WorldWideScience

Sample records for global monthly-mean soil

  1. Prediction of monthly mean daily global solar radiation using ...

    a 4-layer MLFF network was developed and the average value of the mean absolute percentage error ... and sunshine hours to estimate the monthly mean .... work. The outputs of the layers are com- puted using the equations (1) and (2).

  2. Estimation of monthly-mean daily global solar radiation based on MODIS and TRMM products

    Qin, Jun; Chen, Zhuoqi; Yang, Kun; Liang, Shunlin; Tang, Wenjun

    2011-01-01

    Global solar radiation (GSR) is required in a large number of fields. Many parameterization schemes are developed to estimate it using routinely measured meteorological variables, since GSR is directly measured at a limited number of stations. Even so, meteorological stations are sparse, especially, in remote areas. Satellite signals (radiance at the top of atmosphere in most cases) can be used to estimate continuous GSR in space. However, many existing remote sensing products have a relatively coarse spatial resolution and these inversion algorithms are too complicated to be mastered by experts in other research fields. In this study, the artificial neural network (ANN) is utilized to build the mathematical relationship between measured monthly-mean daily GSR and several high-level remote sensing products available for the public, including Moderate Resolution Imaging Spectroradiometer (MODIS) monthly averaged land surface temperature (LST), the number of days in which the LST retrieval is performed in 1 month, MODIS enhanced vegetation index, Tropical Rainfall Measuring Mission satellite (TRMM) monthly precipitation. After training, GSR estimates from this ANN are verified against ground measurements at 12 radiation stations. Then, comparisons are performed among three GSR estimates, including the one presented in this study, a surface data-based estimate, and a remote sensing product by Japan Aerospace Exploration Agency (JAXA). Validation results indicate that the ANN-based method presented in this study can estimate monthly-mean daily GSR at a spatial resolution of about 5 km with high accuracy.

  3. Improved correlation of monthly mean daily and hourly diffuse radiation with the corresponding global radiation for Indian stations

    Garg, H.P.; Garg, S.N.

    1985-12-01

    Several existing correlations between radiation monthly mean ratios of global to extraterrestrial and diffuse to global were tried for four Indian stations and found inadequate. New correlations were established for these stations and it was shown that these correlations are highly climate dependent. Classical equation of Liu and Jordon was tried to find hourly diffuse and global radiation from daily sums of diffuse and global radiation respectively. It was suitably modified to suit the Indian data. Equations developed by Collares-Pereira and Rabl have shown excellent agreement with the observed values

  4. Dynamical Predictability of Monthly Means.

    Shukla, J.

    1981-12-01

    We have attempted to determine the theoretical upper limit of dynamical predictability of monthly means for prescribed nonfluctuating external forcings. We have extended the concept of `classical' predictability, which primarily refers to the lack of predictability due mainly to the instabilities of synoptic-scale disturbances, to the predictability of time averages, which are determined by the predictability of low-frequency planetary waves. We have carded out 60-day integrations of a global general circulation model with nine different initial conditions but identical boundary conditions of sea surface temperature, snow, sea ice and soil moisture. Three of these initial conditions are the observed atmospheric conditions on 1 January of 1975, 1976 and 1977. The other six initial conditions are obtained by superimposing over the observed initial conditions a random perturbation comparable to the errors of observation. The root-mean-square (rms) error of random perturbations at all the grid points and all the model levels is 3 m s1 in u and v components of wind. The rms vector wind error between the observed initial conditions is >15 m s1.It is hypothesized that for a given averaging period, if the rms error among the time averages predicted from largely different initial conditions becomes comparable to the rms error among the time averages predicted from randomly perturbed initial conditions, the time averages are dynamically unpredictable. We have carried out the analysis of variance to compare the variability, among the three groups, due to largely different initial conditions, and within each group due to random perturbations.It is found that the variances among the first 30-day means, predicted from largely different initial conditions, are significantly different from the variances due to random perturbations in the initial conditions, whereas the variances among 30-day means for days 31-60 are not distinguishable from the variances due to random initial

  5. Modeling the monthly mean soil-water balance with a statistical-dynamical ecohydrology model as coupled to a two-component canopy model

    J. P. Kochendorfer

    2010-10-01

    Full Text Available The statistical-dynamical annual water balance model of Eagleson (1978 is a pioneering work in the analysis of climate, soil and vegetation interactions. This paper describes several enhancements and modifications to the model that improve its physical realism at the expense of its mathematical elegance and analytical tractability. In particular, the analytical solutions for the root zone fluxes are re-derived using separate potential rates of transpiration and bare-soil evaporation. Those potential rates, along with the rate of evaporation from canopy interception, are calculated using the two-component Shuttleworth-Wallace (1985 canopy model. In addition, the soil column is divided into two layers, with the upper layer representing the dynamic root zone. The resulting ability to account for changes in root-zone water storage allows for implementation at the monthly timescale. This new version of the Eagleson model is coined the Statistical-Dynamical Ecohydrology Model (SDEM. The ability of the SDEM to capture the seasonal dynamics of the local-scale soil-water balance is demonstrated for two grassland sites in the US Great Plains. Sensitivity of the results to variations in peak green leaf area index (LAI suggests that the mean peak green LAI is determined by some minimum in root zone soil moisture during the growing season. That minimum appears to be close to the soil matric potential at which the dominant grass species begins to experience water stress and well above the wilting point, thereby suggesting an ecological optimality hypothesis in which the need to avoid water-stress-induced leaf abscission is balanced by the maximization of carbon assimilation (and associated transpiration. Finally, analysis of the sensitivity of model-determined peak green LAI to soil texture shows that the coupled model is able to reproduce the so-called "inverse texture effect", which consists of the observation that natural vegetation in dry climates tends

  6. The Global Soil Partnership

    Montanarella, Luca

    2015-07-01

    The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.

  7. Integrated Global Radiosonde Archive (IGRA) - Monthly Means (Version Superseded)

    National Oceanic and Atmospheric Administration, Department of Commerce — Please note, this dataset has been superseded by a newer version (see below). Users should not use this version except in rare cases (e.g., when reproducing previous...

  8. Soil Science and Global Issues

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  9. An analysis of prediction skill of monthly mean climate variability

    Kumar, Arun; Chen, Mingyue; Wang, Wanqiu [Climate Prediction Center, National Centers for Environmental Prediction (CPC/NCEP), Camp Springs, MD (United States)

    2011-09-15

    In this paper, lead-time and spatial dependence in skill for prediction of monthly mean climate variability is analyzed. The analysis is based on a set of extensive hindcasts from the Climate Forecast System at the National Centers for Environmental Prediction. The skill characteristics of initialized predictions is also compared with the AMIP simulations forced with the observed sea surface temperature (SST) to quantify the role of initial versus boundary conditions in the prediction of monthly means. The analysis is for prediction of monthly mean SST, precipitation, and 200-hPa height. The results show a rapid decay in skill with lead time for the atmospheric variables in the extratropical latitudes. Further, after a lead-time of approximately 30-40 days, the skill of monthly mean prediction is essentially a boundary forced problem, with SST anomalies in the tropical central/eastern Pacific playing a dominant role. Because of the larger contribution from the atmospheric internal variability to monthly time-averages (compared to seasonal averages), skill for monthly mean prediction associated with boundary forcing is also lower. The analysis indicates that the prospects of skillful prediction of monthly means may remain a challenging problem, and may be limited by inherent limits in predictability. (orig.)

  10. Development of Global Soil Information Facilities

    N H Batjes

    2013-02-01

    Full Text Available ISRIC - World Soil Information has a mandate to serve the international community as custodian of global soil information and to increase awareness and understanding of the role of soils in major global issues. To adapt to the current demand for soil information, ISRIC is updating its enterprise data management system, including procedures for registering acquired data, such as lineage, versioning, quality assessment, and control. Data can be submitted, queried, and analysed using a growing range of web-based services - ultimately aiming at full and open exchange of data, metadata, and products - through the ICSU-accredited World Data Centre for Soils.

  11. Assessment of BSRN radiation records for the computation of monthly means

    Roesch, A.; Wild, M.; Ohmura, A.; Dutton, E. G.; Long, C. N.; Zhang, T.

    2011-02-01

    The integrity of the Baseline Surface Radiation Network (BSRN) radiation monthly averages are assessed by investigating the impact on monthly means due to the frequency of data gaps caused by missing or discarded high time resolution data. The monthly statistics, especially means, are considered to be important and useful values for climate research, model performance evaluations and for assessing the quality of satellite (time- and space-averaged) data products. The study investigates the spread in different algorithms that have been applied for the computation of monthly means from 1-min values. The paper reveals that the computation of monthly means from 1-min observations distinctly depends on the method utilized to account for the missing data. The intra-method difference generally increases with an increasing fraction of missing data. We found that a substantial fraction of the radiation fluxes observed at BSRN sites is either missing or flagged as questionable. The percentage of missing data is 4.4%, 13.0%, and 6.5% for global radiation, direct shortwave radiation, and downwelling longwave radiation, respectively. Most flagged data in the shortwave are due to nighttime instrumental noise and can reasonably be set to zero after correcting for thermal offsets in the daytime data. The study demonstrates that the handling of flagged data clearly impacts on monthly mean estimates obtained with different methods. We showed that the spread of monthly shortwave fluxes is generally clearly higher than for downwelling longwave radiation. Overall, BSRN observations provide sufficient accuracy and completeness for reliable estimates of monthly mean values. However, the value of future data could be further increased by reducing the frequency of data gaps and the number of outliers. It is shown that two independent methods for accounting for the diurnal and seasonal variations in the missing data permit consistent monthly means to within less than 1 W m-2 in most cases

  12. Soil fungal community responses to global changes

    Haugwitz, Merian Skouw

    Global change will affect the functioning and structure of terrestrial ecosystems and since soil fungi are key players in organic matter decomposition and nutrient turnover, shifts in fungal community composition might have a strong impact on soil functioning. The main focus of this thesis...... was therefore to investigate the impact of global environmental changes on soil fungal communities in a temperate and subartic heath ecosystem. The objective was further to determine global change effects on major functional groups of fungi and analyze the influence of fungal community changes on soil carbon...... and nutrient availability and storage. By combining molecular methods such as 454 pyrosequencing and quantitative PCR of fungal ITS amplicons with analyses of soil enzymes, nutrient pools of carbon, nitrogen and phosphorus we were able to characterize soil fungal communities as well as their impact on nutrient...

  13. Classification of hemispheric monthly mean stratospheric potential vorticity fields

    R. Huth

    Full Text Available Monthly mean NCEP reanalysis potential vorticity fields at the 650 K isentropic level over the Northern and Southern Hemispheres between 1979 and 1997 were studied using multivariate analysis tools. Principal component analysis in the T-mode was applied to demonstrate the validity of such statistical techniques for the study of stratospheric dynamics and climatology. The method, complementarily applied to both the raw and anomaly fields, was useful in determining and classifying the characteristics of winter and summer PV fields on both hemispheres, in particular, the well-known differences in the behaviour and persistence of the polar vortices. It was possible to identify such features as sudden warming events in the Northern Hemisphere and final warming dates in both hemispheres. The stratospheric impact of other atmospheric processes, such as volcanic eruptions, also identified though the results, must be viewed at this stage as tentative. An interesting change in behaviour around 1990 was detected over both hemispheres.

    Key words. Meteorology and atmospheric dynamics (middle atmosphere dynamics; general circulation; climatology

  14. Global characterization of surface soil moisture drydowns

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  15. Engineering Global Soils to Sustain Planet Earth

    Banwart, Steven A.; Menon, Manoj

    2014-01-01

    Global soils are under intense pressure from the demographic drivers of increasing human population and\\ud wealth. During the next 40 years Earth’s human population is project to approach 10 billion with a quadrupling\\ud in the global economy, a doubling in the demand for food, a doubling in the demand for fuel, and a more than\\ud 50% increase in the demand for clean water. Can Earth’s soils keep up?

  16. SoilInfo App: global soil information on your palm

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  17. Soil salinity decreases global soil organic carbon stocks.

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. GlobalSoilMap and Global Carbon Predictions

    Hempel, Jonathan; McBratney, Alex B.; Arrouays, Dominique

    consistently produced soil property information at 100 m resolution across the world. This information will aid in solving some of the key environment and societal issues of the day, including food security, global climate change land degradation and carbon sequestration. Data would be produced using mostly...... the storehouse of existing legacy soils data along with geographic information and a range of covariates. A range of modeling techniques is used dependant on the complexity of the background soil survey information. The key soil properties that would be most useful to the modeling community and other users are...... of soil property values throughout the depth of each profile. Maps have been produced at the country level in the Australia, Canada, Denmark, Nigeria, South Korea and the US and work is on-going in many other parts of the world....

  19. Soil bacterial community responses to global changes

    Bergmark, Lasse

    competing and very contrasting plant types (Calluna and Deschampsia) dominated the vegetation. This led to Manuscript 3 where the impact and responses of the climate change manipulations on the microbial community composition was investigated under the contrasting vegetation types. Our results show a high......Soil bacteria and archaea are essential for ecosystem functioning and plant growth through their degradation of organic matter and turnover of nutrients. But since the majority of soil bacteria and archaea are unclassified and “nonculturable” the functionality of the microbial community and its...... overall importance for ecosystem function in soil is poorly understood. Global change factors may affect the diversity and functioning of soil prokaryotes and thereby ecosystem functioning. To gain a better understanding of the effects of global changes it is of fundamental importance to classify...

  20. Global diversity and geography of soil fungi

    Leho Tedersoo; Mohammad Bahram; Sergei Põlme; Urmas Kõljalg; Nourou S. Yorou; Ravi Wijesundera; Luis Villarreal Ruiz; Aida M. Vasco-Palacios; Pham Quang Thu; Ave Suija; Matthew E. Smith; Cathy Sharp; Erki Saluveer; Alessandro Saitta; Miguel Rosas; Taavi Riit; David Ratkowsky; Karin Pritsch; Kadri Põldmaa; Meike Piepenbring; Cherdchai Phosri; Marko Peterson; Kaarin Parts; Kadri Pärtel; Eveli Otsing; Eduardo Nouhra; André L. Njouonkou; R. Henrik Nilsson; Luis N. Morgado; Jordan Mayor; Tom W. May; Luiza Majukim; D. Jean Lodge; Su See Lee; Karl-Henrik Larsson; Petr Kohout; Kentaro Hosaka; Indrek Hiiesalu; Terry W. Henkel; Helery Harend; Liang-dong Guo; Alina Greslebin; Gwen Gretlet; Jozsef Geml; Genevieve Gates; William Dunstan; Chris Dunk; Rein Drenkhan; John Dearnaley; André De Kesel; Tan Dang; Xin Chen; Franz Buegger; Francis Q. Brearley; Gregory Bonito; Sten Anslan; Sandra Abell; Kessy Abarenkov

    2014-01-01

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples,we demonstrate that fungal richness is decoupled from plant diversity.The plant-to-fungus richness ratio declines exponentially toward the poles....

  1. Statistical modelling of monthly mean sea level at coastal tide gauge stations along the Indian subcontinent

    Srinivas, K.; Das, V.K.; DineshKumar, P.K.

    This study investigates the suitability of statistical models for their predictive potential for the monthly mean sea level at different stations along the west and east coasts of the Indian subcontinent. Statistical modelling of the monthly mean...

  2. July: "Soils are living: Overview of soil biodiversity, global issues, and new resources"

    The July poster will provide an overview of soil biology and the many ecosystem functions that soil organisms drive including their impact on global biodiversity, climate regulation, soil health/stability, and plant growth. Five main global issues related to soil biodiversity will be presented such ...

  3. Convergence of soil nitrogen isotopes across global climate gradients

    Craine, Joseph M.; Elmore, Andrew J.; Wang, Lixin; Augusto, Laurent; Baisden, W. Troy; Brookshire, E. N. J.; Cramer, Michael D.; Hasselquist, Niles J.; Hobbie, Erik A.; Kahmen, Ansgar; Koba, Keisuke; Kranabetter, J. Marty; Mack, Michelle C.; Marin-Spiotta, Erika; Mayor, Jordan R.; McLauchlan, Kendra K.; Michelsen, Anders; Nardoto, Gabriela B.; Oliveira, Rafael S.; Perakis, Steven S.; Peri, Pablo L.; Quesada, Carlos A.; Richter, Andreas; Schipper, Louis A.; Stevenson, Bryan A.; Turner, Benjamin L.; Viani, Ricardo A. G.; Wanek, Wolfgang; Zeller, Bernd

    2015-01-01

    Quantifying global patterns of terrestrial nitrogen (N) cycling is central to predicting future patterns of primary productivity, carbon sequestration, nutrient fluxes to aquatic systems, and climate forcing. With limited direct measures of soil N cycling at the global scale, syntheses of the 15 N: 14 N ratio of soil organic matter across climate gradients provide key insights into understanding global patterns of N cycling. In synthesizing data from over 6000 soil samples, we show strong global relationships among soil N isotopes, mean annual temperature (MAT), mean annual precipitation (MAP), and the concentrations of organic carbon and clay in soil. In both hot ecosystems and dry ecosystems, soil organic matter was more enriched in 15 N than in corresponding cold ecosystems or wet ecosystems. Below a MAT of 9.8°C, soil δ15N was invariant with MAT. At the global scale, soil organic C concentrations also declined with increasing MAT and decreasing MAP. After standardizing for variation among mineral soils in soil C and clay concentrations, soil δ15N showed no consistent trends across global climate and latitudinal gradients. Our analyses could place new constraints on interpretations of patterns of ecosystem N cycling and global budgets of gaseous N loss.

  4. Monthly Mean Precipitation Sums at Russian Arctic Stations, 1966-1990

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains monthly mean precipitation sums from Russian arctic stations. Precipitation measurements were acquired using a Tretyakov precipitation gauge....

  5. Scanning Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) By Prabhakara

    National Aeronautics and Space Administration — SMMR_ALW_PRABHAKARA data are Special Multichannel Microwave Radiometer (SMMR) Monthly Mean Atmospheric Liquid Water (ALW) data by Prabhakara.The Prabhakara Scanning...

  6. Monthly Mean Temperature Observation for Climate Prediction Center (CPC) Forecast Divisions

    National Oceanic and Atmospheric Administration, Department of Commerce — This ASCII dataset contains monthly mean temperatures for 102 Forecast Divisions within the conterminous U.S. and is derived from the monthly NCDC climate division...

  7. SoilGrids1km— global soil information based on automated mapping

    Hengl, T.; Mendes de Jesus, J.S.; Macmillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Carvalho Ribeiro, E.D.; Samuel Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Ruiperez Gonzalez, M.

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited

  8. Global spatiotemporal distribution of soil respiration modeled using a global database

    Hashimoto, S.; Carvalhais, N.; Ito, A.; Migliavacca, M.; Nishina, K.; Reichstein, M.

    2015-07-01

    The flux of carbon dioxide from the soil to the atmosphere (soil respiration) is one of the major fluxes in the global carbon cycle. At present, the accumulated field observation data cover a wide range of geographical locations and climate conditions. However, there are still large uncertainties in the magnitude and spatiotemporal variation of global soil respiration. Using a global soil respiration data set, we developed a climate-driven model of soil respiration by modifying and updating Raich's model, and the global spatiotemporal distribution of soil respiration was examined using this model. The model was applied at a spatial resolution of 0.5°and a monthly time step. Soil respiration was divided into the heterotrophic and autotrophic components of respiration using an empirical model. The estimated mean annual global soil respiration was 91 Pg C yr-1 (between 1965 and 2012; Monte Carlo 95 % confidence interval: 87-95 Pg C yr-1) and increased at the rate of 0.09 Pg C yr-2. The contribution of soil respiration from boreal regions to the total increase in global soil respiration was on the same order of magnitude as that of tropical and temperate regions, despite a lower absolute magnitude of soil respiration in boreal regions. The estimated annual global heterotrophic respiration and global autotrophic respiration were 51 and 40 Pg C yr-1, respectively. The global soil respiration responded to the increase in air temperature at the rate of 3.3 Pg C yr-1 °C-1, and Q10 = 1.4. Our study scaled up observed soil respiration values from field measurements to estimate global soil respiration and provide a data-oriented estimate of global soil respiration. The estimates are based on a semi-empirical model parameterized with over one thousand data points. Our analysis indicates that the climate controls on soil respiration may translate into an increasing trend in global soil respiration and our analysis emphasizes the relevance of the soil carbon flux from soil to

  9. Global soil-climate-biome diagram: linking soil properties to climate and biota

    Zhao, X.; Yang, Y.; Fang, J.

    2017-12-01

    As a critical component of the Earth system, soils interact strongly with both climate and biota and provide fundamental ecosystem services that maintain food, climate, and human security. Despite significant progress in digital soil mapping techniques and the rapidly growing quantity of observed soil information, quantitative linkages between soil properties, climate and biota at the global scale remain unclear. By compiling a large global soil database, we mapped seven major soil properties (bulk density [BD]; sand, silt and clay fractions; soil pH; soil organic carbon [SOC] density [SOCD]; and soil total nitrogen [STN] density [STND]) based on machine learning algorithms (regional random forest [RF] model) and quantitatively assessed the linkage between soil properties, climate and biota at the global scale. Our results demonstrated a global soil-climate-biome diagram, which improves our understanding of the strong correspondence between soils, climate and biomes. Soil pH decreased with greater mean annual precipitation (MAP) and lower mean annual temperature (MAT), and the critical MAP for the transition from alkaline to acidic soil pH decreased with decreasing MAT. Specifically, the critical MAP ranged from 400-500 mm when the MAT exceeded 10 °C but could decrease to 50-100 mm when the MAT was approximately 0 °C. SOCD and STND were tightly linked; both increased in accordance with lower MAT and higher MAP across terrestrial biomes. Global stocks of SOC and STN were estimated to be 788 ± 39.4 Pg (1015 g, or billion tons) and 63 ± 3.3 Pg in the upper 30-cm soil layer, respectively, but these values increased to 1654 ± 94.5 Pg and 133 ± 7.8 Pg in the upper 100-cm soil layer, respectively. These results reveal quantitative linkages between soil properties, climate and biota at the global scale, suggesting co-evolution of the soil, climate and biota under conditions of global environmental change.

  10. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  11. SoilGrids1km--global soil information based on automated mapping.

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  12. Decadal variability in core surface flows deduced from geomagnetic observatory monthly means

    Whaler, K. A.; Olsen, Nils; Finlay, Chris

    2016-01-01

    . On the annual to decadal timescale, the SV is generated primarily by advection in the fluid outer core. We demonstrate the utility of the revised monthly means by calculating models of the core surface advective flow between 1997 and 2013 directly from the SV data. One set of models assumes flow......Monthly means of the magnetic field measurements at ground observatories are a key data source for studying temporal changes of the core magnetic field. However, when they are calculated in the usual way, contributions of external (magnetospheric and ionospheric) origin may remain, which make them...... less favourable for studying the field generated by dynamo action in the core. We remove external field predictions, including a new way of characterising the magnetospheric ring current, from the data and then calculate revised monthly means using robust methods. The geomagnetic secular variation (SV...

  13. Progress towards GlobalSoilMap.net soil database of Denmark

    Adhikari, Kabindra; Bou Kheir, Rania; Greve, Mogens Humlekrog

    2012-01-01

    Denmark is an agriculture-based country where intensive mechanized cultivation has been practiced continuously for years leading to serious threats to the soils. Proper use and management of Danish soil resources, modeling and soil research activities need very detailed soil information. This study...... presents recent advancements in Digital Soil Mapping (DSM) activities in Denmark with an example of soil clay mapping using regression-based DSM techniques. Several environmental covariates were used to build regression rules and national scale soil prediction was made at 30 m resolution. Spatial...... content mapping, the plans for future soil mapping activities in support to GlobalSoilMap.net project initiatives are also included in this paper. Our study thought to enrich and update Danish soil database and Soil information system with new fine resolution soil property maps....

  14. A global spectral library to characterize the world's soil

    A. Viscarra Rossel, Raphael; Behrens, T.; Ben Dor, E.

    2016-01-01

    to sustainably manage and preserve it for future generations. To this end, we developed and analyzed a global soil visible–near infrared (vis–NIR) spectral library. It is currently the largest and most diverse database of its kind. We show that the information encoded in the spectra can describe soil composition...... help to deal with the shortage of data on soil to better understand it and to meet the growing demand for information to assess andmonitor soil at scales ranging fromregional to global.New contributions to the library are encouraged so that this work and our collaboration might progress to develop......Soil provides ecosystemservices, supports human health and habitation, stores carbon and regulatesemissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agroecological balances and food security. It is important that we learn more about soil...

  15. Protecting global soil resources for future generations

    Montanarella, Luca

    2017-04-01

    The latest Status of World's Soil Resources report has highlighted that soils are increasingly under pressure by numerous human induced degradation processes in most parts of the world. The limits of our planetary boundaries concerning vital soil resources have been reached and without reversing this negative trend there will be a serious lack of necessary soil resources for future generations. It has been therefore of the highest importance to include soils within some of the Sustainable Development Goals (SDG) recently approved by the United Nations. Sustainable development can not be achieved without protecting the limited, non-renewable, soil resources of our planet. There is the need to limit on-going soil degradation processes and to implement extensive soil restoration activities in order to strive towards a land degradation neutral (LDN) world, as called upon by SDG 15. Sustainable soil management needs to be placed at the core of any LDN strategy and therefore it is of highest importance that the recently approved Voluntary Guidelines for Sustainable Soil Management (VGSSM) of FAO get fully implemented at National and local scale.Sustainable soil management is not only relevant for the protection of fertile soils for food production, but also to mitigate and adopt to climate change at to preserve the large soil biodiversity pool. Therefore the VGSSM are not only relevant to FAO, but also the the climate change convention (UNFCCC) and the biodiversity convention (CBD). An integrated assessment of the current land degradation processes and the available land restoration practices is needed in order to fully evaluate the potential for effectively achieving LDN by 2030. The on-going Land Degradation and Restoration Assessment (LDRA) of the Intergovernmental Platform for Biodiversity and Ecosystem Services (IPBES) will provide the necessary scientific basis for the full implementation of the necessary measures for achieving the planned SGS's relevant to land

  16. Monthly mean wind stress along the coast of the north Indian Ocean

    Shetye, S.R.; Shenoi, S.S.C.; Antony, M.K.; Krishnakumar, V.

    Monthly-mean wind stress and its longshore and offshore components have been computed using the bulk aerodynamic method for each of a string of 36 two-degree-latitude by two-degree-longitude squares along the coast of the north Indian Ocean...

  17. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty

  18. [Effects of global change on soil fauna diversity: A review].

    Wu, Ting-Juan

    2013-02-01

    Terrestrial ecosystem consists of aboveground and belowground components, whose interaction affects the ecosystem processes and functions. Soil fauna plays an important role in biogeochemical cycles. With the recognizing of the significance of soil fauna in ecosystem processes, increasing evidences demonstrated that global change has profound effects on soil faunima diversity. The alternation of land use type, the increasing temperature, and the changes in precipitation pattern can directly affect soil fauna diversity, while the increase of atmospheric CO2 concentration and nitrogen deposition can indirectly affect the soil fauna diversity by altering plant community composition, diversity, and nutrient contents. The interactions of different environmental factors can co-affect the soil fauna diversity. To understand the effects of different driving factors on soil fauna diversity under the background of climate change would facilitate us better predicting how the soil fauna diversity and related ecological processes changed in the future.

  19. Soil organic matter dynamics and the global carbon cycle

    Post, W.M.; Emanuel, W.R.; King, A.W.

    1992-01-01

    The large size and potentially long residence time of the soil organic matter pool make it an important component of the global carbon cycle. Net terrestrial primary production of about 60 Pg C·yr -1 is, over a several-year period of time, balanced by an equivalent flux of litter production and subsequent decomposition of detritus and soil organic matter. We will review many of the major factors that influence soil organic matter dynamics that need to be explicitly considered in development of global estimates of carbon turnover in the world's soils. We will also discuss current decomposition models that are general enough to be used to develop a representation of global soil organic matter dynamics

  20. Global Change Effects on Plant-Soil Interactions

    Dam, Marie

    of this dissertation has been to determine how soil food web structure and function is affected when the quantity and quality of plant input is altered under global change. By studying the abundance and composition of soil organisms, particularly those in the rhizosphere, closely associated with living plants, we...... (Paper III). Furthermore, by way of meta-analysis, the role of organisms in global change effects on ecosystem function is modelled (Paper IV). Among CO2, warming and summer drought, CO2 is the factor most consistently impacting soil organisms. CO2 increases abundance of microorganisms and nematodes...... suggest that not only the global change effects on established ecosystems, but also the global change effects on plant community composition as well as land use management may determine the composition and function of soil food webs in the future....

  1. Global patterns in mangrove soil carbon stocks and losses

    Atwood, Trisha B.

    2017-06-26

    Mangrove soils represent a large sink for otherwise rapidly recycled carbon (C). However, widespread deforestation threatens the preservation of this important C stock. It is therefore imperative that global patterns in mangrove soil C stocks and their susceptibility to remineralization are understood. Here, we present patterns in mangrove soil C stocks across hemispheres, latitudes, countries and mangrove community compositions, and estimate potential annual CO2 emissions for countries where mangroves occur. Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns described serve as a baseline by which countries can assess their mangrove soil C stocks and potential emissions from mangrove deforestation.

  2. Soil moisture content with global warming

    Vinnikov, K.Ya.

    1990-01-01

    The potential greenhouse-gas-induced changes in soil moisture, particularly the desiccation of the Northern Hemisphere contents in summer, are discussed. To check the conclusions based on climate models the authors have used long-term measurements of contemporary soil moisture in the USSR and reconstructions of soil moisture for the last two epochs that were warmer than the present, namely, the Holocene optimum, 5,000-6,000 years ago, and the last interglacial, about 125,000 years ago. The analysis shows that there is a considerable disagreement between the model results and the empirical data

  3. Quantifying global soil carbon losses in response to warming.

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  4. The global distribution and dynamics of surface soil moisture

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  5. Divergent surface and total soil moisture projections under global warming

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  6. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  7. Global Soil and Sediment transfer during the Anthropocene

    Hoffmann, Thomas; Vanacker, Veerle; Stinchcombe, Gary; Penny, Dan; Xixi, Lu

    2016-04-01

    The vulnerability of soils to human-induced erosion and its downstream effects on fluvial and deltaic ecosystems is highly variable in space and time; dependent on climate, geology, the nature and duration of land use, and topography. Despite our knowledge of the mechanistic relationships between erosion, sediment storage, land-use and climate change, the global patterns of soil erosion, fluvial sediment flux and storage throughout the Holocene remain poorly understood. The newly launched PAGES working group GloSS aims to determine the sensitivity of soil resources and sediment routing systems to varying land use types during the period of agriculture, under contrasting climate regimes and socio-ecological settings. Successfully addressing these questions in relation to the sustainable use of soils, sediments and river systems requires an understanding of past human-landscape interactions. GloSS, therefore, aims to: Develop proxies for, or indices of, human impact on rates of soil erosion and fluvial sediment transfer that are applicable on a global scale and throughout the Holocene; Create a global database of long-term (102-104 years) human-accelerated soil erosion and sediment flux records; Identify hot spots of soil erosion and sediment deposition during the Anthropocene, and Locate data-poor regions where particular socio-ecological systems are not well understood, as strategic foci for future work. This paper will present the latest progress of the PAGES GloSS working group.

  8. Stable isotopic constraints on global soil organic carbon turnover

    Wang, Chao; Houlton, Benjamin Z.; Liu, Dongwei; Hou, Jianfeng; Cheng, Weixin; Bai, Edith

    2018-02-01

    Carbon dioxide release during soil organic carbon (SOC) turnover is a pivotal component of atmospheric CO2 concentrations and global climate change. However, reliably measuring SOC turnover rates on large spatial and temporal scales remains challenging. Here we use a natural carbon isotope approach, defined as beta (β), which was quantified from the δ13C of vegetation and soil reported in the literature (176 separate soil profiles), to examine large-scale controls of climate, soil physical properties and nutrients over patterns of SOC turnover across terrestrial biomes worldwide. We report a significant relationship between β and calculated soil C turnover rates (k), which were estimated by dividing soil heterotrophic respiration rates by SOC pools. ln( - β) exhibits a significant linear relationship with mean annual temperature, but a more complex polynomial relationship with mean annual precipitation, implying strong-feedbacks of SOC turnover to climate changes. Soil nitrogen (N) and clay content correlate strongly and positively with ln( - β), revealing the additional influence of nutrients and physical soil properties on SOC decomposition rates. Furthermore, a strong (R2 = 0.76; p turnover and thereby improving predictions of multiple global change influences over terrestrial C-climate feedback.

  9. Global patterns in mangrove soil carbon stocks and losses

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Ewers Lewis, Carolyn J.; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2017-01-01

    . Global potential CO2 emissions from soils as a result of mangrove loss were estimated to be ~7.0 Tg CO2e yr−1. Countries with the highest potential CO2 emissions from soils are Indonesia (3,410 Gg CO2e yr−1) and Malaysia (1,288 Gg CO2e yr−1). The patterns

  10. Global Trend Analysis of Multi-decade Soil Temperature Records Show Soils Resistant to Warming

    Frey, S. D.; Jennings, K.

    2017-12-01

    Soil temperature is an important determinant of many subterranean ecological processes including plant growth, nutrient cycling, and carbon sequestration. Soils are expected to warm in response to increasing global surface temperatures; however, despite the importance of soil temperature to ecosystem processes, less attention has been given to examining changes in soil temperature over time. We collected long-term (> 20 years) soil temperature records from approximately 50 sites globally, many with multiple depths (5 - 100 cm), and examined temperature trends over the last few decades. For each site and depth we calculated annual summer means and conducted non-parametric Mann Kendall trend and Sen slope analysis to assess changes in summer soil temperature over the length of each time series. The mean summer soil temperature trend across all sites and depths was not significantly different than zero (mean = 0.004 °C year-1 ± 0.033 SD), suggesting that soils have not warmed over the observation period. Of the subset of sites that exhibit significant increases in temperature over time, site location, depth of measurement, time series length, and neither start nor end date seem to be related to trend strength. These results provide evidence that the thermal regime of soils may have a stronger buffering capacity than expected, having important implications for the global carbon cycle and feedbacks to climate change.

  11. Short-term variations in core surface flow resolved from an improved method of calculating observatory monthly means

    Olsen, Nils; Whaler, K. A.; Finlay, Chris

    2014-01-01

    Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet...... as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm......), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first...

  12. Global controls on carbon storage in mangrove soils

    Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.

    2018-06-01

    Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.

  13. Climatology of the northern hemisphere stratosphere derived from Berlin analyses. Pt. 1. Monthly means

    Pawson, S; Labitzke, K; Lenschow, R; Naujokat, B; Rajewski, B; Wiesner, M; Wohlfart, R C

    1933-01-01

    This work presents a climatology of the northern hemisphere lower and middle stratosphere derived from daily radiosonde observations subjectively analysed in the Stratospheric Research Group of the 'Meteorologisches Institut der Freien Universitaet Berlin'. Previous climatologies from these data were presented by Labitzke (1972), van Loon et al. (1972), and by Labitzke and Goretzki (1982). Although some more recent climatological fields have been presented in several works by members of the group, no complete atlas has been compiled for some time. The work is intended to serve as a reference for people interested in the stratosphere and, particularly, the climate analysis and modelling communities, which require contemporary analyses of the available data in order to interpret their products. In this first part of the climatological atlas, monthly mean data are presented. (orig./KW)

  14. Climatology of the northern hemisphere stratosphere derived from Berlin analyses. Pt. 1. Monthly means

    Pawson, S.; Labitzke, K.; Lenschow, R.; Naujokat, B.; Rajewski, B.; Wiesner, M.; Wohlfart, R.C.

    1993-01-01

    This work presents a climatology of the northern hemisphere lower and middle stratosphere derived from daily radiosonde observations subjectively analysed in the Stratospheric Research Group of the 'Meteorologisches Institut der Freien Universitaet Berlin'. Previous climatologies from these data were presented by Labitzke (1972), van Loon et al. (1972), and by Labitzke and Goretzki (1982). Although some more recent climatological fields have been presented in several works by members of the group, no complete atlas has been compiled for some time. The work is intended to serve as a reference for people interested in the stratosphere and, particularly, the climate analysis and modelling communities, which require contemporary analyses of the available data in order to interpret their products. In this first part of the climatological atlas, monthly mean data are presented. (orig./KW)

  15. Dryland photoautotrophic soil surface communities endangered by global change

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-03-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  16. Dryland photoautotrophic soil surface communities endangered by global change

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-01-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  17. Mediterranean Agricultural Soil Conservation under global Change: The MASCC project.

    Raclot, Damien; Ciampalini, Rossano

    2017-04-01

    The MASCC project (2016-2019, http://mascc-project.org) aims to address mitigation and adaptation strategies to global change by assessing current and future development of Mediterranean agricultural soil vulnerability to erosion in relation to projected land use, agricultural practices and climate change. It targets to i) assess the similarities/dissimilarities in dominant factors affecting the current Mediterranean agricultural soil vulnerability by exploring a wide range of Mediterranean contexts; ii) improve the ability to evaluate the impact of extreme events on both the current and projected agricultural soil vulnerability and the sediment delivery at catchment outlet; iii) evaluate the vulnerability and resilience of agricultural production to a combination of potential changes in a wide range of Mediterranean contexts, iv) and provide guidelines on sustainable agricultural conservation strategies adapted to each specific agro-ecosystem and taking into consideration both on- and off-site erosion effects and socio-economics issues. To achieve these objectives, the MASCC project consortium gather researchers from six Mediterranean countries (France, Morocco, Tunisia, Italy, Spain and Portugal) which monitor mid- to long-term environmental catchments and benefit from mutual knowledge created from previous projects and network. The major assets for MASCC are: i) the availability of an unrivalled database on catchment soil erosion and innovative agricultural practices comprising a wide range of Mediterranean contexts, ii) the capacity to better evaluate the impact of extreme events on soil erosion, iii) the expert knowledge of the LANDSOIL model, a catchment-scale integrated approach of the soil-landscape system that enables to simulate both the sediment fluxes at the catchment outlet and the intra-catchment soil evolving properties and iv) the multi-disciplinarity of the involved researchers with an international reputation in the fields of soil science

  18. Contribution of soil respiration to the global carbon equation.

    Xu, Ming; Shang, Hua

    2016-09-20

    Soil respiration (Rs) is the second largest carbon flux next to GPP between the terrestrial ecosystem (the largest organic carbon pool) and the atmosphere at a global scale. Given their critical role in the global carbon cycle, Rs measurement and modeling issues have been well reviewed in previous studies. In this paper, we briefly review advances in soil organic carbon (SOC) decomposition processes and the factors affecting Rs. We examine the spatial and temporal distribution of Rs measurements available in the literature and found that most of the measurements were conducted in North America, Europe, and East Asia, with major gaps in Africa, East Europe, North Asia, Southeast Asia, and Australia, especially in dry ecosystems. We discuss the potential problems of measuring Rs on slope soils and propose using obliquely-cut soil collars to solve the existing problems. We synthesize previous estimates of global Rs flux and find that the estimates ranged from 50 PgC/yr to 98 PgC/yr and the error associated with each estimation was also high (4 PgC/yr to 33.2 PgC/yr). Using a newly integrated database of Rs measurements and the MODIS vegetation map, we estimate that the global annual Rs flux is 94.3 PgC/yr with an estimation error of 17.9 PgC/yr at a 95% confidence level. The uneven distribution of Rs measurements limits our ability to improve the accuracy of estimation. Based on the global estimation of Rs flux, we found that Rs is highly correlated with GPP and NPP at the biome level, highlighting the role of Rs in global carbon budgets. Copyright © 2016. Published by Elsevier GmbH.

  19. Soil Response to Global Change: Soil Process Domains and Pedogenic Thresholds (Invited)

    Chadwick, O.; Kramer, M. G.; Chorover, J.

    2013-12-01

    The capacity of soil to withstand perturbations, whether driven by climate, land use change, or spread of invasive species, depends on its chemical composition and physical state. The dynamic interplay between stable, well buffered soil process domains and thresholds in soil state and function is a strong determinant of soil response to forcing from global change. In terrestrial ecosystems, edaphic responses are often mediated by availability of water and its flux into and through soils. Water influences soil processes in several ways: it supports biological production, hence proton-donor, electron-donor and complexing-ligand production; it determines the advective removal of dissolution products, and it can promote anoxia that leads microorganisms to utilize alternative electron acceptors. As a consequence climate patterns strongly influence global distribution of soil, although within region variability is governed by other factors such as landscape age, parent material and human land use. By contrast, soil properties can vary greatly among climate regions, variation which is guided by the functioning of a suite of chemical processes that tend to maintain chemical status quo. This soil 'buffering' involves acid-base reactions as minerals weather and oxidation-reduction reactions that are driven by microbial respiration. At the planetary scale, soil pH provides a reasonable indicator of process domains and varies from about 3.5 to10, globally, although most soils lie between about 4.5 and 8.5. Those that are above 7.5 are strongly buffered by the carbonate system, those that are characterized by neutral pH (7.5-6) are buffered by release of non-hydrolyzing cations from primary minerals and colloid surfaces, and those that are buffered by hydrolytic aluminum on colloidal surfaces. Alkali and alkaline (with the exception of limestone parent material) soils are usually associated with arid and semiarid conditions, neutral pH soils with young soils in both dry and wet

  20. A global predictive model of carbon in mangrove soils

    Jardine, Sunny L; Siikamäki, Juha V

    2014-01-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO 2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO 2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha −1 ) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha −1 ). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological

  1. A global predictive model of carbon in mangrove soils

    Jardine, Sunny L.; Siikamäki, Juha V.

    2014-10-01

    Mangroves are among the most threatened and rapidly vanishing natural environments worldwide. They provide a wide range of ecosystem services and have recently become known for their exceptional capacity to store carbon. Research shows that mangrove conservation may be a low-cost means of reducing CO2 emissions. Accordingly, there is growing interest in developing market mechanisms to credit mangrove conservation projects for associated CO2 emissions reductions. These efforts depend on robust and readily applicable, but currently unavailable, localized estimates of soil carbon. Here, we use over 900 soil carbon measurements, collected in 28 countries by 61 independent studies, to develop a global predictive model for mangrove soil carbon. Using climatological and locational data as predictors, we explore several predictive modeling alternatives, including machine-learning methods. With our predictive model, we construct a global dataset of estimated soil carbon concentrations and stocks on a high-resolution grid (5 arc min). We estimate that the global mangrove soil carbon stock is 5.00 ± 0.94 Pg C (assuming a 1 meter soil depth) and find this stock is highly variable over space. The amount of carbon per hectare in the world’s most carbon-rich mangroves (approximately 703 ± 38 Mg C ha-1) is roughly a 2.6 ± 0.14 times the amount of carbon per hectare in the world’s most carbon-poor mangroves (approximately 272 ± 49 Mg C ha-1). Considerable within country variation in mangrove soil carbon also exists. In Indonesia, the country with the largest mangrove soil carbon stock, we estimate that the most carbon-rich mangroves contain 1.5 ± 0.12 times as much carbon per hectare as the most carbon-poor mangroves. Our results can aid in evaluating benefits from mangrove conservation and designing mangrove conservation policy. Additionally, the results can be used to project changes in mangrove soil carbon stocks based on changing climatological predictors, e.g. to

  2. Simulations of monthly mean nitrate concentrations in precipitation over East Asia

    Junling An; Xinjin Cheng; Ueda, Hiromasa; Kajino, Mizuo

    2002-01-01

    Monthly mean nitrate concentrations in precipitation over East Asia (10-55 o N, 75-155 o E) in April, July, September, and December of 1999 were simulated by using a regional air quality Eulerian model (RAQM) with meteorological fields four times per day taken from National Centers for Environmental Prediction. The distribution of the nitrate concentration in precipitation depends significantly on the emission patterns of nitrogen oxides (NO x =NO+NO 2 ) and volatile organic compound (VOC) and seasonal precipitation variability. The downward trend is also revealed, particularly on July and December. Highest concentrations are found in the industrialized regions, i.e., the coastal area of the Mainland of China, the Bay of the Huanghai Sea and the Bohai Sea, Korea, and Southern Japan. Long-range transport may cause elevated concentrations in remote areas downwind of the industrialized regions under favorable meteorological conditions, e.g., low precipitation. Comparison of observation and simulations indicates that the RAQM model reasonably predicts synoptic-scale changes in different months (seasons) and simulated nitrate levels in 4 months fit observed data with the discrepancy within a factor of 2. Exclusion of liquid chemistry within clouds is feasible for regional (1 o x1 o ) and long-term (monthly) nitrate simulations. The uncertainty originates mainly from that of the emission data and modeled precipitation amounts and initial and boundary conditions. (author)

  3. Covariability in the Monthly Mean Convective and Radiative Diurnal Cycles in the Amazon

    Dodson, Jason B.; Taylor, Patrick C.

    2015-01-01

    The diurnal cycle of convective clouds greatly influences the radiative energy balance in convectively active regions of Earth, through both direct presence, and the production of anvil and stratiform clouds. Previous studies show that the frequency and properties of convective clouds can vary on monthly timescales as a result of variability in the monthly mean atmospheric state. Furthermore, the radiative budget in convectively active regions also varies by up to 7 Wm-2 in convectively active regions. These facts suggest that convective clouds connect atmospheric state variability and radiation variability beyond clear sky effects alone. Previous research has identified monthly covariability between the diurnal cycle of CERES-observed top-of-atmosphere radiative fluxes and multiple atmospheric state variables from reanalysis over the Amazon region. ASVs that enhance (reduce) deep convection, such as CAPE (LTS), tend to shift the daily OLR and cloud albedo maxima earlier (later) in the day by 2-3 hr. We first test the analysis method using multiple reanalysis products for both the dry and wet seasons to further investigate the robustness of the preliminary results. We then use CloudSat data as an independent cloud observing system to further evaluate the relationships of cloud properties to variability in radiation and atmospheric states. While CERES can decompose OLR variability into clear sky and cloud effects, it cannot determine what variability in cloud properties lead to variability in the radiative cloud effects. Cloud frequency, cloud top height, and cloud microphysics all contribute to the cloud radiative effect, all of which are observable by CloudSat. In addition, CloudSat can also observe the presence and variability of deep convective cores responsible for the production of anvil clouds. We use these capabilities to determine the covariability of convective cloud properties and the radiative diurnal cycle.

  4. Reducing Multisensor Satellite Monthly Mean Aerosol Optical Depth Uncertainty: 1. Objective Assessment of Current AERONET Locations

    Li, Jing; Li, Xichen; Carlson, Barbara E.; Kahn, Ralph A.; Lacis, Andrew A.; Dubovik, Oleg; Nakajima, Teruyuki

    2016-01-01

    Various space-based sensors have been designed and corresponding algorithms developed to retrieve aerosol optical depth (AOD), the very basic aerosol optical property, yet considerable disagreement still exists across these different satellite data sets. Surface-based observations aim to provide ground truth for validating satellite data; hence, their deployment locations should preferably contain as much spatial information as possible, i.e., high spatial representativeness. Using a novel Ensemble Kalman Filter (EnKF)- based approach, we objectively evaluate the spatial representativeness of current Aerosol Robotic Network (AERONET) sites. Multisensor monthly mean AOD data sets from Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, Sea-viewing Wide Field-of-view Sensor, Ozone Monitoring Instrument, and Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar are combined into a 605-member ensemble, and AERONET data are considered as the observations to be assimilated into this ensemble using the EnKF. The assessment is made by comparing the analysis error variance (that has been constrained by ground-based measurements), with the background error variance (based on satellite data alone). Results show that the total uncertainty is reduced by approximately 27% on average and could reach above 50% over certain places. The uncertainty reduction pattern also has distinct seasonal patterns, corresponding to the spatial distribution of seasonally varying aerosol types, such as dust in the spring for Northern Hemisphere and biomass burning in the fall for Southern Hemisphere. Dust and biomass burning sites have the highest spatial representativeness, rural and oceanic sites can also represent moderate spatial information, whereas the representativeness of urban sites is relatively localized. A spatial score ranging from 1 to 3 is assigned to each AERONET site based on the uncertainty

  5. Fungal biogeography. Global diversity and geography of soil fungi.

    Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Kõljalg, Urmas; Yorou, Nourou S; Wijesundera, Ravi; Villarreal Ruiz, Luis; Vasco-Palacios, Aída M; Thu, Pham Quang; Suija, Ave; Smith, Matthew E; Sharp, Cathy; Saluveer, Erki; Saitta, Alessandro; Rosas, Miguel; Riit, Taavi; Ratkowsky, David; Pritsch, Karin; Põldmaa, Kadri; Piepenbring, Meike; Phosri, Cherdchai; Peterson, Marko; Parts, Kaarin; Pärtel, Kadri; Otsing, Eveli; Nouhra, Eduardo; Njouonkou, André L; Nilsson, R Henrik; Morgado, Luis N; Mayor, Jordan; May, Tom W; Majuakim, Luiza; Lodge, D Jean; Lee, Su See; Larsson, Karl-Henrik; Kohout, Petr; Hosaka, Kentaro; Hiiesalu, Indrek; Henkel, Terry W; Harend, Helery; Guo, Liang-dong; Greslebin, Alina; Grelet, Gwen; Geml, Jozsef; Gates, Genevieve; Dunstan, William; Dunk, Chris; Drenkhan, Rein; Dearnaley, John; De Kesel, André; Dang, Tan; Chen, Xin; Buegger, Franz; Brearley, Francis Q; Bonito, Gregory; Anslan, Sten; Abell, Sandra; Abarenkov, Kessy

    2014-11-28

    Fungi play major roles in ecosystem processes, but the determinants of fungal diversity and biogeographic patterns remain poorly understood. Using DNA metabarcoding data from hundreds of globally distributed soil samples, we demonstrate that fungal richness is decoupled from plant diversity. The plant-to-fungus richness ratio declines exponentially toward the poles. Climatic factors, followed by edaphic and spatial variables, constitute the best predictors of fungal richness and community composition at the global scale. Fungi show similar latitudinal diversity gradients to other organisms, with several notable exceptions. These findings advance our understanding of global fungal diversity patterns and permit integration of fungi into a general macroecological framework. Copyright © 2014, American Association for the Advancement of Science.

  6. Range of monthly mean hourly land surface air temperature diurnal cycle over high northern latitudes

    Wang, Aihui; Zeng, Xubin

    2014-05-01

    Daily maximum and minimum temperatures over global land are fundamental climate variables, and their difference represents the diurnal temperature range (DTR). While the differences between the monthly averaged DTR (MDTR) and the range of monthly averaged hourly temperature diurnal cycle (RMDT) are easy to understand qualitatively, their differences have not been quantified over global land areas. Based on our newly developed in situ data (Climatic Research Unit) reanalysis (Modern-Era Retrospective analysis for Research and Applications) merged hourly temperature data from 1979 to 2009, RMDT in January is found to be much smaller than that in July over high northern latitudes, as it is much more affected by the diurnal radiative forcing than by the horizontal advection of temperature. In contrast, MDTR in January is comparable to that in July over high northern latitudes, but it is much larger than January RMDT, as it primarily reflects the movement of lower frequency synoptic weather systems. The area-averaged RMDT trends north of 40°N are near zero in November, December, and January, while the trends of MDTR are negative. These results suggest the need to use both the traditional MDTR and RMDT suggested here in future observational and modeling studies. Furthermore, MDTR and its trend are more sensitive to the starting hour of a 24 h day used in the calculations than those for RMDT, and this factor also needs to be considered in model evaluations using observational data.

  7. Global carbon sequestration in tidal, saline wetland soils

    Chmura, G.L.; Anisfeld, S.C.; Cahoon, D.R.; Lynch, J.C.

    2003-01-01

    Wetlands represent the largest component of the terrestrial biological carbon pool and thus play an important role in global carbon cycles. Most global carbon budgets, however, have focused on dry land ecosystems that extend over large areas and have not accounted for the many small, scattered carbon-storing ecosystems such as tidal saline wetlands. We compiled data for 154 sites in mangroves and salt marshes from the western and eastern Atlantic and Pacific coasts, as well as the Indian Ocean, Mediterranean Ocean, and Gulf of Mexico. The set of sites spans a latitudinal range from 22.4??S in the Indian Ocean to 55.5??N in the northeastern Atlantic. The average soil carbon density of mangrove swamps (0.055 ?? 0.004 g cm-3) is significantly higher than the salt marsh average (0.039 ?? 0.003 g cm-3). Soil carbon density in mangrove swamps and Spartina patens marshes declines with increasing average annual temperature, probably due to increased decay rates at higher temperatures. In contrast, carbon sequestration rates were not significantly different between mangrove swamps and salt marshes. Variability in sediment accumulation rates within marshes is a major control of carbon sequestration rates masking any relationship with climatic parameters. Globally, these combined wetlands store at least 44.6 Tg C yr-1 and probably more, as detailed areal inventories are not available for salt marshes in China and South America. Much attention has been given to the role of freshwater wetlands, particularly northern peatlands, as carbon sinks. In contrast to peatlands, salt marshes and mangroves release negligible amounts of greenhouse gases and store more carbon per unit area. Copyright 2003 by the American Geophysical Union.

  8. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  9. Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.

    Weedon, J.T.; Aerts, R.; Kowalchuk, G.A.; van Bodegom, P.M.

    2011-01-01

    Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding

  10. Homogeneity of a Global Multisatellite Soil Moisture Climate Data Record

    Su, Chun-Hsu; Ryu, Dongryeol; Dorigo, Wouter; Zwieback, Simon; Gruber, Alexander; Albergel, Clement; Reichle, Rolf H.; Wagner, Wolfgang

    2016-01-01

    Climate Data Records (CDR) that blend multiple satellite products are invaluable for climate studies, trend analysis and risk assessments. Knowledge of any inhomogeneities in the CDR is therefore critical for making correct inferences. This work proposes a methodology to identify the spatiotemporal extent of the inhomogeneities in a 36-year, global multisatellite soil moisture CDR as the result of changing observing systems. Inhomogeneities are detected at up to 24 percent of the tested pixels with spatial extent varying with satellite changeover times. Nevertheless, the contiguous periods without inhomogeneities at changeover times are generally longer than 10 years. Although the inhomogeneities have measurable impact on the derived trends, these trends are similar to those observed in ground data and land surface reanalysis, with an average error less than 0.003 cubic meters per cubic meter per year. These results strengthen the basis of using the product for long-term studies and demonstrate the necessity of homogeneity testing of multisatellite CDRs in general.

  11. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans

    Rudolf Jaffe; Yan Ding; Jutta Niggemann; Anssi V. Vahatalo; Aron Stubbins; Robert G. M. Spencer; John Campbell; Thorsten Dittmar

    2013-01-01

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent...

  12. Simply obtained global radiation, soil temperature and soil moisture in an alley cropping system in semi-arid Kenya

    Mungai, D.N.; Stigter, C.J.; Coulson, C.L.; Ng'ang'a, J.K.

    2000-01-01

    Global radiation, soil temperature and soil moisture data were obtained from a 4-6 year old Cassia siamea/maize (CM) alley cropping (or hedgerow intercropping) system, at a semi-arid site at Machakos, Kenya, in the late eighties. With the growing need to explore and manage variations in

  13. S-World: A high resolution global soil database for simulation modelling (Invited)

    Stoorvogel, J. J.

    2013-12-01

    There is an increasing call for high resolution soil information at the global level. A good example for such a call is the Global Gridded Crop Model Intercomparison carried out within AgMIP. While local studies can make use of surveying techniques to collect additional techniques this is practically impossible at the global level. It is therefore important to rely on legacy data like the Harmonized World Soil Database. Several efforts do exist that aim at the development of global gridded soil property databases. These estimates of the variation of soil properties can be used to assess e.g., global soil carbon stocks. However, they do not allow for simulation runs with e.g., crop growth simulation models as these models require a description of the entire pedon rather than a few soil properties. This study provides the required quantitative description of pedons at a 1 km resolution for simulation modelling. It uses the Harmonized World Soil Database (HWSD) for the spatial distribution of soil types, the ISRIC-WISE soil profile database to derive information on soil properties per soil type, and a range of co-variables on topography, climate, and land cover to further disaggregate the available data. The methodology aims to take stock of these available data. The soil database is developed in five main steps. Step 1: All 148 soil types are ordered on the basis of their expected topographic position using e.g., drainage, salinization, and pedogenesis. Using the topographic ordering and combining the HWSD with a digital elevation model allows for the spatial disaggregation of the composite soil units. This results in a new soil map with homogeneous soil units. Step 2: The ranges of major soil properties for the topsoil and subsoil of each of the 148 soil types are derived from the ISRIC-WISE soil profile database. Step 3: A model of soil formation is developed that focuses on the basic conceptual question where we are within the range of a particular soil property

  14. Water balance creates a threshold in soil pH at the global scale

    Slessarev, E. W.; Lin, Y.; Bingham, N. L.; Johnson, J. E.; Dai, Y.; Schimel, J. P.; Chadwick, O. A.

    2016-12-01

    Soil pH regulates the capacity of soils to store and supply nutrients, and thus contributes substantially to controlling productivity in terrestrial ecosystems. However, soil pH is not an independent regulator of soil fertility—rather, it is ultimately controlled by environmental forcing. In particular, small changes in water balance cause a steep transition from alkaline to acid soils across natural climate gradients. Although the processes governing this threshold in soil pH are well understood, the threshold has not been quantified at the global scale, where the influence of climate may be confounded by the effects of topography and mineralogy. Here we evaluate the global relationship between water balance and soil pH by extracting a spatially random sample (n = 20,000) from an extensive compilation of 60,291 soil pH measurements. We show that there is an abrupt transition from alkaline to acid soil pH that occurs at the point where mean annual precipitation begins to exceed mean annual potential evapotranspiration. We evaluate deviations from this global pattern, showing that they may result from seasonality, climate history, erosion and mineralogy. These results demonstrate that climate creates a nonlinear pattern in soil solution chemistry at the global scale; they also reveal conditions under which soils maintain pH out of equilibrium with modern climate.

  15. Uncertainty in regional and zonal monthly mean downward surface irradiances from Edition 4.0 CERES Energy Balanced and Filled (EBAF) data product

    Kato, S.; Rutan, D. A.; Rose, F. G.; Loeb, N. G.

    2017-12-01

    The surface of the Earth receives solar radiation (shortwave) and emission from the atmosphere (longwave). At a global and annual mean approximately 12% of solar radiation incident on the surface is reflected and the rest is absorbed by the surface. The surface emits radiation proportional to the forth power of the temperature. Although the uncertainty in global and annual mean surface irradiances is estimated in earlier studies (Zhang et al. 1995, 2004; L'Ecuyer et al. 2008; Stephens et al. 2012; Kato et al. 2012), only a few studies estimated the uncertainty in computed surface irradiances at smaller spatial and temporal scales (Zhang et al. 1995, 2004; Kato et al. 2012). We use surface observations at 46 buoys and 36 land sites and newly released the Edition 4.0 Clouds and the Earth's Radiant Energy System (CERES) Energy Balanced and Filled (EBAF)-surface data product to estimate the uncertainty in regional and zonal monthly mean downward shortwave and longwave surface irradiances. The root-mean-square difference of monthly mean computed and observed irradiances is used for the regional uncertainty. The uncertainty is separated into bias and spatially random components. The random component decreases when irradiances are averaged over a larger area, nearly inversely proportional to the number of surface observation sites. The presentation provides the uncertainty in the regional and zonal monthly mean downward surface irradiances over ocean and land. ReferencesKato, S. and N.G.Loeb, D. A.Rutan, F. G. Rose, S. Sun-Mack,W.F.Miller, and Y. Chen, 2012. Surv. Geophys., 33, 395-412, doi:10.1007/s10712-012-9179-x. L'Ecuyer, T. S., N. B. Wood, T. Haladay, G. L. Stephens, and P. W. Stackhouse Jr., 2008, J. Geophys. Res., 113, D00A15, doi:10.1029/2008JD009951. Stephens, G. L. and Coauthors, 2012, Nat. Geosci., 5, 691-696, doi:10.1038/ngeo1580. Zhang, Y., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004, J. Geophys. Res., 109, D19105, doi:10.1029/2003JD

  16. Short-term variations in core surface flow resolved from an improved method of calculating observatory monthly means

    Olsen, Nils; Whaler, Kathryn A.; Finlay, Christopher C.

    2014-05-01

    Monthly means of the magnetic field measurements taken by ground observatories are a useful data source for studying temporal changes of the core magnetic field and the underlying core flow. However, the usual way of calculating monthly means as the arithmetic mean of all days (geomagnetic quiet as well as disturbed) and all local times (day and night) may result in contributions from external (magnetospheric and ionospheric) origin in the (ordinary, omm) monthly means. Such contamination makes monthly means less favourable for core studies. We calculated revised monthly means (rmm), and their uncertainties, from observatory hourly means using robust means and after removal of external field predictions, using an improved method for characterising the magnetospheric ring current. The utility of the new method for calculating observatory monthly means is demonstrated by inverting their first differences for core surface advective flows. The flow is assumed steady over three consecutive months to ensure uniqueness; the effects of more rapid changes should be attenuated by the weakly conducting mantle. Observatory data are inverted directly for a regularised core flow, rather than deriving it from a secular variation spherical harmonic model. The main field is specified by the CHAOS-4 model. Data from up to 128 observatories between 1997 and 2013 were used to calculate 185 flow models from the omm and rmm, for each possible set of three consecutive months. The full 3x3 (non-diagonal) data covariance matrix was used, and two-norm (least squares) minimisation performed. We are able to fit the data to the target (weighted) misfit of 1, for both omm and rmm inversions, provided we incorporate the full data covariance matrix, and produce consistent, plausible flows. Fits are better for rmm flows. The flows exhibit noticeable changes over timescales of a few months. However, they follow rapid excursions in the omm that we suspect result from external field contamination

  17. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems

    Xu, Xiaofeng [ORNL; Thornton, Peter E [ORNL; Post, Wilfred M [ORNL

    2013-01-01

    Soil microbes play a pivotal role in regulating land-atmosphere interactions; the soil microbial biomass carbon (C), nitrogen (N), phosphorus (P) and C:N:P stoichiometry are important regulators for soil biogeochemical processes; however, the current knowledge on magnitude, stoichiometry, storage, and spatial distribution of global soil microbial biomass C, N, and P is limited. In this study, 3087 pairs of data points were retrieved from 281 published papers and further used to summarize the magnitudes and stoichiometries of C, N, and P in soils and soil microbial biomass at global- and biome-levels. Finally, global stock and spatial distribution of microbial biomass C and N in 0-30 cm and 0-100 cm soil profiles were estimated. The results show that C, N, and P in soils and soil microbial biomass vary substantially across biomes; the fractions of soil nutrient C, N, and P in soil microbial biomass are 1.6% in a 95% confidence interval of (1.5%-1.6%), 2.9% in a 95% confidence interval of (2.8%-3.0%), and 4.4% in a 95% confidence interval of (3.9%-5.0%), respectively. The best estimates of C:N:P stoichiometries for soil nutrients and soil microbial biomass are 153:11:1, and 47:6:1, respectively, at global scale, and they vary in a wide range among biomes. Vertical distribution of soil microbial biomass follows the distribution of roots up to 1 m depth. The global stock of soil microbial biomass C and N were estimated to be 15.2 Pg C and 2.3 Pg N in the 0-30 cm soil profiles, and 21.2 Pg C and 3.2 Pg N in the 0-100 cm soil profiles. We did not estimate P in soil microbial biomass due to data shortage and insignificant correlation with soil total P and climate variables. The spatial patterns of soil microbial biomass C and N were consistent with those of soil organic C and total N, i.e. high density in northern high latitude, and low density in low latitudes and southern hemisphere.

  18. Global Assessment of Human-induced Soil Degradation (GLASOD)

    Oldeman, L.R.; Hakkeling, R.T.A.; Sombroek, W.G.; Batjes, N.H.

    2014-01-01

    The GLASOD project (1987-1990) has produced a world map of human-induced soil degradation. Data were complied in cooperation with a large number of soil scientists throughout the world, using uniform Guidelines and international correlation. The status of soil degradation was mapped within loosely

  19. Climate change impacts on soil carbon storage in global croplands: 1901-2010

    Ren, W.; Tian, H.

    2015-12-01

    New global data finds 12% of earth's surface in cropland at present. Croplands will take on the responsibility to support approximate 60% increase in food production by 2050 as FAO estimates. In addition to nutrient supply to plants, cropland soils also play a major source and sink of greenhouse gases regulating global climate system. It is a big challenge to understand how soils function under global changes, but it is also a great opportunity for agricultural sector to manage soils to assure sustainability of agroecosystems and mitigate climate change. Previous studies have attempted to investigate the impacts of different land uses and climates on cropland soil carbon storage. However, large uncertainty still exists in magnitude and spatiotemporal patterns of global cropland soil organic carbon, due to the lack of reliable environmental databases and relatively poorly understanding of multiple controlling factors involved climate change and land use etc. Here, we use a process-based agroecosystem model (DLEM-Ag) in combination with diverse data sources to quantify magnitude and tempo-spatial patterns of soil carbon storage in global croplands during 1901-2010. We also analyze the relative contributions of major environmental variables (climate change, land use and management etc.). Our results indicate that intensive land use management may hidden the vulnerability of cropland soils to climate change in some regions, which may greatly weaken soil carbon sequestration under future climate change.

  20. GlobalSoilMap France: High-resolution spatial modelling the soils of France up to two meter depth.

    Mulder, V L; Lacoste, M; Richer-de-Forges, A C; Arrouays, D

    2016-12-15

    This work presents the first GlobalSoilMap (GSM) products for France. We developed an automatic procedure for mapping the primary soil properties (clay, silt, sand, coarse elements, pH, soil organic carbon (SOC), cation exchange capacity (CEC) and soil depth). The procedure employed a data-mining technique and a straightforward method for estimating the 90% confidence intervals (CIs). The most accurate models were obtained for pH, sand and silt. Next, CEC, clay and SOC were found reasonably accurate predicted. Coarse elements and soil depth were the least accurate of all models. Overall, all models were considered robust; important indicators for this were 1) the small difference in model diagnostics between the calibration and cross-validation set, 2) the unbiased mean predictions, 3) the smaller spatial structure of the prediction residuals in comparison to the observations and 4) the similar performance compared to other developed GlobalSoilMap products. Nevertheless, the confidence intervals (CIs) were rather wide for all soil properties. The median predictions became less reliable with increasing depth, as indicated by the increase of CIs with depth. In addition, model accuracy and the corresponding CIs varied depending on the soil variable of interest, soil depth and geographic location. These findings indicated that the CIs are as informative as the model diagnostics. In conclusion, the presented method resulted in reasonably accurate predictions for the majority of the soil properties. End users can employ the products for different purposes, as was demonstrated with some practical examples. The mapping routine is flexible for cloud-computing and provides ample opportunity to be further developed when desired by its users. This allows regional and international GSM partners with fewer resources to develop their own products or, otherwise, to improve the current routine and work together towards a robust high-resolution digital soil map of the world

  1. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  2. Climate Prediction Center (CPC) Global Monthly Leaky Bucket Soil Moisture Analysis

    National Oceanic and Atmospheric Administration, Department of Commerce — Monthly global soil moisture, runoff, and evaporation data sets produced by the Leaky Bucket model at 0.5? ? 0.5? resolution for the period from 1948 to the present....

  3. Phosphorus in agricultural soils: drivers of its distribution at the global scale

    Ringeval, Bruno [ISPA, Villenave d' Ornon (France); Augusto, Laurent [ISPA, Villenave d' Ornon (France); Monod, Herve [Univ. Paris-Saclay, Jouy-en-Josas (France); van Apeldoorn, Dirk [Utrecht Univ., Utrecht (The Netherlands); Bouwman, Lex [Utrecht Univ., Utrecht (The Netherlands); Yang, Xiaojuan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Achat, David L. [ISPA, Villenave d' Ornon (France); Chini, Louise P. [Univ. of Maryland, College Park, MD (United States); Van Oost, Kristof [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium); Guenet, Bertrand [Univ. Paris-Saclay, Gif-sur-Yvette (France); Wang, Rong [Univ. Paris-Saclay, Gif-sur-Yvette (France); Peking Univ., Beijing (China); Decharme, Bertrand [CNRS/Meteo-France, Toulouse (France); Nesme, Thomas [ISPA, Villenave d' Ornon (France); Pellerin, Sylvain [ISPA, Villenave d' Ornon (France)

    2017-01-09

    Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (PILAB), a proxy of the pool involved in plant nutrition and the total soil P (PTOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs PILAB. Indeed, 97% of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of PILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.

  4. Feedback of global warming to soil carbon cycling in forest ecosystems

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  5. A global spectral library to characterize the world's soil

    Viscarra Rossel, R.A.; Behrens, T.; Ben-Dor, E.; Bartholomeus, H.M.

    2016-01-01

    Soil provides ecosystem services, supports human health and habitation, stores carbon and regulates emissions of greenhouse gases. Unprecedented pressures on soil from degradation and urbanization are threatening agro-ecological balances and food security. It is important that we learn more about

  6. Global charcoal mobilization from soils via dissolution and riverine transport to the oceans.

    Jaffé, Rudolf; Ding, Yan; Niggemann, Jutta; Vähätalo, Anssi V; Stubbins, Aron; Spencer, Robert G M; Campbell, John; Dittmar, Thorsten

    2013-04-19

    Global biomass burning generates 40 million to 250 million tons of charcoal every year, part of which is preserved for millennia in soils and sediments. We have quantified dissolution products of charcoal in a wide range of rivers worldwide and show that globally, a major portion of the annual charcoal production is lost from soils via dissolution and subsequent transport to the ocean. The global flux of soluble charcoal accounts to 26.5 ± 1.8 million tons per year, which is ~10% of the global riverine flux of dissolved organic carbon (DOC). We suggest that the mobilization of charcoal and DOC out of soils is mechanistically coupled. This study closes a major gap in the global charcoal budget and provides critical information in the context of geoengineering.

  7. Chemistry of organic carbon in soil with relationship to the global carbon cycle

    Post, W.M. III.

    1988-01-01

    Various ecosystem disturbances alter the balances between production of organic matter and its decomposition and therefore change the amount of carbon in soil. The most severe perturbation is conversion of natural vegetation to cultivated crops. Conversion of natural vegetation to cultivated crops results in a lowered input of slowly decomposing material which causes a reduction in overall carbon levels. Disruption of soil matrix structure by cultivation leads to lowered physical protection of organic matter resulting in an increased net mineralization rate of soil carbon. Climate change is another perturbation that affects the amount and composition of plant production, litter inputs, and decomposition regimes but does not affect soil structure directly. Nevertheless, large changes in soil carbon storage are probable with anticipated CO 2 induced climate change, particularly in northern latitudes where anticipated climate change will be greatest (MacCracken and Luther 1985) and large amounts of soil organic matter are found. It is impossible, given the current state of knowledge of soil organic matter processes and transformations to develop detailed process models of soil carbon dynamics. Largely phenomenological models appear to be developing into predictive tools for understanding the role of soil organic matter in the global carbon cycle. In particular, these models will be useful in quantifying soil carbon changes due to human land-use and to anticipated global climate and vegetation changes. 47 refs., 7 figs., 2 tabs

  8. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    Verheijen, F.G.A.; Jeffery, S.L.; Velde, te M.; Penizek, V.; Beland, M.; Bastos, A.C.; Keizer, J.J.

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71-130 Pg CO2-C-e over 100

  9. Critical carbon input to maintain current soil organic carbon stocks in global wheat systems.

    Wang, Guocheng; Luo, Zhongkui; Han, Pengfei; Chen, Huansheng; Xu, Jingjing

    2016-01-13

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1° × 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha(-1) yr(-1), with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  10. Quantified carbon input for maintaining existing soil organic carbon stocks in global wheat systems

    Wang, G.

    2017-12-01

    Soil organic carbon (SOC) dynamics in croplands is a crucial component of global carbon (C) cycle. Depending on local environmental conditions and management practices, typical C input is generally required to reduce or reverse C loss in agricultural soils. No studies have quantified the critical C input for maintaining SOC at global scale with high resolution. Such information will provide a baseline map for assessing soil C dynamics under potential changes in management practices and climate, and thus enable development of management strategies to reduce C footprint from farm to regional scales. We used the soil C model RothC to simulate the critical C input rates needed to maintain existing soil C level at 0.1°× 0.1° resolution in global wheat systems. On average, the critical C input was estimated to be 2.0 Mg C ha-1 yr-1, with large spatial variability depending on local soil and climatic conditions. Higher C inputs are required in wheat system of central United States and western Europe, mainly due to the higher current soil C stocks present in these regions. The critical C input could be effectively estimated using a summary model driven by current SOC level, mean annual temperature, precipitation, and soil clay content.

  11. Towards a global understanding of vertical soil carbon dynamics: meta-analysis of soil 14C data

    hatte, C.; Balesdent, J.; Guiot, J.

    2012-12-01

    Soil represents the largest terrestrial storage mechanism for atmospheric carbon from photosynthesis, with estimates ranging from 1600 Pg C within the top 1 meter to 2350 Pg C for the top 3 meters. These values are at least 2.5 times greater than atmospheric C pools. Small changes in soil organic carbon storage could result in feedback to atmospheric CO2 and the sensitivity of soil organic matter to changes in temperature, and precipitation remains a critical area of research with respect to the global carbon cycle. As an intermediate storage mechanism for organic material through time, the vertical profile of carbon generally shows an age continuum with depth. Radiocarbon provides critical information for understanding carbon exchanges between soils and atmosphere, and within soil layers. Natural and "bomb" radiocarbon has been used to demonstrate the importance and nature of the soil carbon response to climatic and human impacts on decadal to millennial timescales. Radiocarbon signatures of bulk, or chemically or physically fractionated soil, or even of specific organic compounds, offer one of the only ways to infer terrestrial carbon turnover times or test ecosystem carbon models. We compiled data from the literature on radiocarbon distribution on soil profiles and characterized each study according to the following categories: soil type, analyzed organic fraction, location (latitude, longitude, elevation), climate (temperature, precipitation), land use and sampling year. Based on the compiled data, soil carbon 14C profiles were reconstructed for each of the 226 sites. We report here partial results obtained by statistical analyses of portion of this database, i.e. bulk and bulk-like organic matter and sampling year posterior to 1980. We highlight here 14C vertical pattern in relationship with external parameters (climate, location and land use).

  12. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. I. Predicting wind speed

    Curry, Charles L. [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, Victoria, BC (Canada); School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Kamp, Derek van der [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada); Pacific Climate Impacts Consortium, University of Victoria, Victoria, BC (Canada); Monahan, Adam H. [School of Earth and Ocean Sciences, University of Victoria, Victoria, BC (Canada)

    2012-04-15

    Surface wind speed is a key climatic variable of interest in many applications, including assessments of storm-related infrastructure damage and feasibility studies of wind power generation. In this work and a companion paper (van der Kamp et al. 2011), the relationship between local surface wind and large-scale climate variables was studied using multiple regression analysis. The analysis was performed using monthly mean station data from British Columbia, Canada and large-scale climate variables (predictors) from the NCEP-2 reanalysis over the period 1979-2006. Two regression-based methodologies were compared. The first relates the annual cycle of station wind speed to that of the large-scale predictors at the closest grid box to the station. It is shown that the relatively high correlation coefficients obtained with this method are attributable to the dominant influence of region-wide seasonality, and thus contain minimal information about local wind behaviour at the stations. The second method uses interannually varying data for individual months, aggregated into seasons, and is demonstrated to contain intrinsically local information about the surface winds. The dependence of local wind speed upon large-scale predictors over a much larger region surrounding the station was also explored, resulting in 2D maps of spatial correlations. The cross-validated explained variance using the interannual method was highest in autumn and winter, ranging from 30 to 70% at about a dozen stations in the region. Reasons for the limited predictive skill of the regressions and directions for future progress are reviewed. (orig.)

  13. Statistical downscaling of historical monthly mean winds over a coastal region of complex terrain. II. Predicting wind components

    Kamp, Derek van der [University of Victoria, Pacific Climate Impacts Consortium, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Curry, Charles L. [Environment Canada University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada); Monahan, Adam H. [University of Victoria, School of Earth and Ocean Sciences, Victoria, BC (Canada)

    2012-04-15

    A regression-based downscaling technique was applied to monthly mean surface wind observations from stations throughout western Canada as well as from buoys in the Northeast Pacific Ocean over the period 1979-2006. A predictor set was developed from principal component analysis of the three wind components at 500 hPa and mean sea-level pressure taken from the NCEP Reanalysis II. Building on the results of a companion paper, Curry et al. (Clim Dyn 2011), the downscaling was applied to both wind speed and wind components, in an effort to evaluate the utility of each type of predictand. Cross-validated prediction skill varied strongly with season, with autumn and summer displaying the highest and lowest skill, respectively. In most cases wind components were predicted with better skill than wind speeds. The predictive ability of wind components was found to be strongly related to their orientation. Wind components with the best predictions were often oriented along topographically significant features such as constricted valleys, mountain ranges or ocean channels. This influence of directionality on predictive ability is most prominent during autumn and winter at inland sites with complex topography. Stations in regions with relatively flat terrain (where topographic steering is minimal) exhibit inter-station consistencies including region-wide seasonal shifts in the direction of the best predicted wind component. The conclusion that wind components can be skillfully predicted only over a limited range of directions at most stations limits the scope of statistically downscaled wind speed predictions. It seems likely that such limitations apply to other regions of complex terrain as well. (orig.)

  14. Soil organic nitrogen mineralization across a global latitudinal gradient

    D.L. Jones; K. Kielland; F.L. Sinclair; R.A. Dahlgren; K.K. Newsham; J.F. Farrar; D.V. Murphy

    2009-01-01

    Understanding and accurately predicting the fate of carbon and nitrogen in the terrestrial biosphere remains a central goal in ecosystem science. Amino acids represent a key pool of C and N in soil, and their availability to plants and microorganisms has been implicated as a major driver in regulating ecosystem functioning. Because of potential differences in...

  15. Biological soil crusts: a fundamental organizing agent in global drylands

    Belnap, J.; Zhang, Y.

    2013-12-01

    Ecosystem function is profoundly affected by plant community composition, which is ultimately determined by factors that govern seed retention. Dryland ecosystems constitute ~35% of terrestrial surfaces, with most soils in these regions covered by biological soil crusts (biocrusts), a community whose autotrophs are dominated by cyanobacteria, lichens, and mosses. Studies at 550 sites revealed that plant community composition was controlled by the interaction among biocrust type, disturbance regime, and external morphology of seeds. In bare soils (due to disturbance), all seed types were present in the seedbank and plant community. As biocrusts became better developed (i.e., the cover of lichens and mosses increased), they more strongly filtered out seeds with appendages. Thus, soils under late successional biocrusts contained seedbanks dominated by smooth seeds and vascular plants growing in late successional biocrusts were dominated by those with smooth seeds. Therefore, the tension between the removal of biocrusts by soil surface disturbance and their recovery creates a shifting mosaic of plant patch types in both space and time. Because changes in vascular plant communities reverberate throughout both below ground and above ground food webs and thus affect multiple trophic levels, we propose that biocrusts are a fundamental organizing agent in drylands worldwide. Future increased demand for resources will intensify land use both temporally and spatially, resulting in an increased rate of biocrust loss across larger areas. As a result, we can expect shifts in the composition and distribution of plant communities, accompanied by concomitant changes in many aspects of dryland ecosystems. Conceptual model of shifting dryland plant mosaics through space and time. Within the large circles, soil surface type changes with time in the same space, going from bare uncrusted soil (B) to cyanobacterial biocrust (C) to lichen/moss (L/M) biocrust. Disturbance (D) drives the

  16. Meteoric 10Be in soil profiles - A global meta-analysis

    Graly, Joseph A.; Bierman, Paul R.; Reusser, Lucas J.; Pavich, Milan J.

    2010-01-01

    In order to assess current understanding of meteoric 10Be dynamics and distribution in terrestrial soils, we assembled a database of all published meteoric 10Be soil depth profiles, including 104 profiles from 27 studies in globally diverse locations, collectively containing 679 individual measurements. This allows for the systematic comparison of meteoric 10Be concentration to other soil characteristics and the comparison of profile depth distributions between geologic settings. Percent clay, 9Be, and dithionite-citrate extracted Al positively correlate to meteoric 10Be in more than half of the soils where they were measured, but the lack of significant correlation in other soils suggests that no one soil factor controls meteoric 10Be distribution with depth. Dithionite-citrate extracted Fe and cation exchange capacity are only weakly correlated to meteoric 10Be. Percent organic carbon and pH are not significantly related to meteoric 10Be concentration when all data are complied.The compilation shows that meteoric 10Be concentration is seldom uniform with depth in a soil profile. In young or rapidly eroding soils, maximum meteoric 10Be concentrations are typically found in the uppermost 20 cm. In older, more slowly eroding soils, the highest meteoric 10Be concentrations are found at depth, usually between 50 and 200 cm. We find that the highest measured meteoric 10Be concentration in a soil profile is an important metric, as both the value and the depth of the maximum meteoric 10Be concentration correlate with the total measured meteoric 10Be inventory of the soil profile.In order to refine the use of meteoric 10Be as an estimator of soil erosion rate, we compare near-surface meteoric 10Be concentrations to total meteoric 10Be soil inventories. These trends are used to calibrate models of meteoric 10Be loss by soil erosion. Erosion rates calculated using this method vary based on the assumed depth and timing of erosional events and on the reference data selected.

  17. Grazing reduces soil greenhouse gas fluxes in global grasslands: a meta-analysis

    Tang, Shiming; Tian, Dashuan; Niu, Shuli

    2017-04-01

    Grazing causes a worldwide degradation in grassland and likely alters soil greenhouse gas fluxes (GHGs). However, the general patterns of grazing-induced changes in grassland soil GHGs and the underlying mechanisms remain unclear. Thus, we synthesized 63 independent experiments in global grasslands that examined grazing impacts on soil GHGs (CO2, CH4 and N2O). We found that grazing with light or moderate intensity did not significantly influence soil GHGs, but consistently depressed them under heavy grazing, reducing CO2 emission by 10.55%, CH4 uptake by 19.24% and N2O emission by 28.04%. The reduction in soil CO2 was mainly due to decreased activity in roots and microbes (soil respiration per unit root and microbial biomass), which was suppressed by less water availability due to higher soil temperature induced by lower community cover under heavy grazing. N2O emission decreased with grazing-caused decline in soil total N. The inhibitory effect on methanotroph activities by water stress is responsible for the decreased CH4 uptake. Furthermore, grazing duration and precipitation also influenced the direction and magnitude of responses in GHGs fluxes. Overall, our results indicate that the reduction in soil CO2 and N2O emission under heavy grazing is partially compensated by the decrease in CH4 uptake, which is mainly regulated by variations in soil moisture.

  18. Diagnostic model of 3-D circulation in the Arabian Sea and western equatorial Indian Ocean: Results of monthly mean sea surface topography

    Bahulayan, N.; Shaji, C.

    A three-dimensional diagnostic model has been developed to compute the monthly mean circulation and sea surface topography in the Western Tropical Indian Ocean north of 20 degrees S and west of 80 degrees E. The diagnostic model equations...

  19. MERRA 2D IAU Ocean Surface Diagnostic, Single Level, Monthly Mean (2/3x1/2L1) V5.2.0

    National Aeronautics and Space Administration — The MATMNXOCN or tavgM_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  20. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content

    Gonzalez Alcaraz, M.N.; van Gestel, C.A.M.

    2016-01-01

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20 °C vs. 25 °C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus

  1. Global Patterns of the Isotopic Composition of Soil and Plant Nitrogen

    Amundson, R.; Yoo, K.

    2014-12-01

    From a societal perspective, soil N follows only soil C in the importance of soil to 21st century environmental issues. Amundson et al (2003) developed a mass balance model for soil N and the ratio of 15N/14N, and provided the first global projections of the spatial patterns of soil and plant δ15N values. It was hypothesized that state factors, particularly climate, should drive broad patterns of soil and plant δ15N values in a manner analogous to the known patterns of total soil N (e.g. Post et al., 1984). At that time, the N isotope data available to explore the effect of individual factors was modest. In the past decade, numerous papers from a broad spectrum of locations have created a rich database that can be used to further refine the initial projections made more than a decade ago. In this paper, hundreds of published measurements will be used to more deeply examine the climatic impacts on soil and plant δ15N values. Additionally, we will focus on the local controls of topography on ecosystem N cycling, which can create local isotopic variation that is similar in magnitude to the global effects of climate. The adoption of process-based models from the hillslope geomorphology community appears to be a powerful tool for explaining some existing data from toposequences, designing new studies of topographic controls on biogeochemistry, and particularly for parameterization in global models. Amundson, R., A.T. Austin, E.A.G. Schuur, K. Yoo, V. Matzek, C. Kendall, A. Uebersax, D. Brenner, and W.T. Baisden. 2003. Global Biogeochemical Cycles 17(1):1031.

  2. Global Soil Moisture from the Aquarius/SAC-D Satellite: Description and Initial Assessment

    Bindlish, Rajat; Jackson, Thomas; Cosh, Michael; Zhao, Tianjie; O'Neil, Peggy

    2015-01-01

    Aquarius satellite observations over land offer a new resource for measuring soil moisture from space. Although Aquarius was designed for ocean salinity mapping, our objective in this investigation is to exploit the large amount of land observations that Aquarius acquires and extend the mission scope to include the retrieval of surface soil moisture. The soil moisture retrieval algorithm development focused on using only the radiometer data because of the extensive heritage of passive microwave retrieval of soil moisture. The single channel algorithm (SCA) was implemented using the Aquarius observations to estimate surface soil moisture. Aquarius radiometer observations from three beams (after bias/gain modification) along with the National Centers for Environmental Prediction model forecast surface temperatures were then used to retrieve soil moisture. Ancillary data inputs required for using the SCA are vegetation water content, land surface temperature, and several soil and vegetation parameters based on land cover classes. The resulting global spatial patterns of soil moisture were consistent with the precipitation climatology and with soil moisture from other satellite missions (Advanced Microwave Scanning Radiometer for the Earth Observing System and Soil Moisture Ocean Salinity). Initial assessments were performed using in situ observations from the U.S. Department of Agriculture Little Washita and Little River watershed soil moisture networks. Results showed good performance by the algorithm for these land surface conditions for the period of August 2011-June 2013 (rmse = 0.031 m(exp 3)/m(exp 3), Bias = -0.007 m(exp 3)/m(exp 3), and R = 0.855). This radiometer-only soil moisture product will serve as a baseline for continuing research on both active and combined passive-active soil moisture algorithms. The products are routinely available through the National Aeronautics and Space Administration data archive at the National Snow and Ice Data Center.

  3. GlobalSoilMap.net – a new digital soil map of the world

    Hartemink, A.E.; Hempel, J.; Lagacherie, P.; McBratney, A.B.; MacMillan, R.A.; Montanarella, L.; Sanchez, P.A.; Walsh, M.; Zhang, G.L.

    2010-01-01

    Knowledge of the world soil resources is fragmented and dated. There is a need for accurate, up-to-date and spatially referenced soil information as frequently expressed by the modelling community, farmers and land users, and policy and decision makers. This need coincides with an enormous leap in

  4. Miocene Soil Database: Global paleosol and climate maps of the Middle Miocene Thermal Maximum

    Metzger, C. A.

    2013-12-01

    Paleosols, which record past climatic, biologic, and atmospheric conditions, can be used as a proxy to understand ancient terrestrial landscapes, paleoclimate, and paleoenvironment. In addition, the middle Miocene thermal maximum (~16 Ma) provides an ancient analog for understanding the effects of current and future climate change on soil and ecosystem regimes, as it contains records of shifts similar in magnitude to expected global climate change. The Miocene Soil Database (MSDB) combines new paleosol data from Australia and Argentina with existing and previously uncollated paleosol data from the literature and the Paleobiology Database. These data (n = 507) were then used to derive a paleogeographic map of climatically significant soil types zones during the Middle Miocene. The location of each diagnostic paleosol type (Aridisol, Alfisol, Mollisol, Histosol, Oxisol, and Ultisol) was plotted and compared with the extent of these soil types in the modern environment. The middle Miocene soil map highlights the extension of tropical soils (Oxisols, Ultisols), accompanied by thermophilic flora and fauna, into northern and southern mid-latitudes. Peats, lignites, and Histosols of wetlands were also more abundant at higher latitudes, especially in the northern hemisphere, during the middle Miocene. The paleosol changes reflect that the Middle Miocene was a peak of global soil productivity and carbon sequestration, with replacement of unproductive Aridisols and Gelisols with more productive Oxisols, Alfisols, Mollisols and Histosols. With expansion to include additional data such as soil texture, moisture, or vegetation type, the MSDB has the potential to provide an important dataset for computer models of Miocene climate shifts as well as future land use considerations of soils in times of global change.

  5. A global map of mangrove forest soil carbon at 30 m spatial resolution

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  6. HYSOGs250m, global gridded hydrologic soil groups for curve-number-based runoff modeling.

    Ross, C Wade; Prihodko, Lara; Anchang, Julius; Kumar, Sanath; Ji, Wenjie; Hanan, Niall P

    2018-05-15

    Hydrologic soil groups (HSGs) are a fundamental component of the USDA curve-number (CN) method for estimation of rainfall runoff; yet these data are not readily available in a format or spatial-resolution suitable for regional- and global-scale modeling applications. We developed a globally consistent, gridded dataset defining HSGs from soil texture, bedrock depth, and groundwater. The resulting data product-HYSOGs250m-represents runoff potential at 250 m spatial resolution. Our analysis indicates that the global distribution of soil is dominated by moderately high runoff potential, followed by moderately low, high, and low runoff potential. Low runoff potential, sandy soils are found primarily in parts of the Sahara and Arabian Deserts. High runoff potential soils occur predominantly within tropical and sub-tropical regions. No clear pattern could be discerned for moderately low runoff potential soils, as they occur in arid and humid environments and at both high and low elevations. Potential applications of this data include CN-based runoff modeling, flood risk assessment, and as a covariate for biogeographical analysis of vegetation distributions.

  7. The maximum reservoir capacity of soils for persistent organic pollutants: implications for global cycling

    Dalla Valle, M.; Jurado, E.; Dachs, J.; Sweetman, A.J.; Jones, K.C.

    2005-01-01

    The concept of maximum reservoir capacity (MRC), the ratio of the capacities of the surface soil and of the atmospheric mixed layer (AML) to hold chemical under equilibrium conditions, is applied to selected persistent organic pollutants (POPs) in the surface 'skin' (1 mm) of soils. MRC is calculated as a function of soil organic matter (SOM) content and temperature-dependent K OA and mapped globally for selected PCB congeners (PCB-28; -153; -180) and HCB, to identify regions with a higher tendency to retain POPs. It is shown to vary over many orders of magnitude, between compounds, locations and time (seasonally/diurnally). The MRC approach emphasises the very large capacity of soils as a storage compartment for POPs. The theoretical MRC concept is compared to reality and its implications for the global cycling of POPs are discussed. Sharp gradients in soil MRC can exist in mountainous areas and between the land and ocean. Exchanges between oceans and land masses via the atmosphere is likely to be an important driver to the global cycling of these compounds, and net ocean-land transfers could occur in some areas. - Major global terrestrial sinks/stores for POPs are identified and the significance of gradients between them discussed

  8. A methodology for the evaluation of global warming impact on soil moisture and runoff

    Valdes, J.B.; Seoane, R.S.; North, G.R.

    1993-01-01

    Global warming is expected to increase the intensity of the global hydrologic cycle. Precipitation and temperature patterns, soil moisture requirements, and the physical structure of the vegetation canopy play important roles in the hydrologic system of drainage basins. Changes in these phenomena, because of a buildup Of CO 2 and other trace gases, have the potential to affect the quantity, quality, timing, and spatial distribution of water available to satisfy the many demands placed on the resource by society. In this work a methodology for the evaluation of impact on soil moisture concentration and direct surface runoff is presented. The methodology integrates stochastic models of hydroclimatic input variables with a model of water balance in the soil. This allows the derivation of the probability distribution of soil moisture concentration and direct surface runoff for different combinations of climate and soil characteristics, ranging from humid to semi-arid and arid. These PDFs asses, in a comprehensive manner, the impact that climate change have on soil moisture and runoff and allow the water resources planner to make more educated decisions in the planning and design of water resources systems. The methodology was applied to three sites in Texas. To continue in the line of research suggested by Delworth and Manabe the authors computed the autocorrelation function (ACF) and the spectra of both precipitation inputs and soil moisture concentration outputs for all scenarios of climate change

  9. The global re-cycling of persistent organic pollutants is strongly retarded by soils

    Ockenden, W.A.; Breivik, Knut; Meijer, S.N.; Steinnes, Eiliv; Sweetman, A.J.; Jones, K.C

    2003-01-01

    C-rich soils of the northern hemisphere appear to be serving as sinks for POPs and preventing their transfer to the Arctic. - 'Persistent organic pollutants' (POPs) are semi-volatile, mobile in the environment and bioaccumulate. Their toxicity and propensity for long-range atmospheric transport (LRAT) has led to international bans/restrictions on their use/release. LRAT of POPs may occur by a 'single hop' or repeated temperature-driven air-surface exchange. It has been hypothesised that this will result in global fractionation and distillation - with condensation and accumulation in polar regions. Polychlorinated biphenyls (PCBs)--industrial chemicals banned/restricted in the 1970s - provide a classic illustration of POP behaviour. A latitudinally-segmented global PCB inventory has been produced, which shows that {approx}86% of the 1.3x10{sup 6} tonnes produced was used in the temperate industrial zone of the northern hemisphere. A global survey of background surface soils gives evidence for 'fractionation' of PCBs. More significantly, however, very little of the total inventory has 'made the journey' via primary emission and/or air-surface exchange and LRAT out of the heavily populated source regions, in the 70 years since PCBs were first produced. Soils generally occlude PCBs, especially soils with dynamic turnover of C/bioturbation/burial mechanisms. This limits the fraction of PCBs available for repeated air-soil exchange. The forested soils of the northern hemisphere, and other C-rich soils, appear to be playing an important role in 'protecting' the Arctic from the advective supply of POPs. Whilst investigations on POPs in remote environments are important, it is imperative that researchers also seek to better understand their release from sources, persistence in source regions, and the significant loss mechanisms/global sinks of these compounds, if they wish to predict future trends.

  10. The global re-cycling of persistent organic pollutants is strongly retarded by soils

    Ockenden, W.A.; Breivik, Knut; Meijer, S.N.; Steinnes, Eiliv; Sweetman, A.J.; Jones, K.C.

    2003-01-01

    C-rich soils of the northern hemisphere appear to be serving as sinks for POPs and preventing their transfer to the Arctic. - 'Persistent organic pollutants' (POPs) are semi-volatile, mobile in the environment and bioaccumulate. Their toxicity and propensity for long-range atmospheric transport (LRAT) has led to international bans/restrictions on their use/release. LRAT of POPs may occur by a 'single hop' or repeated temperature-driven air-surface exchange. It has been hypothesised that this will result in global fractionation and distillation - with condensation and accumulation in polar regions. Polychlorinated biphenyls (PCBs)--industrial chemicals banned/restricted in the 1970s - provide a classic illustration of POP behaviour. A latitudinally-segmented global PCB inventory has been produced, which shows that ∼86% of the 1.3x10 6 tonnes produced was used in the temperate industrial zone of the northern hemisphere. A global survey of background surface soils gives evidence for 'fractionation' of PCBs. More significantly, however, very little of the total inventory has 'made the journey' via primary emission and/or air-surface exchange and LRAT out of the heavily populated source regions, in the 70 years since PCBs were first produced. Soils generally occlude PCBs, especially soils with dynamic turnover of C/bioturbation/burial mechanisms. This limits the fraction of PCBs available for repeated air-soil exchange. The forested soils of the northern hemisphere, and other C-rich soils, appear to be playing an important role in 'protecting' the Arctic from the advective supply of POPs. Whilst investigations on POPs in remote environments are important, it is imperative that researchers also seek to better understand their release from sources, persistence in source regions, and the significant loss mechanisms/global sinks of these compounds, if they wish to predict future trends

  11. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional-to-global

  12. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    Wang, Guocheng; Zhang, Wen; Sun, Wenjuan; Li, Tingting; Han, Pengfei

    2017-10-01

    Changes in the soil organic carbon (SOC) stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C) input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1° × 0.1°) and over a long timescale (54 years from 1961 to 2014). A widely used soil C turnover model (RothC) and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha-1 yr-1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive) and the edaphic variable of initial SOC content (linearly negative). Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to effectively mitigate climate change through soil C

  13. Modeling soil organic carbon dynamics and their driving factors in the main global cereal cropping systems

    G. Wang

    2017-10-01

    Full Text Available Changes in the soil organic carbon (SOC stock are determined by the balance between the carbon input from organic materials and the output from the decomposition of soil C. The fate of SOC in cropland soils plays a significant role in both sustainable agricultural production and climate change mitigation. The spatiotemporal changes of soil organic carbon in croplands in response to different carbon (C input management and environmental conditions across the main global cereal systems were studied using a modeling approach. We also identified the key variables that drive SOC changes at a high spatial resolution (0.1°  ×  0.1° and over a long timescale (54 years from 1961 to 2014. A widely used soil C turnover model (RothC and state-of-the-art databases of soil and climate variables were used in the present study. The model simulations suggested that, on a global average, the cropland SOC density increased at annual rates of 0.22, 0.45 and 0.69 Mg C ha−1 yr−1 under crop residue retention rates of 30, 60 and 90 %, respectively. Increasing the quantity of C input could enhance soil C sequestration or reduce the rate of soil C loss, depending largely on the local soil and climate conditions. Spatially, under a specific crop residue retention rate, relatively higher soil C sinks were found across the central parts of the USA, western Europe, and the northern regions of China. Relatively smaller soil C sinks occurred in the high-latitude regions of both the Northern and Southern hemispheres, and SOC decreased across the equatorial zones of Asia, Africa and America. We found that SOC change was significantly influenced by the crop residue retention rate (linearly positive and the edaphic variable of initial SOC content (linearly negative. Temperature had weak negative effects, and precipitation had significantly negative impacts on SOC changes. The results can help guide carbon input management practices to

  14. Global Assessment of the SMAP Level-4 Soil Moisture Product Using Assimilation Diagnostics

    Reichle, Rolf; Liu, Qing; De Lannoy, Gabrielle; Crow, Wade; Kimball, John; Koster, Randy; Ardizzone, Joe

    2018-01-01

    The Soil Moisture Active Passive (SMAP) mission Level-4 Soil Moisture (L4_SM) product provides 3-hourly, 9-km resolution, global estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture and related land surface variables from 31 March 2015 to present with approx. 2.5-day latency. The ensemble-based L4_SM algorithm assimilates SMAP brightness temperature (Tb) observations into the Catchment land surface model. This study describes the spatially distributed L4_SM analysis and assesses the observation-minus-forecast (O-F) Tb residuals and the soil moisture and temperature analysis increments. Owing to the climatological rescaling of the Tb observations prior to assimilation, the analysis is essentially unbiased, with global mean values of approx. 0.37 K for the O-F Tb residuals and practically zero for the soil moisture and temperature increments. There are, however, modest regional (absolute) biases in the O-F residuals (under approx. 3 K), the soil moisture increments (under approx. 0.01 cu m/cu m), and the surface soil temperature increments (under approx. 1 K). Typical instantaneous values are approx. 6 K for O-F residuals, approx. 0.01 (approx. 0.003) cu m/cu m for surface (root-zone) soil moisture increments, and approx. 0.6 K for surface soil temperature increments. The O-F diagnostics indicate that the actual errors in the system are overestimated in deserts and densely vegetated regions and underestimated in agricultural regions and transition zones between dry and wet climates. The O-F auto-correlations suggest that the SMAP observations are used efficiently in western North America, the Sahel, and Australia, but not in many forested regions and the high northern latitudes. A case study in Australia demonstrates that assimilating SMAP observations successfully corrects short-term errors in the L4_SM rainfall forcing.

  15. Adding a soil fertility dimension to the global farming systems approach, with cases from Africa

    Smaling, E.M.A.; Dixon, J.

    2006-01-01

    The global farming systems (GFS) approach is extended by adding a soil fertility and nutrient management dimension for Africa's forest-based, maize mixed, cereal¿root crop mixed, and agro-pastoral millet/sorghum farming systems. Use is made of sustainable livelihood concepts, translated into farmer

  16. Global patterns of plant root colonization intensity by mycorrhizal fungi explained by climate and soil chemistry

    Soudzilovskaia, N.A.; Douma, J.C.; Akhmetzhanova, A.A.; van Bodegom, P.M.; Cornwell, W.K.; Moens, E.J.; Treseder, K.K.; Tibbett, M.; Wang, Y.P.; Cornelissen, J.H.C.

    2015-01-01

    Aim Most vascular plants on Earth form mycorrhizae, a symbiotic relationship between plants and fungi. Despite the broad recognition of the importance of mycorrhizae for global carbon and nutrient cycling, we do not know how soil and climate variables relate to the intensity of colonization of plant

  17. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, van Geert Jan

    2018-01-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role

  18. Predicting the Responses of Soil Nitrite-Oxidizers to Multi-Factorial Global Change: A Trait-Based Approach

    Le Roux, Xavier; Bouskill, Nicholas J.; Niboyet, Audrey

    2016-01-01

    Soil microbial diversity is huge and a few grams of soil contain more bacterial taxa than there are bird species on Earth. This high diversity often makes predicting the responses of soil bacteria to environmental change intractable and restricts our capacity to predict the responses of soil...... functions to global change. Here, using a long-term field experiment in a California grassland, we studied the main and interactive effects of three global change factors (increased atmospheric CO2 concentration, precipitation and nitrogen addition, and all their factorial combinations, based on global...

  19. A Global comparison of surface soil characteristics across five cities: A test of the urban ecosystem convergence hypothesis.

    Richard V. Pouyat; Ian D. Yesilonis; Miklos Dombos; Katalin Szlavecz; Heikki Setala; Sarel Cilliers; Erzsebet Hornung; D. Johan Kotze; Stephanie Yarwood

    2015-01-01

    As part of the Global Urban Soil Ecology and Education Network and to test the urban ecosystem convergence hypothesis, we report on soil pH, organic carbon (OC), total nitrogen (TN), phosphorus (P), and potassium (K) measured in four soil habitat types (turfgrass, ruderal, remnant, and reference) in five metropolitan areas (Baltimore, Budapest,...

  20. Radioisotope tracer approach for understanding the impacts of global change-induced pedoturbation on soil C dynamics

    Gonzalez-Meler, M. A.; Sturchio, N. C.; Sanchez-de Leon, Y.; Blanc-Betes, E.; Taneva, L.; Poghosyan, A.; Norby, R. J.; Filley, T. R.; Guilderson, T. P.; Welker, J. M.

    2010-12-01

    Biogeochemical carbon-cycle feedbacks to climate are apparent but uncertain, primarily because of gaps in mechanistic understanding on the ecosystem processes that drive carbon cycling and storage in terrestrial ecosystems, particularly in soils. Recent findings are increasingly recognizing the interaction between soil biota and the soil physical environment. Soil carbon turnover is partly determined by burial of organic matter and its physical and chemical protection. These factors are potentially affected by changes in climate (freezing-thawing or wet-drying cycles) or ecosystem structure including biological invasions. A major impediment to understanding dynamics of soil C in terrestrial systems is our inability to measure soil physical processes such as soil mixing rates or turnover of soil structures, including aggregates. Here we present a multiple radioisotope tracer approach (naturally occurring and man-made) to measure soil mixing rates in response to global change. We will present evidence of soil mixing rate changes in a temperate forest exposed to increased levels of atmospheric CO2 and in a tundra ecosystem exposed to increased thermal insulation. In both cases, radioisotope tracers proved to be an effective way to measure effects of global change on pedoturbation. Results also provided insights into the specific mechanisms involved in the responses. Elevated CO2 resulted in deeper soil mixing cells (increased by about 5cm on average) when compared to control soils as a consequence of changes in biota (increased root growth, higher earthworm density). In the tundra, soil warming induced higher rates of cryoturbation, resulting in what appears to be a net uplift of organic matter to the surface thereby exposing deeper C to decomposers. In both cases, global change factors affected the vertical distribution of C and changed the amount of bulk soil actively involved in soil processes. As a consequence, comparisons of C budgets to a given soil depth in

  1. A Time Series Analysis of Global Soil Moisture Data Products for Water Cycle Studies

    Zhan, X.; Yin, J.; Liu, J.; Fang, L.; Hain, C.; Ferraro, R. R.; Weng, F.

    2017-12-01

    Water is essential for sustaining life on our planet Earth and water cycle is one of the most important processes of out weather and climate system. As one of the major components of the water cycle, soil moisture impacts significantly the other water cycle components (e.g. evapotranspiration, runoff, etc) and the carbon cycle (e.g. plant/crop photosynthesis and respiration). Understanding of soil moisture status and dynamics is crucial for monitoring and predicting the weather, climate, hydrology and ecological processes. Satellite remote sensing has been used for soil moisture observation since the launch of the Scanning Multi-channel Microwave Radiometer (SMMR) on NASA's Nimbus-7 satellite in 1978. Many satellite soil moisture data products have been made available to the science communities and general public. The soil moisture operational product system (SMOPS) of NOAA NESDIS has been operationally providing global soil moisture data products from each of the currently available microwave satellite sensors and their blends. This presentation will provide an update of SMOPS products. The time series of each of these soil moisture data products are analyzed against other data products, such as precipitation and evapotranspiration from other independent data sources such as the North America Land Data Assimilation System (NLDAS). Temporal characteristics of these water cycle components are explored against some historical events, such as the 2010 Russian, 2010 China and 2012 United States droughts, 2015 South Carolina floods, etc. Finally whether a merged global soil moisture data product can be used as a climate data record is evaluated based on the above analyses.

  2. Updated global soil map for the Weather Research and Forecasting model and soil moisture initialization for the Noah land surface model

    DY, C. Y.; Fung, J. C. H.

    2016-08-01

    A meteorological model requires accurate initial conditions and boundary conditions to obtain realistic numerical weather predictions. The land surface controls the surface heat and moisture exchanges, which can be determined by the physical properties of the soil and soil state variables, subsequently exerting an effect on the boundary layer meteorology. The initial and boundary conditions of soil moisture are currently obtained via National Centers for Environmental Prediction FNL (Final) Operational Global Analysis data, which are collected operationally in 1° by 1° resolutions every 6 h. Another input to the model is the soil map generated by the Food and Agriculture Organization of the United Nations - United Nations Educational, Scientific and Cultural Organization (FAO-UNESCO) soil database, which combines several soil surveys from around the world. Both soil moisture from the FNL analysis data and the default soil map lack accuracy and feature coarse resolutions, particularly for certain areas of China. In this study, we update the global soil map with data from Beijing Normal University in 1 km by 1 km grids and propose an alternative method of soil moisture initialization. Simulations of the Weather Research and Forecasting model show that spinning-up the soil moisture improves near-surface temperature and relative humidity prediction using different types of soil moisture initialization. Explanations of that improvement and improvement of the planetary boundary layer height in performing process analysis are provided.

  3. A global analysis of fine root production as affected by soil nitrogen and phosphorus.

    Yuan, Z Y; Chen, Han Y H

    2012-09-22

    Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.

  4. FUNGAL BIOGEOGRAPHY. Comment on "Global diversity and geography of soil fungi".

    Schadt, Christopher W; Rosling, Anna

    2015-06-26

    Tedersoo et al. (Research Article, 28 November 2014, p. 1078) present a compelling study regarding patterns of biodiversity of fungi, carried out at a scale unprecedented to date for fungal biogeographical studies. The study demonstrates strong global biogeographic patterns in richness and community composition of soil fungi. What concerns us with the study is what we do not see. Unfortunately, this study underestimates the fungal diversity of one key group of soil fungi due to reliance on a single primer with known flaws. Copyright © 2015, American Association for the Advancement of Science.

  5. Global observation-based diagnosis of soil moisture control on land surface flux partition

    Gallego-Elvira, Belen; Taylor, Christopher M.; Harris, Phil P.; Ghent, Darren; Veal, Karen L.; Folwell, Sonja S.

    2016-04-01

    Soil moisture plays a central role in the partition of available energy at the land surface between sensible and latent heat flux to the atmosphere. As soils dry out, evapotranspiration becomes water-limited ("stressed"), and both land surface temperature (LST) and sensible heat flux rise as a result. This change in surface behaviour during dry spells directly affects critical processes in both the land and the atmosphere. Soil water deficits are often a precursor in heat waves, and they control where feedbacks on precipitation become significant. State-of-the-art global climate model (GCM) simulations for the Coupled Model Intercomparison Project Phase 5 (CMIP5) disagree on where and how strongly the surface energy budget is limited by soil moisture. Evaluation of GCM simulations at global scale is still a major challenge owing to the scarcity and uncertainty of observational datasets of land surface fluxes and soil moisture at the appropriate scale. Earth observation offers the potential to test how well GCM land schemes simulate hydrological controls on surface fluxes. In particular, satellite observations of LST provide indirect information about the surface energy partition at 1km resolution globally. Here, we present a potentially powerful methodology to evaluate soil moisture stress on surface fluxes within GCMs. Our diagnostic, Relative Warming Rate (RWR), is a measure of how rapidly the land warms relative to the overlying atmosphere during dry spells lasting at least 10 days. Under clear skies, this is a proxy for the change in sensible heat flux as soil dries out. We derived RWR from MODIS Terra and Aqua LST observations, meteorological re-analyses and satellite rainfall datasets. Globally we found that on average, the land warmed up during dry spells for 97% of the observed surface between 60S and 60N. For 73% of the area, the land warmed faster than the atmosphere (positive RWR), indicating water stressed conditions and increases in sensible heat flux

  6. The fascinating side of dirt: Soil and the global environment course

    Grand, S.; Krzic, M.; Crowley, C.; Lascu, G.; Rosado, J.

    2012-04-01

    Soil has recently been attracting some renewed public attention due to its inextricable link to current environmental challenges such as climate change, food security and water resource protection. It is increasingly acknowledged that the world's future will require a better understanding of soil science. Yet enrolment in soil related programs at universities in North America and around the world has been declining. One of the proposed causes for this drop is the tendency for soil science education to emphasize the agricultural side of soil science, while our increasingly urban and environmentally conscious student population is more interested in environmental sciences. To address this issue, in 2011 we created an on-line, first-year soil science course designed specifically to communicate the significance of soil science to global environmental questions. We propose that this type of course is an effective way to help increase interest in higher level soil courses and reverse the downward trend in enrolments. The course content was centered on prominent environmental issues, which were used to introduce basic concepts of soil science. Course materials emphasized integration with other natural resources disciplines such as ecology, biogeochemistry and hydrology. The online format allowed for a seamless integration of multimedia components and web content into course materials, and is believed to be appealing to technologically savvy new generations of students. Online discussion boards were extensively used to maintain strong student engagement in the course. Discussion topics were based on soil-related news stories that helped demonstrate the relevance of soils to society and illustrate the complex and often controversial nature of environmental issues. Students also made significant use of an online bulletin board to post information about environmental events and share news stories related to the course. This course was offered for the first time in term 1 of

  7. Global retrieval of soil moisture and vegetation properties using data-driven methods

    Rodriguez-Fernandez, Nemesio; Richaume, Philippe; Kerr, Yann

    2017-04-01

    Data-driven methods such as neural networks (NNs) are a powerful tool to retrieve soil moisture from multi-wavelength remote sensing observations at global scale. In this presentation we will review a number of recent results regarding the retrieval of soil moisture with the Soil Moisture and Ocean Salinity (SMOS) satellite, either using SMOS brightness temperatures as input data for the retrieval or using SMOS soil moisture retrievals as reference dataset for the training. The presentation will discuss several possibilities for both the input datasets and the datasets to be used as reference for the supervised learning phase. Regarding the input datasets, it will be shown that NNs take advantage of the synergy of SMOS data and data from other sensors such as the Advanced Scatterometer (ASCAT, active microwaves) and MODIS (visible and infra red). NNs have also been successfully used to construct long time series of soil moisture from the Advanced Microwave Scanning Radiometer - Earth Observing System (AMSR-E) and SMOS. A NN with input data from ASMR-E observations and SMOS soil moisture as reference for the training was used to construct a dataset sharing a similar climatology and without a significant bias with respect to SMOS soil moisture. Regarding the reference data to train the data-driven retrievals, we will show different possibilities depending on the application. Using actual in situ measurements is challenging at global scale due to the scarce distribution of sensors. In contrast, in situ measurements have been successfully used to retrieve SM at continental scale in North America, where the density of in situ measurement stations is high. Using global land surface models to train the NN constitute an interesting alternative to implement new remote sensing surface datasets. In addition, these datasets can be used to perform data assimilation into the model used as reference for the training. This approach has recently been tested at the European Centre

  8. Modelling global change impacts on soil carbon contents of agro-silvo-pastoral Mediterranean systems

    Lozano-García, Beatriz; Muñoz-Rojas, Miriam; Parras-Alcántara, Luis

    2016-04-01

    To assess the impact of climate change on soil organic C (SOC) stocks in agro-silvo-pastoral environments, different models have been applied worldwide at local or regional scales, such as as RothC (Francaviglia et al., 2012) or CENTURY (Alvaro-Fuentes et al., 2012). However, some of these models may require a high number of input parameters or can underestimate the effect of soil depth. CarboSOIL (Muñoz-Rojas et al., 2013) is an empirical model based on regression techniques and developed to predict SOC contents at standard soil depths (0-25, 25-50 and 50-75 cm) under a range of climate and/or land use change scenarios. CarboSOIL has been successfully applied in different Mediterranean areas ,e.g. Southern Spain (Muñoz-Rojas et al., 2013; Abd-Elmabod et al., 2014), Northern Egypt (Muñoz-Rojas et al., 2014) and Italy (Muñoz-Rojas et al., 2015). In this study, CarboSOIL was applied in the Cardeña and Montoro mountain range Natural Park. This area covers 385 km2 and is located within Sierra Morena (Córdoba, South Spain) and has a semiarid Mediterranean climate. It is characterized by agro-silvo-pastoral systems. The Mediterranean evergreen oak woodland (MEOW-dehesa) is savanna-like open woodland ecosystem characterized by silvopastoral uses, being an ancient human modified Mediterranean landscape (Corral-Fernández et al., 2013; Lozano-García and Parras-Alcántara 2013). The most representative soils in the Cardeña and Montoro mountain range Natural Park are Cambisols, Regosols, Leptosols and Fluvisols. These soils are characterized by low fertility, poor physical conditions and marginal capacity for agricultural use, together with low organic matter (OM) content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). The model was applied at different soil depths: 0-25, 25-50 and 50-75 cm (Parras-Alcántara et al., 2015) considering land use and climate changes scenarios based on available global climate models (IPPC, 2007). A

  9. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  10. Western US high June 2015 temperatures and their relation to global warming and soil moisture

    Philip, Sjoukje Y.; Kew, Sarah F.; Hauser, Mathias; Guillod, Benoit P.; Teuling, Adriaan J.; Whan, Kirien; Uhe, Peter; Oldenborgh, Geert Jan van

    2018-04-01

    The Western US states Washington (WA), Oregon (OR) and California (CA) experienced extremely high temperatures in June 2015. The temperature anomalies were so extreme that they cannot be explained with global warming alone. We investigate the hypothesis that soil moisture played an important role as well. We use a land surface model and a large ensemble from the weather@home modelling effort to investigate the coupling between soil moisture and temperature in a warming world. Both models show that May was anomalously dry, satisfying a prerequisite for the extreme heat wave, and they indicate that WA and OR are in a wet-to-dry transitional soil moisture regime. We use two different land surface-atmosphere coupling metrics to show that there was strong coupling between temperature, latent heat flux and the effect of soil moisture deficits on the energy balance in June 2015 in WA and OR. June temperature anomalies conditioned on wet/dry conditions show that both the mean and extreme temperatures become hotter for dry soils, especially in WA and OR. Fitting a Gaussian model to temperatures using soil moisture as a covariate shows that the June 2015 temperature values fit well in the extrapolated empirical temperature/drought lines. The high temperature anomalies in WA and OR are thus to be expected, given the dry soil moisture conditions and that those regions are in the transition from a wet to a dry regime. CA is already in the dry regime and therefore the necessity of taking soil moisture into account is of lower importance.

  11. FUNGAL BIOGEOGRAPHY. Response to Comment on "Global diversity and geography of soil fungi".

    Tedersoo, Leho; Bahram, Mohammad; Põlme, Sergei; Anslan, Sten; Riit, Taavi; Kõljalg, Urmas; Nilsson, R Henrik; Hildebrand, Falk; Abarenkov, Kessy

    2015-08-28

    Schadt and Rosling (Technical Comment, 26 June 2015, p. 1438) argue that primer-template mismatches neglected the fungal class Archaeorhizomycetes in a global soil survey. Amplicon-based metabarcoding of nine barcode-primer pair combinations and polymerase chain reaction (PCR)-free shotgun metagenomics revealed that barcode and primer choice and PCR bias drive the diversity and composition of microorganisms in general, but the Archaeorhizomycetes were little affected in the global study. We urge that careful choice of DNA markers and primers is essential for ecological studies using high-throughput sequencing for identification. Copyright © 2015, American Association for the Advancement of Science.

  12. Climate and soil attributes determine plant species turnover in global drylands

    Maestre, Fernando T.; Gotelli, Nicholas J.; Quero, José L.; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; Eldridge, David J.; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I.; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R.; Hernández, Rosa M.; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L.; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A.; Raveh, Eran; Romão, Roberto L.; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2015-01-01

    Aim Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. Location 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Methods Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake’s beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R2)), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Results Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R2)) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Main conclusions Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These

  13. Climate and soil attributes determine plant species turnover in global drylands.

    Ulrich, Werner; Soliveres, Santiago; Maestre, Fernando T; Gotelli, Nicholas J; Quero, José L; Delgado-Baquerizo, Manuel; Bowker, Matthew A; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Valencia, Enrique; Berdugo, Miguel; Escolar, Cristina; García-Gómez, Miguel; Escudero, Adrián; Prina, Aníbal; Alfonso, Graciela; Arredondo, Tulio; Bran, Donaldo; Cabrera, Omar; Cea, Alex; Chaieb, Mohamed; Contreras, Jorge; Derak, Mchich; Espinosa, Carlos I; Florentino, Adriana; Gaitán, Juan; Muro, Victoria García; Ghiloufi, Wahida; Gómez-González, Susana; Gutiérrez, Julio R; Hernández, Rosa M; Huber-Sannwald, Elisabeth; Jankju, Mohammad; Mau, Rebecca L; Hughes, Frederic Mendes; Miriti, Maria; Monerris, Jorge; Muchane, Muchai; Naseri, Kamal; Pucheta, Eduardo; Ramírez-Collantes, David A; Raveh, Eran; Romão, Roberto L; Torres-Díaz, Cristian; Val, James; Veiga, José Pablo; Wang, Deli; Yuan, Xia; Zaady, Eli

    2014-12-01

    Geographic, climatic, and soil factors are major drivers of plant beta diversity, but their importance for dryland plant communities is poorly known. This study aims to: i) characterize patterns of beta diversity in global drylands, ii) detect common environmental drivers of beta diversity, and iii) test for thresholds in environmental conditions driving potential shifts in plant species composition. 224 sites in diverse dryland plant communities from 22 geographical regions in six continents. Beta diversity was quantified with four complementary measures: the percentage of singletons (species occurring at only one site), Whittake's beta diversity (β(W)), a directional beta diversity metric based on the correlation in species occurrences among spatially contiguous sites (β(R 2 )), and a multivariate abundance-based metric (β(MV)). We used linear modelling to quantify the relationships between these metrics of beta diversity and geographic, climatic, and soil variables. Soil fertility and variability in temperature and rainfall, and to a lesser extent latitude, were the most important environmental predictors of beta diversity. Metrics related to species identity (percentage of singletons and β(W)) were most sensitive to soil fertility, whereas those metrics related to environmental gradients and abundance ((β(R 2 )) and β(MV)) were more associated with climate variability. Interactions among soil variables, climatic factors, and plant cover were not important determinants of beta diversity. Sites receiving less than 178 mm of annual rainfall differed sharply in species composition from more mesic sites (> 200 mm). Soil fertility and variability in temperature and rainfall are the most important environmental predictors of variation in plant beta diversity in global drylands. Our results suggest that those sites annually receiving ~ 178 mm of rainfall will be especially sensitive to future climate changes. These findings may help to define appropriate

  14. Will global warming affect soil-to-plant transfer of radionuclides?

    Dowdall, M.; Standring, W.; Shaw, G.; Strand, P.

    2008-01-01

    Recent assessments of global climate/environmental change are reaching a consensus that global climate change is occurring but there is significant uncertainty over the likely magnitude of this change and its impacts. There is little doubt that all aspects of the natural environment will be impacted to some degree. Soil-to-plant transfer of radionuclides has long been a significant topic in radioecology, both for the protection of humans and the environment from the effects of ionising radiation. Even after five decades of research considerable uncertainty exists as to the interplay of key environmental processes in controlling soil-plant transfer. As many of these processes are, to a lesser or greater extent, climate-dependent, it can be argued that climate/environmental change will impact soil-to-plant transfer of radionuclides and subsequent transfers in specific environments. This discussion attempts to highlight the possible role of climatic and climate-dependent variables in soil-to-plant transfer processes within the overall predictions of climate/environmental change. The work is speculative, and intended to stimulate debate on a theme that radioecology has either ignored or avoided in recent years

  15. Assimilation of global radar backscatter and radiometer brightness temperature observations to improve soil moisture and land evaporation estimates

    Lievens, H.; Martens, B.; Verhoest, N.E.C.; Hahn, S.; Reichle, R.H.; Gonzalez Miralles, D.

    2016-01-01

    Active radar backscatter (σ°) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model

  16. Estimation of global soil respiration by accounting for land-use changes derived from remote sensing data.

    Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru

    2017-09-15

    Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Soil erosion, climate change and global food security: challenges and strategies.

    Rhodes, Christopher J

    2014-01-01

    An overview is presented of the determined degree of global land degradation (principally occurring through soil erosion), with some consideration of its possible impact on global food security. Most determinations of the extent of land degradation (e.g. GLASOD) have been made on the basis of "expert judgement" and perceptions, as opposed to direct measurements of this multifactorial phenomenon. More recently, remote sensing measurements have been made which indicate that while some regions of the Earth are "browning" others are "greening". The latter effect is thought to be due to fertilisation of the growth of biomass by increasing levels of atmospheric CO2, and indeed the total amount of global biomass was observed to increase by 3.8% during the years 1981-2003. Nonetheless, 24% of the Earth's surface had occasioned some degree of degradation in the same time period. It appears that while long-term trends in NDVI (normalised difference vegetation index) derivatives are only broad indicators of land degradation, taken as a proxy, the NDVI/NPP (net primary productivity) trend is able to yield a benchmark that is globally consistent and to illuminate regions in which biologically significant changes are occurring. Thus, attention may be directed to where investigation and action at the ground level is required, i.e. to potential "hot spots" of land degradation and/or erosion. The severity of land degradation through soil erosion, and an according catastrophic threat to the survival of humanity may in part have been overstated, although the rising human population will impose inexorable demands for what the soil can provide. However the present system of industrialised agriculture would not be possible without plentiful provisions of cheap crude oil and natural gas to supply fuels, pesticides, herbicides and fertilisers. It is only on the basis of these inputs that it has been possible for the human population to rise above 7 billion. Hence, if the cheap oil and gas

  18. Estimating soil water-holding capacities by linking the Food and Agriculture Organization Soil map of the world with global pedon databases and continuous pedotransfer functions

    Reynolds, C. A.; Jackson, T. J.; Rawls, W. J.

    2000-12-01

    Spatial soil water-holding capacities were estimated for the Food and Agriculture Organization (FAO) digital Soil Map of the World (SMW) by employing continuous pedotransfer functions (PTF) within global pedon databases and linking these results to the SMW. The procedure first estimated representative soil properties for the FAO soil units by statistical analyses and taxotransfer depth algorithms [Food and Agriculture Organization (FAO), 1996]. The representative soil properties estimated for two layers of depths (0-30 and 30-100 cm) included particle-size distribution, dominant soil texture, organic carbon content, coarse fragments, bulk density, and porosity. After representative soil properties for the FAO soil units were estimated, these values were substituted into three different pedotransfer functions (PTF) models by Rawls et al. [1982], Saxton et al. [1986], and Batjes [1996a]. The Saxton PTF model was finally selected to calculate available water content because it only required particle-size distribution data and results closely agreed with the Rawls and Batjes PTF models that used both particle-size distribution and organic matter data. Soil water-holding capacities were then estimated by multiplying the available water content by the soil layer thickness and integrating over an effective crop root depth of 1 m or less (i.e., encountered shallow impermeable layers) and another soil depth data layer of 2.5 m or less.

  19. Biochar amendment reduces paddy soil nitrogen leaching but increases net global warming potential in Ningxia irrigation, China.

    Wang, Yongsheng; Liu, Yansui; Liu, Ruliang; Zhang, Aiping; Yang, Shiqi; Liu, Hongyuan; Zhou, Yang; Yang, Zhengli

    2017-05-09

    The efficacy of biochar as an environmentally friendly agent for non-point source and climate change mitigation remains uncertain. Our goal was to test the impact of biochar amendment on paddy rice nitrogen (N) uptake, soil N leaching, and soil CH 4 and N 2 O fluxes in northwest China. Biochar was applied at four rates (0, 4.5, 9 and13.5 t ha -1 yr -1 ). Biochar amendment significantly increased rice N uptake, soil total N concentration and the abundance of soil ammonia-oxidizing archaea (AOA), but it significantly reduced the soil NO 3 - -N concentration and soil bulk density. Biochar significantly reduced NO 3 - -N and NH 4 + -N leaching. The C2 and C3 treatments significantly increased the soil CH 4 flux and reduced the soil N 2 O flux, leading to significantly increased net global warming potential (GWP). Soil NO 3 - -N rather than NH 4 + -N was the key integrator of the soil CH 4 and N 2 O fluxes. Our results indicate that a shift in abundance of the AOA community and increased rice N uptake are closely linked to the reduced soil NO 3 - -N concentration under biochar amendment. Furthermore, soil NO 3 - -N availability plays an important role in regulating soil inorganic N leaching and net GWP in rice paddies in northwest China.

  20. Soil Methanotrophy Model (MeMo v1.0): a process-based model to quantify global uptake of atmospheric methane by soil

    Murguia-Flores, Fabiola; Arndt, Sandra; Ganesan, Anita L.; Murray-Tortarolo, Guillermo; Hornibrook, Edward R. C.

    2018-06-01

    Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4), a potent greenhouse gas that is responsible for ˜ 20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability, remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0) to simulate and quantify the uptake of atmospheric CH4 by soils at the global scale. MeMo builds on previous models by Ridgwell et al. (1999) and Curry (2007) by introducing several advances, including (1) a general analytical solution of the one-dimensional diffusion-reaction equation in porous media, (2) a refined representation of nitrogen inhibition on soil methanotrophy, (3) updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates and (4) the ability to evaluate the impact of autochthonous soil CH4 sources on uptake of atmospheric CH4. We show that the improved structural and parametric representation of key drivers of soil methanotrophy in MeMo results in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990-2009 using MeMo yielded an average annual sink of 33.5 ± 0.6 Tg CH4 yr-1. Warm and semi-arid regions (tropical deciduous forest and open shrubland) had the highest CH4 uptake rates of 602 and 518 mg CH4 m-2 yr-1, respectively. In these regions, favourable annual soil moisture content ( ˜ 20 % saturation) and low seasonal temperature variations (variations < ˜ 6 °C) provided optimal conditions for soil methanotrophy and soil-atmosphere gas exchange. In contrast to previous model analyses, but in agreement with recent observational data

  1. Global assessment of soil organic carbon stocks and spatial distribution of histosols: the Machine Learning approach

    Hengl, Tomislav

    2016-04-01

    Preliminary results of predicting distribution of soil organic soils (Histosols) and soil organic carbon stock (in tonnes per ha) using global compilations of soil profiles (about 150,000 points) and covariates at 250 m spatial resolution (about 150 covariates; mainly MODIS seasonal land products, SRTM DEM derivatives, climatic images, lithological and land cover and landform maps) are presented. We focus on using a data-driven approach i.e. Machine Learning techniques that often require no knowledge about the distribution of the target variable or knowledge about the possible relationships. Other advantages of using machine learning are (DOI: 10.1371/journal.pone.0125814): All rules required to produce outputs are formalized. The whole procedure is documented (the statistical model and associated computer script), enabling reproducible research. Predicted surfaces can make use of various information sources and can be optimized relative to all available quantitative point and covariate data. There is more flexibility in terms of the spatial extent, resolution and support of requested maps. Automated mapping is also more cost-effective: once the system is operational, maintenance and production of updates are an order of magnitude faster and cheaper. Consequently, prediction maps can be updated and improved at shorter and shorter time intervals. Some disadvantages of automated soil mapping based on Machine Learning are: Models are data-driven and any serious blunders or artifacts in the input data can propagate to order-of-magnitude larger errors than in the case of expert-based systems. Fitting machine learning models is at the order of magnitude computationally more demanding. Computing effort can be even tens of thousands higher than if e.g. linear geostatistics is used. Many machine learning models are fairly complex often abstract and any interpretation of such models is not trivial and require special multidimensional / multivariable plotting and data mining

  2. Reductions in soil surface albedo as a function of biochar application rate: implications for global radiative forcing

    Verheijen, Frank G A; Bastos, Ana Catarina; Keizer, Jan Jacob; Jeffery, Simon; Van der Velde, Marijn; Penížek, Vít; Beland, Martin

    2013-01-01

    Biochar can be defined as pyrolysed (charred) biomass produced for application to soils with the aim of mitigating global climate change while improving soil functions. Sustainable biochar application to soils has been estimated to reduce global greenhouse gas emissions by 71–130 Pg CO 2 -C e over 100 years, indicating an important potential to mitigate climate change. However, these estimates ignored changes in soil surface reflection by the application of dark-coloured biochar. Through a laboratory experiment we show a strong tendency for soil surface albedo to decrease as a power decay function with increasing biochar application rate, depending on soil moisture content, biochar application method and land use. Surface application of biochar resulted in strong reductions in soil surface albedo even at relatively low application rates. As a first assessment of the implications for climate change mitigation of these biochar–albedo relationships, we applied a first order global energy balance model to compare negative radiative forcings (from avoided CO 2 emissions) with positive radiative forcings (from reduced soil surface albedos). For a global-scale biochar application equivalent to 120 t ha −1 , we obtained reductions in negative radiative forcings of 5 and 11% for croplands and 11 and 23% for grasslands, when incorporating biochar into the topsoil or applying it to the soil surface, respectively. For a lower global biochar application rate (equivalent to 10 t ha −1 ), these reductions amounted to 13 and 44% for croplands and 28 and 94% for grasslands. Thus, our findings revealed the importance of including changes in soil surface albedo in studies assessing the net climate change mitigation potential of biochar, and we discuss the urgent need for field studies and more detailed spatiotemporal modelling. (letter)

  3. Soil carbon model alternatives for ECHAM5/JSBACH climate model: Evaluation and impacts on global carbon cycle estimates

    Thum, T.; Raisanen, P.; Sevanto, S.

    2011-01-01

    The response of soil organic carbon to climate change might lead to significant feedbacks affecting global warming. This response can be studied by coupled climate-carbon cycle models but so far the description of soil organic carbon cycle in these models has been quite simple. In this work we used...... the coupled climate-carbon cycle model ECHAM5/JSBACH (European Center/Hamburg Model 5/Jena Scheme for Biosphere-Atmosphere Coupling in Hamburg) with two different soil carbon modules, namely (1) the original soil carbon model of JSBACH called CBALANCE and (2) a new soil carbon model Yasso07, to study...... the interaction between climate variability and soil organic carbon. Equivalent ECHAM5/JSBACH simulations were conducted using both soil carbon models, with freely varying atmospheric CO2 for the last 30 years (1977-2006). In this study, anthropogenic CO2 emissions and ocean carbon cycle were excluded. The new...

  4. Soil Methanotrophy Model (MeMo v1.0: a process-based model to quantify global uptake of atmospheric methane by soil

    F. Murguia-Flores

    2018-06-01

    Full Text Available Soil bacteria known as methanotrophs are the sole biological sink for atmospheric methane (CH4, a potent greenhouse gas that is responsible for  ∼  20 % of the human-driven increase in radiative forcing since pre-industrial times. Soil methanotrophy is controlled by a plethora of factors, including temperature, soil texture, moisture and nitrogen content, resulting in spatially and temporally heterogeneous rates of soil methanotrophy. As a consequence, the exact magnitude of the global soil sink, as well as its temporal and spatial variability, remains poorly constrained. We developed a process-based model (Methanotrophy Model; MeMo v1.0 to simulate and quantify the uptake of atmospheric CH4 by soils at the global scale. MeMo builds on previous models by Ridgwell et al. (1999 and Curry (2007 by introducing several advances, including (1 a general analytical solution of the one-dimensional diffusion–reaction equation in porous media, (2 a refined representation of nitrogen inhibition on soil methanotrophy, (3 updated factors governing the influence of soil moisture and temperature on CH4 oxidation rates and (4 the ability to evaluate the impact of autochthonous soil CH4 sources on uptake of atmospheric CH4. We show that the improved structural and parametric representation of key drivers of soil methanotrophy in MeMo results in a better fit to observational data. A global simulation of soil methanotrophy for the period 1990–2009 using MeMo yielded an average annual sink of 33.5 ± 0.6 Tg CH4 yr−1. Warm and semi-arid regions (tropical deciduous forest and open shrubland had the highest CH4 uptake rates of 602 and 518 mg CH4 m−2 yr−1, respectively. In these regions, favourable annual soil moisture content ( ∼  20 % saturation and low seasonal temperature variations (variations  <   ∼  6 °C provided optimal conditions for soil methanotrophy and soil–atmosphere gas exchange

  5. Historical and future perspectives of global soil carbon response to climate and land-use changes

    Eglin, T.; Ciais, P.; Piao, S. L.; Barre, P.; Bellassen, V.; Cadule, P.; Chenu, C.; Gasser, T.; Koven, C.; Reichstein, M.; Smith, P.

    2010-11-01

    ABSTRACT In this paper, we attempt to analyse the respective influences of land-use and climate changes on the global and regional balances of soil organic carbon (SOC) stocks. Two time periods are analysed: the historical period 1901-2000 and the period 2000-2100. The historical period is analysed using a synthesis of published data as well as new global and regional model simulations, and the future is analysed using models only. Historical land cover changes have resulted globally in SOC release into the atmosphere. This human induced SOC decrease was nearly balanced by the net SOC increase due to higher CO2 and rainfall. Mechanization of agriculture after the 1950s has accelerated SOC losses in croplands, whereas development of carbon-sequestering practices over the past decades may have limited SOC loss from arable soils. In some regions (Europe, China and USA), croplands are currently estimated to be either a small C sink or a small source, but not a large source of CO2 to the atmosphere. In the future, according to terrestrial biosphere and climate models projections, both climate and land cover changes might cause a net SOC loss, particularly in tropical regions. The timing, magnitude, and regional distribution of future SOC changes are all highly uncertain. Reducing this uncertainty requires improving future anthropogenic CO2 emissions and land-use scenarios and better understanding of biogeochemical processes that control SOC turnover, for both managed and un-managed ecosystems.

  6. Global-scale assessment and combination of SMAP with ASCAT (Active) and AMSR2 (Passive) soil moisture products

    Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and comb...

  7. Assessment of SMAP soil moisture for global simulation of gross primary production

    He, Liming; Chen, Jing M.; Liu, Jane; Bélair, Stéphane; Luo, Xiangzhong

    2017-07-01

    In this study, high-quality soil moisture data derived from the Soil Moisture Active Passive (SMAP) satellite measurements are evaluated from a perspective of improving the estimation of the global gross primary production (GPP) using a process-based ecosystem model, namely, the Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated into BEPS using an ensemble Kalman filter. The correlation coefficient (r) between simulated GPP from the sunlit leaves and Sun-induced chlorophyll fluorescence (SIF) measured by Global Ozone Monitoring Experiment-2 is used as an indicator to evaluate the performance of the GPP simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude (e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, the r value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, respectively (p r appears in single-cropping agricultural land where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in North America, p < 0.05). With the assimilation of SMAP, areas with weak model performances are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in global average for shrub, grass, and cropland. This enhancement is small and insignificant because nonwater-stressed areas are included.

  8. Different Mechanisms of Soil Microbial Response to Global Change Result in Different Outcomes in the MIMICS-CN Model

    Kyker-Snowman, E.; Wieder, W. R.; Grandy, S.

    2017-12-01

    Microbial-explicit models of soil carbon (C) and nitrogen (N) cycling have improved upon simulations of C and N stocks and flows at site-to-global scales relative to traditional first-order linear models. However, the response of microbial-explicit soil models to global change factors depends upon which parameters and processes in a model are altered by those factors. We used the MIcrobial-MIneral Carbon Stabilization Model with coupled N cycling (MIMICS-CN) to compare modeled responses to changes in temperature and plant inputs at two previously-modeled sites (Harvard Forest and Kellogg Biological Station). We spun the model up to equilibrium, applied each perturbation, and evaluated 15 years of post-perturbation C and N pools and fluxes. To model the effect of increasing temperatures, we independently examined the impact of decreasing microbial C use efficiency (CUE), increasing the rate of microbial turnover, and increasing Michaelis-Menten kinetic rates of litter decomposition, plus several combinations of the three. For plant inputs, we ran simulations with stepwise increases in metabolic litter, structural litter, whole litter (structural and metabolic), or labile soil C. The cumulative change in soil C or N varied in both sign and magnitude across simulations. For example, increasing kinetic rates of litter decomposition resulted in net releases of both C and N from soil pools, while decreasing CUE produced short-term increases in respiration but long-term accumulation of C in litter pools and shifts in soil C:N as microbial demand for C increased and biomass declined. Given that soil N cycling constrains the response of plant productivity to global change and that soils generate a large amount of uncertainty in current earth system models, microbial-explicit models are a critical opportunity to advance the modeled representation of soils. However, microbial-explicit models must be improved by experiments to isolate the physiological and stoichiometric

  9. Improved Ground Hydrology Calculations for Global Climate Models (GCMs): Soil Water Movement and Evapotranspiration.

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-09-01

    A physically based ground hydrology model is developed to improve the land-surface sensible and latent heat calculations in global climate models (GCMs). The processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff are explicitly included in the model. The amount of detail in the hydrologic calculations is restricted to a level appropriate for use in a GCM, but each of the aforementioned processes is modeled on the basis of the underlying physical principles. Data from the Goddard Institute for Space Studies (GISS) GCM are used as inputs for off-line tests of the ground hydrology model in four 8° × 10° regions (Brazil, Sahel, Sahara, and India). Soil and vegetation input parameters are calculated as area-weighted means over the 8° × 10° gridhox. This compositing procedure is tested by comparing resulting hydrological quantities to ground hydrology model calculations performed on the 1° × 1° cells which comprise the 8° × 10° gridbox. Results show that the compositing procedure works well except in the Sahel where lower soil water levels and a heterogeneous land surface produce more variability in hydrological quantities, indicating that a resolution better than 8° × 10° is needed for that region. Modeled annual and diurnal hydrological cycles compare well with observations for Brazil, where real world data are available. The sensitivity of the ground hydrology model to several of its input parameters was tested; it was found to be most sensitive to the fraction of land covered by vegetation and least sensitive to the soil hydraulic conductivity and matric potential.

  10. The Global Turnover Time Distribution of Soil Carbon Derived from a Meta-analysis of Radiocarbon Profiles

    He, Y.; Randerson, J. T.; Allison, S. D.; Torn, M. S.; Harden, J. W.; Smith, L. J.; van der Voort, T.; Trumbore, S.

    2015-12-01

    Soil is the largest terrestrial carbon reservoir and may influence the sign and magnitude of carbon cycle feedbacks under climate change. Soil carbon turnover times provide information about the sensitivity of carbon pools to changes in inputs and warming. The spatial and vertical distribution of soil carbon turnover times emerges from the interplay between climate, vegetation, and soil properties. Radiocarbon levels of soil organic matter can be used to estimate soil carbon turnover using models that take into account radioactive decay over centuries to millennia and inputs of 14C from atmospheric weapons testing ("bomb carbon") during the second half of the 20th century. By synthesizing more than 200 soil radiocarbon profiles from all major biomes and soil orders, we 1) explored the major controlling factors for soil carbon turnover times of surface and deeper soil layers; 2) developed predictive models (tree-based regression, support vector regression and linear regression models) of Δ14C that depends on depth, climate, vegetation, and soil types; and 3) extrapolated the predictive model to produce the first global distribution of soil carbon turnover times to the depth of 1m. Preliminary results indicated that climate and depth were primary controls of the vertical distribution of Δ14C, contributing to about 70% of the variability in our model. Vegetation and soil order exerted similar level of controls (about 15% each). The predictive model performed reasonably well with an R2 of 0.81 and RMSE (root-mean-squared error) of about 50‰ for topsoil and 100‰ for subsoil, as estimated using cross-validation. Extrapolation of the predictive model to the globe in combination with existing soil carbon information (e.g., Harmonized World Soil Database) indicated that more than half of the global total soil carbon in the top 1m had a turnover time of less than 500 years. Subsoils (30-100cm) had millennium-scale turnover times, with the majority (70%) turning over

  11. The Effects of Data Gaps on the Calculated Monthly Mean Maximum and Minimum Temperatures in the Continental United States: A Spatial and Temporal Study.

    Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.

    1999-05-01

    Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.

  12. Carbon budgets of biological soil crusts at micro-, meso-, and global scales

    Sancho, Leopoldo G; Belnap, Jayne; Colesie, Claudia; Raggio, Jose; Weber, Bettina

    2016-01-01

    The importance of biocrusts in the ecology of arid lands across all continents is widely recognized. In spite of this broad distribution, contributions of biocrusts to the global biogeochemical cycles have only recently been considered. While these studies opened a new view on the global role of biocrusts, they also clearly revealed the lack of data for many habitats and of overall standards for measurements and analysis. In order to understand carbon cycling in biocrusts and the progress which has been made during the last 15 years, we offer a multi-scale approach covering different climatic regions. We also include a discussion on available measurement techniques at each scale: A micro-scale section focuses on the individual organism level, including modeling based on the combination of field and lab data. The meso-scale section addresses the CO2 exchange of a complete ecosystem or at the community level. Finally, we consider the contribution of biocrusts at a global scale, giving a general perspective of the most relevant findings regarding the role of biological soil crusts in the global terrestrial carbon cycle.

  13. Error characterisation of global active and passive microwave soil moisture datasets

    W. A. Dorigo

    2010-12-01

    Full Text Available Understanding the error structures of remotely sensed soil moisture observations is essential for correctly interpreting observed variations and trends in the data or assimilating them in hydrological or numerical weather prediction models. Nevertheless, a spatially coherent assessment of the quality of the various globally available datasets is often hampered by the limited availability over space and time of reliable in-situ measurements. As an alternative, this study explores the triple collocation error estimation technique for assessing the relative quality of several globally available soil moisture products from active (ASCAT and passive (AMSR-E and SSM/I microwave sensors. The triple collocation is a powerful statistical tool to estimate the root mean square error while simultaneously solving for systematic differences in the climatologies of a set of three linearly related data sources with independent error structures. Prerequisite for this technique is the availability of a sufficiently large number of timely corresponding observations. In addition to the active and passive satellite-based datasets, we used the ERA-Interim and GLDAS-NOAH reanalysis soil moisture datasets as a third, independent reference. The prime objective is to reveal trends in uncertainty related to different observation principles (passive versus active, the use of different frequencies (C-, X-, and Ku-band for passive microwave observations, and the choice of the independent reference dataset (ERA-Interim versus GLDAS-NOAH. The results suggest that the triple collocation method provides realistic error estimates. Observed spatial trends agree well with the existing theory and studies on the performance of different observation principles and frequencies with respect to land cover and vegetation density. In addition, if all theoretical prerequisites are fulfilled (e.g. a sufficiently large number of common observations is available and errors of the different

  14. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical

  15. Soil solution phosphorus turnover: derivation, interpretation, and insights from a global compilation of isotope exchange kinetic studies

    Helfenstein, Julian; Jegminat, Jannes; McLaren, Timothy I.; Frossard, Emmanuel

    2018-01-01

    The exchange rate of inorganic phosphorus (P) between the soil solution and solid phase, also known as soil solution P turnover, is essential for describing the kinetics of bioavailable P. While soil solution P turnover (Km) can be determined by tracing radioisotopes in a soil-solution system, few studies have done so. We believe that this is due to a lack of understanding on how to derive Km from isotopic exchange kinetic (IEK) experiments, a common form of radioisotope dilution study. Here, we provide a derivation of calculating Km using parameters obtained from IEK experiments. We then calculated Km for 217 soils from published IEK experiments in terrestrial ecosystems, and also that of 18 long-term P fertilizer field experiments. Analysis of the global compilation data set revealed a negative relationship between concentrations of soil solution P and Km. Furthermore, Km buffered isotopically exchangeable P in soils with low concentrations of soil solution P. This finding was supported by an analysis of long-term P fertilizer field experiments, which revealed a negative relationship between Km and phosphate-buffering capacity. Our study highlights the importance of calculating Km for understanding the kinetics of P between the soil solid and solution phases where it is bioavailable. We argue that our derivation can also be used to calculate soil solution turnover of other environmentally relevant and strongly sorbing elements that can be traced with radioisotopes, such as zinc, cadmium, nickel, arsenic, and uranium.

  16. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective.

    García-Palacios, Pablo; Vandegehuchte, Martijn L; Shaw, E Ashley; Dam, Marie; Post, Keith H; Ramirez, Kelly S; Sylvain, Zachary A; de Tomasel, Cecilia Milano; Wall, Diana H

    2015-04-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking. Therefore, here we initiate such a synthesis to assess whether the effect size of global change drivers (elevated CO2, N deposition, and warming) on soil microbial abundance is related with the effect size of these drivers on ecosystem functioning (plant biomass, soil C cycle, and soil N cycle) using meta-analysis and structural equation modeling. For N deposition and warming, the global change effect size on soil microbes was positively associated with the global change effect size on ecosystem functioning, and these relationships were consistent across taxa and ecosystem processes. However, for elevated CO2, such links were more taxon and ecosystem process specific. For example, fungal abundance responses to elevated CO2 were positively correlated with those of plant biomass but negatively with those of the N cycle. Our results go beyond previous assessments of the sensitivity of soil microbes and ecosystem processes to global change, and demonstrate the existence of general links between the responses of soil microbial abundance and ecosystem functioning. Further we identify critical areas for future research, specifically altered precipitation, soil fauna, soil community composition, and litter decomposition, that are need to better quantify the ecosystem consequences of global change impacts on soil biodiversity. © 2014 John Wiley & Sons Ltd.

  17. Soils and Global Change in the Carbon Cycle over Geological Time

    Retallack, G. J.

    2003-12-01

    Soils play an important role in the carbon cycle as the nutrition of photosynthesized biomass. Nitrogen fixed by microbes from air is a limiting nutrient for ecosystems within the first flush of ecological succession of new ground, and sulfur can limit some components of wetland ecosystems. But over the long term, the limiting soil nutrient is phosphorus extracted by weathering from minerals such as apatite (Vitousek et al., 1997a; Chadwick et al., 1999). Life has an especially voracious appetite for common alkali (Na+ and K+) and alkaline earth (Ca2+ and Mg2+) cations, supplied by hydrolytic weathering, which is in turn amplified by biological acidification (Schwartzmann and Volk, 1991; see Chapter 5.06). These mineral nutrients fuel photosynthetic fixation and chemical reduction of atmospheric CO2 into plants and plantlike microbes, which are at the base of the food chain. Plants and photosynthetic microbes are consumed and oxidized by animals, fungi, and other respiring microbes, which release CO2, methane, and water vapor to the air. These greenhouse gases absorb solar radiation more effectively than atmospheric oxygen and nitrogen, and are important regulators of planetary temperature and albedo (Kasting, 1992). Variations in solar insolation ( Kasting, 1992), mountainous topography ( Raymo and Ruddiman, 1992), and ocean currents ( Ramstein et al., 1997) also play a role in climate, but this review focuses on the carbon cycle. The carbon cycle is discussed in detail in Volume 8 of this Treatise.The greenhouse model for global paleoclimate has proven remarkably robust (Retallack, 2002), despite new challenges ( Veizer et al., 2000). The balance of producers and consumers is one of a number of controls on atmospheric greenhouse gas balance, because CO2 is added to the air from fumaroles, volcanic eruptions, and other forms of mantle degassing (Holland, 1984). Carbon dioxide is also consumed by burial as carbonate and organic matter within limestones and other

  18. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland

    Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K

    2017-01-01

    C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two...... and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term....

  19. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-08-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon (C) balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil - such as soil microbes, plant roots and their mycorrhizal symbionts - each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge. Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future climate, many plant communities may shift towards dominance by fast growing plants which

  20. The global SMOS Level 3 daily soil moisture and brightness temperature maps

    A. Al Bitar

    2017-06-01

    Full Text Available The objective of this paper is to present the multi-orbit (MO surface soil moisture (SM and angle-binned brightness temperature (TB products for the SMOS (Soil Moisture and Ocean Salinity mission based on a new multi-orbit algorithm. The Level 3 algorithm at CATDS (Centre Aval de Traitement des Données SMOS makes use of MO retrieval to enhance the robustness and quality of SM retrievals. The motivation of the approach is to make use of the longer temporal autocorrelation length of the vegetation optical depth (VOD compared to the corresponding SM autocorrelation in order to enhance the retrievals when an acquisition occurs at the border of the swath. The retrieval algorithm is implemented in a unique operational processor delivering multiple parameters (e.g. SM and VOD using multi-angular dual-polarisation TB from MO. A subsidiary angle-binned TB product is provided. In this study the Level 3 TB V310 product is showcased and compared to SMAP (Soil Moisture Active Passive TB. The Level 3 SM V300 product is compared to the single-orbit (SO retrievals from the Level 2 SM processor from ESA with aligned configuration. The advantages and drawbacks of the Level 3 SM product (L3SM are discussed. The comparison is done on a global scale between the two datasets and on the local scale with respect to in situ data from AMMA-CATCH and USDA ARS Watershed networks. The results obtained from the global analysis show that the MO implementation enhances the number of retrievals: up to 9 % over certain areas. The comparison with the in situ data shows that the increase in the number of retrievals does not come with a decrease in quality, but rather at the expense of an increased time lag in product availability from 6 h to 3.5 days, which can be a limiting factor for applications like flood forecast but reasonable for drought monitoring and climate change studies. The SMOS L3 soil moisture and L3 brightness temperature products are delivered using an

  1. Polycyclic aromatic hydrocarbons in soils of the central Tibetan Plateau, China: Distribution, sources, transport and contribution in global cycling

    Yuan, Guo-Li; Wu, Li-Juan; Sun, Yong; Li, Jun; Li, Jing-Chao; Wang, Gen-Hou

    2015-01-01

    Forty-four soil samples were collected across the central Tibetan Plateau (CTP) at altitudes between 3711 m and 5352 m, and their polycyclic aromatic hydrocarbons (PAHs) contents were measured to be from 0.43 to 26.66 ng/g. The main sources of PAHs were identified for each of four sub-areas, and their concentrations in soils were determined to be mainly influenced by local sources. Along a 600 km sampling trajectory from Lhasa, which served as the biggest local source, the concentrations of PAHs decreased logarithmically with increasing distances from the source. Meanwhile, the fractional proportions of PAHs were observed to change logarithmically according to the transport distances. Conclusively, PAHs from local sources were transported within the CTP and dominated PAHs concentrations in the soils, but few of them were transported outside the CTP. In global cycling, the soils in the CTP mainly serve as background and a “sink” for PAHs. - Highlights: • Main sources of PAHs were identified for each of four sub-areas in CTP. • Local sources dominated PAHs in soils but rarely transported outside CTP. • The PAHs in soils changed logarithmically according to the distances from source. • It is first revealed how the local PAH sources influenced PAHs in the soils of CTP. - Local sources dominated PAHs concentrations in the soils of CTP but rarely transported outside, and PAHs in soils changed logarithmically according to the transported distances

  2. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm -1 ) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Persistent organic pollutants in the Tibetan surface soil: Spatial distribution, air–soil exchange and implications for global cycling

    Wang Xiaoping; Sheng Jiujiang; Gong Ping; Xue Yonggang; Yao Tandong; Jones, Kevin C.

    2012-01-01

    There are limited data on persistent organic pollutants (POPs) in the soils of the Tibetan Plateau. This paper presents data from a survey of organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) in 40 background surface (0–5 cm) soils of the Tibetan Plateau. Soil concentrations (pg/g, dw) ranged as follows: DDTs, 13-7700; HCHs, 64-847; HCB, 24-564; sum of 15 PCBs, 75-1021; and sum of 9 PBDEs, below detection limit −27. Soil DDT, HCB, PCB and PBDE concentrations were strongly influenced by soil organic carbon content. HCH concentrations were clearly associated with the proximity to source regions in south Asia. The air–soil equilibrium status of POPs suggested the Tibetan soils may be partial “secondary sources” of HCB, low molecular weight PCBs and HCHs and will likely continue to be “sinks” for the less volatile DDE and DDT. - Highlights: ► Soil organic carbon content influence the spatial distribution of persistent organic pollutants. ► The Tibetan soil acts as “secondary sources” for HCB, low molecular weight PCBs and HCHs. ► The Tibetan soil will continue to be “sinks” for DDE and DDT. - Tibetan soils may be potential “secondary sources” of the HCB, low molecular weight PCBs and HCHs that are observed in air.

  4. Author Correction: Global patterns in mangrove soil carbon stocks and losses

    Atwood, Trisha B.; Connolly, Rod M.; Almahasheer, Hanan; Carnell, Paul E.; Duarte, Carlos M.; Lewis, Carolyn J. Ewers; Irigoien, Xabier; Kelleway, Jeffrey J.; Lavery, Paul S.; Macreadie, Peter I.; Serrano, Oscar; Sanders, Christian J.; Santos, Isaac; Steven, Andrew D. L.; Lovelock, Catherine E.

    2018-03-01

    In the version of this Article originally published, the potential carbon loss from soils as a result of mangrove deforestation was incorrectly given as `2.0-75 Tg C yr-1'; this should have read `2-8 Tg C yr-1'. The corresponding emissions were incorrectly given as ` 7.3-275 Tg of CO2e'; this should have read ` 7-29 Tg of CO2e'. The corresponding percentage equivalent of these emissions compared with those from global terrestrial deforestation was incorrectly given as `0.2-6%'; this should have read `0.6-2.4%'. These errors have now been corrected in all versions of the Article.

  5. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis

    Dotterweich, Markus

    2013-11-01

    This paper presents a global synopsis about the geomorphic evidence of soil erosion in humid and semihumid areas since the beginning of agriculture. Historical documents, starting from ancient records to data from the mid-twentieth century and numerous literature reviews form an extensive assortment of examples that show how soil erosion has been perceived previously by scholars, land surveyors, farmers, land owners, researchers, and policy makers. Examples have been selected from ancient Greek and Roman Times and from central Europe, southern Africa, North America, the Chinese Loess Plateau, Australia, New Zealand, and Easter Island. Furthermore, a comprehensive collection on the development of soil erosion research and soil conservation has been provided, with a particular focus on Germany and the USA. Geomorphic evidence shows that most of the agriculturally used slopes in the Old and New Worlds had already been affected by soil erosion in earlier, prehistoric times. Early descriptions of soil erosion are often very vague. With regard to the Roman Times, geomorphic evidence shows seemingly opposing results, ranging from massive devastation to landscapes remaining stable for centuries. Unfortunately, historical documentation is lacking. In the following centuries, historical records become more frequent and more precise and observations on extreme soil erosion events are prominent. Sometimes they can be clearly linked to geomorphic evidence in the field. The advent of professional soil conservation took place in the late eighteenth century. The first extensive essay on soil conservation known to the Western world was published in Germany in 1815. The rise of professional soil conservation occurred in the late nineteenth and early twentieth centuries. Soil remediation and flood prevention programs were initiated, but the long-term success of these actions remains controversial. In recent years, increasing interest is to recover any traditional knowledge of soil

  6. The global limits and population at risk of soil-transmitted helminth infections in 2010

    Pullan Rachel L

    2012-04-01

    Full Text Available Abstract Background Understanding the global limits of transmission of soil-transmitted helminth (STH species is essential for quantifying the population at-risk and the burden of disease. This paper aims to define these limits on the basis of environmental and socioeconomic factors, and additionally seeks to investigate the effects of urbanisation and economic development on STH transmission, and estimate numbers at-risk of infection with Ascaris lumbricoides, Trichuris trichiura and hookworm in 2010. Methods A total of 4,840 geo-referenced estimates of infection prevalence were abstracted from the Global Atlas of Helminth Infection and related to a range of environmental factors to delineate the biological limits of transmission. The relationship between STH transmission and urbanisation and economic development was investigated using high resolution population surfaces and country-level socioeconomic indicators, respectively. Based on the identified limits, the global population at risk of STH transmission in 2010 was estimated. Results High and low land surface temperature and extremely arid environments were found to limit STH transmission, with differential limits identified for each species. There was evidence that the prevalence of A. lumbricoides and of T. trichiura infection was statistically greater in peri-urban areas compared to urban and rural areas, whilst the prevalence of hookworm was highest in rural areas. At national levels, no clear socioeconomic correlates of transmission were identified, with the exception that little or no infection was observed for countries with a per capita gross domestic product greater than US$ 20,000. Globally in 2010, an estimated 5.3 billion people, including 1.0 billion school-aged children, lived in areas stable for transmission of at least one STH species, with 69% of these individuals living in Asia. A further 143 million (31.1 million school-aged children lived in areas of unstable

  7. Global numbers of infection and disease burden of soil transmitted helminth infections in 2010.

    Pullan, Rachel L; Smith, Jennifer L; Jasrasaria, Rashmi; Brooker, Simon J

    2014-01-21

    Quantifying the burden of parasitic diseases in relation to other diseases and injuries requires reliable estimates of prevalence for each disease and an analytic framework within which to estimate attributable morbidity and mortality. Here we use data included in the Global Atlas of Helminth Infection to derive new global estimates of numbers infected with intestinal nematodes (soil-transmitted helminths, STH: Ascaris lumbricoides, Trichuris trichiura and the hookworms) and use disability-adjusted life years (DALYs) to estimate disease burden. Prevalence data for 6,091 locations in 118 countries were sourced and used to estimate age-stratified mean prevalence for sub-national administrative units via a combination of model-based geostatistics (for sub-Saharan Africa) and empirical approaches (for all other regions). Geographical variation in infection prevalence within these units was approximated using modelled logit-normal distributions, and numbers of individuals with infection intensities above given thresholds estimated for each species using negative binomial distributions and age-specific worm/egg burden thresholds. Finally, age-stratified prevalence estimates for each level of infection intensity were incorporated into the Global Burden of Disease Study 2010 analytic framework to estimate the global burden of morbidity and mortality associated with each STH infection. Globally, an estimated 438.9 million people (95% Credible Interval (CI), 406.3 - 480.2 million) were infected with hookworm in 2010, 819.0 million (95% CI, 771.7 - 891.6 million) with A. lumbricoides and 464.6 million (95% CI, 429.6 - 508.0 million) with T. trichiura. Of the 4.98 million years lived with disability (YLDs) attributable to STH, 65% were attributable to hookworm, 22% to A. lumbricoides and the remaining 13% to T. trichiura. The vast majority of STH infections (67%) and YLDs (68%) occurred in Asia. When considering YLDs relative to total populations at risk however, the burden

  8. A Global Database of Soil Respiration Data, Version 1.0

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a soil respiration data database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration, the...

  9. A Global Database of Soil Respiration Data, Version 2.0

    National Aeronautics and Space Administration — ABSTRACT: This data set provides an updated soil respiration database (SRDB), a near-universal compendium of published soil respiration (RS) data. Soil respiration,...

  10. Soil and deforestation use standards in Amazon and its global impacts: a regional dynamics economic and ecological model

    Sherrill, Elisabeth I.

    1999-01-01

    The aim of the work was to introduce a simulation model to analyze the deforestation causes in Amazon. The work describes the basic parameters and fundamental concepts to the performed modeling comprehension. The several agents soil utilization standards were going observed and the economic and ecological interactions simulated. The global impact aspects are also analyzed

  11. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) 0-10cm Soil-Moisture Forecast Product

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast 0-10cm soil-moisture data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near...

  12. Spatiotemporal models of global soil organic carbon stock to support land degradation assessments at regional and global scales: limitations, challenges and opportunities

    Hengl, Tomislav; Heuvelink, Gerard; Sanderman, Jonathan; MacMillan, Robert

    2017-04-01

    There is an increasing interest in fitting and applying spatiotemporal models that can be used to assess and monitor soil organic carbon stocks (SOCS), for example, in support of the '4 pourmille' initiative aiming at soil carbon sequestration towards climate change adaptation and mitigation and UN's Land Degradation Neutrality indicators and similar degradation assessment projects at regional and global scales. The land cover mapping community has already produced several spatiotemporal data sets with global coverage and at relatively fine resolution e.g. USGS MODIS land cover annual maps for period 2000-2014; European Space Agency land cover maps at 300 m resolution for the year 2000, 2005 and 2010; Chinese GlobeLand30 dataset available for years 2000 and 2010; Columbia University's WRI GlobalForestWatch with deforestation maps at 30 m resolution for the period 2000-2016 (Hansen et al. 2013). These data sets can be used for land degradation assessment and scenario testing at global and regional scales (Wei et al 2014). Currently, however, no compatible global spatiotemporal data sets exist on status of soil quality and/or soil health (Powlson et al. 2013). This paper describes an initial effort to devise and evaluate a procedure for mapping spatio-temporal changes in SOC stocks using a complete stack of soil forming factors (climate, relief, land cover, land use, lithology and living organisms) represented mainly through remote sensing based time series of Earth images. For model building we used some 75,000 geo-referenced soil profiles and a stacks space-time covariates (land cover, land use, biomass, climate) at two standard resolutions: (1) 10 km resolution with data available for period 1920-2014 and (2) 1000 m resolution with data available for period 2000-2014. The initial results show that, although it is technically feasible to produce space time estimates of SOCS that demonstrate the procedure, the estimates are relatively uncertain (<45% of variation

  13. Nitrous oxide and methane exchange in two small temperate forest catchments - effects of hydrological gradients and implications for global warming potentials of forest soils

    Christiansen, Jesper Riis; Vesterdal, Lars; Gundersen, Per

    2012-01-01

    half the catchment area at both sites, the global warming potential (GWP) derived from N2O and CH4 was more than doubled when accounting for these wet areas in the catchments. The results stress the importance of wet soils in assessments of forest soil global warming potentials, as even small...

  14. Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective

    Garcia-Palacios, Pablo; Vandegehuchte, Martijn L.; Shaw, E. Ashley; Dam, Marie; Post, Keith H.; Ramirez, Kelly S.; Sylvain, Zachary A.; de Tomasel, Cecilia Milano; Wall, Diana H.

    2015-01-01

    In recent years, there has been an increase in research to understand how global changes' impacts on soil biota translate into altered ecosystem functioning. However, results vary between global change effects, soil taxa, and ecosystem processes studied, and a synthesis of relationships is lacking.

  15. Homogeneity testing of the global ESA CCI multi-satellite soil moisture climate data record

    Preimesberger, Wolfgang; Su, Chun-Hsu; Gruber, Alexander; Dorigo, Wouter

    2017-04-01

    ESA's Climate Change Initiative (CCI) creates a global, long-term data record by merging multiple available earth observation products with the goal to provide a product for climate studies, trend analysis, and risk assessments. The blending of soil moisture (SM) time series derived from different active and passive remote sensing instruments with varying sensor characteristics, such as microwave frequency, signal polarization or radiometric accuracy, could potentially lead to inhomogeneities in the merged long-term data series, undercutting the usefulness of the product. To detect the spatio-temporal extent of contiguous periods without inhomogeneities as well as subsequently minimizing their negative impact on the data records, different relative homogeneity tests (namely Fligner-Killeen test of homogeneity of variances and Wilcoxon rank-sums test) are implemented and tested on the combined active-passive ESA CCI SM data set. Inhomogeneities are detected by comparing the data against reference data from in-situ data from ISMN, and model-based estimates from GLDAS-Noah and MERRA-Land. Inhomogeneity testing is performed over the ESA CCI SM data time frame of 38 years (from 1978 to 2015), on a global quarter-degree grid and with regard to six alterations in the combination of observation systems used in the data blending process. This study describes and explains observed variations in the spatial and temporal patterns of inhomogeneities in the combined products. Besides we proposes methodologies for measuring and reducing the impact of inhomogeneities on trends derived from the ESA CCI SM data set, and suggest the use of inhomogeneity-corrected data for future trend studies. This study is supported by the European Union's FP7 EartH2Observe "Global Earth Observation for Integrated Water Resource Assessment" project (grant agreement number 331 603608).

  16. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils

    Sainju, Upendra M.

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  17. A Global Meta-Analysis on the Impact of Management Practices on Net Global Warming Potential and Greenhouse Gas Intensity from Cropland Soils.

    Sainju, Upendra M

    2016-01-01

    Management practices, such as tillage, crop rotation, and N fertilization, may affect net global warming potential (GWP) and greenhouse gas intensity (GHGI), but their global impact on cropland soils under different soil and climatic conditions need further evaluation. Available global data from 57 experiments and 225 treatments were evaluated for individual and combined effects of tillage, cropping systems, and N fertilization rates on GWP and GHGI which accounted for CO2 equivalents from N2O and CH4 emissions with or without equivalents from soil C sequestration rate (ΔSOC), farm operations, and N fertilization. The GWP and GHGI were 66 to 71% lower with no-till than conventional till and 168 to 215% lower with perennial than annual cropping systems, but 41 to 46% greater with crop rotation than monocroppping. With no-till vs. conventional till, GWP and GHGI were 2.6- to 7.4-fold lower when partial than full accounting of all sources and sinks of greenhouse gases (GHGs) were considered. With 100 kg N ha-1, GWP and GHGI were 3.2 to 11.4 times greater with partial than full accounting. Both GWP and GHGI increased curvilinearly with increased N fertilization rate. Net GWP and GHGI were 70 to 87% lower in the improved combined management that included no-till, crop rotation/perennial crop, and reduced N rate than the traditional combined management that included conventional till, monocopping/annual crop, and recommended N rate. An alternative soil respiration method, which replaces ΔSOC by soil respiration and crop residue returned to soil in the previous year, similarly reduced GWP and GHGI by 133 to 158% in the improved vs. the traditional combined management. Changes in GWP and GHGI due to improved vs. traditional management varied with the duration of the experiment and inclusion of soil and climatic factors in multiple linear regressions improved their relationships. Improved management practices reduced GWP and GHGI compared with traditional management

  18. Is research on soil erosion hazard and mitigation in the Global South still needed? (Alexander von Humbold Medal Lecture)

    Poesen, Jean

    2016-04-01

    Soil erosion represents a geomorphological and geological hazard that may cause environmental damage (land degradation), property damage, loss of livelihoods and services as well as social and economic disruption. Erosion not only lowers the quality of our soils on site, resulting in a drastic reduction of their ecosystem functions that play a vital role in daily life, but causes also significant sediment-related problems off site. To curb soil erosion problems, a range of soil conservation techniques and strategies have been designed and are being applied. Worldwide, ca. 62 000 research papers on soil erosion and 116 000 on soil conservation have been published (Web of Science, Dec. 2015). The number of such papers dealing with the Global South represents less than 20 % of all papers, despite the fact that many regions in this part of the world face significant soil erosion problems, aggravated by a rapidly growing population and major environmental changes. Given the large number of research papers on this topic, one might therefore conclude that we now know almost everything about the various soil erosion processes and rates, their factors and consequences as well as their control so that little new knowledge can still be added to the vast amount of available information. We refute this conclusion by pointing to some major research gaps that still need to be addressed if we want to use our soils in a more sustainable way. More specifically the following topics need more research attention: 1) improved understanding of both natural and anthropogenic soil erosion processes and their interactions, 2) scaling up soil erosion processes and rates in space and time, and 3) innovative techniques and strategies to prevent or reduce erosion rates. This will be illustrated with case studies from the Global South. If future research focuses on these research gaps, we will 1) better understand processes and their interactions operating at a range of spatial and temporal

  19. Exploring Patterns of Soil Organic Matter Decomposition with Students and the Public Through the Global Decomposition Project (GDP)

    Wood, J. H.; Natali, S.

    2014-12-01

    The Global Decomposition Project (GDP) is a program designed to introduce and educate students and the general public about soil organic matter and decomposition through a standardized protocol for collecting, reporting, and sharing data. This easy-to-use hands-on activity focuses on questions such as "How do environmental conditions control decomposition of organic matter in soil?" and "Why do some areas accumulate organic matter and others do not?" Soil organic matter is important to local ecosystems because it affects soil structure, regulates soil moisture and temperature, and provides energy and nutrients to soil organisms. It is also important globally because it stores a large amount of carbon, and when microbes "eat", or decompose organic matter they release greenhouse gasses such as carbon dioxide and methane into the atmosphere, which affects the earth's climate. The protocol describes a commonly used method to measure decomposition using a paper made of cellulose, a component of plant cell walls. Participants can receive pre-made cellulose decomposition bags, or make decomposition bags using instructions in the protocol and easily obtained materials (e.g., window screen and lignin-free paper). Individual results will be shared with all participants and the broader public through an online database. We will present decomposition bag results from a research site in Alaskan tundra, as well as from a middle-school-student led experiment in California. The GDP demonstrates how scientific methods can be extended to educate broader audiences, while at the same time, data collected by students and the public can provide new insight into global patterns of soil decomposition. The GDP provides a pathway for scientists and educators to interact and reach meaningful education and research goals.

  20. Statistical analysis of simulated global soil moisture and its memory in an ensemble of CMIP5 general circulation models

    Wiß, Felix; Stacke, Tobias; Hagemann, Stefan

    2014-05-01

    Soil moisture and its memory can have a strong impact on near surface temperature and precipitation and have the potential to promote severe heat waves, dry spells and floods. To analyze how soil moisture is simulated in recent general circulation models (GCMs), soil moisture data from a 23 model ensemble of Atmospheric Model Intercomparison Project (AMIP) type simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are examined for the period 1979 to 2008 with regard to parameterization and statistical characteristics. With respect to soil moisture processes, the models vary in their maximum soil and root depth, the number of soil layers, the water-holding capacity, and the ability to simulate freezing which all together leads to very different soil moisture characteristics. Differences in the water-holding capacity are resulting in deviations in the global median soil moisture of more than one order of magnitude between the models. In contrast, the variance shows similar absolute values when comparing the models to each other. Thus, the input and output rates by precipitation and evapotranspiration, which are computed by the atmospheric component of the models, have to be in the same range. Most models simulate great variances in the monsoon areas of the tropics and north western U.S., intermediate variances in Europe and eastern U.S., and low variances in the Sahara, continental Asia, and central and western Australia. In general, the variance decreases with latitude over the high northern latitudes. As soil moisture trends in the models were found to be negligible, the soil moisture anomalies were calculated by subtracting the 30 year monthly climatology from the data. The length of the memory is determined from the soil moisture anomalies by calculating the first insignificant autocorrelation for ascending monthly lags (insignificant autocorrelation folding time). The models show a great spread of autocorrelation length from a few months in

  1. Soils

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  2. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    D. B. Metcalfe

    2011-08-01

    Full Text Available Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R is a key prerequisite for accurate prediction of the future carbon (C balance of terrestrial ecosystems under climate change. However, developing a mechanistic understanding of the determinants of R is complicated by the presence of multiple different sources of respiratory C within soil – such as soil microbes, plant roots and their mycorrhizal symbionts – each with their distinct dynamics and drivers. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Despite often large variation amongst studies and methods, several general trends emerge.

    Mechanisms whereby plants affect R may be grouped into effects on belowground C allocation, aboveground litter properties and microclimate. Within vegetation types, the amount of C diverted belowground, and hence R, may be controlled mainly by the rate of photosynthetic C uptake, while amongst vegetation types this should be more dependent upon the specific C allocation strategies of the plant life form. We make the case that plant community composition, rather than diversity, is usually the dominant control on R in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community and/or modulates the occurrence of major natural disturbances. We show that climate vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. We also suggest that under a warmer future

  3. Hungarian contribution to the Global Soil Organic Carbon Map (GSOC17) using advanced machine learning algorithms and geostatistics

    Szatmári, Gábor; Laborczi, Annamária; Takács, Katalin; Pásztor, László

    2017-04-01

    The knowledge about soil organic carbon (SOC) baselines and changes, and the detection of vulnerable hot spots for SOC losses and gains under climate change and changed land management is still fairly limited. Thus Global Soil Partnership (GSP) has been requested to develop a global SOC mapping campaign by 2017. GSPs concept builds on official national data sets, therefore, a bottom-up (country-driven) approach is pursued. The elaborated Hungarian methodology suits the general specifications of GSOC17 provided by GSP. The input data for GSOC17@HU mapping approach has involved legacy soil data bases, as well as proper environmental covariates related to the main soil forming factors, such as climate, organisms, relief and parent material. Nowadays, digital soil mapping (DSM) highly relies on the assumption that soil properties of interest can be modelled as a sum of a deterministic and stochastic component, which can be treated and modelled separately. We also adopted this assumption in our methodology. In practice, multiple regression techniques are commonly used to model the deterministic part. However, this global (and usually linear) models commonly oversimplify the often complex and non-linear relationship, which has a crucial effect on the resulted soil maps. Thus, we integrated machine learning algorithms (namely random forest and quantile regression forest) in the elaborated methodology, supposing then to be more suitable for the problem in hand. This approach has enable us to model the GSOC17 soil properties in that complex and non-linear forms as the soil itself. Furthermore, it has enable us to model and assess the uncertainty of the results, which is highly relevant in decision making. The applied methodology has used geostatistical approach to model the stochastic part of the spatial variability of the soil properties of interest. We created GSOC17@HU map with 1 km grid resolution according to the GSPs specifications. The map contributes to the GSPs

  4. Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe.

    Delgado-Baquerizo, Manuel; Eldridge, David J; Ochoa, Victoria; Gozalo, Beatriz; Singh, Brajesh K; Maestre, Fernando T

    2017-10-01

    The relationship between soil microbial communities and the resistance of multiple ecosystem functions linked to C, N and P cycling (multifunctionality resistance) to global change has never been assessed globally in natural ecosystems. We collected soils from 59 dryland ecosystems worldwide to investigate the importance of microbial communities as predictor of multifunctionality resistance to climate change and nitrogen fertilisation. Multifunctionality had a lower resistance to wetting-drying cycles than to warming or N deposition. Multifunctionality resistance was regulated by changes in microbial composition (relative abundance of phylotypes) but not by richness, total abundance of fungi and bacteria or the fungal: bacterial ratio. Our results suggest that positive effects of particular microbial taxa on multifunctionality resistance could potentially be controlled by altering soil pH. Together, our work demonstrates strong links between microbial community composition and multifunctionality resistance in dryland soils from six continents, and provides insights into the importance of microbial community composition for buffering effects of global change in drylands worldwide. © 2017 John Wiley & Sons Ltd/CNRS.

  5. Global digital data sets of soil type, soil texture, surface slope and other properties: Documentation of archived data tape

    Staub, B.; Rosenzweig, C.; Rind, D.

    1987-01-01

    The file structure and coding of four soils data sets derived from the Zobler (1986) world soil file is described. The data were digitized on a one-degree square grid. They are suitable for large-area studies such as climate research with general circulation models, as well as in forestry, agriculture, soils, and hydrology. The first file is a data set of codes for soil unit, land-ice, or water, for all the one-degree square cells on Earth. The second file is a data set of codes for texture, land-ice, or water, for the same soil units. The third file is a data set of codes for slope, land-ice, or water for the same units. The fourth file is the SOILWRLD data set, containing information on soil properties of land cells of both Matthews' and Food and Agriculture Organization (FAO) sources. The fourth file reconciles land-classification differences between the two and has missing data filled in.

  6. A global data set of soil hydraulic properties and sub-grid variability of soil water retention and hydraulic conductivity curves

    Montzka, Carsten; Herbst, Michael; Weihermüller, Lutz; Verhoef, Anne; Vereecken, Harry

    2017-07-01

    Agroecosystem models, regional and global climate models, and numerical weather prediction models require adequate parameterization of soil hydraulic properties. These properties are fundamental for describing and predicting water and energy exchange processes at the transition zone between solid earth and atmosphere, and regulate evapotranspiration, infiltration and runoff generation. Hydraulic parameters describing the soil water retention (WRC) and hydraulic conductivity (HCC) curves are typically derived from soil texture via pedotransfer functions (PTFs). Resampling of those parameters for specific model grids is typically performed by different aggregation approaches such a spatial averaging and the use of dominant textural properties or soil classes. These aggregation approaches introduce uncertainty, bias and parameter inconsistencies throughout spatial scales due to nonlinear relationships between hydraulic parameters and soil texture. Therefore, we present a method to scale hydraulic parameters to individual model grids and provide a global data set that overcomes the mentioned problems. The approach is based on Miller-Miller scaling in the relaxed form by Warrick, that fits the parameters of the WRC through all sub-grid WRCs to provide an effective parameterization for the grid cell at model resolution; at the same time it preserves the information of sub-grid variability of the water retention curve by deriving local scaling parameters. Based on the Mualem-van Genuchten approach we also derive the unsaturated hydraulic conductivity from the water retention functions, thereby assuming that the local parameters are also valid for this function. In addition, via the Warrick scaling parameter λ, information on global sub-grid scaling variance is given that enables modellers to improve dynamical downscaling of (regional) climate models or to perturb hydraulic parameters for model ensemble output generation. The present analysis is based on the ROSETTA PTF

  7. tavgM_2d_ocn_Nx: MERRA 2D IAU Ocean Surface Diagnostic, Monthly Mean 0.667 x 0.5 degree V5.2.0 (MATMNXOCN) at GES DISC

    National Aeronautics and Space Administration — The MATMNXOCN or tavgM_2d_ocn_Nx data product is the MERRA Data Assimilation System 2-Dimensional ocean surface single-level diagnostics that is monthly mean...

  8. A call to strengthen the global strategy against schistosomiasis and soil-transmitted helminthiasis: the time is now.

    Lo, Nathan C; Addiss, David G; Hotez, Peter J; King, Charles H; Stothard, J Russell; Evans, Darin S; Colley, Daniel G; Lin, William; Coulibaly, Jean T; Bustinduy, Amaya L; Raso, Giovanna; Bendavid, Eran; Bogoch, Isaac I; Fenwick, Alan; Savioli, Lorenzo; Molyneux, David; Utzinger, Jürg; Andrews, Jason R

    2017-02-01

    In 2001, the World Health Assembly (WHA) passed the landmark WHA 54.19 resolution for global scale-up of mass administration of anthelmintic drugs for morbidity control of schistosomiasis and soil-transmitted helminthiasis, which affect more than 1·5 billion of the world's poorest people. Since then, more than a decade of research and experience has yielded crucial knowledge on the control and elimination of these helminthiases. However, the global strategy has remained largely unchanged since the original 2001 WHA resolution and associated WHO guidelines on preventive chemotherapy. In this Personal View, we highlight recent advances that, taken together, support a call to revise the global strategy and guidelines for preventive chemotherapy and complementary interventions against schistosomiasis and soil-transmitted helminthiasis. These advances include the development of guidance that is specific to goals of morbidity control and elimination of transmission. We quantify the result of forgoing this opportunity by computing the yearly disease burden, mortality, and lost economic productivity associated with maintaining the status quo. Without change, we estimate that the population of sub-Saharan Africa will probably lose 2·3 million disability-adjusted life-years and US$3·5 billion of economic productivity every year, which is comparable to recent acute epidemics, including the 2014 Ebola and 2015 Zika epidemics. We propose that the time is now to strengthen the global strategy to address the substantial disease burden of schistosomiasis and soil-transmitted helminthiasis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. A Compilation of Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Data

    National Aeronautics and Space Administration — This data set provides the concentrations of soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P), soil organic carbon, total nitrogen, and total...

  10. Global Distribution of Plant-Extractable Water Capacity of Soil (Dunne)

    National Aeronautics and Space Administration — Plant-extractable water capacity of soil is the amount of water that can be extracted from the soil to fulfill evapotranspiration demands. This data set provides an...

  11. APXS-derived chemistry of the Bagnold dune sands: Comparisons with Gale Crater soils and the global Martian average

    O'Connell-Cooper, C. D.; Spray, J. G.; Thompson, L. M.; Gellert, R.; Berger, J. A.; Boyd, N. I.; Desouza, E. D.; Perrett, G. M.; Schmidt, M.; VanBommel, S. J.

    2017-12-01

    We present Alpha-Particle X-ray Spectrometer (APXS) data for the active Bagnold dune field within the Gale impact crater (Mars Science Laboratory (MSL) mission). We derive an APXS-based average basaltic soil (ABS) composition for Mars based on past and recent data from the MSL and Mars Exploration Rover (MER) missions. This represents an update to the Taylor and McLennan (2009) average Martian soil and facilitates comparison across Martian data sets. The active Bagnold dune field is compositionally distinct from the ABS, with elevated Mg, Ni, and Fe, suggesting mafic mineral enrichment and uniformly low levels of S, Cl, and Zn, indicating only a minimal dust component. A relationship between decreasing grain size and increasing felsic content is revealed. The Bagnold sands possess the lowest S/Cl of all Martian unconsolidated materials. Gale soils exhibit relatively uniform major element compositions, similar to Meridiani Planum and Gusev Crater basaltic soils (MER missions). However, they show minor enrichments in K, Cr, Mn, and Fe, which may signify a local contribution. The lithified eolian Stimson Formation within the Gale impact crater is compositionally similar to the ABS and Bagnold sands, which provide a modern analogue for these ancient eolian deposits. Compilation of APXS-derived soil data reveals a generally homogenous global composition for Martian soils but one that can be locally modified due to past or extant geologic processes that are limited in both space and time.

  12. Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soils

    M.P. Waldrop; K.P. Wickland; R. White; A.A. Berhe; J.W. Harden; V.E. Romanovsky

    2010-01-01

    The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial...

  13. Carbon exchange in biological soil crust communities under differential temperatures and soil water contents: implications for global change

    Grote, Edmund E.; Belnap, Jayne; Housman, David C.; Sparks, Jed P.

    2010-01-01

    Biological soil crusts (biocrusts) are an integral part of the soil system in arid regions worldwide, stabilizing soil surfaces, aiding vascular plant establishment, and are significant sources of ecosystem nitrogen and carbon. Hydration and temperature primarily control ecosystem CO2 flux in these systems. Using constructed mesocosms for incubations under controlled laboratory conditions, we examined the effect of temperature (5-35 1C) and water content (WC, 20-100%) on CO2 exchange in light cyanobacterially dominated) and dark cyanobacteria/lichen and moss dominated) biocrusts of the cool Colorado Plateau Desert in Utah and the hot Chihuahuan Desert in New Mexico. In light crusts from both Utah and New Mexico, net photosynthesis was highest at temperatures 430 1C. Net photosynthesis in light crusts from Utah was relatively insensitive to changes in soil moisture. In contrast, light crusts from New Mexico tended to exhibit higher rates of net photosynthesis at higher soil moisture. Dark crusts originating from both sites exhibited the greatest net photosynthesis at intermediate soil water content (40-60%). Declines in net photosynthesis were observed in dark crusts with crusts from Utah showing declines at temperatures 425 1C and those originating from New Mexico showing declines at temperatures 435 1C. Maximum net photosynthesis in all crust types from all locations were strongly influenced by offsets in the optimal temperature and water content for gross photosynthesis compared with dark respiration. Gross photosynthesis tended to be maximized at some intermediate value of temperature and water content and dark respiration tended to increase linearly. The results of this study suggest biocrusts are capable of CO2 exchange under a wide range of conditions. However, significant changes in the magnitude of this exchange should be expected for the temperature and precipitation changes suggested by current climate models.

  14. Theory study of global density influence and soils chemical composition at neutron probes response

    Crispino, M.L.

    1980-06-01

    Three energy group diffusion theory is applied to calculate the thermal neutron flux through a soil-water mixture at the neutron source. The soils studies are taken from two horizons of different composition, of a representative soil of the Litoral-Mata Zone of Pernambuco State. The thermal flux is obtained taking into consideration increasing values of the water volume percent, H, and the bulk density of the soil. The cross-sections of the mixture are calculated from the chemical composition of the soils. (author)

  15. Soil Temperature Manipulation to Study Global Warming Effects in Arable Land

    Patil, R H; Laegdsmand, M; Olesen, Jørgen E

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005℃ between heated and control......-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  16. Soil temperature manipulation to study global warming effects in arable land

    Patil, Raveendra H.; Laegdsmand, Mette; Olesen, Jørgen Eivind

    2013-01-01

    in a plough layer. Temperature sensors were placed at 0.05, 0.1 and 0.25 m depths in soil, and 0.1 m above the soil surface in all plots, which were connected to an automated data logger. Soil-warming setup was able to maintain a mean seasonal temperature difference of 5.0 ± 0.005 oC between heated...... that of above-ground vegetation response as this method heats only the soil. Therefore, using infrared heaters seems to represent natural climate warming (both air and soil) much more closely and may be used for future climate manipulation field studies....

  17. The response of amino acid cycling to global change across multiple biomes: Feedbacks on soil nitrogen availability

    Brzostek, E. R.; Finzi, A. C.

    2010-12-01

    The cycling of organic nitrogen (N) in soil links soil organic matter decomposition to ecosystem productivity. Amino acids are a key pool of organic N in the soil, whose cycling is sensitive to alterations in microbial demand for carbon and N. Further, the amino acids released from the breakdown of protein by proteolytic enzymes are an important source of N that supports terrestrial productivity. The objective of this study was to measure changes in amino acid cycling in response to experimental alterations of precipitation and temperature in twelve global change experiments during the 2009 growing season. The study sites ranged from arctic tundra to xeric grasslands. The treatments experimentally increased temperature, increased or decreased precipitation, or some combination of both factors. The response of amino acid cycling to temperature and precipitation manipulations tended to be site specific, but the responses could be placed into a common framework. Changes in soil moisture drove a large response in amino acid cycling. Precipitation augmentation in xeric and mesic sites increased both amino acid pool sizes and production. However, treatments that decreased precipitation drove decreases in amino acid cycling in xeric sites, but led to increases in amino acid cycling in more mesic sites. Across sites, the response to soil warming was horizon specific. Amino acid cycling in organic rich horizons responded positively to warming, while negative responses were exhibited in lower mineral soil horizons. The variable response likely reflects a higher availability of protein substrate to sustain high rates of proteolytic enzyme activity in organic rich horizons. Overall, these results suggest that soil moisture and the availability of protein substrate may be important factors that mediate the response of amino acid cycling to predicted increases in soil temperatures.

  18. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  19. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  20. Large Differences in Global and Regional Total Soil Carbon Stock Estimates Based on SoilGrids, HWSD, and NCSCD: Intercomparison and Evaluation Based on Field Data From USA, England, Wales, and France

    Tifafi, Marwa; Guenet, Bertrand; Hatté, Christine

    2018-01-01

    Soils are the major component of the terrestrial ecosystem and the largest organic carbon reservoir on Earth. However, they are a nonrenewable natural resource and especially reactive to human disturbance and climate change. Despite its importance, soil carbon dynamics is an important source of uncertainty for future climate predictions and there is a growing need for more precise information to better understand the mechanisms controlling soil carbon dynamics and better constrain Earth system models. The aim of our work is to compare soil organic carbon stocks given by different global and regional databases that already exist. We calculated global and regional soil carbon stocks at 1 m depth given by three existing databases (SoilGrids, the Harmonized World Soil Database, and the Northern Circumpolar Soil Carbon Database). We observed that total stocks predicted by each product differ greatly: it is estimated to be around 3,400 Pg by SoilGrids and is about 2,500 Pg according to Harmonized World Soil Database. This difference is marked in particular for boreal regions where differences can be related to high disparities in soil organic carbon concentration. Differences in other regions are more limited and may be related to differences in bulk density estimates. Finally, evaluation of the three data sets versus ground truth data shows that (i) there is a significant difference in spatial patterns between ground truth data and compared data sets and that (ii) data sets underestimate by more than 40% the soil organic carbon stock compared to field data.

  1. Plant communities as drivers of soil respiration: pathways, mechanisms, and significance for global change

    Metcalfe, D. B.; Fisher, R. A.; Wardle, D. A.

    2011-03-01

    Understanding the impacts of plant community characteristics on soil carbon dioxide efflux (R) is a key prerequisite for accurate prediction of the future carbon balance of terrestrial ecosystems under climate change. In this review, we synthesize relevant information from a wide spectrum of sources to evaluate the current state of knowledge about plant community effects on R, examine how this information is incorporated into global climate models, and highlight priorities for future research. Plant species consistently exhibit cohesive suites of traits, linked to contrasting life history strategies, which exert a variety of impacts on R. As such, we propose that plant community shifts towards dominance by fast growing plants with nutrient rich litter could provide a major, though often neglected, positive feedback to climate change. Within vegetation types, belowground carbon flux will mainly be controlled by photosynthesis, while amongst vegetation types this flux will be more dependent upon the specific characteristics of the plant life form. We also make the case that community composition, rather than diversity, is usually the dominant control on ecosystem processes in natural systems. Individual species impacts on R may be largest where the species accounts for most of the biomass in the ecosystem, has very distinct traits to the rest of the community, or modulates the occurrence of major natural disturbances. We show that climate-vegetation models incorporate a number of pathways whereby plants can affect R, but that simplifications regarding allocation schemes and drivers of litter decomposition may limit model accuracy. This situation could, however, be relatively easily improved with targeted experimental and field studies. Finally, we identify key gaps in knowledge and recommend them as priorities for future work. These include the patterns of photosynthate partitioning amongst belowground components, ecosystem level effects of individual plant traits

  2. Monitoring Multitemporal Soil Moisture, Rainfall, and ET in Lake Manatee Watershed, South Florida under Global Changes

    Chang, N.

    2009-12-01

    Ni-Bin Chang1, Ammarin Daranpob 1, and Y. Jeffrey Yang2 1Civil, Environmental, and Construction Engineering Department, University of Central Florida, Orlando FL, USA 2Water Supply and Water Resources Division, National Risk Management Research Laboratory, U.S. EPA, Cincinnati, Ohio, USA ASBTRACT: Global climate change and its related impacts on water supply are universally recognized. The Atlantic Multidecadal Oscillation (AMO), which is based on long term changes in the temperature of the surface of the North Atlantic Ocean, is a source of changes in river flow patterns in Florida. The AMO has a multi-decadal frequency. Under its impact, several distinct types of river patterns were identified within Florida, including a Southern River Pattern (SRP), a Northern River Pattern (NRP), a Bimodal River Pattern (BRP), etc. (Kelley and Gore, 2008). Some SRPs are present in the South Florida Water Management District (SFWMD). Changes in river flows occur because significant sea surface temperature (SST) changes affect continental rainfall patterns. It had been observed that, between AMO warm (i.e., from 1939 to 1968) and cold phases (i.e., from 1969 to 1993), the average daily inflow to Lake Okeechobee varies by 40% in the transition from the warm to cold phases in South Florida. The Manatee County is located in the Southern Water Use Caution Area (SWUCA) due to the depletion of the Upper Floridian Aquifer and its entire western portion of the County is designated as part of the Most Impacted Area (MIA) within the Eastern Tampa Bay Water Use Caution Area relative to the SWUCA. Major source of Manatee County’s water is an 332 Km2 (82,000-acre) watershed (i.e., Lake Manatee Watershed) that drains into the man-made Lake Manatee Reservoir. The lake has a total volume of 0.21 billion m3 (7.5 billion gallons) and will cover 7.3 Km2 (1,800 acres) when full. The proper use of remote sensing images and sensor network technologies can provide information on both spatial and

  3. Toward Soil Spatial Information Systems (SSIS) for global modeling and ecosystem management

    Baumgardner, Marion F.

    1995-01-01

    The general objective is to conduct research to contribute toward the realization of a world soils and terrain (SOTER) database, which can stand alone or be incorporated into a more complete and comprehensive natural resources digital information system. The following specific objectives are focussed on: (1) to conduct research related to (a) translation and correlation of different soil classification systems to the SOTER database legend and (b) the inferfacing of disparate data sets in support of the SOTER Project; (2) to examine the potential use of AVHRR (Advanced Very High Resolution Radiometer) data for delineating meaningful soils and terrain boundaries for small scale soil survey (range of scale: 1:250,000 to 1:1,000,000) and terrestrial ecosystem assessment and monitoring; and (3) to determine the potential use of high dimensional spectral data (220 reflectance bands with 10 m spatial resolution) for delineating meaningful soils boundaries and conditions for the purpose of detailed soil survey and land management.

  4. Assimilation of Global Radar Backscatter and Radiometer Brightness Temperature Observations to Improve Soil Moisture and Land Evaporation Estimates

    Lievens, H.; Martens, B.; Verhoest, N. E. C.; Hahn, S.; Reichle, R. H.; Miralles, D. G.

    2017-01-01

    Active radar backscatter (s?) observations from the Advanced Scatterometer (ASCAT) and passive radiometer brightness temperature (TB) observations from the Soil Moisture Ocean Salinity (SMOS) mission are assimilated either individually or jointly into the Global Land Evaporation Amsterdam Model (GLEAM) to improve its simulations of soil moisture and land evaporation. To enable s? and TB assimilation, GLEAM is coupled to the Water Cloud Model and the L-band Microwave Emission from the Biosphere (L-MEB) model. The innovations, i.e. differences between observations and simulations, are mapped onto the model soil moisture states through an Ensemble Kalman Filter. The validation of surface (0-10 cm) soil moisture simulations over the period 2010-2014 against in situ measurements from the International Soil Moisture Network (ISMN) shows that assimilating s? or TB alone improves the average correlation of seasonal anomalies (Ran) from 0.514 to 0.547 and 0.548, respectively. The joint assimilation further improves Ran to 0.559. Associated enhancements in daily evaporative flux simulations by GLEAM are validated based on measurements from 22 FLUXNET stations. Again, the singular assimilation improves Ran from 0.502 to 0.536 and 0.533, respectively for s? and TB, whereas the best performance is observed for the joint assimilation (Ran = 0.546). These results demonstrate the complementary value of assimilating radar backscatter observations together with brightness temperatures for improving estimates of hydrological variables, as their joint assimilation outperforms the assimilation of each observation type separately.

  5. Does a General Temperature-Dependent Q10 Model of Soil Respiration Exist at Biome and Global Scale?

    Hua CHEN; Han-Qin TIAN

    2005-01-01

    Soil respiration (SR) is commonly modeled by a Q10 (an indicator of temperature sensitivity)function in ecosystem models. Q10is usually treated as a constant of 2 in these models, although Q10 value of SR often decreases with increasing temperatures. It remains unclear whether a general temperaturedependent Q10 model of SR exists at biome and global scale. In this paper, we have compiled the long-term Q10 data of 38 SR studies ranging from the Boreal, Temperate, to Tropical/Subtropical biome on four continents.Our analysis indicated that the general temperature-dependent biome Q10 models of SR existed, especially in the Boreal and Temperate biomes. A single-exponential model was better than a simple linear model in fitting the average Q10 values at the biome scale. Average soil temperature is a better predictor of Q10 value than average air temperature in these models, especially in the Boreal biome. Soil temperature alone could explain about 50% of the Q10 variations in both the Boreal and Temperate biome single-exponential Q10 model. Q10 value of SR decreased with increasing soil temperature but at quite different rates among the three biome Q10 models. The k values (Q10 decay rate constants) were 0.09, 0.07, and 0.02/℃ in the Boreal, Temperate, and Tropical/Subtropical biome, respectively, suggesting that Q10 value is the most sensitive to soil temperature change in the Boreal biome, the second in the Temperate biome, and the least sensitive in the Tropical/Subtropical biome. This also indirectly confirms that acclimation of SR in many soil warming experiments probably occurs. The k value in the "global" single-exponential Q10 model which combined both the Boreal and Temperate biome data set was 0.08/℃. However, the global general temperature-dependent Q10model developed using the data sets of the three biomes is not adequate for predicting Q10 values of SR globally.The existence of the general temperature-dependent Q10 models of SR in the Boreal and

  6. Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model

    Xin, Y.

    2017-12-01

    Under the condition of land-atmosphere heat and water conservation, a set of sensitive numerical experiments are set up to investigate the response of the East Asian climate system to global frozen soil change. This is done by introducing the supercooled soil water process into the Community Land Model (CLM3.0), which has been coupled to the National Center of Atmospheric Research Community Atmosphere Model (CAM3.1). Results show that: 1) The ratio between soil ice and soil water in CLM3.0 is clearly changed by the supercooled soil water process. Ground surface temperature and soil temperature are also affected. 2) The Eurasian (including East Asian) climate system is sensitive to changes of heat and water in frozen soil regions. In January, the Aleutian low sea level pressure circulation is strengthened, Ural blocking high at 500 hPa weakened, and East Asian trough weakened. In July, sea level pressure over the Aleutian Islands region is significantly reduced; there are negative anomalies of 500 hPa geopotential height over the East Asian mainland, and positive anomalies over the East Asian ocean. 3) In January, the southerly component of the 850 hPa wind field over East Asia increases, indicating a weakened winter monsoon. In July, cyclonic anomalies appear on the East Asian mainland while there are anticyclonic anomalies over the ocean, reflective of a strengthened east coast summer monsoon. 4) Summer rainfall in East Asia changed significantly, including substantial precipitation increase on the southern Qinghai-Tibet Plateau, central Yangtze River Basin, and northeast China. Summer rainfall significantly decreased in south China and Hainan Island, but slightly decreased in central and north China. Further analysis showed considerable upper air motion along 30°N latitude, with substantial descent of air at its north and south sides. Warm and humid air from the Northeast Pacific converged with cold air from northern land areas, representing the main cause of

  7. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  8. Effects of Climate Change and Organic Matter Amendments on the Fate of Soil Carbon and the Global Warming Potential of CO2, CH4, and N2O Emissions in an Upland Soil

    Simmonds, M.; Muehe, E. M.; Fendorf, S. E.

    2017-12-01

    Our current understanding of the mechanisms driving carbon stabilization in soil organic matter (SOM) and its release to the atmosphere is insufficient for predicting the response of soil carbon dynamics to future climatic conditions. The persistence of SOM has been studied primarily within the context of biochemical, physical, and geochemical protection from decomposition. More recently, bioenergetic constraints on SOM decomposition due to oxygen limitations have been demonstrated in submerged soils. However, the relevance of anaerobic domains in upland soils is uncertain. To better understand how upland soils will respond to climate change, we conducted a 52-day incubation of an upland soil at constant soil moisture (field capacity) under varying air temperatures (32°C and 37°C), CO2 concentrations (398 and 850 ppmv), and soil organic carbon contents (1.3%, 2.4%). Overall, we observed a stimulatory effect of future climate (elevated temperature and CO2) and higher carbon inputs on net SOM mineralization rates (higher CO2, CH4 and N2O emissions). Importantly, CH4 emissions were observed in the soils with added plant residue, indicating anaerobic microsites are relevant in upland soils, and significantly impact microbial respiration pathways, rates of SOM mineralization, and the global warming potential of trace gas emissions. These findings have important implications for positive soil carbon-climate feedbacks, and warrant further investigation into representing anaerobic soil domains of upland soils in biogeochemical models.

  9. Soil heating during wildfires and prescribed burns: a global evaluation based on existing and new data

    Doerr, Stefan; Santin, Cristina; Reardon, James; Mataix-Solera, Jorge; Stoof, Cathelijne; Bryant, Rob; Miesel, Jessica; Badia, David

    2017-04-01

    Heat transfer from the combustion of ground fuels and soil organic matter during vegetation fires can cause substantial changes to the physical, chemical and biological characteristics of soils. Numerous studies have investigated the effects of wildfires and prescribed burns on soil properties based either on field samples or using laboratory experiments. Critical thresholds for changes in soil properties, however, have been determined largely based on laboratory heating experimentation. These experimental approaches have been criticized for being inadequate for reflecting the actual heating patterns soil experienced in vegetation fires, which remain poorly understood. To address this research gap, this study reviews existing and evaluates new field data on key soil heating parameters determined during wildfires and prescribed burns from a wide range of environments. The results highlight the high spatial and temporal variability in soil heating patters not only between, but also within fires. Most wildfires and prescribed burns are associated with heat pulses that are much shorter than those typically applied in laboratory studies, which can lead to erroneous conclusions when results from laboratory studies are used to predict fire impacts on soils in the field.

  10. Soil

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  11. Improved ground hydrology calculations for global climate models (GCMs) - Soil water movement and evapotranspiration

    Abramopoulos, F.; Rosenzweig, C.; Choudhury, B.

    1988-01-01

    A physically based ground hydrology model is presented that includes the processes of transpiration, evaporation from intercepted precipitation and dew, evaporation from bare soil, infiltration, soil water flow, and runoff. Data from the Goddard Institute for Space Studies GCM were used as inputs for off-line tests of the model in four 8 x 10 deg regions, including Brazil, Sahel, Sahara, and India. Soil and vegetation input parameters were caculated as area-weighted means over the 8 x 10 deg gridbox; the resulting hydrological quantities were compared to ground hydrology model calculations performed on the 1 x 1 deg cells which comprise the 8 x 10 deg gridbox. Results show that the compositing procedure worked well except in the Sahel, where low soil water levels and a heterogeneous land surface produce high variability in hydrological quantities; for that region, a resolution better than 8 x 10 deg is needed.

  12. Global warming and soil microclimate: results from a meadow-warming experiment

    Harte, J. [University of California, Berkeley, CA. (United States); Torn, M. S.; Chang, F. R.; Feifarek, B.; Kinzig, A. P.; Shaw, R.; Shen, K.

    1995-02-15

    We used overhead infrared radiators to add a constant increment of â15 W/m², over 2 yr, to the downward heat flux on five 30-m² montane meadow plots in Gunnison County, Colorado, USA. Heating advanced snowmelt by â1 wk, increased summer soil temperatures by up to 3°C, and reduced summer soil moisture levels by up to 25% compared to control plots. Soil microclimate response to heating varied with season, time of day, weather conditions, and location along the microclimate and vegetation gradient within each plot, with the largest temperature increase observed in daytime and in the drier, more sparsely vegetated zone of each plot. Day-to-day variation in the daily-averaged temperature response to heating in the drier zone was negatively correlated with that in the wetter zone. Our experimental manipulation provides a novel and effective method for investigating feedback processes linking climate, soil, and vegetation. (author)

  13. A Global Database of Gas Fluxes from Soils after Rewetting or Thawing, Version 1.0

    National Aeronautics and Space Administration — This database contains information compiled from published studies on gas flux from soil following rewetting or thawing. The resulting database includes 222 field...

  14. A Global Database of Soil Phosphorus Compiled from Studies Using Hedley Fractionation

    National Aeronautics and Space Administration — ABSTRACT: This data set provides concentrations of soil phosphorus (P) compiled from the peer-reviewed literature that cited the Hedley fractionation method (Hedley...

  15. A Global Database of Soil Phosphorus Compiled from Studies Using Hedley Fractionation

    National Aeronautics and Space Administration — This data set provides concentrations of soil phosphorus (P) compiled from the peer-reviewed literature that cited the Hedley fractionation method (Hedley and...

  16. The European programme boris (bioavailability of radionuclides in soils): a global analysis of results

    Tamponnet, C.; Martin-Garin, A.; Gonzr, M.A.; Parekh, N.; Vallejo, R.; Sauras, T.; Casadesus, J.; Plassard, C.; Staunton, S.; Norden, M.; Avila, R.; Shaw, G.; Wells, C.

    2004-01-01

    The ability to predict the consequences of an accidental release of radioactive nuclides relies mainly on the level of understanding of the mechanisms involved in radioactive nuclides interactions with different components of agricultural and natural ecosystems and their formalization into predictive models. Numerous studies and databases about contaminated agricultural and natural areas have been obtained but their use to enhance our prediction ability has been largely limited by their unresolved variability. Such variability seems to stem from an incomplete knowledge about radioactive nuclide interactions with the soil matrix, soil moisture, biological elements in the soil and additional pollutants, which may be found in such soils. In this project, we investigated mainly the role of the biological elements (plants, mycorrhizas, microbes) in: radioactive nuclide sorption/desorption in soils and radioactive nuclide uptake/release by plants. Because of the importance of the chemical nature of the involved radioactive nuclides, we followed the bioavailability of three radioactive nuclides: caesium, strontium, and technetium. The role of one additional non-radioactive pollutant (copper) has been scrutinised. Role of microorganisms (K d for caesium and strontium in organic soils is much greater in the presence of microorganisms than in their absence), plant physiology (changes in plant physiology affect radionuclide uptake by plants), the presence of mycorrhizal fungi (interferes with the uptake of radionuclides by plants), have been demonstrated. Knowledge acquired from these experiments has been incorporated into two mechanistic models CHEMFAST (a soil Column Heuristic Model of radionuclide Fixation and Solution Transport) and BIORUR specifically modelling radioactive nuclide sorption/desorption from soil matrices and radioactive nuclide uptake by/release from plants. These mechanistic models have been incorporated into an assessment model to enhance its prediction

  17. Soils

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  18. Compilation of a global N{sub 2}O emission inventory for tropical rainforest soils using a detailed biogeochemical model

    Werner, C.

    2007-09-15

    Nitrous oxide (N{sub 2}O) is a potent trace gas contributing to approximately 6% to the observed anthropogenic global warming. Soils have been identified to be the major source of atmospheric N{sub 2}O and tropical rainforest soils are thought to account for the largest part. Furthermore, various studies have shown that the magnitude of N{sub 2}O emissions from tropical rainforest soil is highly variable on spatial and temporal scales. Detailed, process-based models coupled to Geographic Information Systems (GIS) are considered promising tools for the calculation of N{sub 2}O emission inventories. This methodology explicitly accounts for the governing microbial processes as well as the environmental controls. Moreover, mechanistic biogeochemical models operating in daily time-steps (e.g. ForestDNDC-tropica) have been shown to capture the observed intra- and inter-annual variations of N{sub 2}O emissions. However, detailed N{sub 2}O emission datasets are required for model calibration and testing, but are currently few in numbers. In this study an automated measurement system was used to derive detailed datasets of N{sub 2}O, methane (CH{sub 4}) and carbon dioxide (CO{sub 2}) soil-atmosphere exchange and important environmental parameters from tropical rainforest soils in Kenya and Southwest China. Distinct differences were identified in the magnitude of the C and N soil-atmosphere exchange at the investigated sites and forest types. However, common features such as N{sub 2}O pulse emissions after dry season or the pronounced soil moisture dependency of N{sub 2}O emissions were observed at both sites. The derived datasets are unique for these tropical regions as so far no information about the source strength of these regions was available and, for the first time, the N{sub 2}O, CH{sub 4} and CO{sub 2} soil-atmosphere exchange was recorded in sub-daily resolution. The datasets were utilized in conjunction with available high-resolution datasets from Australian

  19. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Astitha, M.; Lelieveld, J.; Abdel Kader, M.; Pozzer, A.; de Meij, A.

    2012-11-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET) and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others). The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70-75% of the modelled monthly aerosol optical depth (AOD) in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions). Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  20. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    M. Astitha

    2012-11-01

    Full Text Available Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry. One uses a globally uniform soil particle size distribution, whereas the other explicitly accounts for different soil textures worldwide. We have tested these two versions and investigated the sensitivity to input parameters, using remote sensing data from the Aerosol Robotic Network (AERONET and dust concentrations and deposition measurements from the AeroCom dust benchmark database (and others. The two versions are shown to produce similar atmospheric dust loads in the N-African region, while they deviate in the Asian, Middle Eastern and S-American regions. The dust outflow from Africa over the Atlantic Ocean is accurately simulated by both schemes, in magnitude, location and seasonality. Approximately 70% of the modelled annual deposition data and 70–75% of the modelled monthly aerosol optical depth (AOD in the Atlantic Ocean stations lay in the range 0.5 to 2 times the observations for all simulations. The two versions have similar performance, even though the total annual source differs by ~50%, which underscores the importance of transport and deposition processes (being the same for both versions. Even though the explicit soil particle size distribution is considered more realistic, the simpler scheme appears to perform better in several locations. This paper discusses the differences between the two versions of the dust emission scheme, focusing on their limitations and strengths in describing the global dust cycle and suggests possible future improvements.

  1. Modeling Root Exudation, Priming and Protection in Soil Carbon Responses to Elevated CO2 from Ecosystem to Global Scales

    Sulman, B. N.; Phillips, R.; Shevliakova, E.; Oishi, A. C.; Pacala, S. W.

    2014-12-01

    The sensitivity of soil organic carbon (SOC) to changing environmental conditions represents a critical uncertainty in coupled carbon cycle-climate models. Much of this uncertainty arises from our limited understanding of the extent to which plants induce SOC losses (through accelerated decomposition or "priming") or promote SOC gains (via stabilization through physico-chemical protection). We developed a new SOC model, "Carbon, Organisms, Rhizosphere and Protection in the Soil Environment" (CORPSE), to examine the net effect of priming and protection in response to rising atmospheric CO2, and conducted simulations of rhizosphere priming effects at both ecosystem and global scales. At the ecosystem scale, the model successfully captured and explained disparate SOC responses at the Duke and Oak Ridge free-air CO2 enrichment (FACE) experiments. We show that stabilization of "new" carbon in protected SOC pools may equal or exceed microbial priming of "old" SOC in ecosystems with readily decomposable litter (e.g. Oak Ridge). In contrast, carbon losses owing to priming dominate the net SOC response in ecosystems with more resistant litters (e.g. Duke). For global simulations, the model was fully integrated into the Geophysical Fluid Dynamics Laboratory (GFDL) land model LM3. Globally, priming effects driven by enhanced root exudation and expansion of the rhizosphere reduced SOC storage in the majority of terrestrial areas, partially counterbalancing SOC gains from the enhanced ecosystem productivity driven by CO2 fertilization. Collectively, our results suggest that SOC stocks globally depend not only on temperature and moisture, but also on vegetation responses to environmental changes, and that protected C may provide an important constraint on priming effects.

  2. Subsurface watering resulted in reduced soil N2O and CO2 emissions and their global warming potentials than surface watering

    Wei, Qi; Xu, Junzeng; Yang, Shihong; Liao, Linxian; Jin, Guangqiu; Li, Yawei; Hameed, Fazli

    2018-01-01

    Water management is an important practice with significant effect on greenhouse gases (GHG) emission from soils. Nitrous oxide (N2O) and carbon dioxide (CO2) emissions and their global warming potentials (GWPs) from subsurface watering soil (SUW) were investigated, with surface watering (SW) as a control. Results indicated that the N2O and CO2 emissions from SUW soils were somewhat different to those from SW soil, with the peak N2O and CO2 fluxes from SUW soil reduced by 28.9% and 19.4%, and appeared 72 h and 168 h later compared with SW. The fluxes of N2O and CO2 from SUW soils were lower than those from SW soil in both pulse and post-pulse periods, and the reduction was significantly (p0.1) lower that from SW soil. Moreover, N2O and CO2 fluxes from both watering treatments increased exponentially with increase of soil water-filled pore space (WFPS) and temperature. Our results suggest that watering soil from subsurface could significantly reduce the integrative greenhouse effect caused by N2O and CO2 and is a promising strategy for soil greenhouse gases (GHGs) mitigation. And the pulse period, contributed most to the reduction in emissions of N2O and CO2 from soils between SW and SUW, should be a key period for mitigating GHGs emissions. Response of N2O and CO2 emissions to soil WFPS and temperature illustrated that moisture was the dominant parameters that triggering GHG pulse emissions (especially for N2O), and temperature had a greater effect on the soil microorganism activity than moisture in drier soil. Avoiding moisture and temperature are appropriate for GHG emission at the same time is essential for GHGs mitigation, because peak N2O and CO2 emission were observed only when moisture and temperature are both appropriate.

  3. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  4. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  5. A call to strengthen the global strategy for schistosomiasis and soil-transmitted helminthiasis: the time is now

    Lo, Nathan C.; Addiss, David G.; Hotez, Peter J.; King, Charles H.; Stothard, J. Russell; Evans, Darin S.; Colley, Daniel G.; Lin, William; Coulibaly, Jean T.; Bustinduy, Amaya L.; Raso, Giovanna; Bendavid, Eran; Bogoch, Isaac I.; Fenwick, Alan; Savioli, Lorenzo; Molyneux, David; Utzinger, Jürg; Andrews, Jason R.

    2016-01-01

    Summary In 2001, the World Health Assembly (WHA) passed the landmark WHA 54.19 resolution for global scale up of mass administration of anthelminthic drugs for morbidity control of schistosomiasis and soil-transmitted helminthiasis (STH), which affect over 1.5 billion of the world's poorest people. Since then, over a decade of research and experience has yielded critical new knowledge on the control and elimination of these helminthiases. However, the global strategy has remained largely unchanged since the original 2001 WHA resolution and associated World Health Organization (WHO) guidelines on preventive chemotherapy. Here, we highlight recent advances that, taken together, support a call to revise the global strategy and guidelines for preventive chemotherapy and complementary interventions against schistosomiasis and STH. This includes the development of guidance that is specific to goals of “morbidity control” and “elimination of transmission.” We quantify the result of forgoing this opportunity by computing the yearly disease burden, mortality, and lost economic productivity associated with maintaining status quo. Without change, we estimate that the population of sub-Saharan Africa will likely lose 2.3 million disability-adjusted life years and US$3.5 billion of economic productivity every year, which is comparable to recent acute epidemics, including the 2014 Ebola and 2015 Zika epidemics. We propose that the time is now to strengthen the global strategy to address the substantial disease burden of schistosomiasis and STH. PMID:27914852

  6. Hierarchical responses of plant–soil interactions to climate change: consequences for the global carbon cycle

    Bardgett, R.D.; Manning, P.; Morrien, E.; De Vries, F.T.

    2013-01-01

    1.Interactions between plant and soil communities play a major role in determining the impact of climate change on ecosystem functioning and the carbon cycle, and the mechanisms involved operate over a wide range of spatial and temporal scales. 2.We present a framework for understanding the

  7. Role of forestry in mitigating global soil pollution from toxic heavy ...

    One of the challenges confronting environmental management is the pollution of land, air and water resources by toxic heavy metals.This review seeks to identify the plant species and their potentials for remediation, less cost effective methods to remediate contaminated soils, and the remediation capability of woody plants.

  8. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  9. Global questions, local answers: soil management and sustainable intensification in diverse socioeconomic contexts of Cuba

    McCune, N.; Ruiz Gonzalez, Y.; Alcantara, E.A.; Fernandez Martinez, O.; Onelio Fundaro, C.; Castillo Arzola, N.; Cairo Cairo, P.; Haese, D' M.; Neve, De S.; Guevara Hernandez, F.

    2011-01-01

    In the complex context of global food and agricultural systems, research in agriculture must respond to multidisciplinary questions of economic development, ecological sustainability and food justice. With the objective of responding to several of the most important questions facing agriculture

  10. Estimation of daily global solar radiation as a function of the solar energy potential at soil surface

    Pereira, A.B.; Vrisman, A.L.; Galvani, E.

    2002-01-01

    The solar radiation received at the surface of the earth, apart from its relevance to several daily human activities, plays an important role in the growth and development of plants. The aim of the current work was to develop and gauge an estimation model for the evaluation of the global solar radiation flux density as a function of the solar energy potential at soil surface. Radiometric data were collected at Ponta Grossa, PR, Brazil (latitude 25°13' S, longitude 50°03' W, altitude 880 m). Estimated values of solar energy potential obtained as a function of only one measurement taken at solar noon time were confronted with those measured by a Robitzsch bimetalic actinograph, for days that presented insolation ratios higher than 0.85. This data set was submitted to a simple linear regression analysis, having been obtained a good adjustment between observed and calculated values. For the estimation of the coefficients a and b of Angström's equation, the method based on the solar energy potential at soil surface was used for the site under study. The methodology was efficient to assess the coefficients, aiming at the determination of the global solar radiation flux density, whith quickness and simplicity, having also found out that the criterium for the estimation of the solar energy potential is equivalent to that of the classical methodology of Angström. Knowledge of the available solar energy potential and global solar radiation flux density is of great importance for the estimation of the maximum atmospheric evaporative demand, of water consumption by irrigated crops, and also for building solar engineering equipment, such as driers, heaters, solar ovens, refrigerators, etc [pt

  11. Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products

    Kim, Hyunglok; Parinussa, Robert; Konings, Alexandra G.; Wagner, Wolfgang; Cosh, Michael H.; Lakshmi, Venkat; Zohaib, Muhammad; Choi, Minha

    2018-01-01

    Global-scale surface soil moisture (SSM) products retrieved from active and passive microwave remote sensing provide an effective method for monitoring near-real-time SSM content with nearly daily temporal resolution. In the present study, we first inter-compared global-scale error patterns and combined the Soil Moisture Active Passive (SMAP), Advanced Scatterometer (ASCAT), and Advanced Microwave Scanning Radiometer 2 (AMSR2) SSM products using a triple collocation (TC) analysis and the maximized Pearson correlation coefficient (R) method from April 2015 to December 2016. The Global Land Data Assimilation System (GLDAS) and global in situ observations were utilized to investigate and to compare the quality of satellite-based SSM products. The average R-values of SMAP, ASCAT, and AMSR2 were 0.74, 0.64, and 0.65 when they compared with in situ networks, respectively. The ubRMSD values were (0.0411, 0.0625, and 0.0708) m3 m- 3; and the bias values were (- 0.0460, 0.0010, and 0.0418) m3 m- 3 for SMAP, ASCAT, and AMSR2, respectively. The highest average R-values from SMAP against the in situ results are very encouraging; only SMAP showed higher R-values than GLDAS in several in situ networks with low ubRMSD (0.0438 m3 m- 3). Overall, SMAP showed a dry bias (- 0.0460 m3 m- 3) and AMSR2 had a wet bias (0.0418 m3 m- 3); while ASCAT showed the least bias (0.0010 m3 m- 3) among all the products. Each product was evaluated using TC metrics with respect to the different ranges of vegetation optical depth (VOD). Under vegetation scarce conditions (VOD 0.40) ASCAT showed comparatively better performance than did the other products. Using the maximized R method, SMAP, ASCAT, and AMSR2 products were combined one by one using the GLDAS dataset for reference SSM values. When the satellite products were combined, R-values of the combined products were improved or degraded depending on the VOD ranges produced, when compared with the results from the original products alone. The

  12. Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models

    Hashimoto, Shoji; Nanko, Kazuki; Ťupek, Boris; Lehtonen, Aleksi

    2017-03-01

    Future climate change will dramatically change the carbon balance in the soil, and this change will affect the terrestrial carbon stock and the climate itself. Earth system models (ESMs) are used to understand the current climate and to project future climate conditions, but the soil organic carbon (SOC) stock simulated by ESMs and those of observational databases are not well correlated when the two are compared at fine grid scales. However, the specific key processes and factors, as well as the relationships among these factors that govern the SOC stock, remain unclear; the inclusion of such missing information would improve the agreement between modeled and observational data. In this study, we sought to identify the influential factors that govern global SOC distribution in observational databases, as well as those simulated by ESMs. We used a data-mining (machine-learning) (boosted regression trees - BRT) scheme to identify the factors affecting the SOC stock. We applied BRT scheme to three observational databases and 15 ESM outputs from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) and examined the effects of 13 variables/factors categorized into five groups (climate, soil property, topography, vegetation, and land-use history). Globally, the contributions of mean annual temperature, clay content, carbon-to-nitrogen (CN) ratio, wetland ratio, and land cover were high in observational databases, whereas the contributions of the mean annual temperature, land cover, and net primary productivity (NPP) were predominant in the SOC distribution in ESMs. A comparison of the influential factors at a global scale revealed that the most distinct differences between the SOCs from the observational databases and ESMs were the low clay content and CN ratio contributions, and the high NPP contribution in the ESMs. The results of this study will aid in identifying the causes of the current mismatches between observational SOC databases and ESM outputs

  13. Global Soil Moisture Estimation from L-Band Satellite Data: The Impact of Radiative Transfer Modeling in Assimilation and Retrieval Systems

    De Lannoy, Gabrielle; Reichle, Rolf; Gruber, Alexander; Bechtold, Michel; Quets, Jan; Vrugt, Jasper; Wigneron, Jean-Pierre

    2018-01-01

    The SMOS and SMAP missions have collected a wealth of global L-band Brightness temperature (Tb) observations. The retrieval of surface Soil moisture estimates, and the estimation of other geophysical Variables, such as root-zone soil moisture and temperature, via data Assimilation into land surface models largely depends on accurate Radiative transfer modeling (RTM). This presentation will focus on various configuration aspects of the RTM (i) for the inversion of SMOS Tb to surface soil moisture, and (ii) for the forward modeling as part of a SMOS Tb data assimilation System to estimate a consistent set of geophysical land surface Variables, using the GEOS-5 Catchment Land Surface Model.

  14. A review of the (Revised) Universal Soil Loss Equation (R/USLE): with a view to increasing its global applicability and improving soil loss estimates

    Benavidez, Rubianca; Jackson, Bethanna; Maxwell, Deborah; Norton, Kevin

    2018-01-01

    Soil erosion is a major problem around the world because of its effects on soil productivity, nutrient loss, siltation in water bodies, and degradation of water quality. By understanding the driving forces behind soil erosion, we can more easily identify erosion-prone areas within a landscape and use land management and other strategies to effectively manage the problem. Soil erosion models have been used to assist in this task. One of the most commonly used soil erosion models is the Univers...

  15. Relevance of soil and terrain information in studies of major global issues

    Bindraban, P.S.; Batjes, N.H.; Leenaars, J.G.B.; Bai, Z.G.

    2010-01-01

    The Carbon Benefits Project (CBP) is working to produce a standardized system for Global Environmental Facility (GEF) and other sustainable land management (SLM) projects to measure, monitor and model carbon stock changes and greenhouse gas (GHG) emissions. The project builds on existing C-inventory

  16. Simulated long-term changes in river discharge and soil moisture due to global warming

    Manabe, S.; Milly, P.C.D.; Wetherald, R.

    2004-01-01

    By use of a coupled ocean atmosphere-land model, this study explores the changes of water availability, as measured by river discharge and soil moisture, that could occur by the middle of the 21st century in response to combined increases of greenhouse gases and sulphate aerosols based upon the "IS92a" scenario. In addition, it presents the simulated change in water availability that might be realized in a few centuries in response to a quadrupling of CO2 concentration in the atmosphere. Averaging the results over extended periods, the radiatively forced changes, which are very similar between the two sets of experiments, were successfully extracted. The analysis indicates that the discharges from Arctic rivers such as the Mackenzie and Ob' increase by up to 20% (of the pre-Industrial Period level) by the middle of the 21st century and by up to 40% or more in a few centuries. In the tropics, the discharges from the Amazonas and Ganga-Brahmaputra rivers increase substantially. However, the percentage changes in runoff from other tropical and many mid-latitude rivers are smaller, with both positive and negative signs. For soil moisture, the results of this study indicate reductions during much of the year in many semiarid regions of the world, such as the southwestern region of North America, the northeastern region of China, the Mediterranean coast of Europe, and the grasslands of Australia and Africa. As a percentage, the reduction is particularly large during the dry season. From middle to high latitudes of the Northern Hemisphere, soil moisture decreases in summer but increases in winter.

  17. Global change and biological soil crusts: Effects of ultraviolet augmentation under altered precipitation regimes and nitrogen additions

    Belnap, J.; Phillips, S.L.; Flint, S.; Money, J.; Caldwell, M.

    2008-01-01

    Biological soil crusts (BSCs), a consortium of cyanobacteria, lichens, and mosses, are essential in most dryland ecosystems. As these organisms are relatively immobile and occur on the soil surface, they are exposed to high levels of ultraviolet (UV) radiation and atmospheric nitrogen (N) deposition, rising temperatures, and alterations in precipitation patterns. In this study, we applied treatments to three types of BSCs (early, medium, and late successional) over three time periods (spring, summer, and spring-fall). In the first year, we augmented UV and altered precipitation patterns, and in the second year, we augmented UV and N. In the first year, with average air temperatures, we saw little response to our treatments except quantum yield, which was reduced in dark BSCs during one of three sample times and in Collema BSCs two of three sample times. There was more response to UV augmentation the second year when air temperatures were above average. Declines were seen in 21% of the measured variables, including quantum yield, chlorophyll a, UV-protective pigments, nitrogenase activity, and extracellular polysaccharides. N additions had some negative effects on light and dark BSCs, including the reduction of quantum yield, ??-carotene, nitrogenase activity, scytonemin, and xanthophylls. N addition had no effects on the Collema BSCs. When N was added to samples that had received augmented UV, there were only limited effects relative to samples that received UV without N. These results indicate that the negative effect of UV and altered precipitation on BSCs will be heightened as global temperatures increase, and that as their ability to produce UV-protective pigments is compromised, physiological functioning will be impaired. N deposition will only ameliorate UV impacts in a limited number of cases. Overall, increases in UV will likely lead to lowered productivity and increased mortality in BSCs through time, which, in turn, will reduce their ability to contribute

  18. Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink

    Smith, K.A.; Dobbie, K.E.; Ball, B.C.

    2000-01-01

    to the oxidation. The effect of temperature was small, attributed to substrate limitation and low atmospheric concentration. Analysis of all available data for CH4 oxidation rates in situ showed similar log-normal distributions to those obtained for our results, with generally little difference between different......This paper reports the range and statistical distribution of oxidation rates of atmospheric CH4 in soils found in Northern Europe in an international study, and compares them with published data for various other ecosystems. It reassesses the size, and the uncertainty in, the global terrestrial CH4...... sink, and examines the effect of land-use change and other factors on the oxidation rate. Only soils with a very high water table were sources of CH4; all others were sinks. Oxidation rates varied from 1 to nearly 200 µg CH4 m-2 h-1; annual rates for sites measured for =1 y were 0.1-9.1 kg CH4 ha-1 y-1...

  19. Global achievements in soil and water conservation: The case of Conservation Agriculture

    A. Kassam

    2014-03-01

    In 2011, CA had spread over 125 million hectares (9% of the global cropped land across all continents and most agro-ecologies, including small and large farms. In addition, there is a significant area of CA orchards in the Mediterranean countries. CA is now considered to be a practical agro-ecological approach to achieving sustainable agriculture intensification. It offers environmental, economic and social advantages that are not fully possible with tillage-based production systems, as well as improved productivity and resilience, and improved ecosystem services while minimizing the excessive use of agrochemicals, energy and heavy machinery. While there are challenges to the adoption of CA, there is also increasing interest from producers, the civil society, donors and private sector institutions to further promote and service the uptake and spread of CA globally.

  20. Impacts of 2°C global warming on primary production and soil carbon storage capacity at pan-European level

    Abdulla Sakalli

    2017-08-01

    Full Text Available Atmospheric CO2 has been dramatically increasing since beginning of the industrial time (i.e. 1860, being one of the main driver for climate change at regional and global level. The change in CO2 concentration in the atmosphere, together with that of temperature, precipitation and/or so radiation, can influence the biogeochemical cycles in all ecosystems. In this study, we investigate the combined effect of CO2 concentration and six climate variables on carbon uptake, i.e., gross primary production (GPP and carbon storage, i.e, soil carbon (SoilC in terrestrial biosphere by using the Community Land Model (CLM vers. 4.5 and evaluate the model’s results against available observation data. We also analysed the change in carbon uptake and storage under a 2°C global mean warming. Results show that the model performed reasonably well for GPP and SoilC at pan-European scale. We also found a positive correlation between GPP, precipitation and surface wind, and a negative correlation between GPP and surface downwelling longwave radiation (rlds. Under a 2°C global warming, GPP and SoilC show an increase, an average, of about 20%, and 5% at pan-European scale, respectively. However, our results indicate that CLM4.5 may need improvements particularly in carbon-nitrogen interaction and carbon accumulation in soil.

  1. SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture

    Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang

    2018-02-01

    Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.

  2. New era of satellite chlorophyll fluorescence and soil moisture observations leads to advances in the predictive understanding of global terrestrial coupled carbon-water cycles

    Qiu, B.; Xue, Y.; Fisher, J.; Guo, W.

    2017-12-01

    The terrestrial carbon cycle and water cycle are coupled through a multitude of connected processes among soil, roots, leaves, and the atmosphere. The strength and sensitivity of these couplings are not yet well known at the global scale, which contributes to uncertainty in predicting the terrestrial water and carbon budgets. For the first time, we now have synchronous, high fidelity, global-scale satellite observations of critical terrestrial carbon and water cycle components: sun-induced chlorophyll fluorescence (SIF) and soil moisture. We used these observations within the framework of a well-established global terrestrial biosphere model (Simplified Simple Biosphere Model version 2.0, SSiB2) to investigate carbon-water coupling processes. We updated SSiB2 to include a mechanistic representation of SIF and tested the sensitivity of model parameters to improve the simulation of both SIF and soil moisture with the ultimate objective of improving the first-order terrestrial carbon component, gross primary production (GPP). Although several vegetation parameters, such as leaf area index (LAI) and green leaf fraction, improved the simulated SIF, and several soil parameters, such as hydraulic conductivity, improved simulated soil moisture, their effects were mainly limited to their respective cycles. One parameter emerged as the key coupler between the carbon and water cycles: the wilting point. Updates to the wilting point significantly improved the simulations for both soil moisture and SIF, as well as GPP. This study demonstrates the value of synchronous global measurements of the terrestrial carbon and water cycles in improving the understanding of coupled carbon-water cycles.

  3. How do controlled burns modify soil nutrients under the global change?

    E. Marcos

    2013-05-01

    Full Text Available The increased deposition of nutrients from the atmosphere has contributed to widespread changes in heathland ecosystems throughout Europe. Management measures, as a prescribed burning, are nowadays considered a tool with which to mitigate impacts of atmospheric nutrient loads by reducing nutrient stores in the above-ground biomass and soils. In this study we want to determine if prescribed burning is an adequate tool to maintain low nutrient levels (mainly nitrogen in heathlands in the Cantabrian Mountain which are affected by atmospheric nitrogen deposition. Three heathlands sites dominated by Calluna vulgaris were selected. In June 2005, three plots (20 x 20 m per site were established. One of them was used as a control, the second was burned and the third was burned plus fertilized with ammonium nitrate (56 kg N ha–1 yr–1 to simulated atmospheric deposition. Our results show that prescribed burning resulted in an important decrease in nitrogen and an increase in phosphorous immediately after burning. Five years later, nitrogen recovered around 80% in the burning + fertilized plot, 40% in burned plot and 77% in control plot. However, an important decreased in phosphorous were detected mainly in burning + fertilized plot (63% and burning plot (34%, while losses were lower in control plots (13%. These results suggest that heaths managed by prescribed burning will accumulate nitrogen in the long term which will affect to the surviving of this type of heathlands.

  4. Possible Detection of Perchlorates by Evolved Gas Analysis of Rocknest Soils: Global Implication

    Archer, P. D., Jr.; Sutter, B.; Ming, D. W.; McKay, C. P.; Navarro-Gonzalez, R.; Franz, H. B.; McAdam, A.; Mahaffy, P. R.

    2013-01-01

    The Sample Analysis at Mars (SAM) instrument suite on board the Mars Science Laboratory (MSL) recently ran four samples from an aeolian bedform named Rocknest. Rocknest was selected as the source of the first samples analyzed because it is representative of both windblown material in Gale crater as well as the globally-distributed dust. The four samples analyzed by SAM were portioned from the fifth scoop at this location. The material delivered to SAM passed through a 150 m sieve and should have been well mixed during the sample acquisition/ preparation/handoff process. Rocknest samples were heated to 835 C at a 35 C/minute ramp rate with a He carrier gas flow rate of 1.5 standard cubic centimeters per minute and at an oven pressure of 30 mbar. Evolved gases were detected by a quadrupole mass spectrometer (QMS).

  5. Potential impacts of wintertime soil moisture anomalies from agricultural irrigation at low latitudes on regional and global climates

    Wey, Hao-Wei; Lo, Min-Hui; Lee, Shih-Yu; Yu, Jin-Yi; Hsu, Huang-Hsiung

    2015-10-01

    Anthropogenic water management can change surface energy budgets and the water cycle. In this study, we focused on impacts of Asian low-latitude irrigation on regional and global climates during boreal wintertime. A state-of-the-art Earth system model is used to simulate the land-air interaction processes affected by irrigation and the consequent responses in atmospheric circulation. Perturbed experiments show that wet soil moisture anomalies at low latitudes can reduce the surface temperature on a continental scale through atmospheric feedback. The intensity of prevailing monsoon circulation becomes stronger because of larger land-sea thermal contrast. Furthermore, anomalous upper level convergence over South Asia and midlatitude climatic changes indicate tropical-extratropical teleconnections. The wintertime Aleutian low is deepened and an anomalous warm surface temperature is found in North America. Previous studies have noted this warming but left it unexplained, and we provide plausible mechanisms for these remote impacts coming from the irrigation over Asian low-latitude regions.

  6. A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN) v1.0

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-10-01

    While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.

  7. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions.

    Tian, Hanqin; Lu, Chaoqun; Yang, Jia; Banger, Kamaljit; Huntzinger, Deborah N; Schwalm, Christopher R; Michalak, Anna M; Cook, Robert; Ciais, Philippe; Hayes, Daniel; Huang, Maoyi; Ito, Akihiko; Jain, Atul K; Lei, Huimin; Mao, Jiafu; Pan, Shufen; Post, Wilfred M; Peng, Shushi; Poulter, Benjamin; Ren, Wei; Ricciuto, Daniel; Schaefer, Kevin; Shi, Xiaoying; Tao, Bo; Wang, Weile; Wei, Yaxing; Yang, Qichun; Zhang, Bowen; Zeng, Ning

    2015-06-01

    Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO 2 ) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 10 15  g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr -1 with a median value of 51 Pg C yr -1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO 2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied

  8. Cross-cutting activities: Soil quality and soil metagenomics

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  9. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    Skinner, Colin; Gattinger, Andreas; Muller, Adrian; Mäder, Paul; Fließbach, Andreas; Stolze, Matthias; Ruser, Reiner; Niggli, Urs

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO 2 eq. ha −1 a −1 lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO 2 eq. ha −1 a −1 . However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO 2 eq. t −1 DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO 2 eq. ha −1 a −1 for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous oxide emissions from soils managed organically compared

  10. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    D. Wisser

    2011-06-01

    Full Text Available Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth's carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result of climate warming in the 21st century. We use a geospatially explicit representation of peat areas and peat depth from a recently-compiled database and a geothermal model to estimate northern North America soil temperature responses to predicted changes in air temperature. We find that, despite a widespread decline in the areas classified as permafrost, soil temperatures in peatlands respond more slowly to increases in air temperature owing to the insulating properties of peat. We estimate that an additional 670 km3 of peat soils in North America, containing ~33 Pg C, could be seasonally thawed by the end of the century, representing ~20 % of the total peat volume in Alaska and Canada. Warming conditions result in a lengthening of the soil thaw period by ~40 days, averaged over the model domain. These changes have potentially important implications for the carbon balance of peat soils.

  11. Impacts of integrated nutrient management on methane emission, global warming potential and carbon storage capacity in rice grown in a northeast India soil.

    Bharali, Ashmita; Baruah, Kushal Kumar; Baruah, Sunitee Gohain; Bhattacharyya, Pradip

    2018-02-01

    Rice soil is a source of emission of two major greenhouse gases (methane (CH 4 ) and nitrous oxide (N 2 O)) and a sink of carbon dioxide (CO 2 ). The effect of inorganic fertilizers in combination with various organics (cow dung, green manure (Sesbania aculeata) Azolla compost, rice husk) on CH 4 emission, global warming potential, and soil carbon storage along with crop productivity were studied at university farm under field conditions. The experiment was conducted in a randomized block design for 2 years in a monsoon rice (cv. Ranjit) ecosystem (June-November, 2014 and 2015). Combined application of inorganic (NPK) with Sesbania aculeata resulted in high global warming potential (GWP) of 887.4 kg CO 2 ha -1 and low GWP of 540.6 kg CO 2 ha -1 was recorded from inorganic fertilizer applied field. Irrespective of the type of organic amendments, flag leaf photosynthesis of the rice crop increased over NPK application (control). There was an increase in CH 4 emission from the organic amended fields compared to NPK alone. The combined application of NPK and Azolla compost was effective in the buildup of soil carbon (16.93 g kg -1 ) and capacity of soil carbon storage (28.1 Mg C ha -1 ) with high carbon efficiency ratio (16.9). Azolla compost application along with NPK recorded 15.66% higher CH 4 emission with 27.43% yield increment over control. Azolla compost application significantly enhanced carbon storage of soil and improved the yielding ability of grain (6.55 Mg ha -1 ) over other treatments.

  12. The Hydrosphere State (Hydros) Satellite Mission: An Earth System Pathfinder for Global Mapping of Soil Moisture and Land Freeze/Thaw

    Entekhabi, D.; Njoku, E. G.; Spencer, M.; Kim, Y.; Smith, J.; McDonald, K. C.; vanZyl, J.; Houser, P.; Dorion, T.; Koster, R.; hide

    2004-01-01

    The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.

  13. Sources of plant-derived carbon and stability of organic matter in soil: Implications for global change

    Susan E. Crow; Kate Lajtha; Timothy R. Filley; Chris Swanston; Richard D. Bowden; Bruce A. Caldwell

    2009-01-01

    Alterations in forest productivity and changes in the relative proportion of above- and belowground biomass may have nonlinear effects on soil organic matter (SOM) storage. To study the influence of plant litter inputs on SOM accumulation, the Detritus Input Removal and Transfer (DIRT) Experiment continuously alters above- and belowground plant inputs to soil by a...

  14. Densidade global de solos medida com anel volumétrico e por cachimbagem de terra fina seca ao ar Bulk density of soil samples measured in the field and through volume measurement of sieved soil

    Bernardo Van Raij

    1989-01-01

    Full Text Available Em laboratórios de rotina de fertilidade do solo, a medida de quantidade de terra para análise é feita em volume, mediante utensílios chamados "cachimbos", que permitem medir volumes de terra. Admite-se que essas medidas reflitam a quantidade de terra existente em volume de solo similar em condições de campo. Essa hipótese foi avaliada neste trabalho, por doze amostras dos horizontes A e B de seis perfis de solos. A densidade em condições de campo foi avaliada por anel volumétrico e, no laboratório, por meio de cachimbos de diversos tamanhos. A cachimbagem revelou-se bastante precisa. Os valores de densidade global calculada variaram de 0,63 a 1,46g/cm³ para medidas de campo e de 0,91 a 1,33g/cm³ para medidas com cachimbos. Portanto, a medida de laboratório subestimou valores altos de densidade e deu resultados mais elevados para valores de campo mais baixos.In soil testing laboratories, soil samples for chemical analysis are usually measured by volume, using appropriate measuring spoons. It is tacitly assumed that such measurements would reflect amounts of soil existing in the same volume under field conditions. This hypothesis was tested, using 12 soil samples of the A and B horizons of six soil profiles. Bulk density in the field was evaluated through a cylindrical metal sampler of 50cm³ and in the laboratory using spoons of different sizes. Measurements of soil volumes by spoons were quite precise. Values of bulk density varied between 0.63 and 1.46g/cm³ for field measurements and between 0.91 and 1.33g/cm³ for laboratory measurements with spoons. Thus, laboratory measurements overestimated lower values of bulk densities and underestimated the higher ones.

  15. Soil temperature response to 21st century global warming: the role of and some implications for peat carbon in thawing permafrost soils in North America

    Wisser, D.; Marchenko, S.; Talbot, J.; Treat, C.; Frolking, S.

    2011-01-01

    Northern peatlands contain a large terrestrial carbon pool that plays an important role in the Earth’s carbon cycle. A considerable fraction of this carbon pool is currently in permafrost and is biogeochemically relatively inert; this will change with increasing soil temperatures as a result

  16. Greenhouse gas fluxes from agricultural soils under organic and non-organic management — A global meta-analysis

    Skinner, Colin, E-mail: colin.skinner@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Gattinger, Andreas, E-mail: andreas.gattinger@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Muller, Adrian, E-mail: adrian.mueller@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Mäder, Paul, E-mail: paul.maeder@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Fließbach, Andreas, E-mail: andreas.fliessbach@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Stolze, Matthias, E-mail: matthias.stolze@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland); Ruser, Reiner, E-mail: reiner.ruser@uni-hohenheim.de [Fertilisation and Soil Matter Dynamics (340i), Institute of Crop Science, University of Hohenheim, Fruwirthstraße 20, 70599 Stuttgart (Germany); Niggli, Urs, E-mail: urs.niggli@fibl.org [Research Institute of Organic Agriculture (FiBL), Ackerstrasse 21, 5070 Frick (Switzerland)

    2014-01-01

    It is anticipated that organic farming systems provide benefits concerning soil conservation and climate protection. A literature search on measured soil-derived greenhouse gas (GHG) (nitrous oxide and methane) fluxes under organic and non-organic management from farming system comparisons was conducted and followed by a meta-analysis. Up to date only 19 studies based on field measurements could be retrieved. Based on 12 studies that cover annual measurements, it appeared with a high significance that area-scaled nitrous oxide emissions from organically managed soils are 492 ± 160 kg CO{sub 2} eq. ha{sup −1} a{sup −1} lower than from non-organically managed soils. For arable soils the difference amounts to 497 ± 162 kg CO{sub 2} eq. ha{sup −1} a{sup −1}. However, yield-scaled nitrous oxide emissions are higher by 41 ± 34 kg CO{sub 2} eq. t{sup −1} DM under organic management (arable and use). To equalize this mean difference in yield-scaled nitrous oxide emissions between both farming systems, the yield gap has to be less than 17%. Emissions from conventionally managed soils seemed to be influenced mainly by total N inputs, whereas for organically managed soils other variables such as soil characteristics seemed to be more important. This can be explained by the higher bioavailability of the synthetic N fertilisers in non-organic farming systems while the necessary mineralisation of the N sources under organic management leads to lower and retarded availability. Furthermore, a higher methane uptake of 3.2 ± 2.5 kg CO{sub 2} eq. ha{sup −1} a{sup −1} for arable soils under organic management can be observed. Only one comparative study on rice paddies has been published up to date. All 19 retrieved studies were conducted in the Northern hemisphere under temperate climate. Further GHG flux measurements in farming system comparisons are required to confirm the results and close the existing knowledge gaps. - Highlights: • Lower area-scaled nitrous

  17. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  18. Parameterization of dust emissions in the global atmospheric chemistry-climate model EMAC: impact of nudging and soil properties

    Astitha, M.; Lelieveld, J.; Kader, M. Abdel; Pozzer, A.; de Meij, A.

    2012-01-01

    Airborne desert dust influences radiative transfer, atmospheric chemistry and dynamics, as well as nutrient transport and deposition. It directly and indirectly affects climate on regional and global scales. Two versions of a parameterization scheme to compute desert dust emissions are incorporated into the atmospheric chemistry general circulation model EMAC (ECHAM5/MESSy2.41 Atmospheric Chemistry). One uses a global...

  19. The Role of Low-severity Fire and Thermal Alteration of Soil Organic Matter in Carbon Preservation and GHG Flux From Global Peatlands

    Flanagan, N. E.; Wang, H.; Hodgkins, S. B.; Richardson, C. J.

    2017-12-01

    Many global peatlands are dominated by fire-adapted plant communities and are subject to frequent wildfires with return intervals ranging between 3 to 100 years. Wildfires in peatlands are typically low-severity events that occur in winter and spring when vegetation is desiccated and soil moisture content is high. As a result, most wildfires consume aboveground fuels in a matter of minutes without igniting the nearly saturated peat. In such fires, surface soil layers are subjected to flash heating with a rapid loss of soil moisture but little loss of soil organic matter (SOM). Such fires have the potential to alter the chemical structure of SOM, even in the absence of combustion, through Maillard's Reaction and similar chemical processes, and through structural changes that protect SOM from decomposition. This study examines the effects of low-intensity surface fires on the recalcitrance of SOM from fire-adapted communities located in subtropical, temperate and sub-boreal peatlands. In addition, soil from a non-fire-adapted Peruvian palm peatland was examined for response to thermal alteration. The timing and temperatures of low-intensity fires were measured in the field during prescribed burns and replicated in simulated fires. The effects of fire on the chemical structure of SOM were examined with FTIR, SEM and XPS. Burned and unburned peat replicates were incubated at three temperatures (5oC, 15oC, 25oC) in controlled chambers for more than six months. Burned replicates initially showed higher CO2, CH4 and NO2 emissions. Yet, within four weeks emissions from the burned replicates dropped below those of unburned replicates and remained significantly lower (10-50%) for the duration of the experiment. In addition, thermal alteration significantly reduced the temperature sensitivity (Q10) of thermally altered peat. After accounting for small initial losses of organic matter (<10 %) during the fire simulations, thermal alteration of SOM resulted in a net long

  20. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland

    Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K

    2017-01-01

    C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two...

  1. Transformation of leaf litter by insect herbivory in the Subarctic: Consequences for soil biogeochemistry under global change

    Kristensen, J. A.; Metcalfe, D. B.; Rousk, J.

    2017-12-01

    Climate warming may increase insect herbivore ranges and outbreak intensities in arctic ecosystems. Thorough understanding of the implications of these changes for ecosystem processes is essential to make accurate predictions of surface-atmosphere carbon (C) feedbacks. Yet, we lack a comprehensive understanding of the impacts of herbivore outbreaks on soil microbial underpinnings of C and nitrogen (N) fluxes. Here, we investigate the growth responses of heterotrophic soil decomposers and C and N mineralisation to simulated defoliator outbreaks in Subarctic birch forests. In microcosms, topsoil was incubated with leaf litter, insect frass, mineral N and combinations of the three; all was added in equal amounts of N. A higher fraction of added C and N was mineralised during outbreaks (frass addition) relative to non-outbreak years (litter addition). However, under high mineral N-availability in the soil of the kind likely under longer periods of enhanced insect herbivory (litter+mineral N), the mineralised fraction of added C decreased while the mineralised fraction of N increased substantially, which suggest a shift towards more N-mining of the organic substrates. This shift was accompanied by higher fungal dominance, and may facilitate soil C-accumulation assuming constant quality of C-inputs. Thus, long-term increases of insect herbivory, of the kind observed in some areas and projected by some models, may facilitate higher ecosystem C-sink capacity in this Subarctic ecosystem.

  2. Global warming potential and greenhouse gas emission under different soil nutrient management practices in soybean-wheat system of central India.

    Lenka, Sangeeta; Lenka, Narendra Kumar; Singh, Amar Bahadur; Singh, B; Raghuwanshi, Jyothi

    2017-02-01

    Soil nutrient management is a key component contributing to the greenhouse gas (GHG) flux and mitigation potential of agricultural production systems. However, the effect of soil nutrient management practices on GHG flux and global warming potential (GWP) is less understood in agricultural soils of India. The present study was conducted to compare three nutrient management systems practiced for nine consecutive years in a soybean-wheat cropping system in the Vertisols of India, in terms of GHG flux and GWP. The treatments were composed of 100% organic (ONM), 100% inorganic (NPK), and integrated nutrient management (INM) with 50% organic + 50% inorganic inputs. The gas samples for GHGs (CO 2 , CH 4 , and N 2 O) were collected by static chamber method at about 15-day interval during 2012-13 growing season. The change in soil organic carbon (SOC) content was estimated in terms of the changes in SOC stock in the 0-15 cm soil over the 9-year period covering 2004 to 2013. There was a net uptake of CH 4 in all the treatments in both soybean and wheat crop seasons. The cumulative N 2 O and CO 2 emissions were in the order of INM > ONM > NPK with significant difference between treatments (p < 0.05) in both the crop seasons. The annual GWP, expressed in terms of CH 4 and N 2 O emission, also followed the same trend and was estimated to be 1126, 1002, and 896 kg CO 2 eq ha -1  year -1 under INM, ONM, and NPK treatments, respectively. However, the change in SOC stock was significantly higher under ONM (1250 kg ha -1  year -1 ) followed by INM (417 kg ha -1  year -1 ) and least under NPK (198 kg ha -1  year -1 ) treatment. The wheat equivalent yield was similar under ONM and INM treatments and was significantly lower under NPK treatment. Thus, the GWP per unit grain yield was lower under ONM followed by NPK and INM treatments and varied from 250, 261, and 307 kg CO 2 eq Mg -1 grain yield under ONM, NPK, and INM treatments, respectively.

  3. Responses of soil respiration to soil management changes in an agropastoral ecotone in Inner Mongolia, China.

    Xue, Haili; Tang, Haiping

    2018-01-01

    Studying the responses of soil respiration ( R s ) to soil management changes is critical for enhancing our understanding of the global carbon cycle and has practical implications for grassland management. Therefore, the objectives of this study were (1) quantify daily and seasonal patterns of R s , (2) evaluate the influence of abiotic factors on R s , and (3) detect the effects of soil management changes on R s . We hypothesized that (1) most of daily and seasonal variation in R s could be explained by soil temperature ( T s ) and soil water content ( S w ), (2) soil management changes could significantly affect R s , and (3) soil management changes affected R s via the significant change in abiotic and biotic factors. In situ R s values were monitored in an agropastoral ecotone in Inner Mongolia, China, during the growing seasons in 2009 (August to October) and 2010 (May to October). The soil management changes sequences included free grazing grassland (FG), cropland (CL), grazing enclosure grassland (GE), and abandoned cultivated grassland (AC). During the growing season in 2010, cumulative R s for FG, CL, GE, and AC averaged 265.97, 344.74, 236.70, and 226.42 gC m -2  year -1 , respectively. The T s and S w significantly influenced R s and explained 66%-86% of the variability in daily R s . Monthly mean temperature and precipitation explained 78%-96% of the variability in monthly R s . The results clearly showed that R s was increased by 29% with the conversion of FG to CL and decreased by 35% and 11% with the conversion of CL to AC and FG to GE. The factors impacting the change in R s under different soil management changes sequences varied. Our results confirm the tested hypotheses. The increase in Q 1 0 and litter biomass induced by conversion of FG to GE could lead to increased R s if the climate warming. We suggest that after proper natural restoration period, grasslands should be utilized properly to decrease R s .

  4. Water vs. carbon: An evaluation of SMAP soil moisture and OCO-2 solar-induced fluorescence to characterize global plant stress

    Purdy, A. J.; Fisher, J.; Goulden, M.; Randerson, J. T.; Famiglietti, J. S.

    2017-12-01

    Plants link the carbon and water cycles through photosynthesis and evapotranspiration (ET). When plants take in CO2 for photosynthesis, water evaporates to the atmosphere. This exchange of carbon and water is sensitive to a number of environmental variables including: soil water availability, temperature, atmospheric water vapor, and radiation. When the atmospheric demand for water is high, plants avoid hydraulic failure by regulating the amount of water exiting leaves at the expense of inhibiting carbon uptake. Over time, stress caused by this response limits plant growth and can even result in death by carbon starvation. With increasing atmospheric demand for water, impending expansion of arid regions, and more frequent droughts, understanding how vegetation responds to regulate photosynthesis and ET is important to quantify potential feedbacks between the carbon and water cycles. Despite its importance, to what extent plants respond to stressful conditions is an open science question. An important step forward is to characterize the dominant controls in these stress events and identify geographic areas that are vulnerable to climate change. The 2015-2016 El Nino and subsequent 2016-2017 La Nina transition provides an opportunity to quantify the extent and magnitude of vegetation regulation of these carbon and water variables in response to changes in environmental conditions. We present results from a space-based analysis using global observations of solar induced fluorescence (SIF) from the Orbiting Carbon Observatory-2 (OCO-2), soil moisture from Soil Moisture Active Passive (SMAP), and two widely used ET models (PT-JPL and MOD-16) to characterize the dominant controls on gross primary production and ET.

  5. Assessment of global guidelines for preventive chemotherapy against schistosomiasis and soil-transmitted helminthiasis: a cost-effectiveness modelling study.

    Lo, Nathan C; Lai, Ying-Si; Karagiannis-Voules, Dimitrios-Alexios; Bogoch, Isaac I; Coulibaly, Jean T; Bendavid, Eran; Utzinger, Jürg; Vounatsou, Penelope; Andrews, Jason R

    2016-09-01

    WHO guidelines recommend annual treatment for schistosomiasis or soil-transmitted helminthiasis when prevalence in school-aged children is at or above a threshold of 50% and 20%, respectively. Separate treatment guidelines are used for these two helminthiases, and integrated community-wide treatment is not recommended. We assessed the cost-effectiveness of changing prevalence thresholds and treatment guidelines under an integrated delivery framework. We developed a dynamic, age-structured transmission and cost-effectiveness model that simulates integrated preventive chemotherapy programmes against schistosomiasis and soil-transmitted helminthiasis. We assessed a 5-year treatment programme with praziquantel (40 mg/kg per treatment) against schistosomiasis and albendazole (400 mg per treatment) against soil-transmitted helminthiasis at 75% coverage. We defined strategies as highly cost-effective if the incremental cost-effectiveness ratio was less than the World Bank classification for a low-income country (gross domestic product of US$1045 per capita). We calculated the prevalence thresholds for cost-effective preventive chemotherapy of various strategies, and estimated treatment needs for sub-Saharan Africa. Annual preventive chemotherapy against schistosomiasis was highly cost-effective in treatment of school-aged children at a prevalence threshold of 5% (95% uncertainty interval [UI] 1·7-5·2; current guidelines recommend treatment at 50% prevalence) and for community-wide treatment at a prevalence of 15% (7·3-18·5; current recommendation is unclear, some community treatment recommended at 50% prevalence). Annual preventive chemotherapy against soil-transmitted helminthiasis was highly cost-effective in treatment of school-aged children at a prevalence of 20% (95% UI 5·4-30·5; current guidelines recommend treatment at 20% prevalence) and the entire community at 60% (35·3-85·1; no guidelines available). When both helminthiases were co-endemic, prevalence

  6. Modeling the contributions of global air temperature, synoptic-scale phenomena and soil moisture to near-surface static energy variability using artificial neural networks

    Pryor, Sara C.; Sullivan, Ryan C.; Schoof, Justin T.

    2017-12-01

    The static energy content of the atmosphere is increasing on a global scale, but exhibits important subglobal and subregional scales of variability and is a useful parameter for integrating the net effect of changes in the partitioning of energy at the surface and for improving understanding of the causes of so-called warming holes (i.e., locations with decreasing daily maximum air temperatures (T) or increasing trends of lower magnitude than the global mean). Further, measures of the static energy content (herein the equivalent potential temperature, θe) are more strongly linked to excess human mortality and morbidity than air temperature alone, and have great relevance in understanding causes of past heat-related excess mortality and making projections of possible future events that are likely to be associated with negative human health and economic consequences. New nonlinear statistical models for summertime daily maximum and minimum θe are developed and used to advance understanding of drivers of historical change and variability over the eastern USA. The predictor variables are an index of the daily global mean temperature, daily indices of the synoptic-scale meteorology derived from T and specific humidity (Q) at 850 and 500 hPa geopotential heights (Z), and spatiotemporally averaged soil moisture (text">SM). text">SM is particularly important in determining the magnitude of θe over regions that have previously been identified as exhibiting warming holes, confirming the key importance of text">SM in dictating the partitioning of net radiation into sensible and latent heat and dictating trends in near-surface T and θe. Consistent with our a priori expectations, models built using artificial neural networks (ANNs) out-perform linear models that do not permit interaction of the predictor variables (global T, synoptic-scale meteorological conditions and text">SM). This is particularly marked in regions with high variability in minimum and maximum θe, where

  7. Phosphorus in agricultural soils:

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  8. Peat bogs and their organic soils: Archives of atmospheric change and global environmentalsignificance (Philippe Duchaufour Medal Lecture)

    Shotyk, William

    2013-04-01

    A bog is much more than a waterlogged ecosystem where organic matter accumulates as peat. Peatlands such as bogs represent a critical link between the atmosphere, hydrosphere, and biosphere. Plants growing at the surface of ombrotrophic bogs receive nutrients exclusively from the atmosphere. Despite the variations in redox status caused by seasonal fluctuations in depth to water table, the low pHof the waters, and abundance of dissolved organic matter, bogs preserve a remarkably reproducible history of atmospheric pollution, climate change, landscape evolution and human history. For example, peat cores from bogs in Europe and North America have provided detailed reconstructions of the changing rates and sources of Ag, Cd, Hg, Pb, Sb, and Tl, providing new insights into the geochemical cycles of these elements, including the massive perturbations induced by human activities beginning many thousands of years ago. Despite the low pH, and perhaps because of the abundance of dissolved organic matter, bogs preserve many silicate and aluminosilicate minerals which renders them valuable archives of atmospheric dust deposition and the climate changes which drive them. In the deeper, basal peat layers of the bog, in the minerotrophic zone where pore waters are affected bymineral-water interactions in the underlying and surrounding soils and sediments, peat serves as animportant link to the hydrosphere, efficiently removing from the imbibed groundwaters such trace elements as As, Cu, Mo, Ni, Se, V, and U. These removal processes, while incompletely understood, are so effective that measuring the dissolved fraction of trace elements in the pore waters becomes a considerable challenge even for the most sophisticated analytical laboratories. While the trace elements listed above are removed from groundwaters (along with P and S), elements such as Fe and Mn are added to the waters because of reductive dissolution, an important first step in the formation of lacustrine Fe and Mn

  9. The Soil and Water Assessment Tool (SWAT) Ecohydrological Model Circa 2015: Global Application Trends, Insights and Issues

    Gassman, P. W.; Arnold, J. G.; Srinivasan, R.

    2015-12-01

    The Soil and Water Assessment Tool (SWAT) is one of the most widely used watershed-scale water quality models in the world. Over 2,000 peer-reviewed SWAT-related journal articles have been published and hundreds of other studies have been published in conference proceedings and other formats. The use of SWAT was initially concentrated in North America and Europe but has also expanded dramatically in other countries and regions during the past decade including Brazil, China, India, Iran, South Korea, Southeast Asia and eastern Africa. The SWAT model has proven to be a very flexible tool for investigating a broad range of hydrologic and water quality problems at different watershed scales and environmental conditions, and has proven very adaptable for applications requiring improved hydrologic and other enhanced simulation needs. We investigate here the various technological, networking, and other factors that have supported the expanded use of SWAT, and also highlight current worldwide simulation trends and possible impediments to future increased usage of the model. Examples of technological advances include easy access to web-based documentation, user-support groups, and SWAT literature, a variety of Geographic Information System (GIS) interface tools, pre- and post-processing calibration software and other software, and an open source code which has served as a model development catalyst for multiple user groups. Extensive networking regarding the use of SWAT has further occurred via internet-based user support groups, model training workshops, regional working groups, regional and international conferences, and targeted development workshops. We further highlight several important model development trends that have emerged during the past decade including improved hydrologic, cropping system, best management practice (BMP) and pollutant transport simulation methods. In addition, several current SWAT weaknesses will be addressed and key development needs will be

  10. Effect of temperature, gas phase composition, pH and microbial activity on As, Zn, Pb and Cd mobility in selected soils in the Ebro and Meuse Basins in the context of global change

    Joubert, A.V.P. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)]. E-mail: antoine.joubert@limos.uhp-nancy.fr; Lucas, L. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Garrido, F. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France)]. E-mail: f.garrido@brgm.fr; Joulian, C. [Bureau de Recherches Geologiques et Minieres (BRGM), Service Environnement et Procedes Innovants-Unite Ecotechnologie (EPI/ECO), 3 Avenue Claude Guillemin, BP 6009, 45060 Orleans cedex 2 (France); Jauzein, M. [Laboratoire des Interactions Micro-organismes, Mineraux et Matieres organiques dans les Sols (LIMOS) UMR 7137, Nancy University, CNRS, BP 239, 54506 Vandoeuvre-les-Nancy cedex (France)

    2007-08-15

    This study estimates the effect of environmental parameters on the mobility of four inorganic contaminants (As, Zn, Pb and Cd) in soils from three areas in the Ebro and Meuse River basins, within the context of global change. An experimental method, applicable to various soil systems, is used to measure the effect of four global-change-sensitive parameters (temperature, gas phase composition, pH and microbial activity). The aqueous phase of batch incubations was sampled regularly to monitor toxic element concentrations in water. Statistical processing enabled discrimination of the most relevant variations in dissolved concentrations measured at different incubation times and under different experimental conditions. Gas phase composition was identified as the most sensitive parameter for toxic element solubilization. This study confirms that total soil concentrations of inorganic pollutants are irrelevant when assessing the hazard for ecosystems or water resource quality. - An experimental method applicable for different soil systems enables the determination of the effect of environmental parameters, potentially affected by global change, on the mobilization of inorganic pollutants.

  11. Soil carbon 4 per mille

    Mulder, V.L.

    2017-01-01

    The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil

  12. Soil, climate and the environment - an indissociable threesome. Soil carbon and global changes: reciprocal impacts; Carbon in all its forms; Echomicadas, a new tool to analyse carbon 14; Biotransformation of metallic trace elements by soil micro-organisms; Absorption and distribution of metallic elements in plants; Dynamics of metallic contaminants in agricultural systems; Is photo-remediation for tomorrow? Hyper-accumulator plants; Sediments, tell me the Seine history... The complex history of plant feeding by the soil; The environmental analysis

    Hatte, Christine; Tisnerat-Laborde, Nadine; Ayrault, Sophie; Balesdent, Jerome; Chapon, Virginie; Bourguignon, Jacques; Alban, Claude; Ravanel, Stephane; Denaix, Laurence; Nguyen, Christophe; Vavasseur, Alain; Sarrobert, Catherine; Gasperi, Johnny; Latrille, Christelle; Savoye, Sebastien; Augusto, Laurent; Conan Labbe, Annie; Bernard Michel, Bruno; Douysset, Guilhem; Toqnelli, Antoine; Vailhen, Dominique; Moulin, Christophe

    2016-01-01

    The articles of this file on the relationships between soils, climate and the environment discuss the reciprocal impacts of soil carbon and global changes with the objective of reduction of greenhouse effect and of increase of carbon sequestration; the various forms of carbon are presented and their properties commented ; a compact radiocarbon system (ECHoMiCADAS) is presented, developed by the Laboratory of sciences of climate and environment (LSCE) and designed for the analysis of carbon 14; an article describes how micro-organisms can play a crucial role in the transformation of soil pollutants by modifying their chemical speciation and thus their toxicity; strategies based on the absorption of metallic trace elements present in the soil to control physiological processes in plants are discussed, with applications to agriculture, food supply and to the environment; researches related to the study of effects of metallic contaminants in agricultural systems are evoked, and the reasons for a slow development of phyto-technologies, notably phyto-remediation, for pollution control and decontamination of soils and liquid media, are explained. Other themes are presented : hyper-accumulator plants which present very high contents of non-essential (As, Cd, Hg, Pb, Se) or essential (Co, Cu, Fe, Mn, Mo, Ni) elements, are slowly growing, and display a limited biomass, but could be used for a phyto-extraction of metals from contaminated soils; how analysis and dating of sediments can reveal the presence of contaminants, and therefore give an insight into human activities and regulations, and into their impact on the river; how plants are able to develop strategies in their search for nutrients in different types of soils, even poor ones, and presentation of the various disciplines, methods and techniques used for environmental analysis with their applications to installation and site control, or to the study of pollutant migration

  13. Potential emissions of radiatively active gases from soil to atmosphere with special reference to methane: Development of a global database (WISE)

    Batjes, N.H.

    1994-01-01

    The role of soil in controlling production and fluxes of biotic greenhouse gases is the focus of research in progress at the International Soil Reference and Information Centre (ISRIC). There are two main goals in this project on World Inventory of Soil Emission Potentials (WISE). The first is to

  14. Soil variability in mountain areas

    Zanini, E.; Freppaz, M.; Stanchi, S.; Bonifacio, E.; Egli, M.

    2015-01-01

    The high spatial variability of soils is a relevant issue at local and global scales, and determines the complexity of soil ecosystem functions and services. This variability derives from strong dependencies of soil ecosystems on parent materials, climate, relief and biosphere, including human impact. Although present in all environments, the interactions of soils with these forming factors are particularly striking in mountain areas.

  15. The Implement of a Multi-layer Frozen Soil Scheme into SSiB3 and its Evaluation over Cold Regions

    Li, Q.

    2016-12-01

    The SSiB3 is a biophysics-based model of land-atmosphere interactions and is designed for global and regional studies. It has three soil layers, three snow layers, as well as one vegetation layer. Soil moisture of the three soil layers, interception water store for the canopy, subsurface soil temperature, ground temperature, canopy temperature and snow water equivalent are all predicted based on the water and energy balance at canopy, soil and snow. SSiB3 substantially enhances the model's capability for cold season studies and produces reasonable results compared with observations. However, frozen soil processes are ignored in the SSiB3 and may have effects on the interannual variability of soil temperature and deep soil memory. A multi-layer comprehensive frozen soil scheme (FSM), which is developed for climate study has been implemented into the SSiB3 to describe soil heat transfer and water flow affected by frozen processed in soil. In the coupled SSiB3-FSM, both liquid water and ice content have been taken into account in the frozen soil hydrologic and thermal property parameterization. The maximum soil layer depth could reach 10 meters thick depending on land conditions. To better evaluate the models' performance, the coupled offline SSiB3-FSM and SSiB3 have been driven from 1948 to 1958 by the Princeton global meteorological data set, respectively. For the 10yrs run, the coupled SSiB3-FSM almost captures the features over different regions, especially cold regions. In order to analysis and compare the differences of SSIB3-FSM and SSIB3 in detail, monthly mean surface temperature for different regions are compared with CAMS data. The statistical results of surface skin temperature show that high latitude regions, Africa, Eastern Australia, and North American monsoon regions have been greatly improved in SSIB3-FSM. For the global statistics, the RMSE of the surface temperature simulated by SSiB3-FSM can be improved about 0.6K compared to SSiB3. In this study

  16. Soil carbon and nitrogen stocks in forests along an altitudinal gradient in the eastern Himalayas and a meta-analysis of global data.

    Tashi, Sonam; Singh, Balwant; Keitel, Claudia; Adams, Mark

    2016-06-01

    High-altitude soils potentially store a large pool of carbon (C) and nitrogen (N). The assessment of total C and N stocks in soils is vital to understanding the C and N dynamics in terrestrial ecosystems. In this study, we examined effects of altitude and forest composition on soil C and N along a transect from 317 to 3300 m a.s.l. in the eastern Himalayas. We used meta-analysis to establish the context for our results on the effects of altitude on soil C, including variation with depth. Total C and N contents of soils significantly increased with altitude, but decreased with soil depth. Carbon and N were similarly correlated with altitude and temperature, and temperature was seemingly the main driver of soil C along the altitudinal gradient. Altitude accounted for 73% of the variation in C and 47% of the variation in N stocks. Soil pH and cation exchange capacity were correlated with both soil C and N stocks. Increases in soil C and N stocks were related to forest composition, forest basal area as well as quantity of leaf litter that were in turn influenced by altitude and temperature. Concentrations of C in foliage increased by 2.1% for every 1000 m rise in altitude, while that in leaf litter increased by 2.3%. © 2016 John Wiley & Sons Ltd.

  17. High-resolution multimodel projections of soil moisture drought in Europe under 1.5, 2 and 3 degree global warming

    Samaniego, L. E.; Kumar, R.; Zink, M.; Pan, M.; Wanders, N.; Marx, A.; Sheffield, J.; Wood, E. F.; Thober, S.

    2017-12-01

    HMs are, however, similar to those of the GCMs in the Iberian peninsula due to different representation of evapotranspiration and soil moisture dynamics. And, 3) despite the large uncertainty in the full ensemble, significant positive trends have been observed in all drought characteristics that intensify with increased global warming.

  18. The Changing Model of Soil

    Richter, D. D.; Yaalon, D.

    2012-12-01

    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  19. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 0.5 latitude-longitude resolution for the period from 1948 to the present...

  20. Climate Prediction Center (CPC) Global Land Surface Air Temperature Analysis

    National Oceanic and Atmospheric Administration, Department of Commerce — A station observation-based global land monthly mean surface air temperature dataset at 0.5 x 0.5 latitude-longitude resolution for the period from 1948 to the...

  1. Soil fauna responses to natural disturbances, invasive species, and global climate change: Current state of the science and a call to action

    David R. Coyle; Uma J. Nagendra; Melanie K. Taylor; J. Holly Campbell; Chelsea E. Cunard; Aaron H. Joslin; Abha Mundepi; Carly A. Phillips; Mac A. Callaham

    2017-01-01

    Environmental disturbances seem to be increasing in frequency and impact, yet we have little understanding of the belowground impacts of these events. Soil fauna, while widely acknowledged to be important drivers of biogeochemical function, soil structure and sustainability, and trophic interactions, are understudied compared to other belowground organisms such as...

  2. Global W`o'rming and Darwin Revisited: Quantifying Soil Mixing Rates by Non-native Earthworms in Fennoscandian Boreal and Arctic Ecosystems

    Wackett, A. A.; Yoo, K.; Cameron, E. K.; Olid, C.; Klaminder, J.

    2017-12-01

    Fennoscandian boreal and arctic ecosystems represent some of the most pristine environments in Europe and store sizeable quantities of soil carbon. Both ecosystems may have evolved without native earthworms since the last glaciation, but are now increasingly subject to arrivals of novel geoengineering earthworm species due to human activities. As a result, invaded areas are devoid of the typical thick organic horizon present in earthworm free forest soils and instead contain carbon-rich mineral (A-horizon) soils at the surface. How rapidly this transition occurs and how it affects the fate of soil organic carbon (SOC) pools is not well known. In this study, we quantify the rates at which earthworm-mediated mixing of forest soils proceeds in these formerly glaciated landscapes. We infer soil mass fluxes using the vertical distribution of 210Pb in soils from Fennoscandia (N=4) and North America (N=1) and quantify annual mixing velocities as well as vertical fluxes of organic and mineral matter throughout the upper soil profiles. Across the sites, mixing velocities generally increase with increasing earthworm biomass and functional group diversity, and our annual mixing rates closely align with those predicted by Darwin for earthworm-engineered ecosystems in the UK 130 years earlier. Reduction of the O-horizon is concomitant with a decrease in surface SOC contents. However, we observe minimal changes to SOC inventories with earthworm invasion across the sites, reflecting the upward translocation of mineral soil and accompanying increase in soil bulk densities. Thus, the reduction or depletion of organic horizon by exotic earthworms does not necessarily involve loss of SOC via earthworm-accelerated decomposition, but is rather compensated for by physical mixing of organic matter and minerals, which may facilitate stabilizing organo-mineral interactions. This work constitutes an important step to elucidate how non-native earthworms impact SOC inventories and potentially

  3. Inter-Comparison of Retrieved and Modelled Soil Moisture and Coherency of Remotely Sensed Hydrology Data

    Kolassa, Jana; Aires, Filipe

    2013-04-01

    A neural network algorithm has been developed for the retrieval of Soil Moisture (SM) from global satellite observations. The algorithm estimates soil moisture from a synergy of passive and active microwave, infrared and visible satellite observations in order to capture the different SM variabilities that the individual sensors are sensitive to. The advantages and drawbacks of each satellite observation have been analysed and the information type and content carried by each observation have been determined. A global data set of monthly mean soil moisture for the 1993-2000 period has been computed with the neural network algorithm (Kolassa et al., in press, 2012). The resulting soil moisture retrieval product has then been used in an inter-comparison study including soil moisture from (1) the HTESSEL model (Balsamo et al., 2009), (2) the WACMOS satellite product (Liu et al., 2011), and (3) in situ measurements from the International Soil Moisture Network (Dorigo et al., 2011). The analysis showed that the satellite remote sensing products are well-suited to capture the spatial variability of the in situ data and even show the potential to improve the modelled soil moisture. Both satellite retrievals also display a good agreement with the temporal structures of the in situ data, however, HTESSEL appears to be more suitable for capturing the temporal variability (Kolassa et al., in press, 2012). The use of this type of neural network approach is currently being investigated as a retrieval option for the SMOS mission. Our soil moisture retrieval product has also been used in a coherence study with precipitation data from GPCP (Adler et al., 2003) and inundation estimates from GIEMS (Prigent et al., 2007). It was investigated on a global scale whether the three observation-based datasets are coherent with each other and show the expected behaviour. For most regions of the Earth, the datasets were consistent and the behaviour observed could be explained with the known

  4. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance

    Tao, Shuqin; Eglinton, Timothy I.; Montluçon, Daniel B.; McIntyre, Cameron; Zhao, Meixun

    2015-03-01

    Large rivers connect the continents and the oceans, and corresponding material fluxes have a global impact on marine biogeochemistry. The Yellow River transports vast quantities of suspended sediments to the ocean, yet the nature of the particulate organic carbon (POC) carried by this system is not well known. The focus of this study is to characterize the sources, composition and age of suspended POC collected near the terminus of this river system, focusing on the abundance and carbon isotopic composition (13C and 14C) of specific biomarkers. The concentrations of vascular plant wax lipids (long-chain (≥C24) n-alkanes, n-fatty acids) and POC co-varied with total suspended solid (TSS) concentrations, indicating that both were controlled by the overall terrestrial sediment flux. POC exhibited relatively uniform δ13C values (-23.8 to -24.2‰), and old radiocarbon ages (4000-4640 yr). However, different biomarkers exhibited a wide range of 14C ages. Short-chain (C16, C18) fatty acid 14C ages were variable but generally the youngest organic components (from 502 yr to modern), suggesting they reflect recently biosynthesized material. Lignin phenol 14C ages were also variable and relatively young (1070 yr to modern), suggesting rapid export of carbon from terrestrial primary production. In contrast, long-chain plant wax lipids display relatively uniform and significantly older 14C ages (1500-1800 yr), likely reflecting inputs of pre-aged, mineral-associated soil OC from the Yellow River drainage basin. Even-carbon-numbered n-alkanes yielded the oldest 14C ages (up to 26 000 yr), revealing the presence of fossil (petrogenic) OC. Two isotopic mass balance approaches were explored to quantitively apportion different OC sources in Yellow River suspended sediments. Results indicate that the dominant component of POC (53-57%) is substantially pre-aged (1510-1770 yr), and likely sourced from the extensive loess-paleosol deposits outcropping within the drainage basin. Of

  5. Technical Report Series on Global Modeling and Data Assimilation. Volume 42; Soil Moisture Active Passive (SMAP) Project Calibration and Validation for the L4_C Beta-Release Data Product

    Koster, Randal D. (Editor); Kimball, John S.; Jones, Lucas A.; Glassy, Joseph; Stavros, E. Natasha; Madani, Nima (Editor); Reichle, Rolf H.; Jackson, Thomas; Colliander, Andreas

    2015-01-01

    During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies of the science data products as specified in the L1 science requirements according to the Cal/Val timeline. This report provides analysis and assessment of the SMAP Level 4 Carbon (L4_C) product specifically for the beta release. The beta-release version of the SMAP L4_C algorithms utilizes a terrestrial carbon flux model informed by SMAP soil moisture inputs along with optical remote sensing (e.g. MODIS) vegetation indices and other ancillary biophysical data to estimate global daily NEE and component carbon fluxes, particularly vegetation gross primary production (GPP) and ecosystem respiration (Reco). Other L4_C product elements include surface (<10 cm depth) soil organic carbon (SOC) stocks and associated environmental constraints to these processes, including soil moisture and landscape FT controls on GPP and Reco (Kimball et al. 2012). The L4_C product encapsulates SMAP carbon cycle science objectives by: 1) providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and soil moisture constraints to these processes, 2) documenting primary connections between terrestrial water, energy and carbon cycles, and 3) improving understanding of terrestrial carbon sink activity in northern ecosystems.

  6. Soil invertebrate fauna affect N2O emissions from soil

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  7. Soils in Schools: Embedding Soil Science in STEM

    Bryce, Alisa

    2015-01-01

    Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…

  8. SOIL Geo-Wiki: A tool for improving soil information

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  9. Soils [Chapter 4.2

    Daniel G. Neary; Johannes W. A. Langeveld

    2015-01-01

    Soils are crucial for profitable and sustainable biomass feedstock production. They provide nutrients and water, give support for plants, and provide habitat for enormous numbers of biota. There are several systems for soil classification. FAO has provided a generic classification system that was used for a global soil map (Bot et al., 2000). The USDA Natural Resources...

  10. Cultural Patterns of Soil Understanding

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  11. Soil physics and agriculture

    Dourado Neto, Durval; Reichardt, K.; Sparovek, G.

    2004-01-01

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  12. European Atlas of Soil Biodiversity

    Krogh (contributor), Paul Henning

    Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species on...... Biodiversity is an essential reference to the many and varied aspects of soil. The overall goal of this work is to convey the fundamental necessity to safeguard soil biodiversity in order to guarantee life on this planet.......Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species...... on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...

  13. Evaluation of soil structure in the framework of an overall soil quality rating

    Mueller, L; Shepherd, T G; Schindler, U

    2013-01-01

    Soil structure is an important aspect of agricultural soil quality, and its preservation and improvement are key to sustaining soil functions. Methods of overall soil quality assessment which include visual soil structure information can be useful tools for monitoring and managing the global soil...... resource. The aim of the paper is: (i) to demonstrate the role of visual quantification of soil structure within the procedure of the overall soil quality assessment by the Muencheberg Soil Quality Rating (M-SQR), (ii) to quantify the magnitude and variability of soil structure and overall M......-SQR on a number of agricultural research sites and (iii) to analyse the correlations of soil quality rating results with crop yields. We analysed visual soil structure and overall soil quality on a range of 20 experimental sites in seven countries. To assess visual soil structure we utilised the Visual Soil...

  14. Preparation of Forest Inventory and Analysis (FIA) and State Soil Geographic Data Base (STATSGO) data for global change research in the Eastern United States

    Loius R. Iverson; Anantha M. G. Prasad; Charles T. Scott

    1996-01-01

    The USDA Forest Service's Forest Inventory and Analysis (FIA) and the Natural Resource Conservation Service's State Soil Geographic (STATSGO) data bases provide valuable natural resource data that can be analyzed at the national scale. When coupled with other data (e.g., climate), these data bases can provide insights into factors associated with current and...

  15. NOAA Soil Moisture Products System (SMOPS) Daily Blended Products

    National Oceanic and Atmospheric Administration, Department of Commerce — The Soil Moisture Operational Products System (SMOPS) combines soil moisture retrievals from multiple satellite sensors to provide a global soil moisture map with...

  16. The Ecological consequences of global climate change

    Woodward, F. I

    1992-01-01

    ... & land use - modeling potential responses of vegetation to global climate change - effects of climatic change on population dynamics of crop pests - responses of soils to climate change - predicting...

  17. Soil functional types: surveying the biophysical dimensions of soil security

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  18. Using global sensitivity analysis to understand higher order interactions in complex models: an application of GSA on the Revised Universal Soil Loss Equation (RUSLE) to quantify model sensitivity and implications for ecosystem services management in Costa Rica

    Fremier, A. K.; Estrada Carmona, N.; Harper, E.; DeClerck, F.

    2011-12-01

    Appropriate application of complex models to estimate system behavior requires understanding the influence of model structure and parameter estimates on model output. To date, most researchers perform local sensitivity analyses, rather than global, because of computational time and quantity of data produced. Local sensitivity analyses are limited in quantifying the higher order interactions among parameters, which could lead to incomplete analysis of model behavior. To address this concern, we performed a GSA on a commonly applied equation for soil loss - the Revised Universal Soil Loss Equation. USLE is an empirical model built on plot-scale data from the USA and the Revised version (RUSLE) includes improved equations for wider conditions, with 25 parameters grouped into six factors to estimate long-term plot and watershed scale soil loss. Despite RUSLE's widespread application, a complete sensitivity analysis has yet to be performed. In this research, we applied a GSA to plot and watershed scale data from the US and Costa Rica to parameterize the RUSLE in an effort to understand the relative importance of model factors and parameters across wide environmental space. We analyzed the GSA results using Random Forest, a statistical approach to evaluate parameter importance accounting for the higher order interactions, and used Classification and Regression Trees to show the dominant trends in complex interactions. In all GSA calculations the management of cover crops (C factor) ranks the highest among factors (compared to rain-runoff erosivity, topography, support practices, and soil erodibility). This is counter to previous sensitivity analyses where the topographic factor was determined to be the most important. The GSA finding is consistent across multiple model runs, including data from the US, Costa Rica, and a synthetic dataset of the widest theoretical space. The three most important parameters were: Mass density of live and dead roots found in the upper inch

  19. WoSIS – World Soil Information Service

    Batjes, N.H.; Carvalho Ribeiro, E.D.; Oostrum, van A.J.M.; Mendes de Jesus, J.S.

    2016-01-01

    ISRIC - World Soil Information (WDC-Soils) has a mission to serve the international community as custodian of global soil data and information, and to increase awareness and understanding of soils in major global issues. With partners we have implemented a server database based on PostgreSQL, known

  20. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  1. Forest soils

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  2. Soil and Soil Water Relationships

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  3. Research on soil microbial communities and enzymatic activity in tropical soils in puerto rico

    Soil enzymes are important components of soil quality and its health because of their involvement in ecosystem services related to biogeochemical cycling, global C and organic matter dynamics, and soil detoxification. This talk will provide an overview of the field of soil enzymology, the location a...

  4. Soil 4 Youth: Charting New Territory in Canadian High School Soil Science Education

    Krzic, Maja; Wilson, Julie; Basiliko, Nathan; Bedard-Haughn, Angela; Humphreys, Elyn; Dyanatkar, Saeed; Hazlett, Paul; Strivelli, Rachel; Crowley, Chris; Dampier, Lesley

    2014-01-01

    As global issues continue to place increasing demands on soil resources, the need to provide soil science education to the next generation of soil scientists and the general public is becoming more imminent. In many countries around the world, including Canada, soil is either not included in the high school curriculum or it is not covered in…

  5. Soil Erosion and Agricultural Sustainability

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  6. Technical Report Series on Global Modeling and Data Assimilation. Volume 40; Soil Moisture Active Passive (SMAP) Project Assessment Report for the Beta-Release L4_SM Data Product

    Koster, Randal D.; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Liu, Qing; Colliander, Andreas; Conaty, Austin; Jackson, Thomas; Kimball, John

    2015-01-01

    During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for each science data product team: 1) calibrate, verify, and improve the performance of the science algorithm, and 2) validate the accuracy of the science data product as specified in the science requirements and according to the Cal/Val schedule. This report provides an assessment of the SMAP Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product's public beta release scheduled for 30 October 2015. The primary objective of the beta release is to allow users to familiarize themselves with the data product before the validated product becomes available. The beta release also allows users to conduct their own assessment of the data and to provide feedback to the L4_SM science data product team. The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture estimates with in situ soil moisture observations from core validation sites and sparse networks. The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data assimilation system that is used to generate the L4_SM product. This evaluation focuses on the statistics of the observation-minus-forecast (O-F) residuals and the analysis increments. Together, the core validation site comparisons and the statistics of the assimilation diagnostics are considered primary validation methodologies for the L4_SM product. Comparisons against in situ measurements from regional-scale sparse networks are considered a secondary validation methodology because such in situ measurements are subject to upscaling errors from the point-scale to the grid cell scale of the data product. Based on the limited set of core validation sites, the assessment presented here meets the criteria established by the Committee on Earth Observing Satellites for Stage 1 validation and supports the beta release of the data. The validation against

  7. [Research methods of carbon sequestration by soil aggregates: a review].

    Chen, Xiao-Xia; Liang, Ai-Zhen; Zhang, Xiao-Ping

    2012-07-01

    To increase soil organic carbon content is critical for maintaining soil fertility and agricultural sustainable development and for mitigating increased greenhouse gases and the effects of global climate change. Soil aggregates are the main components of soil, and have significant effects on soil physical and chemical properties. The physical protection of soil organic carbon by soil aggregates is the important mechanism of soil carbon sequestration. This paper reviewed the organic carbon sequestration by soil aggregates, and introduced the classic and current methods in studying the mechanisms of carbon sequestration by soil aggregates. The main problems and further research trends in this study field were also discussed.

  8. Soil friability - Concept, Assessment and Effects of Soil Properties and Management

    Munkholm, Lars Juhl

    Soil friability is a key soil physical property yielding valuable information on the ease of productin a favorable seed- and root beds during tillage operations. Therefore, soil friability is acrucial soil property in relation to the ability of soil to support plant growth and to minimzethe energy...... required for tillage. The topic has interested farmers and soil scientiest for centuries, but is was the paper by Utomo and Dexter (1981) that significantly put the topic on the soil science agenda. The awareness of soil friability is growing, both in practiceand in soil science. This must be viewed...... in the light of the present renewed focus on global food security together with a focus on fossil fuel consumption and greenhouse gas emissions in crop production. Certainly, the demand for well-functioning, arable soils is rising to meet the global challenges....

  9. Soil algae

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  10. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    to incorporate the potential changes in microbial physiological functioning into models, in order to accurately predict future changes in soil C stocks in response to global warming.

  11. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  12. Soil treatment engineering

    Ivica, Kisic; Zeljka, Zgorelec; Aleksandra, Percin

    2017-10-01

    Soil is loose skin of the Earth, located between the lithosphere and atmosphere, which originated from parent material under the influence of pedogenetic processes. As a conditionally renewable natural resource, soil has a decisive influence on sustainable development of global economy, especially on sustainable agriculture and environmental protection. In recent decades, a growing interest prevails for non-production soil functions, primarily those relating to environmental protection. It especially refers to protection of natural resources whose quality depends directly on soil and soil management. Soil contamination is one of the most dangerous forms of soil degradation with the consequences that are reflected in virtually the entire biosphere, primarily at heterotrophic organisms, and also at mankind as a food consumer. Contamination is correlated with the degree of industrialization and intensity of agrochemical usage. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The negative effects caused by pollution are undeniable: reduced agricultural productivity, polluted water sources and raw materials for food are only a few of the effects of soil degradation, while almost all human diseases (excluding AIDS) may be partly related to the transport of contaminants, in the food chain or the air, to the final recipients - people, plants and animals. The remediation of contaminated soil is a relatively new scientific field which is strongly developing in the last 30 years and becoming a more important subject. In order to achieve quality remediation of contaminated soil it is very important to conduct an inventory as accurately as possible, that is, to determine the current state of soil contamination.

  13. Review of progress in soil inorganic carbon research

    Bai, S. G.; Jiao, Y.; Yang, W. Z.; Gu, P.; Yang, J.; Liu, L. J.

    2017-12-01

    Soil inorganic carbon is one of the main carbon banks in the near-surface environment, and is the main form of soil carbon library in arid and semi-arid regions, which plays an important role in the global carbon cycle. This paper mainly focuses on the inorganic dynamic process of soil inorganic carbon in soil environment in arid and semi-arid regions, and summarized the composition and source of soil inorganic carbon, influence factors and soil carbon sequestration.

  14. Climate Strategic Soil Management

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  15. The moisture response of soil heterotrophic respiration: interaction with soil properties

    Moyano, F E; Vasilyeva, N; Bouckaert, L

    2012-01-01

    the heterotrophic respiration response to moisture have limited empirical support and introduce an uncertainty of at least 4% in global soil carbon stock predictions by 2100. The necessity of improving the representation of this relationship in models has been highlighted in recent studies. Here we present a data......Soil moisture is of primary importance for predicting the evolution of soil carbon stocks and fluxes, both because it strongly controls organic matter decomposition and because it is predicted to change at global scales in the following decades. However, the soil functions used to model......-driven analysis of soil moisture-respiration relations based on 90 soils. With the use of linear models we show how the relationship between soil heterotrophic respiration and different measures of soil moisture is consistently affected by soil properties. The empirical models derived include main effects...

  16. Assessing water resources in Azerbaijan using a local distributed model forced and constrained with global data

    Bouaziz, Laurène; Hegnauer, Mark; Schellekens, Jaap; Sperna Weiland, Frederiek; ten Velden, Corine

    2017-04-01

    In many countries, data is scarce, incomplete and often not easily shared. In these cases, global satellite and reanalysis data provide an alternative to assess water resources. To assess water resources in Azerbaijan, a completely distributed and physically based hydrological wflow-sbm model was set-up for the entire Kura basin. We used SRTM elevation data, a locally available river map and one from OpenStreetMap to derive the drainage direction network at the model resolution of approximately 1x1 km. OpenStreetMap data was also used to derive the fraction of paved area per cell to account for the reduced infiltration capacity (c.f. Schellekens et al. 2014). We used the results of a global study to derive root zone capacity based on climate data (Wang-Erlandsson et al., 2016). To account for the variation in vegetation cover over the year, monthly averages of Leaf Area Index, based on MODIS data, were used. For the soil-related parameters, we used global estimates as provided by Dai et al. (2013). This enabled the rapid derivation of a first estimate of parameter values for our hydrological model. Digitized local meteorological observations were scarce and available only for limited time period. Therefore several sources of global meteorological data were evaluated: (1) EU-WATCH global precipitation, temperature and derived potential evaporation for the period 1958-2001 (Harding et al., 2011), (2) WFDEI precipitation, temperature and derived potential evaporation for the period 1979-2014 (by Weedon et al., 2014), (3) MSWEP precipitation (Beck et al., 2016) and (4) local precipitation data from more than 200 stations in the Kura basin were available from the NOAA website for a period up to 1991. The latter, together with data archives from Azerbaijan, were used as a benchmark to evaluate the global precipitation datasets for the overlapping period 1958-1991. By comparing the datasets, we found that monthly mean precipitation of EU-WATCH and WFDEI coincided well

  17. Global ice volume variations through the last glacial cycle simulated by a 3-D ice-dynamical model

    Bintanja, R.; Wal, R.S.W. van de; Oerlemans, J.

    2002-01-01

    A coupled ice sheet—ice shelf—bedrock model was run at 20km resolution to simulate the evolution of global ice cover during the last glacial cycle. The mass balance model uses monthly mean temperature and precipitation as input and incorporates the albedo—mass balance feedback. The model is forced

  18. Cs-137 migration in soil near NPPs

    Silant'ev, A.N.; Shkuratova, I.G.; Khatskevich, R.N.

    1984-01-01

    A convective-diffusion model has been employed for describing Cs-137 migration in soil. The migration parameters were determined by comparing the calculated vertical distribution profiles with the experimental ones. The migration parameters dependence on the soil state has been studied. Cs-137 penetration rate was found to be function of the soil type, surface state, soil wetness and orography. The obtained values are presented. A method is suggested for revealing the soil surface contamination by Cs-137 produced during NPP operation with distinguishing it from the global contamination background. For this purpose Cs-137 content in the upper 5 mm soil layer is estimated [ru

  19. The global carbon cycle

    Maier-Reimer, E.

    1991-01-01

    Basic concepts of the global carbon cycle on earth are described; by careful analyses of isotopic ratios, emission history and oceanic ventilation rates are derived, which provide crucial tests for constraining and calibrating models. Effects of deforestation, fertilizing, fossil fuel burning, soil erosion, etc. are quantified and compared, and the oceanic carbon process is evaluated. Oceanic and terrestrial biosphere modifications are discussed and a carbon cycle model is proposed

  20. Global warning, global warming

    Benarde, M.A.

    1992-01-01

    This book provides insights into the formidable array of issues which, in a warmer world, could impinge upon every facet of readers lives. It examines climatic change and long-term implications of global warming for the ecosystem. Topics include the ozone layer and how it works; the greenhouse effect; the dangers of imbalance and its effects on human and animal life; disruptions to the basic ecology of the planet; and the real scientific evidence for and against aberrant climatic shifts. The author also examines workable social and political programs and changes that must be instituted to avoid ecological disaster

  1. Using the VS-Fast methodology for soil degradation assessment: a case study from Senegal

    Sonneveld, B.G.J.S.; McGarry, D.; Ndiaye, D.

    2012-01-01

    Soil degradation threatens sustainable food production and accelerates global warming. Poorer countries, whose agricultural sectors are highly dependent on their natural resource bases, are hit particularly hard by declining soil productivity. Calls for soil-quality monitoring are therefore,

  2. Soil pollution and soil protection

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  3. Spice In Martian Soil

    Seiferlin, K.; Spohn, T.; Spice Team

    The Netlander mission offers a unique opportunity to study the surface and the inte- rior of Mars at four different locations at the same time. In addition to real "network"- science, where the presence of four stations is a 'must' to address global science as- pects, local, landing site-related instruments can more than double our knowledge of the surface of Mars, compared to the three landing sites (Viking 1 and 2, Pathfinder) we are currently familiar with. The SPICE instrument will characterize the soil at the landing sites. Force sensors integrated into the seismometer legs (three per station) will determine the mechanical strength of the soil. Thermal sensors will measure the local soil temperature, the thermal inertia and the thermal diffusivity independently, thus allowing us to determine the thermal conductivity and the volumetric heat capac- ity of the soil. These properties will tell us about (1) soil cementation ("duricrust"), (2) volatile exchange with the atmosphere, (3) grain size, (4) near-surface stratigra- phy, and (5) will finally provide ground truth for remote sensing data such as that from Mars Global Surveyor's thermal emission spectrometer.

  4. Against Globalization

    Philipsen, Lotte; Baggesgaard, Mads Anders

    2013-01-01

    In order to understand globalization, we need to consider what globalization is not. That is, in order to understand the mechanisms and elements that work toward globalization, we must, in a sense, read against globalization, highlighting the limitations of the concept and its inherent conflicts....... Only by employing this as a critical practice will we be analytically able to gain a dynamic understanding of the forces of globalization as they unfold today and as they have developed historically....

  5. Performance of Sayigh's universal formula in the estimation of global solar radiation in Ghana

    Oduro Afriyie, K.

    1995-10-01

    The performance of Sayigh's universal formula for the estimation of global solar radiation is tested against that of Angstrom-Black model for 13 stations in Ghana, using monthly mean daily global solar radiation averaged over the years 1957-1981. Sayigh's model is found not to perform as credibility as the Angstrom-Black model in the estimation of monthly global solar radiation in Ghana. Of the 156 values of monthly global solar radiation estimated by Sayigh's model, 123 (or 78.8%) had discrepancies of more than 10% with the measured values. The corresponding value for the Angstrom-Black model was 7 (or 4.5%). (author). 5 refs

  6. Pedotransfer functions to estimate soil water content at field capacity ...

    Priyabrata Santra

    2018-03-27

    Mar 27, 2018 ... of the global population (Millennium Ecosystem. Assessment 2005). Likewise, there is a .... Therefore, the main objective of this study was to develop PTFs for arid soils of India to estimate soil water content at FC and PWP.

  7. Regridded Harmonized World Soil Database v1.2

    National Aeronautics and Space Administration — This data set describes select global soil parameters from the Harmonized World Soil Database (HWSD) v1.2, including additional calculated parameters such as area...

  8. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  9. Solarization soil

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  10. Global Strategy

    Li, Peter Ping

    2013-01-01

    Global strategy differs from domestic strategy in terms of content and process as well as context and structure. The content of global strategy can contain five key elements, while the process of global strategy can have six major stages. These are expounded below. Global strategy is influenced...... by rich and complementary local contexts with diverse resource pools and game rules at the national level to form a broad ecosystem at the global level. Further, global strategy dictates the interaction or balance between different entry strategies at the levels of internal and external networks....

  11. A method to detect soil carbon degradation during soil erosion

    F. Conen; M. Schaub; C. Alewell

    2009-01-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable c...

  12. Soils - Volusia County Soils (Polygons)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  13. Soil microbiology and soil health assessment

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  14. Soil metagenomics and tropical soil productivity

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  15. Global Europa

    Manners, Ian

    2010-01-01

    at the mythology of ‘global Europa' - the EU in the world. It concludes with a reflection on the way in which the many diverse myths of global Europa compete for daily attention, whether as lore, ideology, or pleasure. In this respect the mythology of global Europa is part of our everyday existence, part of the EU...

  16. Soil CO2 production in upland tundra where permafrost is thawing

    Hanna Lee; Edward A.G. Schuur; Jason G. Vogel

    2010-01-01

    Permafrost soils store nearly half of global soil carbon (C), and therefore permafrost thawing could lead to large amounts of greenhouse gas emissions via decomposition of soil organic matter. When ice-rich permafrost thaws, it creates a localized surface subsidence called thermokarst terrain, which changes the soil microenvironment. We used soil profile CO2...

  17. Soil pollution and soil protection

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  18. Global usability

    Douglas, Ian

    2011-01-01

    The concept of usability has become an increasingly important consideration in the design of all kinds of technology. As more products are aimed at global markets and developed through internationally distributed teams, usability design needs to be addressed in global terms. Interest in usability as a design issue and specialist area of research and education has developed steadily in North America and Europe since the 1980's. However, it is only over the last ten years that it has emerged as a global concern. Global Usability provides an introduction to the important issues in globalizing des

  19. Effects of nitrogen addition on soil fauna communities in Larix gmelinii and Fraxinus mandshurica plantations

    Haifeng Zhuang; Yue Sun; Jiacun Gu; Yang Xu; Zhengquan Wang

    2010-01-01

    Soil fauna play a key role in regulating carbon allocation and nutrient cycling in terrestrial ecosystems. As soil fauna are sensitive to environmental changes, increases in soil nitrogen (N) availability resulting from global changes may profoundly influence the structure and function of soil faunal communities. However, the response of soil fauna in forest ecosystems to increases in soil N availability is still poorly understood. In order to explore the relationship between soil N availabil...

  20. Soil Carbon 4 per mille

    Minasny, Budiman; van Wesemael, Bas

    2017-04-01

    The '4 per mille Soils for Food Security and Climate' was launched at the COP21 aiming to increase global soil organic matter stocks by 4 per mille (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia) and asked whether the 4 per mille initiative is feasible. This study highlights region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates generally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha-1), and at the first twenty years after implementation of best management practices. In addition, areas that have reached equilibrium but not at their saturation level will not be able to further increase their sequestration. We found that most studies on SOC sequestration globally only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille initiative was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille on global topsoil of agricultural land, SOC sequestration is about 3.6 Gt C per year, which effectively offset 40% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become

  1. Relação entre as vazões médias mensais do rio Piancó e as anomalias de temperatura da superfície dos oceanos Atlântico e Pacífico tropical Relationhips between monthly mean stream flow for the Pianco river and tropical Atlantic and Pacific sst anomalies

    Manoel F. Gomes Filho

    2000-01-01

    Full Text Available Apresenta-se, neste trabalho, uma análise estatística baseada em correlações entre as temperaturas globais da superfície do mar (TSM e as descargas do Rio Piancó, no sertão da Paraíba, principal contribuinte do reservatório de Coremas, na região. Os coeficientes globais de correlação foram obtidos entre as temperaturas médias da superfície do mar, para os trimestres de novembro a janeiro e de fevereiro a abril, e as descargas do Rio Piancó no reservatório de Coremas, para cada mês de fevereiro até maio, que compreendem a estação chuvosa na bacia hidrográfica do reservatório. Os resultados mostram correlações significativas entre as TSM das regiões NINO1+2 e NINO3 no Oceano Pacífico. Na área do Atlântico não existe um padrão de correlações bem definido.This paper presents a statistical analysis based on the correlation between the Global Sea Surface Temperatures (SST and the discharge of Piancó river the principal contributor to the Coremas reservoir in the Paraíba State. The global correlation coefficients were obtained between the mean Sea Surface Temperatures (SST for the November to January and February to April trimesters and the volume of water discharged by the Piancó river in the Coremas reservoir for each of the individual months from February to May, the rainy season in the region of the reservoir. The results show the existence of a strong negative correlation between the SST's of the Nino1+2 and Nino3 regions of the Pacific Ocean. For the Atlantic area no well defined pattern of correlation was found.

  2. Sustaining "the Genius of Soils"

    Sposito, G.

    2011-12-01

    Soils are weathered porous earth surficial materials that exhibit an approximately vertical stratification reflecting the continual action of percolating water and living organisms. They are complex open, multicomponent, multiphase biogeochemical systems which function as both provisioning and regulatory agents in terrestrial ecosystems while influencing aquatic ecosystems through their impacts on evapotranspiration and runoff. The ability of soils to engage in their supportive ecosystem functions depends on what has been termed metaphorically as their "natural capital," the defining properties that condition soil response to biological, geological, and hydrological processes as well as human-driven activities. Natural capital must necessarily differ among soils depending on how they have developed under the five soil-forming processes, but it also can be determined by land use and by the flows of matter and energy that link the global atmosphere, biosphere, and hydrosphere. These latter two determinants have in recent decades begun to exhibit strong variability that exceeds what has been characteristic of them during the past 10 millennia of earth history, thereby raising the apocalyptic issue of whether a deleterious or even catastrophic undermining of the ability of soils to function supportively in ecosystems is in the offing. Resolving this issue will require deeper understanding of how soils perform their provisioning and regulatory functions, how they respond to land-use changes, and how they mediate the global flows of matter and energy.

  3. Soil friability

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  4. Soil Mechanics

    Verruijt, A.

    2010-01-01

    This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology, as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in situ, are also described. Some basic principles of applied mecha...

  5. SHADOW GLOBALIZATION

    Larissa Mihaylovna Kapitsa

    2014-01-01

    The article reviews some development trends brought about by globalization, particularly, a growing tax evasion and tax avoidance, an expansion of illicit financial flows and the proliferation of a global criminal network. The author draws attention to some new phenomena, particularly, cosmopolitanization of some parts of national elites and a deepening divide between national interests and the private interests of elites as a consequence of financial globalization. Modern mass media, both Ru...

  6. Global Mindset

    Sørensen, Olav Jull

    2016-01-01

    The concept of Global Mindset (GM) – the way to think about the global reality – is on the agenda of multinational companies concomitant with the increase in global complexity, uncertainty and diversity. In spite of a number of studies, the concept is still fluid and far from a managerial.......e. the capability to sense (quickly), reflect (constructively) and act purposefully (for mutual benefit). A case on an MNC is used at the end to show the organizational manifestations of a GM....

  7. Radar for Measuring Soil Moisture Under Vegetation

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  8. New perspectives on the soil erosion-soil quality relationship

    Pennock, D.J.

    1998-01-01

    The redistribution of soil has a profound impact on its quality (defined as its ability to function within its ecosystem and within adjacent ecosystems) and ultimately on its productivity for crop growth. The application of 137 Cs-redistribution techniques to the study of erosion has yielded major new insights into the soil erosion-soil quality relationship. In highly mechanized agricultural systems, tillage erosion can be the dominant cause of soil redistribution; in other agroecosystems, wind and water erosion dominate. Each causal factor results in characteristic landscape-scale patterns of redistribution. In landscapes dominated by tillage redistribution, highest losses occur in shoulder positions (those with convex downslope curvatures); in water-erosion-dominated landscapes, highest losses occur where slope gradient and length are at a maximum. Major impacts occur through the loss of organically-enriched surface material and through the incorporation of possibly yield-limiting subsoils into the rooting zone of the soil column. The potential impact of surface soil losses and concomitant subsoil incorporation on productivity may be assessed by examining the pedological nature of the affected soils and their position in the landscape. The development of sound conservation policies requires that the soil erosion-quality relationship be rigorously examined in the full range of pedogenic environments, and future applications of the 137 Cs technique hold considerable promise for providing this comprehensive global database. (author)

  9. Methane and Root Dynamics in Arctic Soil

    D'Imperio, Ludovica

    on the global climate. We investigated two aspects of arctic ecosystem dynamics which are not well represented in climatic models: i) soil methane (CH4) oxidation in dry heath tundra and barren soils and ii) root dynamics in wetlands. Field measurements were carried out during the growing season in Disko Island...

  10. Sampling soils for transuranic nuclides: a review

    Fowler, E.B.; Essington, E.H.

    1976-01-01

    A review of the literature pertinent to the sampling of soils for radionuclides is presented; emphasis is placed on transuranic nuclides. Sampling of soils is discussed relative to systems of heterogeneous distributions and varied particle sizes encountered in certain environments. Sampling methods that have been used for two different sources of contamination, global fallout, and accidental or operational releases, are included

  11. Gendering Globalization

    Siim, Birte

    2009-01-01

    The current global financial situation bluntly and brutally brings home the fact that the global and local are closely connected in times of opportunity as well as crises. The articles in this issue of Asia Insights are about ontra-action between Asia, particularly China, and the Nordic countries...

  12. Developing Globalization

    Hansen, Annette Skovsted

    2017-01-01

    This chapter is the first qualitative micro case study of one aspect of globalization: personal networks as a concrete outcome of development assistance spending. The empirical findings related in this paper present circumstantial evidence that Japanese foreign aid has contributed to globalization...

  13. Global Uddannelse

    Jensen, Niels Rosendal

    Antologien handler om "demokratiproblemer i den globale sammenhæng" (del I) og "demokratiproblemer i uddannelse og for de offentligt ansatte" (del II), bundet sammen af et mellemstykke, der rækker ud mod begge poler både det globale og det lokale ved at knytte det til forholdet mellem marked...

  14. Global Mindsets

    Global Mindsets: Exploration and Perspectives seeks to tackle a topic that is relatively new in research and practice, and is considered by many to be critical for firms seeking to conduct global business. It argues that multiple mindsets exist (across and within organizations), that they operate...... in a global context, and that they are dynamic and undergo change and action. Part of the mindset(s) may depend upon place, situation and context where individuals and organizations operate. The book will examine the notion of "mindset" is situational and dynamic, especially in a global setting, why...... it is important for future scholars and managers and how it could be conceptualized. Global Mindsets: Exploration and Perspectives is split into two major sections; the first examines where the literature currently is with respect to the knowledge in the field and what conceptual frameworks guide the thinking...

  15. Global warming

    Anon.

    1992-01-01

    Canada's Green Plan strategy for dealing with global warming is being implemented as a multidepartmental partnership involving all Canadians and the international community. Many of the elements of this strategy are built on an existing base of activities predating the Green Plan. Elements of the strategy include programs to limit emissions of greenhouse gases, such as initiatives to encourage more energy-efficient practices and development of alternate fuel sources; studies and policy developments to help Canadians prepare and adapt to climate change; research on the global warming phenomenon; and stimulation of international action on global warming, including obligations arising out of the Framework Convention on Climate Change. All the program elements have been approved, funded, and announced. Major achievements to date are summarized, including improvements in the Energy Efficiency Act, studies on the socioeconomic impacts of global warming, and participation in monitoring networks. Milestones associated with the remaining global warming initiatives are listed

  16. Soil Solution

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  17. Soil washing

    Neuman, R.S.; Diel, B.N.; Halpern, Y.

    1992-01-01

    Disposal of soils or sludges contaminated with organic and inorganic compounds is a major problem for environmental remedial activities, hazardous waste generators, and the disposal industry. This paper reports that many of these wastes can be effectively treated utilizing soil washing technology. CWM has been developing soil washing technology over the past few years, with extensive work being conducted on the bench scale. These studies have demonstrated consistently high removal efficiencies (95-99%) for a wide variety of PCB and petroleum hydrocarbon contaminated waste. Recently, a comprehensive study examining the removal of both organic and inorganic contraminants from two different types of surrogate soil matrices was completed. In addition to establishing the range of contaminants that can be removed from soil, a method for surfactant/water separation was evaluated. For example, using a thermal phase separation method, approximately 90% of the surfactant could be recovered from the water

  18. Temperature response of soil respiration largely unaltered with experimental warming

    Carey, J.C.; Tang, J.; Templer, P.H.; Kroeger, K.D.; Crowther, T.W.; Burton, A.J.; Dukes, J.S.; Emmett, B.; Frey, S.D.; Heskel, M.A.; Jiang, L.; Machmuller, M.B.; Mohan, J.; Panetta, A.M.; Reich, P.B.; Reinsch, S.; Wang, X.; Allison, S.D.; Bamminger, C.; Bridgham, S.; Collins, S.L.; de Dato, G.; Eddy, W.C.; Enquist, B.J.; Estiarte, M.; Harte, J.; Henderson, A.; Johnson, B.R.; Larsen, K.S.; Luo, Y.; Marhan, S.; Melillo, J.M.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Rastetter, E.; Reinmann, A.B.; Reynolds, L.L.; Schmidt, I.K.; Shaver, G.R.; Strong, A.L.; Suseela, V.; Tietema, A.

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific

  19. Native temperature regime influences soil response to simulated warming

    Timothy G. Whitby; Michael D. Madritch

    2013-01-01

    Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend...

  20. Recent progress in ecological studies of soil fauna

    Hasegawa, Motohiro; Fujii, Saori; Kaneda, Satoshi; Ikeda, Hiroshi; Hishi, Takuo; Hyodo, Fujio; Kobayashi, Makoto

    2017-01-01

    Progress in ecological studies of soil fauna includes studies of the role and effects of soil fauna on decomposition and soil carbon dynamics in relation to global environmental changes, the introduction of molecular biology approaches to such studies, feeding habit analysis using stable isotopes,

  1. Clay-associated organic matter in kaolinitic and smectitic soils

    Wattel-Koekkoek, E.J.W.

    2002-01-01

    The primary source of soil organic matter is plant debris of all kinds, such as dead roots, leaves and branches that enter into the soil and are then biologically decomposed at variable rates. Organic matter has many different important functions on a local and global scale. Soil organic matter is

  2. Digital Soil Resource Inventories: Status and Prospects in 2015.

    Rossiter, David

    2016-01-01

    Eleven years ago, the author published a paper (Soil Use and Management 20(3): 296–301) titled “Digital soil resource inventories: status and prospects,” which concluded that, at the time, the quantity and quality of digital soil survey information at global, national, regional, and local scales was

  3. Soil Forming Factors

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  4. What is Soil?

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  5. Transparent soil for imaging the rhizosphere.

    Helen Downie

    Full Text Available Understanding of soil processes is essential for addressing the global issues of food security, disease transmission and climate change. However, techniques for observing soil biology are lacking. We present a heterogeneous, porous, transparent substrate for in situ 3D imaging of living plants and root-associated microorganisms using particles of the transparent polymer, Nafion, and a solution with matching optical properties. Minerals and fluorescent dyes were adsorbed onto the Nafion particles for nutrient supply and imaging of pore size and geometry. Plant growth in transparent soil was similar to that in soil. We imaged colonization of lettuce roots by the human bacterial pathogen Escherichia coli O157:H7 showing micro-colony development. Micro-colonies may contribute to bacterial survival in soil. Transparent soil has applications in root biology, crop genetics and soil microbiology.

  6. Spectral estimation of soil properties in siberian tundra soils and relations with plant species composition

    Bartholomeus, Harm; Schaepman-Strub, Gabriela; Blok, Daan

    2012-01-01

    yields a good prediction model for K and a moderate model for pH. Using these models, soil properties are determined for a larger number of samples, and soil properties are related to plant species composition. This analysis shows that variation of soil properties is large within vegetation classes......Predicted global warming will be most pronounced in the Arctic and will severely affect permafrost environments. Due to its large spatial extent and large stocks of soil organic carbon, changes to organic matter decomposition rates and associated carbon fluxes in Arctic permafrost soils...

  7. SHADOW GLOBALIZATION

    Larissa Mihaylovna Kapitsa

    2014-01-01

    Full Text Available The article reviews some development trends brought about by globalization, particularly, a growing tax evasion and tax avoidance, an expansion of illicit financial flows and the proliferation of a global criminal network. The author draws attention to some new phenomena, particularly, cosmopolitanization of some parts of national elites and a deepening divide between national interests and the private interests of elites as a consequence of financial globalization. Modern mass media, both Russian and foreign, tend to interpret globalization processes exclusively from the position of conformism, and for some of the researchers globalization became the "sacred cow", which one may only worship. Critical analysis of the processes associated with globalization is given a hostile reception. In response to criticism of globalization, one can hear the very same argument: "globalization in inevitable!" Such a state of affairs, the very least, causes perplexity. Some of the world development trends been observed over the past years raise serious concerns about the security and welfare of the peoples of the world. One of such trends has been the globalization of shadow economic activities. Methods of fight against the criminal economy been applied in international practice can be grouped into: 1 punitive enforcement (or criminal-legal methods and 2 socio-economic methods. As the results of various research works evidence punitive enforcement methods not supported by socio-economic measures not effective enough. Toughening the control over criminal economic activities in the absence of preventive and corrective actions aiming to neutralize institutional, social and other stimuli facilitating criminalization of economic activities can result in large losses of financial assets in the form of mass capital flight

  8. Shadow Globalization

    Larissa Mihaylovna Kapitsa

    2014-01-01

    Full Text Available The article reviews some development trends brought about by globalization, particularly, a growing tax evasion and tax avoidance, an expansion of illicit financial flows and the proliferation of a global criminal network. The author draws attention to some new phenomena, particularly, cosmopolitanization of some parts of national elites and a deepening divide between national interests and the private interests of elites as a consequence of financial globalization. Modern mass media, both Russian and foreign, tend to interpret globalization processes exclusively from the position of conformism, and for some of the researchers globalization became the "sacred cow", which one may only worship. Critical analysis of the processes associated with globalization is given a hostile reception. In response to criticism of globalization, one can hear the very same argument: "globalization in inevitable!" Such a state of affairs, the very least, causes perplexity. Some of the world development trends been observed over the past years raise serious concerns about the security and welfare of the peoples of the world. One of such trends has been the globalization of shadow economic activities. Methods of fight against the criminal economy been applied in international practice can be grouped into: 1 punitive enforcement (or criminal-legal methods and 2 socio-economic methods. As the results of various research works evidence punitive enforcement methods not supported by socio-economic measures not effective enough. Toughening the control over criminal economic activities in the absence of preventive and corrective actions aiming to neutralize institutional, social and other stimuli facilitating criminalization of economic activities can result in large losses of financial assets in the form of mass capital flight

  9. Soils and public health: the vital nexus

    Pachepsky, Yakov

    2015-04-01

    in organic agriculture that are often used for soil quality comparison and benchmarking. The influence of soil degradation and rehabilitation on public health has to be assessed in quantitative terms. Some links between soils and public health regarding, for example, immune maturation, antibiotic resistance development, and mental well-being, have been long hypothesized but remain to be examined. The data on soil-health relationships are scarce and very much disjointed, and a concerted international effort appears to be needed to encompass various economic and geographical settings. Current definitions of healthy soil broadly include aspects that are conducive for human health, and functional evaluation of soil quality with a focus on public health will have useful applications in public policies and perception. The 'soil-health' connection is complex in character, global in manifestation, and applicable to every human being.

  10. Experimental soil warming effects on C, N, and major element cycling in a low elevation spruce-fir forest soil

    Lindsey E. Rustad; Ivan J. Fernandez; Stephanie Arnold

    1996-01-01

    The effect of global warming on north temperate and boreal forest soils has been the subject of much recent debate. These soils serve as major reservoirs for C, N, and other nutrients necessary for forest growth and productivity. Given the uncertainties in estimates of organic matter turnover rates and storage, it is unclear whether these soils will serve as short or...

  11. Precise soil management as a tool to reduce CH4 and N2O emissions from agricultural soils

    Mosquera Losada, J.; Hol, J.M.G.; Rappoldt, C.; Dolfing, J.

    2007-01-01

    Soil compaction stimulates the emission of nitrous oxide (N2O) and methane (CH4) from agricultural soils. N2O and CH4 are potent greenhouse gases, with a global warming potential respectively 296 times and 23 times greater than CO2.. Agricultural soils are an important source of N2O. Hence there is

  12. Global Rome

    Is 21st-century Rome a global city? Is it part of Europe's core or periphery? This volume examines the “real city” beyond Rome's historical center, exploring the diversity and challenges of life in neighborhoods affected by immigration, neoliberalism, formal urban planning, and grassroots social...... movements. The contributors engage with themes of contemporary urban studies–the global city, the self-made city, alternative modernities, capital cities and nations, urban change from below, and sustainability. Global Rome serves as a provocative introduction to the Eternal City and makes an original...

  13. Carbon Storage in Soils: Climate vs. Geology

    Doetterl, Sebastian; Boeckx, Pascal; Stevens, Antoine; Van Oost, Kristof; Six, Johan; Merckx, Roel; Casanova Pinto, Manuel; Casanova-Katny, Angélica; Muñoz, Cristina; Zagal Venegas, Erick; Boudin, Mathieu

    2016-01-01

    In a recently published Nature Geoscience article, scientists took a closer look at the much-discussed topic of carbon storage in soils under Climate Change. In a large-scale study across Chile and the Antarctic Peninsula, they showed that the role of precipitation and temperature in controlling carbon dynamics in soils is less than currently considered in Global Ecosystem Models. Soils are important for carbon (C) storage and thus for atmospheric CO 2 concentrations. Whether soils act as a sink or source for atmospheric C generally depend on climatic factors, as they control plant growth (driving the incorporation of C into the soil), the activity of soil microorganism (driving the release of C from the soil to the atmosphere), as well as several other chemical processes in soils. However, we still do not fully understand the response of soil C to Climate Change. An international team of researchers led by Pascal Boeckx and Sebastian Doetterl from Ghent University, Belgium and Erick Zagal from University of Concepcion in Chile, have been investigating the interaction between climate, different types of soil minerals, and soil as sink or source for C. They studied this interaction by sampling soils from numerous locations representing different vegetation types in Chile and the Antarctic Peninsula

  14. Soil invertebrate fauna affect N2 O emissions from soil.

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  15. Global Managers

    Barakat, Livia L.; Lorenz, Melanie P.; Ramsey, Jase R.

    2016-01-01

    Purpose: – The purpose of this paper is to examine the effect of cultural intelligence (CQ) on the job performance of global managers. Design/methodology/approach: – In total, 332 global managers were surveyed from multinational companies operating in Brazil. The mediating effect of job...... satisfaction was tested on the CQ-job performance relationship. Findings: – The findings suggest that job satisfaction transmits the effect of CQ to job performance, such that global managers high in CQ exhibit more job satisfaction in an international setting, and therefore perform better at their jobs....... Practical implications: – Results imply that global managers should increase their CQ in order to improve their job satisfaction and ultimately perform better in an international context. Originality/value: – The authors make three primary contributions to the international business literature. First...

  16. Globalization & technology

    Narula, Rajneesh

    Technology and globalization are interdependent processes. Globalization has a fundamental influence on the creation and diffusion of technology, which, in turn, affects the interdependence of firms and locations. This volume examines the international aspect of this interdependence at two levels...... of innovation" understanding of learning. Narula and Smith reconcile an important paradox. On the one hand, locations and firms are increasingly interdependent through supranational organisations, regional integration, strategic alliances, and the flow of investments, technologies, ideas and people...

  17. Another globalization

    Prof. Ph.D. Ion Bucur

    2007-01-01

    Finding the anachronisms and the failures of the present globalization, as well as the vitiated system of world-wide government, has stimulated the debates regarding the identification of a more equitable form of globalization to favor the acceleration of the economic increase and the reduction of poverty.The deficiency of the present international economic institutions, especially the lack of transparency and democratic responsibility, claims back with acuteness the reformation of ...

  18. Gendered globalization

    Milwertz, Cecilia Nathansen; Cai, Yiping

    2017-01-01

    Both the People’s Republic of China (PRC) and Nordic countries (Sweden, Iceland, Denmark, Norway and Finland) view gender equality as a social justice issue and are politically committed towards achieving gender equality nationally and internationally. Since China has taken a proactive position...... on globalization and global governance, gender equality is possibly an area that China may wish to explore in collaboration with the Nordic countries....

  19. Global warming

    Hulme, M

    1998-01-01

    Global warming-like deforestation, the ozone hole and the loss of species- has become one of the late 20the century icons of global environmental damage. The threat, is not the reality, of such a global climate change has motivated governments. businesses and environmental organisations, to take serious action ot try and achieve serious control of the future climate. This culminated last December in Kyoto in the agreement for legally-binding climate protocol. In this series of three lectures I will provide a perspective on the phenomenon of global warming that accepts the scientific basis for our concern, but one that also recognises the dynamic interaction between climate and society that has always exited The future will be no different. The challenge of global warning is not to pretend it is not happening (as with some pressure groups), nor to pretend it threatens global civilisation (as with other pressure groups), and it is not even a challenge to try and stop it from happening-we are too far down the ro...

  20. A simple approach to estimate soil organic carbon and soil co/sub 2/ emission

    Abbas, F.

    2013-01-01

    SOC (Soil Organic Carbon) and soil CO/sub 2/ (Carbon Dioxide) emission are among the indicator of carbon sequestration and hence global climate change. Researchers in developed countries benefit from advance technologies to estimate C (Carbon) sequestration. However, access to the latest technologies has always been challenging in developing countries to conduct such estimates. This paper presents a simple and comprehensive approach for estimating SOC and soil CO/sub 2/ emission from arable- and forest soils. The approach includes various protocols that can be followed in laboratories of the research organizations or academic institutions equipped with basic research instruments and technology. The protocols involve soil sampling, sample analysis for selected properties, and the use of a worldwide tested Rothamsted carbon turnover model. With this approach, it is possible to quantify SOC and soil CO/sub 2/ emission over short- and long-term basis for global climate change assessment studies. (author)

  1. Agriculture: Soils

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  2. The global environment: An overview

    Tolba, M.K.

    1992-01-01

    Global environmental chemistry today involves a rapidly expanding need both for new research and for the development of an interdiciplinary approach to the multiplicity of interconnected environmental problems. Every ecosystem shows signs of damage: growing quantities of wastes; decreasing water supplies; soil degradation; coastal zone deterioration; deforestation and climatic change; global warming due to ozone depletion. Solutions must involve a cooperative and holistic global effort in three areas: scientific understanding of how the interactive physical, chemical and biological processes regulate the total Earth system; public policy implications including closer liaison between scientists and policymakers;and understanding of the state of the global environment, what is going wrong, why, and whether it is getting worse

  3. SOIL moisture data intercomparison

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  4. [Research progress on photosynthesis regulating and controlling soil respiration].

    Jing, Yan-Li; Guan, De-Xin; Wu, Jia-Bing; Wang, An-Zhi; Yuan, Feng-Hui

    2013-01-01

    To understand the mechanisms of soil respiration and accurately estimate its magnitude are the crucial basis of evaluating global carbon balance. However, the previously built soil respiration forecast models usually neglect the physiological processes that photosynthesis supplies substrates for rhizospheric respiration, leading to the defect in evaluating the mechanisms of soil respiration. This paper summarized the research progress on the mechanisms of photosynthetic regulation and control of soil respiration, introduced the related main research methods, and discussed the existing problems and research hotspots.

  5. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation

    R. Michael Lehman

    2015-01-01

    Full Text Available Our objective is to provide an optimistic strategy for reversing soil degradation by increasing public and private research efforts to understand the role of soil biology, particularly microbiology, on the health of our world’s soils. We begin by defining soil quality/soil health (which we consider to be interchangeable terms, characterizing healthy soil resources, and relating the significance of soil health to agroecosystems and their functions. We examine how soil biology influences soil health and how biological properties and processes contribute to sustainability of agriculture and ecosystem services. We continue by examining what can be done to manipulate soil biology to: (i increase nutrient availability for production of high yielding, high quality crops; (ii protect crops from pests, pathogens, weeds; and (iii manage other factors limiting production, provision of ecosystem services, and resilience to stresses like droughts. Next we look to the future by asking what needs to be known about soil biology that is not currently recognized or fully understood and how these needs could be addressed using emerging research tools. We conclude, based on our perceptions of how new knowledge regarding soil biology will help make agriculture more sustainable and productive, by recommending research emphases that should receive first priority through enhanced public and private research in order to reverse the trajectory toward global soil degradation.

  6. Soil fauna: key to new carbon models

    Filser, Juliane; Faber, Jack H.; Tiunov, Alexei V.; Brussaard, Lijbert; Frouz, Jan; De Deyn, Gerlinde; Uvarov, Alexei V.; Berg, Matty P.; Lavelle, Patrick; Loreau, Michel; Wall, Diana H.; Querner, Pascal; Eijsackers, Herman; José Jiménez, Juan

    2016-11-01

    Soil organic matter (SOM) is key to maintaining soil fertility, mitigating climate change, combatting land degradation, and conserving above- and below-ground biodiversity and associated soil processes and ecosystem services. In order to derive management options for maintaining these essential services provided by soils, policy makers depend on robust, predictive models identifying key drivers of SOM dynamics. Existing SOM models and suggested guidelines for future SOM modelling are defined mostly in terms of plant residue quality and input and microbial decomposition, overlooking the significant regulation provided by soil fauna. The fauna controls almost any aspect of organic matter turnover, foremost by regulating the activity and functional composition of soil microorganisms and their physical-chemical connectivity with soil organic matter. We demonstrate a very strong impact of soil animals on carbon turnover, increasing or decreasing it by several dozen percent, sometimes even turning C sinks into C sources or vice versa. This is demonstrated not only for earthworms and other larger invertebrates but also for smaller fauna such as Collembola. We suggest that inclusion of soil animal activities (plant residue consumption and bioturbation altering the formation, depth, hydraulic properties and physical heterogeneity of soils) can fundamentally affect the predictive outcome of SOM models. Understanding direct and indirect impacts of soil fauna on nutrient availability, carbon sequestration, greenhouse gas emissions and plant growth is key to the understanding of SOM dynamics in the context of global carbon cycling models. We argue that explicit consideration of soil fauna is essential to make realistic modelling predictions on SOM dynamics and to detect expected non-linear responses of SOM dynamics to global change. We present a decision framework, to be further developed through the activities of KEYSOM, a European COST Action, for when mechanistic SOM models

  7. Temporal variability in Cu speciation, phytotoxicity, and soil microbial activity of Cu-polluted soils as affected by elevated temperature.

    Fu, Qing-Long; Weng, Nanyan; Fujii, Manabu; Zhou, Dong-Mei

    2018-03-01

    Global warming has obtained increasing attentions due to its multiple impacts on agro-ecosystem. However, limited efforts had been devoted to reveal the temporal variability of metal speciation and phytotoxicity of heavy metal-polluted soils affected by elevated temperature under the global warming scenario. In this study, effects of elevated temperature (15 °C, 25 °C, and 35 °C) on the physicochemical properties, microbial metabolic activities, and phytotoxicity of three Cu-polluted soils were investigated by a laboratory incubation study. Soil physicochemical properties were observed to be significantly altered by elevated temperature with the degree of temperature effect varying in soil types and incubation time. The Biolog and enzymatic tests demonstrated that soil microbial activities were mainly controlled and decreased with increasing incubation temperature. Moreover, plant assays confirmed that the phytotoxicity and Cu uptake by wheat roots were highly dependent on soil types but less affected by incubation temperature. Overall, the findings in this study have highlighted the importance of soil types to better understand the temperature-dependent alternation of soil properties, Cu speciation and bioavailability, as well as phytotoxicity of Cu-polluted soils under global warming scenario. The present study also suggests the necessary of investigating effects of soil types on the transport and accumulation of toxic elements in soil-crop systems under global warming scenario. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Non-linear modelling of monthly mean vorticity time changes: an application to the western Mediterranean

    M. Finizio

    Full Text Available Starting from a number of observables in the form of time-series of meteorological elements in various areas of the northern hemisphere, a model capable of fitting past records and predicting monthly vorticity time changes in the western Mediterranean is implemented. A new powerful statistical methodology is introduced (MARS in order to capture the non-linear dynamics of time-series representing the available 40-year history of the hemispheric circulation. The developed model is tested on a suitable independent data set. An ensemble forecast exercise is also carried out to check model stability in reference to the uncertainty of input quantities.

    Key words. Meteorology and atmospheric dynamics · General circulation ocean-atmosphere interactions · Synoptic-scale meteorology

  9. Monthly mean sea level variations at Cochin, southwest coast of India

    DineshKumar, P.K.

    upwelling in the region. It is also indicated that large fluctuations due to weather conditions do tend to balance through the years, and the periodic seasonal changes are mostly eliminated when annual averages are calculated....

  10. The interaction between stratospheric monthly mean regional winds and sporadic-E

    Çetin, Kenan; Korlaelçi, Serhat; Özcan, Osman

    2017-01-01

    In the present study, a statistical investigation is carried out to explore whether there is a relationship between the critical frequency (foEs) of the sporadic-E layer that is occasionally seen on the E region of the ionosphere and the quasi-biennial oscillation (QBO) that flows in the east–west direction in the equatorial stratosphere. Multiple regression model as a statistical tool was used to determine the relationship between variables. In this model, the stationarity of the variables (foEs and QBO) was firstly analyzed for each station (Cocos Island, Gibilmanna, Niue Island, and Tahiti). Then, a co-integration test was made to determine the existence of a long-term relationship between QBO and foEs. After verifying the presence of a long-term relationship between the variables, the magnitude of the relationship between variables was further determined using the multiple regression model. As a result, it is concluded that the variations in foEs were explainable with QBO measured at 10 hPa altitude at the rate of 69%, 94%, 79%, and 58% for Cocos Island, Gibilmanna, Niue Island, and Tahiti stations, respectively. It is observed that the variations in foEs were explainable with QBO measured at 70 hPa altitude at the rate of 66%, 69%, 53%, and 47% for Cocos Island, Gibilmanna, Niue Island, and Tahiti stations, respectively. (paper)

  11. Build your own soil: exploring microfluidics to create microbial habitat structures

    Aleklett, Kristin; Kiers, E Toby; Ohlsson, Pelle; Shimizu, Thomas S; Caldas, Victor EA; Hammer, Edith C

    2018-01-01

    Soil is likely the most complex ecosystem on earth. Despite the global importance and extraordinary diversity of soils, they have been notoriously challenging to study. We show how pioneering microfluidic techniques provide new ways of studying soil microbial ecology by allowing simulation and manipulation of chemical conditions and physical structures at the microscale in soil model habitats. PMID:29135971

  12. What are the effects of agricultural management on soil organic carbon in boreo-temperate systems?

    Haddaway, Neal R.; Hedlund, Katarina; Jackson, Louise E.

    2015-01-01

    Background Soils contain the largest stock of organic carbon (C) in terrestrial ecosystems and changes in soil C stocks may significantly affect atmospheric CO2. A significant part of soil C is present in cultivated soils that occupy about 35 % of the global land surface. Agricultural intensifica...

  13. Genotype and plant trait effects on soil CO2 efflux responses to altered precipitation in switchgrass

    Background/Question/Methods Global climate change models predict increasing drought during the growing season, which will alter many ecosystem processes including soil CO2 efflux (JCO2), with potential consequences for carbon retention in soils. Soil moisture, soil temperature and plant traits such...

  14. Soil Respiration at Dominant Patch Types within a Managed Northern Wisconsin Landscape

    Eug& #233; nie Euskirchen; Jiquan Chen; Eric J. Gustafson; Siyan Ma; Siyan Ma

    2003-01-01

    Soil respiration (SR), a substantial component of the forest carbon budget, has been studied extensively at the ecosystem, regional, continental, and global scales, but little progress has been made toward understanding SR over managed forest landscapes. Soil respiration is often influenced by soil temperature (Ts), soil moisture (Ms...

  15. The role of enzyme activities in soil ecosystem services: Location, origin and connection to the phytobiome

    Soil enzymes are important components of soil quality and its health because of their involvement in ecosystem services related to biogeochemical cycling, global C and organic matter dynamics, and soil detoxification. This talk will provide an overview of the field of soil enzymology, the location a...

  16. Framing a future for soil science education.

    Field, Damien

    2017-04-01

    The emerging concept of Global Soil Security highlights the need to have a renewed education framework that addresses the needs of those who want to; 1) know soil, 2) know of soil, and/or 3) be aware of soil. Those who know soil are soil science discipline experts and are concerned with soil as an object of study. With their discipline expertise focusing on what soil's are capable of they would be brokers of soil knowledge to those who know of soil. The connection with soil by the those in the second group focuses on the soil's utility and are responsible for managing the functionality and condition of the soil, the obvious example are farmers and agronomists. Reconnecting society with soil illustrates those who are members of the third group, i.e. those who are aware of soil. This is predicated on concepts of 'care' and is founded in the notion of beauty and utility. The utility is concerned with soil providing good Quality, clean food, or a source of pharmaceuticals. Soil also provides a place for recreation and those aware of soil know who this contributes to human health. The teaching-research-industry-learning (TRIL) nexus has been used to develop a framework for the learning and teaching of soil science applicable to a range of recipients, particularly campus-based students and practicing farm advisors. Consultation with academics, industry and professionals, by means of online (Delphi Study) and face-to-face forums, developed a heavily content-rich core body of knowledge (CBoK) relevant to industry, satisfying those who; know, and know of soil. Integrating the multidisciplinary approach in soil science teaching is a future aspiration, and will enable the development of curriculum that incorporates those who 'care' for soil. In the interim the application of the TRIL model allows the development of a learning framework more suited to real word needs. The development of a learning framework able to meet industry needs includes authentic complex scenarios that

  17. A direct method for soil-structure interaction analysis based on frequency-dependent soil masses

    Danisch, R.; Delinic, K.; Marti, J.; Trbojevic, V.M.

    1993-01-01

    In a soil-structure interaction analysis, the soil, as a subsystem of the global vibrating system, exerts a strong influence on the response of the nuclear reactor building to the earthquake excitation. The volume of resources required for dealing with the soil have led to a number of different types of frequency-domain solutions, most of them based on the impedance function approach. These procedures require coupling the soil to the lumped-mass finite-element model of the reactor building. In most practical cases, the global vibrating system is analysed in the time domain (i.e. modal time history, linear or non-linear direct time-integration). Hence, it follows that the frequency domain solution for soil must be converted to an 'equivalent' soil model in the time domain. Over the past three decades, different approaches have been developed and used for earthquake analysis of nuclear power plants. In some cases, difficulties experienced in modelling the soil have affected the methods of global analysis, thus leading to approaches like the substructuring technique, e.g. 3-step method. In the practical applications, the limitations of each specific method must be taken into account in order to avoid unrealistic results. The aim of this paper is to present the recent development on an equivalent SDOF system for soil including frequency-dependent soil masses. The method will be compared with the classical 3-step method. (author)

  18. Priorities for research in soil ecology.

    Eisenhauer, Nico; Antunes, Pedro M; Bennett, Alison E; Birkhofer, Klaus; Bissett, Andrew; Bowker, Matthew A; Caruso, Tancredi; Chen, Baodong; Coleman, David C; de Boer, Wietse; de Ruiter, Peter; DeLuca, Thomas H; Frati, Francesco; Griffiths, Bryan S; Hart, Miranda M; Hättenschwiler, Stephan; Haimi, Jari; Heethoff, Michael; Kaneko, Nobuhiro; Kelly, Laura C; Leinaas, Hans Petter; Lindo, Zoë; Macdonald, Catriona; Rillig, Matthias C; Ruess, Liliane; Scheu, Stefan; Schmidt, Olaf; Seastedt, Timothy R; van Straalen, Nico M; Tiunov, Alexei V; Zimmer, Martin; Powell, Jeff R

    2017-07-01

    The ecological interactions that occur in and with soil are of consequence in many ecosystems on the planet. These interactions provide numerous essential ecosystem services, and the sustainable management of soils has attracted increasing scientific and public attention. Although soil ecology emerged as an independent field of research many decades ago, and we have gained important insights into the functioning of soils, there still are fundamental aspects that need to be better understood to ensure that the ecosystem services that soils provide are not lost and that soils can be used in a sustainable way. In this perspectives paper, we highlight some of the major knowledge gaps that should be prioritized in soil ecological research. These research priorities were compiled based on an online survey of 32 editors of Pedobiologia - Journal of Soil Ecology. These editors work at universities and research centers in Europe, North America, Asia, and Australia.The questions were categorized into four themes: (1) soil biodiversity and biogeography, (2) interactions and the functioning of ecosystems, (3) global change and soil management, and (4) new directions. The respondents identified priorities that may be achievable in the near future, as well as several that are currently achievable but remain open. While some of the identified barriers to progress were technological in nature, many respondents cited a need for substantial leadership and goodwill among members of the soil ecology research community, including the need for multi-institutional partnerships, and had substantial concerns regarding the loss of taxonomic expertise.

  19. Global Issues

    Seitz, J.L.

    2001-10-15

    Global Issues is an introduction to the nature and background of some of the central issues - economic, social, political, environmental - of modern times. This new edition of this text has been fully updated throughout and features expanded sections on issues such as global warming, biotechnology, and energy. Fully updated throughout and features expanded sections on issues such as global warming, biotechnology, and energy. An introduction to the nature and background of some of the central issues - economic, social, political, environmental - of modern times. Covers a range of perspectives on a variety of societies, developed and developing. Extensively illustrated with diagrams and photographs, contains guides to further reading, media, and internet resources, and includes suggestions for discussion and studying the material. (author)

  20. Global Inequality

    Niño-Zarazúa, Miguel; Roope, Laurence; Tarp, Finn

    2017-01-01

    This paper measures trends in global interpersonal inequality during 1975–2010 using data from the most recent version of the World Income Inequality Database (WIID). The picture that emerges using ‘absolute,’ and even ‘centrist’ measures of inequality, is very different from the results obtained...... using standard ‘relative’ inequality measures such as the Gini coefficient or Coefficient of Variation. Relative global inequality has declined substantially over the decades. In contrast, ‘absolute’ inequality, as captured by the Standard Deviation and Absolute Gini, has increased considerably...... and unabated. Like these ‘absolute’ measures, our ‘centrist’ inequality indicators, the Krtscha measure and an intermediate Gini, also register a pronounced increase in global inequality, albeit, in the case of the latter, with a decline during 2005 to 2010. A critical question posed by our findings is whether...

  1. Global Inequality

    Niño-Zarazúa, Miguel; Roope, Laurence; Tarp, Finn

    2017-01-01

    This paper measures trends in global interpersonal inequality during 1975–2010 using data from the most recent version of the World Income Inequality Database (WIID). The picture that emerges using ‘absolute,’ and even ‘centrist’ measures of inequality, is very different from the results obtained...... by centrist measures such as the Krtscha, could return to 1975 levels, at today's domestic and global per capita income levels, but this would require quite dramatic structural reforms to reduce domestic inequality levels in most countries....... using standard ‘relative’ inequality measures such as the Gini coefficient or Coefficient of Variation. Relative global inequality has declined substantially over the decades. In contrast, ‘absolute’ inequality, as captured by the Standard Deviation and Absolute Gini, has increased considerably...

  2. Global Programs

    Lindberg Christensen, Lars; Russo, P.

    2009-05-01

    IYA2009 is a global collaboration between almost 140 nations and more than 50 international organisations sharing the same vision. Besides the common brand, mission, vision and goals, IAU established eleven cornerstones programmes to support the different IYA2009 stakeholder to organize events, activities under a common umbrella. These are global activities centred on specific themes and are aligned with IYA2009's main goals. Whether it is the support and promotion of women in astronomy, the preservation of dark-sky sites around the world or educating and explaining the workings of the Universe to millions, the eleven Cornerstones are key elements in the success of IYA2009. However, the process of implementing global projects across cultural boundaries is challenging and needs central coordination to preserve the pre-established goals. During this talk we will examine the ups and downs of coordinating such a project and present an overview of the principal achievements for the Cornerstones so far.

  3. Global rotation

    Rosquist, K.

    1980-01-01

    Global rotation in cosmological models is defined on an observational basis. A theorem is proved saying that, for rigid motion, the global rotation is equal to the ordinary local vorticity. The global rotation is calculated in the space-time homogeneous class III models, with Godel's model as a special case. It is shown that, with the exception of Godel's model, the rotation in these models becomes infinite for finite affine parameter values. In some directions the rotation changes sign and becomes infinite in a direction opposite to the local vorticity. The points of infinite rotation are identified as conjugate points along the null geodesics. The physical interpretation of the infinite rotation is discussed, and a comparison with the behaviour of the area distance at conjugate points is given. (author)

  4. Mean residence time of kaolinite and smectite-bound organic matter in mozambiquan soils

    Wattel-Koekkoek, E.J.W.; Buurman, P.

    2004-01-01

    To gain understanding about the process of global warming, it is essential to study the global C cycle. In the global C cycle, soil organic matter (SOM) is a major source and sink of atmospheric C. Turnover times of C in these soil organic compounds vary from hours to thousands of years. Clay

  5. Another globalization

    Prof. Ph.D. Ion Bucur

    2007-05-01

    Full Text Available Finding the anachronisms and the failures of the present globalization, as well as the vitiated system of world-wide government, has stimulated the debates regarding the identification of a more equitable form of globalization to favor the acceleration of the economic increase and the reduction of poverty.The deficiency of the present international economic institutions, especially the lack of transparency and democratic responsibility, claims back with acuteness the reformation of the architecture of the international institutional system and the promotion of those economical policies which must ensure the stability world-wide economy and the amelioration of the international equity.

  6. Measuring Globalization

    Andersen, Torben M.; Herbertsson, Tryggvi Thor

    2003-01-01

    The multivariate technique of factor analysis is used to combine several indicators of economic integration and international transactions into a single measure or index of globalization. The index is an alternative to the simple measure of openness based on trade, and it produces a ranking of countries over time for 23 OECD countries. Ireland is ranked as the most globalized country during the 1990?s, while the UK was at the top during the 1980?s. Some of the most notable changes in the rank...

  7. Going global

    Meade, W.; Poirier, J.L.

    1992-01-01

    This article discusses the global market for independent power projects and the increased competition and strategic alliances that are occurring to take advantage of the increasing demand. The topics of the article include the amount of involvement of US companies in the global market, the forces driving the market toward independent power, markets in the United Kingdom, North America, Turkey, Central America, South America, the Caribbean, Europe, the Federal Republic of Germany, India, the former Eastern European countries, Asia and the Pacific nations, and niche markets

  8. Statistical models of global Langmuir mixing

    Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean

    2017-05-01

    The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.

  9. ROMANIAN SOIL RESOURCES - “HEALTHY SOILS FOR A HEALTHY LIFE”

    Mircea MIHALACHE

    2015-10-01

    Full Text Available After nearly three years of intensive consultations, 2015 has been declared the International Year of Soils by the 68th UN General Assembly (A/RES/68/232. The International Years of Soil is to be a major platform for raising awareness of the importance of soils for food security and nutrition and essential eco-system functions. Key objectives of the International Years of Soil have been identified as follows: to create full awareness of all stakeholders about the fundamental roles of soils for human life; to achieve full recognition of the prominent contributions of soils to food security and nutrition, climate change adaptation and mitigation, essential ecosystem services, poverty alleviation and sustainable development; to promote effective policies and actions for the sustainable management and protection of soil resources; to sensitize decision-makers about the need for robust investment in sustainable soil management activities, to ensure healthy soils for different land users and population groups; to catalyze initiatives in connection with the Sustainable Development Goal process and Post-2015 agenda; to advocate rapid enhancement of capacities and systems for soil information collection and monitoring at all levels (global, regional and national (http://www.fao.org/soils-2015. Applying a proper management of the recovery and conservation of soil resources is a major goal for every nation. The development of a country depends on the production potential of own soil resources. Soil degradation is a serious problem in Europe an also in Romania. It is caused or exacerbated by human activity such as inadequate agricultural and forestry practices, industrial activities, tourism, urban and industrial expansion etc. Soil Quality Monitoring in Romania revealed a number of problems concerning land use in Romania following the manifestation of one or more limiting factors such as: moisture deficit, salinization and alkalization, soil erosion

  10. Operational assimilation of ASCAT surface soil wetness at the Met Office

    I. Dharssi

    2011-08-01

    Full Text Available Currently, no extensive, near real time, global soil moisture observation network exists. Therefore, the Met Office global soil moisture analysis scheme has instead used observations of screen temperature and humidity. A number of new space-borne remote sensing systems, operating at microwave frequencies, have been developed that provide a more direct retrieval of surface soil moisture. These systems are attractive since they provide global data coverage and the horizontal resolution is similar to weather forecasting models. Several studies show that measurements of normalised backscatter (surface soil wetness from the Advanced Scatterometer (ASCAT on the meteorological operational (MetOp satellite contain good quality information about surface soil moisture. This study describes methods to convert ASCAT surface soil wetness measurements to volumetric surface soil moisture together with bias correction and quality control. A computationally efficient nudging scheme is used to assimilate the ASCAT volumetric surface soil moisture data into the Met Office global soil moisture analysis. This ASCAT nudging scheme works alongside a soil moisture nudging scheme that uses observations of screen temperature and humidity. Trials, using the Met Office global Unified Model, of the ASCAT nudging scheme show a positive impact on forecasts of screen temperature and humidity for the tropics, North America and Australia. A comparison with in-situ soil moisture measurements from the US also indicates that assimilation of ASCAT surface soil wetness improves the soil moisture analysis. Assimilation of ASCAT surface soil wetness measurements became operational during July 2010.

  11. Seasonal soil moisture patterns in contrasting habitats in the Willamette Valley, Oregon

    Changing seasonal soil moisture regimes caused by global warming may alter plant community composition in sensitive habitats such as wetlands and oak savannas. To evaluate such changes, an understanding of typical seasonal soil moisture regimes is necessary. The primary objective...

  12. Global Games

    van Bottenburg, Maarten

    2001-01-01

    Why is soccer the sport of choice in South America, while baseball has soared to popularity in the Carribean? How did cricket become India's national sport, while China is a stronghold of table tennis? In Global Games, Maarten van Bottenburg asserts that it is the 'hidden competition' of social and

  13. Going global?

    Fejerskov, Adam Moe; Rasmussen, Christel

    2016-01-01

    occurred at a more micro level. This article explores this issue by studying the international activities of Danish foundations. It finds that grant-making on global issues is increasing, and that several foundations have undergone transformations in their approach to grantmaking, making them surprisingly...

  14. Justice Globalism

    Wilson, Erin; Steger, Manfred; Siracusa, Joseph; Battersby, Paul

    2014-01-01

    The pursuit of a global order founded on universal rules extends beyond economics into the normative spheres of law, politics and justice. Justice globalists claim universal principles applicable to all societies irrespective of religion or ideology. This view privileges human rights, democracy and

  15. Improvement in soil and sorghum health following the application of polyacrylate polymers to a Cd-contaminated soil

    Guiwei, Q.; Varennes, A. de; Martins, L.L.; Mourato, M.P.; Cardoso, A.I.; Mota, A.M.; Pinto, A.P.; Goncalves, M.L.

    2010-01-01

    Contamination of soils with cadmium (Cd) is a serious global issue due to its high mobility and toxicity. We investigated the application of insoluble polyacrylate polymers to improve soil and plant health. Sorghum was grown in a Cd-contaminated sandy soil. Polyacrylate polymers at 0.2% (w/w) were added to half of the soil. Control soil without plants was also included in the experiment. Growth of sorghum was stimulated in the polymer-amended soil. The concentration of Cd in the shoots, and the activities of catalase and ascorbate peroxidase decreased in plants from polymer-amended soil compared with unamended control. The amount of CaCl 2 -extractable Cd in the polymer-amended soil was 55% of that in the unamended soil. The Cd extracted in sorghum shoots was 0.19 mg per plant grown on soil without polymer and 0.41 mg per plant grown on polymer-amended soil. The total amount of Cd removed from each pot corresponded to 1.5 and more than 6% of soil CaCl 2 -extractable Cd in unamended and polymer-amended soil, respectively. The activities of soil acid phosphatase, β-glucosidase, urease, protease and cellulase were greatest in polymer-amended soil with sorghum. In conclusion, the application of polyacrylate polymers to reduce the bioavailable Cd pool seems a promising method to enhance productivity and health of plants grown on Cd-contaminated soils.

  16. Nitrogen Deposition Effects on Soil Carbon Dynamics in Temperate Forests

    Ginzburg Ozeri, Shimon

    Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrog...... implications for modelling the carbon sink-strength of temperate forests under global change.......Soils contain the largest fraction of terrestrial carbon (C). Understanding the factors regulating the decomposition and storage of soil organic matter (SOM) is essential for predictions of the C sink strength of the terrestrial environment in the light of global change. Elevated long-term nitrogen...... (N) deposition into forest ecosystems has been increasing globally and was hypothesized to raise soil organic C (SOC) stocks by increasing forest productivity and by reducing SOM decomposition. Yet, these effects of N deposition on forest SOC stocks are uncertain and largely based on observations...

  17. Soil Survey Geographic (SSURGO) - Magnesic Soils

    California Natural Resource Agency — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  18. Constructing a Soil Class Map of Denmark based on the FAO Legend Using Digital Techniques

    Adhikari, Kabindra; Minasny, Budiman; Greve, Mette Balslev

    2014-01-01

    Soil mapping in Denmark has a long history and a series of soil maps based on conventional mapping approaches have been produced. In this study, a national soil map of Denmark was constructed based on the FAO–Unesco Revised Legend 1990 using digital soil mapping techniques, existing soil profile......) confirmed that the output is reliable and can be used in various soil and environmental studies without major difficulties. This study also verified the importance of GlobalSoilMap products and a priori pedological information that improved prediction performance and quality of the new FAO soil map...

  19. Soil shrinkage characteristics in swelling soils

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  20. Développement durable à l'échelle de la planète et gestion des ressources en eau et en solsSustainable development on a global scale and management of water and soil resources

    Petit, Michel

    2003-06-01

    Despite some controversies, an international consensus on what is sustainable development has emerged, the nature of which is first specified. Then the author explains why the implementation of the measures consistent with this consensus comes up against obstacles, particularly political ones, which makes clear why the topic is still under animated debate. Examples will be taken in the domain of the management of water and soils resources. To cite this article: M. Petit, C. R. Geoscience 335 (2003).

  1. Impact of land use and soil data specifications on COSMO-CLM simulations in the CORDEX-MED area

    Gerhard Smiatek

    2016-05-01

    Full Text Available The impact of the ECOCLIMAP land use and the Harmonized World Soil Database (HWSD data on simulations with the Consortium for Small-scale Modeling model in CLimate Mode (CCLM regional climate model is investigated. ECOCLIMAP has information about vegetation characteristics as monthly data for 215 climatic units. With the HWSD implementation in CCLM, the spatial resolution of the soil data has been increased to 30 arc seconds and has an improved texture definition and handling in the soil model TERRA_ML. Simulations in the MED-CORDEX modeling domain over the period 1986–2000 reveal that differences of up to 1.8 K in the area monthly mean temperature as well as of up to 21 % in the area monthly mean precipitation can be attributed to the differences in the soil data time-invariant boundary input. Differences related to changes in land use are with 0.4 K and 5 % moderate. Differences resulting from the soil data and its processing in CCLM indicate that regional climate model simulations might benefit from further improvements in this area.

  2. Global swindle of global warming

    Zeiler, W.

    2007-01-01

    Voor sommige mensen is het nog steeds niet aannemelijk dat we te maken hebben met de effecten van ‘Global Warming’, de opwarming van de aarde door voornamelijk de broeikasgassen die vrijkomen bij de verbranding van fossiele brandstoffen. In de media worden voor- en tegenstanders aan het woord

  3. Using greenhouse gas fluxes to define soil functional types

    Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben; Vargas, Rodrigo

    2017-12-04

    Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variability of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.

  4. Applicability of empirical correlations for estimating global solar radiation

    Gopinathan, K.K.; Baholo, M.

    1987-01-01

    Three empirical models suggested by different investigators, for estimating monthly mean daily global radiation on a horizontal surface, are compared statistically to test their universal applicability. The models thus compared are those suggested by Rietveld, Glover and McCulloch and Gopinathan. The models are compared by calculating the root mean square error, mean bias error and mean relative percentage error values. The model suggested by Gopinathan yields the best results in terms of root mean square, mean bias and mean percentage errors. The model by Rietveld is the second best and the model by Glover and McCulloch comes at third place. However, the differences in the magnitude of errors among the three models are very small and all the three models can be considered to be accurate for global radiation estimation for any location in the world

  5. Conceived globals

    Cheraghi, Maryam; Schøtt, Thomas

    2016-01-01

    and culture which have separate effects. Being man, young, educated and having entrepreneurial competencies promote transnational networking extensively. Networking is embedded in culture, in the way that transnational networking is more extensive in secular-rational culture than in traditional culture.......A firm may be conceived global, in the sense that, before its birth, the founding entrepreneur has a transnational network of advisors which provides an embedding for organising the upstart that may include assembling resources and marketing abroad. The purpose is to account for the entrepreneurs...... the intending, starting and operating phases, fairly constantly with only small fluctuations. The firm is conceived global in terms of the entrepreneur's transnational networking already in the pre-birth phase, when the entrepreneur is intending to start the firm. These phase effects hardly depend on attributes...

  6. Global Derivatives

    Andersen, Torben Juul

    approaches to dealing in the global business environment." - Sharon Brown-Hruska, Commissioner, Commodity Futures Trading Commission, USA. "This comprehensive survey of modern risk management using derivative securities is a fine demonstration of the practical relevance of modern derivatives theory to risk......" provides comprehensive coverage of different types of derivatives, including exchange traded contracts and over-the-counter instruments as well as real options. There is an equal emphasis on the practical application of derivatives and their actual uses in business transactions and corporate risk...... management situations. Its key features include: derivatives are introduced in a global market perspective; describes major derivative pricing models for practical use, extending these principles to valuation of real options; practical applications of derivative instruments are richly illustrated...

  7. Ectomycorrhizal fungi slow soil carbon cycling.

    Averill, Colin; Hawkes, Christine V

    2016-08-01

    Respiration of soil organic carbon is one of the largest fluxes of CO2 on earth. Understanding the processes that regulate soil respiration is critical for predicting future climate. Recent work has suggested that soil carbon respiration may be reduced by competition for nitrogen between symbiotic ectomycorrhizal fungi that associate with plant roots and free-living microbial decomposers, which is consistent with increased soil carbon storage in ectomycorrhizal ecosystems globally. However, experimental tests of the mycorrhizal competition hypothesis are lacking. Here we show that ectomycorrhizal roots and hyphae decrease soil carbon respiration rates by up to 67% under field conditions in two separate field exclusion experiments, and this likely occurs via competition for soil nitrogen, an effect larger than 2 °C soil warming. These findings support mycorrhizal competition for nitrogen as an independent driver of soil carbon balance and demonstrate the need to understand microbial community interactions to predict ecosystem feedbacks to global climate. © 2016 John Wiley & Sons Ltd/CNRS.

  8. ES1406 COST Action: Soil fauna: Key to Soil Organic Matter Dynamicsand Fertility. How far have we got?

    Jiménez, Juan; Filser, Juliane; Barot, Sébastien

    Soil organic matter (SOM) is key to soil fertility, climate change mitigation, combatting land degradation, and the conservation of above- and below-ground biodiversity and associated ecosystem services like decomposition, nutrient cycling, carbon sequestration, detoxification and maintenance...... of soil physico-chemical properties. SOM dynamics represent the balance between the input of plant material (residues, root-derived materials) and the output through decomposition (OM mineralization) by organisms, erosion and leaching. Approximately 20% of global CO2 emissions, one third of global CH4...... emissions and two thirds of N2O emissions originate from soils. In many soils, most of the macro-aggregate structure is formed by the activities of soil invertebrates and roots, with important consequences for soil organic matter dynamics, carbon sequestration and water infiltration at several spatial...

  9. Energy globalization

    Tierno Andres

    1997-01-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum

  10. Global overeksponering

    Rosenstand, Claus A. Foss

    2007-01-01

    forandringer. Den globale orientering kommer blandt andet til udtryk i det relativt store internationale netværk, som bakker de unge op i deres protester - enten ved tilstedeværelse i København eller andre sympatiaktioner. Siden den 11. september, 2001, er globale realiteter blevet eksponeret i massemedierne...... så bliver der blændet fuldt op for linsen d. 11. september, 2001 til en global verden, hvor de demokratiske værdier ikke gælder. Lad mig blot give et eksempel: Guatanamo. Jeg skal hverken tale for eller imod den måde verden er indrettet på - da det er denne analyse uvedkommende - men blot pege på...... med væsentligt større kraft end tidligere. Før den 11. september blev globaliseringen udelukkende tegnet af jetsettet. Altså internationale politikere, kulturkoryfæer, videnskabsfolk og forretningsfolk, der har handler ud fra kendte rationaler. Men jetsettet har ikke længere den privilegeret position...

  11. Soil moisture

    L. L. Boersma; D. Kirkham; D. Norum; R. Ziemer; J. C. Guitjens; J. Davidson; J. N. Luthin

    1971-01-01

    Infiltration continues to occupy the attention of soil physicists and engineers. A theoretical and experimental analysis of the effect of surface sealing on infiltration by Edwards and Larson [1969] showed that raindrops reduced the infiltration rate by as much as 50% for a two-hour period of infiltration. The effect of raindrops on the surface infiltration rate of...

  12. Soil microbiology

    Wolf, D.C.; Legg, J.O.

    1984-01-01

    The major areas of soil microbiological and biochemical research which have involved both stable and radioactive isotopes are summarized. These include microbial decomposition of naturally occurring materials, microbial biomass, interactions of plants and microbes, denitrification, mineralization and immobilization of nitrogen and biological nitrogen fixation. (U.K.)

  13. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  14. Basic Soils. Revision.

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  15. Afforestation effects on soil carbon

    Bárcena, Teresa G

    Understanding carbon (C) dynamics has become increasingly important due to the major role of C in global warming. Soils store the largest amount of organic C in the biosphere; therefore, changes in this compartment can have a large impact on the C storage of an ecosystem. Land-use change is a main...... driver of changes in soil organic carbon (SOC) pools worldwide. In Europe, afforestation (i.e. the establishment of new forest on non-forested land), is a major land-use change driven by economic and environmental interests due to its role as a C sequestration tool following the ratification of the Kyoto...... Protocol. Despite research efforts on the quantification of SOC stock change and soil C fluxes following this land-use change, knowledge is still scarce in regions where afforestation currently is and has been widespread, like Denmark and the rest of Northern Europe. This PhD thesis explored three main...

  16. Effects of three global change drivers on terrestrial C:N:P stoichiometry

    Yue, Kai; Fornara, Dario A; Yang, Wanqin

    2017-01-01

    more common than synergistic or antagonistic interactions, (4) C:N:P stoichiometry of soil and soil microbial biomass shows high homeostasis under global change manipulations, and (5) C:N:P responses to global change are strongly affected by ecosystem type, local climate and experimental conditions......Over the last few decades there has been an increasing number of controlled-manipulative experiments to investigate how plants and soils might respond to global change. These experiments typically examined the effects of each of three global change drivers (i.e. nitrogen (N) deposition, warming...... of plants, soils and soil microbial biomass might respond to individual vs. combined effects of the three global change drivers. Our results show that (1) individual effects of N addition and elevated CO2 on C:N:P stoichiometry are stronger than warming, (2) combined effects of pairs of global change...

  17. Soil in Persian Poetry and culture

    Kazem AlaviPanah, Seyed; Taghavibayat, Aida; Behifar, Maedeh; Alavipanah, Sadroddin

    2017-04-01

    Almost everybody knows that soils are the foundation of food production and foodsecurity, supplying plants with nutrients, water and supports for their roots, but how many people or policy makes know that: Soil is a Complex, Dynamic, Open System and life also is the same! Increasing public awareness about soil-related outreach involves the dissemination and acceptance of information about soil to stakeholders who have not been aware of its importance. Public awareness can support efforts to involve private sector, indigenous and local communities and NGOs to engage on soil related activities. In this regard utilization of cultural and traditional understanding of soil issues (ethnopedology, art, literature, customs, and poems) is essential and vital to promote soil awareness among policy-makers, donors and the general public in order to find better understanding of soil's role in global issues such as climate change. In this paper we extensively analysis Persian and Iranian poems in order to get better understanding of cultural patterns of soils and its contribution to society. In ancient Cultures Classical elements (earth(Soil), water, air, fire,) explained the nature of all matters around the world, same as many other, in Persian. Each of these elements has their nature and personalities. Soil also refers to one part of human's life cycle. After death we join to soil. Therefore in Persian culture and poetry there is lots of poem which express these concepts such as poem below of Umar Khayyam Neyshabouri which noted the importance and the nature of soil and its relation to vegetation, and their cause-effect relationships about one thousand years ago. "Every unique herb vegetated next to a stream/ is as if grown from the lip of an angelical beauty/ don't stampede (degrade) that herb/ because it is vegetated from the soil of a beauty whose face is like a tulip". and Look how the morning breeze has helped the rosebud bloom/ And how at the sight of the rose the

  18. Establishing an International Soil Modelling Consortium

    Vereecken, Harry; Schnepf, Andrea; Vanderborght, Jan

    2015-04-01

    -change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society . To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. We therefore propose to establish an international soil modelling consortium with the aims of 1) bringing together leading experts in modelling soil processes within all major soil disciplines, 2) addressing major scientific gaps in describing key processes and their long term impacts with respect to the different functions and ecosystem services provided by soil, 3) intercomparing soil model performance based on standardized and harmonized data sets, 4) identifying interactions with other relevant platforms related to common data formats, protocols and ontologies, 5) developing new approaches to inverse modelling, calibration, and validation of soil models, 6) integrating soil modelling expertise and state of the art knowledge on soil processes in climate, land surface, ecological, crop and contaminant models, and 7) linking process models with new observation, measurement and data evaluation technologies for mapping and characterizing soil properties across scales. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key global issues and stimulate the development of translational research activities. This presentation will provide a compelling case for this much-needed effort, with a focus on tangible benefits to the scientific and food security communities.

  19. Soil Quality Impacts of Current South American Agricultural Practices

    Ana B. Wingeyer

    2015-02-01

    Full Text Available Increasing global demand for oil seeds and cereals during the past 50 years has caused an expansion in the cultivated areas and resulted in major soil management and crop production changes throughout Bolivia, Paraguay, Uruguay, Argentina and southern Brazil. Unprecedented adoption of no-tillage as well as improved soil fertility and plant genetics have increased yields, but the use of purchased inputs, monocropping i.e., continuous soybean (Glycine max (L. Merr., and marginal land cultivation have also increased. These changes have significantly altered the global food and feed supply role of these countries, but they have also resulted in various levels of soil degradation through wind and water erosion, soil compaction, soil organic matter (SOM depletion, and nutrient losses. Sustainability is dependent upon local interactions between soil, climate, landscape characteristics, and production systems. This review examines the region’s current soil and crop conditions and summarizes several research studies designed to reduce or prevent soil degradation. Although the region has both environmental and soil resources that can sustain current agricultural production levels, increasing population, greater urbanization, and more available income will continue to increase the pressure on South American croplands. A better understanding of regional soil differences and quantifying potential consequences of current production practices on various soil resources is needed to ensure that scientific, educational, and regulatory programs result in land management recommendations that support intensification of agriculture without additional soil degradation or other unintended environmental consequences.

  20. Global safety

    Dorien J. DeTombe

    2010-08-01

    Full Text Available Global Safety is a container concept referring to various threats such as HIV/Aids, floods and terrorism; threats with different causes and different effects. These dangers threaten people, the global economy and the slity of states. Policy making for this kind of threats often lack an overview of the real causes and the interventions are based on a too shallow analysis of the problem, mono-disciplinary and focus mostly only on the effects. It would be more appropriate to develop policy related to these issues by utilizing the approaches, methods and tools that have been developed for complex societal problems. Handling these complex societal problems should be done multidisciplinary instead of mono-disciplinary. In order to give politicians the opportunity to handle complex problems multidisciplinary, multidisciplinary research institutes should be created. These multidisciplinary research institutes would provide politicians with better approaches to handle this type of problem. In these institutes the knowledge necessary for the change of these problems can be created through the use of the Compram methodology which has been developed specifically for handling complex societal problems. In a six step approach, experts, actors and policymakers discuss the content of the problem and the possible changes. The framework method uses interviewing, the Group Decision Room, simulation models and scenario's in a cooperative way. The methodology emphasizes the exchange of knowledge and understanding by communication among and between the experts, actors and politicians meanwhile keeping emotion in mind. The Compram methodology will be further explained in relation to global safety in regard to terrorism, economy, health care and agriculture.

  1. Global ambitions

    Scruton, M.

    1996-01-01

    The article discusses global ambitions concerning the Norwegian petroleum industry. With the advent of the NORSOK (Forum for development and operation) cost reduction programme and a specific focus on key sectors of the market, the Norwegian oil industry is beginning to market its considerable technological achievements internationally. Obviously, the good fortune of having tested this technology in a very demanding domestic arena means that Norwegian offshore support companies, having succeeded at home, are perfectly poised to export their expertise to the international sector. Drawing on the traditional strengths of the country's maritime heritage, with mobile rig and specialized vessel business featuring strongly, other key technologies have been developed. 5 figs., 1 tab

  2. Spatial Variation of Soil Type and Soil Moisture in the Regional Atmospheric Modeling System

    Buckley, R.

    2001-06-27

    Soil characteristics (texture and moisture) are typically assumed to be initially constant when performing simulations with the Regional Atmospheric Modeling System (RAMS). Soil texture is spatially homogeneous and time-independent, while soil moisture is often spatially homogeneous initially, but time-dependent. This report discusses the conversion of a global data set of Food and Agriculture Organization (FAO) soil types to RAMS soil texture and the subsequent modifications required in RAMS to ingest this information. Spatial variations in initial soil moisture obtained from the National Center for Environmental Predictions (NCEP) large-scale models are also introduced. Comparisons involving simulations over the southeastern United States for two different time periods, one during warmer, more humid summer conditions, and one during cooler, dryer winter conditions, reveals differences in surface conditions related to increases or decreases in near-surface atmospheric moisture con tent as a result of different soil properties. Three separate simulation types were considered. The base case assumed spatially homogeneous soil texture and initial soil moisture. The second case assumed variable soil texture and constant initial soil moisture, while the third case allowed for both variable soil texture and initial soil moisture. The simulation domain was further divided into four geographically distinct regions. It is concluded there is a more dramatic impact on thermodynamic variables (surface temperature and dewpoint) than on surface winds, and a more pronounced variability in results during the summer period. While no obvious trends in surface winds or dewpoint temperature were found relative to observations covering all regions and times, improvement in surface temperatures in most regions and time periods was generally seen with the incorporation of variable soil texture and initial soil moisture.

  3. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Judith Prommer

    Full Text Available Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  4. Biochar decelerates soil organic nitrogen cycling but stimulates soil nitrification in a temperate arable field trial.

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50-80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies.

  5. Biochar Decelerates Soil Organic Nitrogen Cycling but Stimulates Soil Nitrification in a Temperate Arable Field Trial

    Prommer, Judith; Wanek, Wolfgang; Hofhansl, Florian; Trojan, Daniela; Offre, Pierre; Urich, Tim; Schleper, Christa; Sassmann, Stefan; Kitzler, Barbara; Soja, Gerhard; Hood-Nowotny, Rebecca Clare

    2014-01-01

    Biochar production and subsequent soil incorporation could provide carbon farming solutions to global climate change and escalating food demand. There is evidence that biochar amendment causes fundamental changes in soil nutrient cycles, often resulting in marked increases in crop production, particularly in acidic and in infertile soils with low soil organic matter contents, although comparable outcomes in temperate soils are variable. We offer insight into the mechanisms underlying these findings by focusing attention on the soil nitrogen (N) cycle, specifically on hitherto unmeasured processes of organic N cycling in arable soils. We here investigated the impacts of biochar addition on soil organic and inorganic N pools and on gross transformation rates of both pools in a biochar field trial on arable land (Chernozem) in Traismauer, Lower Austria. We found that biochar increased total soil organic carbon but decreased the extractable organic C pool and soil nitrate. While gross rates of organic N transformation processes were reduced by 50–80%, gross N mineralization of organic N was not affected. In contrast, biochar promoted soil ammonia-oxidizer populations (bacterial and archaeal nitrifiers) and accelerated gross nitrification rates more than two-fold. Our findings indicate a de-coupling of the soil organic and inorganic N cycles, with a build-up of organic N, and deceleration of inorganic N release from this pool. The results therefore suggest that addition of inorganic fertilizer-N in combination with biochar could compensate for the reduction in organic N mineralization, with plants and microbes drawing on fertilizer-N for growth, in turn fuelling the belowground build-up of organic N. We conclude that combined addition of biochar with fertilizer-N may increase soil organic N in turn enhancing soil carbon sequestration and thereby could play a fundamental role in future soil management strategies. PMID:24497947

  6. Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-09-01

    The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  7. North American Soil Degradation: Processes, Practices, and Mitigating Strategies

    R. L. Baumhardt

    2015-03-01

    Full Text Available Soil can be degraded by several natural or human-mediated processes, including wind, water, or tillage erosion, and formation of undesirable physical, chemical, or biological properties due to industrialization or use of inappropriate farming practices. Soil degradation occurs whenever these processes supersede natural soil regeneration and, generally, reflects unsustainable resource management that is global in scope and compromises world food security. In North America, soil degradation preceded the catastrophic wind erosion associated with the dust bowl during the 1930s, but that event provided the impetus to improve management of soils degraded by both wind and water erosion. Chemical degradation due to site specific industrial processing and mine spoil contamination began to be addressed during the latter half of the 20th century primarily through point-source water quality concerns, but soil chemical degradation and contamination of surface and subsurface water due to on-farm non-point pesticide and nutrient management practices generally remains unresolved. Remediation or prevention of soil degradation requires integrated management solutions that, for agricultural soils, include using cover crops or crop residue management to reduce raindrop impact, maintain higher infiltration rates, increase soil water storage, and ultimately increase crop production. By increasing plant biomass, and potentially soil organic carbon (SOC concentrations, soil degradation can be mitigated by stabilizing soil aggregates, improving soil structure, enhancing air and water exchange, increasing nutrient cycling, and promoting greater soil biological activity.

  8. Long-term mercury dynamics in UK soils

    Tipping, E.; Wadsworth, R.A.; Norris, D.A.; Hall, J.R.; Ilyin, I.

    2011-01-01

    A model assuming first-order losses by evasion and leaching was used to evaluate Hg dynamics in UK soils since 1850. Temporal deposition patterns of Hg were constructed from literature information. Inverse modelling indicated that 30% of 898 rural sites receive Hg only from the global circulation, while in 51% of cases local deposition exceeds global. Average estimated deposition is 16 μg Hg m -2 a -1 to rural soils, 19 μg Hg m -2 a -1 to rural and non-rural soils combined. UK soils currently hold 2490 tonnes of reactive Hg, of which 2140 tonnes are due to anthropogenic deposition, mostly local in origin. Topsoil currently releases 5.1 tonnes of Hg 0 per annum to the atmosphere, about 50% more than the anthropogenic flux. Sorptive retention of Hg in the lower soil exerts a strong control on surface water Hg concentrations. Following decreases in inputs, soil Hg concentrations are predicted to decline over hundreds of years. - Highlights: → Spatial data for mercury in UK soils can be related to past atmospheric deposition. → The residence time of Hg (c. 400 years) depends on gaseous evasion and leaching. → UK soils currently contribute more Hg 0 to the atmosphere than human activities. → Sorption of Hg by deeper soil is a strong control on surface water concentrations. - Atmospherically-deposited anthropogenic mercury, mostly of local origin, has accumulated in UK soils, and is now a significant source of Hg 0 to the global circulation.

  9. Soil tillage

    Dierauer, Hansueli

    2013-01-01

    The web platform offers a compilation of various formats and materials dealing with reduced tillage and its challenges regarding weeds. A selection of short movies about mechanical weeding, green manure and tailor-made machinery is listed. Leaflets and publications on reduced tillage can be downloaded. In there, different treatments and machinery are tested and compared to advice farmers on how to conserve soil while keeping weed under control. For Swiss farmers information on the leg...

  10. Soil sampling

    Fortunati, G.U.; Banfi, C.; Pasturenzi, M.

    1994-01-01

    This study attempts to survey the problems associated with techniques and strategies of soil sampling. Keeping in mind the well defined objectives of a sampling campaign, the aim was to highlight the most important aspect of representativeness of samples as a function of the available resources. Particular emphasis was given to the techniques and particularly to a description of the many types of samplers which are in use. The procedures and techniques employed during the investigations following the Seveso accident are described. (orig.)

  11. Global health and global health ethics

    Benatar, S. R; Brock, Gillian

    2011-01-01

    ...? What are our responsibilities and how can we improve global health? Global Health and Global Health Ethics addresses these questions from the perspective of a range of disciplines, including medicine, philosophy and the social sciences...

  12. Evolving concepts and opportunities in soil conservation

    Julian Dumanski

    2015-03-01

    The paper discusses some of the new driving forces, new international programs, and new potential partners in soil conservation. Increasingly, international efforts to mitigate land degradation are shifting from studies of the biophysical processes to improving the global, national and local enabling policy environment, as well as mainstreaming of soil conservation into national and regional policies and programs. Also, increased emphasis is placed on economic instruments and international markets, such as carbon trading, and incorporation of non-market values in ecosystem investment, such as payment for ecosystem services, certification schemes, etc. The paper discusses some of the opportunities for soil conservation that accrue from these new driving forces.

  13. Impacts of altitude and position on the rates of soil nitrogen mineralization and nitrification in alpine meadows on the eastern Qinghai-Tibetan Plateau, China

    Alpine and tundra grasslands constitute 7% world terrestrial land but 13% of the total global soil carbon (C) and 10% of the global soil nitrogen (N). Under the current climate change scenario of global warming, these grasslands will contribute significantly to the changing global C and N cycles. It...

  14. The global stoichiometry of litter nitrogen mineralization

    Stefano Manzoni; Robert B. Jackson; John A. Trofymow; Amilcare Porporato

    2008-01-01

    Plant residue decomposition and the nutrient release to the soil play a major role in global carbon and nutrient cycling. Although decomposition rates vary strongly with climate, nitrogen immobilization into litter and its release in mineral forms are mainly controlled by the initial chemical composition of the residues. We used a data set of ~2800 observations to show...

  15. Greater soil carbon accumulation in deeper soils in native- than in exotic-dominated grassland plantings in the southern Plains

    Wilsey, B. J.; Xu, X.; Polley, H. W.; Hofmockel, K. S.

    2017-12-01

    Global change includes invasion by non-native plant species, and invasion may affect carbon cycling and storage. We tested predictions in central Texas in an experiment that compares mixtures of all exotic or all native species under two summer irrigation treatments (128 or 0 mm) that varies the amount of summer drought stress. At the end of the eighth growing season after establishment, soils were sampled in 10 cm increments to 100 cm depth to determine if soil C differed among treatments, and if treatments differentially affected soil C in deeper soils. Soil C content was significantly (5%) higher under native plantings than under exotic species plantings (P plantings increased with depth, and native plantings had higher soil C in deeper soil layers than in surface layers (native-exotic x depth, P plantings had decreasing soil C with depth. Soil C:N ratio and δ13C/12C were also significantly affected by native-exotic status, with soils in exotic plots having a significantly greater C4 contribution than native soils. Soil C was unaffected by summer irrigation treatments. Our results suggest that a significant amount of carbon could be sequestered by replacing exotic plant species with native species in the southern Plains, and that more work should be conducted at deeper soil depths. If we had restricted our analyses to surface soil layers (e.g. top 30 cm), we would have failed to detect depth differences between natives and exotics.

  16. Global teaching of global seismology

    Stein, S.; Wysession, M.

    2005-12-01

    Our recent textbook, Introduction to Seismology, Earthquakes, & Earth Structure (Blackwell, 2003) is used in many countries. Part of the reason for this may be our deliberate attempt to write the book for an international audience. This effort appears in several ways. We stress seismology's long tradition of global data interchange. Our brief discussions of the science's history illustrate the contributions of scientists around the world. Perhaps most importantly, our discussions of earthquakes, tectonics, and seismic hazards take a global view. Many examples are from North America, whereas others are from other areas. Our view is that non-North American students should be exposed to North American examples that are type examples, and that North American students should be similarly exposed to examples elsewhere. For example, we illustrate how the Euler vector geometry changes a plate boundary from spreading, to strike-slip, to convergence using both the Pacific-North America boundary from the Gulf of California to Alaska and the Eurasia-Africa boundary from the Azores to the Mediterranean. We illustrate diffuse plate boundary zones using western North America, the Andes, the Himalayas, the Mediterranean, and the East Africa Rift. The subduction zone discussions examine Japan, Tonga, and Chile. We discuss significant earthquakes both in the U.S. and elsewhere, and explore hazard mitigation issues in different contexts. Both comments from foreign colleagues and our experience lecturing overseas indicate that this approach works well. Beyond the specifics of our text, we believe that such a global approach is facilitated by the international traditions of the earth sciences and the world youth culture that gives students worldwide common culture. For example, a video of the scene in New Madrid, Missouri that arose from a nonsensical earthquake prediction in 1990 elicits similar responses from American and European students.

  17. Temperature response of soil respiration largely unaltered with experimental warming

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific...... attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies......, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation...

  18. A bare ground evaporation revision in the ECMWF land-surface scheme: evaluation of its impact using ground soil moisture and satellite microwave data

    C. Albergel

    2012-10-01

    Full Text Available In situ soil moisture data from 122 stations across the United States are used to evaluate the impact of a new bare ground evaporation formulation at ECMWF. In November 2010, the bare ground evaporation used in ECMWF's operational Integrated Forecasting System (IFS was enhanced by adopting a lower stress threshold than for the vegetation, allowing a higher evaporation. It results in more realistic soil moisture values when compared to in situ data, particularly over dry areas. Use was made of the operational IFS and offline experiments for the evaluation. The latter are based on a fixed version of the IFS and make it possible to assess the impact of a single modification, while the operational analysis is based on a continuous effort to improve the analysis and modelling systems, resulting in frequent updates (a few times a year. Considering the field sites with a fraction of bare ground greater than 0.2, the root mean square difference (RMSD of soil moisture is shown to decrease from 0.118 m3 m−3 to 0.087 m3 m−3 when using the new formulation in offline experiments, and from 0.110 m3 m−3 to 0.088 m3 m−3 in operations. It also improves correlations. Additionally, the impact of the new formulation on the terrestrial microwave emission at a global scale is investigated. Realistic and dynamically consistent fields of brightness temperature as a function of the land surface conditions are required for the assimilation of the SMOS data. Brightness temperature simulated from surface fields from two offline experiments with the Community Microwave Emission Modelling (CMEM platform present monthly mean differences up to 7 K. Offline experiments with the new formulation present drier soil moisture, hence simulated brightness temperature with its surface fields are larger. They are also closer to SMOS remotely sensed brightness temperature.

  19. The UK Soil Observatory (UKSO) and mySoil app: crowdsourcing and disseminating soil information.

    Robinson, David; Bell, Patrick; Emmett, Bridget; Panagos, Panos; Lawley, Russell; Shelley, Wayne

    2017-04-01

    Digital technologies in terms of web based data portals and mobiles apps offer a new way to provide both information to the public, and to engage the public in becoming involved in contributing to the effort of collecting data through crowdsourcing. We are part of the Landpotential.org consortium which is a global partnership committed to developing and supporting the adoption of freely available technology and tools for sustainable land use management, monitoring, and connecting people across the globe. The mySoil app was launched in 2012 and is an example of a free mobile application downloadable from iTunes and Google Play. It serves as a gateway tool to raise interest in, and awareness of, soils. It currently has over 50,000 dedicated users and has crowd sourced more than 4000 data records. Recent developments have expanded the coverage of mySoil from the United Kingdom to Europe, introduced a new user interface and provided language capability, while the UKSO displays the crowd-sourced records from across the globe. We are now trying to identify which industry, education and citizen sectors are using these platforms and how they can be improved. Please help us by providing feedback or taking the survey on the UKSO website. www.UKSO.org The UKSO is a collaboration between major UK soil-data holders to provide maps, spatial data and real-time temporal data from observing platforms such as the UK soil moisture network. Both UKSO and mySoil have crowdsourcing capability and are slowly building global citizen science maps of soil properties such as pH and texture. Whilst these data can't replace professional monitoring data, the information they provide both stimulates public interest and can act as 'soft data' that can help support the interpretation of monitoring data, or guide future monitoring, identifying areas that don't correspond with current analysis. In addition, soft data can be used to map soils with machine learning approaches, such as SoilGrids.

  20. Soils Newsletter, Vol. 38, No. 2, January 2016

    2016-02-01

    In 2015 the Soil and Water Management and Crop Nutrition (SWMCN) Subprogramme held several events to celebrate the “International Year of Soils” (IYS), to raise awareness and improve the understanding on the importance of soil for food security and essential ecosystem functions. The side event on ‘Managing Soils for Climate-Smart Agriculture’ on 16 September 2015 during the 59th IAEA General Conference was well attended with more than 80 participants including many country delegations attending the IAEA General Conference. The four speakers from Member States showcased the successes and impacts in the field as well as their experience on the importance of soils in global food security, the impacts of climate change on soil and the crucial roles of nuclear applications for climate-smart agriculture. Similarly, the one-day conference on 7 December 2015 on “Celebration of the 2015 International Year of Soils: Achievements and Future Challenges”, with the International Union of Soil Science (IUSS), to coincide with World Soil Day on 5 December and to mark the closing of IYS. Speakers from all Regional Soil Science Societies reported on their achievements with regards to managing soils for sustainable crop production and intensification. Working groups discussed future challenges and opportunities for soil research and development, and international partnership and collaboration. The roles of isotopic and nuclear techniques for managing soils to combat land degradation, improve soil fertility and resource use efficiency, while reducing the environmental impacts of agriculture, and improving the nutritional quality of crops were highlighted during the conference. At the event, participants proclaimed the ‘Vienna Soil Declaration: Soil matters for humans and ecosystems’, which sets the framework for future research in soil science and links achievements to the United Nations’ Sustainable Development Goals and global endeavours to combat climate change

  1. Nexus Thinking on Soil Carbon Dynamics and Soil Health

    Lal, R.

    2016-12-01

    Anthropocene is driven by global population of 7.5 billion in 2016, increasing annually by 80 million and projected to be 9.7 billion by 2050. The ecological impact (I=PAT, where P is population, A is affluence, and T is technology) of the population is similar to that of a geological force. Thus, humanity's impact is driven by demands for food, water, energy, and services derived from soil. Soil health, its capacity to function as a vital living system, is determined by quantity and quality of soil organic carbon (SOC) in the root zone ( 50cm). Maintenance of SOC at above the threshold level (1.5 to 2.0% by weight in the root zone) is critical to performing numerous ecosystem services for human wellbeing and nature conservancy. These services and functions strongly depend on nexus or inter-connectivity of biological processes within the pedosphere. The nexus is strongly governed by coupled biogeochemical cycling of water (H2O), carbon (C), nitrogen (N), phosphorus (P) and sulfur (S). Further, it is the nexus between pedological and biological processes that renews and purifies water by denaturing and filtering pollutants; circulates C among biotic and abiotic pools in close association with other elements (N, P, S); provides habitat and energy source for soil biota (macro, meso, and micro flora and fauna), facilitates exchanges of gases between soil and the atmosphere and moderates climate, and creates favorable rhizospheric processes that promote plant growth and enhance net primary productivity. Soil health, governed by SOC quality and quantity, determines the provisioning of numerous ecosystem services and the importance of nexus thinking is highlighted by the truism that "health of soil, plants, animals, human and ecosystem is one and indivisible." The sequestration of SOC depends on land use and soil management strategies which create a positive C budget. Thus, input of biomass-C into the soil must exceed the losses by erosion, mineralization and leaching

  2. Globalizing Denmark

    Selmer, Jan; Lauring, Jakob

    2013-01-01

    countries to keep up the process of globalization may be substantial, and the economic gains for such countries from adjusting to a more internationally integrated world economy are clear. However, in small- population economies, especially social-democratic welfare states, the internal pressure......This exploratory article examines the paradox of being open-minded while ethnocentric as expressed in Danish international management practices at the micro level. With a population of 5.4 million, Denmark is one of the smallest of the European countries. The pressure on many small advanced...... to integrate counteracts to some extent the need to maintain openness to differences. Thus, a strong economy and a feeling of smug ethnocentrism in Denmark generate a central paradox in thinking about internationalization in Danish society....

  3. Global Geomorphology

    Douglas, I.

    1985-01-01

    Any global view of landforms must include an evaluation of the link between plate tectonics and geomorphology. To explain the broad features of the continents and ocean floors, a basic distinction between the tectogene and cratogene part of the Earth's surface must be made. The tectogene areas are those that are dominated by crustal movements, earthquakes and volcanicity at the present time and are essentially those of the great mountain belts and mid ocean ridges. Cratogene areas comprise the plate interiors, especially the old lands of Gondwanaland and Laurasia. Fundamental as this division between plate margin areas and plate interiors is, it cannot be said to be a simple case of a distinction between tectonically active and stable areas. Indeed, in terms of megageomorphology, former plate margins and tectonic activity up to 600 million years ago have to be considered.

  4. Global engineering

    Plass, L.

    2001-01-01

    This article considers the challenges posed by the declining orders in the plant engineering and contracting business in Germany, the need to remain competitive, and essential preconditions for mastering the challenge. The change in engineering approach is illustrated by the building of a methanol plant in Argentina by Lurgi with the basic engineering completed in Frankfurt with involvement of key personnel from Poland, completely engineered subsystems from a Brazilian subsupplier, and detailed engineering work in Frankfurt. The production of methanol from natural gas using the LurgiMega/Methanol process is used as a typical example of the industrial plant construction sector. The prerequisites for successful global engineering are listed, and error costs in plant construction, possible savings, and process intensification are discussed

  5. Global warming

    Houghton, John

    2005-01-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources

  6. Global gamesmanship.

    MacMillan, Ian C; van Putten, Alexander B; McGrath, Rita Gunther

    2003-05-01

    Competition among multinationals these days is likely to be a three-dimensional game of global chess: The moves an organization makes in one market are designed to achieve goals in another in ways that aren't immediately apparent to its rivals. The authors--all management professors-call this approach "competing under strategic interdependence," or CSI. And where this interdependence exists, the complexity of the situation can quickly overwhelm ordinary analysis. Indeed, most business strategists are terrible at anticipating the consequences of interdependent choices, and they're even worse at using interdependency to their advantage. In this article, the authors offer a process for mapping the competitive landscape and anticipating how your company's moves in one market can influence its competitive interactions in others. They outline the six types of CSI campaigns--onslaughts, contests, guerrilla campaigns, feints, gambits, and harvesting--available to any multiproduct or multimarket corporation that wants to compete skillfully. They cite real-world examples such as the U.S. pricing battle Philip Morris waged with R.J. Reynolds--not to gain market share in the domestic cigarette market but to divert R.J. Reynolds's resources and attention from the opportunities Philip Morris was pursuing in Eastern Europe. And, using data they collected from their studies of consumer-products companies Procter & Gamble and Unilever, the authors describe how to create CSI tables and bubble charts that present a graphical look at the competitive landscape and that may uncover previously hidden opportunities. The CSI mapping process isn't just for global corporations, the authors explain. Smaller organizations that compete with a portfolio of products in just one national or regional market may find it just as useful for planning their next business moves.

  7. Biotic interactions mediate soil microbial feedbacks to climate change

    Crowther, T. W.; Thomas, S.M.; Maynard, D.S.; Baldrian, Petr; Covey, K.; Frey, S. D.; van Diepen, L. T. A.; Bradford, M.A.

    2015-01-01

    Roč. 112, č. 22 (2015), s. 7033-7038 ISSN 0027-8424 Institutional support: RVO:61388971 Keywords : global change * soil feedback * biotic interaction Subject RIV: EE - Microbiology, Virology Impact factor: 9.423, year: 2015

  8. Use of satellite and modelled soil moisture data for predicting event soil loss at plot scale

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-03-01

    The potential of coupling soil moisture and a~USLE-based model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in Central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e. the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the RUSLE/USLE, enhances the capability of the model to account for variations in event soil losses, being the soil moisture an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to of ~ 0.35 and a root-mean-square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  9. Composting and compost utilization: accounting of greenhouse gases and global warming contributions

    Boldrin, Alessio; Andersen, Jacob Kragh; Møller, Jacob

    2009-01-01

    is an important issue and is related to the long-term binding of carbon in the soil, to related effects in terms of soil improvement and to what the compost substitutes; this could be fertilizer and peat for soil improvement or for growth media production. The overall global warming factor (GWF) for composting...

  10. Studying soil organic carbon in Mediterranean soils. Different techniques and the effects of land management and use, climatic and topographic conditions, organic waste addition

    Lozano-García, Beatriz; Parras-Alcántara, Luis

    2014-05-01

    Soil organic carbon (SOC) is an important component of global carbon cycle, and the changes of its accumulation and decomposition directly affect terrestrial ecosystem carbon storage and global carbon balance. The ability of soil to store SOC depends to a great extent on climate and some soil properties, in addition to the cultivation system in agricultural soils. Soils in Mediterranean areas are very poor in organic matter and are exposed to progressive degradation processes. Therefore, a lot of actions are conducted to improve soil quality and hence mitigate the negative environmental and agronomic limitations of these soils. Improved cultivation systems (conversion of cropland to pastoral and forest lands, conventional tillage to conservation tillage, no manure use to regular addition of manure) have been introduced in recent years, increasing the contents in SOC and therefore, enhancing the soil quality, reducing soil erosion and degradation, improving surface water quality and increasing soil productivity. Moreover, the organic waste addition to the soils is especially useful in Mediterranean regions, where the return of organic matter to soil not only does it help soils store SOC and improve soil structure and soil fertility but also it allows to reuse a wide range of agro-industrial wastes.

  11. Are soils in urban ecosystems compacted? A citywide analysis.

    Edmondson, Jill L; Davies, Zoe G; McCormack, Sarah A; Gaston, Kevin J; Leake, Jonathan R

    2011-10-23

    Soil compaction adversely influences most terrestrial ecosystem services on which humans depend. This global problem, affecting over 68 million ha of agricultural land alone, is a major driver of soil erosion, increases flood frequency and reduces groundwater recharge. Agricultural soil compaction has been intensively studied, but there are no systematic studies investigating the extent of compaction in urban ecosystems, despite the repercussions for ecosystem function. Urban areas are the fastest growing land-use type globally, and are often assumed to have highly compacted soils with compromised functionality. Here, we use bulk density (BD) measurements, taken to 14 cm depth at a citywide scale, to compare the extent of surface soil compaction between different urban greenspace classes and agricultural soils. Urban soils had a wider BD range than agricultural soils, but were significantly less compacted, with 12 per cent lower mean BD to 7 cm depth. Urban soil BD was lowest under trees and shrubs and highest under herbaceous vegetation (e.g. lawns). BD values were similar to many semi-natural habitats, particularly those underlying woody vegetation. These results establish that, across a typical UK city, urban soils were in better physical condition than agricultural soils and can contribute to ecosystem service provision.

  12. Deep carbon storage potential of buried floodplain soils.

    D'Elia, Amanda H; Liles, Garrett C; Viers, Joshua H; Smart, David R

    2017-08-15

    Soils account for the largest terrestrial pool of carbon and have the potential for even greater quantities of carbon sequestration. Typical soil carbon (C) stocks used in global carbon models only account for the upper 1 meter of soil. Previously unaccounted for deep carbon pools (>1 m) were generally considered to provide a negligible input to total C contents and represent less dynamic C pools. Here we assess deep soil C pools associated with an alluvial floodplain ecosystem transitioning from agricultural production to restoration of native vegetation. We analyzed the soil organic carbon (SOC) concentrations of 87 surface soil samples (0-15 cm) and 23 subsurface boreholes (0-3 m). We evaluated the quantitative importance of the burial process in the sequestration of subsurface C and found our subsurface soils (0-3 m) contained considerably more C than typical C stocks of 0-1 m. This deep unaccounted soil C could have considerable implications for global C accounting. We compared differences in surface soil C related to vegetation and land use history and determined that flooding restoration could promote greater C accumulation in surface soils. We conclude deep floodplain soils may store substantial quantities of C and floodplain restoration should promote active C sequestration.

  13. Soil use and management

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  14. Soil properties and processes

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Tis volume 2 on Soil Properties and Processes covers: - Soil physics - Soil (bio)chemistry -

  15. Soil and Pesticides

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Soil and Pesticides Related Topics: What Happens to Pesticides español Soil and Pesticides Soil can be degraded and the community of organisms living in the soil can

  16. Spatial Prediction of Soil Classes by Using Soil Weathering Parameters Derived from vis-NIR Spectroscopy

    Ramirez-Lopez, Leonardo; Alexandre Dematte, Jose

    2010-05-01

    prediction of these attributes also showed a high performance (validations with R2> 0.78). These models allowed to increase spatial resolution of soil weathering information. On the other hand, the comparison between the analog and digital soil maps showed a global accuracy of 69% for the ASC-N map and 62% in the ASC-H map, with kappa indices of 0.52 and 0.45 respectively.

  17. On the Need to Establish an International Soil Modeling Consortium

    Vereecken, H.; Vanderborght, J.; Schnepf, A.

    2014-12-01

    Soil is one of the most critical life-supporting compartments of the Biosphere. Soil provides numerous ecosystem services such as a habitat for biodiversity, water and nutrients, as well as producing food, feed, fiber and energy. To feed the rapidly growing world population in 2050, agricultural food production must be doubled using the same land resources footprint. At the same time, soil resources are threatened due to improper management and climate change. Despite the many important functions of soil, many fundamental knowledge gaps remain, regarding the role of soil biota and biodiversity on ecosystem services, the structure and dynamics of soil communities, the interplay between hydrologic and biotic processes, the quantification of soil biogeochemical processes and soil structural processes, the resilience and recovery of soils from stress, as well as the prediction of soil development and the evolution of soils in the landscape, to name a few. Soil models have long played an important role in quantifying and predicting soil processes and related ecosystem services. However, a new generation of soil models based on a whole systems approach comprising all physical, mechanical, chemical and biological processes is now required to address these critical knowledge gaps and thus contribute to the preservation of ecosystem services, improve our understanding of climate-change-feedback processes, bridge basic soil science research and management, and facilitate the communication between science and society. To meet these challenges an international community effort is required, similar to initiatives in systems biology, hydrology, and climate and crop research. Our consortium will bring together modelers and experimental soil scientists at the forefront of new technologies and approaches to characterize soils. By addressing these aims, the consortium will contribute to improve the role of soil modeling as a knowledge dissemination instrument in addressing key

  18. Effects of Tillage Practices on Soil Organic Carbon and Soil Respiration

    Rusu, Teodor; Ioana Moraru, Paula; Bogdan, Ileana; Ioan Pop, Adrian

    2016-04-01

    Soil tillage system and its intensity modify by direct and indirect action soil temperature, moisture, bulk density, porosity, penetration resistance and soil structural condition. Minimum tillage and no-tillage application reduce or completely eliminate the soil mobilization, due to this, soil is compacted in the first years of application. The degree of compaction is directly related to soil type and its state of degradation. All this physicochemical changes affect soil biology and soil respiration. Soil respiration leads to CO2 emissions from soil to the atmosphere, in significant amounts for the global carbon cycle. Soil respiration is one measure of biological activity and decomposition. Soil capacity to produce CO2 varies depending on soil, season, intensity and quality of agrotechnical tillage, soil water, cultivated plant and fertilizer. Our research follows the effects of the three tillage systems: conventional system, minimum tillage and no-tillage on soil respiration and finally on soil organic carbon on rotation soybean - wheat - maize, obtained on an Argic Faeoziom from the Somes Plateau, Romania. To quantify the change in soil respiration under different tillage practices, determinations were made for each crop in four vegetative stages (spring, 5-6 leaves, bean forming, harvest). Soil monitoring system of CO2 and O2 included gradient method, made by using a new generation of sensors capable of measuring CO2 concentration in-situ and quasi-instantaneous in gaseous phase. At surface soil respiration is made by using ACE Automated Soil CO2 Exchange System. These areas were was our research presents a medium multi annual temperature of 8.20C medium of multi annual rain drowns: 613 mm. The experimental variants chosen were: i). Conventional system: reversible plough (22-25 cm) + rotary grape (8-10 cm); ii). Minimum tillage system: paraplow (18-22 cm) + rotary grape (8-10 cm); iii). No-tillage. The experimental design was a split-plot design with three

  19. Plant functional traits and soil carbon sequestration in contrasting biomes.

    De Deyn, G.B.; Cornelissen, J.H.C.; Bardgett, R.D.

    2008-01-01

    Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its

  20. Ecosystem Warming Affects CO2 Flux in an Agricultural Soil

    Global warming seems likely based on present-day climate predictions. Our objective was to characterize and quantify the interactive effects of ecosystem warming (i.e., canopy temperature, TS), soil moisture content ('S) and microbial biomass (BM: bacteria, fungi) on the intra-row soil CO2 flux (FS)...

  1. Soil moisture remote sensing: State of the science

    Satellites (e.g., SMAP, SMOS) using passive microwave techniques, in particular at L band frequency, have shown good promise for global mapping of near-surface (0-5 cm) soil moisture at a spatial resolution of 25-40 km and temporal resolution of 2-3 days. C- and X-band soil moisture records date bac...

  2. Sampling of soils for transuranic nuclides: a review

    Fowler, E.B.; Essington, E.H.

    1977-01-01

    A review of the literature pertinent to the sampling of soils for radionuclides is presented; emphasis is placed on transuranic nuclides. Sampling of soils is discussed relative to systems of heterogeneous distributions and varied particle sizes encountered in certain environments. Sampling methods that have been used for two different sources of contamination, global fallout, and accidental or operational releases, are included

  3. Statistical sampling strategies for survey of soil contamination

    Brus, D.J.

    2011-01-01

    This chapter reviews methods for selecting sampling locations in contaminated soils for three situations. In the first situation a global estimate of the soil contamination in an area is required. The result of the surey is a number or a series of numbers per contaminant, e.g. the estimated mean

  4. Total carbon and nitrogen in the soils of the world

    Batjes, N.H.

    2014-01-01

    The soil is important in sequestering atmospheric CO2 and in emitting trace gases (e.g. CO2, CH4 and N2O) that are radiatively active and enhance the ‘greenhouse’ effect. Land use changes and predicted global warming, through their effects on net primary productivity, the plant community and soil

  5. Optimal beneficiation of global resources

    Aloisi de Larderel, J. (Industry and Environment Office, Paris (France). United Nations Environment Programme)

    1989-01-01

    The growth of the world's population and related human activities are clearly leaving major effects on the environment and on the level of use of natural resources: forests are disappearing, air pollution is leading to acid rains, changes are occuring in the atmospheric ozone and global climate, more and more people lack access to reasonable safe supplies of water, soil pollution is becoming a problem, mineral and energy resources are increasingly being used. Producing more with less, producing more, polluting less, these are basic challenges that the world now faces. Low- and non-waste technologies are certainly one of the keys to those challenges.

  6. Biochar effects on soils: overview and knowledge gaps

    Verheijen, F. G. A.; Jeffery, S.; Bastos, A. C.; van der Velde, M.

    2012-04-01

    One of the cornerstones of the sustainable biochar concept is to improve, or at least to not deteriorate, soil quality and functioning. The idea of global sustainable biochar systems, with biochar applied to global cropland and grassland soils, has highlighted limitations in: i) current scientific understanding of biochar interactions with soil components, ii) the capacity to assess ecosystem services provided by soils, and iii) the uncertainty in spatio-temporal representation of both (i) and (ii). Pyrolysis conditions and feedstock characteristics largely control the physico-chemical properties of the resulting biochar, which in turn determine the suitability for a given application. Soils are highly heterogeneous systems at a range of scales. Combinations of land use, soil management and changing climatic conditions further enhance this heterogeneity. While this leads to difficulties in identifying the underlying mechanisms behind reported effects in the scientific literature, it also provides an opportunity for 'critical matching' of biochar properties that are best suited to a particular site (depending on soil type, hydrology, climate, land use, soil contaminants, etc.). Biochar's relatively long mean residence times in soils (100s of years) make it a potential instrument for sequestering carbon (if done sustainably). However, that same long mean residence time sets biochar apart from conventional soil amendments (such as manures and other organic fertilizers) that are considered as transient in the soil (1-10s of years). The functional life time of biochar in soils essentially moves biochar from a soil management tool to a geo-engineering technique. One of the consequences is that desired ecosystem services that are provided by soils, have to be projected for the same time period. This presentation aims to discuss critical knowledge gaps in biochar-soil-ecosystem interactions against a background of ecosystem services.

  7. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application

    Ho, A.; Reim, A.; Kim, S.Y.; Meima-Franke, M.; Termorshuizen, Aad J; De Boer, W.; Van der Putten, W.H.; Bodelier, P.L.E.

    2015-01-01

    Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing and even

  8. Detailed Soils 24K

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  9. Indicators: Soil Chemistry

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  10. Ecological Role of Soils upon Radioactive Contamination

    Tsvetnov, Evgeny; Shcheglov, Alexei; Tsvenova, Olga

    2016-04-01

    The ecological role of soils upon radioactive contamination is clearly manifested in the system of notions about ecosystems services, i.e., benefits gained by humans from ecosystems and their components, including soils (Millennium Ecosystem Assessment, 2005). For the soils, these services are considered on the basis of soil functions in the biosphere that belong to the protective ecosystem functions within the group of soil functions known under the names of "Buffer and protective biogeocenotic shield" (at the level of particular biogeocenoses) and "Protective shield of the biosphere" (at the global biospheric level) (according to Dobrovol'skii & Nikitin, 2005). With respect to radionuclides, this group includes (1) the depositing function, i.e., the accumulation and long-term sequestration of radioactive substances by the soil after atmospheric fallout; (2) the geochemical function, i.e., the regulation of horizontal and vertical fluxes of radionuclides in the system of geochemically conjugated landscapes and in the soil-groundwater and soil-plant systems; and (3) the dose-forming function that is manifested by the shielding capacity of the soil with respect to the external ionizing radiation (lowering of the dose from external radiation) and by the regulation of the migration of radionuclides in the trophic chain (lowering of the dose from internal radiation). The depositing and geochemical functions of the soils are interrelated, which is seen from quantitative estimates of the dynamics of the fluxes of radionuclides in the considered systems (soil-plant, soil-groundwater, etc.). The downward migration of radionuclides into the lower soil layers proceeds very slowly: for decades, more than 90% of the pool of radionuclides is stored in the topmost 10 cm of the soil profile. In the first 3-5 years after the fallout, the downward migration of radionuclides with infiltrating water flows decreases from several percent to decimals and hundredths of percent from the

  11. Soil Tillage Conservation and its Effect on Soil Properties Bioremediation and Sustained Production of Crops

    Rusu, Teodor; Ioana Moraru, Paula; Muresan, Liliana; Andriuca, Valentina; Cojocaru, Olesea

    2017-04-01

    Soil Tillage Conservation (STC) is considered major components of agricultural technology for soil conservation strategies and part of Sustainable Agriculture (SA). Human action upon soil by tillage determines important morphological, physical-chemical and biological changes, with different intensities and evaluative directions. Nowadays, internationally is unanimous accepted the fact that global climatic changes are the results of human intervention in the bio-geo-chemical water and material cycle, and the sequestration of carbon in soil is considered an important intervention to limit these changes. STC involves reducing the number of tillage's (minimum tillage) to direct sowing (no-tillage) and plant debris remains at the soil surface in the ratio of at least 30%. Plant debris left on the soil surface or superficial incorporated contributes to increased biological activity and is an important source of carbon sequestration. STC restore soil structure and improve overall soil drainage, allowing more rapid infiltration of water into soil. The result is a soil bioremediation, more productive, better protected against wind and water erosion and requires less fuel for preparing the germinative bed. Carbon sequestration in soil is net advantageous, improving the productivity and sustainability. We present the influence of conventional plough tillage system on soil, water and organic matter conservation in comparison with an alternative minimum tillage (paraplow, chisel plow and rotary harrow) and no-tillage system. The application of STC increased the organic matter content 0.8 to 22.1% and water stabile aggregate content from 1.3 to 13.6%, in the 0-30 cm depth, as compared to the conventional system. For the organic matter content and the wet aggregate stability, the statistical analysis of the data showed, increasing positive significance of STC. While the soil fertility and the wet aggregate stability were initially low, the effect of conservation practices on the

  12. Tropical Soil Chemistry

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  13. Statistical analysis of global horizontal solar irradiation GHI in Fez city, Morocco

    Bounoua, Z.; Mechaqrane, A.

    2018-05-01

    An accurate knowledge of the solar energy reaching the ground is necessary for sizing and optimizing the performances of solar installations. This paper describes a statistical analysis of the global horizontal solar irradiation (GHI) at Fez city, Morocco. For better reliability, we have first applied a set of check procedures to test the quality of hourly GHI measurements. We then eliminate the erroneous values which are generally due to measurement or the cosine effect errors. Statistical analysis show that the annual mean daily values of GHI is of approximately 5 kWh/m²/day. Daily monthly mean values and other parameter are also calculated.

  14. Recent Global Warming as Observed by AIRS and Depicted in GISSTEMP and MERRA-2

    Susskind, Joel; Lee, Jae; Iredell, Lena

    2017-01-01

    AIRS Version-6 monthly mean level-3 surface temperature products confirm the result, depicted in the GISSTEMP dataset, that the earth's surface temperature has been warming since early 2015, though not before that. AIRS is at a higher spatial resolution than GISSTEMP, and produces sharper spatial features which are otherwise in excellent agreement with those of GISSTEMP. Version-6 AO Ts anomalies are consistent with those of Version-6 AIRS/AMSU. Version-7 AO anomalies should be even more accurate, especially at high latitudes. ARCs of MERRA-2 Ts anomalies are spurious as a result of a discontinuity which occurred somewhere between 2007 and 2008. This decreases global mean trends.

  15. Soil erosion, sedimentation and the carbon cycle

    Cammeraat, L. H.; Kirkels, F.; Kuhn, N. J.

    2012-04-01

    Historically soil erosion focused on the effects of on-site soil quality loss and consequently reduced crop yields, and off-site effects related to deposition of material and water quality issues such as increased sediment loads of rivers. In agricultural landscapes geomorphological processes reallocate considerable amounts of soil and soil organic carbon (SOC). The destiny of SOC is of importance because it constitutes the largest C pool of the fast carbon cycle, and which cannot only be understood by looking at the vertical transfer of C from soil to atmosphere. Therefore studies have been carried out to quantify this possible influence of soil erosion and soil deposition and which was summarized by Quinton et al. (2010) by "We need to consider soils as mobile systems to make accurate predictions about the consequences of global change for terrestrial biogeochemical cycles and climate feedbacks". Currently a debate exists on the actual fate of SOC in relation to the global carbon cycle, represented in a controversy between researchers claiming that erosion is a sink, and those who claim the opposite. This controversy is still continuing as it is not easy to quantify and model the dominating sink and source processes at the landscape scale. Getting insight into the balance of the carbon budget requires a comprehensive research of all relevant processes at broad spatio-temporal scales, from catchment to regional scales and covering the present to the late Holocene. Emphasising the economic and societal benefits, the merits for scientific knowledge of the carbon cycle and the potential to sequester carbon and consequently offset increasing atmospheric CO2 concentrations, make the fate of SOC in agricultural landscapes a high-priority research area. Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D., 2010. The impact of agricultural soil erosion on biogeochemical cycling. Nature Geosci, 3, 311-314.

  16. Global environment and radiation exposure

    Okamoto, Kazuto

    1991-01-01

    The present status of investigation of acid rain, stratospheric ozone depletion and greenhouse effect and their relations to radiation exposure are reported. Soil acidification increases transfer rates of radioactivities to plants which increases the population dose. There are two types of ozone depletion, conventional type and ozone hole type and the latter is much more serious than the former. In the greenhouse effect, although there are large uncertainties both in theoretical and observational sides, present predictions about the global warming will not be very far from reality. Environmental effects are wide-ranging and serious. Radon and thoron exhalation rates are affected by the global warming. The influence of the greenhouse effect on ozone depletion is to suppress depletion for conventional type and enhance depletion for ozone hole type. (author) 65 refs

  17. Carbon sequestration potential of soils in southeast Germany derived from stable soil organic carbon saturation.

    Wiesmeier, Martin; Hübner, Rico; Spörlein, Peter; Geuß, Uwe; Hangen, Edzard; Reischl, Arthur; Schilling, Bernd; von Lützow, Margit; Kögel-Knabner, Ingrid

    2014-02-01

    Sequestration of atmospheric carbon (C) in soils through improved management of forest and agricultural land is considered to have high potential for global CO2 mitigation. However, the potential of soils to sequester soil organic carbon (SOC) in a stable form, which is limited by the stabilization of SOC against microbial mineralization, is largely unknown. In this study, we estimated the C sequestration potential of soils in southeast Germany by calculating the potential SOC saturation of silt and clay particles according to Hassink [Plant and Soil 191 (1997) 77] on the basis of 516 soil profiles. The determination of the current SOC content of silt and clay fractions for major soil units and land uses allowed an estimation of the C saturation deficit corresponding to the long-term C sequestration potential. The results showed that cropland soils have a low level of C saturation of around 50% and could store considerable amounts of additional SOC. A relatively high C sequestration potential was also determined for grassland soils. In contrast, forest soils had a low C sequestration potential as they were almost C saturated. A high proportion of sites with a high degree of apparent oversaturation revealed that in acidic, coarse-textured soils the relation to silt and clay is not suitable to estimate the stable C saturation. A strong correlation of the C saturation deficit with temperature and precipitation allowed a spatial estimation of the C sequestration potential for Bavaria. In total, about 395 Mt CO2 -equivalents could theoretically be stored in A horizons of cultivated soils - four times the annual emission of greenhouse gases in Bavaria. Although achieving the entire estimated C storage capacity is unrealistic, improved management of cultivated land could contribute significantly to CO2 mitigation. Moreover, increasing SOC stocks have additional benefits with respect to enhanced soil fertility and agricultural productivity. © 2013 John Wiley & Sons Ltd.

  18. The economics of soil C sequestration

    Alexander, P.; Paustian, K.; Smith, P.; Moran, D.

    2014-12-01

    Carbon is a critical component of soil vitality and of our ability to produce food. Carbon sequestered in soils also provides a further regulating ecosystem service, valued as the avoided damage from global climate change. We consider the demand and supply attributes that underpin and constrain the emergence of a market value for this vital global ecosystem service: markets being what economists regard as the most efficient institutions for allocating scarce resources to the supply and consumption of valuable goods. This paper considers how a potentially large global supply of soil carbon sequestration is reduced by economic and behavioural constraints that impinge on the emergence of markets, and alternative public policies that can efficiently transact demand for the service from private and public sector agents. In essence this is a case of significant market failure. In the design of alternative policy options we consider whether soil carbon mitigation is actually cost-effective relative to other measures in agriculture and elsewhere in the economy, and the nature of behavioural incentives that hinder policy options. We suggest that reducing cost and uncertainties of mitigation through soil-based measures is crucial for improving uptake. Monitoring and auditing processes will also be required to eventually facilitate wide-scale adoption of these measures.

  19. Global challenges

    Blix, H.

    1990-01-01

    A major challenge now facing the world is the supply of energy needed for growth and development in a manner which is not only economically viable but also environmentally acceptable and sustainable in view of the demands of and risks to future generations. The internationally most significant pollutants from energy production through fossil fuels are SO 2 and NO x which cause acid rain, and CO 2 which is the most significant contributor to the greenhouse effect. Nuclear power, now providing about 17% of the world's electricity and 5% of the primary energy already is making a notable contribution to avoiding these emissions. While the industrialized countries will need more energy and especially electricity in the future, the needs of the developing countries are naturally much larger and present a tremendous challenge to the shaping of the world's future energy supply system. The advanced countries will have to accept special responsibilities, as they can most easily use advanced technologies and they have been and remain the main contributors to the environmental problems we now face. Energy conservation and resort to new renewable energy sources, though highly desirable, appear inadequate alone to meet the challenges. The world can hardly afford to do without an increased use of nuclear power, although it is strongly contested in many countries. The objections raised against the nuclear option focus on safety, waste management and disposal problems and the risk for proliferation of nuclear weapons. These issues are not without their problems. The risk of proliferation exists but will not appreciably diminish with lesser global reliance on nuclear power. The waste issue is more of a political than a technical problem. The use of nuclear power, or any other energy source, will never be at zero risk, but the risks are constantly reduced by new techniques and practices. The IAEA sees it as one of its priority tasks to promote such techniques. (author)

  20. Sorters for soil cleanup

    Bramlitt, E.T.; Johnson, N.R.; Tomicich, M.J.

    1991-01-01

    A soil sorter is a system with conveyor, radiation detectors, and a gate. The system activates the gate based on radiation measurements to sort soil to either clean or contaminated paths. Automatic soil sorters have been perfected for use in the cleanup of plutonium contaminated soil at Johnston Atoll. The cleanup processes soil through a plant which mines plutonium to make soil clean. Sorters at various locations in the plant effectively reduce the volume of soil for mining and they aid in assuring clean soil meets guidelines