WorldWideScience

Sample records for global mirror mode

  1. Global structure of mirror modes in the magnetosheath

    Johnson, J.R.; Cheng, C.Z.

    1996-01-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary

  2. Global structure of mirror modes in the magnetosheath

    Johnson, J.R.; Cheng, C.Z.

    1996-11-01

    A global stability analysis of mirror modes in the magnetosheath is presented. The analysis is based upon the kinetic-MHD formulation which includes relevant kinetic effects such as Landau resonance and gradient drift effects related to inhomogeneities in the background density, temperature, pressure and its anisotropy, magnetic field, and plasma flow velocity. Pressure anisotropy provides the free energy for the global mirror mode. The local theory of mirror modes predicts purely growing modes confined in the unstable magnetosheath region; however, the nonlocal theory that includes the effects of gradients and plasma flow predicts modes with real frequencies which propagate with the flow from the magnetosheath toward the magnetopause boundary. The real frequency is on the order of a combination of the diamagnetic drift frequency and the Doppler shift frequency associated with plasma flow. The diamagnetic drift frequency provides a wave phase velocity in the direction of the magnetopause so that wave energy accumulates against the magnetopause boundary, and the amplitude is skewed in that direction. On the other hand, plasma flow also gives rise to a real phase velocity, but the phase velocity is smaller than the flow velocity. As a result, the wave amplitude is increased in the wake of the plasma flow and piles up against the bow shock boundary.

  3. Connection between adiabaticity and the mirror mode

    Cohen, R.H.

    1976-01-01

    The size of magnetic moment jumps of a particle in a long, thin equilibrium magnetic mirror field is shown to be related to the complex zeroes of the mirror mode parameter B + 4πdP/sub perpendicular//dB. A consequence is that adiabaticity places a lower limit on β than does the mirror mode

  4. Contained Modes In Mirrors With Sheared Rotation

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with E x B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  5. Contained Modes In Mirrors With Sheared Rotation

    Abraham J. Fetterman and Nathaniel J. Fisch

    2010-10-08

    In mirrors with E × B rotation, a fixed azimuthal perturbation in the lab frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and non-peaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency. __________________________________________________

  6. Contained modes in mirrors with sheared rotation

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2010-01-01

    In mirrors with ExB rotation, a fixed azimuthal perturbation in the laboratory frame can appear as a wave in the rotating frame. If the rotation frequency varies with radius, the plasma-frame wave frequency will also vary radially due to the Doppler shift. A wave that propagates in the high rotation plasma region might therefore be evanescent at the plasma edge. This can lead to radially localized Alfven eigenmodes with high azimuthal mode numbers. Contained Alfven modes are found both for peaked and nonpeaked rotation profiles. These modes might be useful for alpha channeling or ion heating, as the high azimuthal wave number allows the plasma wave frequency in the rotating frame to exceed the ion cyclotron frequency.

  7. Nonlinear mirror mode dynamics: Simulations and modeling

    Califano, F.; Hellinger, Petr; Kuznetsov, E.; Passot, T.; Sulem, P. L.; Trávníček, Pavel

    2008-01-01

    Roč. 113, - (2008), A08219/1-A08219/20 ISSN 0148-0227 R&D Projects: GA AV ČR IAA300420702; GA AV ČR IAA300420602 Grant - others:PECS(CZ) 98024 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror instability * nonlinear evolution * numerical simulations * magnetic holes * mirror structures * kinetic plasma instabilities Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.147, year: 2008

  8. Anchor stabilization of trapped particle modes in mirror machines

    Berk, H.L.; Roslyakov, G.V.

    1986-07-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  9. Anchor stabilization of trapped particle modes in mirror machines

    Berk, H.L.; Roslyakov, G.V.

    1986-04-01

    It is shown that for trapped particle modes in tandem mirrors, the pressure of the passing particles in the anchor region introduces a stabilizing term proportional to the sum of the anchor's field line curvature and total diamagnetic pressure. The theory is applied to the proposed gas dynamic trap experiment

  10. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    Souček, Jan; Escoubet, C. P.

    2011-01-01

    Roč. 29, - (2011), s. 1049-1060 ISSN 0992-7689 Institutional research plan: CEZ:AV0Z30420517 Keywords : mirror mode waves * trapped particles * magnetosheath ions Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.842, year: 2011 http://www.ann-geophys.net/29/1049/2011/angeo-29-1049-2011.pdf

  11. Whistler mode startup in the Michigan Mirror Machine

    Booske, J.; Getty, W.D.; Gilgenbach, R.M.; Goodman, T.; Whaley, D.; Olivieri, R.; Pitcher, E.; Simonetti, L.

    1985-01-01

    Results of investigations of whistler mode ECRH plasma startup in the Michigan Mirror Machine are presented. Electron-velocity-distribution and plasma-spatial-distribution time evolution are characterized by measurements from axially and radially moveable Langmuir probes, an endloss current detector, an electron cyclotron emission radiometer, a foil-filtered X-ray detector, and a diamagnetic loop at the mirror midplane. Measurements of the buildup of both electron density and perpendicular pressure (nkT/sub perpendicular/) are compared to predictions from various numerical models. Both modeling and data suggest the creation of a highly anisotropic electron velocity distribution function with a ''sloshing electron'' axial density profile

  12. Laser modes and threshold condition i N-mirror resonator

    Pedersen, Christian; Skettrup, Torben

    1996-01-01

    Two formal methods for finding laser modes and threshold conditions in laser resonators containing as many as N mirrors are presented. The first method is based on an analysis determining the reflectivity and the transmittivity of an N-mirror system with gain. This is an extension of the classical...... 2 × 2 matrix method. The second method is based on self-consistency equations for the system and directly yields the circulating fields of the individual resonators. A set of rules has been proved to allow these fields to be calculated directly by means of inspection. The laser oscillation condition...

  13. Cluster observations of trapped ions interacting with magnetosheath mirror modes

    J. Soucek

    2011-06-01

    Full Text Available Mirror modes are among the most intense low frequency plasma wave phenomena observed in the magnetosheaths of magnetized planets. They appear as large amplitude non-propagating fluctuations in the magnetic field magnitude and plasma density. These structures are widely accepted to represent a non-linear stage of the mirror instability, dominant in plasmas with large ion beta and a significant ion temperature anisotropy T⊥/T∥>1. It has long been recognized that the mirror instability both in the linear and non-linear stage is a kinetic process and that the behavior of resonant particles at small parallel velocities is crucial for its development and saturation. While the dynamics of the instability and the effect of trapped particles have been studied extensively in theoretical models and numerical simulations, only spurious observations of the trapped ions were published to date. In this work we used data from the Cluster spacecraft to perform the first detailed experimental study of ion velocity distribution associated with mirror mode oscillations. We show a conclusive evidence for the predicted cooling of resonant ions at small parallel velocities and heating of trapped ions at intermediate pitch angles.

  14. Mirror Your Audience's Attitude: A Global Profile.

    Meussling, Vonne

    Recent advertising research has suggested that to gain initial entry into and retain continual success with a targeted audience of consumers, it is wise to mirror the attitudes and desires of those consumers. This has proven effective in the United States, where companies such as Chevrolet, Levi Strauss, and Coca-Cola have successfully catered to…

  15. Global monodromy modulo 5 of quintic-mirror family

    Shirakawa, Kennichiro

    2011-01-01

    The quintic-mirror family is a well-known one-parameter family of Calabi-Yau threefolds. A complete description of the global monodromy group of this family is not yet known. In this paper, we give a presentation of the global monodromy group in the general linear group of degree 4 over the ring of integers modulo 5.

  16. Ductile mode grinding of reaction-bonded silicon carbide mirrors.

    Dong, Zhichao; Cheng, Haobo

    2017-09-10

    The demand for reaction-bonded silicon carbide (RB-SiC) mirrors has escalated recently with the rapid development of space optical remote sensors used in astronomy or Earth observation. However, RB-SiC is difficult to machine due to its high hardness. This study intends to perform ductile mode grinding to RB-SiC, which produces superior surface integrity and fewer subsurface damages, thus minimizing the workload of subsequent lapping and polishing. For this purpose, a modified theoretical model for grain depth of cut of grinding wheels is presented, which correlates various processing parameters and the material characteristics (i.e., elastic module) of a wheel's bonding matrix and workpiece. Ductile mode grinding can be achieved as the grain depth of cut of wheels decreases to be less than the critical cut depth of workpieces. The theoretical model gives a roadmap to optimize the grinding parameters for ductile mode grinding of RB-SiC and other ultra-hard brittle materials. Its feasibility was validated by experiments. With the optimized grinding parameters for RB-SiC, the ductile mode grinding produced highly specular surfaces (with roughness of ∼2.2-2.8  nm Ra), which means the material removal mechanism of RB-SiC is dominated by plastic deformation rather than brittle fracture. Contrast experiments were also conducted on fused silica, using the same grinding parameters; this produced only very rough surfaces, which further validated the feasibility of the proposed model.

  17. Low Voltage Current Mode Switched-Current-Mirror Mixer

    Chunhua Wang

    2009-09-01

    Full Text Available A new CMOS active mixer topology can operate at 1 V supply voltage by use of SCM (switched currentmirror. Such current-mode mixer requires less voltage headroom with good linearization. Mixing is achieved with four improved current mirrors, which are alternatively activated. For ideal switching, the operation is equivalent to a conventional active mixer. This paper analyzes the performance of the SCM mixer, in comparison with the conventional mixer, demonstrating competitive performance at a lower supply voltage. Moreover, the new mixer’s die, without any passive components, is very small, and the conversion gain is easy to adjust. An experimental prototype was designed and simulated in standard chartered 0.18μm RF CMOS Process with Spectre in Cadence Design Systems. Experimental results show satisfactory mixer performance at 2.4 GHz.

  18. Statistical analysis of mirror mode waves in sheath regions driven by interplanetary coronal mass ejection

    Ala-Lahti, Matti M.; Kilpua, Emilia K. J.; Dimmock, Andrew P.; Osmane, Adnane; Pulkkinen, Tuija; Souček, Jan

    2018-05-01

    We present a comprehensive statistical analysis of mirror mode waves and the properties of their plasma surroundings in sheath regions driven by interplanetary coronal mass ejection (ICME). We have constructed a semi-automated method to identify mirror modes from the magnetic field data. We analyze 91 ICME sheath regions from January 1997 to April 2015 using data from the Wind spacecraft. The results imply that similarly to planetary magnetosheaths, mirror modes are also common structures in ICME sheaths. However, they occur almost exclusively as dip-like structures and in mirror stable plasma. We observe mirror modes throughout the sheath, from the bow shock to the ICME leading edge, but their amplitudes are largest closest to the shock. We also find that the shock strength (measured by Alfvén Mach number) is the most important parameter in controlling the occurrence of mirror modes. Our findings suggest that in ICME sheaths the dominant source of free energy for mirror mode generation is the shock compression. We also suggest that mirror modes that are found deeper in the sheath are remnants from earlier times of the sheath evolution, generated also in the vicinity of the shock.

  19. On the fundamental mode of the optical resonator with toroidal mirrors

    Serednyakov, S.S.; Vinokurov, N.A. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

    1995-12-31

    The fundamental mode of the optical resonator with the toroidal mirrors is investigated. The losses in such resonator with the on-axis holes are low in compare with the case of spherical mirrors. The use of this type of optical resonator is briefly discussed.

  20. Diode array pumped, non-linear mirror Q-switched and mode-locked

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic output coupler are used to mode-lock (passively) an Nd : YVO4 laser, pumped by a diode laser array. The laser can operate both in cw mode-locked and simultaneously Q-switched and mode-locked (QML) regime. The peak power of the laser while ...

  1. BOLDMirror: a global mirror system of DNA barcode data.

    Liu, D; Liu, L; Guo, G; Wang, W; Sun, Q; Parani, M; Ma, J

    2013-11-01

    DNA barcoding is a novel concept for taxonomic identification using short, specific genetic markers and has been applied to study a large number of eukaryotes. The huge amount of data output generated by DNA barcoding requires well-organized information systems. Besides the Barcode of Life Data system (BOLD) established in Canada, the mirror system is also important for the international barcode of life project (iBOL). For this purpose, we developed the BOLDMirror, a global mirror system of DNA barcode data. It is open-sourced and can run on the LAMP (Linux + Apache + MySQL + PHP) environment. BOLDMirror has data synchronization, data representation and statistics modules, and also provides spaces to store user operation history. BOLDMirror can be accessed at http://www.boldmirror.net and several countries have used it to setup their site of DNA barcoding. © 2012 John Wiley & Sons Ltd.

  2. Mirroring

    Wegener, Charlotte; Wegener, Gregers

    2016-01-01

    and metaphorical value of mirroring for creativity theory across two different research fields — neuroscience and learning. We engage in a mutual (possibly creative) exploration of mirroring from ‘mirror neurons’ to mirroring in social learning theory. One of the most fascinating aspects of mirroring...... as a neurobiological and as a learning phenomenon is that it points to the embodied and unconscious aspects of social interaction. Thus, mirroring should not be reduced to the non-creative, mechanical repetition of the original, outstanding creativity. To mirror is a human capability built into our capacity to create......Most definitions of creativity emphasise originality. The creative product is recognised as distinct from other products and the creative person as someone who stands out from the crowd. What tend to be overlooked are acts of mirroring as a crucial element of the creative process. The human ability...

  3. Study on control of defect mode in hybrid mirror chirped porous silicon photonic crystal

    Chen, Ying; Luo, Pei; Han, Yangyang; Cui, Xingning; He, Lei

    2018-03-01

    Based on the optical resonance principle and the tight-binding theory, a hybrid mirror chirped porous silicon photonic crystal is proposed. The control of the defect mode in hybrid mirror chirped porous silicon photonic crystal is studied. Through the numerical simulation, the control regulations of the defect modes resulted by the number of the periodical layers for the fundamental unit and the cascading number of the chirped structures are analyzed, and the split and the degeneration of the defect modes resulted by the change of the relative location between the mirror structures and the quasi-mirror structures are discussed. The simulation results show that the band gap would be broadened with the increase of the chirp quantity and the layer number of unilateral chirp. Adjusting the structural parameters of the hybrid mirror structure, the multimode characteristics will occur in the band gap. The more the cascading number of the chirped units, the more the number of the filtering channels will be. In addition, with the increase of the relative location between the mirror structures and the quasi-mirror structures, the degeneration of the defect modes will occur and can obtain high Q value. The structure can provide effective theoretical references for the design the multi-channel filters and high Q value sensors.

  4. Nonlinear Mirror and Weibel modes: peculiarities of quasi-linear dynamics

    O. A. Pokhotelov

    2010-12-01

    Full Text Available A theory for nonlinear evolution of the mirror modes near the instability threshold is developed. It is shown that during initial stage the major instability saturation is provided by the flattening of the velocity distribution function in the vicinity of small parallel ion velocities. The relaxation scenario in this case is accompanied by rapid attenuation of resonant particle interaction which is replaced by a weaker adiabatic interaction with mirror modes. The saturated plasma state can be considered as a magnetic counterpart to electrostatic BGK modes. After quasi-linear saturation a further nonlinear scenario is controlled by the mode coupling effects and nonlinear variation of the ion Larmor radius. Our analytical model is verified by relevant numerical simulations. Test particle and PIC simulations indeed show that it is a modification of distribution function at small parallel velocities that results in fading away of free energy driving the mirror mode. The similarity with resonant Weibel instability is discussed.

  5. Does flower phenology mirror the slowdown of global warming?

    Jochner, Susanne; Menzel, Annette

    2015-01-01

    Although recent global warming trends in air temperature are not as pronounced as those observed only one decade ago, global mean temperature is still at a very high level. Does plant phenology – which is believed to be a suitable indicator of climate change – respond in a similar way, that is, does it still mirror recent temperature variations? We explored in detail long-term flowering onset dates of snowdrop, cherry, and lime tree and relevant spring temperatures at three sites in Germany (1901–2012) using the Bayesian multiple change-point approach. We investigated whether mean spring temperature changes were amplified or slowed down in the past decade and how plant phenology responded to the most recent temperature changes. Incorporating records with different end points (i.e., 2002 and 2012), we compared differences in trends and inferred possible differences caused by extrapolating phenological and meteorological data. The new multiple-change point approach is characterized by an enhanced structure and greater flexibility compared to the one change point model. However, the highest model probabilities for phenological (meteorological) records were still obtained for the one change point (linear) model. Marked warming trends in the recent decade were only revealed for mean temperatures of March to May, here better described with one or two change point models. In the majority of cases analyzed, changes in temperatures were well mirrored by phenological changes. However, temperatures in March to May were linked to less strongly advancing onset dates for lime tree flowering during the period 1901-2012, pointing to the likely influence of photoperiodic constraints or unfulfilled chilling requirements. Due to the slowdown of temperature increase, analyses conducted on records ending in 2002 demonstrated distinct differences when compared with records ending in 2012. Extrapolation of trends could therefore (along with the choice of the statistical method

  6. A universal mirror wave-mode threshold condition for non-thermal space plasma environments

    M. P. Leubner

    2002-01-01

    Full Text Available Magnetic fluctuations are recognized in a large variety of space plasmas by increasingly high resolution, in situ observations as mirror wave mode structures. A typical requirement for the excitation of mirror modes is a dominant perpendicular pressure in a high-beta plasma environment. Contrary, we demonstrate from a realistic kinetic analysis how details of the velocity space distributions are of considerable significance for the instability threshold. Introducing the most common characteristics of observed ion and electron distributions by a mixed suprathermal-loss-cone, we derive a universal mirror instability criterion from an energy principle for collisionless plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features provides a strong source for the generation of mirror wave mode activity, reducing drastically the instability threshold. In particular, a number of space-related examples illuminate how the specific structure of the velocity space distribution dominates as a regulating excitation mechanism over the effects related to changes in the plasma parameters.

  7. Alfven frequency modes and global Alfven eigenmodes

    Villard, L.; Vaclavik, J.

    1996-07-01

    The spectrum of n=0 Alfven modes is calculated analytically and numerically in cylindrical and toroidal geometries. It includes Global Alfven Eigenmodes (GAE) and Surface Modes (SM) of the fast magnetoacoustic wave. These modes are not induced by toroidicity. The n=0 GAEs owe their existence to the shear. The frequency spacing between different radial and poloidal modes and the correlation of eigenfrequencies with changes in the edge density are examined and found in complete agreement with experimental observations of what has been named the 'Alfven Frequency Mode' (AFM) so far. Although the eigenfrequency is related to the edge density, the n=0 GAE (AFM) is not necessarily edge-localized. (author) figs., tabs., refs

  8. The strange physics of low frequency mirror mode turbulence in the high temperature plasma of the magnetosheath

    R. A. Treumann

    2004-01-01

    Full Text Available Mirror mode turbulence is the lowest frequency perpendicular magnetic excitation in magnetized plasma proposed already about half a century ago by Rudakov and Sagdeev (1958 and Chandrasekhar et al. (1958 from fluid theory. Its experimental verification required a relatively long time. It was early recognized that mirror modes for being excited require a transverse pressure (or temperature anisotropy. In principle mirror modes are some version of slow mode waves. Fluid theory, however, does not give a correct physical picture of the mirror mode. The linear infinitesimally small amplitude physics is described correctly only by including the full kinetic theory and is modified by existing spatial gradients of the plasma parameters which attribute a small finite frequency to the mode. In addition, the mode is propagating only very slowly in plasma such that convective transport is the main cause of flow in it. As the lowest frequency mode it can be expected that mirror modes serve as one of the dominant energy inputs into plasma. This is however true only when the mode grows to large amplitude leaving the linear stage. At such low frequencies, on the other hand, quasilinear theory does not apply as a valid saturation mechanism. Probably the dominant processes are related to the generation of gradients in the plasma which serve as the cause of drift modes thus transferring energy to shorter wavelength propagating waves of higher nonzero frequency. This kind of theory has not yet been developed as it has not yet been understood why mirror modes in spite of their slow growth rate usually are of very large amplitudes indeed of the order of |B/B0|2~O(1. It is thus highly reasonable to assume that mirror modes are instrumental for the development of stationary turbulence in high temperature plasma. Moreover, since the magnetic field in mirror turbulence forms extended though slightly oblique magnetic bottles, low parallel energy particles can be trapped

  9. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    Plaschke, Ferdinand; Narita, Yasuhito

    2016-09-01

    In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  10. On determining fluxgate magnetometer spin axis offsets from mirror mode observations

    F. Plaschke

    2016-09-01

    Full Text Available In-flight calibration of fluxgate magnetometers that are mounted on spacecraft involves finding their outputs in vanishing ambient fields, the so-called magnetometer offsets. If the spacecraft is spin-stabilized, then the spin plane components of these offsets can be relatively easily determined, as they modify the spin tone content in the de-spun magnetic field data. The spin axis offset, however, is more difficult to determine. Therefore, usually Alfvénic fluctuations in the solar wind are used. We propose a novel method to determine the spin axis offset: the mirror mode method. The method is based on the assumption that mirror mode fluctuations are nearly compressible such that the maximum variance direction is aligned to the mean magnetic field. Mirror mode fluctuations are typically found in the Earth's magnetosheath region. We introduce the method and provide a first estimate of its accuracy based on magnetosheath observations by the THEMIS-C spacecraft. We find that 20 h of magnetosheath measurements may already be sufficient to obtain high-accuracy spin axis offsets with uncertainties on the order of a few tenths of a nanotesla, if offset stability can be assumed.

  11. Default Mode Dynamics for Global Functional Integration.

    Vatansever, Deniz; Menon, David K; Manktelow, Anne E; Sahakian, Barbara J; Stamatakis, Emmanuel A

    2015-11-18

    The default mode network (DMN) has been traditionally assumed to hinder behavioral performance in externally focused, goal-directed paradigms and to provide no active contribution to human cognition. However, recent evidence suggests greater DMN activity in an array of tasks, especially those that involve self-referential and memory-based processing. Although data that robustly demonstrate a comprehensive functional role for DMN remains relatively scarce, the global workspace framework, which implicates the DMN in global information integration for conscious processing, can potentially provide an explanation for the broad range of higher-order paradigms that report DMN involvement. We used graph theoretical measures to assess the contribution of the DMN to global functional connectivity dynamics in 22 healthy volunteers during an fMRI-based n-back working-memory paradigm with parametric increases in difficulty. Our predominant finding is that brain modularity decreases with greater task demands, thus adapting a more global workspace configuration, in direct relation to increases in reaction times to correct responses. Flexible default mode regions dynamically switch community memberships and display significant changes in their nodal participation coefficient and strength, which may reflect the observed whole-brain changes in functional connectivity architecture. These findings have important implications for our understanding of healthy brain function, as they suggest a central role for the DMN in higher cognitive processing. The default mode network (DMN) has been shown to increase its activity during the absence of external stimulation, and hence was historically assumed to disengage during goal-directed tasks. Recent evidence, however, implicates the DMN in self-referential and memory-based processing. We provide robust evidence for this network's active contribution to working memory by revealing dynamic reconfiguration in its interactions with other networks

  12. Single mode operation in a pulsed Ti:sapphire laser oscillator with a grazing-incidence four-mirror cavity

    Ko, D K; Binks, D J; Gloster, L A W; King, T A

    1998-01-01

    We demonstrate stable single mode operation in a pulsed Ti:sapphire laser oscillator with a novel grazing-incidence four-mirror coupled cavity. This cavity consists of a grating, a gain medium, and four mirrors and, therefore, has a four-arm interferometer configuration. Through the interferometric effect, we could suppress the adjacent modes and obtain stable single mode operation with a bandwidth of < 200 MHz. We also have developed a general analysis of the laser modes and the threshold conditions for configuration and the experimental results agree well with the theoretical predictions.

  13. Fluxgate magnetometer offset vector determination by the 3D mirror mode method

    Plaschke, F.; Goetz, C.; Volwerk, M.; Richter, I.; Frühauff, D.; Narita, Y.; Glassmeier, K.-H.; Dougherty, M. K.

    2017-07-01

    Fluxgate magnetometers on-board spacecraft need to be regularly calibrated in flight. In low fields, the most important calibration parameters are the three offset vector components, which represent the magnetometer measurements in vanishing ambient magnetic fields. In case of three-axis stabilized spacecraft, a few methods exist to determine offsets: (I) by analysis of Alfvénic fluctuations present in the pristine interplanetary magnetic field, (II) by rolling the spacecraft around at least two axes, (III) by cross-calibration against measurements from electron drift instruments or absolute magnetometers, and (IV) by taking measurements in regions of well-known magnetic fields, e.g. cometary diamagnetic cavities. In this paper, we introduce a fifth option, the 3-dimensional (3D) mirror mode method, by which 3D offset vectors can be determined using magnetic field measurements of highly compressional waves, e.g. mirror modes in the Earth's magnetosheath. We test the method by applying it to magnetic field data measured by the following: the Time History of Events and Macroscale Interactions during Substorms-C spacecraft in the terrestrial magnetosheath, the Cassini spacecraft in the Jovian magnetosheath and the Rosetta spacecraft in the vicinity of comet 67P/Churyumov-Gerasimenko. The tests reveal that the achievable offset accuracies depend on the ambient magnetic field strength (lower strength meaning higher accuracy), on the length of the underlying data interval (more data meaning higher accuracy) and on the stability of the offset that is to be determined.

  14. The effect of a scanning flat fold mirror on a cosmic microwave background B-mode experiment.

    Grainger, William F; North, Chris E; Ade, Peter A R

    2011-06-01

    We investigate the possibility of using a flat-fold beam steering mirror for a cosmic microwave background B-mode experiment. An aluminium flat-fold mirror is found to add ∼0.075% polarization, which varies in a scan synchronous way. Time-domain simulations of a realistic scanning pattern are performed, and the effect on the power-spectrum illustrated, and a possible method of correction applied. © 2011 American Institute of Physics

  15. Controllable optical bistability in a three-mode optomechanical system with atom-cavity-mirror couplings

    Chen, Bin; Wang, Xiao-Fang; Yan, Jia-Kai; Zhu, Xiao-Fei; Jiang, Cheng

    2018-01-01

    We theoretically investigate the optical bistable behavior in a three-mode optomechanical system with atom-cavity-mirror couplings. The effects of the cavity-pump detuning and the pump power on the bistable behavior are discussed detailedly, the impacts of the atom-pump detuning and the atom-cavity coupling strength on the bistability of the system are also explored, and the influences of the cavity-resonator coupling strength and the cavity decay rate are also taken into consideration. The numerical results demonstrate that by tuning these parameters the bistable behavior of the system can be freely switched on or off, and the threshold of the pump power for the bistability as well as the bistable region width can also be effectively controlled. These results can find potential applications in optical bistable switch in the quantum information processing.

  16. Positioning Multicultural Education across the Mirror of Globalization

    Oikonomidoy, Eleni

    2015-01-01

    The graduate level course described in this article provides one possible pathway to making the connection between the global and the local in multicultural education. The proposal is that among many other things, the journey to the development of critical approaches is a conceptual endeavor. It is not meant to replace an introductory course in…

  17. Interpersonal motor resonance in autism spectrum disorder: Evidence against a globalmirror system’ deficit

    Peter eEnticott

    2013-05-01

    Full Text Available The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD. Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32 and matched neurotypical controls (n = 32 completed a transcranial magnetic stimulation (TMS experiment in which the left primary motor cortex was stimulated during the observation of static hands, individual (i.e., one person hand actions, and interactive (i.e., two person hand actions. Motor-evoked potentials (MEP were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.

  18. Interpersonal motor resonance in autism spectrum disorder: evidence against a global "mirror system" deficit.

    Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B

    2013-01-01

    The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.

  19. Observation of transverse and longitudinal modes in non-neutral electron clouds confined in a magnetic mirror

    Eckhouse, S.; Fisher, A.; Rostoker, N.

    1979-01-01

    Electrostatic modes on non-neutral electron clouds confined in a magnetic mirror field have been investigated. The cloud contains 2 x 10 11 electrons at an average kinetic energy of 0.3 MeV for a magnetic field with a peak intensity of 9 kG at the midplane. It was found that the cloud is moving azimuthally as well as longitudinally. The azimuthal motion has an m=1 spatial nature. The longitudinal modes have a more complicated nature, but their frequency equals that of the azimuthal mode

  20. Self-processing and the default mode network: Interactions with the mirror neuron system

    Istvan eMolnar-Szakacs

    2013-09-01

    Full Text Available Recent evidence for the fractionation of the default mode network (DMN into functionally distinguishable subdivisions with unique patterns of connectivity calls for a reconceptualization of the relationship between this network and self-referential processing. Advances in resting-state functional connectivity analyses are beginning to reveal increasingly complex patterns of organization within the key nodes of the DMN - medial prefrontal cortex (MPFC and posterior cingulate cortex (PCC – as well as between these nodes and other brain systems. Here we review recent examinations of the relationships between the DMN and various aspects of self-relevant and social-cognitive processing in light of emerging evidence for heterogeneity within this network. Drawing from a rapidly evolving social cognitive neuroscience literature, we propose that embodied simulation and mentalizing are processes which allow us to gain insight into another's physical and mental state by providing privileged access to our own physical and mental states. Embodiment implies that the same neural systems are engaged for self- and other-understanding through a simulation mechanism, while mentalizing refers to the use of high-level conceptual information to make inferences about the mental states of self and others. These mechanisms work together to provide a coherent representation of the self and by extension, of others. Nodes of the DMN selectively interact with brain systems for embodiment and mentalizing, including the mirror neuron system, to produce appropriate mappings in the service of social cognitive demands.

  1. Monte-Carlo study of ICRF-sustained mode operation in tandem mirrors

    Todd, A.M.M. (Grumman Aerospace Corp., Princeton, NJ (USA))

    1984-09-01

    A study, using a Monte-Carlo simulation code, of ICRF-sustained mode operation in tandem mirrors by way of ICRF end-cell fuelling and heating is described. Although the basic parameter space considered corresponds to the Phaedrus experiment, the central-cell density and temperatures are extended towards the reactor regime. It is found that significant end cell ion potential barriers can be generated with ICRF, but that, owing to choking of the central-cell ion source stream by the plugging potential, saturation occurs and power requirements rapidly increase, so that the potential rise is limited to about twice the central-cell ion temperature. Although performance is improved as the ion cyclotron resonance approaches the end-cell mid-plane, no significant difference is found between inboard, outboard or double resonance location. As the central-cell density and temperatures are increased, the RF power requirement is found to increase dramatically. Optimum performance for end cell fuelling results when the central-cell electron temperature is higher than the ion temperature, but the magnitude of this ratio is limited by an increase in threshold power level with electron temperature.

  2. Energetic particle effects on global MHD modes

    Cheng, C.Z.

    1990-01-01

    The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs

  3. The Properties of Lion Roars and Electron Dynamics in Mirror Mode Waves Observed by the Magnetospheric MultiScale Mission

    Breuillard, H.; Le Contel, O.; Chust, T.; Berthomier, M.; Retino, A.; Turner, D. L.; Nakamura, R.; Baumjohann, W.; Cozzani, G.; Catapano, F.; Alexandrova, A.; Mirioni, L.; Graham, D. B.; Argall, M. R.; Fischer, D.; Wilder, F. D.; Gershman, D. J.; Varsani, A.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Marklund, G.; Ergun, R. E.; Goodrich, K. A.; Ahmadi, N.; Burch, J. L.; Torbert, R. B.; Needell, G.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Wei, H.; Plaschke, F.; Anderson, B. J.; Le, G.; Moore, T. E.; Giles, B. L.; Paterson, W. R.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Saito, Y.; Lavraud, B.; Fuselier, S. A.; Mauk, B. H.; Cohen, I. J.; Fennell, J. F.

    2018-01-01

    Mirror mode waves are ubiquitous in the Earth's magnetosheath, in particular behind the quasi-perpendicular shock. Embedded in these nonlinear structures, intense lion roars are often observed. Lion roars are characterized by whistler wave packets at a frequency ˜100 Hz, which are thought to be generated in the magnetic field minima. In this study, we make use of the high time resolution instruments on board the Magnetospheric MultiScale mission to investigate these waves and the associated electron dynamics in the quasi-perpendicular magnetosheath on 22 January 2016. We show that despite a core electron parallel anisotropy, lion roars can be generated locally in the range 0.05-0.2fce by the perpendicular anisotropy of electrons in a particular energy range. We also show that intense lion roars can be observed up to higher frequencies due to the sharp nonlinear peaks of the signal, which appear as sharp spikes in the dynamic spectra. As a result, a high sampling rate is needed to estimate correctly their amplitude, and the latter might have been underestimated in previous studies using lower time resolution instruments. We also present for the first-time 3-D high time resolution electron velocity distribution functions in mirror modes. We demonstrate that the dynamics of electrons trapped in the mirror mode structures are consistent with the Kivelson and Southwood (1996) model. However, these electrons can also interact with the embedded lion roars: first signatures of electron quasi-linear pitch angle diffusion and possible signatures of nonlinear interaction with high-amplitude wave packets are presented. These processes can lead to electron untrapping from mirror modes.

  4. Modes of interaction between nanostructured metal and a conducting mirror as a function of separation and incident polarization

    Bonnie, F.; Arnold, M. D.; Smith, G. B.; Gentle, A. R.

    2013-09-01

    The optical resonances that occur in nanostructured metal layers are modulated in thin film stacks if the nanostructured layer is separated from a reflecting conducting layer by various thicknesses of thin dielectric. We have measured and modeled the optical response of interacting silver layers, with alumina spacer thickness ranging from a few nm to 50 nm, for s- and p-polarized incident light, and a range of incident angles. Standard thin film models, including standard effective medium models for the nanostructured layer, will break down for spacer thickness below a critical threshold. For example, with polarisation in the film plane and some nano-islands, it may occur at around 10 nm depending on spacer refractive index. Of particular interest here are novel effects observed with the onset of percolation in the nanolayer. Hot spot effects can be modified by nearby mirrors. Other modes to consider include (a) a two-particle mode involving a particle and its mirror image (b) A Fano resonance from hybridisation of localized and de-localised plasmon modes (c) a Babinet's core-(partial) shell particle with metal core-dielectric shell in metal (d) spacing dependent phase modulation (e) the impact of field gradients induced by the mirror at the nano-layer.

  5. Generation of Electron Whistler Waves at the Mirror Mode Magnetic Holes: MMS Observations and PIC Simulation

    Ahmadi, N.; Wilder, F. D.; Usanova, M.; Ergun, R.; Argall, M. R.; Goodrich, K.; Eriksson, S.; Germaschewski, K.; Torbert, R. B.; Lindqvist, P. A.; Le Contel, O.; Khotyaintsev, Y. V.; Strangeway, R. J.; Schwartz, S. J.; Giles, B. L.; Burch, J.

    2017-12-01

    The Magnetospheric Multiscale (MMS) mission observed electron whistler waves at the center and at the gradients of magnetic holes on the dayside magnetosheath. The magnetic holes are nonlinear mirror structures which are anti-correlated with particle density. We used expanding box Particle-in-cell simulations and produced the mirror instability magnetic holes. We show that the electron whistler waves can be generated at the gradients and the center of magnetic holes in our simulations which is in agreement with MMS observations. At the nonlinear regime of mirror instability, the proton and electron temperature anisotropy are anti-correlated with the magnetic hole. The plasma is unstable to electron whistler waves at the minimum of the magnetic field structures. In the saturation regime of mirror instability, when magnetic holes are dominant, electron temperature anisotropy develops at the edges of the magnetic holes and electrons become isotropic at the magnetic field minimum. We investigate the possible mechanism for enhancing the electron temperature anisotropy and analyze the electron pitch angle distributions and electron distribution functions in our simulations and compare it with MMS observations.

  6. Diode array pumped, non-linear mirror Q-switched and mode-locked ...

    A non-linear mirror consisting of a lithium triborate crystal and a dichroic ... effects such as all-optical switching [7,8], nearly degenerate four-wave mixing [9,10], .... is driven by a radio frequency signal of 27.2MHz with a modulation available in.

  7. On global H-mode scaling laws for JET

    Kardaun, O.; Lackner, K.; Thomsen, K.; Christiansen, J.; Cordey, J.; Gottardi, N.; Keilhacker, M.; Smeulders, P.

    1989-01-01

    Investigation of the scaling of the energy confinement time τ E with various plasma parameters has since long been an interesting, albeit not uncontroversial topic in plasma physics. Various global scaling laws have been derived for ohmic as well as (NBI and/or RF heated) L-mode discharges. Due to the scarce availability of computerised, extensive and validated H-mode datasets, systematic statistical analysis of H-mode scaling behaviour has hitherto been limited. A common approach is to fit the available H-mode data by an L-mode scaling law (e.g., Kaye-Goldston, Rebut-Lallia) with one or two adjustable constant terms. In this contribution we will consider the alternative approach of fitting all free parameters of various simple scaling models to two recently compiled datasets consisting of about 140 ELM-free and 40 ELMy H-mode discharges, measured at JET in the period 1986-1988. From this period, approximately all known H-mode shots have been included that satisfy the following criteria: D-injected D + discharges with no RF heating, a sufficiently long (≥300 ms) and regular P NBI flat-top, and validated main diagnostics. (author) 13 refs., 1 tab

  8. Global mode decomposition of supersonic impinging jet noise

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2015-11-01

    We apply global stability analysis to an ideally expanded, Mach 1.5, turbulent jet that impinges on a flat surface. The analysis extracts axisymmetric and helical instability modes, involving coherent vortices, shocks, and acoustic feedback, which we use to help explain and predict the effectiveness of microjet control. High-fidelity large eddy simulations (LES) were performed at nozzle-to-wall distances of 4 and 4.5 throat diameters with and without sixteen microjets positioned uniformly around the nozzle lip. These flow configurations conform exactly to experiments performed at Florida State University. Stability analysis about LES mean fields predicted the least stable global mode with a frequency that matched the impingement tone observed in experiments at a nozzle-to-wall distance of 4 throat diameters. The Reynolds-averaged Navier-Stokes (RANS) equations were solved at five nozzle-to-wall distances to create base flows that were used to investigate the influence of this parameter. A comparison of the eigenvalue spectra computed from the stability analysis about LES and RANS base flows resulted in good agreement. We also investigate the effect of the boundary layer state as it emerges from the nozzle using a multi-block global mode solver. Computational resources were provided by the Argonne Leadership Computing Facility.

  9. Global kink and ballooning modes in high-beta systems and stability of toroidal drift modes

    Galvao, R.M.O.; Goedbloed, J.P.; Rem, J.; Sakanaka, P.H.; Schep, T.J.; Venema, M.

    1983-01-01

    A numerical code (HBT) has been developed which solves for the equilibrium, global stability and high-n stability of plasmas with arbitrary cross-section. Various plasmas are analysed for their stability to these modes in the high-beta limit. Screw-pinch equilibria are stable to high-n ballooning modes up to betas of 18%. The eigenmode equation for drift waves is analysed numerically. The toroidal branch is shown to be destabilized by the non-adiabatic response of trapped and circulating particles. (author)

  10. Monolithic mode-locked lasers with deeply dry etched Bragg mirror

    Larsson, David; Yvind, Kresten; Hvam, Jørn Märcher

    Background: Semiconductor mode-locked lasers are attractive as components in futureultra high-speed telecommunication systems (160-640Gb/s); as picosecond pulse sources,clock-recovery devices and for demultiplexing in Optical Time Division Multiplexing(OTDM) systems. We have recently designed...... it possible to buy epitaxial wafers fromphotonic foundries as in the microelectronic industry.Design: The reflectivity spectrum from the total grating is calculated by matrixmultiplication of the individual periodic grating elements. The period of the grating,given by the mean effective index of the low....... The SiO2-film functions as a mask in the subsequent RIE of thesemiconductor (InP). We are now optimizing the semiconductor RIE to achieve 2 µmdeep waveguides and gratings with smooth vertical sidewalls and smooth bottom surface.This optimization involves optimizing the reaction chamber parameters: CH4/H2...

  11. 50-fs pulse generation directly from a colliding-pulse mode-locked Ti:sapphire laser using an antiresonant ring mirror

    Naganuma, Kazunori; Mogi, Kazuo

    1991-05-01

    50-fs pulses were directly generated from a colliding-pulse mode-locked Ti:sapphire laser. To achieve the colliding-pulse mode locking, a miniature antiresonant ring containing an organic saturable dye jet was employed as the end mirror for the linear cavity laser. Based on measured dispersion of intracavity elements, a prism pair was implemented to control the cavity dispersion. The generated pulses have no linear chirp but do exhibit parabolic instantaneous frequency owing to third-order dispersion introduced by the prism pair.

  12. Real-time mirror steering for improved closed loop neoclassical tearing mode suppression by electron cyclotron current drive in DIII-D

    Kolemen, E., E-mail: ekolemen@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 45, Princeton, NJ 08543-0451 (United States); Ellis, R. [Princeton Plasma Physics Laboratory, PO Box 45, Princeton, NJ 08543-0451 (United States); La Haye, R.J.; Humphreys, D.A.; Lohr, J.; Noraky, S.; Penaflor, B.G.; Welander, A.S. [General Atomics, PO Box 85608, San Diego, CA 92186-5608 (United States)

    2013-11-15

    Highlights: • We developed neoclassical tearing mode (NTM) control system for DIII-D, which uses six sets of real-time steerable mirrors in order to move the electron cyclotron current drive (ECCD) deposition location in plasma. • This algorithm accurately finds the NTM island location employing motional Stark effect EFIT MHD equilibrium reconstruction. • Successful NTM suppression and preemption has been achieved in DIII-D using this control system to automatically switches on and off gyrotrons when NTM is detected and rapidly align the NTM island and the ECCD deposition location. -- Abstract: The development and operation of the neoclassical tearing mode (NTM) avoidance and control system for DIII-D, which uses six sets of real-time steerable mirrors in order to move the electron cyclotron current drive (ECCD) deposition location in plasma, is described. The real-time DIII-D NTM control algorithm residing in the Plasma Control System (PCS) automatically detects an NTM by analysis of the Mirnov diagnostics, employs motional Stark effect (MSE) EFIT MHD equilibrium reconstruction to locate the rational q-surface where the NTM island can be found, then calculates the appropriate mirror position for alignment of the ECCD with the island using ray tracing. The control commands from PCS are sent to the electron cyclotron system to switch on and off or modulate the gyrotrons and to the steerable mirror system to move the steerable mirrors to the requested positions. Successful NTM suppression has been achieved in DIII-D using this control system to rapidly align the NTM island and the ECCD deposition location, and to actively maintain the alignment as plasma conditions change.

  13. Topological mirror superconductivity.

    Zhang, Fan; Kane, C L; Mele, E J

    2013-08-02

    We demonstrate the existence of topological superconductors (SCs) protected by mirror and time-reversal symmetries. D-dimensional (D=1, 2, 3) crystalline SCs are characterized by 2(D-1) independent integer topological invariants, which take the form of mirror Berry phases. These invariants determine the distribution of Majorana modes on a mirror symmetric boundary. The parity of total mirror Berry phase is the Z(2) index of a class DIII SC, implying that a DIII topological SC with a mirror line must also be a topological mirror SC but not vice versa and that a DIII SC with a mirror plane is always time-reversal trivial but can be mirror topological. We introduce representative models and suggest experimental signatures in feasible systems. Advances in quantum computing, the case for nodal SCs, the case for class D, and topological SCs protected by rotational symmetries are pointed out.

  14. SEARCH FOR GLOBAL f-MODES AND p-MODES IN THE {sup 8}B NEUTRINO FLUX

    Lopes, Ilídio, E-mail: ilidio.lopes@ist.utl.pt, E-mail: ilopes@uevora.pt [Centro Multidisciplinar de Astrofísica, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Departamento de Física, Escola de Ciências e Tecnologia, Universidade de Évora, Colégio Luis António Verney, 7002-554 Évora (Portugal)

    2013-11-01

    The impact of global acoustic modes on the {sup 8}B neutrino flux time series is computed for the first time. It is shown that the time fluctuations of the {sup 8}B neutrino flux depend on the amplitude of acoustic eigenfunctions in the region where the {sup 8}B neutrino flux is produced: modes with low n (or order) that have eigenfunctions with a relatively large amplitude in the Sun's core strongly affect the neutrino flux; conversely, modes with high n that have eigenfunctions with a minimal amplitude in the Sun's core have a very small impact on the neutrino flux. It was found that the global modes with a larger impact on the {sup 8}B neutrino flux have a frequency of oscillation in the interval 250 μHz to 500 μHz (or a period in the interval 30 minutes to 70 minutes), such as the f-modes (n = 0) for the low degrees, radial modes of order n ≤ 3, and the dipole mode of order n = 1. Their corresponding neutrino eigenfunctions are very sensitive to the solar inner core and are unaffected by the variability of the external layers of the solar surface. If time variability of neutrinos is observed for these modes, it will lead to new ways of improving the sound speed profile inversion in the central region of the Sun.

  15. A 2-D MEMS scanning mirror based on dynamic mixed mode excitation of a piezoelectric PZT thin film S-shaped actuator.

    Koh, Kah How; Kobayashi, Takeshi; Lee, Chengkuo

    2011-07-18

    A novel dynamic excitation of an S-shaped PZT piezoelectric actuator, which is conceptualized by having two superimposed AC voltages, is characterized in this paper through the evaluation of the 2-D scanning characteristics of an integrated silicon micromirror. The device is micromachined from a SOI wafer with a 5 μm thick Si device layer and multilayers of Pt/Ti/PZT//Pt/Ti deposited as electrode and actuation materials. A large mirror (1.65 mm x 2mm) and an S-shaped PZT actuator are formed after the backside release process. Three modes of operation are investigated: bending, torsional and mixed. The resonant frequencies obtained for bending and torsional modes are 27Hz and 70Hz respectively. The maximum measured optical deflection angles obtained at 3Vpp are ± 38.9° and ± 2.1° respectively for bending and torsional modes. Various 2-D Lissajous patterns are demonstrated by superimposing two ac sinusoidal electrical signals of different frequencies (27 Hz and 70 Hz) into one signal to be used to actuate the mirror.

  16. Global structures of Alfven-ballooning modes in magnetospheric plasmas

    Vetoulis, G.; Chen, Liu.

    1994-03-01

    The authors show that a steep plasma pressure gradient can lead to radially localized Alfven modes, which are damped through coupling to filed line resonances. These have been called drift Alfven balloning modes (DABM) and are the prime candidates to explain Pc4-Pc5 geomagnetic pulsations observed during storms. A strong dependence of the damping rate on the azimuthal wave number m is established, as well as on the equilibrium profile. A minimum azimuthal mode number can be found for the DABM to be radially trapped. The authors find that higher m DABMs are better localized, which is consistent with high-m observations

  17. TMRBAR: a code to calculate plasma parameters for tandem-mirror reactors operating in the MARS mode

    Campbell, R.B.

    1983-01-01

    The purpose of this report is to document the plasma power balance model currently used by LLNL to calculate steady state operating points for tandem mirror reactors. The code developed from this model, TMRBAR, has been used to predict the performance and define supplementary heating requirements for drivers used in the Mirror Advanced Reactor Study (MARS) and for the Fusion Power Demonstration (FPD) study. The equations solved included particle and energy balance for central cell and end cell species, quasineutrality at several cardinal points in the end cell region, as well as calculations of volumes, densities and average energies based on given constraints of beta profiles and fusion power output. Alpha particle ash is treated self-consistently, but no other impurity species is treated

  18. VH mode accessibility and global H-mode properties in previous and present JET configurations

    Jones, T T.C.; Ali-Arshad, S; Bures, M; Christiansen, J P; Esch, H P.L. de; Fishpool, G; Jarvis, O N; Koenig, R; Lawson, K D; Lomas, P J; Marcus, F B; Sartori, R; Schunke, B; Smeulders, P; Stork, D; Taroni, A; Thomas, P R; Thomsen, K [Commission of the European Communities, Abingdon (United Kingdom). JET Joint Undertaking

    1994-07-01

    In JET VH modes, there is a distinct confinement transition following the cessation of ELMs, observed in a wide variety of tokamak operating conditions, using both NBI and ICRF heating methods. Important factors which influence VH mode accessibility such as magnetic configuration and vessel conditions have been identified. The new JET pumped divertor configuration has much improved plasma shaping control and power and particle exhaust capability and should permit exploitation of plasmas with VH confinement properties over an even wider range of operating regimes, particularly at high plasma current; first H-modes have been obtained in the 1994 JET operating period and initial results are reported. (authors). 7 refs., 6 figs.

  19. Adaptive Global Sliding Mode Control for MEMS Gyroscope Using RBF Neural Network

    Yundi Chu

    2015-01-01

    Full Text Available An adaptive global sliding mode control (AGSMC using RBF neural network (RBFNN is proposed for the system identification and tracking control of micro-electro-mechanical system (MEMS gyroscope. Firstly, a new kind of adaptive identification method based on the global sliding mode controller is designed to update and estimate angular velocity and other system parameters of MEMS gyroscope online. Moreover, the output of adaptive neural network control is used to adjust the switch gain of sliding mode control dynamically to approach the upper bound of unknown disturbances. In this way, the switch item of sliding mode control can be converted to the output of continuous neural network which can weaken the chattering in the sliding mode control in contrast to the conventional fixed gain sliding mode control. Simulation results show that the designed control system can get satisfactory tracking performance and effective estimation of unknown parameters of MEMS gyroscope.

  20. Antonio Banderas: Hispanic Gay Masculinities and the Global Mirror Stage (1991-2001

    Joseba Gabilondo

    2006-01-01

    Full Text Available Here I map out the Atlantic intertwining between neo-liberal/neo-imperial Spain and cinema by analyzing Antonio Banderas's body politics as the postmodern (post- or neoimperialist Don Juan. Banderas's career trajectory from 1991 to 2001 coincides with larger political and historical developments. He arrived in Hollywood in the early 1990s, a moment when different but interconnected historical events came together— the end of the Cold War and the neo-liberal globalization of the United States with treaties such as NAFTA and GATT; the growing public profile of the fundamentalist religious right and gays; and the mainstream population's (unwilling acceptance of Latinos as a differentiated community. Hollywood needed a new kind of masculinity that gathered in all these new dimensions of United States identity while not completely shedding traditional Hollywood male typology, and Banderas fulfilled all the requirements. At the same time in Banderas Spain acquired a global card of presentation for its new neoimperialist and Atlantic pursuits in Latin America.

  1. Global Hybrid Simulations of Energetic Particle-driven Modes in Toroidal Plasmas

    Fu, G.Y.; Breslau, J.; Fredrickson, E.; Park, W.; Strauss, H.R.

    2004-01-01

    Global hybrid simulations of energetic particle-driven MHD modes have been carried out for tokamaks and spherical tokamaks using the hybrid code M3D. The numerical results for the National Spherical Tokamak Experiments (NSTX) show that Toroidal Alfven Eigenmodes are excited by beam ions with their frequencies consistent with the experimental observations. Nonlinear simulations indicate that the n=2 mode frequency chirps down as the mode moves out radially. For ITER, it is shown that the alpha-particle effects are strongly stabilizing for internal kink mode when central safety factor q(0) is sufficiently close to unity. However, the elongation of ITER plasma shape reduces the stabilization significantly

  2. Investigation of equilibrium, global modes and microinstabilities in the stellarator W7-AS

    Weller, A.; Anton, M.; Brakel, R.

    1999-01-01

    Equilibrium and stability properties in the WENDELSTEIN 7-AS stellarator are investigated experimentally and compared with theoretical predictions for particular cases. The topology of equilibrium magnetic surfaces and of global MHD modes is inferred from X-ray tomography. The predicted effects of externally driven currents and internal currents on the equilibrium surfaces could be confirmed experimentally. In particular the reduced Shafranov shift due to reduced Pfirsch-Schlueter currents in W7-AS could be verified. Up to the maximum accessible β ((β) ∼ 2%) plasmas can be confined without significant deterioration by pressure driven MHD-activity. However, global modes in the stable MHD spectrum such as global and toroidal Alfven eigenmodes (GAE, TAE) can be destabilised by energetic ions from neutral beam heating. These instabilities appear as very coherent low frequency modes (≤ 40 kHz) in the lower β regime without significant impact on the global confinement. At medium β very strong particle driven MHD modes with frequencies up to the range of 500 kHz can be observed. These modes can show nonlinear behaviour including periodic bursting and frequency chirping in combination with significant plasma energy losses. With increasing β Alfven modes are widely stable, because under these conditions the damping relative to the particle drive is increased. Besides the global mode activity small scale turbulent structures have been investigated in the plasma core and at the edge. The measured data of electron temperature, density and magnetic fluctuations do not yet allow to assess turbulence driven transport fluxes. However, correlations with the global confinement have been found, and the measured amplitudes are in the range expected to be relevant for anomalous transport. The observed dependence of the confinement on the edge rotational transform and magnetic shear can be explained in terms of enhanced transport at rational surfaces, however, the underlying

  3. Investigation of equilibrium, global modes and microinstabilities in the stellarator W7-AS

    Weller, A.; Anton, M.; Brakel, R.

    2001-01-01

    Equilibrium and stability properties in the WENDELSTEIN 7-AS stellarator are investigated experimentally and compared with theoretical predictions for particular cases. The topology of equilibrium magnetic surfaces and of global MHD modes is inferred from X-ray tomography. The predicted effects of externally driven currents and internal currents on the equilibrium surfaces could be confirmed experimentally. In particular the reduced Shafranov shift due to reduced Pfirsch-Schlueter currents in W7-AS could be verified. Up to the maximum accessible β ( ∼2%) plasmas can be confined without significant deterioration by pressure driven MHD-activity. However, global modes in the stable MHD spectrum such as global and toroidal Alfven eigenmodes (GAE, TAE) can be destabilised by energetic ions from neutral beam heating. These instabilities appear as very coherent low frequency modes (≤40 kHz) in the lower β regime without significant impact on the global confinement. At medium β very strong particle driven MHD modes with frequencies up to the range of 500 kHz can be observed. These modes can show nonlinear behaviour including periodic bursting and frequency chirping in combination with significant plasma energy losses. With increasing β Alfven modes are widely stable, because under these conditions the damping relative to the particle drive is increased. Besides the global mode activity small scale turbulent structures have been investigated in the plasma core and at the edge. The measured data of electron temperature, density and magnetic fluctuations do not yet allow to assess turbulence driven transport fluxes. However, correlations with the global confinement have been found, and the measured amplitudes are in the range expected to be relevant for anomalous transport. The observed dependence of the confinement on the edge rotational transform and magnetic shear can be explained in terms of enhanced transport at rational surfaces, however, the underlying

  4. High spatial sampling global mode structure measurements via multichannel reflectometry in NSTX

    Crocker, N A; Peebles, W A; Kubota, S; Zhang, J [Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095-7099 (United States); Bell, R E; Fredrickson, E D; Gorelenkov, N N; LeBlanc, B P; Menard, J E; Podesta, M [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, NJ 08543-0451 (United States); Sabbagh, S A [Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027 (United States); Tritz, K [Johns Hopkins University, Baltimore, MD 21218 (United States); Yuh, H [Nova Photonics, Princeton, NJ 08540 (United States)

    2011-10-15

    Global modes-including kinks and tearing modes (f <{approx} 50 kHz), toroidicity-induced Alfven eigenmodes (TAE; f {approx} 50-250 kHz) and global and compressional Alfven eigenmodes (GAE and CAE; f >{approx} 400 kHz)-play critical roles in many aspects of plasma performance. Their investigation on NSTX is aided by an array of fixed-frequency quadrature reflectometers used to determine their radial density perturbation structure. The array has been recently upgraded to 16 channels spanning 30-75 GHz (n{sub cutoff} = (1.1-6.9) x 10{sup 19} m{sup -3} in O-mode), improving spatial sampling and access to the core of H-mode plasmas. The upgrade has yielded significant new results that advance the understanding of global modes in NSTX. The GAE and CAE structures have been measured for the first time in the core of an NSTX high-power (6 MW) beam-heated H-mode plasma. The CAE structure is strongly core-localized, which has important implications for electron thermal transport. The TAE structure has been measured with greatly improved spatial sampling, and measurements of the TAE phase, the first in NSTX, show strong radial variation near the midplane, indicating radial propagation caused by non-ideal MHD effects. Finally, the tearing mode structure measurements provide unambiguous evidence of coupling to an external kink.

  5. In-fiber quasi-Michelson interferometer with a core-cladding-mode fiber end-face mirror.

    Rong, Qiangzhou; Qiao, Xueguang; Du, Yanying; Feng, Dingyi; Wang, Ruohui; Ma, Yue; Sun, Hao; Hu, Manli; Feng, Zhongyao

    2013-03-01

    An in-fiber quasi-Michelson interferometer working on reflection is proposed and experimentally demonstrated. The device consists of a short section of multimode fiber (MMF) followed by a single-mode fiber (SMF) whose end face is terminated by a thick silver film. The MMF excites cladding modes into downstream SMF via the mismatched-core splicing interface. The core-cladding modes are reflected back by the silver film and recoupled to the core of lead-in SMF through the MMF. A well-defined interference pattern is obtained as the result of core-cladding mode interference. A configuration with a 40 mm pigtail SMF at a wavelength of 1528 nm exhibits a water level sensitivity of -49.8 pm/mm and a liquid refractive index sensitivity of -574.6 (pm/mm)/RIU (refractive index unit). In addition, the selected dip provides a considered temperature sensitivity of -61.26 pm/°C and a high displacement sensitivity of -1018.6 pm/mm.

  6. Zero Modes and Global Antiferromagnetism in Strained Graphene

    Bitan Roy

    2014-05-01

    Full Text Available A novel magnetic ground state is reported for the Hubbard Hamiltonian in strained graphene. When the chemical potential lies close to the Dirac point, the ground state exhibits locally both the Néel and ferromagnetic orders, even for weak Hubbard interaction. Whereas the Néel order parameter remains of the same sign in the entire system, the magnetization at the boundary takes the opposite sign from the bulk. The total magnetization vanishes this way, and the magnetic ground state is globally only an antiferromagnet. This peculiar ordering stems from the nature of the strain-induced single-particle zero-energy states, which have support on one sublattice of the honeycomb lattice in the bulk, and on the other sublattice near the boundary of a finite system. We support our claim with the self-consistent numerical calculation of the order parameters, as well as by the Monte Carlo simulations of the Hubbard model in both uniformly and nonuniformly strained honeycomb lattice. The present result is contrasted with the magnetic ground state of the same Hubbard model in the presence of a true magnetic field (and for vanishing Zeeman coupling, which is exclusively Néel ordered, with zero local magnetization everywhere in the system.

  7. U. S. Mirror Program

    Fowler, T.K.

    1978-01-01

    The mirror approach is now the principal alternate to the tokamak in the U.S. magnetic fusion energy program. The program is now focused on two new concepts that can obtain high values of Q, defined as the ratio of fusion power output to the neutral beam power injected to sustain the reaction. These are the tandem mirror and field reversed mirror concepts. Theoretically both concepts should be able to attain Q = 5 or more, as compared with Q approximately 1 in previous mirror designs. Success with either or both of these approaches would point the way toward fusion power plants with many attractive features. The linear geometry of mirror systems offers a distinct alternative to the toroidal tokamak. As a direct consequence of this difference in geometry, it is generally possible to build mirror systems in smaller units of modular construction that can probably be made to operate in steady-state. During the next 5 years the main mirror facilities in the U.S. will be the 2XIIB (renamed Beta II); a tandem mirror experiment caled TMX; and the Mirror Fusion Test Facility (MFTF) scheduled to be completed in 1981 at a cost of $94 million. As a background for discussing this program and mirror reactor concepts in later lectures, the current status of mirror physics will be reviewed by comparing theory and experimental data in four critical areas. These are adiabatic confinement of individual ions, electron heat losses out of the ends of the machine, the achievement of beta values of order unity; and stabilization of ''loss cone'' modes

  8. Einstein's Mirror

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  9. Global gyrokinetic simulations of the H-mode tokamak edge pedestal

    Wan, Weigang; Parker, Scott E.; Chen, Yang [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Yan, Zheng [University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Pankin, Alexei Y.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Ave., Boulder, Colorado 80305 (United States)

    2013-05-15

    Global gyrokinetic simulations of DIII-D H-mode edge pedestal show two types of instabilities may exist approaching the onset of edge localized modes: an intermediate-n, high frequency mode which we identify as the “kinetic peeling ballooning mode (KPBM),” and a high-n, low frequency mode. Our previous study [W. Wan et al., Phys. Rev. Lett. 109, 185004 (2012)] has shown that when the safety factor profile is flattened around the steep pressure gradient region, the high-n mode is clearly kinetic ballooning mode and becomes the dominant instability. Otherwise, the KPBM dominates. Here, the properties of the two instabilities are studied by varying the density and temperature profiles. It is found that the KPBM is destabilized by density and ion temperature gradient, and the high-n mode is mostly destabilized by electron temperature gradient. Nonlinear simulations with the KPBM saturate at high levels. The equilibrium radial electric field (E{sub r}) reduces the transport. The effect of the parallel equilibrium current is found to be weak.

  10. Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs

    Dewberry, Janosz W.; Latter, Henrik N.; Ogilvie, Gordon I.

    2018-05-01

    The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary systems present a window on to the intrinsic properties of stellar-mass black holes and hence a testbed for general relativity. One explanation for these features is that relativistic distortion of the accretion disc's differential rotation creates a trapping region in which inertial waves (r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-scale magnetic fields push this trapping region to the inner disc edge, where conditions may be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but fully global perspective, deriving linearized equations describing a relativistic, magnetized accretion flow, and calculating normal modes with and without vertical density stratification. In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the inner edge, though the effect depends on the choice of vertical wavenumber. In a global model we better quantify this susceptibility, and its dependence on the disc's vertical structure and thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100-300. We posit that the appearance of r-modes in observations may be more determined by a competition between excitation and damping mechanisms near the ISCO than by the modification of the trapping region by magnetic fields.

  11. Chiral mirrors

    Plum, Eric; Zheludev, Nikolay I.

    2015-01-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

  12. Global energy confinement in JT-60 neutral beam heated L-mode discharges

    Naito, O.; Hosogane, N.; Tsuji, S.; Ushigusa, K.; Yoshida, H.

    1990-01-01

    The global energy confinement characteristics of neutral beam heated JT-60 discharges are presented. There is a difference in the dependence of the energy confinement time on the plasma current between limiter and divertor discharges. For limiter discharges, the energy confinement increases with plasma current up to 3.2 MA, whereas for divertor discharges this improvement saturates when the safety factor drops below 3, independent of the location of the X-point. The JT-60 L-mode results indicate that the deterioration in energy confinement for q < 3, which is also found in H-mode regimes of other devices, may be a universal characteristic of divertor discharges. Regarding the scaling with plasma size, it is shown that the global/incremental confinement time increases with plasma minor radius. For sufficiently large plasmas, however, the global/incremental confinement time is no longer a function of minor radius. (author). 13 refs, 14 figs

  13. Highly resolved global distribution of tropospheric NO2 using GOME narrow swath mode data

    S. Beirle

    2004-01-01

    Full Text Available The Global Ozone Monitoring Experiment (GOME allows the retrieval of tropospheric vertical column densities (VCDs of NO2 on a global scale. Regions with enhanced industrial activity can clearly be detected, but the standard spatial resolution of the GOME ground pixels (320x40km2 is insufficient to resolve regional trace gas distributions or individual cities. Every 10 days within the nominal GOME operation, measurements are executed in the so called narrow swath mode with a much better spatial resolution (80x40km2. We use this data (1997-2001 to construct a detailed picture of the mean global tropospheric NO2 distribution. Since - due to the narrow swath - the global coverage of the high resolution observations is rather poor, it has proved to be essential to deseasonalize the single narrow swath mode observations to retrieve adequate mean maps. This is done by using the GOME backscan information. The retrieved high resolution map illustrates the shortcomings of the standard size GOME pixels and reveals an unprecedented wealth of details in the global distribution of tropospheric NO2. Localised spots of enhanced NO2 VCD can be directly associated to cities, heavy industry centers and even large power plants. Thus our result helps to check emission inventories. The small spatial extent of NO2 'hot spots' allows us to estimate an upper limit of the mean lifetime of boundary layer NOx of 17h on a global scale. The long time series of GOME data allows a quantitative comparison of the narrow swath mode data to the nominal resolution. Thus we can analyse the dependency of NO2 VCDs on pixel size. This is important for comparing GOME data to results of new satellite instruments like SCIAMACHY (launched March 2002 on ENVISAT, OMI (launched July 2004 on AURA or GOME II (to be launched 2005 with an improved spatial resolution.

  14. Research of Compound Control for DC Motor System Based on Global Sliding Mode Disturbance Observer

    He Zhang

    2014-01-01

    Full Text Available Aiming at the problems of modeling errors, parameter variations, and load moment disturbances in DC motor control system, one global sliding mode disturbance observer (GSMDO is proposed based on the global sliding mode (GSM control theory. The output of GSMDO is used as the disturbance compensation in control system, which can improve the robust performance of DC motor control system. Based on the designed GSMDO in inner loop, one compound controller, composed of a feedback controller and a feedforward controller, is proposed in order to realize the position tracking of DC motor system. The gains of feedback controller are obtained by means of linear quadratic regulator (LQR optimal control theory. Simulation results present that the proposed control scheme possesses better tracking properties and stronger robustness against modeling errors, parameter variations, and friction moment disturbances. Moreover, its structure is simple; therefore it is easy to be implemented in engineering.

  15. Synchronous x-ray and radio mode switches: a rapid global transformation of the pulsar magnetosphere.

    Hermsen, W; Hessels, J W T; Kuiper, L; van Leeuwen, J; Mitra, D; de Plaa, J; Rankin, J M; Stappers, B W; Wright, G A E; Basu, R; Alexov, A; Coenen, T; Grießmeier, J-M; Hassall, T E; Karastergiou, A; Keane, E; Kondratiev, V I; Kramer, M; Kuniyoshi, M; Noutsos, A; Serylak, M; Pilia, M; Sobey, C; Weltevrede, P; Zagkouris, K; Asgekar, A; Avruch, I M; Batejat, F; Bell, M E; Bell, M R; Bentum, M J; Bernardi, G; Best, P; Bîrzan, L; Bonafede, A; Breitling, F; Broderick, J; Brüggen, M; Butcher, H R; Ciardi, B; Duscha, S; Eislöffel, J; Falcke, H; Fender, R; Ferrari, C; Frieswijk, W; Garrett, M A; de Gasperin, F; de Geus, E; Gunst, A W; Heald, G; Hoeft, M; Horneffer, A; Iacobelli, M; Kuper, G; Maat, P; Macario, G; Markoff, S; McKean, J P; Mevius, M; Miller-Jones, J C A; Morganti, R; Munk, H; Orrú, E; Paas, H; Pandey-Pommier, M; Pandey, V N; Pizzo, R; Polatidis, A G; Rawlings, S; Reich, W; Röttgering, H; Scaife, A M M; Schoenmakers, A; Shulevski, A; Sluman, J; Steinmetz, M; Tagger, M; Tang, Y; Tasse, C; ter Veen, S; Vermeulen, R; van de Brink, R H; van Weeren, R J; Wijers, R A M J; Wise, M W; Wucknitz, O; Yatawatta, S; Zarka, P

    2013-01-25

    Pulsars emit from low-frequency radio waves up to high-energy gamma-rays, generated anywhere from the stellar surface out to the edge of the magnetosphere. Detecting correlated mode changes across the electromagnetic spectrum is therefore key to understanding the physical relationship among the emission sites. Through simultaneous observations, we detected synchronous switching in the radio and x-ray emission properties of PSR B0943+10. When the pulsar is in a sustained radio-"bright" mode, the x-rays show only an unpulsed, nonthermal component. Conversely, when the pulsar is in a radio-"quiet" mode, the x-ray luminosity more than doubles and a 100% pulsed thermal component is observed along with the nonthermal component. This indicates rapid, global changes to the conditions in the magnetosphere, which challenge all proposed pulsar emission theories.

  16. Predictions and observations of global beta-induced Alfven-acoustic modes in JET and NSTX

    Gorelenkov, N N [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Berk, H L [Institute for Fusion Studies, University of Texas, Austin, TX 78712 (United States); Crocker, N A [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Fredrickson, E D [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kaye, S [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Kubota, S [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Park, H [Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543 (United States); Peebles, W [Institute of Plasma and Fusion Research, University of California, Los Angeles, CA 90095-1354 (United States); Sabbagh, S A [Department of Applied Physics, Columbia University, New York, NY 10027-6902 (United States); Sharapov, S E [Euroatom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB (United Kingdom); Stutmat, D [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Tritz, K [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Levinton, F M [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States); Yuh, H [Nova Photonics, One Oak Place, Princeton, NJ 08540 (United States)

    2007-12-15

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta <2% as well as in NSTX plasmas at relatively high beta >20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks.

  17. Predications and Observations of Global Beta-induced Alfven-acoustic Modes in JET and NSTX

    Gorelenkov, N.N.

    2008-01-01

    In this paper we report on observations and interpretations of a new class of global MHD eigenmode solutions arising in gaps in the low frequency Alfven-acoustic continuum below the geodesic acoustic mode frequency. These modes have been just reported (Gorelenkov et al 2007 Phys. Lett. 370 70-7) where preliminary comparisons indicate qualitative agreement between theory and experiment. Here we show a more quantitative comparison emphasizing recent NSTX experiments on the observations of the global eigenmodes, referred to as beta-induced Alfven-acoustic eigenmodes (BAAEs), which exist near the extrema of the Alfven-acoustic continuum. In accordance to the linear dispersion relations, the frequency of these modes may shift as the safety factor, q, profile relaxes. We show that BAAEs can be responsible for observations in JET plasmas at relatively low beta 20%. In NSTX plasma observed magnetic activity has the same properties as predicted by theory for the mode structure and the frequency. Found numerically in NOVA simulations BAAEs are used to explain the observed properties of relatively low frequency experimental signals seen in NSTX and JET tokamaks

  18. Mirror symmetry

    Voisin, Claire

    1999-01-01

    This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...

  19. Einstein's Mirror

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-10-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity.1-4 The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a constant velocity.5 Einstein showed an intriguing fact that the usual law of reflection would not hold in the case of a uniformly moving mirror, that is, the angles of incidence and reflection of the light would not equal each other. Later on, it has been shown that the law of reflection at a moving mirror can be obtained in various alternative ways,6-10 but none of them seems suitable for bringing this interesting subject into the high school classroom.

  20. The first estimates of global nucleation mode aerosol concentrations based on satellite measurements

    M. Kulmala

    2011-11-01

    Full Text Available Atmospheric aerosols play a key role in the Earth's climate system by scattering and absorbing solar radiation and by acting as cloud condensation nuclei. Satellites are increasingly used to obtain information on properties of aerosol particles with a diameter larger than about 100 nm. However, new aerosol particles formed by nucleation are initially much smaller and grow into the optically active size range on time scales of many hours. In this paper we derive proxies, based on process understanding and ground-based observations, to determine the concentrations of these new particles and their spatial distribution using satellite data. The results are applied to provide seasonal variation of nucleation mode concentration. The proxies describe the concentration of nucleation mode particles over continents. The source rates are related to both regional nucleation and nucleation associated with more restricted sources. The global pattern of nucleation mode particle number concentration predicted by satellite data using our proxies is compared qualitatively against both observations and global model simulations.

  1. Impacts of the Tropical Pacific Cold Tongue Mode on ENSO Diversity Under Global Warming

    Li, Yang; Li, Jianping; Zhang, Wenjun; Chen, Quanliang; Feng, Juan; Zheng, Fei; Wang, Wei; Zhou, Xin

    2017-11-01

    The causes of ENSO diversity, although being of great interest in recent research, do not have a consistent explanation. This study provides a possible mechanism focused on the background change of the tropical Pacific as a response to global warming. The second empirical orthogonal function mode of the sea surface temperature anomalies (SSTA) in the tropical Pacific, namely the cold tongue mode (CTM), represents the background change of the tropical Pacific under global warming. Using composite analysis with surface observations and subsurface ocean assimilation data sets, we find ENSO spatial structure diversity is closely associated with the CTM. A positive CTM tends to cool the SST in the eastern equatorial Pacific and warm the SST outside, as well as widen (narrow) zonal and meridional scales for El Niño (La Niña), and vice versa. Particularly in the positive CTM phase, the air-sea action center of El Niño moves west, resembling the spatial pattern of CP-El Niño. This westward shift of center is related to the weakened Bjerknes feedback (BF) intensity by the CTM. By suppressing the SSTA growth of El Niño in the eastern equatorial Pacific, the CTM contributes to more frequent occurrence of CP-El Niño under global warming.

  2. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    Ghommem, Mehdi; Presho, Michael; Calo, Victor M.; Efendiev, Yalchin R.

    2013-01-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  3. Mode decomposition methods for flows in high-contrast porous media. Global-local approach

    Ghommem, Mehdi

    2013-11-01

    In this paper, we combine concepts of the generalized multiscale finite element method (GMsFEM) and mode decomposition methods to construct a robust global-local approach for model reduction of flows in high-contrast porous media. This is achieved by implementing Proper Orthogonal Decomposition (POD) and Dynamic Mode Decomposition (DMD) techniques on a coarse grid computed using GMsFEM. The resulting reduced-order approach enables a significant reduction in the flow problem size while accurately capturing the behavior of fully-resolved solutions. We consider a variety of high-contrast coefficients and present the corresponding numerical results to illustrate the effectiveness of the proposed technique. This paper is a continuation of our work presented in Ghommem et al. (2013) [1] where we examine the applicability of POD and DMD to derive simplified and reliable representations of flows in high-contrast porous media on fully resolved models. In the current paper, we discuss how these global model reduction approaches can be combined with local techniques to speed-up the simulations. The speed-up is due to inexpensive, while sufficiently accurate, computations of global snapshots. © 2013 Elsevier Inc.

  4. EQUILIBRIUM DISKS, MAGNETOROTATIONAL INSTABILITY MODE EXCITATION, AND STEADY-STATE TURBULENCE IN GLOBAL ACCRETION DISK SIMULATIONS

    Parkin, E. R.; Bicknell, G. V.

    2013-01-01

    Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions—perhaps triggered by the onset of turbulence—upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure P >bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).

  5. Strong 'Quantum' Chaos in the Global Ballooning Mode Spectrum of Three-dimensional Plasmas

    Dewar, R. L.; Cuthbert, P.; Ball, R.

    2000-01-01

    The spectrum of ideal magnetohydrodynamic (MHD) pressure-driven (ballooning) modes in strongly nonaxisymmetric toroidal systems is difficult to analyze numerically owing to the singular nature of ideal MHD caused by lack of an inherent scale length. In this paper, ideal MHD is regularized by using a k-space cutoff, making the ray tracing for the WKB ballooning formalism a chaotic Hamiltonian billiard problem. The minimum width of the toroidal Fourier spectrum needed for resolving toroidally localized ballooning modes with a global eigenvalue code is estimated from the Weyl formula. This phase-space-volume estimation method is applied to ballooning-unstable plasma equilibria in the H-1NF helical axis stellarator and the Large Helical Device (LHD)

  6. Comparison between the boundary layer and global resistivity methods for tearing modes in reversed field configurations

    Santiago, M.A.M.

    1987-01-01

    A review of the problem of growth rate calculations for tearing modes in field reversed Θ-pinches is presented. Its shown that in the several experimental data, the methods used for analysing the plasma with a global finite resistivity has a better quantitative agreement than the boundary layer analysis. A comparative study taking into account the m = 1 resistive kindmode and the m = 2 mode, which is more dangerous for the survey of rotational instabilities of the plasma column is done. It can see that the imaginary component of the eigenfrequency, which determinates the growth rate, has a good agreement with the experimental data and the real component is different from the rotational frequency as it has been measured in some experiments. (author) [pt

  7. Mirror fusion test facility

    Post, R.F.

    1978-01-01

    The MFTF is a large new mirror facility under construction at Livermore for completion in 1981--82. It represents a scaleup, by a factor of 50 in plasma volume, a factor of 5 or more in ion energy, and a factor of 4 in magnetic field intensity over the Livermore 2XIIB experiment. Its magnet, employing superconducting NbTi windings, is of Yin-Yang form and will weigh 200 tons. MFTF will be driven by neutral beams of two levels of current and energy: 1000 amperes of 20 keV (accelerating potential) pulsed beams for plasma startup; 750 amperes of 80 keV beams of 0.5 second duration for temperature buildup and plasma sustainment. Two operating modes for MFTF are envisaged: The first is operation as a conventional mirror cell with n/sup tau/ approximately equal to 10 12 cm -3 sec, W/sub i/ = 50 keV, where the emphasis will be on studying the physics of mirror cells, particularly the issues of improved techniques of stabilization against ion cyclotron modes and of maximization of the electron temperature. The second possible mode is the further study of the Field Reversed Mirror idea, using high current neutral beams to sustain the field-reversed state. Anticipating success in the coming Livermore Tandem Mirror Experiment (TMX) MFTF has been oriented so that it could comprise one end cell of a scaled up TM experiment. Also, if MFTF were to succeed in achieving a FR state it could serve as an essentially full-sized physics prototype of one cell of a FRM fusion power plant

  8. Mirror, mirror on the wall

    2005-01-01

    RICH 2, one of the two Ring Imaging Cherenkov detectors of the LHCb experiment, is being prepared to join the other detector elements ready for the first proton-proton collisions at LHC. The mirrors of the RICH2 detector are meticulously assembled in a clean room.In a large dark room, men in white move around an immense structure some 7 metres high, 10 metres wide and nearly 2.5 metres deep. Apparently effortlessly, they are installing the two large high-precision spherical mirrors. These mirrors will focus Cherenkov light, created by the charged particles that will traverse this detector, onto the photon detectors. Each spherical mirror wall is made up of facets like a fly's eye. Twenty-eight individual thin glass mirrors will all point to the same point in space to within a few micro-radians. The development of these mirrors has been technically demanding : Ideally they should be massless, sturdy, precise and have high reflectivity. In practice, though not massless, they are made from a mere 6 mm thin gl...

  9. Gyrokinetic global analysis of ion temperature gradient driven mode in reversed shear tokamaks

    Idomura, Y.; Tokuda, S.; Kishimoto, Y.

    2003-01-01

    A new toroidal gyrokinetic particle code has been developed to study the ion temperature gradient driven (ITG) turbulence in reactor relevant tokamak parameters. We use a new method based on a canonical Maxwellian distribution F CM (P φ , ε, μ), which is defined by three constants of motion in the axisymmetric toroidal system, the canonical angular momentum P φ , the energy ε, and the magnetic moment μ. A quasi-ballooning representation enables linear and nonlinear high-m,n global calculations with a good numerical convergence. Conservation properties are improved by using the optimized loading method. From comprehensive linear global analyses over a wide range of an unstable toroidal mode number spectrum (n=0∼100) in large tokamak parameters (a/ρ ti =320∼460), properties of the ITG modes in reversed shear tokamaks are discussed. In the nonlinear simulation, it is found that a new method based on F CM can simulate a zonal flow damping correctly, and spurious zonal flow oscillations, which are observed in a conventional method based on a local Maxwellian distribution F LM (ψ, ε, μ), do not appear in the nonlinear regime. (author)

  10. Variety of modes of governance of a global value chain: the case of tourism from Holland to Turkey

    Erkuş-Öztürk, H.; Terhorst, P.

    2010-01-01

    Global value chains analysis has become an ever more important approach in economics and economic geography to study the globalization of different sectors. However, it is largely ignored in tourism research. This paper examines the modes of governance of the tourism value chain from Holland to

  11. [Mirror neurons].

    Rubia Vila, Francisco José

    2011-01-01

    Mirror neurons were recently discovered in frontal brain areas of the monkey. They are activated when the animal makes a specific movement, but also when the animal observes the same movement in another animal. Some of them also respond to the emotional expression of other animals of the same species. These mirror neurons have also been found in humans. They respond to or "reflect" actions of other individuals in the brain and are thought to represent the basis for imitation and empathy and hence the neurobiological substrate for "theory of mind", the potential origin of language and the so-called moral instinct.

  12. Global fast dynamic terminal sliding mode control for a quadrotor UAV.

    Xiong, Jing-Jing; Zhang, Guo-Bao

    2017-01-01

    A control method based on global fast dynamic terminal sliding mode control (TSMC) technique is proposed to design the flight controller for performing the finite-time position and attitude tracking control of a small quadrotor UAV. Firstly, the dynamic model of the quadrotor is divided into two subsystems, i.e., a fully actuated subsystem and an underactuated subsystem. Secondly, the dynamic flight controllers of the quadrotor are formulated based on global fast dynamic TSMC, which is able to guarantee that the position and velocity tracking errors of all system state variables converge to zero in finite-time. Moreover, the global fast dynamic TSMC is also able to eliminate the chattering phenomenon caused by the switching control action and realize the high precision performance. In addition, the stabilities of two subsystems are demonstrated by Lyapunov theory, respectively. Lastly, the simulation results are given to illustrate the effectiveness and robustness of the proposed control method in the presence of external disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Magnetorotational Instability: Nonmodal Growth and the Relationship of Global Modes to the Shearing Box

    J Squire, A Bhattacharjee [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2014-07-01

    We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).

  14. Mirror systems.

    Fogassi, Leonardo; Ferrari, Pier Francesco

    2011-01-01

    Mirror neurons are a class of visuomotor neurons, discovered in the monkey premotor cortex and in an anatomically connected area of the inferior parietal lobule, that activate both during action execution and action observation. They constitute a circuit dedicated to match actions made by others with the internal motor representations of the observer. It has been proposed that this matching system enables individuals to understand others' behavior and motor intentions. Here we will describe the main features of mirror neurons in monkeys. Then we will present evidence of the presence of a mirror system in humans and of its involvement in several social-cognitive functions, such as imitation, intention, and emotion understanding. This system may have several implications at a cognitive level and could be linked to specific social deficits in humans such as autism. Recent investigations addressed the issue of the plasticity of the mirror neuron system in both monkeys and humans, suggesting also their possible use in rehabilitation. WIREs Cogn Sci 2011 2 22-38 DOI: 10.1002/wcs.89 For further resources related to this article, please visit the WIREs website. Copyright © 2010 John Wiley & Sons, Ltd.

  15. Functional Hemispheric Asymmetries of Global/Local Processing Mirrored by the Steady-State Visual Evoked Potential

    Martens, Ulla; Hubner, Ronald

    2013-01-01

    While hemispheric differences in global/local processing have been reported by various studies, it is still under dispute at which processing stage they occur. Primarily, it was assumed that these asymmetries originate from an early perceptual stage. Instead, the content-level binding theory (Hubner & Volberg, 2005) suggests that the hemispheres…

  16. Frequency-independent radiation modes of interior sound radiation: Experimental study and global active control

    Hesse, C.; Papantoni, V.; Algermissen, S.; Monner, H. P.

    2017-08-01

    Active control of structural sound radiation is a promising technique to overcome the poor passive acoustic isolation performance of lightweight structures in the low-frequency region. Active structural acoustic control commonly aims at the suppression of the far-field radiated sound power. This paper is concerned with the active control of sound radiation into acoustic enclosures. Experimental results of a coupled rectangular plate-fluid system under stochastic excitation are presented. The amplitudes of the frequency-independent interior radiation modes are determined in real-time using a set of structural vibration sensors, for the purpose of estimating their contribution to the acoustic potential energy in the enclosure. This approach is validated by acoustic measurements inside the cavity. Utilizing a feedback control approach, a broadband reduction of the global acoustic response inside the enclosure is achieved.

  17. What do mirror neurons mirror?

    Uithol, S.; Rooij, I.J.E.I. van; Bekkering, H.; Haselager, W.F.G.

    2011-01-01

    Single cell recordings in monkeys provide strong evidence for an important role of the motor system in action understanding. This evidence is backed up by data from studies of the (human) mirror neuron system using neuroimaging or TMS techniques, and behavioral experiments. Although the data

  18. Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows

    Brock, Joseph Michael

    Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.

  19. Mirror monochromator

    Mankos, Marian [Electron Optica, Inc., Palo Alto, CA (United States); Shadman, Khashayar [Electron Optica, Inc., Palo Alto, CA (United States)

    2014-12-02

    In this SBIR project, Electron Optica, Inc. (EOI) is developing a mirror electron monochromator (MirrorChrom) attachment to new and retrofitted electron microscopes (EMs) for improving the energy resolution of the EM from the characteristic range of 0.2-0.5 eV to the range of 10-50 meV. This improvement will enhance the characterization of materials by imaging and spectroscopy. In particular, the monochromator will refine the energy spectra characterizing materials, as obtained from transmission EMs [TEMs] fitted with electron spectrometers, and it will increase the spatial resolution of the images of materials taken with scanning EMs (SEMs) operated at low voltages. EOI’s MirrorChrom technology utilizes a magnetic prism to simultaneously deflect the electron beam off the axis of the microscope column by 90° and disperse the electrons in proportional to their energies into a module with an electron mirror and a knife-edge. The knife-edge cuts off the tails of the energy distribution to reduce the energy spread of the electrons that are reflected, and subsequently deflected, back into the microscope column. The knife-edge is less prone to contamination, and thereby charging, than the conventional slits used in existing monochromators, which improves the reliability and stability of the module. The overall design of the MirrorChrom exploits the symmetry inherent in reversing the electron trajectory in order to maintain the beam brightness – a parameter that impacts how well the electron beam can be focused downstream onto a sample. During phase I, EOI drafted a set of candidate monochromator architectures and evaluated the trade-offs between energy resolution and beam current to achieve the optimum design for three particular applications with market potential: increasing the spatial resolution of low voltage SEMs, increasing the energy resolution of low voltage TEMs (beam energy of 5-20 keV), and increasing the energy resolution of conventional TEMs (beam

  20. Mirror systems

    Howells, M.R.

    1985-12-01

    The physics of VUV and x-ray reflection is reviewed. The main functions of mirrors in synchrotron beamlines are stated briefly and include deflection, filtration, power absorption, formation of a real image of the source, focusing, and collimation. Methods of fabrication of optical surfaces are described. Types of imperfections are discussed, including, aberrations, surface figure inaccuracy, roughness, and degradation due to use. Calculation of the photon beam thermal load, including computer modelling, is considered. 50 refs., 7 figs

  1. Survey of mirror machine reactors

    Condit, W.C.

    1978-01-01

    The Magnetic Mirror Fusion Program is one of the two main-line fusion efforts in the United States. Starting from the simple axisymmetric mirror concept in the 1950's, the program has successfully overcome gross flute-type instabilities (using minimum-B magnetic fields), and the most serious of the micro-instabilities which plagued it (the drift-cyclotron loss-cone mode). Dense plasmas approaching the temperature range of interest for fusion have been created (n/sub p/ = 10 14 /cc at 10 to 12 keV). At the same time, rather extensive conceptual design studies of possible mirror configurations have led to three principle designs of interest: the standard mirror fission-fusion hybrid, tandem mirror, and the field-reversed mirror. The lectures will discuss these three concepts in turn. There will be no discussion of diagnostics for the mirror machine in these lectures, but typical plasma parameters will be given for each type of machine, and the diagnostic requirements will be apparent. In a working fusion reactor, diagnostics will be required for operational control, and remarks will be made on this subject

  2. Changes in equatorial zonal circulations and precipitation in the context of the global warming and natural modes

    Kim, B. H.; Ha, K. J.

    2017-12-01

    The strengthening and westward shift of Pacific Walker Circulation (PWC) is observed during the recent decades. However, the relative roles of global warming and natural variability on the change in PWC unclearly remain. By conducting numerical atmospheric general circulation model (AGCM) experiments using the spatial SST patterns in the global warming and natural modes which are obtained by the multi-variate EOF analysis from three variables including precipitation, sea surface temperature (SST), and divergent zonal wind, we indicated that the westward shift and strengthening of PWC are caused by the global warming SST pattern in the global warming mode and the negative Interdecadal Pacific Oscillation-like SST pattern in the natural mode. The SST distribution of the Pacific Ocean (PO) has more influence on the changes in equatorial zonal circulations and tropical precipitation than that of the Indian Ocean (IO) and Atlantic Ocean (AO). The change in precipitation is also related to the equatorial zonal circulations variation through the upward and downward motions of the circulations. The IO and AO SST anomalies in the global warming mode can affect on the changes in equatorial zonal circulations, but the influence of PO SST disturbs the Indian Walker circulation and Atlantic Walker circulation changes by the IO and AO. The zonal shift of PWC is found to be highly associated with a zonal gradient of SST over the PO through the idealized numerical AGCM experiments and predictions of CMIP5 models.

  3. Multiple-mirror plasma confinement

    Lichtenberg, A.J.; Lieberman, M.A.; Logan, B.G.

    1975-01-01

    A large enhancement of the confinement time can be achieved in a straight system of multiple mirrors over an equal length uniform magnetic field. The scaling is diffusive rather than that of flow, thereby scaling the square of the system length rather than linear with system length. Probably the most economic mode of operation for a reactor occurs when lambda/M is approximately l/sub c/, where lambda is the mean free path, M the mirror ratio, and l/sub c/ the length between mirrors; but where the scale length of the mirror field l/sub m/ is much less than lambda. The axial confinement time has been calculated theoretically and numerically for all important parameter regimes, and confirmed experimentally. A typical reactor calculation gives Q/sub E/ = 2 for a 400 meter system with 3000 MW(e) output. The main concern of a multiple-mirror system is stability. Linked quadrupoles can achieve average minimum-B stabilization of flute modes, and experiments have demonstrated this stabilization. Localized instabilities at finite β and enhanced diffusion resulting from the distorted flux surfaces and possibly from turbulent higher order modes still remain to be investigated

  4. The Interplay of Internal and Forced Modes of Hadley Cell Expansion: Lessons from the Global Warming Hiatus

    Amaya, D. J.; Siler, N.; Xie, S. P.; Miller, A. J.

    2017-12-01

    The poleward branches of the Hadley Cells show a robust shift poleward shift during the satellite era, leading to concerns over the possible encroachment of the globe's subtropical dry zones into currently temperate climates. The extent to which this trend is caused by anthropogenic forcing versus internal variability remains the subject of considerable debate. In this study, we us a joint EOF method to identify two distinct modes of Hadley Cell variability: (i) an anthropogenically-forced mode, which we identify using a 20-member simulation of the historical climate, and (ii) an internal mode, which identify using a 1000-year pre-industrial control simulation with a global climate model. The forced mode is found to be closely related to the TOA radiative imbalance and exhibits a long-term trend since 1860, while the internal mode is found to be essentially indistinguishable from the El Niño Southern Oscillation (ENSO). Together these two modes explain an average of 70% of the interannual variability seen in model "edge indices" over the historical period. Since 1980, the superposition of forced and internal modes has resulted in a period of accelerated Hadley Cell expansion and decelerated global warming (i.e., the "hiatus"). A comparison of the change in these modes since 1980 indicates that by 2013 the signal has emerged above the noise of internal variability in the Southern Hemisphere (SH), but not in the Northern Hemisphere (NH), with the latter also exhibiting strong zonal asymmetry, particularly in the North Atlantic. Our results highlight the important interplay of internal and forced modes of Hadley Cell width change and improve our understanding of the interannual variability and long-term trend seen in observations.

  5. Global Particle Balance Measurements in DIII-D H-mode Discharges

    Unterberg, Ezekial A.; Allen, S.L.; Brooks, N.; Evans, T.E.; Leonard, A.W.; McLean, A.; Watkins, J.G.; Whyte, D.G.

    2011-01-01

    Experiments are performed on the DIII-D tokamak to determine the retention rate in an all graphite first-wall tokamak. A time-dependent particle balance analysis shows a majority of the fuel retention occurs during the initial Ohmic and L-mode phase of discharges, with peak fuel retention rates typically similar to 2 x 10(21) D/s. The retention rate can be zero within the experimental uncertainties (<3 x 10(20) D/s) during the later stationary phase of the discharge. In general, the retention inventory can decrease in the stationary phase by similar to 20-30% from the initial start-up phase of the discharge. Particle inventories determined as a function of time in the discharge, using a 'dynamic' particle balance analysis, agree with more accurate particle inventories directly measured after the discharge, termed 'static' particle balance. Similarly, low stationary retention rates are found in discharges with heating from neutral-beams, which injects particles, and from electron cyclotron waves, which does not inject particles. Detailed analysis of the static and dynamic balance methods provide an estimate of the DIII-D global co-deposition rate of <= 0.6-1.2 x 10(20) D/s. Dynamic particle balance is also performed on discharges with resonant magnetic perturbation ELM suppression and shows no additional retention during the ELM-suppressed phase of the discharge.

  6. Global gyrokinetic simulations of intrinsic rotation in ASDEX Upgrade Ohmic L-mode plasmas

    Hornsby, W. A.; Angioni, C.; Lu, Z. X.; Fable, E.; Erofeev, I.; McDermott, R.; Medvedeva, A.; Lebschy, A.; Peeters, A. G.; The ASDEX Upgrade Team

    2018-05-01

    Non-linear, radially global, turbulence simulations of ASDEX Upgrade (AUG) plasmas are performed and the nonlinear generated intrinsic flow shows agreement with the intrinsic flow gradients measured in the core of Ohmic L-mode plasmas at nominal parameters. Simulations utilising the kinetic electron model show hollow intrinsic flow profiles as seen in a predominant number of experiments performed at similar plasma parameters. In addition, significantly larger flow gradients are seen than in a previous flux-tube analysis (Hornsby et al 2017 Nucl. Fusion 57 046008). Adiabatic electron model simulations can show a flow profile with opposing sign in the gradient with respect to a kinetic electron simulation, implying a reversal in the sign of the residual stress due to kinetic electrons. The shaping of the intrinsic flow is strongly determined by the density gradient profile. The sensitivity of the residual stress to variations in density profile curvature is calculated and seen to be significantly stronger than to neoclassical flows (Hornsby et al 2017 Nucl. Fusion 57 046008). This variation is strong enough on its own to explain the large variations in the intrinsic flow gradients seen in some AUG experiments. Analysis of the symmetry breaking properties of the turbulence shows that profile shearing is the dominant mechanism in producing a finite parallel wave-number, with turbulence gradient effects contributing a smaller portion of the parallel wave-vector.

  7. Study of the spectral width of intermode beats and optical spectrum of an actively mode-locked three-mirror semiconductor laser

    Zakharyash, Valerii F; Kashirsky, Aleksandr V; Klementyev, Vasilii M; Kuznetsov, Sergei A; Pivtsov, V S

    2005-01-01

    Various oscillation regimes of an actively mode-locked semiconductor laser are studied experimentally. Two types of regimes are found in which the minimal spectral width (∼3.5 kHz) of intermode beats is achieved. The width of the optical spectrum of modes is studied as a function of their locking and the feedback coefficients. The maximum width of the spectrum is ∼3.7 THz. (control of laser radiation parameters)

  8. Mirror fusion reactors

    Anon.

    1978-01-01

    Conceptual design studies were made of fusion reactors based on the three current mirror-confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fuel for fission reactors. We have designed a large commercial hybrid and a small pilot-plant hybrid based on standard mirror confinement. Tandem mirror designs include a commercial 1000-MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single-cell pilot plant

  9. Mirror fusion reactors

    Carlson, G.A.; Moir, R.W.

    1978-01-01

    We have carried out conceptual design studies of fusion reactors based on the three current mirror confinement concepts: the standard mirror, the tandem mirror, and the field-reversed mirror. Recent studies of the standard mirror have emphasized its potential as a fusion-fission hybrid reactor, designed to produce fission fuel for fission reactors. We have designed a large commercial hybrid based on standard mirror confinement, and also a small pilot plant hybrid. Tandem mirror designs include a commercial 1000 MWe fusion power plant and a nearer term tandem mirror hybrid. Field-reversed mirror designs include a multicell commercial reactor producing 75 MWe and a single cell pilot plant

  10. Mirror image agnosia.

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-10-01

    Gnosis is a modality-specific ability to access semantic knowledge of an object or stimulus in the presence of normal perception. Failure of this is agnosia or disorder of recognition. It can be highly selective within a mode. self-images are different from others as none has seen one's own image except in reflection. Failure to recognize this image can be labeled as mirror image agnosia or Prosopagnosia for reflected self-image. Whereas mirror agnosia is a well-recognized situation where the person while looking at reflected images of other objects in the mirror he imagines that the objects are in fact inside the mirror and not outside. Five patients, four females, and one male presented with failure to recognize reflected self-image, resulting in patients conversing with the image as a friend, fighting because the person in mirror is wearing her nose stud, suspecting the reflected self-image to be an intruder; but did not have prosopagnosia for others faces, non living objects on self and also apraxias except dressing apraxia in one patient. This phenomena is new to our knowledge. Mirror image agnosia is an unique phenomena which is seen in patients with parietal lobe atrophy without specificity to a category of dementing illness and seems to disappear as disease advances. Reflected self-images probably have a specific neural substrate that gets affected very early in posterior dementias specially the ones which predominantly affect the right side. At that phase most patients are mistaken as suffering from psychiatric disorder as cognition is moderately preserved. As disease becomes more widespread this symptom becomes masked. A high degree of suspicion and proper assessment might help physicians to recognize the organic cause of the symptom so that early therapeutic interventions can be initiated. Further assessment of the symptom with FMRI and PET scan is likely to solve the mystery of how brain handles reflected self-images. A new observation involving failure

  11. Global stability of plasmas with helical boundary deformation and net toroidal current against n=1,2 external modes

    Ardela, A.; Cooper, W.A.

    1996-01-01

    In this paper we resume a numerical study of the global stability of plasma with helical boundary deformation and non null net toroidal current. The aim was to see whether external modes with n=1,2 (n toroidal mode number) can be stabilized at values of β inaccessible to the tokamak. L=2,3 configurations with several aspect ratios and different numbers of equilibrium field periods are considered. A large variety of toroidal current densities and different pressure profiles are taken into account. Mercier stability is also investigated. (author) 4 figs., 6 refs

  12. Effect of thermal management on the properties of saturable absorber mirrors in high-power mode-locked semiconductor disk lasers

    Rantamäki, Antti; Lyytikäinen, Jari; Jari Nikkinen; Okhotnikov, Oleg G

    2011-01-01

    The thermal management of saturable absorbers is shown to have a critical impact on a high-power mode-locked disk laser. The absorber with efficient heat removal makes it possible to generate ultrashort pulses with high repetition rates and high power density.

  13. Feedback control of tearing modes through ECRH with launcher mirror steering and power modulation using a line-of-sight ECE diagnostic

    Hennen, B.A.; Westerhof, E.; Nuij, P.W.J.M.; Ayten, B.; Baar, de M.R.; Bongers, W.A.; Bürger, A.; Lazzari, De D.; Oosterbeek, J.W.; Thoen, D.J.; Steinbuch, M.

    2010-01-01

    A demonstration of real-time feedback control for autonomous tracking and stabilization of m/n = 2/1 tearing modes in a tokamak using Electron Cyclotron Resonance Heating and Current Drive (ECRH/ECCD) is reported. The prototype system on TEXTOR combines in the same sight-line an Electron Cyclotron

  14. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    Schneller, Mirjam Simone

    2013-08-02

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  15. Transport of super-thermal particles and their effect on the stability of global modes in fusion plasmas

    Schneller, Mirjam Simone

    2013-01-01

    In thermonuclear plasmas, a population of super-thermal particles generated by external heating methods or fusion reactions can lead to the excitation of global instabilities. The transport processes due to nonlinear wave-particle interactions and the consequential particle losses reduce the plasma heating and the efficiency of the fusion reaction rate. Furthermore, these energetic or fast particles may cause severe damages to the wall of the device. This thesis addresses the resonance mechanisms between these energetic particles and global MHD and kinetic MHD waves, employing the hybrid code HAGIS. A systematic investigation of energetic particles resonant with multiple modes (double-resonance) is presented for the first time. The double-resonant mode coupling is modeled for waves with different frequencies in various overlapping scenarios. It is found that, depending on the radial mode distance, double-resonance is able to significantly enhance, both the growth rates and the saturation amplitudes. Small radial mode distances, however can lead to strong nonlinear mode stabilization of a linear dominant mode. For the first time, simulations of experimental conditions in the ASDEX Upgrade fusion device are performed for different plasma equilibria (particularly for different q profiles). An understanding of fast particle behavior for non-monotonic q profiles is important for the development of advanced fusion scenarios. The numerical tool is the extended version of the HAGIS code, which computes the particle motion in the vacuum region between vessel wall in addition to the internal plasma volume. For this thesis, a consistent fast particle distribution function was implemented, to represent the fast particle population generated by the particular heating method (ICRH). Furthermore, HAGIS was extended to use more realistic eigenfunctions, calculated by the gyrokinetic eigenvalue solver LIGKA. One important aim of these simulations is to allow fast ion loss

  16. Fusion oriented plasma research in Bangladesh: theoretical study on low-frequency dust modes and edge plasma control experiment in tandem mirror

    Khairul Islam, Md.; Salimullah, Mohammed; Yatsu, Kiyoshi; Nakashima, Yousuke; Ishimoto, Yuki

    2003-01-01

    A collaboration with a Japanese institute in the field of plasma-wall interaction and dusty plasma has been formed in order to understand the physical properties of edge plasma. Results of the theoretical study on dusty plasma and the experimental study on GAMMA10 plasma are presented in this paper. Part A deals with the results obtained from the theoretical investigation of the properties and excitation of low-frequency electrostatic dust modes, e.g. the dust-acoustic (DA) and dust-lower-hybrid (DLH) waves, using the fluid models. In this study, dust grain charge is considered as a dynamic variable in streaming magnetized dusty plasmas with a background of neutral atoms. Dust charge fluctuation, collisional and streaming effects on DA and DLH modes are discussed. Part B deals with the results of the plasma control experiment in a non-axisymmetric magnetic field region of the anchor cell of GAMMA10. The observations, which indicate the comparatively low-temperature plasma formation in the anchor cell, are explained from the viewpoint of enhanced outgassing from the wall due to the interaction of the drifted-out ions. The drifting of ions is thought to be due to the effect of a local non-axisymmetric magnetic field. Experimental results on the control of the wall-plasma interaction by covering the flux tube of a non-axisymmetric magnetic field region by conducting plates are given. Possible influences of the asymmetric magnetic field and conducting plates on the GAMMA10 plasma parameters are discussed. (author)

  17. Language Learning Motivation, Global English and Study Modes: A Comparative Study

    Lanvers, Ursula

    2017-01-01

    Exploring the popular explanation that the global spread of English may demotivate students with English as their first language to learn other languages, this study investigates relations between student motivation and perception of Global English and tests for differences between traditional "campus" and distance university students…

  18. Global MHD modes excited by energetic ions in heliotron/torsatron plasmas

    Toi, K.; Takechi, M.; Takagi, S.

    1999-01-01

    In the CHS heliotron/torsatron, fishbone instabilities (FBs) and toroidal Alfven eigenmodes(TAEs) are observed for the first time, in NBI heated plasmas where small beam driven current is induced. Pulsed increase in energetic ion loss flux is detected by an escaping ion probe during the m=3/n=2 FBs(m,n:poloidal and toroidal mode numbers). The sawtooth crash is often induced by the m=2/n=1 FBs. The current driven internal kink mode and pressure driven interchange modes are thought to be relevant MHD instabilities to FBs. TAEs with n=1 and n=2 are identified, and localized near the plasma core region where fairly low magnetic shear would be realized by the small net plasma current. So far, the observed TAEs do not lead to enhanced loss of energetic ions because of low magnetic fluctuation level. (author)

  19. Global MHD modes excited by energetic ions in heliotron/torsatron plasmas

    Toi, K.; Takechi, M.; Takagi, S.

    2001-01-01

    In the CHS heliotron/torsatron, fishbone instabilities (FBs) and toroidal Alfven eigenmodes (TAEs) are observed for the first time, in NBI heated plasmas where small beam driven current is induced. Pulsed increase in energetic ion loss flux is detected by an escaping ion probe during the m=3/n=2 FBs (m,n: poloidal and toroidal mode numbers). The sawtooth crash is often induced by the m=2/n=1 FBs. The current driven internal kink mode and pressure driven interchange modes are thought to be relevant MHD instabilities to FBs. TAEs with n=1 and n=2 are identified, and localized near the plasma core region where fairly low magnetic shear would be realized by the small net plasma current. So far, the observed TAEs do not lead to enhanced loss of energetic ions because of low magnetic fluctuation level. (author)

  20. The role of the southern annular mode in dynamical global coupled model

    Beraki, AF

    2013-09-01

    Full Text Available The interannual and decadal variability of the Southern Annual Mode (SAM) was examined in the ECHAM 4.5-MOM3-SA ocean-atmosphere coupled general circulation model (OAGCM). The analysis placed emphasis on the behavior of the SAM when its variability...

  1. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  2. Extracting Leading Nonlinear Modes of Changing Climate From Global SST Time Series

    Mukhin, D.; Gavrilov, A.; Loskutov, E. M.; Feigin, A. M.; Kurths, J.

    2017-12-01

    Data-driven modeling of climate requires adequate principal variables extracted from observed high-dimensional data. For constructing such variables it is needed to find spatial-temporal patterns explaining a substantial part of the variability and comprising all dynamically related time series from the data. The difficulties of this task rise from the nonlinearity and non-stationarity of the climate dynamical system. The nonlinearity leads to insufficiency of linear methods of data decomposition for separating different processes entangled in the observed time series. On the other hand, various forcings, both anthropogenic and natural, make the dynamics non-stationary, and we should be able to describe the response of the system to such forcings in order to separate the modes explaining the internal variability. The method we present is aimed to overcome both these problems. The method is based on the Nonlinear Dynamical Mode (NDM) decomposition [1,2], but takes into account external forcing signals. An each mode depends on hidden, unknown a priori, time series which, together with external forcing time series, are mapped onto data space. Finding both the hidden signals and the mapping allows us to study the evolution of the modes' structure in changing external conditions and to compare the roles of the internal variability and forcing in the observed behavior. The method is used for extracting of the principal modes of SST variability on inter-annual and multidecadal time scales accounting the external forcings such as CO2, variations of the solar activity and volcanic activity. The structure of the revealed teleconnection patterns as well as their forecast under different CO2 emission scenarios are discussed.[1] Mukhin, D., Gavrilov, A., Feigin, A., Loskutov, E., & Kurths, J. (2015). Principal nonlinear dynamical modes of climate variability. Scientific Reports, 5, 15510. [2] Gavrilov, A., Mukhin, D., Loskutov, E., Volodin, E., Feigin, A., & Kurths, J. (2016

  3. Measured improvement of global magnetohydrodynamic mode stability at high-beta, and in reduced collisionality spherical torus plasmas

    Berkery, J. W.; Sabbagh, S. A.; Balbaky, A. [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States); Bell, R. E.; Diallo, A.; Gerhardt, S. P.; LeBlanc, B. P.; Manickam, J.; Menard, J. E.; Podestà, M. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Betti, R. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States)

    2014-05-15

    Global mode stability is studied in high-β National Spherical Torus Experiment (NSTX) plasmas to avoid disruptions. Dedicated experiments in NSTX using low frequency active magnetohydrodynamic spectroscopy of applied rotating n = 1 magnetic fields revealed key dependencies of stability on plasma parameters. Observations from previous NSTX resistive wall mode (RWM) active control experiments and the wider NSTX disruption database indicated that the highest β{sub N} plasmas were not the least stable. Significantly, here, stability was measured to increase at β{sub N}∕l{sub i} higher than the point where disruptions were found. This favorable behavior is shown to correlate with kinetic stability rotational resonances, and an experimentally determined range of measured E × B frequency with improved stability is identified. Stable plasmas appear to benefit further from reduced collisionality, in agreement with expectation from kinetic RWM stabilization theory, but low collisionality plasmas are also susceptible to sudden instability when kinetic profiles change.

  4. Present status of mirror stability theory

    Baldwin, D.E.; Berk, H.L.; Byers, J.A.

    1976-01-01

    A status report of microinstability as it applies to 2XIIB and MX theory for mirror machines is presented. It is shown that quasilinear computations reproduce many of the parameters observed in the 2XIIB experiment. In regard to large mirror machines, there are presented detailed calculations of the linear theory of the drift cyclotron loss-cone mode, with inhomogeneous geometry and nonlinear diffusive effects. Further, the stability of a mirror machine to the Alfven ion-cyclotron instability is assessed, and the Baldwin-Callen diffusion is estimated for a spatially varying plasma

  5. Evolution of the mirror approach to fusion: some conjectures

    Post, R.E.

    1984-01-01

    Some possible directions for the future evolution of the mirror approach to fusion are outlined, in the context of economically-motivated criteria. Speculations are given as to the potential advantages, economic and otherwise, of the use of axially-symmetric systems, operated in semi-collisional regimes of lower Q (fusion power balance ratio) than that projected for present-day tandem mirror designs. These regims include barely tandem modes, and ion-heated modes, in association with higher efficiency direct conversion. Another possible economically advantageous approach mentioned is the use of a tandem mirror plasma to stabilize a FRM (field-reversed mirror) plasma, with potential synergistic advantages

  6. New criteria to select foreign entry mode choice of global franchise chains into emerging markets

    Baena Graciá, Verónica; Cerviño Fernández, Julio

    2015-01-01

    Despite emerging markets are some of the fastest growing economies in the world and represent countries that are experiencing a substantial economic transformation, little is known about the factors influencing choices of foreign entry mode in those markets. Especially, regarding companies that franchise overseas. In an attempt to expand our knowledge of this topic, this paper presents an empirical assessment of the relationship between a set of different variables with the four poss...

  7. Local and global performance of double-gap resistive plate chambers operated in avalanche mode

    Abbrescia, M.; Colaleo, A.; Iaselli, G.; Loddo, F.; Maggi, M.; Marangelli, B.; Natali, S.; Nuzzo, S.; Pugliese, G.; Ranieri, A.; Romano, F.; Altieri, S.; Belli, G.; Bruno, G.; Gianini, G.; Ratti, S.P.; Viola, L.; Vitulo, P.; Sergueev, S

    1999-09-21

    Two large double-gap resistive plate chambers, with 2 and 3 mm gap widths, were tested to study their response uniformity when operated in avalanche mode. The effects of mechanical tolerances and the presence of the spacers is thoroughly examined. Results on efficiency and time resolution are presented. We find that average performance and response uniformity over the whole chamber surface are fully adequate to the requirements of future collider experiments. (author)

  8. Mirror Neurons and Mirror-Touch Synesthesia.

    Linkovski, Omer; Katzin, Naama; Salti, Moti

    2016-05-30

    Since mirror neurons were introduced to the neuroscientific community more than 20 years ago, they have become an elegant and intuitive account for different cognitive mechanisms (e.g., empathy, goal understanding) and conditions (e.g., autism spectrum disorders). Recently, mirror neurons were suggested to be the mechanism underlying a specific type of synesthesia. Mirror-touch synesthesia is a phenomenon in which individuals experience somatosensory sensations when seeing someone else being touched. Appealing as it is, careful delineation is required when applying this mechanism. Using the mirror-touch synesthesia case, we put forward theoretical and methodological issues that should be addressed before relying on the mirror-neurons account. © The Author(s) 2016.

  9. Representation of Nucleation Mode Microphysics in a Global Aerosol Model with Sectional Microphysics

    Lee, Y. H.; Pierce, J. R.; Adams, P. J.

    2013-01-01

    In models, nucleation mode (1 nmnucleation mode microphysics impacts aerosol number predictions in the TwO-Moment Aerosol Sectional (TOMAS) aerosol microphysics model running with the GISS GCM II-prime by varying its lowest diameter boundary: 1 nm, 3 nm, and 10 nm. The model with the 1 nm boundary simulates the nucleation mode particles with fully resolved microphysical processes, while the model with the 10 nm and 3 nm boundaries uses a nucleation mode dynamics parameterization to account for the growth of nucleated particles to 10 nm and 3 nm, respectively.We also investigate the impact of the time step for aerosol microphysical processes (a 10 min versus a 1 h time step) to aerosol number predictions in the TOMAS models with explicit dynamics for the nucleation mode particles (i.e., 3 nm and 1 nm boundary). The model with the explicit microphysics (i.e., 1 nm boundary) with the 10 min time step is used as a numerical benchmark simulation to estimate biases caused by varying the lower size cutoff and the time step. Different representations of the nucleation mode have a significant effect on the formation rate of particles larger than 10 nm from nucleated particles (J10) and the burdens and lifetimes of ultrafinemode (10 nm=Dp =70 nm) particles but have less impact on the burdens and lifetimes of CCN-sized particles. The models using parameterized microphysics (i.e., 10 nm and 3 nm boundaries) result in higher J10 and shorter coagulation lifetimes of ultrafine-mode particles than the model with explicit dynamics (i.e., 1 nm boundary). The spatial distributions of CN10 (Dp =10 nm) and CCN(0.2 %) (i.e., CCN concentrations at 0.2%supersaturation) are moderately affected, especially CN10 predictions above 700 hPa where nucleation contributes most strongly to CN10 concentrations. The lowermost-layer CN10 is substantially improved with the 3 nm boundary (compared to 10 nm) in most areas. The overprediction in CN10 with the 3 nm and 10 nm boundaries can be explained by

  10. Global low-frequency modes in weakly ionized magnetized plasmas: effects of equilibrium plasma rotation

    Sosenko, P.; Pierre, Th.; Zagorodny, A.

    2004-01-01

    The linear and non-linear properties of global low-frequency oscillations in cylindrical weakly ionized magnetized plasmas are investigated analytically for the conditions of equilibrium plasma rotation. The theoretical results are compared with the experimental observations of rotating plasmas in laboratory devices, such as Mistral and Mirabelle in France, and KIWI in Germany. (authors)

  11. Stability of the field-reversed mirror

    Morse, E.C.

    1979-01-01

    The stability of a field reversed mirror plasma configuration is studied with an energy principle derived from the Vlasov equation. Because of finite orbit effects, the stability properties of a field-reversed mirror are different from the stability properties of similar magnetohydrodynamic equilibria. The Vlasov energy principle developed here is applied to a computer simulation of an axisymmetric field-reversed mirror state. It has been possible to prove that the l = 0 modes, called tearing modes, satisfy a sufficient condition for stability. Precessional modes, with l = 1, 2, are found to be unstable at low growth rate. This suggests possible turbulent behavior (Bohm confinement) in the experimental devices aiming at field reversal. Techniques for suppressing these instabilities are outlined, and the applicability of the Vlasov energy principle to more complicated equilibrium models is shown

  12. Waves for Alpha-Channeling in Mirror Machines

    Zhmoginov, A.I.; Fisch, N.J.

    2009-01-01

    Alpha-channeling can, in principle, be implemented in mirror machines via exciting weaklydamped modes in the ion cyclotron frequency range with perpendicular wavelengths smaller than the alpha particle gyroradius. Assuming quasi-longitudinal or quasi-transverse wave propagation, we search systematically for suitable modes in mirror plasmas. Considering two device designs, a proof-of-principle facility and a fusion rector prototype, we in fact identify candidate modes suitable for alpha-channeling.

  13. Coronal heating by the resonant absorption of Alfven waves - Importance of the global mode and scaling laws

    Steinolfson, Richard S.; Davila, Joseph M.

    1993-01-01

    Numerical simulations of the MHD equations for a fully compressible, low-beta, resistive plasma are used to study the resonance absorption process for the heating of coronal active region loops. Comparisons with more approximate analytic models show that the major predictions of the analytic theories are, to a large extent, confirmed by the numerical computations. The simulations demonstrate that the dissipation occurs primarily in a thin resonance layer. Some of the analytically predicted features verified by the simulations are (a) the position of the resonance layer within the initial inhomogeneity; (b) the importance of the global mode for a large range of loop densities; (c) the dependence of the resonance layer thickness and the steady-state heating rate on the dissipation coefficient; and (d) the time required for the resonance layer to form. In contrast with some previous analytic and simulation results, the time for the loop to reach a steady state is found to be the phase-mixing time rather than a dissipation time. This disagreement is shown to result from neglect of the existence of the global mode in some of the earlier analyses. The resonant absorption process is also shown to behave similar to a classical driven harmonic oscillator.

  14. Effect of toroidal plasma flow and flow shear on global MHD modes

    Chu, M.S.; Greene, J.M.; Jensen, T.H.; Miller, R.L.; Bondeson, A.; Johnson, R.W.; Mauel, M.E.

    1995-01-01

    The effect of a subsonic toroidal flow on the linear magnetohydrodynamic stability of a tokamak plasma surrounded by an external resistive wall is studied. A complex non-self-adjoint eigenvalue problem for the stability of general kink and tearing modes is formulated, solved numerically, and applied to high β tokamaks. Results indicate that toroidal plasma flow, in conjunction with dissipation in the plasma, can open a window of stability for the position of the external wall. In this window, stable plasma beta values can significantly exceed those predicted by the Troyon scaling law with no wall. Computations utilizing experimental data indicate good agreement with observations

  15. Mirror machine reactors

    Carlson, G.A.; Moir, R.W.

    1976-01-01

    Recent mirror reactor conceptual design studies are described. Considered in detail is the design of ''standard'' Yin-Yang fusion power reactors with classical and enhanced confinement. It is shown that to be economically competitive with estimates for other future energy sources, mirror reactors require a considerable increase in Q, or major design simplifications, or preferably both. These improvements may require a departure from the ''standard'' configuration. Two attractive possibilities, both of which would use much of the same physics and technology as the ''standard'' mirror, are the field reversed mirror and the end-stoppered mirror

  16. The mirror neuron system.

    Cattaneo, Luigi; Rizzolatti, Giacomo

    2009-05-01

    Mirror neurons are a class of neurons, originally discovered in the premotor cortex of monkeys, that discharge both when individuals perform a given motor act and when they observe others perform that same motor act. Ample evidence demonstrates the existence of a cortical network with the properties of mirror neurons (mirror system) in humans. The human mirror system is involved in understanding others' actions and their intentions behind them, and it underlies mechanisms of observational learning. Herein, we will discuss the clinical implications of the mirror system.

  17. Mode decomposition methods for flows in high-contrast porous media. A global approach

    Ghommem, Mehdi; Calo, Victor M.; Efendiev, Yalchin R.

    2014-01-01

    We apply dynamic mode decomposition (DMD) and proper orthogonal decomposition (POD) methods to flows in highly-heterogeneous porous media to extract the dominant coherent structures and derive reduced-order models via Galerkin projection. Permeability fields with high contrast are considered to investigate the capability of these techniques to capture the main flow features and forecast the flow evolution within a certain accuracy. A DMD-based approach shows a better predictive capability due to its ability to accurately extract the information relevant to long-time dynamics, in particular, the slowly-decaying eigenmodes corresponding to largest eigenvalues. Our study enables a better understanding of the strengths and weaknesses of the applicability of these techniques for flows in high-contrast porous media. Furthermore, we discuss the robustness of DMD- and POD-based reduced-order models with respect to variations in initial conditions, permeability fields, and forcing terms. © 2013 Elsevier Inc.

  18. Dependence of H-mode power threshold on global and local edge parameters

    Groebner, R.J.; Carlstrom, T.N.; Burrell, K.H.

    1995-12-01

    Measurements of local electron density n e , electron temperature T e , and ion temperature T i have been made at the very edge of the plasma just prior to the transition into H-mode for four different single parameter scans in the DIII-D tokamak. The means and standard derivations of n e , T e , and T i under these conditions for a value of the normalized toroidal flux of 0.98 are respectively, 1.5 ± 0.7 x 10 19 m -3 , 0.051 ± 0.016 keV, and 0.14 ± 0.03 keV. The threshold condition for the transition is more sensitive to temperature than to density. The data indicate that the dependence is not as simple as a requirement for a fixed value of the ion collisionality

  19. An estimation of global solar p-mode frequencies from IRIS network data: 1989-1996

    Serebryanskiy, A.; Ehgamberdiev, Sh.; Kholikov, Sh.; Fossat, E.; Gelly, B.; Schmider, F. X.; Grec, G.; Cacciani, A.; Palle, P. L.; Lazrek, M.; Hoeksema, J. T.

    2001-06-01

    The IRIS network has accumulated full disk helioseismological data since July 1989, i.e. a complete 11-year solar cycle. Since the last paper publishing a frequency list [A&A 317 (1997) L71], not only has the network acquired new data, but has also developed new co-operative programs with compatible instruments [Abstr. SOHO 6/GONG 98 Workshop (1998) 51], so that merging IRIS files with these co-operative program data sets has made possible the improvement of the overall duty cycle. This paper presents new estimations of low degree p-mode frequencies obtained from this IRIS++ data bank covering the period 1989-1996, as well as the variation of their main parameters along the total range of magnetic activity, from before the last maximum to the very minimum. A preliminary estimation of the peak profile asymmetries is also included.

  20. Comparative transcriptomics of the nematode gut identifies global shifts in feeding mode and pathogen susceptibility.

    Lightfoot, James W; Chauhan, Veeren M; Aylott, Jonathan W; Rödelsperger, Christian

    2016-03-05

    The nematode Pristionchus pacificus has been established as a model for comparative studies using the well known Caenorhabditis elegans as a reference. Despite their relatedness, previous studies have revealed highly divergent development and a number of morphological differences including the lack of a pharyngal structure, the grinder, used to physically lyse the ingested bacteria in C. elegans. To complement current knowledge about developmental and ecological differences with a better understanding of their feeding modes, we have sequenced the intestinal transcriptomes of both nematodes. In total, we found 464 intestine-enriched genes in P. pacificus and 724 in C. elegans, of which the majority (66%) has been identified by previous studies. Interestingly, only 15 genes could be identified with shared intestinal enrichment in both species, of which three genes are Hedgehog signaling molecules supporting a highly conserved role of this pathway for intestinal development across all metazoa. At the level of gene families, we find similar divergent trends with only five families displaying significant intestinal enrichment in both species. We compared our data with transcriptomic responses to various pathogens. Strikingly, C. elegans intestine-enriched genes showed highly significant overlaps with pathogen response genes whereas this was not the case for P. pacificus, indicating shifts in pathogen susceptibility that might be explained by altered feeding modes. Our study reveals first insights into the evolution of feeding systems and the associated changes in intestinal gene expression that might have facilitated nematodes of the P. pacificus lineage to colonize new environments. These findings deepen our understanding about how morphological and genomic diversity is created during the course of evolution.

  1. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Simonen, T.; Cohen, R.; Correll, D.; Fowler, K.; Post, D.; Berk, H.; Horton, W.; Hooper, E.B.; Fisch, N.; Hassam, A.; Baldwin, D.; Pearlstein, D.; Logan, G.; Turner, B.; Moir, R.; Molvik, A.; Ryutov, D.; Ivanov, A.A; Kesner, J.; Cohen, B.; McLean, H.; Tamano, T.; Tang, X.Z.; Imai, T.

    2008-01-01

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q ∼ 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus and Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q ∼ 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel

  2. The Axisymmetric Tandem Mirror: A Magnetic Mirror Concept Game Changer Magnet Mirror Status Study Group

    Simonen, T; Cohen, R; Correll, D; Fowler, K; Post, D; Berk, H; Horton, W; Hooper, E B; Fisch, N; Hassam, A; Baldwin, D; Pearlstein, D; Logan, G; Turner, B; Moir, R; Molvik, A; Ryutov, D; Ivanov, A A; Kesner, J; Cohen, B; McLean, H; Tamano, T; Tang, X Z; Imai, T

    2008-10-24

    experiments have confirmed the physics of effluent plasma stabilization predicted by theory. The plasma had a mean ion energy of 10 keV and a density of 5e19m-3. If successful, the axisymmetric tandem mirror extension of the GDT idea could lead to a Q {approx} 10 power plant of modest size and would yield important applications at lower Q. In addition to the GDT method, there are four other ways to augment stability that have been demonstrated; including: plasma rotation (MCX), diverter coils (Tara), pondermotive (Phaedrus & Tara), and end wall funnel shape (Nizhni Novgorod). There are also 5 stabilization techniques predicted, but not yet demonstrated: expander kinetic pressure (KSTM-Post), Pulsed ECH Dynamic Stabilization (Post), wall stabilization (Berk), non-paraxial end mirrors (Ryutov), and cusp ends (Kesner). While these options should be examined further together with conceptual engineering designs. Physics issues that need further analysis include: electron confinement, MHD and trapped particle modes, analysis of micro stability, radial transport, evaluation and optimization of Q, and the plasma density needed to bridge to the expansion-region. While promising all should be examined through increased theory effort, university-scale experiments, and through increased international collaboration with the substantial facilities in Russia and Japan The conventional wisdom of magnetic mirrors was that they would never work as a fusion concept for a number of reasons. This conventional wisdom is most probably all wrong or not applicable, especially for applications such as low Q (DT Neutron Source) aimed at materials testing or for a Q {approx} 3-5 fusion neutron source applied to destroying actinides in fission waste and breeding of fissile fuel.

  3. Multilayer active shell mirrors for space telescopes

    Steeves, John; Jackson, Kathryn; Pellegrino, Sergio; Redding, David; Wallace, J. Kent; Bradford, Samuel Case; Barbee, Troy

    2016-07-01

    A novel active mirror technology based on carbon fiber reinforced polymer (CFRP) substrates and replication techniques has been developed. Multiple additional layers are implemented into the design serving various functions. Nanolaminate metal films are used to provide a high quality reflective front surface. A backing layer of thin active material is implemented to provide the surface-parallel actuation scheme. Printed electronics are used to create a custom electrode pattern and flexible routing layer. Mirrors of this design are thin (traditional optics. Such mirrors could be used as lightweight primaries for small CubeSat-based telescopes or as meter-class segments for future large aperture observatories. Multiple mirrors can be produced under identical conditions enabling a substantial reduction in manufacturing cost and complexity. An overview of the mirror design and manufacturing processes is presented. Predictions on the actuation performance have been made through finite element simulations demonstrating correctabilities on the order of 250-300× for astigmatic modes with only 41 independent actuators. A description of the custom metrology system used to characterize the active mirrors is also presented. The system is based on a Reverse Hartmann test and can accommodate extremely large deviations in mirror figure (> 100 μm PV) down to sub-micron precision. The system has been validated against several traditional techniques including photogrammetry and interferometry. The mirror performance has been characterized using this system, as well as closed-loop figure correction experiments on 150 mm dia. prototypes. The mirrors have demonstrated post-correction figure accuracies of 200 nm RMS (two dead actuators limiting performance).

  4. Ring mirror fiber laser gyroscope

    Shalaby, Mohamed Y.; Khalil, Kamal; Afifi, Abdelrahman E.; Khalil, Diaa

    2017-02-01

    In this work we present a new architecture for a laser gyroscope based on the use of a Sagnac fiber loop mirror. The proposed system has the unique property that its scale factor can be increased by increasing the gain of the optical amplifier used in the system as demonstrated experimentally using standard single mode fiber and explained physically by the system operation. The proposed gyroscope system is also capable of identifying the direction of rotation. This new structure opens the door for a new category of low cost optical gyroscopes.

  5. Tandem mirror technology demonstration facility

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M/sup 2/) on an 8-m/sup 2/ test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m/sup 2/ and give the necessary experience for successful operation of an ETR.

  6. Tandem mirror technology demonstration facility

    1983-10-01

    This report describes a facility for generating engineering data on the nuclear technologies needed to build an engineering test reactor (ETR). The facility, based on a tandem mirror operating in the Kelley mode, could be used to produce a high neutron flux (1.4 MW/M 2 ) on an 8-m 2 test area for testing fusion blankets. Runs of more than 100 h, with an average availability of 30%, would produce a fluence of 5 mW/yr/m 2 and give the necessary experience for successful operation of an ETR

  7. Small mirror fusion reactors

    Carlson, G.A.; Schultz, K.R.; Smith, A.C. Jr.

    1978-01-01

    Basic requirements for the pilot plants are that they produce a net product and that they have a potential for commercial upgrade. We have investigated a small standard mirror fusion-fission hybrid, a two-component tandem mirror hybrid, and two versions of a field-reversed mirror fusion reactor--one a steady state, single cell reactor with a neutral beam-sustained plasma, the other a moving ring field-reversed mirror where the plasma passes through a reaction chamber with no energy addition

  8. Ion-cyclotron instability in magnetic mirrors

    Pearlstein, L.D.

    1987-01-01

    This report reviews the role of ion-cyclotron frequency instability in magnetic mirrors. The modes discussed here are loss-cone or anisotropy driven. The discussion includes quasilinear theory, explosive instabilities of 3-wave interaction and non-linear Landau damping, and saturation due to non-linear orbits

  9. Standard mirror fusion reactor design study

    Moir, R.W.

    1978-01-01

    This report covers the work of the Magnetic Fusion Energy Division's reactor study group during FY 1976 on the standard mirror reactor. The ''standard'' mirror reactor is characterized as a steady state, neutral beam sustained, D-T fusioning plasma confined by a Yin-Yang magnetic mirror field. The physics parameters are obtained from the same physics model that explains the 2XIIB experiment. The model assumes that the drift cyclotron loss cone mode occurs on the boundary of the plasma, and that it is stabilized by warm plasma with negligible energy investment. The result of the study was a workable mirror fusion power plant, steady-state blanket removal made relatively simple by open-ended geometry, and no impurity problem due to the positive plasma potential. The Q (fusion power/injected beam power) turns out to be only 1.1 because of loss out the ends from Coulomb collisions, i.e., classical losses. This low Q resulted in 77% of the gross electrical power being used to power the injectors, thereby causing the net power cost to be high. The low Q stimulated an intensive search for Q-enhancement concepts, resulting in the LLL reactor design effort turning to the field reversal mirror and the tandem mirror, each having Q of order 5

  10. Bronze rainbow hologram mirrors

    Dawson, P.

    2006-02-01

    This project draws on holographic embossing techniques, ancient artistic conventions of bronze mirror design and modelling and casting processes to accomplish portraiture of reflection. Laser scanning, 3D computer graphics and holographic imaging are employed to enable a permanent 3D static holographic image to appear integrated with the real-time moving reflection of a viewer's face in a polished bronze disc. The disc and the figure which holds it (caryatid) are cast in bronze from a lost wax model, a technique which has been used for millennia to make personal mirrors. The Caryatid form of bronze mirror which went through many permutations in ancient Egyptian, Greece and Rome shows a plethora of expressive figure poses ranging from sleek nudes to highly embellished multifigure arrangements. The prototype of this series was made for Australian choreographer Graeme Murphy, Artistic Director of the Sydney Dance Company. Each subsequent mirror will be unique in figure and holographic imagery as arranged between artist and subject. Conceptually this project references both the modern experience of viewing mirrors retrieved from ancient tombs, which due to deterioration of the surface no longer reflect, and the functioning of Chinese Magic mirrors, which have the ability to project a predetermined image. Inspired by the metaphorical potential of these mirrors, which do not reflect the immediate reality of the viewer, this bronze hologram mirror series enables each viewer to reflect upon himself or herself observing simultaneously the holographic image and their own partially obliterated reflection.

  11. Mirror fusion reactor design

    Neef, W.S. Jr.; Carlson, G.A.

    1979-01-01

    Recent conceptual reactor designs based on mirror confinement are described. Four components of mirror reactors for which materials considerations and structural mechanics analysis must play an important role in successful design are discussed. The reactor components are: (a) first-wall and thermal conversion blanket, (b) superconducting magnets and their force restraining structure, (c) neutral beam injectors, and (d) plasma direct energy converters

  12. Mirror position determination for the alignment of Cherenkov Telescopes

    Adam, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Ahnen, M.L. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Baack, D. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Balbo, M. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Bergmann, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Biland, A. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); Blank, M. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); Bretz, T. [ETH Zurich, Institute for Particle Physics Otto-Stern-Weg 5, 8093 Zurich (Switzerland); RWTH Aachen (Germany); Bruegge, K.A.; Buss, J. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dmytriiev, A. [University of Geneva, ISDC Data Center for Astrophysics Chemin Ecogia 16, 1290 Versoix (Switzerland); Domke, M. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Dorner, D. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); FAU Erlangen (Germany); Einecke, S. [TU Dortmund, Experimental Physics 5 Otto-Hahn-Str. 4, 44221 Dortmund (Germany); Hempfling, C. [Universität Würzburg, Institute for Theoretical Physics and Astrophysics Emil-Fischer-Str. 31, 97074 Würzburg (Germany); and others

    2017-07-11

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with large apertures to map the faint Cherenkov light emitted in extensive air showers onto their image sensors. Segmented reflectors fulfill these needs using mass produced and light weight mirror facets. However, as the overall image is the sum of the individual mirror facet images, alignment is important. Here we present a method to determine the mirror facet positions on a segmented reflector in a very direct way. Our method reconstructs the mirror facet positions from photographs and a laser distance meter measurement which goes from the center of the image sensor plane to the center of each mirror facet. We use our method to both align the mirror facet positions and to feed the measured positions into our IACT simulation. We demonstrate our implementation on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).

  13. Tandem mirror plasma confinement apparatus

    Fowler, T.K.

    1978-01-01

    Apparatus and method are described for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell

  14. Tandem mirror plasma confinement apparatus

    Fowler, T. Kenneth

    1978-11-14

    Apparatus and method for confining a plasma in a center mirror cell by use of two end mirror cells as positively charged end stoppers to minimize leakage of positive particles from the ends of the center mirror cell.

  15. Stability of a Short Rayleigh Range Laser Resonator with Misaligned or Distorted Mirrors

    Crooker, Peter P; Colson, William B

    2004-01-01

    Motivated by the prospect of constructing an FEL with short Rayleigh length in a high-vibration shipboard environment, we have studied the effect of mirror vibration and distortion on the behavior of the fundamental optical mode of a cold-cavity resonator. A tilt or transverse shift of a mirror causes the optical mode to rock sinusoidally about the original resonator axis. A longitudinal mirror shift or a change in the mirror’s radius of curvature causes the beam diameter at a mirror to dilate and contract with successive impacts. Results from both ray-tracing techniques and wavefront propagation simulations are in excellent agreement.

  16. Analytical determination of 3-D global modes in Rayleigh-Benard-Poiseuille-type mixed convection flow; Determination analytique des modes globaux tridimensionnels en ecoulement de convection mixte du type Rayleigh-Benard-Poiseuille

    Martinand, D

    2003-01-15

    This analytical study deals with the spatio-temporal evolution of linear thermo-convective instabilities in a horizontal fluid layer heated from below (the Rayleigh--Benard system) and subject to a horizontal pressure gradient (Poiseuille flow). The novelty consists of a spatially inhomogeneous temperature, in the form of a two-dimensional bump imposed on the lower plate, while the upper plate is kept at a constant temperature. The inhomogeneous boundary temperature and the mean flow of the Rayleigh--Benard--Poiseuille system break the symmetries of the classical Rayleigh--Benard system. The instabilities of interest are therefore spatially localised packets of convection rolls. If a mode of this type is synchronized, it is called a global mode. Assuming that the characteristic scale of the spatial variation of the lower plate temperature is large compared to the wavelength of the rolls, global modes are sought in the form of Eigenmodes in the confined vertical direction, modulated by a two-dimensional WKBJ expansion in the slowly-varying horizontal directions. Such an expansion breaks down at points where the group velocity of the instability vanishes, i.e. at WKBJ turning points. In the neighbourhood of one such point, located at the top of the temperature bump, the boundedness of the solution imposes a selection criterion for the global modes which provides the growth rate (or equivalently the critical threshold), the frequency and the wave vector of the most amplified global mode. This study thus generalizes to two-dimensional cases the methods used and the results obtained for one-dimensional inhomogeneities. The analysis is first applied to a simplified governing equation obtained by an envelope formalism and the analytical results are compared with numerical solutions of the amplitude equation. The formalism is finally applied to the Rayleigh--Benard--Poiseuille system described by the Navier--Stokes equations with the Boussinesq approximation. (author)

  17. Mirror boxes and mirror mounts for photophysics beamline

    Raja Rao, P.M.; Raja Sekhar, B.N.; Das, N.C.; Khan, H.A.; Bhattacharya, S.S.; Roy, A.P.

    1996-01-01

    Photophysics beamline makes use of one metre Seya-Namioka monochromator and two toroidal mirrors in its fore optics. The first toroidal mirror (pre mirror) focuses light originating from the tangent point of the storage ring onto the entrance slit of the monochromator and second toroidal mirror (post mirror) collects light from the exit slit of the monochromator and focuses light onto the sample placed at a distance of about one metre away from the 2nd mirror. To steer light through monochromator and to focus it on the sample of 1mm x 1mm size require precision rotational and translational motion of the mirrors and this has been achieved with the help of precision mirror mounts. Since Indus-1 operates at pressures less than 10 -9 m.bar, the mirror mounts should be manipulated under similar ultra high vacuum conditions. Considering these requirements, two mirror boxes and two mirror mounts have been designed and fabricated. The coarse movements to the mirrors are imparted from outside the mirror chamber with the help of x-y tables and precision movements to the mirrors are achieved with the help of mirror mounts. The UHV compatibility and performance of the mirror mounts connected to mirror boxes under ultra high vacuum condition is evaluated. The details of the design, fabrication and performance evaluation are discussed in this report. 5 refs., 9 figs., 1 tab

  18. Classical mirror symmetry

    Jinzenji, Masao

    2018-01-01

    This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold. First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold. On the B-model side, the process of construct...

  19. Ideal magnetohydrodynamic stability of axisymmetric mirrors

    D'Ippolito, D.A.; Hafizi, B.; Myra, J.R.

    1982-01-01

    The governing partial differential equation for general mode-number pressure-driven ballooning modes in a long-thin, axisymmetric plasma is derived within the context of ideal magnetohydrodynamics. It is shown that the equation reduces in special limits to the Hain--Luest equation, the high-m diffuse p(psi) ballooning equation, and the low-m sharp-boundary equation. A low-β analytic solution of the full partial differential equation is presented for quasiflute modes in an idealized tandem mirror model to elucidate the relationship of the various limiting cases

  20. Mirror plasma apparatus

    Moir, R.W.

    1981-01-01

    A mirror plasma apparatus which utilizes shielding by arc discharge to form a blanket plasma and lithium walls to reduce neutron damage to the wall of the apparatus. An embodiment involves a rotating liquid lithium blanket for a tandem mirror plasma apparatus wherein the first wall of the central mirror cell is made of liquid lithium which is spun with angular velocity great enough to keep the liquid lithium against the first material wall, a blanket plasma preventing the lithium vapor from contaminating the plasma

  1. Mesmerising mirror neurons.

    Heyes, Cecilia

    2010-06-01

    Mirror neurons have been hailed as the key to understanding social cognition. I argue that three currents of thought-relating to evolution, atomism and telepathy-have magnified the perceived importance of mirror neurons. When they are understood to be a product of associative learning, rather than an adaptation for social cognition, mirror neurons are no longer mesmerising, but they continue to raise important questions about both the psychology of science and the neural bases of social cognition. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Cryogenic Active Mirrors

    National Aeronautics and Space Administration — This effort seeks to develop active mirrors that can correct for thermally-induced figure deformations upon cooling from room-temperature at the time of manufacture,...

  3. Manufacturing parabolic mirrors

    CERN PhotoLab

    1975-01-01

    The photo shows the construction of a vertical centrifuge mounted on an air cushion, with a precision of 1/10000 during rotation, used for the manufacture of very high=precision parabolic mirrors. (See Annual Report 1974.)

  4. Mirror reactor surface study

    Hunt, A. L.; Damm, C. C.; Futch, A. H.; Hiskes, J. R.; Meisenheimer, R. G.; Moir, R. W.; Simonen, T. C.; Stallard, B. W.; Taylor, C. E.

    1976-09-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included.

  5. Mirror fermions and cosmology

    Senjanovic, G.; Virginia Polytechnic Inst. and State Univ., Blacksburg

    1984-07-01

    Extended supersymmetry, Kaluza-Klein theory and family unification all suggest the existence of mirror fermions, with same quantum numbers but opposite helicities from ordinary fermions. The laboratory and especially cosmological implications of such particles are reviewed and summarized. (author)

  6. Mirror reactor surface study

    Hunt, A.L.; Damm, C.C.; Futch, A.H.; Hiskes, J.R.; Meisenheimer, R.G.; Moir, R.W.; Simonen, T.C.; Stallard, B.W.; Taylor, C.E.

    1976-01-01

    A general survey is presented of surface-related phenomena associated with the following mirror reactor elements: plasma first wall, ion sources, neutral beams, director converters, vacuum systems, and plasma diagnostics. A discussion of surface phenomena in possible abnormal reactor operation is included. Several studies which appear to merit immediate attention and which are essential to the development of mirror reactors are abstracted from the list of recommended areas for surface work. The appendix contains a discussion of the fundamentals of particle/surface interactions. The interactions surveyed are backscattering, thermal desorption, sputtering, diffusion, particle ranges in solids, and surface spectroscopic methods. A bibliography lists references in a number of categories pertinent to mirror reactors. Several complete published and unpublished reports on surface aspects of current mirror plasma experiments and reactor developments are also included

  7. The obsidian mirror The obsidian mirror

    Maria do Socorro Reis Amorin

    2008-04-01

    Full Text Available The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian. The author James Norman is an American who has always lived in Mexico during the summer. He seems to love Mexican - Indian traditions and he is well acquainted with the pre-historic culture as it is shown in his book: "The Obsidian Mirror". "The Obsidian Mirror" is a mysterious story about an archeologist: Quigley that lives in a small village in Mexico-San Marcos. He is searching for antiques that belong to some tribes of pre-historic Indians in order to find out their mysteries. Quigley becomes so engaged in his work that his mind has reached a stage that is impossible to separate between Quigley the archeologist, and Quigley as an ancient Indian. The culture, the myth, the sensation of Omen - characteristics of the Indians are within himself. As a result, Quigley acts sometimes as a real Indian.

  8. Geometry of mirror manifolds

    Aspinwall, P.S.; Luetken, C.A.

    1991-01-01

    We analyze the mirror manifold hypothesis in one and three dimensions using the simplest available representations of the N = 2 superconformal algebra. The symmetries of these tensor models can be divided out to give an explicit representation of the mirror, and we give a simple group theoretical algorithm for determining which symmetries should be used. We show that the mirror of a superconformal field theory does not always have a geometrical interpretation, but when it does, deformations of complex structure of one manifold are reflected in deformations of the Kaehler form of the mirror manifold, and we show how the large radius limit of a manifold corresponds to a large complex structure limit in the mirror manifold. The mirror of the Tian-Yau three generation model is constructed both as a conformal field theory and as an algebraic variety with Euler number six. The Hodge numbers of this manifolds are fixed, but the intersection numbes are highly ambiguous, presumably reflected a rich structure of multicritical points in the moduli space of the field theory. (orig.)

  9. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  10. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  11. Mirror confinement systems: Final technical report

    1988-08-01

    This report contains: (1) A discussion of azimuthal asymmetrics and fluctuations in RFC-XX-M. Both lead to enhanced radial transport in RFC-XX-M, and presumably most other tandem mirror machines as well; A report on four operating modes of RFC-XX-M which were developed and studied as part of the collaboration. These operating modes were the simple tandem mode, the negative (floating) potential mode, the hot electron mode, and the ECH (electron cyclotron heating) mode; A pulsed rf heated discharge cleaning system which was developed for RFC-XX-M. This method of cleaning proved much more effective than normal glow discharge cleaning, and variations of it are currently in use on the GAMMA-10 tandem mirror and the JIPP TII-U tokamak at the Institute for Plasma Physics at Nagoya; Short descriptions of the diagnostics development and improvement done in conjunction with the work on RFC-XX-M; and a compilation of the work performed at the University of Tsukuba on GAMMA-10. Most of the effort on GAMMA-10 involved diagnostics development and improvement. 16 refs., 42 figs., 1 tab

  12. Scattering-free optical levitation of a cavity mirror.

    Guccione, G; Hosseini, M; Adlong, S; Johnsson, M T; Hope, J; Buchler, B C; Lam, P K

    2013-11-01

    We demonstrate the feasibility of levitating a small mirror using only radiation pressure. In our scheme, the mirror is supported by a tripod where each leg of the tripod is a Fabry-Perot cavity. The macroscopic state of the mirror is coherently coupled to the supporting cavity modes allowing coherent interrogation and manipulation of the mirror motion. The proposed scheme is an extreme example of the optical spring, where a mechanical oscillator is isolated from the environment and its mechanical frequency and macroscopic state can be manipulated solely through optical fields. We model the stability of the system and find a three-dimensional lattice of trapping points where cavity resonances allow for buildup of optical field sufficient to support the weight of the mirror. Our scheme offers a unique platform for studying quantum and classical optomechanics and can potentially be used for precision gravitational field sensing and quantum state generation.

  13. A two term model of the confinement in Elmy H-modes using the global confinement and pedestal databases

    2003-01-01

    Two different physical models of the H-mode pedestal are tested against the joint pedestal-core database. These models are then combined with models for the core and shown to give a good fit to the ELMy H-mode database. Predictions are made for the next step tokamaks ITER and FIRE. (author)

  14. Tandem mirrors for neutron production

    Doggett, J.N.

    1983-01-01

    Two mirror machine concepts are being studied as early-time, low-cost, neutron-producing devices for testing and demonstrating reactor-relevant fusion technology. The first of these concepts is for a new, small, driven, steady-state, D-T reactor, called the Technology Demonstration Facility (TDF). The second concept is for upgrades to the MFTF-B machine that burn tritium and run for pulse lengths of some hours. Both devices operate in the Kelley mode in order to provide high-wall loadings of 14-MeV neutrons, thereby providing a valuable test bed for reactor-relevant hardware and subsystems. Either one of these devices could be running in the early 1990's with first wall fluxes between 1.4 and 2.0 MW m -2

  15. Helically linked mirror arrangement

    Ranjan, P.

    1986-08-01

    A scheme is described for helical linking of mirror sections, which endeavors to combine the better features of toroidal and mirror devices by eliminating the longitudinal loss of mirror machines, having moderately high average β and steady state operation. This scheme is aimed at a device, with closed magnetic surfaces having rotational transform for equilibrium, one or more axisymmetric straight sections for reduced radial loss, a simple geometrical axis for the links and an overall positive magnetic well depth for stability. We start by describing several other attempts at linking of mirror sections, made both in the past and the present. Then a description of our helically linked mirror scheme is given. This example has three identical straight sections connected by three sections having helical geometric axes. A theoretical analysis of the magnetic field and single-particle orbits in them leads to the conclusion that most of the passing particles would be confined in the device and they would have orbits independent of pitch angle under certain conditions. Numerical results are presented, which agree well with the theoretical results as far as passing particle orbits are concerned

  16. Physics of mirror systems

    Post, R.F.

    1982-05-01

    In recent years the emphasis in research on the magnetic mirror approach to fusion has been shifted to address what are essentially economically-motivated issues. The introduction of the Tandem Mirror idea solved in principal the problem of low Q (low fusion power gain) of mirror-based fusion systems. In order to optimize the tandem mirror idea from an economic standpoint, some important improvements have been suggested. These improvements include the thermal barrier idea of Baldwin and Logan and the axicell concept of Kesner. These new modifications introduce some special physics considerations. Among these are (1) The MHD stability properties of high energy electron components in the end cells; (2) The optimization of end-cell magnetic field configurations with the objective of minimizing equilibrium parallel currents; (3) The suppression of microstabilities by use of sloshing ion distributions. Following a brief outline of tandem mirror concepts, the above three topics are discussed, with illustrative examples taken from earlier work or from recent design studies

  17. MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes

    Lakhin, V. P.; Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com, E-mail: vilkiae@gmail.com; Ilgisonis, V. I. [National Research Centre Kurchatov Institute (Russian Federation); Konovaltseva, L. V. [Peoples’ Friendship University of Russia (Russian Federation)

    2015-12-15

    A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.

  18. Entangling movable mirrors in a double cavity system

    Pinard, Michel; Dantan, Aurelien Romain; Vitali, David

    2005-01-01

    We propose a double-cavity set-up capable of generating a stationary entangled state of two movable mirrors at cryogenic temperatures. The scheme is based on the optimal transfer of squeezing of input optical fields to mechanical vibrational modes of the mirrors, realized by the radiation pressure...... of the intracavity light. We show that the presence of macroscopic entanglement can be demonstrated by an appropriate readout of the output light of the two cavities....

  19. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  20. A Conceptual Mirror

    Badie, Farshad

    2017-01-01

    The multilevel interactions between a mentor and her/his learner could exchange various conceptions between them that are supported by their own conceptualisations. Producing the own realisation of a world and developing it in the context of interactions could be said to be the most valuable prod...... will analyse the logical dependencies between learner and men- tor and will check their reflectional symmetrical relationship in a conceptual mirror. The conceptual mirror is a phenomenon that represents the meeting point of the mentor’s and the learner’s conceptual knowledge....

  1. Amorphous Metals and Composites as Mirrors and Mirror Assemblies

    Hofmann, Douglas C. (Inventor); Davis, Gregory L. (Inventor); Agnes, Gregory S. (Inventor); Shapiro, Andrew A. (Inventor)

    2016-01-01

    A mirror or mirror assembly fabricated by molding, pressing, assembling, or depositing one or more bulk metal glass (BMG), bulk metal glass composite (BMGMC), or amorphous metal (AM) parts and where the optical surface and backing of the mirror can be fabricated without machining or polishing by utilizing the unique molding capabilities of this class of materials.

  2. Tandem mirror reactor

    Moir, R.W.; Barr, W.L.; Carlson, G.A.

    1977-01-01

    A parametric analysis and a preliminary conceptual design for a 1000 MWe Tandem Mirror Reactor (TMR) are described. The concept is sufficiently attractive to encourage further work, both for a pure fusion TMR and a low technology TMR Fusion-Fission Hybrid

  3. Advanced Curvature Deformable Mirrors

    2010-09-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) University of Hawaii ,Institute for Astronomy,640 North A‘ohoku Place, #209 , Hilo ,HI,96720-2700 8. PERFORMING...Advanced Curvature Deformable Mirrors Christ Ftaclas1,2, Aglae Kellerer2 and Mark Chun2 Institute for Astronomy, University of Hawaii

  4. Mirror reactor blankets

    Lee, J.D.; Barmore, W.L.; Bender, D.J.; Doggett, J.N.; Galloway, T.R.

    1976-01-01

    The general requirements of a breeding blanket for a mirror reactor are described. The following areas are discussed: (1) facility layout and blanket maintenance, (2) heat transfer and thermal conversion system, (3) materials, (4) tritium containment and removal, and (5) nuclear performance

  5. Minimal mirror twin Higgs

    Barbieri, Riccardo [Institute of Theoretical Studies, ETH Zurich,CH-8092 Zurich (Switzerland); Scuola Normale Superiore,Piazza dei Cavalieri 7, 56126 Pisa (Italy); Hall, Lawrence J.; Harigaya, Keisuke [Department of Physics, University of California,Berkeley, California 94720 (United States); Theoretical Physics Group, Lawrence Berkeley National Laboratory,Berkeley, California 94720 (United States)

    2016-11-29

    In a Mirror Twin World with a maximally symmetric Higgs sector the little hierarchy of the Standard Model can be significantly mitigated, perhaps displacing the cutoff scale above the LHC reach. We show that consistency with observations requires that the Z{sub 2} parity exchanging the Standard Model with its mirror be broken in the Yukawa couplings. A minimal such effective field theory, with this sole Z{sub 2} breaking, can generate the Z{sub 2} breaking in the Higgs sector necessary for the Twin Higgs mechanism. The theory has constrained and correlated signals in Higgs decays, direct Dark Matter Detection and Dark Radiation, all within reach of foreseen experiments, over a region of parameter space where the fine-tuning for the electroweak scale is 10-50%. For dark matter, both mirror neutrons and a variety of self-interacting mirror atoms are considered. Neutrino mass signals and the effects of a possible additional Z{sub 2} breaking from the vacuum expectation values of B−L breaking fields are also discussed.

  6. Mirror fusion--fission hybrids

    Lee, J.D.

    1978-01-01

    The fusion-fission concept and the mirror fusion-fission hybrid program are outlined. Magnetic mirror fusion drivers and blankets for hybrid reactors are discussed. Results of system analyses are presented and a reference design is described

  7. Physics of mirror fusion systems

    Post, R.F.

    1976-01-01

    Recent experimental results with the 2XIIB mirror machine at Lawrence Livermore Laboratory have demonstrated the stable confinement of plasmas at fusion temperatures and with energy densities equaling or exceeding that of the confining fields. The physics of mirror confinement is discussed in the context of these new results. Some possible approaches to further improving the confinement properties of mirror systems and the impact of these new approaches on the prospects for mirror fusion reactors are discussed

  8. Thermomechanical characterization of a membrane deformable mirror

    Morse, Kathleen A.; McHugh, Stuart L.; Fixler, Jeff

    2008-01-01

    A membrane deformable mirror has been investigated for its potential use in high-energy laser systems. Experiments were performed in which the deformable mirror was heated with a 1 kW incandescent lamp and the thermal profile, the wavefront aberrations, and the mechanical displacement of the membrane were measured. A finite element model was also developed. The wavefront characterization experiments showed that the wavefront degraded with heating. Above a temperature of 35 deg. C, the wavefront characterization experiments indicated a dramatic increase in the high-order wavefront modes before the optical beam became immeasurable in the sensors. The mechanical displacement data of the membrane mirror showed that during heating, the membrane initially deflected towards the heat source and then deflected away from the heat source. Finite element analysis (FEA) predicted a similar displacement behavior as shown by the mechanical displacement data but over a shorter time scale and a larger magnitude. The mechanical displacement data also showed that the magnitude of membrane displacement increased with the experiments that involved higher temperatures. Above a temperature of 35 deg. C, the displacement data showed that random deflections as a function of time developed and that the magnitude of these deflections increased with increased temperature. We concluded that convection, not captured in the FEA, likely played a dominant role in mirror deformation at temperatures above 35 deg. C

  9. Mirror reactor studies

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1977-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80%. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59% and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high re-circulating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)]. By contrast, the fusion-fission reactor design is not penalized by re-circulating power and uses relatively near-term fusion technology being developed for the fusion power program. New results are presented on the Th- 233 U and the U- 239 Pu fuel cycles. The purpose of this hybrid is fuel production, with projected costs at $55/g of Pu or $127/g of 233 U. Blanket and cooling system designs, including an emergency cooling system, by General Atomic Company, lead us to the opinion that the reactor can meet expected safety standards for licensing. The smallest mirror reactor having only a shield between the plasma and the coil is the 4.2-m long fusion engineering research facility (FERF) designed for material irradiation. The smallest mirror reactor having both a blanket and shield is the 7.5-m long experimental power reactor (EPR), which has both a fusion and a fusion-fission version. (author)

  10. Review of mirror fusion reactor designs

    Bender, D.J.

    1977-01-01

    Three magnetic confinement concepts, based on the mirror principle, are described. These mirror concepts are summarized as follows: (1) fusion-fission hybrid reactor, (2) tandem mirror reactor, and (3) reversed field mirror reactor

  11. [Mirror, mirror of the wall: mirror therapy in the treatment of phantom limbs and phantom limb pain].

    Casale, Roberto; Furnari, Anna; Lamberti, Raul Coelho; Kouloulas, Efthimios; Hagenberg, Annegret; Mallik, Maryam

    2015-01-01

    Phantom limb and phantom limb pain control are pivotal points in the sequence of intervention to bring the amputee to functional autonomy. The alterations of perception and sensation, the pain of the residual limb and the phantom limb are therefore aspects of amputation that should be taken into account in the "prise en charge" of these patients. Within the more advanced physical therapies to control phantom and phantom limb pain there is the use of mirrors (mirror therapy). This article willfocus on its use and on the possible side effects induced by the lack of patient selection and a conflict of body schema restoration through mirror therapy with concurrent prosthetic training and trauma acceptance. Advice on the need to select patients before treatment decisions, with regard to their psychological as well as clinical profile (including time since amputation and clinical setting), and the need to be aware of the possible adverse effects matching different and somehow conflicting therapeutic approaches, are put forward. Thus a coordinated sequence of diagnostic, prognostic and therapeutic procedures carried out by an interdisciplinary rehabilitation team that works globally on all patients' problems is fundamental in the management of amputees and phantom limb pain. Further studies and the development of a multidisciplinary network to study this and other applications of mirror therapy are needed.

  12. Dynamic coherent backscattering mirror

    Zeylikovich, I.; Xu, M., E-mail: mxu@fairfield.edu [Physics Department, Fairfield University, Fairfield, CT 06824 (United States)

    2016-02-15

    The phase of multiply scattered light has recently attracted considerable interest. Coherent backscattering is a striking phenomenon of multiple scattered light in which the coherence of light survives multiple scattering in a random medium and is observable in the direction space as an enhancement of the intensity of backscattered light within a cone around the retroreflection direction. Reciprocity also leads to enhancement of backscattering light in the spatial space. The random medium behaves as a reciprocity mirror which robustly converts a diverging incident beam into a converging backscattering one focusing at a conjugate spot in space. Here we first analyze theoretically this coherent backscattering mirror (CBM) phenomenon and then demonstrate the capability of CBM compensating and correcting both static and dynamic phase distortions occurring along the optical path. CBM may offer novel approaches for high speed dynamic phase corrections in optical systems and find applications in sensing and navigation.

  13. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  14. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  15. Current results of the tandem mirror experiment

    Drake, R.P.

    1980-01-01

    The basic operating characteristics of the Tandem Mirror Experiment, (TMX) at the Lawrence Livermore Laboratory in the USA have been established. Tandem-mirror plasmas have been produced using neutral-beam-fueled end plugs and a gas-fueled center cell. An axial potential well between the end plugs has been measured. There is direct evidence that this potential well enhances the axial confinement of the center-cell ions. The observed densities and loss currents are consistent with preliminary studies of the particle sources and losses near the magnetic axis. The observed confinement is consistent with theory when plasma fluctuations are low. When the requirement of drift-cyclotron loss-cone mode stability is violated, the plasma fluctuations degrade the center-cell confinement

  16. Ballooning instabilities in toroidally linked mirror systems

    Hastie, R.J.; Watson, C.J.H.

    1977-01-01

    This paper examines the stability against ballooning modes of plasma equilibria in toroidally linked mirror configurations consisting of a number of quadrupole minimum-B mirrors linked toroidally. On the basis of the Kruskal-Oberman energy principle, a class of displacements is identified which are potentially unstable, and a necessary criterion for stability is derived. The criterion is obtained from the eigenvalues of an ordinary differential equation, which determines the variation of the displacement along a field line. The coefficients in the equation are determined by the configuration, and by inserting various model configurations, estimates are obtained of the maximum value of β consistent with stability. In cases of interest, quite high β-values are obtained. (author)

  17. Neutral beams for mirrors

    Fink, J.H.

    1983-01-01

    An important demonstration of negative ion technology is proposed for FY92 in the MFTF-α+T, an upgrade of the Mirror Fusion Test Facility at the Lawrence Livermore National Laboratory. This facility calls for 200-keV negative ions to form neutral beams that generate sloshing ions in the reactor end plugs. Three different beam lines are considered for this application. Their advantages and disadvantages are discussed

  18. Mirror reactor studies

    Moir, R.W.; Barr, W.L.; Bender, D.J.

    1976-01-01

    Design studies of a fusion mirror reactor, a fusion-fission mirror reactor, and two small mirror reactors are summarized. The fusion reactor uses 150-keV neutral-beam injectors based on the acceleration of negative ions. The injectors provide over 1 GW of continuous power at an efficiency greater than 80 percent. The fusion reactor has three-stage, modularized, Venetian blind, plasma direct converter with a predicted efficiency of 59 percent and a new concept for removal of the lune-shaped blanket: a crane is brought between the two halves of the Yin-Yang magnet, which are separated by a float. The design has desirable features such as steady-state operation, minimal impurity problems, and low first-wall thermal stress. The major disadvantage is low Q resulting in high recirculating power and hence high cost of electrical power. However, the direct capital cost per unit of gross electrical power is reasonable [$1000/kW(e)

  19. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal.

    Corballis, Michael C

    2018-01-01

    Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d ) must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  20. Mirror-Image Equivalence and Interhemispheric Mirror-Image Reversal

    Michael C. Corballis

    2018-04-01

    Full Text Available Mirror-image confusions are common, especially in children and in some cases of neurological impairment. They can be a special impediment in activities such as reading and writing directional scripts, where mirror-image patterns (such as b and d must be distinguished. Treating mirror images as equivalent, though, can also be adaptive in the natural world, which carries no systematic left-right bias and where the same object or event can appear in opposite viewpoints. Mirror-image equivalence and confusion are natural consequences of a bilaterally symmetrical brain. In the course of learning, mirror-image equivalence may be established through a process of symmetrization, achieved through homotopic interhemispheric exchange in the formation of memory circuits. Such circuits would not distinguish between mirror images. Learning to discriminate mirror-image discriminations may depend either on existing brain asymmetries, or on extensive learning overriding the symmetrization process. The balance between mirror-image equivalence and mirror-image discrimination may nevertheless be precarious, with spontaneous confusions or reversals, such as mirror writing, sometimes appearing naturally or as a manifestation of conditions like dyslexia.

  1. Distributed sensing signal analysis of deformable plate/membrane mirrors

    Lu, Yifan; Yue, Honghao; Deng, Zongquan; Tzou, Hornsen

    2017-11-01

    Deformable optical mirrors usually play key roles in aerospace and optical structural systems applied to space telescopes, radars, solar collectors, communication antennas, etc. Limited by the payload capacity of current launch vehicles, the deformable mirrors should be lightweight and are generally made of ultra-thin plates or even membranes. These plate/membrane mirrors are susceptible to external excitations and this may lead to surface inaccuracy and jeopardize relevant working performance. In order to investigate the modal vibration characteristics of the mirror, a piezoelectric layer is fully laminated on its non-reflective side to serve as sensors. The piezoelectric layer is segmented into infinitesimal elements so that microscopic distributed sensing signals can be explored. In this paper, the deformable mirror is modeled as a pre-tensioned plate and membrane respectively and sensing signal distributions of the two models are compared. Different pre-tensioning forces are also applied to reveal the tension effects on the mode shape and sensing signals of the mirror. Analytical results in this study could be used as guideline of optimal sensor/actuator placement for deformable space mirrors.

  2. Global-Mode Analysis of Full-Disk Data from the Michelson Doppler Imager and the Helioseismic and Magnetic Imager

    Larson, Timothy P.; Schou, Jesper

    2018-02-01

    Building upon our previous work, in which we analyzed smoothed and subsampled velocity data from the Michelson Doppler Imager (MDI), we extend our analysis to unsmoothed, full-resolution MDI data. We also present results from the Helioseismic and Magnetic Imager (HMI), in both full resolution and processed to be a proxy for the low-resolution MDI data. We find that the systematic errors that we saw previously, namely peaks in both the high-latitude rotation rate and the normalized residuals of odd a-coefficients, are almost entirely absent in the two full-resolution analyses. Furthermore, we find that both systematic errors seem to depend almost entirely on how the input images are apodized, rather than on resolution or smoothing. Using the full-resolution HMI data, we confirm our previous findings regarding the effect of using asymmetric profiles on mode parameters, and also find that they occasionally result in more stable fits. We also confirm our previous findings regarding discrepancies between 360-day and 72-day analyses. We further investigate a six-month period previously seen in f-mode frequency shifts using the low-resolution datasets, this time accounting for solar-cycle dependence using magnetic-field data. Both HMI and MDI saw prominent six-month signals in the frequency shifts, but we were surprised to discover that the strongest signal at that frequency occurred in the mode coverage for the low-resolution proxy. Finally, a comparison of mode parameters from HMI and MDI shows that the frequencies and a-coefficients agree closely, encouraging the concatenation of the two datasets.

  3. Mechanical Design of the HER Synchrotron Light Monitor Primary Mirror

    Daly, Edward F.; /SLAC; Fisher, Alan S.; Kurita, Nadine R.; Langton, J.; /SLAC

    2011-09-14

    This paper describes the mechanical design of the primary mirror that images the visible portion of the synchrotron radiation (SR) extracted from the High Energy Ring (HER) of the PEP-II B-Factory. During off-axis operation, the water-cooled GlidCop mirror is subjected to a heat flux in excess of 2000 W/cm2. When on-axis imaging occurs, the heat flux due to scattered SR, resistive wall losses and Higher-Order-Mode (HOM) heating is estimated at 1 W/cm2. The imaging surface is plated with Electroless Nickel to improve its optical characteristics. The design requirements for the primary mirror are listed and discussed. Calculated mechanical distortions and stresses experienced by the mirror during on-axis and off-axis operation will be presented.

  4. Thermal effects on beryllium mirrors

    Weinswig, S.

    1989-01-01

    Beryllium is probably the most frequently used material for spaceborne system scan mirrors. Beryllium's properties include lightweightedness, high Young's modulus, high stiffness value, high resonance value. As an optical surface, beryllium is usually nickel plated in order to produce a higher quality surface. This process leads to the beryllium mirror acting like a bimetallic device. The mirror's deformation due to the bimetallic property can possibly degrade the performance of the associated optical system. As large space borne systems are designed and as temperature considerations become more crucial in the instruments, the concern about temporal deformation of the scan mirrors becomes a prime consideration. Therefore, two sets of tests have been conducted in order to ascertain the thermal effects on nickel plated beryllium mirrors. These tests are categorized. The purpose of this paper is to present the values of the bimetallic effect on typical nickel plated beryllium mirrors

  5. Mirror symmetry II

    Greene, Brian R

    1997-01-01

    Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.

  6. Introduction: Mirrors of Passing

    Seebach, Sophie Hooge; Willerslev, Rane

    How is death, time, and materiality interconnected? How to approach an understanding of the world of the dead? In this introduction, we seek to understand how the experience of material decay, of the death of those around us, makes us aware of the passing of time. Through the literary lens of Neil...... Gaiman’s The Graveyard Book, we explore how the world of the dead and the world of the living can intersect; how time and materiality shifts and changes depending on who experiences it. These revelations, based on fiction, provide a mirror through which the reader can experience the varied chapters...

  7. Complex/Symplectic Mirrors

    Chuang, Wu-yen; Kachru, Shamit; /Stanford U., ITP /SLAC; Tomasiello, Alessandro; /Stanford U., ITP

    2005-10-28

    We construct a class of symplectic non-Kaehler and complex non-Kaehler string theory vacua, extending and providing evidence for an earlier suggestion by Polchinski and Strominger. The class admits a mirror pairing by construction. Comparing hints from a variety of sources, including ten-dimensional supergravity and KK reduction on SU(3)-structure manifolds, suggests a picture in which string theory extends Reid's fantasy to connect classes of both complex non-Kaehler and symplectic non-Kaehler manifolds.

  8. Trieste lectures on mirror symmetry

    Hori, K [Department of Physics and Department of Mathematics, University of Toronto, Toronto, Ontario (Canada)

    2003-08-15

    These are pedagogical lectures on mirror symmetry given at the Spring School in ICTP, Trieste, March 2002. The focus is placed on worldsheet descriptions of the physics related to mirror symmetry. We start with the introduction to general aspects of (2,2) supersymmetric field theories in 1 + 1 dimensions. We next move on to the study and applications of linear sigma model. Finally, we provide a proof of mirror symmetry in a class of models. (author)

  9. Mirror Fusion Test Facility (MFTF)

    Thomassen, K.I.

    1978-01-01

    A large, new Mirror Fusion Test Facility is under construction at LLL. Begun in FY78 it will be completed at the end of FY78 at a cost of $94.2M. This facility gives the mirror program the flexibility to explore mirror confinement principles at a signficant scale and advances the technology of large reactor-like devices. The role of MFTF in the LLL program is described here

  10. Gasdynamic Mirror Fusion Propulsion Experiment

    Emrich, Bill; Rodgers, Stephen L. (Technical Monitor)

    2000-01-01

    A gasdynamic mirror (GDM) fusion propulsion experiment is currently being constructed at the NASA Marshall Space Flight Center (MSFC) to test the feasibility of this particular type of fusion device. Because of the open magnetic field line configuration of mirror fusion devices, they are particularly well suited for propulsion system applications since they allow for the easy ejection of thrust producing plasma. Currently, the MSFC GDM is constructed in three segments. The vacuum chamber mirror segment, the plasma injector mirror segment, and the main plasma chamber segment. Enough magnets are currently available to construct up to three main plasma chamber segments. The mirror segments are also segmented such that they can be expanded to accommodate new end plugging strategies with out requiring the disassembly of the entire mirror segment. The plasma for the experiment is generated in a microwave cavity located between the main magnets and the mirror magnets. Ion heating is accomplished through ambipolar diffusion. The objective of the experiment is to investigate the stability characteristics of the gasdynamic mirror and to map a region of parameter space within which the plasma can be confined in a stable steady state configuration. The mirror ratio, plasma density, and plasma "b" will be varied over a range of values and measurements subsequently taken to determine the degree of plasma stability.

  11. Automatic Mirroring of the IRAF FTP and WWW Archives

    Fitzpatrick, Mike; Tody, Doug; Terrett, David L.

    Large FTP archives have long used mirrors (copies of the network archive maintained on remote hosts) to decrease the load on a particular server or shorten the network path to provide faster download times. Little has been done however to simplify mirroring of WWW (World Wide Web) pages, although many projects and users now rely on Web pages at least as heavily as anonymous FTP services. With the dramatically increasing use of the global Internet in the past year, the network has become overloaded, and network access, especially overseas, is often very slow during peak hours. We present a strategy based on host-independent URLs which allows Web pages to be automatically mirrored to both remote Web hosts and CD-ROMs. Issues affecting a site wishing to mirror a remote archive are discussed.

  12. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  13. Mirror profile optimization for nano-focusing KB mirror

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-01-01

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 μrad, peak-to-valley, compared to the bent slope of 3000 μrad.

  14. Black Mirror. Distopie del vedere

    Daniela Panosetti

    2012-02-01

    Full Text Available The essay discusses the second episode of Black Mirror (2011, the miniseries produced by Charlie Brooker for British TV, by analysing the complex relationship between the special regime of visibility that regulates the possible world and the deeply rooted system of values adopted or rejected by those concerned. The author endeavours to demonstrate how, in the evident attempt at contemporary reinterpretation of certain recurring topoi in so-called dystopian narrations (especially of their modern archetype, George Orwell's novel Nineteen Eighty-Four, the text stages an original representation, albeit set in the future, of today's media scenario, problematising the different issues within a single, tendentially dysphoric projective dimension: declining phenomena (the screen vision as up-down "administration", emerging phenomena (augmented reality and dominating phenomena (the prevalent "virtual sociality" in all web 2.0 expressions. A series of reversals and shifting of the dystopian topoi recalled for another reason emerges from the global sense effect produced by speech (specifically in the final scenes: the issue switches from an obsessive de-individualization to an excess of personalization, from the tyranny of being / having to be seen/ to that of seeing / having to see, from the search for reality and truth to that of authenticity, this latter presented as principal isotopy and true epistemic architrave of the entire narration.

  15. Virtual Mirror gaming in libraries

    Speelman, M.; Kröse, B.; Nijholt, A.; Poppe, R.

    2008-01-01

    This paper presents a study on a natural interface game in the context of a library. We developed a camera-based Virtual Mirror (VM) game, in which the player can see himself on the screen as if he looks at a mirror image. We present an overview of the different aspects of VM games and technologies

  16. TCV mirrors cleaned by plasma

    L. Marot

    2017-08-01

    Full Text Available Metallic mirrors exposed in TCV tokamak were cleaned by plasma in laboratory. A gold (Au mirror was deposited with 185–285nm of amorphous carbon (aC:D film coming from the carbon tiles of TCV. Another molybdenum (Mo mirror had a thicker deposit due to a different location within the tokamak. The thickness measurements were carried out using ellipsometry and the reflectivity measurements performed by spectrophotometry revealed a decrease of the specular reflectivity in the entire range (250–2500nm for the Mo mirror and specifically in the visible spectrum for the Au. Comparison of the simulated reflectivity using a refractive index of 1.5 and a Cauchy model for the aC:D gives good confidence on the estimated film thickness. Plasma cleaning using radio frequency directly applied to a metallic plate where the mirrors were fixed demonstrated the ability to remove the carbon deposits. A mixture of 50% hydrogen and 50% helium was used with a −200V self-bias. Due to the low sputtering yield of He and the low chemical erosion of hydrogen leading to volatile molecules, 20h of cleaning were needed for Au mirror and more than 60h for Mo mirror. Recovery of the reflectivity was not complete for the Au mirror most likely due to damage of the surface during tokamak exposure (breakdown phenomena.

  17. Wavelength tunable ultrafast fiber laser via reflective mirror with taper structure.

    Fang, Li; Huang, Chuyun; Liu, Ting; Gogneau, Noelle; Bourhis, Eric; Gierak, Jacques; Oudar, Jean-Louis

    2016-12-20

    Laser sources with a controllable flexible wavelength have found widespread applications in optical fiber communication, optical sensing, and microscopy. Here, we report a tunable mode-locked fiber laser using a graphene-based saturable absorber and a tapered mirror as an end mirror in the cavity. The phase layer in the mirror is precisely etched by focused ion beam (FIB) milling technology, and the resonant wavelength of the mirror shifts correspond to the different etch depths. By scanning the tapered mirror mechanically, the center wavelength of a mode-locked fiber laser can be continuously tuned from 1562 to 1532 nm, with a pulse width in the sub-ps level and repetition rate of 27 MHz.

  18. Mirroring patients – or not

    Davidsen, Annette Sofie; Fosgerau, Christina Fogtmann

    2015-01-01

    on studies of imitative behaviour within linguistics and psychology, we argue that interactional mirroring is an important aspect of displaying implicit mentalization. We aimed to explore if, and in that case how, mirroring is displayed by general practitioners (GPs) and psychiatrists in consultations...... with patients with depression. We wanted to see how implicit mentalizing unfolds in physician–patient interactions. Consultations were videorecorded and analysed within the framework of conversation analysis. GPs and psychiatrists differed substantially in their propensity to mirror body movements and verbal...... and acoustic features of speech. GPs mirrored their patients more than psychiatrists in all modalities and were more flexible in their interactional behaviour. Psychiatrists seemed more static, regardless of the emotionality displayed by patients. Implicitly mirroring and attuning to patients could signify...

  19. Introduction to tandem mirror physics

    Kesner, J.; Gerver, M.J.; Lane, B.G.; McVey, B.D.; Catto, P.J.; D'Ippolito, D.A.; Myra, J.R.

    1983-09-01

    This monograph, prepared jointly by the MIT Plasma Fusion Center Mirror Fusion group and SAI, Boulder, Colorado, presents a review of the development of mirror fusion theory from its conception some thirty years ago to the present. Pertinent historic experiments and their contribution are discussed to set the stage for a detailed analysis of current experiments and the problems which remain to be solved in bringing tandem mirror magnetic confinement fusion to fruition. In particular, Chapter III discusses in detail the equilibrium and stability questions which must be dealt with before tandem mirror reactors become feasible, while Chapters IV and V discuss some of the current machines and those under construction which will help to resolve critical issues in both physics and engineering whose solutions are necessary to the commercialization of tandem mirror fusion

  20. Potential measurements in tandem mirrors

    Glowienka, J.C.

    1985-11-01

    The US mirror program has begun conducting experiments with a thermal barrier tandem mirror configuration. This configuration requires a specific axial potential profile and implies measurements of potential for documentation and optimization of the configuration. This report briefly outlines the motivation for the thermal barrier tandem mirror and then outlines the techniques used to document the potential profile in conventional and thermal barrier tandem mirrors. Examples of typical data sets from the world's major tandem mirror experiments, TMX and TMX-U at Lawrence Livermore National Laboratory (LLNL) and Gamma 10 at Tsukuba University in Japan, and the current interpretation of the data are discussed together with plans for the future improvement of measurements of plasma potential

  1. LLL mirror fusion program: summary

    Fowler, T.K.

    1977-01-01

    During 1976, new Mirror Program plans have been laid out to take into account the significant advances during the last 18 months. The program is now focused on two new mirror concepts, field reversal and the tandem mirror, that can obtain high Q, defined as the ratio of fusion power output to the neutral-beam power injected to sustain the reaction. Theoretically, both concepts can attain Q = 5 or more, as compared to Q = 1 in previous mirror designs. Experimental planning for the next 5 years is complete in broad outline, and we are turning attention to what additional steps are necessary to reach our long-range goal of an experimental mirror reactor operating by 1990. Highlights of the events that have led to the above circumstance are listed, and experimental program plans are outlined

  2. Genetics Home Reference: congenital mirror movement disorder

    ... Health Conditions Congenital mirror movement disorder Congenital mirror movement disorder Printable PDF Open All Close All Enable ... view the expand/collapse boxes. Description Congenital mirror movement disorder is a condition in which intentional movements ...

  3. Global atmospheric response to specific linear combinations of the main SST modes. Part I: numerical experiments and preliminary results

    S. Trzaska

    1996-10-01

    Full Text Available This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder than the long-term mean in the southern hemisphere (northern hemisphere]. Atlantic SSTAs may also play a significant role.

  4. Onset of superradiant instabilities in the composed Kerr-black-hole–mirror bomb

    Shahar Hod

    2014-09-01

    Full Text Available It was first pointed out by Press and Teukolsky that a system composed of a spinning Kerr black hole surrounded by a reflecting mirror may develop instabilities. The physical mechanism responsible for the development of these exponentially growing instabilities is the superradiant amplification of bosonic fields confined between the black hole and the mirror. A remarkable feature of this composed black-hole–mirror-field system is the existence of a critical mirror radius, rmstat, which supports stationary (marginally-stable field configurations. This critical (‘stationary’ mirror radius marks the boundary between stable and unstable black-hole–mirror-field configurations: composed systems whose confining mirror is situated in the region rmrmstat are unstable (that is, there are confined field modes which grow exponentially over time. In the present paper we explore this critical (marginally-stable boundary between stable and explosive black-hole–mirror-field configurations. It is shown that the innermost (smallest radius of the confining mirror which allows the extraction of rotational energy from a spinning Kerr black hole approaches the black-hole horizon radius in the extremal limit of rapidly-rotating black holes. We find, in particular, that this critical mirror radius (which marks the onset of superradiant instabilities in the composed system scales linearly with the black-hole temperature.

  5. Mirror node correlations tuning synchronization in multiplex networks

    Kumar, Anil; Baptista, Murilo S.; Zaikin, Alexey; Jalan, Sarika

    2017-12-01

    We show that the degree-degree correlations have a major impact on global synchronizability (GS) of multiplex networks, enabling the specification of synchronizability by only changing the degree-degree correlations of the mirror nodes while maintaining the connection architecture of the individual layer unaltered. If individual layers have nodes that are mildly correlated, the multiplex network is best synchronizable when the mirror degrees are strongly negatively correlated. If individual layers have nodes with strong degree-degree correlations, mild correlations among the degrees of mirror nodes are the best strategy for the optimization of GS. Global synchronization also depend on the density of connections, a phenomenon not observed in a single layer network. The results are crucial to understand, predict, and specify behavior of systems having multiple types of connections among the interacting units.

  6. Optical fiber end-facet polymer suspended-mirror devices

    Yao, Mian; Wu, Jushuai; Zhang, A. Ping; Tam, Hwa-Yaw; Wai, P. K. A.

    2017-04-01

    This paper presents a novel optical fiber device based on a polymer suspended mirror on the end facet of an optical fiber. With an own-developed optical 3D micro-printing technology, SU-8 suspended-mirror devices (SMDs) were successfully fabricated on the top of a standard single-mode optical fiber. Optical reflection spectra of the fabricated SU- 8 SMDs were measured and compared with theoretical analysis. The proposed technology paves a way towards 3D microengineering of the small end-facet of optical fibers to develop novel fiber-optic sensors.

  7. The influence of mirror configurations near the lower hybrid resonance

    Glomski, G.; Heinrich, B.; Schlueter, H.

    1976-01-01

    Hydrogen plasmas in magnetic mirror configurations are generated by microwaves and inductively coupled to a weak rf-source. In contrast to previous investigations of the rf-frequency is varied; resonant behaviour near the lower hybrid frequency is found, attributable to radial eigenmodes. The influence of various mirror ratios and consequently varying axial density gradients on the position of the modes is studied. Shifts of the coupling coil are found to be of minor importance, since the resonant behaviour is dominated by oscillations of the whole plasma body. (orig.) [de

  8. Solution of Full Wave Equation for Global Modes in Small Aspect Ratio Tokamaks with Non-Circular Cross-Section

    Burma, C.; Cuperman, S.; Komoshvili, K.

    1998-01-01

    The wave equation for strongly toroidal small aspect ratio (spherical) tokamaks with non-circular cross-section is properly formulated and solved for global waves, in the Alfven frequency range. The current-carrying toroidal plasma is surrounded by a helical sheet-current antenna, which is enclosed within a perfectly conducting wall. The problem is formulated in terms of the vector and scalar potentials (A,Φ), thus avoiding the numerical solution occurring in the case of (E,B) formulation. Adequate boundary conditions are applied at the vacuum - metallic wall interface and the magnetic axis. A recently derived dielectric tensor-operator, able to describe the anisotropic plasma response in spherical tokamaks, is used for this purpose; except for its linear character, no physical or geometrical limitations are imposed on it. The equilibrium profiles (magnetic field, pressure and current) are obtained from a numerical solution of the Grad-Shafranov equation. Specifically, the wave equation is solved by the aid of a numerical code we developed for the present problem, based on the well documented 2(1/2)D finite element solver proposed by E.G. Sewell. With the definitions V i (θ,ρ) = U i (-θ,ρ) (V i U i = A j , Φ; j = ρ,φ,θ), our code solves simultaneously 16 second order partial differential equations (eight equations for each of real and imaginary set of functions V i , U i ). A systematic analysis of the solutions obtained for various values and combinations of wavenumbers and frequencies in the Alfven range is presented

  9. Optical cavity cooling of mechanical modes of a semiconductor nanomembrane

    Usami, Koji; Naesby, A.; Bagci, Tolga

    2012-01-01

    Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high-quality-factor and......Mechanical oscillators can be optically cooled using a technique known as optical-cavity back-action. Cooling of composite metal–semiconductor mirrors, dielectric mirrors and dielectric membranes has been demonstrated. Here we report cavity cooling of mechanical modes in a high...

  10. Advanced Mirror & Modelling Technology Development

    Effinger, Michael; Stahl, H. Philip; Abplanalp, Laura; Maffett, Steven; Egerman, Robert; Eng, Ron; Arnold, William; Mosier, Gary; Blaurock, Carl

    2014-01-01

    The 2020 Decadal technology survey is starting in 2018. Technology on the shelf at that time will help guide selection to future low risk and low cost missions. The Advanced Mirror Technology Development (AMTD) team has identified development priorities based on science goals and engineering requirements for Ultraviolet Optical near-Infrared (UVOIR) missions in order to contribute to the selection process. One key development identified was lightweight mirror fabrication and testing. A monolithic, stacked, deep core mirror was fused and replicated twice to achieve the desired radius of curvature. It was subsequently successfully polished and tested. A recently awarded second phase to the AMTD project will develop larger mirrors to demonstrate the lateral scaling of the deep core mirror technology. Another key development was rapid modeling for the mirror. One model focused on generating optical and structural model results in minutes instead of months. Many variables could be accounted for regarding the core, face plate and back structure details. A portion of a spacecraft model was also developed. The spacecraft model incorporated direct integration to transform optical path difference to Point Spread Function (PSF) and between PSF to modulation transfer function. The second phase to the project will take the results of the rapid mirror modeler and integrate them into the rapid spacecraft modeler.

  11. Mode structure of active resonators

    Ernst, G.J.; Witteman, W.J.

    1973-01-01

    An analysis is made of the mode structure of lasers when the interaction with the active medium is taken into account. We consider the combined effect of gain and refractive-index variations for arbitrary mirror configurations. Using a dimensionless round-trip matrix for a medium with a quadratic

  12. Tandem mirror and field-reversed mirror experiments

    Coensgen, F.H.; Simonen, T.C.; Turner, W.C.

    1979-08-21

    This paper is largely devoted to tandem mirror and field-reversed mirror experiments at the Lawrence Livermore Laboratory (LLL), and briefly summarizes results of experiments in which field-reversal has been achieved. In the tandem experiment, high-energy, high-density plasmas (nearly identical to 2XIIB plasmas) are located at each end of a solenoid where plasma ions are electrostatically confined by the high positive poentials arising in the end plug plasma. End plug ions are magnetically confined, and electrons are electrostatically confined by the overall positive potential of the system. The field-reversed mirror reactor consists of several small field-reversed mirror plasmas linked together for economic reasons. In the LLL Beta II experiment, generation of a field-reversed plasma ring will be investigated using a high-energy plasma gun with a transverse radial magnetic field. This plasma will be further heated and sustained by injection of intense, high-energy neutral beams.

  13. Bimorph mirrors: The Good, the Bad, and the Ugly

    Alcock, Simon G.; Sutter, John P.; Sawhney, Kawal J. S.; Hall, David R.; McAuley, Katherine; Sorensen, Thomas

    2013-05-01

    Bimorph mirrors are widely used by the X-ray, Laser, Space, and Astronomy communities to focus or collimate photon beams. Applying voltages to the embedded piezo ceramics enables the user to globally bend the optical substrate to a range of figures (including cylindrical, parabolic, and elliptical), and finely correct low spatial frequency errors, thus improving optical performance. Bimorph mirrors are employed on numerous synchrotron X-ray beamlines, including several at Diamond Light Source. However, many such beamlines were not achieving the desired size and shape of the reflected X-ray beam. Metrology data from ex-situ, slope measuring profilometry (using the Diamond-NOM) and in-situ, synchrotron X-ray "pencil-beam" scans, revealed sharp defects on the optical substrate directly above the locations at which the piezo ceramics are bonded together. This so-called "junction effect" has been observed on a variety of bimorph mirrors with different numbers of piezos, substrate length, and thickness. To repair this damage, three pairs of bimorph mirrors were re-polished at Thales-SESO. We review the re-polishing process, and show that it successfully removed the junction effect, and significantly improved beamline performance. Since the internal structure of the bimorph mirrors was not modified during re-polishing, it is hoped that the mirrors will retain their surface quality, and remain operational for many years. We also highlight the combination of super-polishing techniques with bimorph technology to create the "Ultimate" mirror, and discuss a next generation, bimorph mirror which is predicted not to suffer from the junction effect.

  14. Bimorph mirrors: The Good, the Bad, and the Ugly

    Alcock, Simon G.; Sutter, John P.; Sawhney, Kawal J.S.; Hall, David R.; McAuley, Katherine; Sorensen, Thomas

    2013-01-01

    Bimorph mirrors are widely used by the X-ray, Laser, Space, and Astronomy communities to focus or collimate photon beams. Applying voltages to the embedded piezo ceramics enables the user to globally bend the optical substrate to a range of figures (including cylindrical, parabolic, and elliptical), and finely correct low spatial frequency errors, thus improving optical performance. Bimorph mirrors are employed on numerous synchrotron X-ray beamlines, including several at Diamond Light Source. However, many such beamlines were not achieving the desired size and shape of the reflected X-ray beam. Metrology data from ex-situ, slope measuring profilometry (using the Diamond-NOM) and in-situ, synchrotron X-ray “pencil-beam” scans, revealed sharp defects on the optical substrate directly above the locations at which the piezo ceramics are bonded together. This so-called “junction effect” has been observed on a variety of bimorph mirrors with different numbers of piezos, substrate length, and thickness. To repair this damage, three pairs of bimorph mirrors were re-polished at Thales-SESO. We review the re-polishing process, and show that it successfully removed the junction effect, and significantly improved beamline performance. Since the internal structure of the bimorph mirrors was not modified during re-polishing, it is hoped that the mirrors will retain their surface quality, and remain operational for many years. We also highlight the combination of super-polishing techniques with bimorph technology to create the “Ultimate” mirror, and discuss a next generation, bimorph mirror which is predicted not to suffer from the junction effect

  15. Edificio Daily Mirror

    Williams, Owen

    1963-07-01

    Full Text Available The building has 18 levels. The Press occupies the 4 basement floors. The ground floor is taken up with the entrance hall, and an indoor carriage way. A snack bar and the telephone operators are situated on the second floor. The production department and the medical services are located on the third storey, whilst the fourth is occupied by the offices and library. The fifth floor is the beginning of the higher section of the building. This floor and up to including the 11th floor are devoted to office space, except for the 10th storey, which contains the office apartments of the directors and the Council Chamber. Equipment related to various services of the building is housed on the 12th storey. Finally, this tall building constitutes a fine landmark in the London skyline. The Daily Mirror building is outstanding for the appropriate nature, the completeness and the quality of its installations, which thus provide the most widely read paper in the world with outstandingly efficient offices.Este edificio consta de 18 plantas. El cuerpo de Prensa se aloja en los cuatro sótanos; los vestíbulos de entrada y una calzada interior para vehículos se hallan en la planta baja; la primera alberga un snack-bar y centralita telefónica; la segunda, el departamento de producción y centro de asistencia médica, y la tercera, las oficinas y biblioteca principales. La cuarta planta señala el comienzo del bloque alto; esta planta, junto con las quinta, sexta, séptima, octava y décima, están dedicadas a oficinas. La novena contiene las oficinas-apartamentos de los directores y salas de Consejo, y la undécima, la maquinaria para las diversas instalaciones del edificio. La elevada torre constituye un grandioso hito de referencia en esta zona de Londres. El «Daily Mirror» se distingue por el acierto, número y perfección de sus instalaciones, que proporcionan, al periódico de mayor actualidad mundial, las más adecuadas y amplias oficinas modernas.

  16. Kodak AMSD Mirror Development Program

    Matthews, Gary; Dahl, Roger; Barrett, David; Bottom, John; Russell, Kevin (Technical Monitor)

    2002-01-01

    The Advanced Mirror System Demonstration Program is developing minor technology for the next generation optical systems. Many of these systems will require extremely lightweight and stable optics due to the overall size of the primary mirror. These segmented, deployable systems require new technology that AMSD is developing. The on-going AMSD program is a critical enabler for Next Generation Space Telescope (NGST) which will start in 2002. The status of Kodak's AMSD mirror and future plans will be discussed with respect to the NGST program.

  17. Tinbergen on mirror neurons

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology—the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible ‘best explanation’ for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of ‘survival value’, should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding—or another social cognitive function—by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories. PMID:24778376

  18. Photocatalytic, antifogging mirror

    Takagi, K.; Makimoto, T.; Hiraiwa, H.; Negishi, T.

    2001-01-01

    This article is about the coating of thin titanium dioxide film by sputter deposition. When irradiated with solar light, thin titanium dioxide film exhibits high oxidizing power and provides sterilizing, cleaning, decomposing, and hydrophylic effects. This technique has already been used for coating building walls by the sol-gel method and by others and has been partly commercialized to make automotive sideview mirrors. There have been no practical applications of the sputter deposition method so far, but establishment of the coating method is expected because of its excellent properties of film production techniques such as film thickness uniformity, film quality durability, and freedom from environmental pollution. In this article we discuss the establishment of the method of evaluating the quality of thin titanium dioxide film, establishment of sputter-deposition conditions, and the results of observation by x-ray diffraction and atomic force microscopy of the thin film. It was found that titanium dioxide films, 200 nm or more in thickness, have the above mentioned performance and that sputter deposition allows the film to form without heating

  19. Stabilized thermally compensated mirror

    Dunn, C. III; Tobin, R.D.; Bergstreser, N.E.; Heinz, T.A.

    1975-01-01

    A thermally compensated mirror is described that is formed by a laminated structure. The structure is comprised of a front plate having a reflective front surface and having a plurality of grooves formed in the rear surface for conducting coolant fluid in heat exchanging relation with said reflective surface, a rear plate having coolant inlet and coolant outlet openings extending therethrough, a minimum temperature plate interposed between said front and rear plates and formed with a plurality of coolant distribution passageways coupled to receive coolant fluid from said coolant inlet and oriented to distribute said coolant fluid in a manner to establish a minimum temperature plane parallel to said reflective surface, a temperature stabilization plate interposed between said front plate and said minimum temperature plate and formed with a plurality of coolant distribution channels coupled to receive said coolant fluid after said coolant fluid has passed in heat exchanging relation with said reflective surface and oriented to distribute said coolant fluid in a manner to establish a uniform temperature plane parallel to said reflective surface, and means for circulating said coolant fluid through said structure in a predetermined path. (U.S.)

  20. Tinbergen on mirror neurons.

    Heyes, Cecilia

    2014-01-01

    Fifty years ago, Niko Tinbergen defined the scope of behavioural biology with his four problems: causation, ontogeny, survival value and evolution. About 20 years ago, there was another highly significant development in behavioural biology-the discovery of mirror neurons (MNs). Here, I use Tinbergen's original four problems (rather than the list that appears in textbooks) to highlight the differences between two prominent accounts of MNs, the genetic and associative accounts; to suggest that the latter provides the defeasible 'best explanation' for current data on the causation and ontogeny of MNs; and to argue that functional analysis, of the kind that Tinbergen identified somewhat misleadingly with studies of 'survival value', should be a high priority for future research. In this kind of functional analysis, system-level theories would assign MNs a small, but potentially important, role in the achievement of action understanding-or another social cognitive function-by a production line of interacting component processes. These theories would be tested by experimental intervention in human and non-human animal samples with carefully documented and controlled developmental histories.

  1. Transmission X-ray mirror

    Lairson, B.M.; Bilderback, D.H.

    1982-01-01

    Transmission X-ray mirrors have been made from 400 A to 10 000 A thick soap films and have been shown to have novel properties. Using grazing angles of incidence, low energy X-rays were reflected from the front surface while more energetic X-rays were transmitted through the mirror largely unattenuated. A wide bandpass monochromator was made from a silicon carbide mirror followed by a soap film transmission mirror and operated in the white beam at the cornell High Energy Synchrotron Source (CHESS). Bandpasses of ΔE/E=12% to 18% were achieved at 13 keV with peak efficiencies estimated to be between 55% and 75%, respectively. Several wide angle scattering photographs of stretched polyethylene and a phospholipid were obtained in 10 s using an 18% bandpass. (orig.)

  2. Mirror symmetry and loop operators

    Assel, Benjamin [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, Ontario, N2L 2Y5 (Canada)

    2015-11-09

    Wilson loops in gauge theories pose a fundamental challenge for dualities. Wilson loops are labeled by a representation of the gauge group and should map under duality to loop operators labeled by the same data, yet generically, dual theories have completely different gauge groups. In this paper we resolve this conundrum for three dimensional mirror symmetry. We show that Wilson loops are exchanged under mirror symmetry with Vortex loop operators, whose microscopic definition in terms of a supersymmetric quantum mechanics coupled to the theory encode in a non-trivial way a representation of the original gauge group, despite that the gauge groups of mirror theories can be radically different. Our predictions for the mirror map, which we derive guided by branes in string theory, are confirmed by the computation of the exact expectation value of Wilson and Vortex loop operators on the three-sphere.

  3. Mirror Neurons from Associative Learning

    Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2016-01-01

    Mirror neurons fire both when executing actions and observing others perform similar actions. Their sensorimotor matching properties have generally been considered a genetic adaptation for social cognition; however, in the present chapter we argue that the evidence in favor of this account is not compelling. Instead we present evidence supporting an alternative account: that mirror neurons’ matching properties arise from associative learning during individual development. Notably, this proces...

  4. MARS: Mirror Advanced Reactor Study

    Logan, B.G.

    1984-01-01

    A recently completed two-year study of a commercial tandem mirror reactor design [Mirror Advanced Reactor Study (MARS)] is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted

  5. Onset of superradiant instabilities in the composed Kerr-black-hole–mirror bomb

    Hod, Shahar [The Ruppin Academic Center, Emeq Hefer 40250 (Israel); The Hadassah Institute, Jerusalem 91010 (Israel)

    2014-09-07

    It was first pointed out by Press and Teukolsky that a system composed of a spinning Kerr black hole surrounded by a reflecting mirror may develop instabilities. The physical mechanism responsible for the development of these exponentially growing instabilities is the superradiant amplification of bosonic fields confined between the black hole and the mirror. A remarkable feature of this composed black-hole–mirror-field system is the existence of a critical mirror radius, r{sub m}{sup stat}, which supports stationary (marginally-stable) field configurations. This critical (‘stationary’) mirror radius marks the boundary between stable and unstable black-hole–mirror-field configurations: composed systems whose confining mirror is situated in the region r{sub m}modes of the confined field decay in time), whereas composed systems whose confining mirror is situated in the region r{sub m}>r{sub m}{sup stat} are unstable (that is, there are confined field modes which grow exponentially over time). In the present paper we explore this critical (marginally-stable) boundary between stable and explosive black-hole–mirror-field configurations. It is shown that the innermost (smallest) radius of the confining mirror which allows the extraction of rotational energy from a spinning Kerr black hole approaches the black-hole horizon radius in the extremal limit of rapidly-rotating black holes. We find, in particular, that this critical mirror radius (which marks the onset of superradiant instabilities in the composed system) scales linearly with the black-hole temperature.

  6. Advances in telescope mirror cleaning

    Blanken, Maarten F.; Chopping, Alan K.; Dee, Kevin M.

    2004-09-01

    Metrology and cleaning techniques for telescope mirrors are generally well established. CO2 cleaning and water washing are mainly used. Water washing has proven to be the best method of removing oil and water stains and restoring the aluminium to nearly fresh values. The risk of water getting to unwanted places such as electronics or other optics prevents this method from being employed more often. Recently the Isaac Newton Group introduced a new cleaning technique for their telescope mirrors, which reduces the risks discussed above. This technique uses water vapour instead of water to wash the mirror. The advantage of this method is that the amount of water needed is drastically reduced. In addition the pressure of the vapour will blow away any large dust particles on the mirror and the temperature shock between the vapour and the mirror will help to de-bond the dust particles. Adding a soapy solution will help to clean oil and watermarks of the mirror. This paper describes the vapour cleaning method, tests that have been done and the overall findings.

  7. Evolution of the mirror machine

    Damm, C.C.

    1983-01-01

    The history of the magnetic-mirror approach to a fusion reactor is primarily the history of our understanding and control of several crucial physics issues, coupled with progress in the technology of heating and confining a reacting plasma. The basic requirement of an MHD-stable plasma equilibrium was achieved following the early introduction of minimum-B multipolar magnetic fields. In refined form, the same magnetic-well principle carries over to our present experiments and to reactor designs. The higher frequency microinstabilities, arising from the non-Maxwellian particle distributions inherent in mirror machines, have gradually come under control as theoretical prescriptions for distribution functions have been applied in the experiments. Even with stability, the classical plasma leakage through the mirrors posed a serious question for reactor viability until the principle of electrostatic axial stoppering was applied in the tandem mirror configuration. Experiments to test this principle successfully demonstrated the substantial improvement in confinement predicted. Concurrent with advances in mirror plasma physics, development of both high-power neutral beam injectors and high-speed vacuum pumping techniques has played a crucial role in ongoing experiments. Together with superconducting magnets, cryogenic pumping, and high-power radiofrequency heating, these technologies have evolved to a level that extrapolates readily to meet the requirements of a tandem mirror fusion reactor

  8. Issues facing the U. S. mirror program

    George, T.V.

    1978-07-01

    Some of the current issues associated with the U.S. Magnetic Mirror Program are analyzed. They are presented as five separate papers entitled: (1) Relevant Issues Broughtup by the Mirror Reactor Design Studies. (2) An Assessment of the Design Study of the 1 MeV Neutral Beam Injector Required for a Tandem Mirror Reactor. (3) The Significance of the Radial Plasma Size Measured in Units of Ion Gyroradii in Tandem Mirrors and Field Reversed Mirrors. (4) Producing Field Reversed Mirror Plasmas by Methods used in Field Reversed Theta Pinch. (5) RF Stoppering of Mirror Confined Plasma.

  9. Use of ENVISAT ASAR Global Monitoring Mode to complement optical data in the mapping of rapid broad-scale flooding in Pakistan

    D. O'Grady

    2011-11-01

    Full Text Available Envisat ASAR Global Monitoring Mode (GM data are used to produce maps of the extent of the flooding in Pakistan which are made available to the rapid response effort within 24 h of acquisition. The high temporal frequency and independence of the data from cloud-free skies makes GM data a viable tool for mapping flood waters during those periods where optical satellite data are unavailable, which may be crucial to rapid response disaster planning, where thousands of lives are affected. Image differencing techniques are used, with pre-flood baseline image backscatter values being deducted from target values to eliminate regions with a permanent flood-like radar response due to volume scattering and attenuation, and to highlight the low response caused by specular reflection by open flood water. The effect of local incidence angle on the received signal is mitigated by ensuring that the deducted image is acquired from the same orbit track as the target image. Poor separability of the water class with land in areas beyond the river channels is tackled using a region-growing algorithm which seeks threshold-conformance from seed pixels at the center of the river channels. The resultant mapped extents are tested against MODIS SWIR data where available, with encouraging results.

  10. Simultaneous measurements of global vibrational spectra and dephasing times of molecular vibrational modes by broadband time-resolved coherent anti-Stokes Raman scattering spectrography

    Yin Jun; Yu Ling-Yao; Liu Xing; Wan Hui; Lin Zi-Yang; Niu Han-Ben

    2011-01-01

    In broadband coherent anti-Stokes Raman scattering (CARS) spectroscopy with supercontinuum (SC), the simultaneously detectable spectral coverage is limited by the spectral continuity and the simultaneity of various spectral components of SC in an enough bandwidth. By numerical simulations, the optimal experimental conditions for improving the SC are obtained. The broadband time-resolved CARS spectrography based on the SC with required temporal and spectral distributions is realised. The global molecular vibrational spectrum with well suppressed nonresonant background noise can be obtained in a single measurement. At the same time, the measurements of dephasing times of various molecular vibrational modes can be conveniently achieved from intensities of a sequence of time-resolved CARS signals. It will be more helpful to provide a complete picture of molecular vibrations, and to exhibit a potential to understand not only both the solvent dynamics and the solute-solvent interactions, but also the mechanisms of chemical reactions in the fields of biology, chemistry and material science. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Study of the L-mode tokamak plasma “shortfall” with local and global nonlinear gyrokinetic δf particle-in-cell simulation

    Chowdhury, J.; Wan, Weigang; Chen, Yang; Parker, Scott E. [Department of Physics, University of Colorado, Boulder, Colorado 80309 (United States); Groebner, Richard J. [General Atomics, Post Office Box 85068, San Diego, California 92186 (United States); Holland, C. [University of California at San Diego, La Jolla, California 92093 (United States); Howard, N. T. [Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee 37831 (United States)

    2014-11-15

    The δ f particle-in-cell code GEM is used to study the transport “shortfall” problem of gyrokinetic simulations. In local simulations, the GEM results confirm the previously reported simulation results of DIII-D [Holland et al., Phys. Plasmas 16, 052301 (2009)] and Alcator C-Mod [Howard et al., Nucl. Fusion 53, 123011 (2013)] tokamaks with the continuum code GYRO. Namely, for DIII-D the simulations closely predict the ion heat flux at the core, while substantially underpredict transport towards the edge; while for Alcator C-Mod, the simulations show agreement with the experimental values of ion heat flux, at least within the range of experimental error. Global simulations are carried out for DIII-D L-mode plasmas to study the effect of edge turbulence on the outer core ion heat transport. The edge turbulence enhances the outer core ion heat transport through turbulence spreading. However, this edge turbulence spreading effect is not enough to explain the transport underprediction.

  12. Applying alpha-channeling to mirror machines

    Zhmoginov, A. I.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  13. Feasibility Studies of Alpha-Channeling in Mirror Machines

    Zhmoginov, A.I.; Fisch, N.J.

    2010-01-01

    The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the α-channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting α particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for α-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for α particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

  14. Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate

    Deng, Yi [Georgia Inst. of Technology, Atlanta, GA (United States)

    2014-11-24

    DOE-GTRC-05596 11/24/2104 Collaborative Research: Process-Resolving Decomposition of the Global Temperature Response to Modes of Low Frequency Variability in a Changing Climate PI: Dr. Yi Deng (PI) School of Earth and Atmospheric Sciences Georgia Institute of Technology 404-385-1821, yi.deng@eas.gatech.edu El Niño-Southern Oscillation (ENSO) and Annular Modes (AMs) represent respectively the most important modes of low frequency variability in the tropical and extratropical circulations. The projection of future changes in the ENSO and AM variability, however, remains highly uncertain with the state-of-the-science climate models. This project conducted a process-resolving, quantitative evaluations of the ENSO and AM variability in the modern reanalysis observations and in climate model simulations. The goal is to identify and understand the sources of uncertainty and biases in models’ representation of ENSO and AM variability. Using a feedback analysis method originally formulated by one of the collaborative PIs, we partitioned the 3D atmospheric temperature anomalies and surface temperature anomalies associated with ENSO and AM variability into components linked to 1) radiation-related thermodynamic processes such as cloud and water vapor feedbacks, 2) local dynamical processes including convection and turbulent/diffusive energy transfer and 3) non-local dynamical processes such as the horizontal energy transport in the oceans and atmosphere. In the past 4 years, the research conducted at Georgia Tech under the support of this project has led to 15 peer-reviewed publications and 9 conference/workshop presentations. Two graduate students and one postdoctoral fellow also received research training through participating the project activities. This final technical report summarizes key scientific discoveries we made and provides also a list of all publications and conference presentations resulted from research activities at Georgia Tech. The main findings include

  15. Actuators of 3-element unimorph deformable mirror

    Fu, Tianyang; Ning, Yu; Du, Shaojun

    2016-10-01

    Kinds of wavefront aberrations exist among optical systems because of atmosphere disturbance, device displacement and a variety of thermal effects, which disturb the information of transmitting beam and restrain its energy. Deformable mirror(DM) is designed to adjust these wavefront aberrations. Bimorph DM becomes more popular and more applicable among adaptive optical(AO) systems with advantages in simple structure, low cost and flexible design compared to traditional discrete driving DM. The defocus aberration accounted for a large proportion of all wavefront aberrations, with a simpler surface and larger amplitude than others, so it is very useful to correct the defocus aberration effectively for beam controlling and aberration adjusting of AO system. In this study, we desired on correcting the 3rd and 10th Zernike modes, analyze the characteristic of the 3rd and 10th defocus aberration surface distribution, design 3-element actuators unimorph DM model study on its structure and deformation principle theoretically, design finite element models of different electrode configuration with different ring diameters, analyze and compare effects of different electrode configuration and different fixing mode to DM deformation capacity through COMSOL finite element software, compare fitting efficiency of DM models to the 3rd and 10th Zernike modes. We choose the inhomogeneous electrode distribution model with better result, get the influence function of every electrode and the voltage-PV relationship of the model. This unimorph DM is suitable for the AO system with a mainly defocus aberration.

  16. The mirror-neuron system.

    Rizzolatti, Giacomo; Craighero, Laila

    2004-01-01

    A category of stimuli of great importance for primates, humans in particular, is that formed by actions done by other individuals. If we want to survive, we must understand the actions of others. Furthermore, without action understanding, social organization is impossible. In the case of humans, there is another faculty that depends on the observation of others' actions: imitation learning. Unlike most species, we are able to learn by imitation, and this faculty is at the basis of human culture. In this review we present data on a neurophysiological mechanism--the mirror-neuron mechanism--that appears to play a fundamental role in both action understanding and imitation. We describe first the functional properties of mirror neurons in monkeys. We review next the characteristics of the mirror-neuron system in humans. We stress, in particular, those properties specific to the human mirror-neuron system that might explain the human capacity to learn by imitation. We conclude by discussing the relationship between the mirror-neuron system and language.

  17. Metamaterial mirrors in optoelectronic devices

    Esfandyarpour, Majid

    2014-06-22

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  18. Metamaterial mirrors in optoelectronic devices

    Esfandyarpour, Majid; Garnett, Erik C.; Cui, Yi; McGehee, Michael D.; Brongersma, Mark L.

    2014-01-01

    The phase reversal that occurs when light is reflected from a metallic mirror produces a standing wave with reduced intensity near the reflective surface. This effect is highly undesirable in optoelectronic devices that use metal films as both electrical contacts and optical mirrors, because it dictates a minimum spacing between the metal and the underlying active semiconductor layers, therefore posing a fundamental limit to the overall thickness of the device. Here, we show that this challenge can be circumvented by using a metamaterial mirror whose reflection phase is tunable from that of a perfect electric mirror († = €) to that of a perfect magnetic mirror († = 0). This tunability in reflection phase can also be exploited to optimize the standing wave profile in planar devices to maximize light-matter interaction. Specifically, we show that light absorption and photocurrent generation in a sub-100 nm active semiconductor layer of a model solar cell can be enhanced by ∼20% over a broad spectral band. © 2014 Macmillan Publishers Limited.

  19. Vertex algebras and mirror symmetry

    Borisov, L.A.

    2001-01-01

    Mirror Symmetry for Calabi-Yau hypersurfaces in toric varieties is by now well established. However, previous approaches to it did not uncover the underlying reason for mirror varieties to be mirror. We are able to calculate explicitly vertex algebras that correspond to holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in toric varieties. We establish the relation between these vertex algebras for mirror Calabi-Yau manifolds. This should eventually allow us to rewrite the whole story of toric mirror symmetry in the language of sheaves of vertex algebras. Our approach is purely algebraic and involves simple techniques from toric geometry and homological algebra, as well as some basic results of the theory of vertex algebras. Ideas of this paper may also be useful in other problems related to maps from curves to algebraic varieties.This paper could also be of interest to physicists, because it contains explicit description of holomorphic parts of A and B models of Calabi-Yau hypersurfaces and complete intersections in terms of free bosons and fermions. (orig.)

  20. Ballooning-mirror instability and internally driven Pc 4--5 wave events

    Cheng, C.Z.; Qian, Q.; Takahashi, K.; Lui, A.T.Y.

    1994-03-01

    A kinetic-MHD field-aligned eigenmode stability analysis of low frequency ballooning-mirror instabilities has been performed for anisotropic pressure plasma sin the magnetosphere. The ballooning mode is mainly a transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy (P perpendicular /P parallel > 1) is large. From the AMPTE/CCE particle and magnetic field data observed during Pc 4--5 wave events the authors compute the ballooning-mirror instability parameters and perform a correlation study with the theoretical instability threshold. They find that compressional Pc 5 waves approximately satisfy the ballooning-mirror instability condition, and transverse Pc 4--5 waves are probably related to resonant ballooning instabilities with small pressure anisotropy

  1. A digital laser for on-demand laser modes

    Ngcobo, S

    2013-08-01

    Full Text Available -cavity digitally addressed holographic mirror. The phase and amplitude of the holographic mirror may be controlled simply by writing a computer- generated hologram in the form of a grey-scale image to the device, for on-demand laser modes. We show that we can...

  2. Comb mode filtering silver mirror cavity for spectroscopic distance measurement

    Šmíd, Radek; Hänsel, A.; Pravdová, Lenka; Sobota, Jaroslav; Číp, Ondřej; Bhattacharya, N.

    2016-01-01

    Roč. 87, č. 9 (2016), 093107:1-8 ISSN 0034-6748 R&D Projects: GA ČR(CZ) GPP102/12/P962; GA ČR GB14-36681G; GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : optical frequency comb * femtosecond laser * long * air Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.515, year: 2016

  3. Anomalous transport in mirror systems

    Post, R.F.

    1979-01-01

    As now being explored for fusion applications confinement systems based on the mirror principle embody two kinds of plasma regimes. These two regimes are: (a) high-beta plasmas, stabilized against MHD and other low frequency plasma instabilities by magnetic-well fields, but characterized by non-Maxwellian ion distributions; (b) near-Maxwellian plasmas, confined electrostatically (as in the tandem mirror) or in a field-reversed region within the mirror cell. Common to both situations are the questions of anomalous transport owing to high frequency instabilities in the non-maxwellian portions of the plasmas. This report will summarize the status of theory and of experimental data bearing on these questions, with particular reference to the high temperature regimes of interest for fusion power

  4. Concept study of an automatic ellipsoidal mirror furnace facility, prephase A. Volume 1: Executive summary

    Stapelmann, J.

    1982-11-01

    A 1500C (max) mirror for materials science experiments and for growing 40 mm crystals under microgravity in an add-on payload for a retrievable carrier is proposed. Parts of the Spacelab mirror furnaces which can be used are identified. Design solutions for modifications due to experimental requirements or to the automatic operation mode are developed. The complete new parts of the facility, such as the sample storage and exchange mechanism (SSEM) were investigated, and design solutions are presented. A design featuring two monoellipsoidal mirror furnaces with the SSEM situated in between, and no active control, is favored.

  5. Fokker-Planck equation in mirror research

    Post, R.F.

    1983-01-01

    Open confinement systems based on the magnetic mirror principle depend on the maintenance of particle distributions that may deviate substantially from Maxwellian distributions. Mirror research has therefore from the beginning relied on theoretical predictions of non-equilibrium rate processes obtained from solutions to the Fokker-Planck equation. The F-P equation plays three roles: Design of experiments, creation of classical standards against which to compare experiment, and predictions concerning mirror based fusion power systems. Analytical and computational approaches to solving the F-P equation for mirror systems will be reviewed, together with results and examples that apply to specific mirror systems, such as the tandem mirror

  6. Neoclassical resonant transport of a mirror cell

    Ito, T.; Katanuma, I.

    2005-01-01

    The neoclassical resonant plateau transport in a mirror cell is studied theoretically. The analytical expression for a non-square-well magnetic field is obtained. The analytical result is applied to the GAMMA10 tandem mirror [T. Cho, M. Yoshida, J. Kohagura et al., Phys. Rev. Lett. 94, 085002-1 (2005)], which consists of several mirror cells in it, and the confinement time due to the neoclassical resonant plateau transport is determined in each mirror cell. It is found that the neoclassical resonant transport of ions trapped in the nonaxisymmetric anchor mirror cell and transition mirror cells is significantly smaller than those trapped in the central cell

  7. Bifurcated transition of radial transport in the HIEI tandem mirror

    Sakai, O.; Yasaka, Y.

    1995-01-01

    Transition to a high radial confinement mode in a mirror plasma is triggered by limiter biasing. Sheared plasma rotation is induced in the high confinement phase which is characterized by reduction of edge turbulence and a confinement enhancement factor of 2-4. Edge plasma parameters related to radial confinement show a hysteresis phenomenon as a function of bias voltage or bias current, leading to the fact that transition from low to high confinement mode occurs between the bifurcated states. A transition model based on azimuthal momentum balance is employed to clarify physics of the observed bifurcation. copyright 1995 American Institute of Physics

  8. Mirror Advanced Reactor Study (MARS)

    Logan, B.G.

    1983-01-01

    Progress in a two year study of a 1200 MWe commercial tandem mirror reactor (MARS - Mirror Advanced Reactor Study) has reached the point where major reactor system technologies are identified. New design features of the magnets, blankets, plug heating systems and direct converter are described. With the innovation of radial drift pumping to maintain low plug density, reactor recirculating power fraction is reduced to 20%. Dominance of radial ion and impurity losses into the halo permits gridless, circular direct converters to be dramatically reduced in size. Comparisons of MARS with the Starfire tokamak design are made

  9. The Mirror in the Ground

    Shepherd, Nick

    An important and original contribution to the study of the archive, The Mirror in the Ground approaches the discipline of archaeology in South Africa from the perspective of an interest in visualities. Author Nick Shepherd argues that it makes sense to talk about an archaeological aesthetics...... at the University of Cape Town, where he convenes a graduate programme on Public Culture and Heritage. The Mirror in the Ground is the first volume in the relaunched Series in Visual Histories, produced by the Centre for Curating the Archive (CCA) at the University of Cape Town....

  10. Mirror Fusion Test Facility magnet

    Henning, C.H.; Hodges, A.J.; Van Sant, J.H.; Hinkle, R.E.; Horvath, J.A.; Hintz, R.E.; Dalder, E.; Baldi, R.; Tatro, R.

    1979-01-01

    The Mirror Fusion Test Facility (MFTF) is the largest of the mirror program experiments for magnetic fusion energy. It seeks to combine and extend the near-classical plasma confinement achieved in 2XIIB with the most advanced neutral-beam and magnet technologies. The product of ion density and confinement time will be improved more than an order of magnitude, while the superconducting magnet weight will be extrapolated from the 15 tons in Baseball II to 375 tons in MFTF. Recent reactor studies show that the MFTF will traverse much of the distance in magnet technology towards the reactor regime. Design specifics of the magnet are given

  11. Picard-Fuchs uniformization and modularity of the mirror map

    Doran, C.F.

    2000-01-01

    Arithmetic properties of mirror symmetry (type IIA-IIB string duality) are studied. We give criteria for the mirror map q-series of certain families of Calabi-Yau manifolds to be automorphic functions. For families of elliptic curves and lattice polarized K3 surfaces with surjective period mappings, global Torelli theorems allow one to present these criteria in terms of the ramification behavior of natural algebraic invariants - the functional and generalized functional invariants respectively. In particular, when applied to one parameter families of rank 19 lattice polarized K3 surfaces, our criterion demystifies the mirror-Moonshine phenomenon of Lian and Yau and highlights its non-monstrous nature. The lack of global Torelli theorems and presence of instanton corrections makes Calabi-Yau threefold families more complicated. Via the constraints of special geometry, the Picard-Fuchs equations for one parameter families of Calabi-Yau threefolds imply a differential equation criterion for automorphicity of the mirror map in terms of the Yukawa coupling. In the absence of instanton corrections, the projective periods map to a twisted cubic space curve. A hierarchy of ''algebraic'' instanton corrections correlated with the differential Galois group of the Picard-Fuchs equation is proposed. (orig.)

  12. Design and simulation of the surface shape control system for membrane mirror

    Zhang, Gengsheng; Tang, Minxue

    2009-11-01

    The surface shape control is one of the key technologies for the manufacture of membrane mirror. This paper presents a design of membrane mirror's surface shape control system on the basis of fuzzy logic control. The system contains such function modules as surface shape design, surface shape control, surface shape analysis, and etc. The system functions are realized by using hybrid programming technology of Visual C# and MATLAB. The finite element method is adopted to simulate the surface shape control of membrane mirror. The finite element analysis model is established through ANSYS Parametric Design Language (APDL). ANSYS software kernel is called by the system in background running mode when doing the simulation. The controller is designed by means of controlling the sag of the mirror's central crosssection. The surface shape of the membrane mirror and its optical aberration are obtained by applying Zernike polynomial fitting. The analysis of surface shape control and the simulation of disturbance response are performed for a membrane mirror with 300mm aperture and F/2.7. The result of the simulation shows that by using the designed control system, the RMS wavefront error of the mirror can reach to 142λ (λ=632.8nm), which is consistent to the surface accuracy of the membrane mirror obtained by the large deformation theory of membrane under the same condition.

  13. Timecourse of mirror and counter-mirror effects measured with transcranial magnetic stimulation.

    Cavallo, Andrea; Heyes, Cecilia; Becchio, Cristina; Bird, Geoffrey; Catmur, Caroline

    2014-08-01

    The human mirror system has been the subject of much research over the past two decades, but little is known about the timecourse of mirror responses. In addition, it is unclear whether mirror and counter-mirror effects follow the same timecourse. We used single-pulse transcranial magnetic stimulation to investigate the timecourse of mirror and counter-mirror responses in the human brain. Experiment 1 demonstrated that mirror responses can be measured from around 200 ms after observed action onset. Experiment 2 demonstrated significant effects of counter-mirror sensorimotor training at all timepoints at which a mirror response was found in Experiment 1 (i.e. from 200 ms onward), indicating that mirror and counter-mirror responses follow the same timecourse. By suggesting similarly direct routes for mirror and counter-mirror responses, these results support the associative account of mirror neuron origins whereby mirror responses arise as a result of correlated sensorimotor experience during development. More generally, they contribute to theorizing regarding mirror neuron function by providing some constraints on how quickly mirror responses can influence social cognition. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  14. The effect of transverse multi-mode oscillation in passively modelocked solid-state lasers

    Agnesi, A.; Reali, G. C.; Gabetta, G.

    1992-03-01

    We demonstrate that the pulses from a passively mode-locked flashlamp pumped solid-state laser can be considerably shorter using an antiresonant-ring mirror than using a linear cavity with a standard contacted dye-cell mirror, and we suggest that transverse-mode-filtering effects in the antiresonant ring play an important role in explaining this difference.

  15. On four dimensional mirror symmetry

    Losev, A.; Nekrasov, N.; Shatashvili, S.

    2000-01-01

    A conjecture relating instanton calculus in four dimensional supersymmetric theories and the deformation theory of Lagrangian submanifolds in C 2r invariant under a (subgroup of) Sp(2r,Z) is formulated. This is a four dimensional counterpart of the mirror symmetry of topological strings (relating Gromov-Witten invariants and generalized variations of Hodge structure). (orig.)

  16. Mirror model for sterile neutrinos

    Berezinsky, Veniamin; Narayan, Mohan; Vissani, Francesco

    2003-01-01

    Sterile neutrinos are studied as subdominant contribution to solar neutrino physics. The mirror-matter neutrinos are considered as sterile neutrinos. We use the symmetric mirror model with gravitational communication between mirror and visible sectors. This communication term provides mixing between visible and mirror neutrinos with the basic scale μ=v EW 2 /M Pl =2.5x10 -6 eV, where v EW =174 GeV is the vacuum expectation value of the standard electroweak group and M Pl is the Planckian mass. It is demonstrated that each mass eigenstate of active neutrinos splits into two states separated by small Δm 2 . Unsuppressed oscillations between active and sterile neutrinos (ν a ↔ν s ) occur only in transitions between each of these close pairs ('windows'). These oscillations are characterized by very small Δm 2 and can suppress the flux and distort spectrum of pp-neutrinos in detectable way. The other observable effect is anomalous seasonal variation of neutrino flux, which appears in LMA solution. The considered subdominant neutrino oscillations ν a ↔ν s can reveal itself as big effects in observations of supernova neutrinos and high-energy (HE) neutrinos. In the case of HE neutrinos they can provide a very large diffuse flux of active neutrinos unconstrained by the e-m cascade upper limit

  17. Mirror Confinement Systems: project summaries

    1980-07-01

    This report contains descriptions of the projects supported by the Mirror Confinement Systems (MCS) Division of the Office of Fusion Energy. The individual project summaries were prepared by the principal investigators, in collaboration with MCS staff office, and include objectives and milestones for each project. In addition to project summaries, statements of Division objectives and budget summaries are also provided

  18. MHD stability of tandem mirrors

    Poulsen, P.; Molvik, A.; Shearer, J.

    1982-01-01

    The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration

  19. Status of tandem mirror theory

    Baldwin, D.E.

    1979-01-01

    This report contains the text and slides used for the review talk on tandem mirror theory presented at the meeting of the Division of Plasma Physics, A.P.S., Boston, MA, November 12-16, 1979. Topics covered include classical confinement, equilibria, MHD- and micro-stability, radial transport, and thermal barriers

  20. Mirror research: status and prospects

    Baldwin, D.E.

    1983-01-01

    The tandem mirror program has evolved considerably in the last decade. Of significance is the viable reactor concept embodied in the MARS design. An aggressive experimental program culminating in the operation of MFTF-B in late 1986, will provide a firm basis for refining the MARS design as necessary for constructing a reactor prototype in the 1990s

  1. Three mirror pairs of fermion families

    Montvay, I.

    1988-01-01

    A simple model with three mirror pairs of fermion families is considered which allows for a substantial mixing between the mirror fermion partners without conflicting with known phenomenology. (orig.)

  2. Mounting and Alignment of IXO Mirror Segments

    Chan, Kai-Wing; Zhang, William; Evans, Tyler; McClelland, Ryan; Hong, Melinda; Mazzarella, James; Saha, Timo; Jalota, Lalit; Olsen, Lawrence; Byron, Glenn

    2010-01-01

    A suspension-mounting scheme is developed for the IXO (International X-ray Observatory) mirror segments in which the figure of the mirror segment is preserved in each stage of mounting. The mirror, first fixed on a thermally compatible strongback, is subsequently transported, aligned and transferred onto its mirror housing. In this paper, we shall outline the requirement, approaches, and recent progress of the suspension mount processes.

  3. Plasma impact on diagnostic mirrors in JET

    A. Garcia-Carrasco; P. Petersson; M. Rubel; A. Widdowson; E. Fortuna-Zalesna; S. Jachmich; M. Brix; L. Marot

    2017-01-01

    Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experi...

  4. X-ray imaging with toroidal mirror

    Aoki, Sadao; Sakayanagi, Yoshimi

    1978-01-01

    X-ray imaging is made with a single toroidal mirror or two successive toroidal mirrors. Geometrical images at the Gaussian image plane are described by the ray trace. Application of a single toroidal mirror to small-angle scattering is presented. (author)

  5. A generalized construction of mirror manifolds

    Berglund, P.; Huebsch, T.

    1993-01-01

    We generalize the known method for explicit construction of mirror pairs of (2,2)-superconformal field theories, using the formalism of Landau-Ginzburg orbifolds. Geometrically, these theories are realized as Calabi-Yau hypersurfaces in weighted projective spaces. This generalization makes it possible to construct the mirror partners of many manifolds for which the mirror was not previously known. (orig.)

  6. The mirror neuron system : New frontiers

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into Studying their location and properties in the human brain. Here we review these original findings and introduce the Main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror

  7. Tandem mirror next step conceptual design

    Doggett, J.N.; Damm, C.C.; Bulmer, R.H.

    1980-01-01

    A study was made to define the features of the experimental mirror fusion device - The Tandem Mirror Next Step, or TMNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. We outline the project goals, describe some initial device parameters, and relate the technological requirements to ongoing development programs

  8. Theory of ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere

    Cheng, C.Z.; Qian, Q.

    1993-09-01

    This paper deals with a kinetic-MHD eigenmode stability analysis of low frequency ballooning-mirror instabilities for anisotropic pressure plasmas in the magnetosphere. The ballooning mode is a dominant transverse wave driven unstable by pressure gradient in the bad curvature region. The mirror mode with a dominant compressional magnetic field perturbation is excited when the product of plasma beta and pressure anisotropy is large. The field-aligned eigenmode equations take into account the coupling of the transverse and compressional components of the perturbed magnetic field and describe the coupled ballooning-mirror mode. Because the energetic trapped ions precess very rapidly across the rvec B field, their motion becomes very rigid with respect to low frequency MHD perturbations with symmetric structure of parallel perturbed magnetic field δB parallel and electrostatic potential Φ along the north-south ambient magnetic field, and the symmetric ballooning-mirror mode is shown to be stable. On the other hand, the ballooning-mirror mode with antisymmetric δB parallel , and Φ structure along the north-south ambient magnetic field is only weakly influenced by energetic trapped particle kinetic effects due to rapid trapped particle bounce motion and has the lowest instability threshold determined by MHD theory. With large plasma beta (β parallel ≥ O(1)) and pressure anisotropy (P perpendicular /P parallel > 1) at equator the antisymmetric ballooning-mirror mode structures resemble the field-aligned wave structures of the multisatellite observations of a long lasting compressional Pc 5 wave event during November 14--15, 1979 [Takahashi et al.]. The study provides the theoretical basis for identifying the internal excitation mechanism of ULF (Pc 4-5) waves by comparing the plasma stability parameters computed from the satellite particle data with the theoretical values

  9. EUV multilayer mirror, optical system including a multilayer mirror and method of manufacturing a multilayer mirror

    Huang, Qiushi; Louis, Eric; Bijkerk, Frederik; de Boer, Meint J.; von Blanckenhagen, G.

    2016-01-01

    A multilayer mirror (M) reflecting extreme ultraviolet (EUV) radiation from a first wave-length range in a EUV spectral region comprises a substrate (SUB) and a stack of layers (SL) on the substrate, the stack of layers comprising layers comprising a low index material and a high index material, the

  10. Physics issues in mirror and tandem mirror systems

    Post, R.F.

    1984-01-01

    Over the years the study of the confinement of high temperature plasma in magnetic mirror systems has presented researchers with many unusual physics problems. Many of these issues are by now understood theoretically and documented experimentally. With the advent of the tandem mirror idea, some new issues have emerged and are now under intensive study. These include: (1) the generation and control of ambipolar confining potentials and their effect on axial confinement and, (2) the combined influence of nonaxisymmetric magnetic fields (used to ensure MHD stability) and electric magnetic particle drifts on radial transport. Physics considerations associated with these two categories of issues will be reviewed, including concepts for the control of radial transport, under study or proposed

  11. Wave induced supersonic rotation in mirrors

    Fetterman, Abraham

    2010-11-01

    Wave-particle interactions in ExB supersonically rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy [1]. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field [2]. In the rotating frame, this perturbation is seen as a wave near the alpha particle cyclotron harmonic, and can break the azimuthal symmetry and magnetic moment conservation without changing the particle's total energy. The particle may exit if it reduces its kinetic energy and becomes more trapped if it gains kinetic energy, leading to a steady state current that maintains the field. Simulations of single particles in rotating mirrors show that a stationary wave can extract enough energy from alpha particles for a reactor to be self-sustaining. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation [3]. [4pt] [1] A. J. Fetterman and N. J. Fisch, Phys Rev Lett 101, 205003 (2008). [0pt] [2] A. J. Fetterman and N. J. Fisch, Phys. Plasmas 17, 042112 (2010). [0pt] [3] A. J. Fetterman and N. J. Fisch, Plasma Sources Sci. Tech. 18, 045003 (2009).

  12. Spectral singularities, threshold gain, and output intensity for a slab laser with mirrors

    Doğan, Keremcan; Mostafazadeh, Ali; Sarısaman, Mustafa

    2018-05-01

    We explore the consequences of the emergence of linear and nonlinear spectral singularities in TE modes of a homogeneous slab of active optical material that is placed between two mirrors. We use the results together with two basic postulates regarding the behavior of laser light emission to derive explicit expressions for the laser threshold condition and output intensity for these modes of the slab and discuss their physical implications. In particular, we reveal the details of the dependence of the threshold gain and output intensity on the position and properties of the mirrors and on the real part of the refractive index of the gain material.

  13. Nightmare frequency is related to a propensity for mirror behaviors.

    Nielsen, Tore; Powell, Russell A; Kuiken, Don

    2013-12-01

    We previously reported that college students who indicated engaging in frequent dream-enacting behaviors also scored high on a new measure of mirror behaviors, which is the propensity to imitate another person's emotions or actions. Since dream-enacting behaviors are frequently the culmination of nightmares, one explanation for the observed relationship is that individuals who frequently display mirror behaviors are also prone to nightmares. We used the Mirror Behavior Questionnaire (MBQ) and self-reported frequencies of nightmares to assess this possibility. A sample of 480 students, consisting of 188 males (19.2±1.73 years) and 292 females (19.0±1.55 years) enrolled in a first-year university psychology course, participated for course credit. They completed a battery of questionnaires that included the 16-item MBQ, plus an item about nightmare frequency (NMF) in the past 30 days. NMF scores were split to create low, medium, and high NMF groups. MBQ total scores were significantly higher for female than for male subjects, but an interaction revealed that this was true only for Hi-NMF subjects. MBQ Factor 4, Motor Skill Imitation, paralleled this global interaction for females, whereas MBQ Factor 3, Sleepiness/Anger Contagion, was elevated only for Hi-NMF males. Item analyses indicated that Hi- and Med-NMF females scored higher than Lo-NMF females on the 3 items of Factor 4 that reflect voluntary imitation (imitating famous/cartoon voices, being a physically active spectator, and learning new skills by observing), as well as on 2 other items that reflect involuntary imitation (contagious yawning and self-rated empathy). Although Hi- and Lo-NMF males differed most clearly on the sleepiness item of Factor 3, all 3 items on this factor (including anger contagion and contagious yawning) are plausibly associated with perception of and response to social threat. Results provide evidence that among females nightmares are associated with voluntary and involuntary mirror

  14. Mirror hybrid reactor optimization studies

    Bender, D.J.

    1976-01-01

    A system model of the mirror hybrid reactor has been developed. The major components of the model include (1) the reactor description, (2) a capital cost analysis, (3) various fuel management schemes, and (4) an economic analysis that includes the hybrid plus its associated fission burner reactors. The results presented describe the optimization of the mirror hybrid reactor, the objective being to minimize the cost of electricity from the hybrid fission-burner reactor complex. We have examined hybrid reactors with two types of blankets, one containing natural uranium, the other thorium. The major difference between the two optimized reactors is that the uranium hybrid is a significant net electrical power producer, whereas the thorium hybrid just about breaks even on electrical power. Our projected costs for fissile fuel production are approximately 50 $/g for 239 Pu and approximately 125 $/g for 233 U

  15. Mirror Fusion vacuum technology developments

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  16. Mirror fusion vacuum technology developments

    Batzer, T.H.; Call, W.R.

    1983-01-01

    Magnetic Mirror Fusion experiments, such as MFTF-B+T (Mirror Fusion Test Facility-B, Tritium Upgrade) and foreseeable follow-on devices, have operational and maintenance requirements that have not yet been fully demonstrated. Among those associated with vacuum technology are the very-high continuous-pumping speeds, 10 7 to 10 8 l/s for D 2 , T 2 and, to a lesser extent, He; the early detection of water leaks from the very-high heat-flux neutral-beam dumps and the detection and location of leaks in the superconducting magnets not protected by guard vacuums. Possible solutions to these problems have been identified and considerable progress has been made toward successfully demonstrating their feasibility

  17. Imitation, empathy, and mirror neurons.

    Iacoboni, Marco

    2009-01-01

    There is a convergence between cognitive models of imitation, constructs derived from social psychology studies on mimicry and empathy, and recent empirical findings from the neurosciences. The ideomotor framework of human actions assumes a common representational format for action and perception that facilitates imitation. Furthermore, the associative sequence learning model of imitation proposes that experience-based Hebbian learning forms links between sensory processing of the actions of others and motor plans. Social psychology studies have demonstrated that imitation and mimicry are pervasive, automatic, and facilitate empathy. Neuroscience investigations have demonstrated physiological mechanisms of mirroring at single-cell and neural-system levels that support the cognitive and social psychology constructs. Why were these neural mechanisms selected, and what is their adaptive advantage? Neural mirroring solves the "problem of other minds" (how we can access and understand the minds of others) and makes intersubjectivity possible, thus facilitating social behavior.

  18. Mirror decay of $^{75}$Sr

    Huikari, J; Algora, A; Cederkäll, J; Courtin, S; Dessagne, P; Fraile-Prieto, L M; Franchoo, S; Fynbo, H O U; Huang Wan Xia; Jokinen, A; Knipper, A; Maréchal, F; Miehé, C; Nácher, E; Peräjärvi, K; Poirier, E; Weissman, L; Äystö, J

    2003-01-01

    The beta -decay of /sup 75/Sr to its mirror nucleus /sup 75/Rb was studied at the ISOLDE PSB facility at CERN by means of beta -delayed gamma and proton spectroscopy. The decay Q-value and beta -delayed gamma intensity were measured for the first time. These results, 10.60+or-0.22 MeV and 4.5/sub -0.7//sup +1.9/%, together with accurate measurements of the beta -decay half-life and beta -delayed proton branching ratio yielded the Gamow-Teller strength 0.35+or-0.05 for the mirror transition. Implications of the results on studies of deformation effects and on the path of the rapid proton capture process are discussed. (24 refs).

  19. MINIMARS tandem mirror reactor study

    Perkins, L.J.; Logan, B.G.; Doggett, J.N.

    1986-01-01

    During 1985-1986, Lawrence Livermore National Lab., in partnership with the Fusion Engineering Design Center of Oak Ridge National Lab., the Univ. of Wisconsin, TRW, Grumman Aerospace Corporation, General Dynamics/Convair, Argonne National Lab., and the Canadian Fusion Fuels Technology Project, has conducted the conceptual design of MINIMARS, a small commercial tandem mirror reactor with novel octopole end plugs. With a net electric output of 600 MW(e), MINIMARS is expressly designed for short (∼4- to 5-yr) construction time, factory-built modules, and a passively safe blanket and thermal cycle. In this way, we intend to achieve a small reactor based on the tandem mirror principle that will minimize utility financial risk, thereby providing an attractive alternative to the more conventional large fusion plant designs encountered to date

  20. Configuration and layout of the tandem mirror Fusion Power Demonstrator

    Clarkson, I.R.; Neef, W.S.

    1983-01-01

    Studies have been performed during the past year to determine the configuration of a tandem mirror Fusion Power Demonstrator (FPD) machine capable of producing 1750 MW of fusion power. The FPD is seen as the next logical step after the Mirror Fusion Test Facility-B (MFTF-B) toward operation of a power reactor. The design of the FPD machine allows a phased construction: Phase I, a hydrogen or deuterium checkout machine; Phase 2, a DT breakeven machine; Phase 3, development of the Phase 2 machine to provide net power and act as a reactor demonstrator. These phases are essential to the development of remote handling equipment and the design of components that will ultimately be remotely handled. Phasing also permits more modes funding early in the program with some costs committed only after reaching major milestones

  1. Proposed cryogenic Q-factor measurement of mirror substrates

    Nietzsche, Sandor; Zimmer, Anja; Vodel, Wolfgang; Thuerk, Matthias; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany)

    2004-03-07

    The thermal noise of optical components (e.g., end mirrors, beam splitters) is one of the limiting factors of the sensitivity of most of the present interferometric gravitational wave detectors, and it will be limiting in the advanced detectors now being designed. This thermal noise occurs mainly in the optical substrates and their mirror coatings. One possible method for minimizing thermal noise is cooling to cryogenic temperatures, maximizing the mechanical Q and maximizing the eigenfrequencies of the substrate. A new cryogenic apparatus for investigations of the temperature dependency of the Q-factor of several substrate materials down to 4.2 K is proposed. Possible methods of mode excitation and ring down measurement are discussed.

  2. Open trap with ambipolar mirrors

    Dimov, G.I.; Zakajdakov, V.V.; Kishinevskij, M.E.

    1977-01-01

    Results of numerical calculations on the behaviour of a thermonuclear plasma, allowing for α-particles in a trap with longitudinal confinement of the main ions by ambipolar electric fields are presented. This trap is formed by connecting two small-volume ''mirrortrons'' to an ordinary open trap. Into the extreme mirrortrons, approximately 1-MeV ions are introduced continuously by ionization of atomic beams on the plasma, and approximately 10-keV ions are similarly introduced into the main central region of the trap. By a suitable choice of injection currents, the plasma density established in the extreme mirrortrons is higher than in the central region. As a result of the quasi-neutrality condition, a longitudinal ambipolar field forming a potential well not only for electrons but also for the central ions is formed in the plasma. When the depth of the well for the central ions is much greater than their temperature, their life-time considerably exceeds the time of confinement by the magnetic mirrors. As a result, the plasma density is constant over the entire length of the central mirrortron, including the regions near the mirrors, and an ambipolar field is formed only in the extreme mirrortrons. The distribution of central ions and ambipolar potential in the extreme mirrortrons is uniquely determined by the density distribution of fast extreme ions. It is shown in the present study that an amplification coefficient Q as high as desired can, in principle, be reached in the trap under consideration, allowing for α-particles. However, this requires high magnetic fields in the mirrors and a sufficient length of the central mirrotron. It is shown that for moderate values of Q=3-8, it is desirable not to confine the central fast α-particles. To achieve a coefficient of Q=5, it is necessary to create fields of 250 kG in the mirrors, and the length of the trap must not be greater than 100 m. (author)

  3. Imitation, mirror neurons and autism

    Williams, Justin H.G.; Whiten, Andrew; Suddendorf, Thomas; Perrett, David I.

    2001-01-01

    Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show ac...

  4. MHD-Stabilization of Axisymmetric Mirror Systems Using Pulsed ECRH

    Post, R.F.

    2010-01-01

    This paper, part of a continuing study of means for the stabilization of MHD interchange modes in axisymmertric mirror-based plasma confinement systems, is aimed at a preliminary look at a technique that would employ a train of plasma pressure pulses produced by ECRH to accomplish the stabilization. The purpose of using sequentially pulsed ECRH rather than continuous-wave ECRH is to facilitate the localization of the heated-electron plasma pulses in regions of the magnetic field with a strong positive field-line curvature, e. g. in the 'expander' region of the mirror magnetic field, outside the outermost mirror, or in other regions of the field with positive field-line curvature. The technique proposed, of the class known as 'dynamic stabilization,' relies on the time-averaged effect of plasma pressure pulses generated in regions of positive field-line curvature to overcome the destabilizing effect of plasma pressure in regions of negative field-line curvature within the confinement region. As will also be discussed in the paper, the plasma pulses, when produced in regions of the confining having a negative gradient, create transient electric potentials of ambipolar origin, an effect that was studied in 1964 in The PLEIDE experiment in France. These electric fields preserve the localization of the hot-electron plasma pulses for a time determined by ion inertia. It is suggested that it may be possible to use this result of pulsed ECRH not only to help to stabilize the plasma but also to help plug mirror losses in a manner similar to that employed in the Tandem Mirror.

  5. Manufacturability of compact synchrotron mirrors

    Douglas, Gary M.

    1997-11-01

    While many of the government funded research communities over the years have put their faith and money into increasingly larger synchrotrons, such as Spring8 in Japan, and the APS in the United States, a viable market appears to exist for smaller scale, research and commercial grade, compact synchrotrons. These smaller, and less expensive machines, provide the research and industrial communities with synchrotron radiation beamline access at a portion of the cost of their larger and more powerful counterparts. A compact synchrotron, such as the Aurora-2D, designed and built by Sumitomo Heavy Industries, Ltd. of japan (SHI), is a small footprint synchrotron capable of sustaining 20 beamlines. Coupled with a Microtron injector, with 150 MeV of injection energy, an entire facility fits within a 27 meter [88.5 ft] square floorplan. The system, controlled by 2 personal computers, is capable of producing 700 MeV electron energy and 300 mA stored current. Recently, an Aurora-2D synchrotron was purchased from SHI by the University of Hiroshima. The Rocketdyne Albuquerque Operations Beamline Optics Group was approached by SHI with a request to supply a group of 16 beamline mirrors for this machine. These mirrors were sufficient to supply 3 beamlines for the Hiroshima machine. This paper will address engineering issues which arose during the design and manufacturing of these mirrors.

  6. Gyrokinetic particle-in-cell global simulations of ion-temperature-gradient and collisionless-trapped-electron-mode turbulence in tokamaks

    Jolliet, S.

    2009-02-01

    The goal of thermonuclear fusion research is to provide power plants, that will be able to produce one gigawatt of electricity. Among the different ways to achieve fusion, the tokamak, based on magnetic confinement, is the most promising one. A gas is heated up to hundreds of millions of degrees and becomes a plasma, which is maintained - or confined - in a toroidal vessel by helical magnetic field lines. Then, deuterium and tritium are injected and fuse to create an α particle and an energetic neutron. In order to have a favorable power balance, the power produced by fusion reactions must exceed the power needed to heat the plasma and the power losses. This can be cast in a very simple expression which stipulates that the product of the density, the temperature and the energy confinement time must exceed some given value. Unfortunately, present-days tokamaks are not able to reach this condition, mostly due to plasma turbulence. The latter phenomenon enhances the heat losses and degrades the energy confinement time, which cannot be predicted by analytical theories such as the so-called neoclassical theory in which the heat losses are caused by Coulomb collisions. Therefore, numerical simulations are being developed to model plasma turbulence, mainly caused by the Ion and Electron Temperature-Gradient and the Trapped-Electron-Mode (TEM) instabilities. The plasma is described by a distribution function which evolves according to the Vlasov equation. The electromagnetic fields created by the particles are self-consistently obtained through Maxwell’s equations. The resulting Vlasov-Maxwell system is greatly simplified by using the gyrokinetic theory, which consists, through an appropriate ordering, of eliminating the fast gyromotion (compared to the typical frequency of instabilities). Nevertheless, it is still extremely difficult to solve this system numerically due to the large range of time and spatial scales to be resolved. In this thesis, the Vlasov

  7. Characterization of a medium-sized washer-gun for an axisymmetric mirror

    Yi, Hongshen; Liu, Ming; Shi, Peiyun; Yang, Zhida; Zhu, Guanghui; Lu, Quanming; Sun, Xuan

    2018-04-01

    A new medium-sized washer gun is developed for a plasma start-up in a fully axisymmetric mirror. The gun is positioned at the east end of the Keda Mirror with AXisymmetricity facility and operated in the pulsed mode with an arc discharging time of 1.2 ms and a typical arc current of 8.5 kA with 1.5 kV discharge voltage. To optimize the operation, a systematic scan of the neutral pressure, the arc voltage, the bias voltage on a mesh grid 6 cm in front of the gun and an end electrode located on the west end of mirror, and the mirror ratio was performed. The streaming plasma was measured with triple probes in the three mirror cells and a diamagnetic loop in the central cell. Floating potential measurements suggest that the plasma could be divided into streaming and mirror-confined plasmas. The floating potential for the streaming plasma is negative, with an electric field pointing inwards. The mirror-confined plasma has a typical lifetime of 0.5 ms.

  8. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  9. Study of global control of VIRGO Central Interferometer

    Matone, Luca

    1999-01-01

    The VIRGO project for the detection of gravitational waves will first operate in a test configuration, known as the Central Area Interferometer (CITF). The subject of this thesis consists of a study for the global control of this interferometer. In particular, the problems of auto-alignment and acquisition of lock are addressed. First, an investigation of the CITF optical response to longitudinal and angular mirror movements is given. On the basis of this study, we show how the ratio of photodiode signals can be used to detect and control the dark fringe when the CITF is far from its operating point (locked state). Furthermore, we present the simulation results of a quadrant photodiode configuration capable of reconstructing the mirrors' tilts once the CITF is in a locked state. The performance of a control system for the auto-alignment is then given. A study on the mode-cleaner prototype MC30 is then introduced in order to comprehend the process of lock acquisition by a linear feedback system for two different finesse values: F ≅100 and F ≅ 1600. We define a threshold velocity for the mirrors' relative motion below which acquisition of lock is possible. A phenomenon, referred to as ringing effect, was observed and examined on the MC30 prototype in high finesse. The results of numerical calculations allowed us to fit measurement and estimate from them the cavity finesse as well as the mirrors' relative velocity during the resonance crossing. An empirical formula is then presented capable of determine the relative velocity from the positions of the oscillations' minima and maxima. An algorithm to guide into lock the CITF is then presented, consisting of an iterative procedure of velocity reconstruction and pulse application. A numerical calculation simulated the algorithm, the mirrors' motion, the optical response and the ADCs' process. As a result, acquisition times of the order of one second were observed: an improvement of more than one order of magnitude was

  10. Mirror agnosia and the mirrored-self misidentification delusion: a hypnotic analogue.

    Connors, Michael H; Cox, Rochelle E; Barnier, Amanda J; Langdon, Robyn; Coltheart, Max

    2012-05-01

    Mirrored-self misidentification is the delusional belief that one's reflection in the mirror is a stranger. Current theories suggest that one pathway to the delusion is mirror agnosia (a deficit in which patients are unable to use mirror knowledge when interacting with mirrors). This study examined whether a hypnotic suggestion for mirror agnosia can recreate features of the delusion. Ten high hypnotisable participants were given either a suggestion to not understand mirrors or to see the mirror as a window. Participants were asked to look into a mirror and describe what they saw. Participants were tested on their understanding of mirrors and received a series of challenges. Participants then received a detailed postexperimental inquiry. Three of five participants given the suggestion to not understand mirrors reported seeing a stranger and maintained this belief when challenged. These participants also showed signs of mirror agnosia. No participants given the suggestion to see a window reported seeing a stranger. Results indicate that a hypnotic suggestion for mirror agnosia can be used to recreate the mirrored-self misidentification delusion. Factors influencing the effectiveness of hypnotic analogues of psychopathology, such as participants' expectations and interpretations, are discussed.

  11. Globalization and Dual Modes of Higher Education Policymaking in France: Je T'aime Moi Non Plus. Research & Occasional Paper Series: CSHE.2.11

    Hoareau, Cecile

    2011-01-01

    The French Government has had a paradoxical relationship with globalization. Globalization is perceived as both a threat to react against and a cradle for new policy ideas. French policymakers have a love-hate relationship with the European higher education reforms that started in the 1990s, a mixed sentiment that French singer Serge Gainsbourg…

  12. First tests of diagnostic mirrors in a tokamak divertor: An overview of experiments in DIII-D

    Litnovsky, A.; Rudakov, D.L.; De Temmerman, G.; Wienhold, P.; Philipps, V.; Samm, U.; McLean, A.G.; West, W.P.; Wong, C.P.C.; Brooks, N.H.; Watkins, J.G.; Wampler, W.R.; Stangeby, P.C.; Boedo, J.A.; Moyer, R.A.; Allen, S.L.; Fenstermacher, M.E.; Groth, M.; Lasnier, C.J.; Boivin, R.L.

    2008-01-01

    Mirrors will be used in ITER in all optical diagnostic systems observing the plasma radiation in the ultraviolet, visible and infrared ranges. Diagnostic mirrors in ITER will suffer from electromagnetic radiation, energetic particles and neutron irradiation. Erosion due to impact of fast neutrals from plasma and deposition of plasma impurities may significantly degrade optical and polarization characteristics of mirrors influencing the overall performance of the respective diagnostics. Therefore, maintaining the best possible performance of mirrors is of the crucial importance for the ITER optical diagnostics. Mirrors in ITER divertor are expected to suffer from deposition of impurities. The dedicated experiment in a tokamak divertor was needed to address this issue. Investigations with molybdenum diagnostic mirrors were made in DIII-D divertor. Mirror samples were exposed at different temperatures in the private flux region to a series of ELMy H-mode discharges with partially detached divertor plasmas. An increase of temperature of mirrors during the exposure generally led to the mitigation of carbon deposition, primarily due to temperature-enhanced chemical erosion of carbon layers by D atoms. Finally, for the mirrors exposed at the temperature of ∼160 o C neither carbon deposition nor degradation of optical properties was detected

  13. Study of global control of VIRGO Central Interferometer; Etude du controle global de l'Interferometre Central de VIRGO

    Matone, Luca [Paris-11 Univ., 91 Orsay (France)

    1999-10-29

    The VIRGO project for the detection of gravitational waves will first operate in a test configuration, known as the Central Area Interferometer (CITF). The subject of this thesis consists of a study for the global control of this interferometer. In particular, the problems of auto-alignment and acquisition of lock are addressed. First, an investigation of the CITF optical response to longitudinal and angular mirror movements is given. On the basis of this study, we show how the ratio of photodiode signals can be used to detect and control the dark fringe when the CITF is far from its operating point (locked state). Furthermore, we present the simulation results of a quadrant photodiode configuration capable of reconstructing the mirrors' tilts once the CITF is in a locked state. The performance of a control system for the auto-alignment is then given. A study on the mode-cleaner prototype MC30 is then introduced in order to comprehend the process of lock acquisition by a linear feedback system for two different finesse values: F {approx_equal}100 and F {approx_equal} 1600. We define a threshold velocity for the mirrors' relative motion below which acquisition of lock is possible. A phenomenon, referred to as ringing effect, was observed and examined on the MC30 prototype in high finesse. The results of numerical calculations allowed us to fit measurement and estimate from them the cavity finesse as well as the mirrors' relative velocity during the resonance crossing. An empirical formula is then presented capable of determine the relative velocity from the positions of the oscillations' minima and maxima. An algorithm to guide into lock the CITF is then presented, consisting of an iterative procedure of velocity reconstruction and pulse application. A numerical calculation simulated the algorithm, the mirrors' motion, the optical response and the ADCs' process. As a result, acquisition times of the order of one second were observed: an improvement of more than one

  14. Suspensions with reduced violin string modes

    Lee, B H; Ju, L; Blair, D G

    2006-01-01

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz

  15. Suspensions with reduced violin string modes

    Lee, B H; Ju, L; Blair, D G [School of Physics, University of Western Australia, Crawley 6009, WA (Australia)

    2006-03-02

    We discuss the possibility of significantly reducing the number and Q-factor of violin string modes in the mirror suspension. Simulations of a bar-flexure suspension and an orthogonal ribbon have shown a reduction in the number of violin string modes when compared to a normal ribbon suspension. By calculating the expected suspension thermal noise, we find that the orthogonal ribbon provides a promising suspension alternative. A lower number of violin modes oscillating in the direction of the laser and a reduction in violin mode peak values of at least 23dB can be achieved with a slight increase in thermal noise above 40Hz.

  16. Smart Makeup Mirror: Computer Augmented Mirror to Aid Makeup Application

    岩渕, 絵里子; 椎尾, 一郎

    2008-01-01

    In this paper, we present the system that aids people in wearing makeup easily and make the process enjoyable. The proposed system is the Smart Makeup Mirror device, which is an electronic dressing table that facilitates the process of makeup application. In this system, we place a high-resolution camera on top of a computer display. We developed some functions such as Automatic zoom to a specific part of the face, Display our face from various angles , and Simulation of the lighting conditio...

  17. Passivation coating for flexible substrate mirrors

    Tracy, C. Edwin; Benson, David K.

    1990-01-01

    A protective diffusion barrier for metalized mirror structures is provided by a layer or coating of silicon nitride which is a very dense, transparent, dielectric material that is impervious to water, alkali, and other impurities and corrosive substances that typically attack the metal layers of mirrors and cause degradation of the mirrors' reflectivity. The silicon nitride layer can be deposited on the substrate before metal deposition thereon to stabilize the metal/substrate interface, and it can be deposited over the metal to encapsulate it and protect the metal from corrosion or other degradation. Mirrors coated with silicon nitride according to this invention can also be used as front surface mirrors. Also, the silver or other reflective metal layer on mirrors comprising thin, lightweight, flexible substrates of metal or polymer sheets coated with glassy layers can be protected with silicon nitride according to this invention.

  18. Standard specification for silvered flat glass mirror

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    1.1 This specification covers the requirements for silvered flat glass mirrors of rectangular shape supplied as cut sizes, stock sheets or as lehr ends and to which no further processing (such as edgework or other fabrication) has been done. 1.2 This specification covers the quality requirements of silvered annealed monolithic clear and tinted flat glass mirrors up to 6 mm (¼ in.) thick. The mirrors are intended to be used indoors for mirror glazing, for components of decorative accessories or for similar uses. 1.3 This specification does not address safety glazing materials nor requirements for mirror applications. Consult model building codes and other applicable standards for safety glazing applications. 1.4 Mirrors covered in this specification are not intended for use in environments where high humidity or airborne corrosion promoters, or both, are consistently present (such as swimming pool areas, ocean-going vessels, chemical laboratories and other corrosive environments). 1.5 The dimensional val...

  19. Magnetic mirror fusion: status and prospects

    Post, R.F.

    1980-01-01

    Two improved mirror systems, the tandem mirror (TM) and the field-reversed mirror (FRM) are being intensively studied. The twin practical aims of these studies: to improve the economic prospects for mirror fusion power plants and to reduce the size and/or complexity of such plants relative to earlier approaches to magnetic fusion. While at the present time the program emphasis is still strongly oriented toward answering scientific questions, the emphasis is shifting as the data accumulates and as larger facilities - ones with a heavy technological and engineering orientation - are being prepared. The experimental and theoretical progress that led to the new look in mirror fusion research is briefly reviewed, the new TM and the FRM ideas are outlined, and the projected future course of mirror fusion research is discussed

  20. Global Mechanical Response and Its Relation to Deformation and Failure Modes at Various Length Scales Under Shock Impact in Alumina AD995 Armor Ceramic

    Dandekar, D. P; McCauley, J. W; Green, W. H; Bourne, N. K; Chen, M. W

    2008-01-01

    ... maps relating the experimentally measured global mechanical response of a material through matured shock wave diagnostics to the nature of concurrent deformation and damage generated at varying length scales under shock wave loading.

  1. Torus knots and mirror symmetry

    Brini, Andrea; Marino, Marcos

    2012-01-01

    We propose a spectral curve describing torus knots and links in the B-model. In particular, the application of the topological recursion to this curve generates all their colored HOMFLY invariants. The curve is obtained by exploiting the full Sl(2, Z) symmetry of the spectral curve of the resolved conifold, and should be regarded as the mirror of the topological D-brane associated to torus knots in the large N Gopakumar-Vafa duality. Moreover, we derive the curve as the large N limit of the matrix model computing torus knot invariants.

  2. Mirror advanced reactor study (MARS)

    Henning, C.D.; Logan, B.G.; Carlson, G.A.

    1982-01-01

    The agenda for the meeting is as follows: (1) basic Tandem Mirror approach, (2) baseline design, (3) transition and Yin-Yang coils, (4) drift pump physics, (5) drift pump coil, (6) Fokker-Planck analysis, (7) ignition-alpha pumping, (8) neutral beam status, (9) axicell layout, (10) axicell radiation levels, (11) ICRH system, (12) central cell cost optimization, (13) central cell coil design, (14) gridless direct converter, (15) direct converter directions, (16) end cell structure, (17) corrosion-double wall HX, (18) central cell maintenance, (19) radioactivity, (20) PbLi blanket design, and (21) MARS schedule

  3. Field-reversed mirror reactor

    Carlson, G.A.

    1978-01-01

    The reactor design is a multicell arrangement wherein a series of field-reversed plasma layers are arranged along the axis of a long superconducting solenoid which provides the background magnetic field. Normal copper mirror coils and Ioffe bars placed at the first wall radius provide shallow axial and radial magnetic wells for each plasma layer. Each of 11 plasma layers requires the injection of 3.6 MW of 200 keV deuterium and tritium and produces 20 MW of fusion power. The reactor has a net electric output of 74 MWe and an estimated direct capital cost of $1200/kWe

  4. Field reversal in mirror machines

    Pearlstein, L.D.; Anderson, D.V.; Boozer, A.H.

    1978-01-01

    This report discusses some of the physics issues anticipated in field-reversed mirrors. The effect of current cancellation due to electrons is described. An estimate is made of the required impurity level to maintain a field-reversed configuration. The SUPERLAYER code is used to simulate the high-β 2XIIB results, and favorable comparisons require inclusion of quasilinear RF turbulence. Impact of a quadrupole field on field-line closure and resonant transport is discussed. A simple self-consistent model of ion currents is presented. Conditions for stability of field-reversed configurations to E x B driven rotations are determined

  5. Ring relations and mirror map from branes

    Assel, Benjamin [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland)

    2017-03-29

    We study the space of vacua of three-dimensional N=4 theories from a novel approach building on the type IIB brane realization of the theory and in which the insertion of local chiral operators in the path integral is obtained from integrating out light modes in appropriate brane setups. Most of our analysis focuses on abelian quiver theories which can be realized as the low-energy theory of D3-D5-NS5 brane arrays. Their space of vacua contains a Higgs branch, parametrized by the vevs of half-BPS meson operators, and a Coulomb branch, parametrized by the vevs of half-BPS monopole operators. We show that the Higgs operators are inserted by adding F1 strings and D3 branes, while Coulomb operators are inserted by adding D1 strings and D3 branes, with specific orientations, to the initial brane setup of the theory. This approach has two main advantages. First the ring relations describing the Higgs and Coulomb branches can be derived by looking at specific brane setups with multiple interpretations in terms of operator insertions. This provides a new derivation of the Coulomb branch quantum relations. Secondly the map between the Higgs and Coulomb operators of mirror dual theories can be derived in a trivial way from IIB S-duality.

  6. Wave-particle Interactions In Rotating Mirrors

    Abraham J. Fetterman and Nathaniel J. Fisch

    2011-01-11

    Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  7. Wave-particle interactions in rotating mirrors

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in ExB rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  8. Wave-particle Interactions In Rotating Mirrors

    Fetterman, Abraham J.; Fisch, Nathaniel J.

    2011-01-01

    Wave-particle interactions in E-B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.

  9. Charged particle confinement in magnetic mirror

    Bora, D.; John, P.I.; Saxena, Y.C.; Varma, R.K.

    1982-01-01

    The behaviour of single charged particle trapped in a magnetic mirror has been investigated experimentally. The particle injected off axis and trapped in a magnetic mirror, leak out of the mirror with the leakage characterized by multiple decay times. The observed decay times are in good agreement with predictions of a ''wave mechanical like'' model by Varma, over a large range of relevant parameters. (author)

  10. Mirror neurons: From origin to function

    Cook, R; Bird, G; Catmur, C; Press, C; Heyes, C

    2014-01-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively...

  11. Analytic solution for a quartic electron mirror

    Straton, Jack C., E-mail: straton@pdx.edu

    2015-01-15

    A converging electron mirror can be used to compensate for spherical and chromatic aberrations in an electron microscope. This paper presents an analytical solution to a diode (two-electrode) electrostatic mirror including the next term beyond the known hyperbolic shape. The latter is a solution of the Laplace equation to second order in the variables perpendicular to and along the mirror's radius (z{sup 2}−r{sup 2}/2) to which we add a quartic term (kλz{sup 4}). The analytical solution is found in terms of Jacobi cosine-amplitude functions. We find that a mirror less concave than the hyperbolic profile is more sensitive to changes in mirror voltages and the contrary holds for the mirror more concave than the hyperbolic profile. - Highlights: • We find the analytical solution for electron mirrors whose curvature has z4 dependence added to the usual z{sup 2} – r{sup 2}/2 terms. • The resulting Jacobi cosine-amplitude function reduces to the well-known cosh solution in the limit where the new term is 0. • This quartic term gives a mirror designer additional flexibility for eliminating spherical and chromatic aberrations. • The possibility of using these analytical results to approximately model spherical tetrode mirrors close to axis is noted.

  12. Mirror neurons and language in schizophrenia

    Bendová, Marie

    2016-01-01

    Mirror neurons are a specific kind of visuomotor neurons that are involved in action execution and also in action perception. The mirror mechanism is linked to a variety of complex psychological functions such as social-cognitive functions and language. People with schizophrenia have often difficulties both in mirror neuron system and in language skills. In the first part of our research we studied the connectivity of mirror neuron areas (such as IFG, STG, PMC, SMC and so on) by fMRI in resti...

  13. Sensorimotor learning configures the human mirror system.

    Catmur, Caroline; Walsh, Vincent; Heyes, Cecilia

    2007-09-04

    Cells in the "mirror system" fire not only when an individual performs an action but also when one observes the same action performed by another agent [1-4]. The mirror system, found in premotor and parietal cortices of human and monkey brains, is thought to provide the foundation for social understanding and to enable the development of theory of mind and language [5-9]. However, it is unclear how mirror neurons acquire their mirror properties -- how they derive the information necessary to match observed with executed actions [10]. We address this by showing that it is possible to manipulate the selectivity of the human mirror system, and thereby make it operate as a countermirror system, by giving participants training to perform one action while observing another. Before this training, participants showed event-related muscle-specific responses to transcranial magnetic stimulation over motor cortex during observation of little- and index-finger movements [11-13]. After training, this normal mirror effect was reversed. These results indicate that the mirror properties of the mirror system are neither wholly innate [14] nor fixed once acquired; instead they develop through sensorimotor learning [15, 16]. Our findings indicate that the human mirror system is, to some extent, both a product and a process of social interaction.

  14. On Mirror Symmetry for Calabi-Yau Fourfolds with Three-Form Cohomology

    Greiner, Sebastian; Grimm, Thomas W.

    2016-01-01

    We study the action of mirror symmetry on two-dimensional N=(2,2) effective theories obtained by compactifying Type IIA string theory on Calabi-Yau fourfolds. Our focus is on fourfold geometries with non-trivial three-form cohomology. The couplings of the massless zero-modes arising by expanding in

  15. Progress on the ITER H&CD EC upper launcher steering-mirror control system

    Collazos, A.; Bertizzolo, R.; Chavan, R.; Dolizy, F.; Felici, F.; Goodman, T.P.; Henderson, M.A.; Landis, J.-D.; Sanchez, F.

    2010-01-01

    The ITER Heating and Current Drive Upper Launcher (H&CD EC UL) uses a pneumomechanical steering-mirror assembly (SMA) to steer the RF beams for their deposition in the appropriate location in the plasma to control magnetohydrodynamic activity (neoclassical tearing modes (NTMs) and sawtooth

  16. Integrated fiber-mirror ion trap for strong ion-cavity coupling

    Brandstätter, B.; Schüppert, K.; Casabone, B.; Friebe, K.; Stute, A.; Northup, T. E.; McClung, A.; Schmidt, P. O.; Deutsch, C.; Reichel, J.; Blatt, R.

    2013-01-01

    We present and characterize fiber mirrors and a miniaturized ion-trap design developed to integrate a fiber-based Fabry-Perot cavity (FFPC) with a linear Paul trap for use in cavity-QED experiments with trapped ions. Our fiber-mirror fabrication process not only enables the construction of FFPCs with small mode volumes, but also allows us to minimize the influence of the dielectric fiber mirrors on the trapped-ion pseudopotential. We discuss the effect of clipping losses for long FFPCs and the effect of angular and lateral displacements on the coupling efficiencies between cavity and fiber. Optical profilometry allows us to determine the radii of curvature and ellipticities of the fiber mirrors. From finesse measurements, we infer a single-atom cooperativity of up to 12 for FFPCs longer than 200 μm in length; comparison to cavities constructed with reference substrate mirrors produced in the same coating run indicates that our FFPCs have similar scattering losses. We characterize the birefringence of our fiber mirrors, finding that careful fiber-mirror selection enables us to construct FFPCs with degenerate polarization modes. As FFPCs are novel devices, we describe procedures developed for handling, aligning, and cleaning them. We discuss experiments to anneal fiber mirrors and explore the influence of the atmosphere under which annealing occurs on coating losses, finding that annealing under vacuum increases the losses for our reference substrate mirrors. X-ray photoelectron spectroscopy measurements indicate that these losses may be attributable to oxygen depletion in the mirror coating. Special design considerations enable us to introduce a FFPC into a trapped ion setup. Our unique linear Paul trap design provides clearance for such a cavity and is miniaturized to shield trapped ions from the dielectric fiber mirrors. We numerically calculate the trap potential in the absence of fibers. In the experiment additional electrodes can be used to compensate

  17. Analysis of influence of the radial electric field on turbulent transport in tandem mirror plasma

    Khvesyuk, Vladimir I.; Chirkov, Alexei Yu.; Pshenichnikov, Anton A.

    2000-01-01

    The model of anomalous transport in cylindrical non-uniform steady state plasma in uniform magnetic field under the influence of many mode drift wave oscillations is suggested. The effect of anomalous transport suppression due to radial electric field is studied, and physical picture of H mode in plasma of GAMMA-10 tandem mirror device is considered. Presented theoretical and numerical results agree with the experimental data obtained on GAMMA-10. (author)

  18. Preliminary design of a Tandem-Mirror-Next-Step facility

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1980-01-01

    The Tandem-Mirror-Next-Step (TMNS) facility is designed to demonstrate the engineering feasibility of a tandem-mirror reactor. The facility is based on a deuterium-tritium (D-T) burning, tandem-mirror device with a fusion power output of 245 MW. The fusion power density in the central cell is 2.1 MW/m 3 , with a resultant neutron wall loading of 0.5 MW/m 2 . Overall machine length is 116 m, and the effective central-cell length is 50.9 m. The magnet system includes end cells with yin-yang magnets to provide magnetohydrodynamic (MHD) stability and thermal-barrier cells to help achieve a plasma Q of 4.7 (where Q = fusion power/injected power). Neutral beams at energies up to 200 keV are used for plasma heating, fueling, and barrier pumping. Electron cyclotron resonant heating at 50 and 100 GHz is used to control the electron temperature in the barriers. Based on the resulting engineering design, the overall cost of the facility is estimated to be just under $1 billion. Unresolved physics issues include central-cell β-limits against MHD ballooning modes (the assumed reference value of β exceeds the current theory-derived limit), and the removal of thermalized α-particles from the plasma

  19. FACT. Normalized and asynchronous mirror alignment for Cherenkov telescopes

    Mueller, Sebastian Achim [ETH Zurich (Switzerland); Buss, Jens [TU Dortmund (Germany)

    2016-07-01

    Imaging Atmospheric Cherenkov Telescopes (IACTs) need fast and large imaging optics to map the faint Cherenkov light emitted in cosmic ray air showers onto their image sensors. Segmented reflectors are inexpensive, lightweight and offer good image quality. However, alignment of the mirror facets remains a challenge. A good alignment is crucial in IACT observations to separate gamma rays from hadronic cosmic rays. We present a star tracking alignment method which is not restricted to clear nights. It normalizes the mirror facet reflections to be independent of the reference star or the cloud coverage. It records asynchronously of the telescope drive which makes the method easy to integrate in existing telescopes. It can be combined with remote facet actuation, but it does not need one to work. Furthermore, it can reconstruct all individual mirror facet point spread functions. We present the method and alignment results on the First Geiger-mode Photo Diode Avalanche Cherenkov Telescope (FACT) on the Canary Island of La Palma, Spain.

  20. Plasma confinement in the GAMMA 10 tandem mirror

    Yatsu, K.; Bruskin, L.G.; Cho, T.

    1999-01-01

    The central-cell density and the diamagnetic signal were doubled due to plug potential formation by ECRH in the hot ion mode experiments on the GAMMA 10 tandem mirror. In order to obtain these remarkable results, the axisymmetrized heating patterns of ECRH and ICRF were optimized. Furthermore, conducting plates were installed adjacent to the surface of the plasma along the flat shaped magnetic flux tube located at the anchor transition regions; the plates may contribute to reduce some irregular electric fields produced possibly with ECRH in these thin flux tube regions. The conducting plates contributed to the reduction of the radial loss rate to be less than 3% of the total particle losses along with the improvements in the reproducibility of the experiments and the controllability of the potential confinement. The increases in the central-cell density and the diamagnetism in association with the increase in the plug potentials scaled well with increasing the ECRH powers. A plug potential of 0.6 kV and a density increase of 100% were achieved using an ECRH power of 140 kW injected into both plug regions. The plasma confinement was improved by an order of magnitude over a simple mirror confinement due to the tandem mirror potential formation. (author)

  1. Coherent dynamics of plasma mirrors

    Thaury, C; George, H; Quere, F; Monot, P; Martin, Ph [CEA, DSM, IRAMIS, Serv Photons Atomes and Mol, F-91191 Gif Sur Yvette, (France); Loch, R [Univ Twente, Laser Phys and Nonlinear Opt Grp, Fac Sci and Technol, MESA Inst Nanotechnol, NL-7500 AE Enschede, (Netherlands); Geindre, J P [Ecole Polytech, Lab Pour Utilisat Lasers Intenses, CNRS, F-91128 Palaiseau, (France)

    2008-07-01

    Coherent ultrashort X-ray pulses provide new ways to probe matter and its ultrafast dynamics. One of the promising paths to generate these pulses consists of using a nonlinear interaction with a system to strongly and periodically distort the waveform of intense laser fields, and thus produce high-order harmonics. Such distortions have so far been induced by using the nonlinear polarizability of atoms, leading to the production of atto-second light bursts, short enough to study the dynamics of electrons in matter. Shorter and more intense atto-second pulses, together with higher harmonic orders, are expected by reflecting ultra intense laser pulses on a plasma mirror - a dense (approximate to 10{sup 23} electrons cm{sup -3}) plasma with a steep interface. However, short-wavelength-light sources produced by such plasmas are known to generally be incoherent. In contrast, we demonstrate that like in usual low-intensity reflection, the coherence of the light wave is preserved during harmonic generation on plasma mirrors. We then exploit this coherence for interferometric measurements and thus carry out a first study of the laser-driven coherent dynamics of the plasma electrons. (authors)

  2. Neurodegeneration and Mirror Image Agnosia

    Chandra, Sadanandavalli Retnaswami; Issac, Thomas Gregor

    2014-01-01

    Background: Normal Percept with abnormal meaning (Agnosias) has been described from nineteenth century onwards. Later literature became abundant with information on the spectrum of Prosopagnosias. However, selective difficulty in identifying reflected self images with relatively better cognitive functions leads to problems in differentiating it from non-organic psychosis. Aim: In the present study, we investigated patients with dementia who showed difficulty in identifying reflected self images while they were being tested for problems in gnosis with reference to identification of reflected objects, animals, relatives, and themselves and correlate with neuropsychological and radiological parameters. Patients and Methods: Five such patients were identified and tested with a 45 cm × 45 cm mirror kept at 30-cm distance straight ahead of them. Results: Mirror image agnosia is seen in patients with moderate stage posterior dementias who showed neuropsychological and radiological evidence of right parietal dysfunction. Conclusion: Interpretation of reflected self images perception in real time probably involves distinct data-linking circuits in the right parietal lobe, which may get disrupted early in the course of the disease. PMID:25317393

  3. Plasma confinement apparatus using solenoidal and mirror coils

    Fowler, T.K.; Condit, W.C.

    1979-01-01

    A plasma confinement apparatus is described, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed

  4. Plasma confinement apparatus using solenoidal and mirror coils

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  5. Thermodynamics of Radiation Modes

    Pina, Eduardo; de la Selva, Sara Maria Teresa

    2010-01-01

    We study the equilibrium thermodynamics of the electromagnetic radiation in a cavity of a given volume and temperature. We found three levels of description, the thermodynamics of one mode, the thermodynamics of the distribution of frequencies in a band by summing over the frequencies in it and the global thermodynamics by summing over all the…

  6. Tandem mirror magnet system for the mirror fusion test facility

    Bulmer, R.H.; Van Sant, J.H.

    1980-01-01

    The Tandem Mirror Fusion Test Facility (MFTF-B) will be a large magnetic fusion experimental facility containing 22 supercounducting magnets including solenoids and C-coils. State-of-the-art technology will be used extensively to complete this facility before 1985. Niobium titanium superconductor and stainless steel structural cases will be the principle materials of construction. Cooling will be pool boiling and thermosiphon flow of 4.5 K liquid helium. Combined weight of the magnets will be over 1500 tonnes and the stored energy will be over 1600 MJ. Magnetic field strength in some coils will be more than 8 T. Detail design of the magnet system will begin early 1981. Basic requirements and conceptual design are disclosed in this paper

  7. Quantum noise in the mirror-field system: A field theoretic approach

    Hsiang, Jen-Tsung, E-mail: cosmology@gmail.com [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Wu, Tai-Hung [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Lee, Da-Shin, E-mail: dslee@mail.ndhu.edu.tw [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); King, Sun-Kun [Institutes of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC (China); Wu, Chun-Hsien [Department of Physics, Soochow University, Taipei, Taiwan, ROC (China)

    2013-02-15

    We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: Black-Right-Pointing-Pointer The quantum noise problem in the mirror-field system is re-visited by a field-theoretic approach. Black-Right-Pointing-Pointer Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. Black-Right-Pointing-Pointer The noise

  8. Analysis of tandem mirror reactor performance

    Wu, K.F.; Campbell, R.B.; Peng, Y.K.M.

    1984-11-01

    Parametric studies are performed using a tandem mirror plasma point model to evaluate the wall loading GAMMA and the physics figure of merit, Q (fusion power/injected power). We explore the relationship among several dominant parameters and determine the impact on the plasma performance of electron cyclotron resonance heating in the plug region. These global particle and energy balance studies were carried out under the constraints of magnetohydrodynamic (MHD) equilibrium and stability and constant magnetic flux, assuming a fixed end-cell geometry. We found that the higher the choke coil fields, the higher the Q, wall loading, and fusion power due to the combination of the increased central-cell field B/sub c/ and density n/sub c/ and the reduced central-cell beta β/sub c/. The MHD stability requirement of constant B/sub c/ 2 β/sub c/ causes the reduction in β/sub c/. In addition, a higher value of fusion power can also be obtained, at a fixed central-cell length, by operating at a lower value of B/sub c/ and a higher value of β/sub c/

  9. Magnetic mirrors: history, results, and future prospects

    Beklemishev, A.D.; Ivanov, A.A.; Kruglyakov, E.P.; Burdakov, A.V.; Ivanov, A.A.; Beklemishev, A.D.; Ivanov, A.A.; Burdakov, A.V.

    2012-01-01

    The evolution of open traps brought them from simple solenoids to highly sophisticated and huge tandem mirrors with quadrupole magnetic stabilizers. They tried to compete with toroidal devices using ambipolar confinement and thermal barriers, but were too late and failed, and are almost extinct. A side branch of open traps went for simplicity and good fast-ion confinement inherent in axially symmetric mirrors. Since simplicity means lower cost of construction and servicing, and lower engineering and materials demands, such type of traps might still have an edge. Axially symmetric mirrors at the Budker Institute of Nuclear Physics in Novosibirsk currently represent the front line of mirror research. We discuss recent experimental results from the multiple-mirror trap, GOL-3, and the gas-dynamic trap, GDT. The next step in this line of research is the GDMT program that will combine the GDT-style fast-ion-dominated central mirror with multiple-mirror end plugs. This superconducting device will be modular and built in stages. The first stage, GDMT-T, will be based on 5m, 7T superconducting solenoid (multiple-mirror plug of the full device). Its 3-year scientific program is oriented primarily on PMI studies.

  10. Foil Panel Mirrors for Nonimaging Applications

    Kuyper, D. J.; Castillo, A. A.

    1984-01-01

    Large durable, lightweight mirrors made by bonding thick aluminum foil to honeycomb panels or other rigid, flat backings. Mirrors suitable for use as infrared shields, telescope doors, solar-furnance doors, advertising displays, or other reflectors that require low thermal emissivity and high specularity but do not require precise surface figure necessary for imaging.

  11. Parametric studies of tandem mirror reactors

    Carlson, G.A.; Boghosian, B.M.; Fink, J.H.; Myall, J.O.; Neef, W.S. Jr.

    1979-01-01

    This report, along with its companion, An Improved Tandem Mirror Reactor, discusses the recent progress and present status of our tandem mirror reactor studies. This report presents the detailed results of parametric studies up to, but not including, the very new ideas involving thermal barriers

  12. Dynamic characteristics of mirrors' kinematic mount

    Wu Wenkai; Du Qiang; Li Jingze; Chen Gang; Chen Xiaojuan; Xu Yuanli

    2002-01-01

    Applying exact constrain design principles, kinematic mount for precision positioning large aperture mirrors is designed; theoretical method is introduced to analyze its dynamic characteristics and the result of the experiment for mirrors, stability; accordingly, the methods to improve design are put forward

  13. The Mirror Neuron System and Action Recognition

    Buccino, Giovanni; Binkofski, Ferdinand; Riggio, Lucia

    2004-01-01

    Mirror neurons, first described in the rostral part of monkey ventral premotor cortex (area F5), discharge both when the animal performs a goal-directed hand action and when it observes another individual performing the same or a similar action. More recently, in the same area mirror neurons responding to the observation of mouth actions have been…

  14. Unbroken Mirror Neurons in Autism Spectrum Disorders

    Fan, Yang-Teng; Decety, Jean; Yang, Chia-Yen; Liu, Ji-Lin; Cheng, Yawei

    2010-01-01

    Background: The "broken mirror" theory of autism, which proposes that a dysfunction of the human mirror neuron system (MNS) is responsible for the core social and cognitive deficits in individuals with autism spectrum disorders (ASD), has received considerable attention despite weak empirical evidence. Methods: In this electroencephalographic…

  15. Where do mirror neurons come from?

    Heyes, Cecilia

    2010-03-01

    Debates about the evolution of the 'mirror neuron system' imply that it is an adaptation for action understanding. Alternatively, mirror neurons may be a byproduct of associative learning. Here I argue that the adaptation and associative hypotheses both offer plausible accounts of the origin of mirror neurons, but the associative hypothesis has three advantages. First, it provides a straightforward, testable explanation for the differences between monkeys and humans that have led some researchers to question the existence of a mirror neuron system. Second, it is consistent with emerging evidence that mirror neurons contribute to a range of social cognitive functions, but do not play a dominant, specialised role in action understanding. Finally, the associative hypothesis is supported by recent data showing that, even in adulthood, the mirror neuron system can be transformed by sensorimotor learning. The associative account implies that mirror neurons come from sensorimotor experience, and that much of this experience is obtained through interaction with others. Therefore, if the associative account is correct, the mirror neuron system is a product, as well as a process, of social interaction. (c) 2009 Elsevier Ltd. All rights reserved.

  16. 21 CFR 886.1500 - Headband mirror.

    2010-04-01

    ... DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1500 Headband mirror. (a) Identification. A headband mirror is a device intended to be strapped to the head of the user to reflect light for use in examination of the eye. (b) Classification. Class I (general controls). The device is exempt from the...

  17. Mirror neurons and their clinical relevance.

    Rizzolatti, Giacomo; Fabbri-Destro, Maddalena; Cattaneo, Luigi

    2009-01-01

    One of the most exciting events in neurosciences over the past few years has been the discovery of a mechanism that unifies action perception and action execution. The essence of this 'mirror' mechanism is as follows: whenever individuals observe an action being done by someone else, a set of neurons that code for that action is activated in the observers' motor system. Since the observers are aware of the outcome of their motor acts, they also understand what the other individual is doing without the need for intermediate cognitive mediation. In this Review, after discussing the most pertinent data concerning the mirror mechanism, we examine the clinical relevance of this mechanism. We first discuss the relationship between mirror mechanism impairment and some core symptoms of autism. We then outline the theoretical principles of neurorehabilitation strategies based on the mirror mechanism. We conclude by examining the relationship between the mirror mechanism and some features of the environmental dependency syndromes.

  18. Mirror Objects in the Solar System?

    Silagadze, Z.K.

    2002-01-01

    This talk was given at the Tunguska-2001 international conference but it is not about the Tunguska event. Instead we tried to give some flavor of mirror matter, which is predicted to exist if parity is an unbroken symmetry of nature, to non-experts. The possible connection of the mirror matter ideas to the Tunguska phenomenon was indicated by Foot and Gninenko some time ago and was elaborated by Foot in the separate talk at this conference. If the mirror world interpretation of the Tunguska like events is indeed correct then the most fascinating (but very speculative) possibility is that some well known celestial bodies with strange properties are in fact made mostly from mirror matter, and so maybe the mirror world was discovered long ago and we just have not suspected this. (author)

  19. The mirror neuron system: new frontiers.

    Keysers, Christian; Fadiga, Luciano

    2008-01-01

    Since the discovery of mirror neurons, much effort has been invested into studying their location and properties in the human brain. Here we review these original findings and introduce the main topics of this special issue of Social Neuroscience. What does the mirror system code? How is the mirror system embedded into the mosaic of circuits that compose our brain? How does the mirror system contribute to communication, language and social interaction? Can the principle of mirror neurons be extended to emotions, sensations and thoughts? Papers using a wide range of methods, including single cell recordings, fMRI, TMS, EEG and psychophysics, collected in this special issue, start to give us some impressive answers.

  20. Mirror neurons and motor intentionality.

    Rizzolatti, Giacomo; Sinigaglia, Corrado

    2007-01-01

    Our social life rests to a large extent on our ability to understand the intentions of others. What are the bases of this ability? A very influential view is that we understand the intentions of others because we are able to represent them as having mental states. Without this meta-representational (mind-reading) ability their behavior would be meaningless to us. Over the past few years this view has been challenged by neurophysiological findings and, in particular, by the discovery of mirror neurons. The functional properties of these neurons indicate that intentional understanding is based primarily on a mechanism that directly matches the sensory representation of the observed actions with one's own motor representation of those same actions. These findings reveal how deeply motor and intentional components of action are intertwined, suggesting that both can be fully comprehended only starting from a motor approach to intentionality.

  1. Imitation, mirror neurons and autism.

    Williams, J H; Whiten, A; Suddendorf, T; Perrett, D I

    2001-06-01

    Various deficits in the cognitive functioning of people with autism have been documented in recent years but these provide only partial explanations for the condition. We focus instead on an imitative disturbance involving difficulties both in copying actions and in inhibiting more stereotyped mimicking, such as echolalia. A candidate for the neural basis of this disturbance may be found in a recently discovered class of neurons in frontal cortex, 'mirror neurons' (MNs). These neurons show activity in relation both to specific actions performed by self and matching actions performed by others, providing a potential bridge between minds. MN systems exist in primates without imitative and 'theory of mind' abilities and we suggest that in order for them to have become utilized to perform social cognitive functions, sophisticated cortical neuronal systems have evolved in which MNs function as key elements. Early developmental failures of MN systems are likely to result in a consequent cascade of developmental impairments characterised by the clinical syndrome of autism.

  2. [Motion control of moving mirror based on fixed-mirror adjustment in FTIR spectrometer].

    Li, Zhong-bing; Xu, Xian-ze; Le, Yi; Xu, Feng-qiu; Li, Jun-wei

    2012-08-01

    The performance of the uniform motion of the moving mirror, which is the only constant motion part in FTIR spectrometer, and the performance of the alignment of the fixed mirror play a key role in FTIR spectrometer, and affect the interference effect and the quality of the spectrogram and may restrict the precision and resolution of the instrument directly. The present article focuses on the research on the uniform motion of the moving mirror and the alignment of the fixed mirror. In order to improve the FTIR spectrometer, the maglev support system was designed for the moving mirror and the phase detection technology was adopted to adjust the tilt angle between the moving mirror and the fixed mirror. This paper also introduces an improved fuzzy PID control algorithm to get the accurate speed of the moving mirror and realize the control strategy from both hardware design and algorithm. The results show that the development of the moving mirror motion control system gets sufficient accuracy and real-time, which can ensure the uniform motion of the moving mirror and the alignment of the fixed mirror.

  3. Single mode operation of a TEA CO2 laser

    Wada, Kazuhiro; Tunawaki, Yoshiaki; Yamanaka, Masanobu.

    1993-01-01

    Single mode operation of a TEA CO 2 laser was performed by using an optical system of Fox-Smith type. Laser beam was taken out from the cavity by using a beam splitter, and was reflected by a mirror back to the cavity. By inserting a Fabry-Perot etalon between the splitter and the mirror, beat of laser pulses can be removed completly. (author)

  4. Mirror neurons: from origin to function.

    Cook, Richard; Bird, Geoffrey; Catmur, Caroline; Press, Clare; Heyes, Cecilia

    2014-04-01

    This article argues that mirror neurons originate in sensorimotor associative learning and therefore a new approach is needed to investigate their functions. Mirror neurons were discovered about 20 years ago in the monkey brain, and there is now evidence that they are also present in the human brain. The intriguing feature of many mirror neurons is that they fire not only when the animal is performing an action, such as grasping an object using a power grip, but also when the animal passively observes a similar action performed by another agent. It is widely believed that mirror neurons are a genetic adaptation for action understanding; that they were designed by evolution to fulfill a specific socio-cognitive function. In contrast, we argue that mirror neurons are forged by domain-general processes of associative learning in the course of individual development, and, although they may have psychological functions, they do not necessarily have a specific evolutionary purpose or adaptive function. The evidence supporting this view shows that (1) mirror neurons do not consistently encode action "goals"; (2) the contingency- and context-sensitive nature of associative learning explains the full range of mirror neuron properties; (3) human infants receive enough sensorimotor experience to support associative learning of mirror neurons ("wealth of the stimulus"); and (4) mirror neurons can be changed in radical ways by sensorimotor training. The associative account implies that reliable information about the function of mirror neurons can be obtained only by research based on developmental history, system-level theory, and careful experimentation.

  5. Seamlessly and Coherently Locating Interesting Mirrors on the Web

    Neilze Dorta

    2003-06-01

    Full Text Available Nowadays, the World Wide Web is used mostly as a common medium for information sharing. Therefore, locating an object on this large scale dynamic medium tends to be more and more difficult. Content Distribution Networks, e.g. Akamai, and global naming services, e.g. Globe, do more or less than what is required by most users. In this paper, we are interested in discovering, advertising, and transparently locating interesting mirrors of interest to a group of users. Our solution, AR , is user-centric; it uses cooperation among organizations to discover, publicize and locate coherently new mirrors that are of interest to them. Access transparency is achieved through a naming service that manages the different aliases for the same replica. Consistency guarantees are given to each user that no document delivered would be older than the one viewed before. The system scales geographically due to the epidemic and asynchronous nature of the cooperation protocol. We propose a methodology for creating homogeneous groups with common interests, using collected Web traces, then give a glimpse of the potential benefits made by using AR . It opens a path towards making mirroring ubiquitous, hence fostering a better use of the Internet and its resources. A prototype has been implemented in Java and will be used, in the future, in real-world tests for more accurate and realistic results.

  6. Combined oxygen- and carbon-isotope records through the Early Jurassic: multiple global events and two modes of carbon-cycle/temperature coupling

    Hesselbo, Stephen P.; Korte, Christoph

    2010-01-01

    , to the extent that meaningful comparisons between these events can begin to be made. Here we present new carbon and oxygen isotope data from mollusks (bivalves and belemnites) and brachiopods collected through the marine Early Jurassic succession of NE England, including the Sinemurian-Plienbachian boundary...... GSSP. All materials have been screened by chemical analysis and scanning electron microscopy to check for diagenetic alteration. Analysis of carbon isotopes from marine calcite is supplemented by analysis of carbon-isotope values from fossil wood collected through the same section. It is demonstrated...... that both long-term and short-term carbon-isotope shifts from the UK Early Jurassic represent global changes in carbon cycle balances. The Sinemurian-Pliensbachian boundary event is an event of global significance and shows several similarities to the Toarcian OAE (relative sea-level change, carbon-isotope...

  7. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Kuznetsov, A. P., E-mail: APKuznetsov@mephi.ru; Alexandrova, A. S. [National Research Nuclear University MEPhI (Russian Federation); Buzhinsky, O. I. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation); Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V. [National Research Nuclear University MEPhI (Russian Federation); Tugarinov, S. N. [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-12-15

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10{sup 7} W/cm{sup 2}. The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant.

  8. Fiber laser cleaning of metal mirror surfaces for optical diagnostic systems of the ITER

    Kuznetsov, A. P.; Alexandrova, A. S.; Buzhinsky, O. I.; Gubskiy, K. L.; Kazieva, T. V.; Savchenkov, A. V.; Tugarinov, S. N.

    2015-01-01

    The results of experimental studies into efficiency of removal of films with a complex composition from metal mirrors by pulsed fiber laser irradiation are presented. It is shown that the initial reflectivity of optical elements can be restored by the selection of modes of irradiation impacting the surface with the sputtered film. Effective cleaning is performed by radiation with a power density lower than 10 7 W/cm 2 . The removal of contaminations at such a relatively low power density occurs in a solid phase, owing to which the thermal effect on the mirror is insignificant

  9. Digital control of laser modes with an intra-cavity spatial light modulator

    Ngcobo, S

    2014-02-01

    Full Text Available addressed holographic end-mirror. We show that on-demand digitally controlled laser modes are possible by changing the phase and amplitude of the computer generated hologram in a form of a grey-scale image on the holographic mirror. We demonstrate...

  10. Design of the deformable mirror demonstration CubeSat (DeMi)

    Douglas, Ewan S.; Allan, Gregory; Barnes, Derek; Figura, Joseph S.; Haughwout, Christian A.; Gubner, Jennifer N.; Knoedler, Alex A.; LeClair, Sarah; Murphy, Thomas J.; Skouloudis, Nikolaos; Merck, John; Opperman, Roedolph A.; Cahoy, Kerri L.

    2017-09-01

    The Deformable Mirror Demonstration Mission (DeMi) was recently selected by DARPA to demonstrate in-space operation of a wavefront sensor and Microelectromechanical system (MEMS) deformable mirror (DM) payload on a 6U CubeSat. Space telescopes designed to make high-contrast observations using internal coronagraphs for direct characterization of exoplanets require the use of high-actuator density deformable mirrors. These DMs can correct image plane aberrations and speckles caused by imperfections, thermal distortions, and diffraction in the telescope and optics that would otherwise corrupt the wavefront and allow leaking starlight to contaminate coronagraphic images. DeMi is provide on-orbit demonstration and performance characterization of a MEMS deformable mirror and closed loop wavefront sensing. The DeMi payload has two operational modes, one mode that images an internal light source and another mode which uses an external aperture to images stars. Both the internal and external modes include image plane and pupil plane wavefront sensing. The objectives of the internal measurement of the 140-actuator MEMS DM actuator displacement are characterization of the mirror performance and demonstration of closed-loop correction of aberrations in the optical path. Using the external aperture to observe stars of magnitude 2 or brighter, assuming 3-axis stability with less than 0.1 degree of attitude knowledge and jitter below 10 arcsec RMSE, per observation, DeMi will also demonstrate closed loop wavefront control on an astrophysical target. We present an updated payload design, results from simulations and laboratory optical prototyping, as well as present our design for accommodating high-voltage multichannel drive electronics for the DM on a CubeSat.

  11. Plasma impact on diagnostic mirrors in JET

    A. Garcia-Carrasco

    2017-08-01

    Full Text Available Metallic mirrors will be essential components of all optical systems for plasma diagnosis in ITER. This contribution provides a comprehensive account on plasma impact on diagnostic mirrors in JET with the ITER-Like Wall. Specimens from the First Mirror Test and the lithium-beam diagnostic have been studied by spectrophotometry, ion beam analysis and electron microscopy. Test mirrors made of molybdenum were retrieved from the main chamber and the divertor after exposure to the 2013–2014 experimental campaign. In the main chamber, only mirrors located at the entrance of the carrier lost reflectivity (Be deposition, while those located deeper in the carrier were only slightly affected. The performance of mirrors in the JET divertor was strongly degraded by deposition of beryllium, tungsten and other species. Mirrors from the lithium-beam diagnostic have been studied for the first time. Gold coatings were severely damaged by intense arcing. As a consequence, material mixing of the gold layer with the stainless steel substrate occurred. Total reflectivity dropped from over 90% to less than 60%, i.e. to the level typical for stainless steel.

  12. A comparison of performance of lightweight mirrors

    Cho, Myung K.; Richard, Ralph M.; Hileman, Edward A.

    1990-01-01

    Four lightweight solid contoured back mirror shapes (a double arch, a single arch, a modified single arch, and a double concave mirror) and a cellular sandwich lightweight meniscus mirror, have been considered for the primary mirror of the Space Infrared Telescope Facility (SIRTF). A parametric design study using these shapes for the SIRTF 40 inch primary mirror with a focal ratio f/2 is presented. Evaluations of the optical performance and fundamental frequency analyses are performed to compare relative merits of each mirror configuration. Included in these are structural, optical, and frequency analyses for (1) different back contour shapes, (2) different number and location of the support points, and (3) two gravity orientations (ZENITH and HORIZON positions). The finite element program NASTRAN is used to obtain the structural deflections of the optical surface. For wavefront error analysis, FRINGE and PCFRINGE programs are used to evaluate the optical performance. A scaling law relating the optical and structural performance for various mirror contoured back shapes is developed.

  13. Laser cleaning of ITER's diagnostic mirrors

    Skinner, C. H.; Gentile, C. A.; Doerner, R.

    2012-10-01

    Practical methods to clean ITER's diagnostic mirrors and restore reflectivity will be critical to ITER's plasma operations. We report on laser cleaning of single crystal molybdenum mirrors coated with either carbon or beryllium films 150 - 420 nm thick. A 1.06 μm Nd laser system provided 220 ns pulses at 8 kHz with typical power densities of 1-2 J/cm^2. The laser beam was fiber optically coupled to a scanner suitable for tokamak applications. The efficacy of mirror cleaning was assessed with a new technique that combines microscopic imaging and reflectivity measurements [1]. The method is suitable for hazardous materials such as beryllium as the mirrors remain sealed in a vacuum chamber. Excellent restoration of reflectivity for the carbon coated Mo mirrors was observed after laser scanning under vacuum conditions. For the beryllium coated mirrors restoration of reflectivity has so far been incomplete and modeling indicates that a shorter duration laser pulse is needed. No damage of the molybdenum mirror substrates was observed.[4pt][1] C.H. Skinner et al., Rev. Sci. Instrum. at press.

  14. Magneto-hydrodynamically stable axisymmetric mirrors

    Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)

    2011-09-15

    Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.

  15. Mirror dark matter and large scale structure

    Ignatiev, A.Yu.; Volkas, R.R.

    2003-01-01

    Mirror matter is a dark matter candidate. In this paper, we reexamine the linear regime of density perturbation growth in a universe containing mirror dark matter. Taking adiabatic scale-invariant perturbations as the input, we confirm that the resulting processed power spectrum is richer than for the more familiar cases of cold, warm and hot dark matter. The new features include a maximum at a certain scale λ max , collisional damping below a smaller characteristic scale λ S ' , with oscillatory perturbations between the two. These scales are functions of the fundamental parameters of the theory. In particular, they decrease for decreasing x, the ratio of the mirror plasma temperature to that of the ordinary. For x∼0.2, the scale λ max becomes galactic. Mirror dark matter therefore leads to bottom-up large scale structure formation, similar to conventional cold dark matter, for x(less-or-similar sign)0.2. Indeed, the smaller the value of x, the closer mirror dark matter resembles standard cold dark matter during the linear regime. The differences pertain to scales smaller than λ S ' in the linear regime, and generally in the nonlinear regime because mirror dark matter is chemically complex and to some extent dissipative. Lyman-α forest data and the early reionization epoch established by WMAP may hold the key to distinguishing mirror dark matter from WIMP-style cold dark matter

  16. Mirror neurons: functions, mechanisms and models.

    Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael A

    2013-04-12

    Mirror neurons for manipulation fire both when the animal manipulates an object in a specific way and when it sees another animal (or the experimenter) perform an action that is more or less similar. Such neurons were originally found in macaque monkeys, in the ventral premotor cortex, area F5 and later also in the inferior parietal lobule. Recent neuroimaging data indicate that the adult human brain is endowed with a "mirror neuron system," putatively containing mirror neurons and other neurons, for matching the observation and execution of actions. Mirror neurons may serve action recognition in monkeys as well as humans, whereas their putative role in imitation and language may be realized in human but not in monkey. This article shows the important role of computational models in providing sufficient and causal explanations for the observed phenomena involving mirror systems and the learning processes which form them, and underlines the need for additional circuitry to lift up the monkey mirror neuron circuit to sustain the posited cognitive functions attributed to the human mirror neuron system. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Mirror and (absence of) counter-mirror responses to action sounds measured with TMS.

    Ticini, Luca F; Schütz-Bosbach, Simone; Waszak, Florian

    2017-11-01

    To what extent is the mirror neuron mechanism malleable to experience? The answer to this question can help characterising its ontogeny and its role in social cognition. Some suggest that it develops through sensorimotor associations congruent with our own actions. Others argue for its extreme volatility that will encode any sensorimotor association in the environment. Here, we added to this debate by exploring the effects of short goal-directed 'mirror' and 'counter-mirror' trainings (a 'mirror' training is defined as the first type of training encountered by the participants) on human auditory mirror motor-evoked potentials (MEPs). We recorded MEPs in response to two tones void of previous motor meaning, before and after mirror and counter-mirror trainings in which participants generated two tones of different pitch by performing free-choice button presses. The results showed that mirror MEPs, once established, were protected against an equivalent counter-mirror experience: they became manifest very rapidly and the same number of training trials that lead to the initial association did not suffice to reverse the MEP pattern. This steadiness of the association argues that, by serving direct-matching purposes, the mirror mechanism is a good solution for social cognition. © The Author (2017). Published by Oxford University Press.

  18. Near-field flat focusing mirrors

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  19. Coulomb energy differences in mirror nuclei

    Lenzi, Silvia M

    2006-01-01

    By comparing the excitation energies of analogue states in mirror nuclei, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. They can be described in the shell model framework by including electromagnetic and nuclear isospin-non-conserving interactions. Calculations for the mirror energy differences in nuclei of the f 7/2 shell are described and compared with recent experimental data. These studies are extended to mirror nuclei in the upper sd and fp shells

  20. Tandem Mirror Reactor Systems Code (Version I)

    Reid, R.L.; Finn, P.A.; Gohar, M.Y.

    1985-09-01

    A computer code was developed to model a Tandem Mirror Reactor. Ths is the first Tandem Mirror Reactor model to couple, in detail, the highly linked physics, magnetics, and neutronic analysis into a single code. This report describes the code architecture, provides a summary description of the modules comprising the code, and includes an example execution of the Tandem Mirror Reactor Systems Code. Results from this code for two sensitivity studies are also included. These studies are: (1) to determine the impact of center cell plasma radius, length, and ion temperature on reactor cost and performance at constant fusion power; and (2) to determine the impact of reactor power level on cost

  1. Self-Compensation of Astigmatism in Mode-Cleaners for Advanced Interferometers

    Barriga, P; Zhao Chunnong; Ju Li; Blair, David G [School of Physics, University of Western Australia, Crawley, WA6009 (Australia)

    2006-03-02

    Using a conventional mode-cleaner with the output beam taken through a diagonal mirror it is impossible to achieve a non-astigmatic output. The geometrical astigmatism of triangular mode-cleaners for gravitational wave detectors can be self-compensated by thermally induced astigmatism in the mirrors substrates. We present results from finite element modelling of the temperature distribution of the suspended mode-cleaner mirrors and the associated beam profiles. We use these results to demonstrate and present a self-compensated mode-cleaner design. We show that the total astigmatism of the output beam can be reduced to 5x10{sup -3} for {+-}10% variation of input power about a nominal value when using the end mirror of the cavity as output coupler.

  2. Plasma Modes

    Dubin, D. H. E.

    This chapter explores several aspects of the linear electrostatic normal modes of oscillation for a single-species non-neutral plasma in a Penning trap. Linearized fluid equations of motion are developed, assuming the plasma is cold but collisionless, which allow derivation of the cold plasma dielectric tensor and the electrostatic wave equation. Upper hybrid and magnetized plasma waves in an infinite uniform plasma are described. The effect of the plasma surface in a bounded plasma system is considered, and the properties of surface plasma waves are characterized. The normal modes of a cylindrical plasma column are discussed, and finally, modes of spheroidal plasmas, and finite temperature effects on the modes, are briefly described.

  3. Sensitivity Enhancement of Biochemical Sensors Based on Er+3 Doped Microsphere Coupled to an External Mirror

    Alireza BAHRAMPOUR

    2010-09-01

    Full Text Available In this paper we proposed an active optical sensor designed based on the Er+3-doped microsphere coupled to an external mirror. The microsphere-mirror coupling causes the degeneracy splitting of the resonance frequencies. Each of resonance frequencies splits in to two different resonance frequencies .The coupling coefficient changes as a result of altering the refractive index of surrounding medium. So, the presence of bio/chemical analytes can be detected by measuring the change of laser output power, laser frequency or the difference between frequencies of the red and blue shifted modes. In the presence of mirror at least one order of magnitude sensitivity enhancement is obtained relative to the active microsphere biochemical sensors.

  4. Europe in the Balkan mirror

    Milutinović Zoran

    2015-01-01

    Full Text Available The article discusses the three dominant, Europe-wide, constructions of Europe in the nineteenth and twentieth centuries, and claims that all three found their proponents in the Balkans in the same period, while no specifically Balkan construction of Europe can be identified. The discourses which constructed Europe were transnational, and every search for national discourses must recognize that they are always fractured and contradictory, composed of various elements originating in Europe-wide discourses on Europe. Throughout this period the dominant discourse of Europe was shaped by the discourse of modernity and modernization, not only in Europe but in other parts of the globe as well. Several commentators have already noted that the current challenge of the interwar construction of Europe - peace, prosperity, democracy and human rights - mirrors the crisis of Yugoslavia, and many examples point to the unsustainability of this construction at the beginning of the twenty-first century. Gadamer’s hermeneutics offers a valuable lesson in humility and defines the oft-repeated phrase of “belonging together” as listening to the other in the belief that the other may be right, which should be taken as a starting point for any future construction of Europe.

  5. [Infantile autism and mirror neurons].

    Cornelio-Nieto, J O

    2009-02-27

    Infantile autism is a disorder that is characterised by alterations affecting reciprocal social interactions, abnormal verbal and non-verbal communication, poor imaginative activity and a restricted repertoire of activities and interests. The causes of autism remain unknown, but there are a number of different approaches that attempt to explain the neurobiological causes of the syndrome. A recent theory that has been considered is that of a dysfunction in the mirror neuron system (MNS). The MNS is a neuronal complex, originally described in monkeys and also found in humans, that is related with our movements and which offers specific responses to the movements and intended movements of other subjects. This system is believed to underlie processes of imitation and our capacity to learn by imitation. It is also thought to play a role in language acquisition, in expressing the emotions, in understanding what is happening to others and in empathy. Because these functions are altered in children with autism, it has been suggested that there is some dysfunction present in the MNS of those with autism. Dysfunction of the MNS could account for the symptoms that are observed in children with autism.

  6. Fabrication Process Development for Light Deformable Mirrors

    National Aeronautics and Space Administration — The project objective is to develop robust, reproductibble fabrication processes to realize functional deformable membrane mirrors (DM) for a space mission in which...

  7. The mirror mechanism in the parietal lobe.

    Rizzolatti, Giacomo; Rozzi, Stefano

    2018-01-01

    The mirror mechanism is a basic mechanism that transforms sensory representations of others' actions into motor representations of the same actions in the brain of the observer. The mirror mechanism plays an important role in understanding actions of others. In the present chapter we discuss first the basic organization of the posterior parietal lobe in the monkey, stressing that it is best characterized as a motor scaffold, on the top of which sensory information is organized. We then describe the location of the mirror mechanism in the posterior parietal cortex of the monkey, and its functional role in areas PFG, and anterior, ventral, and lateral intraparietal areas. We will then present evidence that a similar functional organization is present in humans. We will conclude by discussing the role of the mirror mechanism in the recognition of action performed with tools. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. The mirror mechanism: recent findings and perspectives

    Rizzolatti, Giacomo; Fogassi, Leonardo

    2014-01-01

    Mirror neurons are a specific type of visuomotor neuron that discharge both when a monkey executes a motor act and when it observes a similar motor act performed by another individual. In this article, we review first the basic properties of these neurons. We then describe visual features recently investigated which indicate that, besides encoding the goal of motor acts, mirror neurons are modulated by location in space of the observed motor acts, by the perspective from which the others’ motor acts are seen, and by the value associated with the object on which others’ motor acts are performed. In the last part of this article, we discuss the role of the mirror mechanism in planning actions and in understanding the intention underlying the others’ motor acts. We also review some human studies suggesting that motor intention in humans may rely, as in the monkey, on the mirror mechanism. PMID:24778385

  9. From quantum entanglement to mirror neuron

    Zak, Michail

    2007-01-01

    It is proposed that two fundamental phenomena: quantum entanglement in physics, and mirror neuron in biopsychology, can be described by using the same mathematical formalism, namely, the feedback from the Liouville equation to equation of motion

  10. Electrostatic axisymmetric mirror with removable spherical aberration

    Birmuzaev, S.B.; Serikbaeva, G.S.; Hizirova, M.A.

    1999-01-01

    The electrostatic axisymmetric mirror, assembled from three coaxial cylinders with an equal diameter d and under the potential v1, v2 and v3, was computed. The proportions of geometrical and electric parameters of the mirror, with which the spherical 3-order aberration may be eliminated, were determined. The computation outcomes of the case, when the focal power of the mirror is enough large and the object plane in the focus is out of its field, are presented (Fig. 1 - potentials proportion that makes elimination of the spherical aberration possible; Fig. 2 - the focus coordinates when the spherical aberration is eliminated). The geometrical values are presented by d, and the electric ones are presented by v1. The figures on the curves present a length of the second (middle) electrode. The zero point is located in the middle of the gap between the first and second electrodes The investigated mirror may be used as a lens for the transmission electron microscope

  11. Mirror Advanced Reactor Study interim design report

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design.

  12. Cosmological Constraints on Mirror Matter Parameters

    Wallemacq, Quentin; Ciarcelluti, Paolo

    2014-01-01

    Up-to-date estimates of the cosmological parameters are presented as a result of numerical simulations of cosmic microwave background and large scale structure, considering a flat Universe in which the dark matter is made entirely or partly of mirror matter, and the primordial perturbations are scalar adiabatic and in linear regime. A statistical analysis using the Markov Chain Monte Carlo method allows to obtain constraints of the cosmological parameters. As a result, we show that a Universe with pure mirror dark matter is statistically equivalent to the case of an admixture with cold dark matter. The upper limits for the ratio of the temperatures of ordinary and mirror sectors are around 0.3 for both the cosmological models, which show the presence of a dominant fraction of mirror matter, 0.06≲Ω_m_i_r_r_o_rh"2≲0.12.

  13. Four-Mirror Freeform Reflective Imaging Systems

    National Aeronautics and Space Administration — Central Objectives: The research involves a revelation of the solution space for revolutionary families of four-mirror freeform reflective imaging systems. A...

  14. Silicon Wafer X-ray Mirror Project

    National Aeronautics and Space Administration — We propose to undertake the initial development of a Kirkpatrick-Baez (K-B) type X-ray mirror using the relatively recent availability of high quality, inexpensive,...

  15. Distortion compensation in interferometric testing of mirrors

    Robinson, Brian M.; Reardon, Patrick J.

    2009-01-01

    We present a method to compensate for the imaging distortion encountered in interferometric testing of mirrors, which is introduced by interferometer optics as well as from geometric projection errors. Our method involves placing a mask, imprinted with a regular square grid, over the mirror and finding a transformation that relates the grid coordinates to coordinates in the base plane of the parent surface. This method can be used on finished mirrors since no fiducials have to be applied to the surfaces. A critical step in the process requires that the grid coordinates be projected onto the mirror base plane before the regression is performed. We apply the method successfully during a center-of-curvature null test of an F/2 off-axis paraboloid

  16. Mirror Fusion Test Facility magnet system

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  17. Mirror Advanced Reactor Study interim design report

    1983-04-01

    The status of the design of a tenth-of-a-kind commercial tandem-mirror fusion reactor is described at the midpoint of a two-year study. When completed, the design is to serve as a strategic goal for the mirror fusion program. The main objectives of the Mirror Advanced Reactor Study (MARS) are: (1) to design an attractive tandem-mirror fusion reactor producing electricity and synfuels (in alternate versions), (2) to identify key development and technology needs, and (3) to exploit the potential of fusion for safety, low activation, and simple disposal of radioactive waste. In the first year we have emphasized physics and engineering of the central cell and physics of the end cell. Design optimization and trade studies are continuing, and we expect additional modifications in the end cells to further improve the performance of the final design

  18. Silicon Wafer X-ray Mirror

    National Aeronautics and Space Administration — We propose to undertake the initial development of a Kirkpatrick-Baez (K-B) type X-ray mirror using the relatively recent availability of high quality, inexpensive,...

  19. Reflections on mirror neurons and speech perception

    Lotto, Andrew J.; Hickok, Gregory S.; Holt, Lori L.

    2010-01-01

    The discovery of mirror neurons, a class of neurons that respond when a monkey performs an action and also when the monkey observes others producing the same action, has promoted a renaissance for the Motor Theory (MT) of speech perception. This is because mirror neurons seem to accomplish the same kind of one to one mapping between perception and action that MT theorizes to be the basis of human speech communication. However, this seeming correspondence is superficial, and there are theoretical and empirical reasons to temper enthusiasm about the explanatory role mirror neurons might have for speech perception. In fact, rather than providing support for MT, mirror neurons are actually inconsistent with the central tenets of MT. PMID:19223222

  20. Auditory-vocal mirroring in songbirds.

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.

  1. Auditory–vocal mirroring in songbirds

    Mooney, Richard

    2014-01-01

    Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory–vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory–vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory–vocal mirroring in the songbird's brain. PMID:24778375

  2. Additive Manufacturing of Telescope Mirrors, Phase I

    National Aeronautics and Space Administration — This Phase 1 SBIR is to demonstrate feasibility of using selective laser melting (SLM) to produce a 3-meter symmetrical radius of curvature (ROC) isogrid mirror...

  3. Coating considerations for mirrors of CPV devices

    Schmauder, Torsten; Sauer, Peter; Ickes, Gerd

    2014-01-01

    One of the different optical concepts for concentrator devices is to place a focussing primary mirror behind a transparent front plate. In addition (also in case of Fresnel-diffractive main optics), further 'secondary' reflectors may be used further along the beam path. Such mirrors are usually implemented as coating stacks of a highly reflective metal - usually silver - and protective layers. The protective layers are preferably designed as reflection enhancing interference stack. The design of such protective layer stacks yields two difficulties, which are addressed in this paper: (a) vacuum coating of three-dimensional parts will result in a thickness distribution and the optical design of the stack should thus be tolerant to layer thickness variations, and (b) different places of the mirror will have different angle-of-incidence of the sunlight under operating conditions. As result, the layer stack has a different design at different places of the mirror

  4. Quantum locking of mirrors in interferometers.

    Courty, Jean-Michel; Heidmann, Antoine; Pinard, Michel

    2003-02-28

    We show that quantum noise in very sensitive interferometric measurements such as gravitational-wave detectors can be drastically modified by quantum feedback. We present a new scheme based on active control to lock the motion of a mirror to a reference mirror at the quantum level. This simple technique allows one to reduce quantum effects of radiation pressure and to greatly enhance the sensitivity of the detection.

  5. Mirror Writing and a Dissociative Identity Disorder

    Le, Catherine; Smith, Joyce; Cohen, Lewis

    2009-01-01

    Individuals with dissociative identity disorder (DID) have been known to show varied skills and talents as they change from one dissociative state to another. For example, case reports have described people who have changed their handedness or have spoken foreign languages during their dissociative states. During an interview with a patient with DID, a surprising talent emerged when she wrote a sentence for the Folstein Mini-Mental State Exam—mirror writing. It is not known whether her mirror...

  6. Fabrication of off-axis parabolic mirrors

    Bezik, M.J.; Gerth, H.L.; Sladky, R.E.; Washington, C.A.

    1978-08-01

    The report describes the fabrication process, including metal preparation, copper electroplating, single-crystal-diamond turning, optical inspection, and polishing, used to manufacture the focusing mirrors for the 10-kJ laser fusion experiment being conducted by the Los Alamos Scientific Laboratory. Fabrication of these mirrors by the techniques described resulted in diffraction-limited optics at a 10.6 μm wavelength

  7. On horizonless temperature with an accelerating mirror

    Good, Michael R.R.; Yelshibekov, Khalykbek [Department of Physics, School of Science and Technology, Nazarbayev University,53 Kabanbay Batyr Ave., Astana, 010000 Republic of (Kazakhstan); Ong, Yen Chin [Center for Astronomy and Astrophysics, Department of Physics and Astronomy,Shanghai Jiao Tong University, Shanghai, 200240 (China); Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, Stockholm, SE-106 91 (Sweden)

    2017-03-03

    A new solution of a unitary moving mirror is found to produce finite energy and emit thermal radiation despite the absence of an acceleration horizon. In the limit that the mirror approaches the speed of light, the model corresponds to a black hole formed from the collapse of a null shell. For speeds less than light, the black hole correspondence, if it exists, is that of a remnant.

  8. Action observation: Inferring intentions without mirror neurons

    Frith, Christopher; Kilner, James M

    2008-01-01

    A recent study has shown, using fMRI, that the mirror neuron system does not mediate action understanding when the observed action is novel or when it is hard to understand.......A recent study has shown, using fMRI, that the mirror neuron system does not mediate action understanding when the observed action is novel or when it is hard to understand....

  9. Designs of tandem-mirror fusion reactors

    Carlson, G.A.; Barr, W.L.; Boghosian, B.M.

    1981-01-01

    We have completed a comparative evaluation of several end plug configurations for tandem mirror fusion reactors with thermal barriers. The axi-cell configuration has been selected for further study and will be the basis for a detailed conceptual design study to be carried out over the next two years. The axi-cell end plug has a simple mirror cell produced by two circular coils followed by a transition coil and a yin-yang pair, which provides for MHD stability

  10. Tandem mirror next step: remote maintenance

    Doggett, J.N.; Damm, C.C.; Hanson, C.L.

    1980-01-01

    This study of the next proposed experiment in the Mirror Fusion Program, the Tandem Mirror Next Step (TMNS), has included serious consideration of the maintenance requirements of such a large source of high energy neutrons with its attendant throughput of tritium. Although maintenance will be costly in time and money, our conclusion is that with careful attention to a design for maintenance plan such a device can be reliably operated

  11. Summary of UCRL pyrotron (mirror machine) program

    Post, R F [Radiation Laboratory, University of California, Livermore, CA (United States)

    1958-07-01

    Under the sponsorship of the Atomic Energy Commission, work has been going forward at the University of California Radiation Laboratory since 1952 to investigate the application of the so-called 'magnetic mirror' effect to the creation and confinement of a high temperature plasma. This report presents some of the theory of operation of the Mirror Machine, and summarizes the experimental work which has been carried out.

  12. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition

    Fu-Tai Wang

    2015-07-01

    Full Text Available Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD can decompose a signal into several intrinsic mode functions (IMFs that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  13. Instantaneous Respiratory Estimation from Thoracic Impedance by Empirical Mode Decomposition.

    Wang, Fu-Tai; Chan, Hsiao-Lung; Wang, Chun-Li; Jian, Hung-Ming; Lin, Sheng-Hsiung

    2015-07-07

    Impedance plethysmography provides a way to measure respiratory activity by sensing the change of thoracic impedance caused by inspiration and expiration. This measurement imposes little pressure on the body and uses the human body as the sensor, thereby reducing the need for adjustments as body position changes and making it suitable for long-term or ambulatory monitoring. The empirical mode decomposition (EMD) can decompose a signal into several intrinsic mode functions (IMFs) that disclose nonstationary components as well as stationary components and, similarly, capture respiratory episodes from thoracic impedance. However, upper-body movements usually produce motion artifacts that are not easily removed by digital filtering. Moreover, large motion artifacts disable the EMD to decompose respiratory components. In this paper, motion artifacts are detected and replaced by the data mirrored from the prior and the posterior before EMD processing. A novel intrinsic respiratory reconstruction index that considers both global and local properties of IMFs is proposed to define respiration-related IMFs for respiration reconstruction and instantaneous respiratory estimation. Based on the experiments performing a series of static and dynamic physical activates, our results showed the proposed method had higher cross correlations between respiratory frequencies estimated from thoracic impedance and those from oronasal airflow based on small window size compared to the Fourier transform-based method.

  14. Technology of mirror machines: LLL facilities for magnetic mirror fusion experiments

    Batzer, T.H.

    1977-01-01

    Significant progress in plasma confinement and temperature has been achieved in the 2XIIB facility at Livermore. These encouraging results, and their theoretical corroboration, have provided a firm basis for the design of a new generation of magnetic mirror experiments, adding support to the mirror concept of a fusion reactor. Two new mirror experiments have been proposed to succeed the currently operating 2XIIB facility. The first of these called TMX (Tandem Mirror Experiment) has been approved and is currently under construction. TMX is designed to utilize the intrinsic positive plasma potential of two strong, and relatively small, minimum B mirror cells to enhance the confinement of a much larger, magnetically weaker, centrally-located mirror cell. The second facility, MFTF (Mirror Fusion Test Facility), is currently in preliminary design with line item approval anticipated for FY 78. MFTF is designed primarily to exploit the experimental and theoretical results derived from 2XIIB. Beyond that, MFTF will develop the technology for the transition from the present small mirror experiments to large steady-state devices such as the mirror FERF/FTR. The sheer magnitude of the plasma volume, magnetic field, neutral beam power, and vacuum pumping capacity, particularly in the case of MFTF, has placed new and exciting demands on engineering technology. An engineering overview of MFTF, TMX, and associated MFE activities at Livermore will be presented

  15. Collective Lyapunov modes

    Takeuchi, Kazumasa A; Chaté, Hugues

    2013-01-01

    We show, using covariant Lyapunov vectors in addition to standard Lyapunov analysis, that there exists a set of collective Lyapunov modes in large chaotic systems exhibiting collective dynamics. Associated with delocalized Lyapunov vectors, they act collectively on the trajectory and hence characterize the instability of its collective dynamics. We further develop, for globally coupled systems, a connection between these collective modes and the Lyapunov modes in the corresponding Perron–Frobenius equation. We thereby address the fundamental question of the effective dimension of collective dynamics and discuss the extensivity of chaos in the presence of collective dynamics. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Lyapunov analysis: from dynamical systems theory to applications’. (paper)

  16. Advanced Mirror Technology Development (AMTD) Project: 3.0 Year Status

    Stahl, H. Philip

    2015-01-01

    mirror substrate size, first fundamental mode frequency (i.e., stiffness) and mass required to fabricate without quilting, survive launch, and achieve stable pointing and maximum thermal time constant.

  17. Tilting mode in field-reversed configurations

    Schwarzmeier, J.L.; Barnes, D.C.; Lewis, H.R.; Seyler, C.E.; Shestakov, A.I.

    1982-01-01

    Field Reversed Configurations (FRCs) experimentally have exhibited remarkable stability on the magnetohydrodynamic (MHD) timescale, despite numerous MHD calculations showing FRCs to be unstable. It is easy to believe that local modes are stabilized by finite Larmor radius (FLR) effects, but more puzzling is the apparent stability of FRCs against global modes, where one would expect FLR effects to be less important. In this paper we study the tilting mode, which MHD has shown to be a rapidly growing global mode. The tilting mode in FRCs is driven by the pressure gradient, and magnetic compression and field line bending are the stabilizing forces. A schematic of the evolution of the tilting mode is shown. The tilting mode is considered dangerous, because it would lead to rapid tearing across the separatrix. Unlike spheromaks, the tilting mode in FRCs has a separatrix that is fixed in space, so that the mode is strictly internal

  18. On MHD waves, fire-hose and mirror instabilities in anisotropic plasmas

    L.-N. Hau

    2007-09-01

    Full Text Available Temperature or pressure anisotropies are characteristic of space plasmas, standard magnetohydrodynamic (MHD model for describing large-scale plasma phenomena however usually assumes isotropic pressure. In this paper we examine the characteristics of MHD waves, fire-hose and mirror instabilities in anisotropic homogeneous magnetized plasmas. The model equations are a set of gyrotropic MHD equations closed by the generalized Chew-Goldberger-Low (CGL laws with two polytropic exponents representing various thermodynamic conditions. Both ions and electrons are allowed to have separate plasma beta, pressure anisotropy and energy equations. The properties of linear MHD waves and instability criteria are examined and numerical examples for the nonlinear evolutions of slow waves, fire-hose and mirror instabilities are shown. One significant result is that slow waves may develop not only mirror instability but also a new type of compressible fire-hose instability. Their corresponding nonlinear structures thus may exhibit anticorrelated density and magnetic field perturbations, a property used for identifying slow and mirror mode structures in the space plasma environment. The conditions for nonlinear saturation of both fire-hose and mirror instabilities are examined.

  19. Research on Method of Photoelectric Measurement for Tilt Angle of Scanning Mirror of Infrared Earth Sensor

    Xu, X P; Zhang, G Y; Zhang, N; Wang, L Y [Changchun University of Science and Technology, 130022, Changchun (China)

    2006-10-15

    Tilt angle of scanning mirror is one of the important qualifications of performance measurement on the earth surface for swing scanning mode infrared the earth sensor. In order to settle the problem of measuring the tilt angle of scanning mirror in dynamic, real-time and non-contact, based on laser inspecting technology and CCD probing technology, a method of laser dynamical measurement for tilt angle of scanning mirror of the infrared earth sensor is presented. The measurement system developed in this paper can accomplish the dynamic and static laser non-contact measurement for the parameters of scanning mirror such as tilt angle, swing frequency, etc. In this paper the composition and overall structure of system are introduced. Emphasis on analyzing and discussing the theory of dynamically measuring tilt angle of scanning mirror, the problems of data processing and error correction are settled by established mathematic model of system. The accuracy of measurement system is verified by experiment, the results indicated that measurement range of system for tilt angle is 0{approx}{+-}12{sup 0}, accuracy of dynamic and static measurement is less than {+-}0.05{sup 0}, this method of dynamically measuring tilt angle is suitable.

  20. A Fast, Large-Stroke Electrothermal MEMS Mirror Based on Cu/W Bimorph

    Xiaoyang Zhang

    2015-12-01

    Full Text Available This paper reports a large-range electrothermal bimorph microelectromechanical systems (MEMS mirror with fast thermal response. The actuator of the MEMS mirror is made of three segments of Cu/W bimorphs for lateral shift cancelation and two segments of multimorph beams for obtaining large vertical displacement from the angular motion of the bimorphs. The W layer is also used as the embedded heater. The silicon underneath the entire actuator is completely removed using a unique backside deep-reactive-ion-etching DRIE release process, leading to improved thermal response speed and front-side mirror surface protection. This MEMS mirror can perform both piston and tip-tilt motion. The mirror generates large pure vertical displacement up to 320 μm at only 3 V with a power consumption of 56 mW for each actuator. The maximum optical scan angle achieved is ±18° at 3 V. The measured thermal response time is 15.4 ms and the mechanical resonances of piston and tip-tilt modes are 550 Hz and 832 Hz, respectively.

  1. Discrete mode lasers for communications applications

    Barry, L. P.; Herbert, C.; Jones, D.; Kaszubowska-Anandarajah, A.; Kelly, B.; O'Carroll, J.; Phelan, R.; Anandarajah, P.; Shi, K.; O'Gorman, J.

    2009-02-01

    The wavelength spectra of ridge waveguide Fabry Perot lasers can be modified by perturbing the effective refractive index of the guided mode along very small sections of the laser cavity. One way of locally perturbing the effective index of the lasing mode is by etching features into the ridge waveguide such that each feature has a small overlap with the transverse field profile of the unperturbed mode, consequently most of the light in the laser cavity is unaffected by these perturbations. A proportion of the propagating light is however reflected at the boundaries between the perturbed and the unperturbed sections. Suitable positioning of these interfaces allows the mirror loss spectrum of a Fabry Perot laser to be manipulated. In order to achieve single longitudinal mode emission, the mirror loss of a specified mode must be reduced below that of the other cavity modes. Here we review the latest results obtained from devices containing such features. These results clearly demonstrate that these devices exceed the specifications required for a number of FTTH and Datacomms applications, such as GEPON, LX4 and CWDM. As well as this we will also present initial results on the linewidth of these devices.

  2. Differential interferometer for measurement of displacement of laser resonator mirrors

    Macúchová, Karolina; Němcová, Šárka; Hošek, Jan

    2015-01-01

    This paper covers a description and a technique of a possible optical method of mode locking within a laser resonator. The measurement system is a part of instrumentation of laser-based experiment OSQAR at CERN. The OSQAR experiment aims at search of axions, axion-like particles and measuring of ultra-fine vacuum magnetic birefringence. It uses a laser resonator to enhance the coupling constant of hypothetical photon-to-axion conversion. The developed locking-in technique is based on differential interferometry. Signal obtained from the measurement provide crucial information for adaptive control of the locking-in of the resonator in real time. In this paper we propose several optical setups used for measurement and analysis of mutual position of the resonator mirrors. We have set up a differential interferometer under our laboratory conditions. We have done measurements with hemi-spherical cavity resonator detuned with piezo crystals. The measurement was set up in a single plane. Laser light was directed through half-wave retarder to a polarizing beam splitter and then converted to circular polarization by lambda/4 plates. After reflection at the mirrors, the beam is recombined in a beam splitter, sent to analyser and non-polarizing beam splitter and then inspected by two detectors with mutually perpendicular polarizers. The 90 degrees phase shift between the two arms allows precise analysis of a mutual distance change of the mirrors. Because our setup was sufficiently stable, we were able to measure the piezo constant and piezo hysteresis. The final goal is to adapt the first prototype to 23 m resonator and measure the displacement in two planes.

  3. Tacoma mode

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a ω is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, Q/sub xy/, whenever a coherent dipole oscillation exists

  4. Tacoma mode

    Courant, E.D.; Ruth, R.D.; Wang, J.M.

    1979-01-01

    The name Tacoma refers to the Tacoma Narrows Bridge which collapsed on November 8, 1940 due to massive oscillations caused by high winds. One of the destructive modes was a torsion mode which was excited by transverse wind, a dipole force, and continued until the bridge collapsed. The name is used to refer to a coherent mode of oscillation of a spectrum of oscillators in which the amplitude vs frequency graph contains one node, where the node occurs near the driving frequency and a(ω) is not symmetric about zero. When this result is applied to vertical instabilities in coasting beams, it implies the existence of a coherent skew quadrupole moment, whenever a coherent dipole oscillation exists

  5. Optimization and performance evaluation of a conical mirror based fluorescence molecular tomography imaging system

    Zhao, Yue; Zhang, Wei; Zhu, Dianwen; Li, Changqing

    2016-03-01

    We performed numerical simulations and phantom experiments with a conical mirror based fluorescence molecular tomography (FMT) imaging system to optimize its performance. With phantom experiments, we have compared three measurement modes in FMT: the whole surface measurement mode, the transmission mode, and the reflection mode. Our results indicated that the whole surface measurement mode performed the best. Then, we applied two different neutral density (ND) filters to improve the measurement's dynamic range. The benefits from ND filters are not as much as predicted. Finally, with numerical simulations, we have compared two laser excitation patterns: line and point. With the same excitation position number, we found that the line laser excitation had slightly better FMT reconstruction results than the point laser excitation. In the future, we will implement Monte Carlo ray tracing simulations to calculate multiple reflection photons, and create a look-up table accordingly for calibration.

  6. Real time MHD mode control using ECCD in KSTAR: Plan and requirements

    Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L. [National Fusion Research Institute, 52 Eoeun-dong, Yuseong-gu, Daejeon (Korea, Republic of); Namkung, W.; Park, H.; Cho, M. H. [Department of Physics, POSTECH, Hyoja-dong, Nam-gu, Pohang, Gyeongangbuk-do (Korea, Republic of); Kim, M. H.; Kim, K. J.; Na, Y. S. [Department of Nuclear Engineering, Seoul National University, Daehak-dong, Gwanak-gu, Seoul (Korea, Republic of); Hosea, J.; Ellis, R. [Princeton Plasma Physics Laboratory, Princeton (United States)

    2014-02-12

    For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.

  7. Quantum limits of photothermal and radiation pressure cooling of a movable mirror

    Pinard, M; Dantan, A

    2008-01-01

    We present a general quantum-mechanical theory for the cooling of a movable mirror in an optical cavity when both radiation pressure self-cooling and photothermal cooling effects are present, and show that these two mechanisms may bring the oscillator close to its quantum ground state, although in quite different regimes. Self-cooling caused by coherent exchange of excitations between the cavity mode and the mirror vibrational mode is shown to dominate in the good-cavity regime-when the mechanical resonance frequency is larger than the cavity decay rate, whereas photothermal-induced cooling can be made predominant in the bad-cavity limit. Both situations are compared, and the relevant physical quantities to be optimized in order to reach the lowest final excitation number states are extracted.

  8. Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror

    Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei

    2018-03-01

    In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.

  9. Failure Modes

    Jakobsen, K. P.; Burcharth, H. F.; Ibsen, Lars Bo

    1999-01-01

    The present appendix contains the derivation of ten different limit state equations divided on three different failure modes. Five of the limit state equations can be used independently of the characteristics of the subsoil, whereas the remaining five can be used for either drained or undrained s...

  10. Gas box control system for Tandem Mirror Experiment-Upgrade

    Bell, H.H. Jr.; Hunt, A.L.; Clower, C.A. Jr.

    1983-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-U) uses several methods to feed gas (usually deuterium) at different energies into the plasma region of the machine. One is an arrangement of eight high-speed piezo-electric valves mounted on special manifolds (gas box) that feed cold gas directly to the plasma. This paper describes the electronic valve control and data acquisition portions of the gas box, which are controlled by a desk-top computer. Various flow profiles have been developed and stored in the control computer for ready access by the operator. The system uses two modes of operation, one that exercises and characterizes the valves and one that operates the valves with the rest of the experiment. Both the valve control signals and the pressure transducers data are recorded on the diagnostics computer so that they are available for experiment analysis

  11. Preliminary pellet injection experiment in the Gamma 10 tandem mirror

    Kawamori, Eiichirou; Tamano, Teruo; Nakashima, Yousuke; Yoshikawa, Masayuki; Kobayashi, Shinji; Cho, Teruji; Ishii, Kameo; Yatsu, Kiyoshi [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki (Japan); Mase, Atsushi [Advanced Sceince and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka (Japan)

    2000-07-01

    In the GAMMA 10 tandem mirror, pellet injection experiments have been started as a solution for the density limit problem. This is the first pellet injection experiment in open systems. We describe the possibilities of confinement of pellet fueled particles. For that, we measure the number of end loss particles and compare them with pellet fueled ones in various conditions of confining potentials. The deterioration of confining potential with the pellet injection is a fundamental issue. The results show that the ion confining potential recover faster than central electron temperature due to thermal barrier. We also consider the operating space for fueling method. It is demonstrated that the operating space for pellet injection exceeds gas fueled one on hot ion mode plasmas. (author)

  12. Derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors

    Guérout, R.; Lambrecht, A.; Milton, K. A.; Reynaud, S.

    2014-10-01

    We carefully reexamine the conditions of validity for the consistent derivation of the Lifshitz-Matsubara sum formula for the Casimir pressure between metallic plane mirrors. We recover the usual expression for the lossy Drude model but not for the lossless plasma model. We give an interpretation of this new result in terms of the modes associated with the Foucault currents, which play a role in the limit of vanishing losses, in contrast to common expectations.

  13. Production of field-reversed mirror plasma with a coaxial plasma gun

    Hartman, C.W.; Shearer, J.W.

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode.

  14. Production of field-reversed mirror plasma with a coaxial plasma gun

    Hartman, C.W.; Shearer, J.W.

    1982-01-01

    The use of a coaxial plasma gun to produce a plasma ring which is directed into a magnetic field so as to form a field-reversed plasma confined in a magnetic mirror. Plasma thus produced may be used as a target for subsequent neutral beam injection or other similarly produced and projected plasma rings or for direct fusion energy release in a pulsed mode

  15. Applications of tuned mass dampers to improve performance of large space mirrors

    Yingling, Adam J.; Agrawal, Brij N.

    2014-01-01

    In order for future imaging spacecraft to meet higher resolution imaging capability, it will be necessary to build large space telescopes with primary mirror diameters that range from 10 m to 20 m and do so with nanometer surface accuracy. Due to launch vehicle mass and volume constraints, these mirrors have to be deployable and lightweight, such as segmented mirrors using active optics to correct mirror surfaces with closed loop control. As a part of this work, system identification tests revealed that dynamic disturbances inherent in a laboratory environment are significant enough to degrade the optical performance of the telescope. Research was performed at the Naval Postgraduate School to identify the vibration modes most affecting the optical performance and evaluate different techniques to increase damping of those modes. Based on this work, tuned mass dampers (TMDs) were selected because of their simplicity in implementation and effectiveness in targeting specific modes. The selected damping mechanism was an eddy current damper where the damping and frequency of the damper could be easily changed. System identification of segments was performed to derive TMD specifications. Several configurations of the damper were evaluated, including the number and placement of TMDs, damping constant, and targeted structural modes. The final configuration consisted of two dampers located at the edge of each segment and resulted in 80% reduction in vibrations. The WFE for the system without dampers was 1.5 waves, with one TMD the WFE was 0.9 waves, and with two TMDs the WFE was 0.25 waves. This paper provides details of some of the work done in this area and includes theoretical predictions for optimum damping which were experimentally verified on a large aperture segmented system.

  16. Thermal performance of the ATST secondary mirror

    Cho, Myung K.; DeVries, Joe; Hansen, Eric

    2007-12-01

    The Advanced Technology Solar Telescope (ATST) has a 4.24m off-axis primary mirror designed to deliver diffractionlimited images of the sun. Its baseline secondary mirror (M2) design uses a 0.65m diameter Silicon Carbide mirror mounted kinematically by a bi-pod flexure mechanism at three equally spaced locations. Unlike other common telescopes, the ATST M2 is to be exposed to a significant solar heat loading. A thermal management system (TMS) will be developed to accommodate the solar loading and minimize "mirror seeing effect" by controlling the temperature difference between the M2 optical surface and the ambient air at the site. Thermo-elastic analyses for steady state thermal behaviors of the ATST secondary mirror was performed using finite element analysis by I-DEAS TM and PCRINGE TM for the optical analysis. We examined extensive heat transfer simulation cases and their results were discussed. The goal of this study is to establish thermal models by I-DEAS for an adequate thermal environment. These thermal models will be useful for estimating segment thermal responses. Current study assumes a few sample time dependent thermal loadings to synthesize the operational environment.

  17. Performance evaluations of the ATST secondary mirror

    Cho, Myung K.; DeVries, Joseph; Hansen, Eric

    2007-09-01

    The Advanced Technology Solar Telescope (ATST) has a 4.24m off-axis primary mirror designed to deliver diffraction-limited images of the sun. Its baseline secondary mirror (M2) design uses a 0.65m diameter Silicon Carbide mirror mounted kinematically by a bi-pod flexure mechanism at three equally spaced locations. Unlike other common telescopes, the ATST M2 is to be exposed to a significant solar heat loading. A thermal management system will be developed to accommodate the solar loading and minimize "mirror seeing effect" by controlling the temperature difference between the M2 optical surface and the ambient air at the site. Thermo-elastic analyses for steady state thermal behaviors of the ATST secondary mirror was performed using finite element analysis by I-DEAS TM and PCFRINGE TM for the optical analysis. We examined extensive heat transfer simulation cases and their results are discussed. The goal of this study is to evaluate the optical performances of M2 using thermal models and mechanical models. Thermal responses from the models enable us to manipulate time dependent thermal loadings to synthesize the operational environment for the design and development of TMS.

  18. Mirror theory applied to toroidal systems

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, and losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma fetures are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong r.f. heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong r.f. heating and collisions. 37 refs., 3 figs

  19. Mirror theory applied to toroidal systems

    Cohen, R.H.

    1987-01-01

    Central features of a mirror plasma are strong departures from Maxwellian distribution functions, ambipolar potentials and densities which vary along a field line, end losses, and the mirror field itself. To examine these features, mirror theorists have developed analytical and numerical techniques to solve the Fokker-Planck equation, evaluate the potentials consistent with the resulting distribution functions, and assess the microstability of these distributions. Various combinations of mirror-plasma features are present and important in toroidal plasmas as well, particularly in the edge region and in plasmas with strong rf heating. In this paper we survey problems in toroidal plasmas where mirror theory and computational techniques are applicable, and discuss in more detail three specific examples: calculation of the toroidal generalization of the Spitzer-Haerm distribution function (from which trapped-particle effects on current drive can be calculated), evaluation of the nonuniform potential and density set up by pulsed electron-cyclotron heating, and calculation of steady-state distribution functions in the presence of strong rf heating and collisions. 37 refs

  20. Space Active Optics: toward optimized correcting mirrors for future large spaceborne observatories

    Laslandes, Marie; Hugot, Emmanuel; Ferrari, Marc; Lemaitre, Gérard; Liotard, Arnaud

    2011-10-01

    Wave-front correction in optical instruments is often needed, either to compensate Optical Path Differences, off-axis aberrations or mirrors deformations. Active optics techniques are developed to allow efficient corrections with deformable mirrors. In this paper, we will present the conception of particular deformation systems which could be used in space telescopes and instruments in order to improve their performances while allowing relaxing specifications on the global system stability. A first section will be dedicated to the design and performance analysis of an active mirror specifically designed to compensate for aberrations that might appear in future 3m-class space telescopes, due to lightweight primary mirrors, thermal variations or weightless conditions. A second section will be dedicated to a brand new design of active mirror, able to compensate for given combinations of aberrations with a single actuator. If the aberrations to be corrected in an instrument and their evolutions are known in advance, an optimal system geometry can be determined thanks to the elasticity theory and Finite Element Analysis.

  1. Polishers around the globe: an overview on the market of large astronomical mirrors

    Döhring, Thorsten

    2014-07-01

    Astronomical mirrors are key elements in modern optical telescopes, their dimensions are usually large and their specifications are demanding. Only a limited number of skilled companies respectively institutions around the world are able to master the challenge to polish an individual astronomical mirror, especially in dimensions above one meter. This paper presents an overview on the corresponding market including a listing of polishers around the globe. Therefore valuable information is provided to the astronomical community: Polishers may use the information as a global competitor database, astronomers and project managers may get more transparency on potential suppliers, and suppliers of polishing equipment may learn about unknown potential customers in other parts of the world. An evaluation of the historical market demand on large monolithic astronomical mirrors is presented. It concluded that this is still a niche market with a typical mean rate of 1-2 mirrors per year. Polishing of such mirrors is an enabling technology with impact on the development of technical know-how, public relation, visibility and reputation of the supplier. Within a corresponding technical discussion different polishing technologies are described. In addition it is demonstrated that strategic aspects and political considerations are influencing the selection of the optical finisher.

  2. Reflecting on the mirror neuron system in autism: a systematic review of current theories.

    Hamilton, Antonia F de C

    2013-01-01

    There is much interest in the claim that dysfunction of the mirror neuron system in individuals with autism spectrum condition causes difficulties in social interaction and communication. This paper systematically reviews all published studies using neuroscience methods (EEG/MEG/TMS/eyetracking/EMG/fMRI) to examine the integrity of the mirror system in autism. 25 suitable papers are reviewed. The review shows that current data are very mixed and that studies using weakly localised measures of the integrity of the mirror system are hard to interpret. The only well localised measure of mirror system function is fMRI. In fMRI studies, those using emotional stimuli have reported group differences, but studies using non-emotional hand action stimuli do not. Overall, there is little evidence for a global dysfunction of the mirror system in autism. Current data can be better understood under an alternative model in which social top-down response modulation is abnormal in autism. The implications of this model and future research directions are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Harnessing the mode mixing in optical fiber-tip cavities

    Podoliak, Nina; Horak, Peter; Takahashi, Hiroki; Keller, Matthias

    2017-01-01

    We present a systematic numerical study of Fabry–Pérot optical cavities with Gaussian-shape mirrors formed between tips of optical fibers. Such cavities can be fabricated by laser machining of fiber tips and are promising systems for achieving strong coupling between atomic particles and an optical field as required for quantum information applications. Using a mode mixing matrix method, we analyze the cavity optical eigenmodes and corresponding losses depending on a range of cavity-shape parameters, such as mirror radius of curvature, indentation depth and cavity length. The Gaussian shape of the mirrors causes mixing of optical modes in the cavity. We investigate the effect of the mode mixing on the coherent atom-cavity coupling as well as the mode matching between the cavity and a single-mode optical fiber. While the mode mixing is associated with increased cavity losses, it can also lead to an enhancement of the local optical field. We demonstrate that around the resonance between the fundamental and 2nd order Laguerre–Gaussian modes of the cavity it is possible to obtain 50% enhancement of the atom-cavity coupling at the cavity center while still maintaining low cavity losses and high cavity-fiber optical coupling. (paper)

  4. Quasi-optical mode converter for a coaxial cavity gyrotron

    Jin, J.

    2007-03-01

    This work concentrates on the synthesis of the quasioptical mode converter for the 170 GHz, TE 34,19 -mode, 2MW, CW coaxial-cavity gyrotron at Forschungszentrum Karlsruhe (FZK). The improvement of the general method for the design of so-call dimpled-wall launcher to provide a good Gaussian mode content is described. This method is verified through the design of a launcher operating in the TE 22,6 mode at 118 GHz. A phase rule is proposed as a quality criterion for monitoring the optimization and the choices of parameters of the quasi-optical mode converter. High-order harmonics introduced to the launcher wall deformations are proposed for this gyrotron. The launcher is numerically optimized, the fields on the cut edges are suppressed. The fields in the launcher are well approximated by the waveguide modes, the radiated fields are calculated using the scalar diffraction integral. The procedure for the numerical optimization of the mirror system is improved, the tolerance conditions of the phase correcting mirrors are investigated. A conversion efficiency of 95.8% to the circular fundamental Gaussian distribution with 20mm beam waist and power transmission of 90% are achieved in the window plane using the optimized quasi-optical mode converter. The methods to ameliorate the initial conditions of the phase correcting mirrors are explored. (orig.)

  5. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students.

    Hodgin, Katie L; Graham, Dan J

    2016-01-01

    Previous research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one's personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA) and the low percentage who actually meet PA participation standards. However, few studies have examined how mirror exposure and both perceived and actual body size influence highly valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI) would be more likely to take the stairs, and that body size distorting mirrors would impact the stair-elevator decision. One hundred sixty-seven students (51% male) enrolled in an introductory psychology course were recruited to take a survey about their "transportation choices" at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants' choice of floor-climbing method (stairs or elevator) was recorded, and they were administered an Internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror [odds ratios (OR) = 0.37, 95% CI: 0.14-0.96], males (OR = 0.33, 95% CI: 0.13-0.85), those with lower BMI (OR = 0.84, 95% CI: 0.71-0.99), those

  6. Mirror, Mirror by the Stairs: The Impact of Mirror Exposure on Stair versus Elevator Use in College Students

    Katie L Hodgin

    2016-04-01

    Full Text Available AbstractPrevious research has indicated that self-awareness-inducing mirrors can successfully incite behaviors that align with one’s personal values, such as helping others. Other research has found a large discrepancy between the high percentage of young adults who report valuing the healthfulness of physical activity (PA and the low percentage who actually meet PA participation standards. Few studies, however, have examined how mirror exposure and both perceived and actual body size influence highly-valued PA participation among college students. The present study assessed stair versus elevator use on a western college campus and hypothesized that mirror exposure would increase the more personally-healthy transportation method of stair use. In accordance with previous research, it was also hypothesized that males and those with a lower body mass index (BMI would be more likely to take the stairs, and that body-size distorting mirrors would impact the stair-elevator decision. One hundred and sixty-seven students (51% male enrolled in an introductory psychology course were recruited to take a survey about their transportation choices at an indoor campus parking garage. Participants were individually exposed to either no mirror, a standard full-length mirror, or a full-length mirror manipulated to make the reflected body size appear either slightly thinner or slightly wider than normal before being asked to go to the fourth floor of the garage for a survey. Participants’ choice of floor climbing method (stairs or elevator was recorded and they were administered an internet-based survey assessing demographic information, BMI, self-awareness, perceived body size, and other variables likely to be associated with stair use. Results from logistic regression analyses revealed that participants who were not exposed to a mirror (OR = 0.37, 95% CI: 0.14 – 0.96, males (OR = 0.33, 95% CI: 0.13 – 0.85, those with lower BMI (OR = 0.84, 95% CI: 0.71

  7. Improved methods for dewarping images in convex mirrors in fine art: applications to van Eyck and Parmigianino

    Usami, Yumi; Stork, David G.; Fujiki, Jun; Hino, Hideitsu; Akaho, Shotaro; Murata, Noboru

    2011-03-01

    We derive and demonstrate new methods for dewarping images depicted in convex mirrors in artwork and for estimating the three-dimensional shapes of the mirrors themselves. Previous methods were based on the assumption that mirrors were spherical or paraboloidal, an assumption unlikely to hold for hand-blown glass spheres used in early Renaissance art, such as Johannes van Eyck's Portrait of Giovanni (?) Arnolfini and his wife (1434) and Robert Campin's Portrait of St. John the Baptist and Heinrich von Werl (1438). Our methods are more general than such previous methods in that we assume merely that the mirror is radially symmetric and that there are straight lines (or colinear points) in the actual source scene. We express the mirror's shape as a mathematical series and pose the image dewarping task as that of estimating the coefficients in the series expansion. Central to our method is the plumbline principle: that the optimal coefficients are those that dewarp the mirror image so as to straighten lines that correspond to straight lines in the source scene. We solve for these coefficients algebraically through principal component analysis, PCA. Our method relies on a global figure of merit to balance warping errors throughout the image and it thereby reduces a reliance on the somewhat subjective criterion used in earlier methods. Our estimation can be applied to separate image annuli, which is appropriate if the mirror shape is irregular. Once we have found the optimal image dewarping, we compute the mirror shape by solving a differential equation based on the estimated dewarping function. We demonstrate our methods on the Arnolfini mirror and reveal a dewarped image superior to those found in prior work|an image noticeably more rectilinear throughout and having a more coherent geometrical perspective and vanishing points. Moreover, we find the mirror deviated from spherical and paraboloidal shape; this implies that it would have been useless as a concave

  8. Research and design of quasi-optical mode converter

    Liu Jianwei; Zhao Qing

    2013-01-01

    This paper presents a quasi-optical mode converter which can convert the output mode of gyrotrons and other high-power microwave oscillators into quasi-Gaussian beam, aiming to achieve transverse output of quasi-Gaussian beam TEM 00 mode. First, we analyze mode propagation in the waveguide and the working mechanism of the Vlasov launcher. Then the radiation fields are calculated using vector diffraction theory. At last a quasi-optical mode converter is designed to convert the 94 GHz, TE 62 mode millimeter wave into quasi-Gaussian beam with programming method. The results prove that quasi-Gaussian mode can be obtained at the output window with a simple Vlasov launcher and two mirrors, and the power transmission efficiency of the quasi-optical mode converter reaches to 87.5%. (authors)

  9. Conference on Complex Geometry and Mirror Symmetry

    Vinet, Luc; Yau, Shing-Tung; Mirror Symmetry III

    1999-01-01

    This book presents surveys from a workshop held during the theme year in geometry and topology at the Centre de recherches mathématiques (CRM, University of Montréal). The volume is in some sense a sequel to Mirror Symmetry I (1998) and Mirror Symmetry II (1996), copublished by the AMS and International Press. Included are recent developments in the theory of mirror manifolds and the related areas of complex and symplectic geometry. The long introductory articles explain the key physical ideas and motivation, namely conformal field theory, supersymmetry, and string theory. Open problems are emphasized. Thus the book provides an efficient way for a very broad audience of mathematicians and physicists to reach the frontier of research in this fast expanding area. - See more at: http://bookstore.ams.org/amsip-10#sthash.DbxEFJDx.dpuf

  10. Homological mirror symmetry and tropical geometry

    Catanese, Fabrizio; Kontsevich, Maxim; Pantev, Tony; Soibelman, Yan; Zharkov, Ilia

    2014-01-01

    The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory, and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Ge...

  11. An advanced KB mirror pair for microfocusing

    Ferme, J J

    2001-01-01

    A new range of micro-focusing mirrors based on KB pairs has been developed by SESO for Beamline Nanospectroscopy at the Elettra Storage Ring in Trieste, Italy. Both the focusing and the aspheric shape are adjustable with stepper motors. The goal of the beamline is to have a high photon density spot with a variable size in the experimental chamber over the whole soft X-ray range. The estimated dimension of the final spot should be smaller than 4 mu m sup 2 FWHM, with a photon density of the order of 10 sup 1 sup 3 photons/s mu m sup 2; this may be achieved only by accepting an angular divergence on these mirrors of between 5 and 10 mrad. This condition can be fulfilled only with elliptical (or plane elliptical) mirrors with very limited residual slope errors (below 1 mu rad RMS) that are able to correct even small focal distance errors.

  12. Theoretical explanation of present mirror experiments and linear stability of larger scaled machines

    Berk, H.L.; Baldwin, D.E.; Cutler, T.A.; Lodestro, L.L.; Maron, N.; Pearlstein, L.D.; Rognlien, T.D.; Stewart, J.J.; Watson, D.C.

    1976-01-01

    A quasilinear model for the evolution of the 2XIIB mirror experiment is presented and shown to reproduce the time evolution of the experiment. From quasilinear theory it follows that the energy lifetime is the Spitzer electron drag time for T/sub e/ approximately less than 0.1T/sub i/. By computing the stability boundary of the DCLC mode, with warm plasma stabilization, the electron temperature is predicted as a function of radial scale length. In addition, the effect of finite length corrections to the Alfven cyclotron mode is assessed

  13. Electrostatic ion cyclotron waves and ion energy diffusion in a mirror machine

    Turner, W.C.

    1977-01-01

    Measurements of ion cyclotron fluctuations and ion energy diffusion in the neutral beam injected 2XIIB mirror machine are presented. A narrow band single mode spectrum is always observed. When the plasma is de-stabilized by turning off axially injected streaming plasma, the wave amplitude increases and a simultaneous increase in ion-energy diffusion is observed. The spectral properties of the wave do not change. The data are in accord with a wave particle saturation of the drift cyclotron loss cone (DCLC) mode

  14. Energy flux correlations and moving mirrors

    Ford, L.H.; Roman, Thomas A.

    2004-01-01

    We study the quantum stress tensor correlation function for a massless scalar field in a flat two-dimensional spacetime containing a moving mirror. We construct the correlation functions for right-moving and left-moving fluxes for an arbitrary trajectory, and then specialize them to the case of a mirror trajectory for which the expectation value of the stress tensor describes a pair of delta-function pulses, one of negative energy and one of positive energy. The flux correlation function describes the fluctuations around this mean stress tensor, and reveals subtle changes in the correlations between regions where the mean flux vanishes

  15. Mirror Writing and a Dissociative Identity Disorder

    Catherine Le

    2009-01-01

    Full Text Available Individuals with dissociative identity disorder (DID have been known to show varied skills and talents as they change from one dissociative state to another. For example, case reports have described people who have changed their handedness or have spoken foreign languages during their dissociative states. During an interview with a patient with DID, a surprising talent emerged when she wrote a sentence for the Folstein Mini-Mental State Exam—mirror writing. It is not known whether her mirror writing had a deeper level of meaning; however, it does emphasize the idiosyncratic nature of dissociative identity disorder.

  16. Mirror writing and a dissociative identity disorder.

    Le, Catherine; Smith, Joyce; Cohen, Lewis

    2009-01-01

    Individuals with dissociative identity disorder (DID) have been known to show varied skills and talents as they change from one dissociative state to another. For example, case reports have described people who have changed their handedness or have spoken foreign languages during their dissociative states. During an interview with a patient with DID, a surprising talent emerged when she wrote a sentence for the Folstein Mini-Mental State Exam-mirror writing. It is not known whether her mirror writing had a deeper level of meaning; however, it does emphasize the idiosyncratic nature of dissociative identity disorder.

  17. Plasma confinement in the TMX tandem mirror

    Hooper, E.B. Jr.; Allen, S.L.; Casper, T.A.

    1981-01-01

    Plasma confinement in the Tandem Mirror Experiment (TMX) is described. Axially confining potentials are shown to exist throughout the central 20-cm core of TMX. Axial electron-confinement time is up to 100 times that of single-cell mirror machines. Radial transport of ions is smaller than axial transport near the axis. It has two parts at large radii: nonambipolar, in rough agreement with predictions from resonant-neoclassical transport theory, and ambipolar, observed near the plasma edge under certain conditions, accompanied by a low-frequency, m = 1 instability or strong turbulence

  18. Mirror nesting and repulsion-induced superconductivity

    Belyavsky, Vladimir I.; Kapaev, Vladimir V.; Kopaev, Yurii V.

    2004-01-01

    Mirror nesting condition that is a rise of pair Fermi contour due to matching of some pieces of the Fermi contour and an isoline of the pair-relative-motion kinetic energy may be satisfied, at definite total pair momenta, due to special features of electron dispersion. Perfect mirror nesting results in a rise of the possibility of superconducting ordering up to arbitrary small pairing repulsive interaction strength. Due to kinematical constraints, the order parameter exists only inside some definite domain of the momentum space and changes its sign on a line belonging to this domain

  19. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    Hu Huang

    2010-07-01

    Full Text Available A two-dimensional (2D scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20º × 20º, the measurement resolution is about 10.2 cm in range, 0.15º in the horizontal direction and 0.22º in the vertical direction for orientation.

  20. Study on a two-dimensional scanning micro-mirror and its application in a MOEMS target detector.

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation.

  1. Finite Larmor radius flute mode theory with end loss

    Kotelnikov, I.A.; Berk, H.L.

    1993-08-01

    The theory of flute mode stability is developed for a two-energy- component plasma partially terminated by a conducting limiter. The formalism is developed as a preliminary study of the effect of end-loss in open-ended mirror machines where large Larmor radius effects are important

  2. Entanglement of transverse modes in a pendular cavity

    Mancini, Stefano; Gatti, Alessandra

    2001-01-01

    We study the phenomena that arise in the transverse structure of electromagnetic field impinging on a linear Fabry-Perot cavity with an oscillating end mirror. We find quantum correlations among transverse modes which can be considered as a signature of their entanglement.

  3. OBSERVATIONS OF SAUSAGE MODES IN MAGNETIC PORES

    Morton, R. J.; Erdelyi, R.; Jess, D. B.; Mathioudakis, M.

    2011-01-01

    We present here evidence for the observation of the magnetohydrodynamic (MHD) sausage modes in magnetic pores in the solar photosphere. Further evidence for the omnipresent nature of acoustic global modes is also found. The empirical decomposition method of wave analysis is used to identify the oscillations detected through a 4170 A 'blue continuum' filter observed with the Rapid Oscillations in the Solar Atmosphere (ROSA) instrument. Out of phase, periodic behavior in pore size and intensity is used as an indicator of the presence of magnetoacoustic sausage oscillations. Multiple signatures of the magnetoacoustic sausage mode are found in a number of pores. The periods range from as short as 30 s up to 450 s. A number of the magnetoacoustic sausage mode oscillations found have periods of 3 and 5 minutes, similar to the acoustic global modes of the solar interior. It is proposed that these global oscillations could be the driver of the sausage-type magnetoacoustic MHD wave modes in pores.

  4. Spin modes

    Gaarde, C.

    1985-01-01

    An analysis of spectra of (p,n) reactions showed that they were very selective in exciting spin modes. Charge exchange reactions at intermediate energies give important new understanding of the M1-type of excitations and of the spin structure of continuum p spectra in general. In this paper, the author discusses three charge exchange reactions: (p,n); ( 3 H,t); and (d,2p) at several targets. Low-lying states and the Δ region are discussed separately. Finally, the charge exchange reaction with heavy ion beams is briefly discussed. (G.J.P./Auth.)

  5. Mirror Self-Recognition beyond the Face

    Nielsen, Mark; Suddendorf, Thomas; Slaughter, Virginia

    2006-01-01

    Three studies (N=144) investigated how toddlers aged 18 and 24 months pass the surprise-mark test of self-recognition. In Study 1, toddlers were surreptitiously marked in successive conditions on their legs and faces with stickers visible only in a mirror. Rates of sticker touching did not differ significantly between conditions. In Study 2,…

  6. The Mirror DBMS at TREC-8

    de Vries, A.P.; Hiemstra, Djoerd; Voorhees, E.M; Harman, D.K.

    1999-01-01

    The database group at University of Twente participates in TREC8 using the Mirror DBMS, a prototype database system especially designed for multimedia and web retrieval. From a database perspective, the purpose has been to check whether we can get sufficient performance, and to prepare for the very

  7. The Mirror DBMS at TREC-9

    de Vries, A.P.; Voorhees, E.M; Harman, D.K.

    2000-01-01

    The Mirror DBMS is a prototype database system especially designed for multimedia and web retrieval. From a database perspective, this year's purpose has been to check whether we can get suffcient effciency on the larger data set used in TREC-9. From an IR perspective, the experiments are limited to

  8. Classroom Explorations: Pendulums, Mirrors, and Galileo's Drama

    Cavicchi, Elizabeth

    2011-01-01

    What do you see in a mirror when not looking at yourself? What goes on as a pendulum swings? Undergraduates in a science class supposed that these behaviors were obvious until their explorations exposed questions with no quick answers. While exploring materials, students researched Galileo, his trial, and its aftermath. Galileo came to life both…

  9. Bound States in the Mirror TBA

    Arutyunov, G.E.; Frolov, S.; van Tongeren, S.J.

    2012-01-01

    The spectrum of the light-cone AdS_5 \\times S^5 superstring contains states composed of particles with complex momenta including in particular those which turn into bound states in the decompactification limit. We propose the mirror TBA description for these states. We focus on a three-particle

  10. Orbifolded Konishi from the Mirror TBA

    de Leeuw, M.; van Tongeren, S.J.

    2011-01-01

    Starting with a discussion of the general applicability of the simplified mirror thermodynamic Bethe ansatz (TBA) equations to simple deformations of the AdS5 × S5 superstring, we proceed to study a specific type of orbifold to which the undeformed simplified TBA equations directly apply. We then

  11. Shape parameters measurement of ultralight mirrors

    Pech, Miroslav; Mandát, Dušan; Hrabovský, Miroslav; Palatka, Miroslav; Schovánek, Petr

    2010-01-01

    Roč. 121, č. 20 (2010), s. 1881-1884 ISSN 0030-4026 R&D Projects: GA MŠk(CZ) 1M06002; GA AV ČR KAN301370701 Institutional research plan: CEZ:AV0Z10100522 Keywords : Hartmann test * roughness * scattering * BRDF * mirror shape Subject RIV: BH - Optics, Masers, Lasers Impact factor: 0.454, year: 2010

  12. Neutrino mass and the mirror universe

    Silagadze, Z.K.

    1995-01-01

    The existence of the mirror world, with the same microphysics as our own one but with opposite P-asymmetry, not only restores an exact equivalence between left and right, but provides a natural explanation via see-saw like mechanism why neutrino is massless (or ultralight). 28 refs

  13. Mirror Neurons and the Evolution of Language

    Corballis, Michael C.

    2010-01-01

    The mirror system provided a natural platform for the subsequent evolution of language. In nonhuman primates, the system provides for the understanding of biological action, and possibly for imitation, both prerequisites for language. I argue that language evolved from manual gestures, initially as a system of pantomime, but with gestures…

  14. Plasma cleaning of ITER first mirrors

    Moser, L.; Marot, L.; Steiner, R.; Reichle, R.; Leipold, F.; Vorpahl, C.; Le Guern, F.; Walach, U.; Alberti, S.; Furno, I.; Yan, R.; Peng, J.; Ben Yaala, M.; Meyer, E.

    2017-12-01

    Nuclear fusion is an extremely attractive option for future generations to compete with the strong increase in energy consumption. Proper control of the fusion plasma is mandatory to reach the ambitious objectives set while preserving the machine’s integrity, which requests a large number of plasma diagnostic systems. Due to the large neutron flux expected in the International Thermonuclear Experimental Reactor (ITER), regular windows or fibre optics are unusable and were replaced by so-called metallic first mirrors (FMs) embedded in the neutron shielding, forming an optical labyrinth. Materials eroded from the first wall reactor through physical or chemical sputtering will migrate and will be deposited onto mirrors. Mirrors subject to net deposition will suffer from reflectivity losses due to the deposition of impurities. Cleaning systems of metallic FMs are required in more than 20 optical diagnostic systems in ITER. Plasma cleaning using radio frequency (RF) generated plasmas is currently being considered the most promising in situ cleaning technique. An update of recent results obtained with this technique will be presented. These include the demonstration of cleaning of several deposit types (beryllium, tungsten and beryllium proxy, i.e. aluminium) at 13.56 or 60 MHz as well as large scale cleaning (mirror size: 200 × 300 mm2). Tests under a strong magnetic field up to 3.5 T in laboratory and first experiments of RF plasma cleaning in EAST tokamak will also be discussed. A specific focus will be given on repetitive cleaning experiments performed on several FM material candidates.

  15. Comment on the drift mirror instability

    Hellinger, Petr

    2008-01-01

    Roč. 15, č. 5 (2008), 054502/1-054502/2 ISSN 1070-664X R&D Projects: GA AV ČR IAA300420702 Institutional research plan: CEZ:AV0Z30420517 Keywords : drift mirror instability * linear theory Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.427, year: 2008

  16. Mirror fermions in chiral gauge theories

    Montvay, I.

    1992-06-01

    Mirror fermions appear naturally in lattice formulations of the standard model. The phenomenological limits on their existence and discovery limits at future colliders are discussed. After an introduction of lattice actions for chiral Yukawa-models, a recent numerical simulation is presented. In particular, the emerging phase structures and features of the allowed region in renormalized couplings are discussed. (orig.)

  17. Brane brick models in the mirror

    Franco, Sebastián [Physics Department, The City College of the CUNY,160 Convent Avenue, New York, NY 10031 (United States); The Graduate School and University Center, The City University of New York,365 Fifth Avenue, New York NY 10016 (United States); Lee, Sangmin [Center for Theoretical Physics, Seoul National University,Seoul 08826 (Korea, Republic of); Department of Physics and Astronomy, Seoul National University,Seoul 08826 (Korea, Republic of); College of Liberal Studies, Seoul National University,Seoul 08826 (Korea, Republic of); Seong, Rak-Kyeong [School of Physics, Korea Institute for Advanced Study,Seoul 02455 (Korea, Republic of); Vafa, Cumrun [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2017-02-21

    Brane brick models are Type IIA brane configurations that encode the 2dN=(0,2) gauge theories on the worldvolume of D1-branes probing toric Calabi-Yau 4-folds. We use mirror symmetry to improve our understanding of this correspondence and to provide a systematic approach for constructing brane brick models starting from geometry. The mirror configuration consists of D5-branes wrapping 4-spheres and the gauge theory is determined by how they intersect. We also explain how 2d(0,2) triality is realized in terms of geometric transitions in the mirror geometry. Mirror symmetry leads to a geometric unification of dualities in different dimensions, where the order of duality is n−1 for a Calabi-Yau n-fold. This makes us conjecture the existence of a quadrality symmetry in 0d. Finally, we comment on how the M-theory lift of brane brick models connects to the classification of 2d(0,2) theories in terms of 4-manifolds.

  18. Edge diagnostics for tandem mirror machines

    Allen, S.L.

    1984-01-01

    The edge plasma in a tandem mirror machine shields the plasma core from cold neutral gas and impurities. A variety of diagnostics are used to measure the fueling, shielding, and confinement of the edge plasma in both the end plug and central cell regions. Fast ion gauges and residual gas analyzers measure the gas pressure and composition outside of the plasma. An array of Langmuir probes is used to measure the electron density and temperature. Extreme ultraviolet (euv) and visible spectroscopy are used to measure both the impurity and deuterium densities and to estimate the shielding factor for the core plasma. The linear geometry of a tandem mirror also allows direct measurements of the edge plasma by sampling the ions and electrons lost but the ends of the machine. Representative data obtained by these diagnostics during operation of the Tandem Mirror Experiment (TMX) and Tandem Mirror Experiment-Upgrade (TMX-U) experiments are presented. Diagnostics that are currently being developed to diagnose the edge plasma are also discussed

  19. Minimum-B mirrors plus EBT principles

    Yoshikawa, S.

    1983-01-01

    Electrons are heated at the minimum B location(s) created by the multipole field and the toroidal field. Resulting hot electrons can assist plasma confinement by (1) providing mirror, (2) creating azimuthally symmetric toroidal confinement, or (3) creating modified bumpy torus

  20. Coupling Perception with Actions via Mirror Neurons

    Wiedermann, Jiří

    č. 55 (2003), s. 11-12 ISSN 0926-4981 R&D Projects: GA ČR GA201/02/1456 Institutional research plan: AV0Z1030915 Keywords : mirror neurons * cognitive agents * neural nets Subject RIV: BA - General Mathematics http://www.ercim.eu/publication/Ercim_News/enw55/wiedermann.html

  1. Mirror matter as self-interacting dark matter

    Mohapatra, R.N.; Nussinov, S.; Teplitz, V.L.

    2002-01-01

    It has been argued that the observed core density profile of galaxies is inconsistent with having a dark matter particle that is collisionless and that alternative dark matter candidates which are self-interacting may explain observations better. One new class of self-interacting dark matter that has been proposed in the context of mirror universe models of particle physics is the mirror hydrogen atom, whose stability is guaranteed by the conservation of mirror baryon number. We show that the effective transport cross section for mirror hydrogen atoms has the right order of magnitude for solving the 'cuspy' halo problem. Furthermore, the suppression of dissipation effects for mirror atoms due to a higher mirror mass scale prevents the mirror halo matter from collapsing into a disk, strengthening the argument for mirror matter as galactic dark matter

  2. Piezoelectric deformable mirror for intra-cavity laser adaptive optics.

    Long, CS

    2008-03-01

    Full Text Available This paper describes the development of a deformable mirror to be used in conjunction with diffractive optical elements inside a laser cavity. A prototype piezoelectric unimorph adaptive mirror was developed to correct for time dependent phase...

  3. Study of global control of VIRGO Central Interferometer; Etude du controle global de l'Interferometre Central de VIRGO

    Matone, Luca [Paris-11 Univ., 91 Orsay (France)

    1999-10-29

    The VIRGO project for the detection of gravitational waves will first operate in a test configuration, known as the Central Area Interferometer (CITF). The subject of this thesis consists of a study for the global control of this interferometer. In particular, the problems of auto-alignment and acquisition of lock are addressed. First, an investigation of the CITF optical response to longitudinal and angular mirror movements is given. On the basis of this study, we show how the ratio of photodiode signals can be used to detect and control the dark fringe when the CITF is far from its operating point (locked state). Furthermore, we present the simulation results of a quadrant photodiode configuration capable of reconstructing the mirrors' tilts once the CITF is in a locked state. The performance of a control system for the auto-alignment is then given. A study on the mode-cleaner prototype MC30 is then introduced in order to comprehend the process of lock acquisition by a linear feedback system for two different finesse values: F {approx_equal}100 and F {approx_equal} 1600. We define a threshold velocity for the mirrors' relative motion below which acquisition of lock is possible. A phenomenon, referred to as ringing effect, was observed and examined on the MC30 prototype in high finesse. The results of numerical calculations allowed us to fit measurement and estimate from them the cavity finesse as well as the mirrors' relative velocity during the resonance crossing. An empirical formula is then presented capable of determine the relative velocity from the positions of the oscillations' minima and maxima. An algorithm to guide into lock the CITF is then presented, consisting of an iterative procedure of velocity reconstruction and pulse application. A numerical calculation simulated the algorithm, the mirrors' motion, the optical response and the ADCs' process. As a result, acquisition times of the order of one second were observed: an

  4. Microtearing modes

    Garbet, X.; Mourgues, F.; Samain, A.; Zou, X.

    1990-01-01

    A serious degradation of confinement with additional heating is commonly observed on most tokamaks. The microtearing modes could provide an explanation for this experimental fact. They are driven linearly unstable by diamagnetism in collisional regimes, but it may be shown that the collisions in non linear regimes provide a small diffusion coefficient which can be only significant at the plasme edge. In the bulk of the plasma, the microtearing turbulence could play a basic role if it is unstable in the collisionless regime. While it is linearly stable without collisions, it could be driven unstable in realistic regimes by the radial diffusion it induces. To study this effect, we have used a model where the non linear action of the modes on a given helicity component is represented by a diffusion operator. They are found unstable for reasonable β p =2μ o nT/B 2 p , with a special radial profile of the potential vector A. The problem arises the validity of this model where non linearities in the trajectories behaviour are replaced by the diffusion which broadens resonances. To test this procedure, we calculate the actual electron distribution function when it is determined by the ergodicity of the field lines. We compute the correlations of the distribution function with the magnetic perturbation and compare them with the analytical expressions derived from the resonance broadening model. (author) 3 refs., 2 figs

  5. Constraints on mirror models of dark matter from observable neutron-mirror neutron oscillation

    Mohapatra, Rabindra N.; Nussinov, Shmuel

    2018-01-01

    The process of neutron-mirror neutron oscillation, motivated by symmetric mirror dark matter models, is governed by two parameters: n -n‧ mixing parameter δ and n -n‧ mass splitting Δ. For neutron mirror neutron oscillation to be observable, the splitting between their masses Δ must be small and current experiments lead to δ ≤ 2 ×10-27 GeV and Δ ≤10-24 GeV. We show that in mirror universe models where this process is observable, this small mass splitting constrains the way that one must implement asymmetric inflation to satisfy the limits of Big Bang Nucleosynthesis on the number of effective light degrees of freedom. In particular we find that if asymmetric inflation is implemented by inflaton decay to color or electroweak charged particles, the oscillation is unobservable. Also if one uses SM singlet fields for this purpose, they must be weakly coupled to the SM fields.

  6. Mirror Fusion Test Facility: an intermediate device to a mirror fusion reactor

    Karpenko, V.N.

    1983-01-01

    The Mirror Fusion Test Facility (MFTF-B) now under construction at Lawrence Livermore National Laboratory represents more than an order-of-magnitude step from earlier magnetic-mirror experiments toward a future mirror fusion reactor. In fact, when the device begins operating in 1986, the Lawson criteria of ntau = 10 14 cm -3 .s will almost be achieved for D-T equivalent operation, thus signifying scientific breakeven. Major steps have been taken to develop MFTF-B technologies for tandem mirrors. Steady-state, high-field, superconducting magnets at reactor-revelant scales are used in the machine. The 30-s beam pulses, ECRH, and ICRH will also introduce steady-state technologies in those systems

  7. Mirror Focus in a Patient with Intractable Occipital Lobe Epilepsy

    Kim, Jiyoung; Shin, Hae kyung; Hwang, Kyoung Jin; Choi, Su Jung; Joo, Eun Yeon; Hong, Seung Bong; Hong, Seung Chul; Seo, Dae-Won

    2014-01-01

    Mirror focus is one of the evidence of progression in epilepsy, and also has practical points for curative resective epilepsy surgery. The mirror foci are related to the kindling phenomena that occur through interhemispheric callosal or commissural connections. A mirror focus means the secondary epileptogenic foci develop in the contralateral hemispheric homotopic area. Thus mirror foci are mostly reported in patients with temporal or frontal lobe epilepsy, but not in occipital lobe epilepsy....

  8. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    Logan, B. Grant

    1978-01-01

    Method and apparatus for cooling a plasma of warm charged species confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell, the cooling due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma.

  9. Charge exchange cooling in the tandem mirror plasma confinement apparatus

    Logan, B.G.

    1978-01-01

    A method and apparatus are described for cooling a plasma confined in the center mirror cell of the tandem mirror apparatus by injecting cold neutral species of the plasma into at least one mirroring region of the center mirror cell. The cooling is due to the loss of warm charged species through charge exchange with the cold neutral species with resulting diffusion of the warm neutral species out of the plasma

  10. Characterization of a piezo bendable X-ray mirror.

    Vannoni, Maurizio; Freijo Martín, Idoia; Siewert, Frank; Signorato, Riccardo; Yang, Fan; Sinn, Harald

    2016-01-01

    A full-scale piezo bendable mirror built as a prototype for an offset mirror at the European XFEL is characterized. The piezo ceramic elements are glued onto the mirror substrate, side-face on with respect to the reflecting surface. Using a nanometre optical component measuring machine and a large-aperture Fizeau interferometer, the mirror profile and influence functions were characterized, and further analysis was made to investigate the junction effect, hysteresis, twisting and reproducibility.

  11. Electrostatic ion confinement in a magnetic mirror field

    Nishida, Y.; Kawamata, S.; Ishii, K.

    1976-08-01

    The electrostatic ion stoppering at the mirror point is demonstrated experimentally in a magnetic mirror field. The ion losses from the mirror throat are decreased to about 15% of the initial losses in a rather high plasma density (10 10 0 13 cm -3 ). It is discussed as a confinement mechanism of ions that particles are reflected back adiabatically at the throat of the magnetic mirror field supplemented by DC electric field. (auth.)

  12. Experimental study of regenerative desiccant integrated solar dryer with and without reflective mirror

    Shanmugam, V. [Department of Mechanical Engineering, Sathyabama University, Chennai, 600 119 (India); Natarajan, E. [Institute for Energy Studies, College of Engineering, Anna University, Chennai, 600 025 (India)

    2007-06-15

    An indirect forced convection with desiccant integrated solar dryer has been built and tested. The main parts are: a flat plate solar air collector, a drying chamber, desiccant bed and a centrifugal blower. The system is operated in two modes, sunshine hours and off sunshine hours. During sun shine hours the hot air from the flat plate collector is forced to the drying chamber for drying the product and simultaneously the desiccant bed receives solar radiation directly and through the reflected mirror. In the off sunshine hours, the dryer is operated by circulating the air inside the drying chamber through the desiccant bed by a reversible fan. The dryer is used to dry 20 kg of green peas and pineapple slices. Drying experiments were conducted with and without the integration of desiccant unit. The effect of reflective mirror on the drying potential of desiccant unit was also investigated. With the inclusion of reflective mirror, the drying potential of the desiccant material is increased by 20% and the drying time is reduced. The drying efficiency of the system varies between 43% and 55% and the pick-up efficiency varies between 20% and 60%, respectively. Approximately in all the drying experiments 60% of moisture is removed by air heated using solar energy and the remainder by the desiccant. The inclusion of reflective mirror on the desiccant bed makes faster regeneration of the desiccant material. (author)

  13. Improved Mirror Source Method in Roomacoustics

    Mechel, F. P.

    2002-10-01

    Most authors in room acoustics qualify the mirror source method (MS-method) as the only exact method to evaluate sound fields in auditoria. But evidently nobody applies it. The reason for this discrepancy is the abundantly high numbers of needed mirror sources which are reported in the literature, although such estimations of needed numbers of mirror sources mostly are used for the justification of more or less heuristic modifications of the MS-method. The present, intentionally tutorial article accentuates the analytical foundations of the MS-method whereby the number of needed mirror sources is reduced already. Further, the task of field evaluation in three-dimensional spaces is reduced to a sequence of tasks in two-dimensional room edges. This not only allows the use of easier geometrical computations in two dimensions, but also the sound field in corner areas can be represented by a single (directional) source sitting on the corner line, so that only this "corner source" must be mirror-reflected in the further process. This procedure gives a drastic reduction of the number of needed equivalent sources. Finally, the traditional MS-method is not applicable in rooms with convex corners (the angle between the corner flanks, measured on the room side, exceeds 180°). In such cases, the MS-method is combined below with the second principle of superposition(PSP). It reduces the scattering task at convex corners to two sub-tasks between one flank and the median plane of the room wedge, i.e., always in concave corner areas where the MS-method can be applied.

  14. Rugged optical mirrors for the operation of Fourier-Transform Spectrometers in rough environments

    Feist, Dietrich G.

    2014-05-01

    The Total Carbon Column Observing Network (TCCON) and the Network for the Detection of Atmospheric Composition Change (NDACC) operate a growing number of Fourier-Transform Spectrometers (FTS) that measure the total column of several atmospheric trace gases. For these measurements, the sun is used as a light source. This is typically achieved by a solar tracker that uses a pair of optical mirrors to guide the sunlight into the instrument. There is a growing demand to operate these instruments in remote locations that fill the gaps in the global observation network. Besides the logistical challenges of running a remote site, the environment at these locations can be very harsh compared to the sheltered environment of the instruments' home institutions. While the FTS itself is usually well protected inside a building or container, the solar tracker and especially its mirrors are exposed to the environment. There they may suffer from - temperature fluctuations - high humidity - sea salt corrosion at coastal sites - dirt and dust - air pollution from anthropogenic sources - deposition from plants or animals The Max Planck Institute for Biogeochemistry (MPI-BGC) operates a TCCON station on Ascension Island, about 200 m from the sea. Under the rough conditions at this site, typical optical mirrors that are made for laboratory conditions are destroyed by sea salt spray within a few weeks. Besides, typical gold-coated mirrors cannot be cleaned as their soft surface is easily scratched or damaged. To overcome these problems, the MPI-BGC has developed optical mirrors that - offer good reflectivity in the near and mid infrared - are highly resistant to salt and chlorine - have a hard surface so that they can be cleaned often and easily - are not affected by organic solvents - last for months in very harsh environments - can be reused after polishing These mirrors could be applied to most TCCON and NDACC sites. This way, the network could be expanded to regions where operation

  15. Design of the GOES Telescope secondary mirror mounting

    Hookman, Robert A.

    1989-01-01

    The GOES Telescope utilizes a flexure mounting system for the secondary mirror to minimize thermally induced distortions of the secondary mirror. The detailed design is presented along with a discussion of the microradian pointing requirements and how they were achieved. The methodology used to dynamically tune the flexure/secondary mirror assembly to minimize structural interactions will also be discussed.

  16. Status of the mirror-next-step (MNS) study

    Damm, C.C.; Doggett, J.N.; Bulmer, R.H.

    1979-09-01

    A study was made to define the features of the experimental mirror fusion device - the Mirror Next Step, or MNS - that will bridge the gap between present mirror confinement experiments and a power-producing reactor. The project goals and organization of the study are outlined, some initial device parameters are described, and the technological requirements are related to ongoing development programs

  17. Monitoring of absolute mirror alignment at COMPASS RICH-1 detector

    Alexeev, M.; Birsa, R.; Bradamante, F.; Bressan, A.; Chiosso, M.; Ciliberti, P.; Dalla Torre, S.; Denisov, O.; Duic, V.; Ferrero, A.; Finger, M.; Finger, M.; Gayde, J. Ch; Giorgi, M.; Gobbo, B.; Levorato, S.; Maggiora, A.; Martin, A.; Menon, G.; Panzieri, D.; Pesaro, G.; Polak, J.; Rocco, E.; Sbrizzai, G.; Schiavon, P.; Slunecka, M.; Sozzi, F.; Steiger, L.; Sulc, M.; Takekawa, S.; Tessarotto, F.

    2014-01-01

    The gaseous COMPASS RICH-1 detector uses two spherical mirror surfaces, segmented into 116 individual mirrors, to focus the Cherenkov photons onto the detector plane. Any mirror misalignment directly affects the detector resolution. The on-line Continuous Line Alignment and Monitoring (CLAM)

  18. Long-Lived Glass Mirrors For Outer Space

    Bouquet, Frank L.; Maag, Carl R.; Heggen, Philip M.

    1988-01-01

    Paper summarizes available knowledge about glass mirrors for use in outer space. Strengths and weaknesses of various types of first and second reflective surfaces identified. Second-surface glass mirrors used in outer space designed to different criteria more stringent for terrestrial mirrors. Protons, electrons, cosmic rays, meteorites, and orbiting space debris affect longevities of components. Contamination also factor in space.

  19. The mirror system in human and nonhuman primates.

    Orban, Guy A

    2014-04-01

    The description of the mirror neuron system provided by Cook et al. is incomplete for the macaque, and incorrect for humans. This is relevant to exaptation versus associative learning as the underlying mechanism generating mirror neurons, and to the sensorimotor learning as evidence for the authors' viewpoint. The proposed additional testing of the mirror system in rodents is unrealistic.

  20. InP/InGaP quantum-dot SESAM mode-locked Alexandrite laser

    Ghanbari, Shirin; Fedorova, Ksenia A.; Krysa, Andrey B.; Rafailov, Edik U.; Major, Arkady

    2018-02-01

    A semiconductor saturable absorber mirror (SESAM) passively mode-locked Alexandrite laser was demonstrated. Using an InP/InGaP quantum-dot saturable absorber mirror, pulse duration of 420 fs at 774 nm was obtained. The laser was pumped at 532 nm and generated 325 mW of average output power in mode-locked regime with a pump power of 7.12 W. To the best of our knowledge, this is the first report of a passively mode-locked Alexandrite laser using SESAM in general and quantum-dot SESAM in particular.