transition countries, respectively the countries that have in the year's 89/90 broken with the communist political and economy system are passing through difficult years. From their traditional markets within the closely interconnected socialist economy system, which has disintegrated, they have to reorient themselves to new, often saturated and sophisticated markets. To integrate into Europe as equal partners, rather then remain poor relatives, they must reduce this development gap in a reasonable time, not longer than 15 years. Slower pace would not give acceptable perspective to their young people and they would look for it elsewhere, thereby reducing creative forces for progress. Examples of economic development show that sustained growth of GDP is impossible without similar industrial growth, which, in turn, requires corresponding increase of energy use. In the same time these countries are the parts of densely populated European region and are subject to emission restriction of effluents with local or global effects. It is difficult to see how these countries could attain their development goals, whilst respecting their Kyoto obligations, without supplying increased energy demand from nuclear sources. (author)

  10. Nuclear Power: Global Trend and Outlook

    International Nuclear Information System (INIS)

    Holger Rogner, H.; Weisser, D.; )

    2006-01-01

    The increasing role of nuclear power in electricity production is described. Differences in countries and regions regarding their energy infrastructure, economic capacities, energy demand and supply patterns, energy market liberalization, environmental policy as well as socio-political aspects are taken into account

  11. 78 FR 76599 - Nuclear Energy Advisory Committee

    Science.gov (United States)

    2013-12-18

    ... DEPARTMENT OF ENERGY Nuclear Energy Advisory Committee AGENCY: Office of Nuclear Energy..., General Services Administration, notice is hereby given that the Nuclear Energy Advisory Committee (NEAC... to the Department of Energy's Office of Nuclear Energy on complex science and technical issues that...

  12. Overview of Nuclear Energy: Present and Projected Use

    International Nuclear Information System (INIS)

    Stanculescu, Alexander

    2011-01-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  13. Overview of Nuclear Energy: Present and Projected Use

    Energy Technology Data Exchange (ETDEWEB)

    Alexander Stanculescu

    2011-09-01

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  14. Overview of nuclear energy: Present and projected use

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, Alexander [Idaho National Laboratory 2525 North Fremont Avenue, Idaho Falls, Idaho 83415 (United States)

    2012-06-19

    Several factors will influence the contribution of nuclear energy to the future energy mix. Among them, the most important are the degree of global commitment to greenhouse gas reduction, continued vigilance in safety and safeguards, technological advances, economic competitiveness and innovative financing arrangements for new nuclear power plant constructions, the implementation of nuclear waste disposal, and, last but not least, public perception, information and education. The paper presents an overview of the current nuclear energy situation, possible development scenarios, of reactor technology, and of non-electric applications of nuclear energy.

  15. Nuclear energy and climate change

    International Nuclear Information System (INIS)

    Gonzalez Jimenez, A.

    2002-01-01

    Energy is one of the essential motives for social and economic development of the humanity. Nuclear energy is a feasible option to stand up to a larger demand of energy, and it is playing, and will continue playing in the future, a decisive role in the debate about climate change and sustainable development, and in the efforts to reduce the CO 2 emissions. (Author)

  16. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  17. Global Security, Medical Isotopes, and Nuclear Science

    Science.gov (United States)

    Ahle, Larry

    2007-10-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R&D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities.

  18. Global Security, Medical Isotopes, and Nuclear Science

    International Nuclear Information System (INIS)

    Ahle, Larry

    2007-01-01

    Over the past century basic nuclear science research has led to the use of radioactive isotopes into a wide variety of applications that touch our lives everyday. Some are obvious, such as isotopes for medical diagnostics and treatment. Others are less so, such as National/Global security issues. And some we take for granted, like the small amount of 241 Am that is in every smoke detector. At the beginning of this century, we are in a position where the prevalence and importance of some applications of nuclear science are pushing the basic nuclear science community for improved models and nuclear data. Yet, at the same time, the push by the basic nuclear science community to study nuclei that are farther and farther away from stability also offer new opportunities for many applications. This talk will look at several global security applications of nuclear science, summarizing current R and D and need for improved nuclear data It will also look at how applications of nuclear science, such as to medicine, will benefit from the push for more and more powerful radioactive ion beam facilities

  19. Nuclear energy safety - new challenges

    Energy Technology Data Exchange (ETDEWEB)

    Rausch, Julio Cezar; Fonseca, Renato Alves da, E-mail: jrausch@cnen.gov.b, E-mail: rfonseca@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)

  20. Nuclear energy safety - new challenges

    International Nuclear Information System (INIS)

    Rausch, Julio Cezar; Fonseca, Renato Alves da

    2011-01-01

    Fukushima accident in March this year, the second most serious nuclear accident in the world, put in evidence a discussion that in recent years with the advent of the 'nuclear renaissance' has been relegated in the background: what factors influence the use safe nuclear energy? Organizational precursor, latent errors, reduction in specific areas of competence and maintenance of nuclear programs is a scenario where the guarantee of a sustainable development of nuclear energy becomes a major challenge for society. A deep discussion of factors that influenced the major accidents despite the nuclear industry use of the so-called 'lessons learned' is needed. Major accidents continue to happen if a radical change is not implemented in the focus of safety culture. (author)