WorldWideScience

Sample records for global marine primary

  1. The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    Science.gov (United States)

    Zachos, J. C.; Arthus, M. A.; Dean, W. E.

    1988-01-01

    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event.

  2. Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set

    OpenAIRE

    Bouman, HA; Platt, T; Doblin, M; Figueiras, FG; Gudmundsson, K; Gudfinnsson, HG; Huang, B; Hickman, A; Hiscock, M; Jackson, T; Lutz, VA; Melin, F; Rey, F; Pepin, P; Segura, V

    2018-01-01

    The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis–irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankto...

  3. Photosynthesis-irradiance parameters of marine phytoplankton: synthesis of a global data set

    Science.gov (United States)

    Bouman, Heather A.; Platt, Trevor; Doblin, Martina; Figueiras, Francisco G.; Gudmundsson, Kristinn; Gudfinnsson, Hafsteinn G.; Huang, Bangqin; Hickman, Anna; Hiscock, Michael; Jackson, Thomas; Lutz, Vivian A.; Mélin, Frédéric; Rey, Francisco; Pepin, Pierre; Segura, Valeria; Tilstone, Gavin H.; van Dongen-Vogels, Virginie; Sathyendranath, Shubha

    2018-02-01

    The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS) project of the European Space Agency is to assemble a global database of photosynthesis-irradiance (P-E) parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll) that are fundamental inputs for models (satellite-based and otherwise) of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017).

  4. Marine Socio-Environmental Covariates: queryable global layers of environmental and anthropogenic variables for marine ecosystem studies.

    Science.gov (United States)

    Yeager, Lauren A; Marchand, Philippe; Gill, David A; Baum, Julia K; McPherson, Jana M

    2017-07-01

    Biophysical conditions, including climate, environmental stress, and habitat availability, are key drivers of many ecological processes (e.g., community assembly and productivity) and associated ecosystem services (e.g., carbon sequestration and fishery production). Furthermore, anthropogenic impacts such as coastal development and fishing can have drastic effects on the structure and function of marine ecosystems. Scientists need to account for environmental variation and human impacts to accurately model, manage, and conserve marine ecosystems. Although there are many types of environmental data available from global remote sensing and open-source data products, some are inaccessible to potential end-users because they exist as global layers in high temporal and spatial resolutions which require considerable computational power to process. Additionally, coastal locations often suffer from missing data or data quality issues which limit the utility of some global marine products for coastal sites. Herein we present the Marine Socio-Environmental Covariates dataset for the global oceans, which consists of environmental and anthropogenic variables summarized in ecologically relevant ways. The dataset includes four sets of environmental variables related to biophysical conditions (net primary productivity models corrected for shallow-water reflectance, wave energy including sheltered-coastline corrections) and landscape context (coral reef and land cover within varying radii). We also present two sets of anthropogenic variables, human population density (within varying radii) and distance to large population center, which can serve as indicators of local human impacts. We have paired global, summarized layers available for download with an online data querying platform that allows users to extract data for specific point locations with finer control of summary statistics. In creating these global layers and online platform, we hope to make the data accessible to a

  5. A global census of marine microbes

    Digital Repository Service at National Institute of Oceanography (India)

    Amaral-Zettler, L.; Artigas, L.F.; Baross, J.; LokaBharathi, P.A; Boetius, A; Chandramohan, D.; Herndl, G.; Kogure, K.; Neal, P.; Pedros-Alio, C.; Ramette, A; Schouten, S.; Stal, L.; Thessen, A; De Leeuw, J.; Sogin, M.

    In this chapter we provide a brief history of what is known about marine microbial diversity, summarize our achievements in performing a global census of marine microbes, and reflect on the questions and priorities for the future of the marine...

  6. Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set

    Directory of Open Access Journals (Sweden)

    H. A. Bouman

    2018-02-01

    Full Text Available The photosynthetic performance of marine phytoplankton varies in response to a variety of factors, environmental and taxonomic. One of the aims of the MArine primary Production: model Parameters from Space (MAPPS project of the European Space Agency is to assemble a global database of photosynthesis–irradiance (P-E parameters from a range of oceanographic regimes as an aid to examining the basin-scale variability in the photophysiological response of marine phytoplankton and to use this information to improve the assignment of P-E parameters in the estimation of global marine primary production using satellite data. The MAPPS P-E database, which consists of over 5000 P-E experiments, provides information on the spatio-temporal variability in the two P-E parameters (the assimilation number, PmB, and the initial slope, αB, where the superscripts B indicate normalisation to concentration of chlorophyll that are fundamental inputs for models (satellite-based and otherwise of marine primary production that use chlorophyll as the state variable. Quality-control measures consisted of removing samples with abnormally high parameter values and flags were added to denote whether the spectral quality of the incubator lamp was used to calculate a broad-band value of αB. The MAPPS database provides a photophysiological data set that is unprecedented in number of observations and in spatial coverage. The database will be useful to a variety of research communities, including marine ecologists, biogeochemical modellers, remote-sensing scientists and algal physiologists. The compiled data are available at https://doi.org/10.1594/PANGAEA.874087 (Bouman et al., 2017.

  7. Global marine radioactivity database (GLOMARD)

    International Nuclear Information System (INIS)

    Povinec, P.P.; Gayol, J.; Togawa, O.

    1999-01-01

    In response to the request of Member States and under the IAEA's mandate, the IAEA Marine Environment Laboratory (MEL) in Monaco has established and maintains a Global Marine Radioactivity Database (GLOMARD). It is a vast project compiling radionuclide measurements taken in the marine environment. It consists of systematic input of all radionuclide concentration data available for sea water, sediment, biota and suspended matter. The GLOMARD is therefore a powerful tool for the researchers of MEL as it integrates the results of analyses in most of the areas of the marine environment which have been investigated

  8. A new physically-based quantification of marine isoprene and primary organic aerosol emissions

    Directory of Open Access Journals (Sweden)

    N. Meskhidze

    2009-07-01

    Full Text Available The global marine sources of organic carbon (OC are estimated here using a physically-based parameterization for the emission of marine isoprene and primary organic matter. The marine isoprene emission model incorporates new physical parameters such as light sensitivity of phytoplankton isoprene production and dynamic euphotic depth to simulate hourly marine isoprene emissions totaling 0.92 Tg C yr−1. Sensitivity studies using different schemes for the euphotic zone depth and ocean phytoplankton speciation produce the upper and the lower range of marine-isoprene emissions of 0.31 to 1.09 Tg C yr−1, respectively. Established relationships between sea spray fractionation of water-insoluble organic carbon (WIOC and chlorophyll-a concentration are used to estimate the total primary sources of marine sub- and super-micron OC of 2.9 and 19.4 Tg C yr−1, respectively. The consistent spatial and temporal resolution of the two emission types allow us, for the first time, to explore the relative contributions of sub- and super-micron organic matter and marine isoprene-derived secondary organic aerosol (SOA to the total OC fraction of marine aerosol. Using a fixed 3% mass yield for the conversion of isoprene to SOA, our emission simulations show minor (<0.2% contribution of marine isoprene to the total marine source of OC on a global scale. However, our model calculations also indicate that over the tropical oceanic regions (30° S to 30° N, marine isoprene SOA may contribute over 30% of the total monthly-averaged sub-micron OC fraction of marine aerosol. The estimated contribution of marine isoprene SOA to hourly-averaged sub-micron marine OC emission is even higher, approaching 50% over the vast regions of the oceans during the midday hours when isoprene emissions are highest. As it is widely believed that sub-micron OC has the potential to influence the cloud droplet activation of marine aerosols, our

  9. Plate tectonic regulation of global marine animal diversity

    Science.gov (United States)

    Zaffos, Andrew; Finnegan, Seth; Peters, Shanan E.

    2017-05-01

    Valentine and Moores [Valentine JW, Moores EM (1970) Nature 228:657-659] hypothesized that plate tectonics regulates global biodiversity by changing the geographic arrangement of continental crust, but the data required to fully test the hypothesis were not available. Here, we use a global database of marine animal fossil occurrences and a paleogeographic reconstruction model to test the hypothesis that temporal patterns of continental fragmentation have impacted global Phanerozoic biodiversity. We find a positive correlation between global marine invertebrate genus richness and an independently derived quantitative index describing the fragmentation of continental crust during supercontinental coalescence-breakup cycles. The observed positive correlation between global biodiversity and continental fragmentation is not readily attributable to commonly cited vagaries of the fossil record, including changing quantities of marine rock or time-variable sampling effort. Because many different environmental and biotic factors may covary with changes in the geographic arrangement of continental crust, it is difficult to identify a specific causal mechanism. However, cross-correlation indicates that the state of continental fragmentation at a given time is positively correlated with the state of global biodiversity for tens of millions of years afterward. There is also evidence to suggest that continental fragmentation promotes increasing marine richness, but that coalescence alone has only a small negative or stabilizing effect. Together, these results suggest that continental fragmentation, particularly during the Mesozoic breakup of the supercontinent Pangaea, has exerted a first-order control on the long-term trajectory of Phanerozoic marine animal diversity.

  10. Global Marine Fisheries with Economic Growth

    OpenAIRE

    Sugiawan, Yogi; Islam, Moinul; Managi, Shunsuke

    2017-01-01

    This study explores the state of global marine fisheries and empirically analyzes its relationship to economic factors. We apply the pooled mean group estimator method to examine 70 fishing countries for the period of 1961-2010. We use both catch and the estimated size of stock as proxies for marine ecosystems. Our results confirm that economic growth initially leads to the deterioration of marine ecosystems. However, for a per capita income level of approximately 3,827 USD for the catch mode...

  11. Primary and Secondary Organic Marine Aerosol and Oceanic Biological Activity: Recent Results and New Perspectives for Future Studies

    Directory of Open Access Journals (Sweden)

    Matteo Rinaldi

    2010-01-01

    Full Text Available One of the most important natural aerosol systems at the global level is marine aerosol that comprises both organic and inorganic components of primary and secondary origin. The present paper reviews some new results on primary and secondary organic marine aerosol, achieved during the EU project MAP (Marine Aerosol Production, comparing them with those reported in the recent literature. Marine aerosol samples collected at the coastal site of Mace Head, Ireland, show a chemical composition trend that is influenced by the oceanic biological activity cycle, in agreement with other observations. Laboratory experiments show that sea-spray aerosol from biologically active sea water can be highly enriched in organics, and the authors highlight the need for further studies on the atmospheric fate of such primary organics. With regard to the secondary fraction of organic aerosol, the average chemical composition and molecular tracer (methanesulfonic-acid, amines distribution could be successfully characterized by adopting a multitechnique analytical approach.

  12. Global distribution of radiolytic H2 production in marine sediment and implications for subsurface life

    Science.gov (United States)

    Sauvage, J.; Flinders, A. F.; Spivack, A. J.; D'Hondt, S.

    2017-12-01

    We present the first global estimate of radiolytic H2production in marine sediment. Knowledge of microbial electron donor production rates is critical to understand the bioenergetics of Earth's subsurface ecosystems In marine sediment, radiolysis of water by radiation from naturally occurring radionuclides leads to production of reduced (H2) and oxidized (H2O2, O2) species. Water radiolysis is catalyzed by marine sediment. The magnitude of catalysis depends on sediment composition and radiation type. Deep-sea clay is especially effective at enhancing H2 yields, increasing yield by more than an order of magnitude relative to pure water. This previously unrecognized catalytic effect of geological materials on radiolytic H2 production is important for fueling microbial life in the subseafloor, especially in sediment with high catalytic power. Our estimate of radiolytic H2 production is based on spatially integrating a previously published model and uses (i) experimentally constrained radiolytic H2 yields for the principal marine sediment types, (ii) bulk sediment radioactive element content of sediment cores in three ocean basins (N. Atlantic, N. and S. Pacific), and global distributions of (iii) seafloor lithology, (iv) sediment porosity, and (v) sediment thickness. We calculate that global radiolytic H2 production in marine sediment is 1.6E+12 mol H2 yr-1. This production rate is small relative to the annual rate of photosynthetic organic-matter production in the surface ocean. The globally integrated ratio of radiolytic H2 production relative to photosynthetic primary production is 4.1E-4, based on electron equivalences. Although small relative to global photosynthetic biomass production, sediment-catalyzed production of radiolytic products is significant in the subseafloor. Our analysis of 9 sites in the N. Atlantic, N. and S. Pacific suggests that H2 is the primary microbial fuel in organic-poor sediment older than a few million years; at these sites, calculated

  13. Marine debris: global and regional impacts

    OpenAIRE

    Torres N,Daniel; Berguño B,Jorge

    2011-01-01

    A synthesis on the Marine Debris problem is given upon de basis of the general knowledge on the matter as well as that obtained at Cape Shirreff, Livingston Island, South Shetland, Antarctica. It is suggested to improve the database on marine debris through permanent scientific research as well as with monitoring activities. It is necessary to coordinate key groups to apply strategies to identify types, sources, amount, interactions and socio-economic aspects of this global and regional probl...

  14. 9 CFR 3.113 - Primary enclosures used to transport marine mammals.

    Science.gov (United States)

    2010-01-01

    ... marine mammals. 3.113 Section 3.113 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION... the animals, their handlers, or other persons. (d) Marine mammals transported in the same primary... used. Within the primary enclosures used to transport marine mammals, the animals will be maintained on...

  15. The global marine phosphorus cycle: sensitivity to oceanic circulation

    Directory of Open Access Journals (Sweden)

    C. P. Slomp

    2007-01-01

    Full Text Available A new mass balance model for the coupled marine cycles of phosphorus (P and carbon (C is used to examine the relationships between oceanic circulation, primary productivity, and sedimentary burial of reactive P and particulate organic C (POC, on geological time scales. The model explicitly represents the exchanges of water and particulate matter between the continental shelves and the open ocean, and it accounts for the redox-dependent burial of POC and the various forms of reactive P (iron(III-bound P, particulate organic P (POP, authigenic calcium phosphate, and fish debris. Steady state and transient simulations indicate that a slowing down of global ocean circulation decreases primary production in the open ocean, but increases that in the coastal ocean. The latter is due to increased transfer of soluble P from deep ocean water to the shelves, where it fuels primary production and causes increased reactive P burial. While authigenic calcium phosphate accounts for most reactive P burial ocean-wide, enhanced preservation of fish debris may become an important reactive P sink in deep-sea sediments during periods of ocean anoxia. Slower ocean circulation globally increases POC burial, because of enhanced POC preservation under anoxia in deep-sea depositional environments and higher primary productivity along the continental margins. In accordance with geological evidence, the model predicts increased accumulation of reactive P on the continental shelves during and following periods of ocean anoxia.

  16. Global Priorities for Marine Biodiversity Conservation

    Science.gov (United States)

    Selig, Elizabeth R.; Turner, Will R.; Troëng, Sebastian; Wallace, Bryan P.; Halpern, Benjamin S.; Kaschner, Kristin; Lascelles, Ben G.; Carpenter, Kent E.; Mittermeier, Russell A.

    2014-01-01

    In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity. PMID:24416151

  17. Global priorities for marine biodiversity conservation.

    Directory of Open Access Journals (Sweden)

    Elizabeth R Selig

    Full Text Available In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs and Areas Beyond National Jurisdiction (ABNJ. Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity.

  18. Global assessments of the state of the marine environment: Contemporary initiatives

    International Nuclear Information System (INIS)

    Bewers, J.M.; Boelens, R.G.V.

    1999-01-01

    A large number of assessments of regional marine areas have been conducted in recent years for a variety of purposes. Periodic reviews of the state of the marine environment have been undertaken by the United Nations Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection (GESAMP). The most recent of these global assessments was published in 1990. The international adoption of a Global Programme of Action for the Protection of the Marine Environment from Land-Based Activities in 1995 has led to additional demand for regional assessments and a global review. The regional assessments are either completed or in train largely through mechanisms associated with the UNEP Regional Seas Programme. The global assessment has been assigned to GESAMP and incorporated into its plans for the preparation of a new global review to be completed in the year 2002. The Intergovernmental Oceanographic Commission, (IOC) the Scientific Committee for Oceanic Research (SCOR) and the Scientific Committee on Problems of the Environment (SCOPE) are collaborating in a review of ocean science. The Global Environment Facility (GEF) recently approved funding for a 'Global International Waters Assessment' (GIWA) partly as a means of determining priorities within its International Waters Portfolio. This paper outlines the nature of, and contemporary activities within, these various assessments. (author)

  19. Global conservation priorities for marine turtles.

    Directory of Open Access Journals (Sweden)

    Bryan P Wallace

    Full Text Available Where conservation resources are limited and conservation targets are diverse, robust yet flexible priority-setting frameworks are vital. Priority-setting is especially important for geographically widespread species with distinct populations subject to multiple threats that operate on different spatial and temporal scales. Marine turtles are widely distributed and exhibit intra-specific variations in population sizes and trends, as well as reproduction and morphology. However, current global extinction risk assessment frameworks do not assess conservation status of spatially and biologically distinct marine turtle Regional Management Units (RMUs, and thus do not capture variations in population trends, impacts of threats, or necessary conservation actions across individual populations. To address this issue, we developed a new assessment framework that allowed us to evaluate, compare and organize marine turtle RMUs according to status and threats criteria. Because conservation priorities can vary widely (i.e. from avoiding imminent extinction to maintaining long-term monitoring efforts we developed a "conservation priorities portfolio" system using categories of paired risk and threats scores for all RMUs (n = 58. We performed these assessments and rankings globally, by species, by ocean basin, and by recognized geopolitical bodies to identify patterns in risk, threats, and data gaps at different scales. This process resulted in characterization of risk and threats to all marine turtle RMUs, including identification of the world's 11 most endangered marine turtle RMUs based on highest risk and threats scores. This system also highlighted important gaps in available information that is crucial for accurate conservation assessments. Overall, this priority-setting framework can provide guidance for research and conservation priorities at multiple relevant scales, and should serve as a model for conservation status assessments and priority

  20. Will life find a way? Evolution of marine species under global change.

    Science.gov (United States)

    Calosi, Piero; De Wit, Pierre; Thor, Peter; Dupont, Sam

    2016-10-01

    Projections of marine biodiversity and implementation of effective actions for its maintenance in the face of current rapid global environmental change are constrained by our limited understanding of species' adaptive responses, including transgenerational plasticity, epigenetics and natural selection. This special issue presents 13 novel studies, which employ experimental and modelling approaches to (i) investigate plastic and evolutionary responses of marine species to major global change drivers; (ii) ask relevant broad eco-evolutionary questions, implementing multiple species and populations studies; (iii) show the advantages of using advanced experimental designs and tools; (iv) construct novel model organisms for marine evolution; (v) help identifying future challenges for the field; and (vi) highlight the importance of incorporating existing evolutionary theory into management solutions for the marine realm. What emerges is that at least some populations of marine species have the ability to adapt to future global change conditions. However, marine organisms' capacity for adaptation appears finite, due to evolutionary trade-offs and possible rapid losses in genetic diversity. This further corroborates the idea that acquiring an evolutionary perspective on how marine life will respond to the selective pressure of future global changes will guide us in better identifying which conservation efforts will be most needed and most effective.

  1. Combined constraints on global ocean primary production using observations and models

    Science.gov (United States)

    Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le

    2013-09-01

    production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.

  2. Primary production of tropical marine ecosystems

    Digital Repository Service at National Institute of Oceanography (India)

    Bhattathiri, P.M.A.

    Among tropical marine ecosystems estuaries are one of the highly productive areas and act as a nursery to large number of organisms. The primary production in most of the estuaries is less during the monsoon period. Post-monsoon period shows...

  3. 9 CFR 3.114 - Primary conveyances (motor vehicle, rail, air and marine).

    Science.gov (United States)

    2010-01-01

    ..., rail, air and marine). 3.114 Section 3.114 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air and marine). (a) The animal cargo space of primary conveyances used in.... (e) The interiors of animal cargo spaces in primary conveyances must be kept clean. (f) Live marine...

  4. Global diffusive fluxes of methane in marine sediments

    NARCIS (Netherlands)

    Egger, M.; Riedinger, N.; Mogollón, J.M.; Jørgensen, B.B.

    2018-01-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of

  5. Global diffusive fluxes of methane in marine sediments

    Science.gov (United States)

    Egger, Matthias; Riedinger, Natascha; Mogollón, José M.; Jørgensen, Bo Barker

    2018-06-01

    Anaerobic oxidation of methane provides a globally important, yet poorly constrained barrier for the vast amounts of methane produced in the subseafloor. Here we provide a global map and budget of the methane flux and degradation in diffusion-controlled marine sediments in relation to the depth of the methane oxidation barrier. Our new budget suggests that 45-61 Tg of methane are oxidized with sulfate annually, with approximately 80% of this oxidation occurring in continental shelf sediments (methane in steady-state diffusive sediments, we calculate that 3-4% of the global organic carbon flux to the seafloor is converted to methane. We further report a global imbalance of diffusive methane and sulfate fluxes into the sulfate-methane transition with no clear trend with respect to the corresponding depth of the methane oxidation barrier. The observed global mean net flux ratio between sulfate and methane of 1.4:1 indicates that, on average, the methane flux to the sulfate-methane transition accounts for only 70% of the sulfate consumption in the sulfate-methane transition zone of marine sediments.

  6. Global change in the trophic functioning of marine food webs.

    Directory of Open Access Journals (Sweden)

    Aurore Maureaud

    Full Text Available The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950-2010 time-periods. Global trends were identified and cluster analyses were used to characterize the variability of trends between ecosystems. Results showed that the most common pattern over the study period is a global decrease in TCI, while the ECI indicator tends to increase. Thus, changes in species assemblages would induce faster and apparently more efficient biomass transfers in marine food webs. Results also suggested that the main driver of change over that period had been the large increase in fishing pressure. The largest changes occurred in ecosystems where 'fishing down the marine food web' are most intensive.

  7. Global mismatch between fishing dependency and larval supply from marine reserves

    Science.gov (United States)

    Andrello, Marco; Guilhaumon, François; Albouy, Camille; Parravicini, Valeriano; Scholtens, Joeri; Verley, Philippe; Barange, Manuel; Sumaila, U. Rashid; Manel, Stéphanie; Mouillot, David

    2017-07-01

    Marine reserves are viewed as flagship tools to protect exploited species and to contribute to the effective management of coastal fisheries. Yet, the extent to which marine reserves are globally interconnected and able to effectively seed areas, where fisheries are most critical for food and livelihood security is largely unknown. Using a hydrodynamic model of larval dispersal, we predict that most marine reserves are not interconnected by currents and that their potential benefits to fishing areas are presently limited, since countries with high dependency on coastal fisheries receive very little larval supply from marine reserves. This global mismatch could be reversed, however, by placing new marine reserves in areas sufficiently remote to minimize social and economic costs but sufficiently connected through sea currents to seed the most exploited fisheries and endangered ecosystems.

  8. Will marine productivity wane?

    Science.gov (United States)

    Laufkötter, Charlotte; Gruber, Nicolas

    2018-03-01

    If marine algae are impaired severely by global climate change, the resulting reduction in marine primary production would strongly affect marine life and the ocean's biological pump that sequesters substantial amounts of atmospheric carbon dioxide in the ocean's interior. Most studies, including the latest generation of Earth system models, project only moderate global decreases in biological production until 2100 (1, 2), suggesting that these concerns are unwarranted. But on page 1139 of this issue, Moore et al. (3) show that this conclusion might be shortsighted and that there may be much larger long-term changes in ocean productivity than previously appreciated.

  9. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles

    NARCIS (Netherlands)

    Schuyler, Qamar A.; Wilcox, Chris; Townsend, Kathy A.; Wedemeyer-Strombel, Kathryn R.; Balazs, George; van Sebille, Erik|info:eu-repo/dai/nl/304831921; Hardesty, Britta Denise

    2016-01-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with

  10. Global Distribution of Marine Radioactivity. Chapter 2

    International Nuclear Information System (INIS)

    Zal U'yun Wan Mahmood; Abdul Kadir Ishak; Norfaizal Mohamad; Wo, Y.M.; Kamarudin Samuding

    2015-01-01

    The global distribution of radionuclide activity in marine environments are totally different for each regions. This is because the sources for the supply, space, time, season, nature (physical, chemical and geochemical) and the nature of ocean physical (waves) differentiates it.

  11. Effect of Terrestrial and Marine Organic Aerosol on Regional and Global Climate: Model Development, Application, and Verification with Satellite Data

    Energy Technology Data Exchange (ETDEWEB)

    Meskhidze, Nicholas; Zhang, Yang; Kamykowski, Daniel

    2012-03-28

    In this DOE project the improvements to parameterization of marine primary organic matter (POM) emissions, hygroscopic properties of marine POM, marine isoprene derived secondary organic aerosol (SOA) emissions, surfactant effects, new cloud droplet activation parameterization have been implemented into Community Atmosphere Model (CAM 5.0), with a seven mode aerosol module from the Pacific Northwest National Laboratory (PNNL)'s Modal Aerosol Model (MAM7). The effects of marine aerosols derived from sea spray and ocean emitted biogenic volatile organic compounds (BVOCs) on microphysical properties of clouds were explored by conducting 10 year CAM5.0-MAM7 model simulations at a grid resolution 1.9° by 2.5° with 30 vertical layers. Model-predicted relationship between ocean physical and biological systems and the abundance of CCN in remote marine atmosphere was compared to data from the A-Train satellites (MODIS, CALIPSO, AMSR-E). Model simulations show that on average, primary and secondary organic aerosol emissions from the ocean can yield up to 20% increase in Cloud Condensation Nuclei (CCN) at 0.2% Supersaturation, and up to 5% increases in droplet number concentration of global maritime shallow clouds. Marine organics were treated as internally or externally mixed with sea salt. Changes associated with cloud properties reduced (absolute value) the model-predicted short wave cloud forcing from -1.35 Wm-2 to -0.25 Wm-2. By using different emission scenarios, and droplet activation parameterizations, this study suggests that addition of marine primary aerosols and biologically generated reactive gases makes an important difference in radiative forcing assessments. All baseline and sensitivity simulations for 2001 and 2050 using global-through-urban WRF/Chem (GU-WRF) were completed. The main objective of these simulations was to evaluate the capability of GU-WRF for an accurate representation of the global atmosphere by exploring the most accurate

  12. A summary of global 129I in marine waters

    International Nuclear Information System (INIS)

    He Peng; Aldahan, A.; Possnert, G.; Hou, X.L.

    2013-01-01

    Despite the many investigations concerning the occurrence of anthropogenic iodine-129 in the atmosphere, terrestrial and marine environments, there is a lack of a comprehensive collection of data on the distribution of the isotope in marine waters. The temporal and spatial variability of anthropogenic 129 I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different oceans and ocean compartments. We here summarize available published literature data on 129 I temporal and spatial distribution in the global marine water. The results show presence of numerous data sets for the North Atlantic and Arctic Oceans where strong variability in terms of water depth, time and location also occur. Scarcity of data on 129 I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic 129 I signal will take a long time to be transported, if at all, from the North Atlantic into other oceans. Data from recent expeditions in the Southern oceans and the Geotraces ocean profiling will reveal additional information about 129 I distribution in the marine waters.

  13. 9 CFR 3.15 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.15 Section 3.15 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...

  14. 9 CFR 3.138 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.138 Section 3.138 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  15. 9 CFR 3.88 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.88 Section 3.88 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used to...

  16. 9 CFR 3.62 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.62 Section 3.62 Animals and Animal Products ANIMAL AND PLANT HEALTH... (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  17. 9 CFR 3.37 - Primary conveyances (motor vehicle, rail, air, and marine).

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Primary conveyances (motor vehicle, rail, air, and marine). 3.37 Section 3.37 Animals and Animal Products ANIMAL AND PLANT HEALTH... conveyances (motor vehicle, rail, air, and marine). (a) The animal cargo space of primary conveyances used in...

  18. Global marine radioactivity database (GLOMARD)

    International Nuclear Information System (INIS)

    2000-06-01

    The GLOMARD stores all available data on marine radioactivity in seawater, suspended matter, sediments and biota. The database provides critical input to the evaluation of the environmental radionuclide levels in regional seas and the world's oceans. It can be used as a basis for the assessment of the radiation doses to local, regional and global human populations and to marine biota. It also provides information on temporal trends of radionuclide levels in the marine environment and identifies gaps in available information. The database contains information on the sources of the data; the laboratories performing radionuclide analysis; the type of samples (seawater, sediment, biota) and associated details (such as volume and weight); the sample treatment, analytical methods, and measuring instruments; and the analysed results (such as radionuclide concentrations, uncertainties, temperature, salinity, etc.). The current version of the GLOMARD allows the input, maintenance and extraction of data for the production of various kinds of maps using external computer programs. Extracted data are processed by these programs to produce contour maps representing radionuclide distributions in studied areas. To date, development work has concentrated on the Barents and Kara Seas in the Arctic and the Sea of Japan in the northwest Pacific Ocean, in connection with the investigation of radioactive waste dumping sites, as well as on marine radioactivity assessment of the Mururoa and Fangataufa nuclear weapons tests sites in French Polynesia. Further data inputs and evaluations are being carried out for the Black and Mediterranean Seas. In the framework of the project on Worldwide Marine Radioactivity Studies, background levels of 3 H, 90 Sr, 137 Cs and 239,240 Pu in water, sediment and biota of the world's oceans and seas will be established

  19. Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation

    Directory of Open Access Journals (Sweden)

    N. Meskhidze

    2011-11-01

    Full Text Available Marine organic aerosol emissions have been implemented and evaluated within the National Center of Atmospheric Research (NCAR's Community Atmosphere Model (CAM5 with the Pacific Northwest National Laboratory's 7-mode Modal Aerosol Module (MAM-7. Emissions of marine primary organic aerosols (POA, phytoplankton-produced isoprene- and monoterpenes-derived secondary organic aerosols (SOA and methane sulfonate (MS are shown to affect surface concentrations of organic aerosols in remote marine regions. Global emissions of submicron marine POA is estimated to be 7.9 and 9.4 Tg yr−1, for the Gantt et al. (2011 and Vignati et al. (2010 emission parameterizations, respectively. Marine sources of SOA and particulate MS (containing both sulfur and carbon atoms contribute an additional 0.2 and 5.1 Tg yr−1, respectively. Widespread areas over productive waters of the Northern Atlantic, Northern Pacific, and the Southern Ocean show marine-source submicron organic aerosol surface concentrations of 100 ng m−3, with values up to 400 ng m−3 over biologically productive areas. Comparison of long-term surface observations of water insoluble organic matter (WIOM with POA concentrations from the two emission parameterizations shows that despite revealed discrepancies (often more than a factor of 2, both Gantt et al. (2011 and Vignati et al. (2010 formulations are able to capture the magnitude of marine organic aerosol concentrations, with the Gantt et al. (2011 parameterization attaining better seasonality. Model simulations show that the mixing state of the marine POA can impact the surface number concentration of cloud condensation nuclei (CCN. The largest increases (up to 20% in CCN (at a supersaturation (S of 0.2% number concentration are obtained over biologically productive ocean waters when marine organic aerosol is assumed to be externally mixed with sea-salt. Assuming

  20. Global change in the trophic functioning of marine food webs

    DEFF Research Database (Denmark)

    Maureaud, Aurore; Gascuel, Didier; Colléter, Mathieu

    2017-01-01

    and life history traits of marine species, we tested the hypothesis that anthropogenic ecological impacts may have led to changes in the global parameters defining the transfers of biomass within the food web. First, we developed two indicators to assess such changes: the Time Cumulated Indicator (TCI......The development of fisheries in the oceans, and other human drivers such as climate warming, have led to changes in species abundance, assemblages, trophic interactions, and ultimately in the functioning of marine food webs. Here, using a trophodynamic approach and global databases of catches......) measuring the residence time of biomass within the food web, and the Efficiency Cumulated Indicator (ECI) quantifying the fraction of secondary production reaching the top of the trophic chain. Then, we assessed, at the large marine ecosystem scale, the worldwide change of these two indicators over the 1950...

  1. Quantifying the Global Marine Biogenic Nitrogen Oxides Emissions

    Science.gov (United States)

    Su, H.; Wang, S.; Lin, J.; Hao, N.; Poeschl, U.; Cheng, Y.

    2017-12-01

    Nitrogen oxides (NOx) are among the most important molecules in atmospheric chemistry and nitrogen cycle. The NOx over the ocean areas are traditionally believed to originate from the continental outflows or the inter-continental shipping emissions. By comparing the satellite observations (OMI) and global chemical transport model simulation (GEOS-Chem), we suggest that the underestimated modeled atmospheric NO2 columns over biogenic active ocean areas can be possibly attributed to the biogenic source. Nitrification and denitrification in the ocean water produces nitrites which can be further reduced to NO through microbiological processes. We further report global distributions of marine biogenic NO emissions. The new added emissions improve the agreement between satellite observations and model simulations over large areas. Our model simulations manifest that the marine biogenic NO emissions increase the atmospheric oxidative capacity and aerosol formation rate, providing a closer link between atmospheric chemistry and ocean microbiology.

  2. Global change and marine communities: Alien species and climate change

    International Nuclear Information System (INIS)

    Occhipinti-Ambrogi, Anna

    2007-01-01

    Anthropogenic influences on the biosphere since the advent of the industrial age are increasingly causing global changes. Climatic change and the rising concentration of greenhouse gases in the atmosphere are ranking high in scientific and public agendas, and other components of global change are also frequently addressed, among which are the introductions of non indigenous species (NIS) in biogeographic regions well separated from the donor region, often followed by spectacular invasions. In the marine environment, both climatic change and spread of alien species have been studied extensively; this review is aimed at examining the main responses of ecosystems to climatic change, taking into account the increasing importance of biological invasions. Some general principles on NIS introductions in the marine environment are recalled, such as the importance of propagule pressure and of development stages during the time course of an invasion. Climatic change is known to affect many ecological properties; it interacts also with NIS in many possible ways. Direct (proximate) effects on individuals and populations of altered physical-chemical conditions are distinguished from indirect effects on emergent properties (species distribution, diversity, and production). Climatically driven changes may affect both local dispersal mechanisms, due to the alteration of current patterns, and competitive interactions between NIS and native species, due to the onset of new thermal optima and/or different carbonate chemistry. As well as latitudinal range expansions of species correlated with changing temperature conditions, and effects on species richness and the correlated extinction of native species, some invasions may provoke multiple effects which involve overall ecosystem functioning (material flow between trophic groups, primary production, relative extent of organic material decomposition, extent of benthic-pelagic coupling). Some examples are given, including a special

  3. Exploring the Contribution of Primary Marine Organic Matter to the Arctic Boundary Layer

    Science.gov (United States)

    Collins, D. B.; Chang, R. Y. W.; Boyer, M.; Abbatt, J.

    2016-12-01

    The ocean is a significant source of aerosol to the atmosphere, and contributes significantly to the aerosol population especially in remote locations. Both primary and secondary processes connect the ocean to ambient aerosol loadings, but the extent to which the ocean is a source of organic material to the atmosphere is a current topic of scientific debate. The contribution of primary marine aerosol to atmospheric organic matter may have an influence on the water uptake properties and chemical reactivity of primary marine aerosol particles, influencing their climate-relevant properties. In this study, we characterize the contribution of primary marine aerosol to the arctic marine boundary layer using coincident quantitative measurements of freshly-produced sea spray aerosol and ambient marine aerosol to the arctic boundary layer during an expedition aboard the CCGS Amundsen. Sea spray production experiments were conducted during the cruise using a tank fitted with a plunging waterfall apparatus, a technique which has been recently shown to closely mimic the aerosol production behavior of controlled breaking waves. Comparison of the chemical composition of sea spray particles generated from water samples in various locations throughout the Canadian Archipelago will be presented. A tracer analysis of specific compounds known to be important contributors to primary marine organic material are tracked using GC/MS, along with those known to be tracers of biological aerosol and other organic matter sources. Size-segregated trends in tracer concentrations and ratios with inorganic components will be discussed in the context of understanding the contribution of primary organics to the Arctic atmosphere and in comparison with other sources of organic material observed during the ship-board campaign.

  4. What are the major global threats and impacts in marine environments? Investigating the contours of a shared perception among marine scientists from the bottom-up

    DEFF Research Database (Denmark)

    Boonstra, W.J.; Maj Ottosen, Katharina; Ferreira, Ana Sofia

    2015-01-01

    academics in marine science this article explores if a shared research agenda in relation to global change in marine environments exists. The analysis demonstrates that marine scientists across disciplines are largely in agreement on some common features of global marine change. Nevertheless, the analysis...... also highlights where natural and social scientists diverge in their assessment. The article ends discussing what these findings imply for further improvement of interdisciplinary marine science......Marine scientists broadly agree on which major processes influence the sustainability of marine environments worldwide. Recent studies argue that such shared perceptions crucially shape scientific agendas and are subject to a confirmation bias. Based on these findings a more explicit engagement...

  5. Global compilation of marine varve records

    Science.gov (United States)

    Schimmelmann, Arndt; Lange, Carina B.; Schieber, Juergen; Francus, Pierre; Ojala, Antti E. K.; Zolitschka, Bernd

    2017-04-01

    Marine varves contain highly resolved records of geochemical and other paleoceanographic and paleoenvironmental proxies with annual to seasonal resolution. We present a global compilation of marine varved sedimentary records throughout the Holocene and Quaternary covering more than 50 sites worldwide. Marine varve deposition and preservation typically depend on environmental and sedimentological conditions, such as a sufficiently high sedimentation rate, severe depletion of dissolved oxygen in bottom water to exclude bioturbation by macrobenthos, and a seasonally varying sedimentary input to yield a recognizable rhythmic varve pattern. Additional oceanographic factors may include the strength and depth range of the Oxygen Minimum Zone (OMZ) and regional anthropogenic eutrophication. Modern to Quaternary marine varves are not only found in those parts of the open ocean that comply with these conditions, but also in fjords, embayments and estuaries with thermohaline density stratification, and nearshore 'marine lakes' with strong hydrologic connections to ocean water. Marine varves have also been postulated in pre-Quaternary rocks. In the case of non-evaporitic laminations in fine-grained ancient marine rocks, such as banded iron formations and black shales, laminations may not be varves but instead may have multiple alternative origins such as event beds or formation via bottom currents that transported and sorted silt-sized particles, clay floccules, and organic-mineral aggregates in the form of migrating bedload ripples. Modern marine ecosystems on continental shelves and slopes, in coastal zones and in estuaries are susceptible to stress by anthropogenic pressures, for example in the form of eutrophication, enhanced OMZs, and expanding ranges of oxygen-depletion in bottom waters. Sensitive laminated sites may play the important role of a 'canary in the coal mine' where monitoring the character and geographical extent of laminations/varves serves as a diagnostic

  6. Transitional states in marine fisheries: adapting to predicted global change.

    Science.gov (United States)

    MacNeil, M Aaron; Graham, Nicholas A J; Cinner, Joshua E; Dulvy, Nicholas K; Loring, Philip A; Jennings, Simon; Polunin, Nicholas V C; Fisk, Aaron T; McClanahan, Tim R

    2010-11-27

    Global climate change has the potential to substantially alter the production and community structure of marine fisheries and modify the ongoing impacts of fishing. Fish community composition is already changing in some tropical, temperate and polar ecosystems, where local combinations of warming trends and higher environmental variation anticipate the changes likely to occur more widely over coming decades. Using case studies from the Western Indian Ocean, the North Sea and the Bering Sea, we contextualize the direct and indirect effects of climate change on production and biodiversity and, in turn, on the social and economic aspects of marine fisheries. Climate warming is expected to lead to (i) yield and species losses in tropical reef fisheries, driven primarily by habitat loss; (ii) community turnover in temperate fisheries, owing to the arrival and increasing dominance of warm-water species as well as the reduced dominance and departure of cold-water species; and (iii) increased diversity and yield in Arctic fisheries, arising from invasions of southern species and increased primary production resulting from ice-free summer conditions. How societies deal with such changes will depend largely on their capacity to adapt--to plan and implement effective responses to change--a process heavily influenced by social, economic, political and cultural conditions.

  7. Incentivizing More Effective Marine Protected Areas with the Global Ocean Refuge System (GLORES

    Directory of Open Access Journals (Sweden)

    Sarah O. Hameed

    2017-06-01

    Full Text Available Healthy oceans are essential to human survival and prosperity, yet oceans are severely impacted worldwide by anthropogenic threats including overfishing, climate change, industrialization, pollution, and habitat destruction. Marine protected areas (MPAs have been implemented around the world and are effective conservation tools that can mitigate some of these threats and build resilience when designed and managed well. However, despite a rich scientific literature on MPA effectiveness, science is not the main driver behind the design and implementation of many MPAs, leading to variable MPA effectiveness and bias in global MPA representativity. As a result, the marine conservation community focuses on promoting the creation of more MPAs as well as more effective ones, however no structure to improve or accelerate effective MPA implementation currently exists. To safeguard marine ecosystems on a global scale and better monitor progress toward ecosystem protection, robust science-based criteria are needed for evaluating MPAs and synthesizing the extensive and interdisciplinary science on MPA effectiveness. This paper presents a strategic initiative led by Marine Conservation Institute called the Global Ocean Refuge System (GLORES. GLORES aims to set standards to improve the quality of MPAs and catalyze strong protection for at least 30% of the ocean by 2030. Such substantial increase in marine protection is needed to maintain the resilience of marine ecosystems and restore their benefits to people. GLORES provides a comprehensive strategy that employs the rich body of MPA science to scale up existing marine conservation efforts.

  8. Shortfalls in the global protected area network at representing marine biodiversity.

    Science.gov (United States)

    Klein, Carissa J; Brown, Christopher J; Halpern, Benjamin S; Segan, Daniel B; McGowan, Jennifer; Beger, Maria; Watson, James E M

    2015-12-03

    The first international goal for establishing marine protected areas (MPAs) to conserve the ocean's biodiversity was set in 2002. Since 2006, the Convention on Biological Diversity (CBD) has driven MPA establishment, with 193 parties committed to protecting >10% of marine environments globally by 2020, especially 'areas of particular importance for biodiversity' (Aichi target 11). This has resulted in nearly 10 million km(2) of new MPAs, a growth of ~360% in a decade. Unlike on land, it is not known how well protected areas capture marine biodiversity, leaving a significant gap in our understanding of existing MPAs and future protection requirements. We assess the overlap of global MPAs with the ranges of 17,348 marine species (fishes, mammals, invertebrates), and find that 97.4% of species have biodiversity. Our results offer strategic guidance on where MPAs should be placed to support the CBD's overall goal to avert biodiversity loss. Achieving this goal is imperative for nature and humanity, as people depend on biodiversity for important and valuable services.

  9. Marine denitrification rates determined from a global 3-D inverse model

    Directory of Open Access Journals (Sweden)

    T. DeVries

    2013-04-01

    Full Text Available A major impediment to understanding long-term changes in the marine nitrogen (N cycle is the persistent uncertainty about the rates, distribution, and sensitivity of its largest fluxes in the modern ocean. We use a global ocean circulation model to obtain the first 3-D estimate of marine denitrification rates that is maximally consistent with available observations of nitrate deficits and the nitrogen isotopic ratio of oceanic nitrate. We find a global rate of marine denitrification in suboxic waters and sediments of 120–240 Tg N yr−1, which is lower than many other recent estimates. The difference stems from the ability to represent the 3-D spatial structure of suboxic zones, where denitrification rates of 50–77 Tg N yr−1 result in up to 50% depletion of nitrate. This depletion reduces the effect of local isotopic enrichment on the rest of the ocean, allowing the N isotope ratio of oceanic nitrate to be achieved with a sedimentary denitrification rate about 1.3–2.3 times that of suboxic zones. This balance of N losses between sediments and suboxic zones is shown to obey a simple relationship between isotope fractionation and the degree of nitrate consumption in the core of the suboxic zones. The global denitrification rates derived here suggest that the marine nitrogen budget is likely close to balanced.

  10. A summary of global {sup 129}I in marine waters

    Energy Technology Data Exchange (ETDEWEB)

    He Peng, E-mail: peng.he@geo.uu.se [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Aldahan, A. [Dept. of Earth Sciences, Uppsala University, Villav. 16, 752 36 Uppsala (Sweden); Dept. of Geology, United Arab Emirates University, P.O. Box 17551, Al Ain (United Arab Emirates); Possnert, G. [Tandem Laboratory, Uppsala University, P.O. Box 529, 751 20 Uppsala (Sweden); Hou, X.L. [Riso National Laboratory for Sustainable Energy, NUK-202, Technical University of Denmark, DK-4000 Roskilde (Denmark)

    2013-01-15

    Despite the many investigations concerning the occurrence of anthropogenic iodine-129 in the atmosphere, terrestrial and marine environments, there is a lack of a comprehensive collection of data on the distribution of the isotope in marine waters. The temporal and spatial variability of anthropogenic {sup 129}I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different oceans and ocean compartments. We here summarize available published literature data on {sup 129}I temporal and spatial distribution in the global marine water. The results show presence of numerous data sets for the North Atlantic and Arctic Oceans where strong variability in terms of water depth, time and location also occur. Scarcity of data on {sup 129}I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic {sup 129}I signal will take a long time to be transported, if at all, from the North Atlantic into other oceans. Data from recent expeditions in the Southern oceans and the Geotraces ocean profiling will reveal additional information about {sup 129}I distribution in the marine waters.

  11. Global imprint of climate change on marine life

    DEFF Research Database (Denmark)

    Poloczanska, Elvira S.; Brown, Christopher J.; Sydeman, William J.

    2013-01-01

    Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2–4 and/or biological responses5,6. This has precluded a robust overview of the effect of climate change in the global ocean. Here, we synthesized all available ...

  12. Global cooling as a driver of diversification in a major marine clade

    Science.gov (United States)

    Davis, Katie E.; Hill, Jon; Astrop, Tim I.; Wills, Matthew A.

    2016-10-01

    Climate is a strong driver of global diversity and will become increasingly important as human influences drive temperature changes at unprecedented rates. Here we investigate diversification and speciation trends within a diverse group of aquatic crustaceans, the Anomura. We use a phylogenetic framework to demonstrate that speciation rate is correlated with global cooling across the entire tree, in contrast to previous studies. Additionally, we find that marine clades continue to show evidence of increased speciation rates with cooler global temperatures, while the single freshwater clade shows the opposite trend with speciation rates positively correlated to global warming. Our findings suggest that both global cooling and warming lead to diversification and that habitat plays a role in the responses of species to climate change. These results have important implications for our understanding of how extant biota respond to ongoing climate change and are of particular importance for conservation planning of marine ecosystems.

  13. Capacity shortfalls hinder the performance of marine protected areas globally

    Science.gov (United States)

    Gill, David A.; Mascia, Michael B.; Ahmadia, Gabby N.; Glew, Louise; Lester, Sarah E.; Barnes, Megan; Craigie, Ian; Darling, Emily S.; Free, Christopher M.; Geldmann, Jonas; Holst, Susie; Jensen, Olaf P.; White, Alan T.; Basurto, Xavier; Coad, Lauren; Gates, Ruth D.; Guannel, Greg; Mumby, Peter J.; Thomas, Hannah; Whitmee, Sarah; Woodley, Stephen; Fox, Helen E.

    2017-03-01

    Marine protected areas (MPAs) are increasingly being used globally to conserve marine resources. However, whether many MPAs are being effectively and equitably managed, and how MPA management influences substantive outcomes remain unknown. We developed a global database of management and fish population data (433 and 218 MPAs, respectively) to assess: MPA management processes; the effects of MPAs on fish populations; and relationships between management processes and ecological effects. Here we report that many MPAs failed to meet thresholds for effective and equitable management processes, with widespread shortfalls in staff and financial resources. Although 71% of MPAs positively influenced fish populations, these conservation impacts were highly variable. Staff and budget capacity were the strongest predictors of conservation impact: MPAs with adequate staff capacity had ecological effects 2.9 times greater than MPAs with inadequate capacity. Thus, continued global expansion of MPAs without adequate investment in human and financial capacity is likely to lead to sub-optimal conservation outcomes.

  14. Potential ramifications of the global economic crisis on human-mediated dispersal of marine non-indigenous species.

    Science.gov (United States)

    Floerl, Oliver; Coutts, Ashley

    2009-11-01

    The global economy is currently experiencing one of its biggest contractions on record. A sharp decline in global imports and exports since 2008 has affected global merchant vessel traffic, the principal mode of bulk commodity transport around the world. During the first quarter of 2009, 10% and 25% of global container and refrigerated vessels, respectively, were reported to be unemployed. A large proportion of these vessels are lying idle at anchor in the coastal waters of South East Asia, sometimes for periods of greater than 3 months. Whilst at anchor, the hulls of such vessels will develop diverse and extensive assemblages of marine biofouling species. Once back in service, these vessels are at risk of transporting higher-than-normal quantities of marine organisms between their respective global trading ports. We discuss the potential ramifications of the global economic crisis on the spread of marine non-indigenous species via global commercial shipping.

  15. "Conserving Marine Biodiversity in the Global Marine Commons: Co-evolution and Interaction with the Law of the Sea"

    Directory of Open Access Journals (Sweden)

    Robin Margaret Warner

    2014-05-01

    Full Text Available As global shipping intensifies and technological advances provide more opportunities to access the resources of the high seas and the deep seabed beyond national jurisdiction (ABNJ, the catalogue of threats to the marine environment and its biodiversity increase commensurately. Beyond these threats, new and emerging uses of ABNJ including more intrusive marine scientific research, bio-prospecting, deep seabed mining and environmental modification activities to mitigate the effects of climate change have the potential to harm the highly interconnected and sensitive ecosystems of the open ocean and the deep seabed if not sustainably managed now and into the future. Modern conservation norms such as environmental impact assessment, marine protected areas, marine spatial planning and development mechanisms such as technology transfer and capacity building are under developed in the legal and institutional framework for ABNJ. This article examines key normative features of the legal and institutional framework for ABNJ and their applicability to conservation of marine biodiversity, gaps and disconnects in that framework and ongoing global initiatives to develop more effective governance structures. It discusses some of the options being considered in the UN Ad Hoc Informal Open-ended Working Group to study issues related to the conservation and sustainable use of marine biodiversity in areas beyond national jurisdiction (BBNJ Working Group to evolve the legal and institutional framework for conservation and sustainable use of marine biodiversity in ABNJ and their current and future relevance for the law of the sea. It concludes that the discussions in the BBNJ Working Group and related initiatives in the Convention on Biological Diversity (CBD and at regional level have demonstrated that a more integrated legal and institutional structure is needed to address growing threats to marine biodiversity in ABNJ.

  16. Application of multi-source waveform inversion to marine streamer data using the global correlation norm

    KAUST Repository

    Choi, Yun Seok

    2012-05-02

    Conventional multi-source waveform inversion using an objective function based on the least-square misfit cannot be applied to marine streamer acquisition data because of inconsistent acquisition geometries between observed and modelled data. To apply the multi-source waveform inversion to marine streamer data, we use the global correlation between observed and modelled data as an alternative objective function. The new residual seismogram derived from the global correlation norm attenuates modelled data not supported by the configuration of observed data and thus, can be applied to multi-source waveform inversion of marine streamer data. We also show that the global correlation norm is theoretically the same as the least-square norm of the normalized wavefield. To efficiently calculate the gradient, our method employs a back-propagation algorithm similar to reverse-time migration based on the adjoint-state of the wave equation. In numerical examples, the multi-source waveform inversion using the global correlation norm results in better inversion results for marine streamer acquisition data than the conventional approach. © 2012 European Association of Geoscientists & Engineers.

  17. Albedo enhancement of marine clouds to counteract global warming: impacts on the hydrological cycle

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G. [Indian Institute of Science, Divecha Center for Climate Change, Bangalore (India); Indian Institute of Science, Center for Atmospheric and Oceanic Sciences, Bangalore (India); Caldeira, Ken; Cao, Long; Ban-Weiss, George; Shin, Ho-Jeong [Carnegie Institution, Department of Global Ecology, Stanford, CA (United States); Nemani, Rama [NASA Ames Research Center, Moffett Field, CA (United States)

    2011-09-15

    Recent studies have shown that changes in solar radiation affect the hydrological cycle more strongly than equivalent CO{sub 2} changes for the same change in global mean surface temperature. Thus, solar radiation management ''geoengineering'' proposals to completely offset global mean temperature increases by reducing the amount of absorbed sunlight might be expected to slow the global water cycle and reduce runoff over land. However, proposed countering of global warming by increasing the albedo of marine clouds would reduce surface solar radiation only over the oceans. Here, for an idealized scenario, we analyze the response of temperature and the hydrological cycle to increased reflection by clouds over the ocean using an atmospheric general circulation model coupled to a mixed layer ocean model. When cloud droplets are reduced in size over all oceans uniformly to offset the temperature increase from a doubling of atmospheric CO{sub 2}, the global-mean precipitation and evaporation decreases by about 1.3% but runoff over land increases by 7.5% primarily due to increases over tropical land. In the model, more reflective marine clouds cool the atmospheric column over ocean. The result is a sinking motion over oceans and upward motion over land. We attribute the increased runoff over land to this increased upward motion over land when marine clouds are made more reflective. Our results suggest that, in contrast to other proposals to increase planetary albedo, offsetting mean global warming by reducing marine cloud droplet size does not necessarily lead to a drying, on average, of the continents. However, we note that the changes in precipitation, evaporation and P-E are dominated by small but significant areas, and given the highly idealized nature of this study, a more thorough and broader assessment would be required for proposals of altering marine cloud properties on a large scale. (orig.)

  18. Designing connected marine reserves in the face of global warming.

    Science.gov (United States)

    Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge

    2018-02-01

    Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of

  19. Global change in marine ecosystems: implications for semi-enclosed Arabian seas

    KAUST Repository

    Duarte, Carlos M.

    2015-12-07

    Global Change has been defined as the impact of human activities on the key processes that determine the functioning of the Biosphere. Global Change is a major threat for marine ecosystems and includes climate change as well as other global impacts such as inputs of pollutants, overfishing and coastal sprawl. The Semi-enclosed Arabian Seas, including the Arabian Gulf and the Red Sea, have supported human livelihoods in the Arabian Peninsula over centuries and continue to do so, but are also threatened by Global Change. These threats are particularly severe as Semi-enclosed Arabian Seas already present rather extreme conditions, in terms of temperature, salinity and oxygen concentration. The vulnerability of the unique marine ecosystems of the Semi-enclosed Arabian Seas to Global Change vectors is largely unknown, but predictions based on first principles suggest that they may be at or near the tipping point for many pressures, such as warming and hypoxia. There is an urgent need to implement international collaborative research programs to accelerate our understanding of the vulnerability of Semi-enclosed Arabian Seas to Global Change vectors in order to inform conservation and management plans to ensure these Seas continue to support the livelihoods and well-being of the Arab nations.

  20. Marine Picoeukaryotes in Cold Water

    DEFF Research Database (Denmark)

    Sørensen, Nikolaj

    Picoeukaryotes form an important part of marine ecosystems, both as primary producers, bacterial grazers and parasites. The Arctic is experiencing accelerated global warming and picoeukaryotes may thus be considered to be at the forefront of climate change. This PhD thesis sets out to investigate...

  1. Advancing global marine biogeography research with open-source GIS software and cloud-computing

    Science.gov (United States)

    Fujioka, Ei; Vanden Berghe, Edward; Donnelly, Ben; Castillo, Julio; Cleary, Jesse; Holmes, Chris; McKnight, Sean; Halpin, patrick

    2012-01-01

    Across many scientific domains, the ability to aggregate disparate datasets enables more meaningful global analyses. Within marine biology, the Census of Marine Life served as the catalyst for such a global data aggregation effort. Under the Census framework, the Ocean Biogeographic Information System was established to coordinate an unprecedented aggregation of global marine biogeography data. The OBIS data system now contains 31.3 million observations, freely accessible through a geospatial portal. The challenges of storing, querying, disseminating, and mapping a global data collection of this complexity and magnitude are significant. In the face of declining performance and expanding feature requests, a redevelopment of the OBIS data system was undertaken. Following an Open Source philosophy, the OBIS technology stack was rebuilt using PostgreSQL, PostGIS, GeoServer and OpenLayers. This approach has markedly improved the performance and online user experience while maintaining a standards-compliant and interoperable framework. Due to the distributed nature of the project and increasing needs for storage, scalability and deployment flexibility, the entire hardware and software stack was built on a Cloud Computing environment. The flexibility of the platform, combined with the power of the application stack, enabled rapid re-development of the OBIS infrastructure, and ensured complete standards-compliance.

  2. Benefits of rebuilding global marine fisheries outweigh costs.

    Science.gov (United States)

    Sumaila, Ussif Rashid; Cheung, William; Dyck, Andrew; Gueye, Kamal; Huang, Ling; Lam, Vicky; Pauly, Daniel; Srinivasan, Thara; Swartz, Wilf; Watson, Reginald; Zeller, Dirk

    2012-01-01

    Global marine fisheries are currently underperforming, largely due to overfishing. An analysis of global databases finds that resource rent net of subsidies from rebuilt world fisheries could increase from the current negative US$13 billion to positive US$54 billion per year, resulting in a net gain of US$600 to US$1,400 billion in present value over fifty years after rebuilding. To realize this gain, governments need to implement a rebuilding program at a cost of about US$203 (US$130-US$292) billion in present value. We estimate that it would take just 12 years after rebuilding begins for the benefits to surpass the cost. Even without accounting for the potential boost to recreational fisheries, and ignoring ancillary and non-market values that would likely increase, the potential benefits of rebuilding global fisheries far outweigh the costs.

  3. Decadal Changes in Global Ocean Annual Primary Production

    Science.gov (United States)

    Gregg, Watson; Conkright, Margarita E.; Behrenfeld, Michael J.; Ginoux, Paul; Casey, Nancy W.; Koblinsky, Chester J. (Technical Monitor)

    2002-01-01

    The Sea-viewing Wide Field-of-View Sensor (SeaWiFS) has produced the first multi-year time series of global ocean chlorophyll observations since the demise of the Coastal Zone Color Scanner (CZCS) in 1986. Global observations from 1997-present from SeaWiFS combined with observations from 1979-1986 from the CZCS should in principle provide an opportunity to observe decadal changes in global ocean annual primary production, since chlorophyll is the primary driver for estimates of primary production. However, incompatibilities between algorithms have so far precluded quantitative analysis. We have developed and applied compatible processing methods for the CZCS, using modern advances in atmospheric correction and consistent bio-optical algorithms to advance the CZCS archive to comparable quality with SeaWiFS. We applied blending methodologies, where in situ data observations are incorporated into the CZCS and SeaWiFS data records, to provide improvement of the residuals. These re-analyzed, blended data records provide maximum compatibility and permit, for the first time, a quantitative analysis of the changes in global ocean primary production in the early-to-mid 1980's and the present, using synoptic satellite observations. An intercomparison of the global and regional primary production from these blended satellite observations is important to understand global climate change and the effects on ocean biota. Photosynthesis by chlorophyll-containing phytoplankton is responsible for biotic uptake of carbon in the oceans and potentially ultimately from the atmosphere. Global ocean annual primary decreased from the CZCS record to SeaWiFS, by nearly 6% from the early 1980s to the present. Annual primary production in the high latitudes was responsible for most of the decadal change. Conversely, primary production in the low latitudes generally increased, with the exception of the tropical Pacific. The differences and similarities of the two data records provide evidence

  4. Pollution exposure on marine protected areas: A global assessment.

    Science.gov (United States)

    Partelow, Stefan; von Wehrden, Henrik; Horn, Olga

    2015-11-15

    Marine protected areas (MPAs) face many challenges in their aim to effectively conserve marine ecosystems. In this study we analyze the extent of pollution exposure on the global fleet of MPAs. This includes indicators for current and future pollution and the implications for regionally clustered groups of MPAs with similar biophysical characteristics. To cluster MPAs into characteristic signature groups, their bathymetry, baseline biodiversity, distance from shore, mean sea surface temperature and mean sea surface salinity were used. We assess the extent at which each signature group is facing exposure from multiple pollution types. MPA groups experience similar pollution exposure on a regional level. We highlight how the challenges that MPAs face can be addressed through governance at the appropriate scale and design considerations for integrated terrestrial and marine management approaches within regional level networks. Furthermore, we present diagnostic social-ecological indicators for addressing the challenges facing unsuccessful MPAs with practical applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Global learning for local solutions: Reducing vulnerability of marine-dependent coastal communities

    Science.gov (United States)

    Salim, S. S.; Paytan, A.

    2016-12-01

    The project `Global learning for local solutions: Reducing vulnerability of marine-dependent coastal communities' (GULLS) falls within the Belmont Forum and G8 Research Councils Initiative on Multilateral Research Funding. Participants include teams from nine countries: Australia, Brazil, India, Madagascar, Mozambique, New Zealand, South Africa, the United Kingdom and the United States of America. The project focuses on five regional `hotspots' of climate and social change, defined as fast-warming marine areas and areas experiencing social tensions as a result of change: south-east Australia, Brazil, India, South Africa, and the Mozambique Channel and adjacent countries of Mozambique and Madagascar. These areas require most urgent attention and serve as valuable case studies for wider applications. The project aims to assist coastal communities and other stakeholders dependent on marine resources to adapt to climate change and variability through an integrated and trans-disciplinary approach. Combining best available global knowledge with local knowledge and conditions, it is exploring adaptation options and approaches to strengthen resilience at local and community levels, with a focus on options for reconciling the needs for food security with long-term sustainability and conservation. The project will also contribute to capacity development and empowering fishing communities and other fisheries-dependent stakeholders.A standardized vulnerability assessment framework is being developed that will be used to integrate results from natural, social and economic studies in order to identify needs and options for strengthening management and existing policies. Structured comparisons between the hot-spots will assist global efforts for adaptation and strengthening resilience in marine and coastal social-ecological systems.

  6. The Sea Around Us Project: documenting and communicating global fisheries impacts on marine ecosystems.

    Science.gov (United States)

    Pauly, Daniel

    2007-06-01

    The Sea Around Us Project, initiated by the Pew Charitable Trusts in Philadelphia, PA, and located at the Fisheries Centre, University of British Columbia, Vancouver, Canada, started in mid 1999. Its goal was (and still is) to investigate the impact of fisheries on marine ecosystems and to propose policies to mitigate these impacts. Although conceived as a global activity, the project first emphasized the data-rich North Atlantic as a test bed for developing its approaches, which rely on mapping of catch data and indicators of ecosystem health derived from the analysis of long catch time series data. Initial achievements included mapping the decline, throughout the North Atlantic basin, of high-trophic level fishes from 1900 to the present and the presentation of compelling evidence of change in the functioning of the North Atlantic ecosystems, summarized in a 2003 book. The Central and South Atlantic were the next basins to be tackled, with emphasis on the distant-water fleet off West Africa, culminating in a major conference in Dakar, Senegal, in 2002. The project then emphasized the North Pacific, Antarctica, and marine mammals and the multiplicity of tropical Indo-Pacific fisheries before it turned completely global, with all our major analyses and reports (e.g., on the interactions between marine mammals and fisheries, on fuel consumption by fleets, on the catches of small-scale fisheries, on subsidies to fisheries) being based on global studies. Broadly, the work of the project is aimed at a reappraisal of fisheries, from the benign activity that many interested people still perceive them to be, to a realization that they have become the driver for massive loss of biodiversity in the ocean. Moreover, the emphasis on global estimates (rather than local estimates of dubious generality) has allowed the project to contribute to various global initiatives (e.g., developing the Marine Trophic Index for the Convention on Biological Diversity, quantifying marine

  7. NCDC feed of Global Telecommunication System (GTS) marine observations in International Maritime Meteorological Archive (IMMA) Format

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data contained here are surface marine observations from many different sources via the NCDC Global Telecommunication System (GTS) Marine in International...

  8. Biodiversity's big wet secret: the global distribution of marine biological records reveals chronic under-exploration of the deep pelagic ocean.

    Directory of Open Access Journals (Sweden)

    Thomas J Webb

    Full Text Available BACKGROUND: Understanding the distribution of marine biodiversity is a crucial first step towards the effective and sustainable management of marine ecosystems. Recent efforts to collate location records from marine surveys enable us to assemble a global picture of recorded marine biodiversity. They also effectively highlight gaps in our knowledge of particular marine regions. In particular, the deep pelagic ocean--the largest biome on Earth--is chronically under-represented in global databases of marine biodiversity. METHODOLOGY/PRINCIPAL FINDINGS: We use data from the Ocean Biogeographic Information System to plot the position in the water column of ca 7 million records of marine species occurrences. Records from relatively shallow waters dominate this global picture of recorded marine biodiversity. In addition, standardising the number of records from regions of the ocean differing in depth reveals that regardless of ocean depth, most records come either from surface waters or the sea bed. Midwater biodiversity is drastically under-represented. CONCLUSIONS/SIGNIFICANCE: The deep pelagic ocean is the largest habitat by volume on Earth, yet it remains biodiversity's big wet secret, as it is hugely under-represented in global databases of marine biological records. Given both its value in the provision of a range of ecosystem services, and its vulnerability to threats including overfishing and climate change, there is a pressing need to increase our knowledge of Earth's largest ecosystem.

  9. The future of the oceans past: towards a global marine historical research initiative.

    Science.gov (United States)

    Schwerdtner Máñez, Kathleen; Holm, Poul; Blight, Louise; Coll, Marta; MacDiarmid, Alison; Ojaveer, Henn; Poulsen, Bo; Tull, Malcolm

    2014-01-01

    Historical research is playing an increasingly important role in marine sciences. Historical data are also used in policy making and marine resource management, and have helped to address the issue of shifting baselines for numerous species and ecosystems. Although many important research questions still remain unanswered, tremendous developments in conceptual and methodological approaches are expected to contribute to a comprehensive understanding of the global history of human interactions with life in the seas. Based on our experiences and knowledge from the "History of Marine Animal Populations" project, this paper identifies the emerging research topics for future historical marine research. It elaborates on concepts and tools which are expected to play a major role in answering these questions, and identifies geographical regions which deserve future attention from marine environmental historians and historical ecologists.

  10. Impact of changes in river fluxes of silica on the global marine silicon cycle: a model comparison

    Directory of Open Access Journals (Sweden)

    C. Y. Bernard

    2010-02-01

    Full Text Available The availability of dissolved silica (Si in the ocean provides a major control on the growth of siliceous phytoplankton. Diatoms in particular account for a large proportion of oceanic primary production. The original source of the silica is rock weathering, followed by transport of dissolved and biogenic silica to the coastal zone. This model study aims at assessing the sensitivity of the global marine silicon cycle to variations in the river input of silica on timescales ranging from several centuries to millennia. We compare the performance of a box model for the marine silicon cycle to that of a global biogeochemical ocean general circulation model (HAMOCC2 and 5. Results indicate that the average global ocean response to changes in river input of silica is comparable in the models on time scales up to 150 kyrs. While the trends in export production and opal burial are the same, the box model shows a delayed response to the imposed perturbations compared to the general circulation model. Results of both models confirm the important role of the continental margins as a sink for silica at the global scale. Our work also demonstrates that the effects of changes in riverine dissolved silica on ocean biogeochemistry depend on the availability of the other nutrients such as nitrogen, phosphorus and iron. The model results suggest that the effects of reduced silica inputs due to river damming are particularly pronounced in the Gulf of Bengal, Gulf of Mexico and the Amazon plume where they negatively affect opal production. While general circulation models are indispensable when assessing the spatial variation in opal export production and biogenic Si burial in the ocean, this study demonstrates that box models provide a good alternative when studying the average global ocean response to perturbations of the oceanic silica cycle (especially on longer time scales.

  11. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA

    Science.gov (United States)

    Self-Trail, Jean; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.

    2017-01-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30–100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.

  12. Shallow marine response to global climate change during the Paleocene-Eocene Thermal Maximum, Salisbury Embayment, USA

    Science.gov (United States)

    Self-Trail, Jean M.; Robinson, Marci M.; Bralower, Timothy J.; Sessa, Jocelyn A.; Hajek, Elizabeth A.; Kump, Lee R.; Trampush, Sheila M.; Willard, Debra A.; Edwards, Lucy E.; Powars, David S.; Wandless, Gregory A.

    2017-07-01

    The Paleocene-Eocene Thermal Maximum (PETM) was an interval of extreme warmth that caused disruption of marine and terrestrial ecosystems on a global scale. Here we examine the sediments, flora, and fauna from an expanded section at Mattawoman Creek-Billingsley Road (MCBR) in Maryland and explore the impact of warming at a nearshore shallow marine (30-100 m water depth) site in the Salisbury Embayment. Observations indicate that at the onset of the PETM, the site abruptly shifted from an open marine to prodelta setting with increased terrestrial and fresh water input. Changes in microfossil biota suggest stratification of the water column and low-oxygen bottom water conditions in the earliest Eocene. Formation of authigenic carbonate through microbial diagenesis produced an unusually large bulk carbon isotope shift, while the magnitude of the corresponding signal from benthic foraminifera is similar to that at other marine sites. This proves that the landward increase in the magnitude of the carbon isotope excursion measured in bulk sediment is not due to a near instantaneous release of 12C-enriched CO2. We conclude that the MCBR site records nearshore marine response to global climate change that can be used as an analog for modern coastal response to global warming.

  13. Marine ecosystems in alteration under global warming

    International Nuclear Information System (INIS)

    Prestrud, Paal

    2004-01-01

    It is commonly thought among fishermen, researchers and in the fishing industries that the administration and harvesting of the fish resources is more important for the stock of fish than are changes in the climate. However, many scientific investigations now link changes in temperature with changes in the spreading, survival and beginning of life processes. There is solid evidence that there are important changes in progress in the North Atlantic marine ecosystem caused by global warming. If the heating of the water masses continues, it will probably have a large impact on the ocean's productivity and consequently for the fishing industry

  14. Hopping hotspots: global shifts in marine biodiversity.

    Science.gov (United States)

    Renema, W; Bellwood, D R; Braga, J C; Bromfield, K; Hall, R; Johnson, K G; Lunt, P; Meyer, C P; McMonagle, L B; Morley, R J; O'Dea, A; Todd, J A; Wesselingh, F P; Wilson, M E J; Pandolfi, J M

    2008-08-01

    Hotspots of high species diversity are a prominent feature of modern global biodiversity patterns. Fossil and molecular evidence is starting to reveal the history of these hotspots. There have been at least three marine biodiversity hotspots during the past 50 million years. They have moved across almost half the globe, with their timing and locations coinciding with major tectonic events. The birth and death of successive hotspots highlights the link between environmental change and biodiversity patterns. The antiquity of the taxa in the modern Indo-Australian Archipelago hotspot emphasizes the role of pre-Pleistocene events in shaping modern diversity patterns.

  15. Ocean Data Interoperability Platform (ODIP): developing a common framework for global marine data management

    Science.gov (United States)

    Glaves, H. M.

    2015-12-01

    In recent years marine research has become increasingly multidisciplinary in its approach with a corresponding rise in the demand for large quantities of high quality interoperable data as a result. This requirement for easily discoverable and readily available marine data is currently being addressed by a number of regional initiatives with projects such as SeaDataNet in Europe, Rolling Deck to Repository (R2R) in the USA and the Integrated Marine Observing System (IMOS) in Australia, having implemented local infrastructures to facilitate the exchange of standardised marine datasets. However, each of these systems has been developed to address local requirements and created in isolation from those in other regions.Multidisciplinary marine research on a global scale necessitates a common framework for marine data management which is based on existing data systems. The Ocean Data Interoperability Platform project is seeking to address this requirement by bringing together selected regional marine e-infrastructures for the purposes of developing interoperability across them. By identifying the areas of commonality and incompatibility between these data infrastructures, and leveraging the development activities and expertise of these individual systems, three prototype interoperability solutions are being created which demonstrate the effective sharing of marine data and associated metadata across the participating regional data infrastructures as well as with other target international systems such as GEO, COPERNICUS etc.These interoperability solutions combined with agreed best practice and approved standards, form the basis of a common global approach to marine data management which can be adopted by the wider marine research community. To encourage implementation of these interoperability solutions by other regional marine data infrastructures an impact assessment is being conducted to determine both the technical and financial implications of deploying them

  16. Risk Analysis Reveals Global Hotspots for Marine Debris Ingestion by Sea Turtles

    Science.gov (United States)

    Schuyler, Q. A.; Wilcox, C.; Townsend, K.; Wedemeyer-Strombel, K.; Balazs, G.; van Sebille, E.; Hardesty, B. D.

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle, and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study, and turtle species. There was no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia, and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.

  17. Climate velocity and the future global redistribution of marine biodiversity

    Science.gov (United States)

    García Molinos, Jorge; Halpern, Benjamin S.; Schoeman, David S.; Brown, Christopher J.; Kiessling, Wolfgang; Moore, Pippa J.; Pandolfi, John M.; Poloczanska, Elvira S.; Richardson, Anthony J.; Burrows, Michael T.

    2016-01-01

    Anticipating the effect of climate change on biodiversity, in particular on changes in community composition, is crucial for adaptive ecosystem management but remains a critical knowledge gap. Here, we use climate velocity trajectories, together with information on thermal tolerances and habitat preferences, to project changes in global patterns of marine species richness and community composition under IPCC Representative Concentration Pathways (RCPs) 4.5 and 8.5. Our simple, intuitive approach emphasizes climate connectivity, and enables us to model over 12 times as many species as previous studies. We find that range expansions prevail over contractions for both RCPs up to 2100, producing a net local increase in richness globally, and temporal changes in composition, driven by the redistribution rather than the loss of diversity. Conversely, widespread invasions homogenize present-day communities across multiple regions. High extirpation rates are expected regionally (for example, Indo-Pacific), particularly under RCP8.5, leading to strong decreases in richness and the anticipated formation of no-analogue communities where invasions are common. The spatial congruence of these patterns with contemporary human impacts highlights potential areas of future conservation concern. These results strongly suggest that the millennial stability of current global marine diversity patterns, against which conservation plans are assessed, will change rapidly over the course of the century in response to ocean warming.

  18. Do Offshore Wind Farms Influence Marine Primary Production?

    Science.gov (United States)

    Tweddle, J. F.; Murray, R. B. O.; Gubbins, M.; Scott, B. E.

    2016-02-01

    Primary producers (phytoplankton) form the basis of marine food-webs, supporting production of higher trophic levels, and act as a sink of CO2. We considered the impact of proposed large scale offshore wind farms in moderately deep waters (> 45 m) off the east coast of Scotland on rates of primary production. A 2 stage modelling process was used, employing state-of-the-art 3-D hydrographic models with the ability to capture flow at the spatial resolution of 10 m combined with 1-D vertical modelling using 7 years of local forcing data. Through influencing the strength of stratification via changes in current flow, large (100 m) modelled wind turbine foundations had a significant effect on primary producers, consistently reducing total annual primary production, although within the range of natural interannual variability. The percentage reduction was largest over submarine banks less than 54 m in depth, and was outside the range of natural interannual variability. Smaller (10 m) turbine foundations had no discernible effect on total annual primary production. The results indicate that smaller foundations should be favored as a mitigation measure, in terms of effects on primary production, and this type of analysis should be considered within sectoral planning and licensing processes for future renewable energy developments.

  19. Marine cloud brightening

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-01-01

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could—subject to satisfactory resolution of technical and scientific problems identified herein—have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud–albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action

  20. Marine Cloud Brightening

    Energy Technology Data Exchange (ETDEWEB)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, H.; Connolly, P.; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Philip J.; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Robert

    2012-09-07

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could - subject to satisfactory resolution of technical and scientific problems identified herein - have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seedparticle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  1. Marine cloud brightening.

    Science.gov (United States)

    Latham, John; Bower, Keith; Choularton, Tom; Coe, Hugh; Connolly, Paul; Cooper, Gary; Craft, Tim; Foster, Jack; Gadian, Alan; Galbraith, Lee; Iacovides, Hector; Johnston, David; Launder, Brian; Leslie, Brian; Meyer, John; Neukermans, Armand; Ormond, Bob; Parkes, Ben; Rasch, Phillip; Rush, John; Salter, Stephen; Stevenson, Tom; Wang, Hailong; Wang, Qin; Wood, Rob

    2012-09-13

    The idea behind the marine cloud-brightening (MCB) geoengineering technique is that seeding marine stratocumulus clouds with copious quantities of roughly monodisperse sub-micrometre sea water particles might significantly enhance the cloud droplet number concentration, and thereby the cloud albedo and possibly longevity. This would produce a cooling, which general circulation model (GCM) computations suggest could-subject to satisfactory resolution of technical and scientific problems identified herein-have the capacity to balance global warming up to the carbon dioxide-doubling point. We describe herein an account of our recent research on a number of critical issues associated with MCB. This involves (i) GCM studies, which are our primary tools for evaluating globally the effectiveness of MCB, and assessing its climate impacts on rainfall amounts and distribution, and also polar sea-ice cover and thickness; (ii) high-resolution modelling of the effects of seeding on marine stratocumulus, which are required to understand the complex array of interacting processes involved in cloud brightening; (iii) microphysical modelling sensitivity studies, examining the influence of seeding amount, seed-particle salt-mass, air-mass characteristics, updraught speed and other parameters on cloud-albedo change; (iv) sea water spray-production techniques; (v) computational fluid dynamics studies of possible large-scale periodicities in Flettner rotors; and (vi) the planning of a three-stage limited-area field research experiment, with the primary objectives of technology testing and determining to what extent, if any, cloud albedo might be enhanced by seeding marine stratocumulus clouds on a spatial scale of around 100×100 km. We stress that there would be no justification for deployment of MCB unless it was clearly established that no significant adverse consequences would result. There would also need to be an international agreement firmly in favour of such action.

  2. Radioactivity of marine environment: pr occupations of the Romanian Institute of Marine Research at Constanta (1977-1995)

    International Nuclear Information System (INIS)

    Bologa, Al.A.; Patrascu, V.

    1996-01-01

    A nuclear laboratory installed in the frame of Romanian Institute of Marine Research has been initially charged with the study of primary plankton productivity as a basic element of bio-productivity using the C-14 method. The results contributed with significant data to complete the ecological picture of the marine environment regarding particularly the nutrient basis of living resources. The laboratory developed its activities by a systematic space-time monitoring of the marine radioactivity making use of a large network of measuring stations extended from Danube mouths through the southern limit of Romanian seashore and occasionally offshore up to 90 miles. Currently, global beta measurements, radiochemical determinations (for Sr-90 for instance) and high resolution gamma spectroscopic measurements (especially on K-40, Cs-134, and Cs-137) are carried out. At the end of 199 a tritium determination chain has been installed to monitor continuously the environment from around Cernavoda NPP across the Dobrogea up to the sea shore. These measurements and studies were made under technical co-operation contracts with IAEA and other national or international organisations while the results were incorporated in two important documents: 'Global Inventory of Radioactivity of Mediterranean Sea (CIESEM/GIRMED)' and 'A Global Data Base of Marine Radioactivity (IAEA/GLOMARD)'

  3. Global patterns of extinction risk in marine and non-marine systems.

    Science.gov (United States)

    Webb, Thomas J; Mindel, Beth L

    2015-02-16

    Despite increasing concern over the effects of human activities on marine ecosystems, extinction in the sea remains scarce: 19-24 out of a total of >850 recorded extinctions implies a 9-fold lower marine extinction rate compared to non-marine systems. The extent of threats faced by marine systems, and their resilience to them, receive considerable attention, but the detectability of marine extinctions is less well understood. Before its extinction or threat status is recorded, a species must be both taxonomically described and then formally assessed; lower rates of either process for marine species could thus impact patterns of extinction risk, especially as species missing from taxonomic inventories may often be more vulnerable than described species. We combine data on taxonomic description with conservation assessments from the International Union for Conservation of Nature (IUCN) to test these possibilities across almost all marine and non-marine eukaryotes. We find that the 9-fold lower rate of recorded extinctions and 4-fold lower rate of ongoing extinction risk across marine species can be explained in part by differences in the proportion of species assessed by the IUCN (3% cf. 4% of non-marine species). Furthermore, once taxonomic knowledge and conservation assessments pass a threshold level, differences in extinction risk between marine and non-marine groups largely disappear. Indeed, across the best-studied taxonomic groups, there is no difference between marine and non-marine systems, with on average between 20% and 25% of species being threatened with extinction, regardless of realm. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Climate change and marine fisheries: Least developed countries top global index of vulnerability.

    Science.gov (United States)

    Blasiak, Robert; Spijkers, Jessica; Tokunaga, Kanae; Pittman, Jeremy; Yagi, Nobuyuki; Österblom, Henrik

    2017-01-01

    Future impacts of climate change on marine fisheries have the potential to negatively influence a wide range of socio-economic factors, including food security, livelihoods and public health, and even to reshape development trajectories and spark transboundary conflict. Yet there is considerable variability in the vulnerability of countries around the world to these effects. We calculate a vulnerability index of 147 countries by drawing on the most recent data related to the impacts of climate change on marine fisheries. Building on the Intergovernmental Panel on Climate Change framework for vulnerability, we first construct aggregate indices for exposure, sensitivity and adaptive capacity using 12 primary variables. Seven out of the ten most vulnerable countries on the resulting index are Small Island Developing States, and the top quartile of the index includes countries located in Africa (17), Asia (7), North America and the Caribbean (4) and Oceania (8). More than 87% of least developed countries are found within the top half of the vulnerability index, while the bottom half includes all but one of the Organization for Economic Co-operation and Development member states. This is primarily due to the tremendous variation in countries' adaptive capacity, as no such trends are evident from the exposure or sensitivity indices. A negative correlation exists between vulnerability and per capita carbon emissions, and the clustering of states at different levels of development across the vulnerability index suggests growing barriers to meeting global commitments to reducing inequality, promoting human well-being and ensuring sustainable cities and communities. The index provides a useful tool for prioritizing the allocation of climate finance, as well as activities aimed at capacity building and the transfer of marine technology.

  5. Global Combat Support System-Marine Corps Logistics Chain Management Increment 1 (GCSS-MC LCM Inc 1)

    Science.gov (United States)

    2016-03-01

    Global Combat Support System – Marine Corps (GCSS-MC) is a portfolio of systems that supports logistics elements of command and control, joint...future Marine Corps logistics systems modernization . GCSS-MC/LCM Increment 1 Capability Release 1 (hereinafter Release 1.1) is the baseline

  6. Global Modeling Study of the Bioavailable Atmospheric Iron Supply to the Global Ocean

    Science.gov (United States)

    Myriokefalitakis, S.; Krol, M. C.; van Noije, T.; Le Sager, P.

    2017-12-01

    Atmospheric deposition of trace constituents acts as a nutrient source to the open ocean and affect marine ecosystem. Dust is known as a major source of nutrients to the global ocean, but only a fraction of these nutrients is released in a bioavailable form that can be assimilated by the marine biota. Iron (Fe) is a key micronutrient that significantly modulates gross primary production in the High-Nutrient-Low-Chlorophyll (HNLC) oceans, where macronutrients like nitrate are abundant, but primary production is limited by Fe scarcity. The global atmospheric Fe cycle is here parameterized in the state-of-the-art global Earth System Model EC-Earth. The model takes into account the primary emissions of both insoluble and soluble Fe forms, associated with mineral dust and combustion aerosols. The impact of atmospheric acidity and organic ligands on mineral dissolution processes, is parameterized based on updated experimental and theoretical findings. Model results are also evaluated against available observations. Overall, the link between the labile Fe atmospheric deposition and atmospheric composition changes is here demonstrated and quantified. This work has been financed by the Marie-Curie H2020-MSCA-IF-2015 grant (ID 705652) ODEON (Online DEposition over OceaNs; modeling the effect of air pollution on ocean bio-geochemistry in an Earth System Model).

  7. Global Aquaculture Performance Index (GAPI: The First Global Environmental Assessment of Marine Fish Farming

    Directory of Open Access Journals (Sweden)

    Jenna M.S. Stoner

    2013-09-01

    Full Text Available “Sustainable” is among the most sought after of all seafood product adjectives. Ironically it is also one of the most poorly defined and understood. The Global Aquaculture Performance Index (GAPI is the first tool to assess environmental performance of global marine aquaculture production, permitting direct comparison of disparate species, production methods and jurisdictions. Clear patterns emerge from this analysis; significant variation of environmental performance is driven by the species being farmed, significant room for improvement exists across the entire sector, the worst performing players are also the fastest growing, particularly within Asia, and perhaps most importantly, this work highlights the potential trap awaiting policy makers who focus too narrowly on farm production efficiency alone as a solution to diminishing seafood availability.

  8. Risk analysis reveals global hotspots for marine debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar A; Wilcox, Chris; Townsend, Kathy A; Wedemeyer-Strombel, Kathryn R; Balazs, George; van Sebille, Erik; Hardesty, Britta Denise

    2016-02-01

    Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best-fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life-stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at-risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris. © 2015 John Wiley & Sons Ltd.

  9. Global patterns in marine predatory fish

    DEFF Research Database (Denmark)

    van Denderen, Pieter Daniël; Lindegren, Martin; MacKenzie, Brian

    2017-01-01

    known. Here, we show how latitudinal differences in predatory fish can essentially be explained by the inflow of energy at the base of the pelagic and benthic food chain. A low productive benthic energy pathway favours large pelagic species, whereas equal productivities support large demersal......Large teleost (bony) fish are a dominant group of predators in the oceans and constitute a major source of food and livelihood for humans. These species differ markedly in morphology and feeding habits across oceanic regions; large pelagic species such as tunas and billfish typically occur...... in the tropics, whereas demersal species of gadoids and flatfish dominate boreal and temperate regions. Despite their importance for fisheries and the structuring of marine ecosystems, the underlying factors determining the global distribution and productivity of these two groups of teleost predators are poorly...

  10. Evaluation and intercomparison of three-dimensional global marine carbon cycle models

    Energy Technology Data Exchange (ETDEWEB)

    Caldeira, K., LLNL

    1998-07-01

    The addition of carbon dioxide to the atmosphere from fossil fuel burning and deforestation has profound implications for the future of the earth`s climate and hence for humankind itself. Society is looking toward the community of environmental scientists to predict the consequences of increased atmospheric carbon dioxide so that sound input can be provided to economists, environmental engineers, and, ultimately, policy makers. Environmental scientists have responded to this challenge through the creation of several ambitious, highly-coordinated programs, each focused on a different aspect of the climate system. Recognizing that numerical models, be they relatively simple statistical-empirical models or highly complex process-oriented models, are the only means for predicting the future of the climate system, all of these programs include the development of accurate, predictive models as a central goal. The Joint Global Ocean Flux Study (JGOFS) is one such program, and was built on the well-founded premise that biological, chemical and physical oceanographic processes have a profound influence on the C0{sub 2} content of the atmosphere. The, cap-stone, phase of JGOFS, the Synthesis and Modeling Project (SMP), is charged with the development of models that can be used in the prediction of future air-sea partitioning of C0{sub 2}. JGOFS, particularly the SMP phase, has a number of interim goals as well, including the determination of fluxes and inventories of carbon in the modern ocean that air germane to the air-sea partitioning of C0{sub 2}. Models have a role to play here too, because many of these fluxes and inventories, such as the distributions of anthropogenic dissolved inorganic carbon (DIC), new primary production and aphotic zone remineralization, while not amenable to direct observation on the large scale, can be determined using a variety of modeling approaches (Siegenthaler and Oeschger, 1987; Maier-Reimer and Hasselman, 1987, Bacastow and Maier

  11. The whale pump: marine mammals enhance primary productivity in a coastal basin.

    Directory of Open Access Journals (Sweden)

    Joe Roman

    Full Text Available It is well known that microbes, zooplankton, and fish are important sources of recycled nitrogen in coastal waters, yet marine mammals have largely been ignored or dismissed in this cycle. Using field measurements and population data, we find that marine mammals can enhance primary productivity in their feeding areas by concentrating nitrogen near the surface through the release of flocculent fecal plumes. Whales and seals may be responsible for replenishing 2.3×10(4 metric tons of N per year in the Gulf of Maine's euphotic zone, more than the input of all rivers combined. This upward "whale pump" played a much larger role before commercial harvest, when marine mammal recycling of nitrogen was likely more than three times atmospheric N input. Even with reduced populations, marine mammals provide an important ecosystem service by sustaining productivity in regions where they occur in high densities.

  12. A global survey of the distribution of free gas in marine sediments

    Science.gov (United States)

    Fleischer, Peter; Orsi, Tim; Richardson, Michael

    2003-10-01

    Following the work of Aubrey Anderson in the Gulf of Mexico, we have attempted to quantify the global distribution of free gas in shallow marine sediments, and have identified and indexed over one hundred documented cases in the scientific and engineering literature. Our survey confirms previous assumptions, primarily that gas bubbles are ubiquitous in the organic-rich muds of coastal waters and shallow adjacent seas. Acoustic turbidity as recorded during seismo-acoustic surveys is the most frequently cited evidence used to infer the presence of seafloor gas. Biogenic methane predominates within these shallow subbottom deposits. The survey also reveals significant imbalances in the geographic distribution of studies, which might be addressed in the future by accessing proprietary data or local studies with limited distribution. Because of their global prevalence, growing interest in gassy marine sediments is understandable as their presence has profound scientific, engineering and environmental implications.

  13. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  14. Spatial and temporal patterns of stranded intertidal marine debris: is there a picture of global change?

    Science.gov (United States)

    Browne, Mark Anthony; Chapman, M Gee; Thompson, Richard C; Amaral Zettler, Linda A; Jambeck, Jenna; Mallos, Nicholas J

    2015-06-16

    Floating and stranded marine debris is widespread. Increasing sea levels and altered rainfall, solar radiation, wind speed, waves, and oceanic currents associated with climatic change are likely to transfer more debris from coastal cities into marine and coastal habitats. Marine debris causes economic and ecological impacts, but understanding the scope of these requires quantitative information on spatial patterns and trends in the amounts and types of debris at a global scale. There are very few large-scale programs to measure debris, but many peer-reviewed and published scientific studies of marine debris describe local patterns. Unfortunately, methods of defining debris, sampling, and interpreting patterns in space or time vary considerably among studies, yet if data could be synthesized across studies, a global picture of the problem may be avaliable. We analyzed 104 published scientific papers on marine debris in order to determine how to evaluate this. Although many studies were well designed to answer specific questions, definitions of what constitutes marine debris, the methods used to measure, and the scale of the scope of the studies means that no general picture can emerge from this wealth of data. These problems are detailed to guide future studies and guidelines provided to enable the collection of more comparable data to better manage this growing problem.

  15. The Smithsonian-led Marine Global Earth Observatory (MarineGEO): Proposed Model for a Collaborative Network Linking Marine Biodiversity to Ecosystem Processes

    Science.gov (United States)

    Duffy, J. E.

    2016-02-01

    Biodiversity - the variety of functional types of organisms - is the engine of marine ecosystem processes, including productivity, nutrient cycling, and carbon sequestration. Biodiversity remains a black box in much of ocean science, despite wide recognition that effectively managing human interactions with marine ecosystems requires understanding both structure and functional consequences of biodiversity. Moreover, the inherent complexity of biological systems puts a premium on data-rich, comparative approaches, which are best met via collaborative networks. The Smithsonian Institution's MarineGEO program links a growing network of partners conducting parallel, comparative research to understand change in marine biodiversity and ecosystems, natural and anthropogenic drivers of that change, and the ecological processes mediating it. The focus is on nearshore, seabed-associated systems where biodiversity and human population are concentrated and interact most, yet which fall through the cracks of existing ocean observing programs. MarineGEO offers a standardized toolbox of research modules that efficiently capture key elements of biological diversity and its importance in ecological processes across a range of habitats. The toolbox integrates high-tech (DNA-based, imaging) and low-tech protocols (diver surveys, rapid assays of consumer activity) adaptable to differing institutional capacity and resources. The model for long-term sustainability involves leveraging in-kind support among partners, adoption of best practices wherever possible, engagement of students and citizen scientists, and benefits of training, networking, and global relevance as incentives for participation. Here I highlight several MarineGEO comparative research projects demonstrating the value of standardized, scalable assays and parallel experiments for measuring fish and invertebrate diversity, recruitment, benthic herbivory and generalist predation, decomposition, and carbon sequestration. Key

  16. Tiniest primary producers in the marine environment: An appraisal from the context of waters around India

    Digital Repository Service at National Institute of Oceanography (India)

    Mitbavkar, S.; Anil, A.C.

    Phytoplankton (0.2 mm - 2 mm) are the major primary producers in the marine environment thereby forming a basic link in the marine food web. They are categorized into different groups depending on their size range. Cells in the size range of 0...

  17. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption.

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM 2.5 ), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM 2.5 emission inventory to track primary PM 2.5 emissions embodied in the supply chain and evaluate the extent to which local PM 2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM 2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM 2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  18. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-01-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization. PMID:27956874

  19. Globalization and pollution: tele-connecting local primary PM2.5 emissions to global consumption

    Science.gov (United States)

    Meng, Jing; Liu, Junfeng; Xu, Yuan; Guan, Dabo; Liu, Zhu; Huang, Ye; Tao, Shu

    2016-11-01

    Globalization pushes production and consumption to geographically diverse locations and generates a variety of sizeable opportunities and challenges. The distribution and associated effects of short-lived primary fine particulate matter (PM2.5), a representative of local pollution, are significantly affected by the consumption through global supply chain. Tele-connection is used here to represent the link between production and consumption activity at large distances. In this study, we develop a global consumption-based primary PM2.5 emission inventory to track primary PM2.5 emissions embodied in the supply chain and evaluate the extent to which local PM2.5 emissions are triggered by international trade. We further adopt consumption-based accounting and identify the global original source that produced the emissions. We find that anthropogenic PM2.5 emissions from industrial sectors accounted for 24 Tg globally in 2007; approximately 30% (7.2 Tg) of these emissions were embodied in export of products principally from Brazil, South Africa, India and China (3.8 Tg) to developed countries. Large differences (up to 10 times) in the embodied emissions intensity between net importers and exporters greatly increased total global PM2.5 emissions. Tele-connecting production and consumption activity provides valuable insights with respect to mitigating long-range transboundary air pollution and prompts concerted efforts aiming at more environmentally conscious globalization.

  20. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    Science.gov (United States)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  1. A global review of cumulative pressure and impact assessments in marine environment

    Directory of Open Access Journals (Sweden)

    Samuli Korpinen

    2016-08-01

    Full Text Available Ever more extensive use of marine space by human activities and greater demands for marine natural resources has led to increases in both duration and spatial extent of pressures on the marine environment. In parallel, the global crisis of decreasing biodiversity and loss of habitats has revitalized scientific research on human impacts and lead to methodological development of cumulative pressure and impact assessments (CPIA. In Europe alone, almost twenty CPIAs have been published in the past 10 years and some more in other sea regions of the world. In this review, we have analysed 36 recent marine CPIAs and focused on their methodological approaches. We were especially interested in uncovering methodological similarities, identifying best practices and analysing whether the CPIAs have addressed the recent criticism. The review results showed surprisingly similar methodological approaches in >50% of the studies, raising hopes for finding coherence in international assessment efforts. Although the CPIA methods showed relatively few innovative approaches for addressing the major caveats of previous CPIAs, the most recent studies indicate that improved approaches may be soon found.

  2. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study

    OpenAIRE

    Schwier , A. N.; Rose , C.; Asmi , E.; Ebling , A. M.; Landing , W. M.; Marro , S.; Pedrotti , M.-L.; Sallon , A.; Iuculano , F.; Agusti , S.; Tsiola , A.; Pitta , P.; Louis , J.; Guieu , C.; Gazeau , F.

    2015-01-01

    The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect as well as the indirect effect on aerosol that changing biogeochemical parameters can have, ~ 52 m3 pelagic mesocosms were deployed for several weeks in the Mediterranean Sea during both winter pre-bloom and summer oligotrophic conditions and were subjected to various levels of C...

  3. Interannual Variation in Phytoplankton Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2013-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of four phytoplankton groups to the total primary production. First, we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms contributed the most to the total phytoplankton production ((is)approximately 50%, the equivalent of 20 PgC·y1). Coccolithophores and chlorophytes each contributed approximately 20% ((is) approximately 7 PgC·y1) of the total primary production and cyanobacteria represented about 10% ((is) approximately 4 PgC·y1) of the total primary production. Primary production by diatoms was highest in the high latitudes ((is) greater than 40 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4% (1-2 PgC·y1). We assessed the effects of climate variability on group-specific primary production using global (i.e., Multivariate El Niño Index, MEI) and "regional" climate indices (e.g., Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p (is) less than 0.05) between the MEI and the group-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatoms/cyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect

  4. Global net primary production and heterotrophic respiration for 1987

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.E. Jr.; Piper, S.C.; Nemani, R. [Univ. of Montana, Missoula, MT (United States)]|[Scripps Institute of Oceanography, La Jolla, CA (United States)] [and others

    1995-06-01

    An ecosystem process model, BIOME-BGC, was parameterized and used to simulate the actual net primary production and heterotrophic respiration using daily climatic data, land cover type, leaf area index gridded to 1{degree} latitude by 1{degree} longitude grid cells for the year 1987. Global net primary production was 52 Pg C. These estimates were validated directly by two different methods. First, the grid cells were aggregated and used as inputs to a 3D atmospheric transport model, to compare CO{sub 2} station data with predictions. We simulated the intra-annual variation of atmospheric CO{sub 2} well for the northern hemisphere, but not for the southern hemisphere. Second, we calculated the net {sup 13}C uptake of vegetation, which is a function of water use efficiency. The {sup 13}C/{sup 12}C ratios agreed with measured data, indicating a strong limitation of global primary processes by the hydrologic cycle, especially precipitation. These are different from other global carbon models as we can simulate the year-to-year variation of climate, including El Nino, on the global carbon cycle.

  5. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the Human Appropriation of Net Primary Productivity (HANPP) Collection maps the net amount of solar...

  6. Enhancement of the Investigations of Global Marine Challenges Through the European Multidisciplinary Seafloor and water-column Observatory (EMSO) Research Infrastructure (RI)

    Science.gov (United States)

    Lo Bue, N.; Materia, P.; Embriaco, D.; Beranzoli, L.; Favali, P.; Leijala, U.; Pavan, G.; Best, M.; Ó Conchubhair, D.; O'Rourke, E.

    2017-12-01

    The approach of ocean observations has changed significantly over the past decades. Thanks to the development of new technologies improving the monitoring systems and also to the recent marine strategies such as the blue growth that support long term sustainable growth in marine sectors as a whole, it is now possible to better assess environmental issues. Long term multiparametric observations enable concurrent monitoring of a variety of natural and anthropogenic processes responsible for the alteration of marine ecosystems. This innovative process has been adopted by RIs, which have the ability to promote these unique cooperation opportunities via their global networks of observational infrastructures. EMSO (http://www.emso-eu.org) is a marine RI that contributes to further exploration and monitoring of European-scale oceans. This monitoring allows for a better understanding of various parameters from the upper layer of the water column through the deep sea and into the seafloor. The multidisciplinary approach taken by the EMSO RI assists in addressing questions across issues of climate change, marine ecosystems, and geohazards. For example, the growing societal implications due to geohazards require accurate and cross-disciplinary research involving a global community. A global and multidisciplinary approach is the key driver that allows us to better investigate the causes of geohazards in their worldwide distribution, and to produce reliable regional and global models. RIs, also represent a powerful tool in assessing the impacts of anthropogenic noise levels on marine fauna. Several studies have already shown how the significant variety of submarine acoustic pollution on a daily basis can have a substantial effect on the health and communication abilities of marine fauna. The constant noise pollution may produce physiological degradation in marine fauna and may also negatively impact several ecosystems. Finally, RIs play a crucial role in the sharing of

  7. Enhanced marine sulphur emissions offset global warming and impact rainfall.

    Science.gov (United States)

    Grandey, B S; Wang, C

    2015-08-21

    Artificial fertilisation of the ocean has been proposed as a possible geoengineering method for removing carbon dioxide from the atmosphere. The associated increase in marine primary productivity may lead to an increase in emissions of dimethyl sulphide (DMS), the primary source of sulphate aerosol over remote ocean regions, potentially causing direct and cloud-related indirect aerosol effects on climate. This pathway from ocean fertilisation to aerosol induced cooling of the climate may provide a basis for solar radiation management (SRM) geoengineering. In this study, we investigate the transient climate impacts of two emissions scenarios: an RCP4.5 (Representative Concentration Pathway 4.5) control; and an idealised scenario, based on RCP4.5, in which DMS emissions are substantially enhanced over ocean areas. We use mini-ensembles of a coupled atmosphere-ocean configuration of CESM1(CAM5) (Community Earth System Model version 1, with the Community Atmosphere Model version 5). We find that the cooling effect associated with enhanced DMS emissions beneficially offsets greenhouse gas induced warming across most of the world. However, the rainfall response may adversely affect water resources, potentially impacting human livelihoods. These results demonstrate that changes in marine phytoplankton activity may lead to a mixture of positive and negative impacts on the climate.

  8. Dynamic ocean provinces: a multi-sensor approach to global marine ecophysiology

    Science.gov (United States)

    Dowell, M.; Campbell, J.; Moore, T.

    The concept of oceanic provinces or domains has existed for well over a century. Such systems, whether real or only conceptual, provide a useful framework for understanding the mechanisms controlling biological, physical and chemical processes and their interactions. Criteria have been established for defining provinces based on physical forcings, availability of light and nutrients, complexity of the marine food web, and other factors. In general, such classification systems reflect the heterogeneous nature of the ocean environment, and the effort of scientists to comprehend the whole system by understanding its various homogeneous components. If provinces are defined strictly on the basis of geospatial or temporal criteria (e.g., latitude zones, bathymetry, or season), the resulting maps exhibit discontinuities that are uncharacteristic of the ocean. While this may be useful for many purposes, it is unsatisfactory in that it does not capture the dynamic nature of fluid boundaries in the ocean. Boundaries fixed in time and space do not allow us to observe interannual or longer-term variability (e.g., regime shifts) that may result from climate change. The current study illustrates the potential of using fuzzy logic as a means of classifying the ocean into objectively defined provinces using properties measurable from satellite sensors (MODIS and SeaWiFS). This approach accommodates the dynamic variability of provinces which can be updated as each image is processed. We adopt this classification as the basis for parameterizing specific algorithms for each of the classes. Once the class specific algorithms have been applied, retrievals are then recomposed into a single blended product based on the "weighted" fuzzy memberships. This will be demonstrated through animations of multi-year time- series of monthly composites of the individual classes or provinces. The provinces themselves are identified on the basis of global fields of chlorophyll, sea surface temperature

  9. Exploring Marine Biodiversity through Inquiry with Primary School Students: A Successful Journey?

    Science.gov (United States)

    Jesus-Leibovitz, Luísa; Faria, Cláudia; Baioa, Ana Margarida; Borges, Rita

    2017-01-01

    In this work, we present a marine ecology inquiry-based activity, implemented with 164 primary school students. The main goal was to evaluate the activity's impact on students' understanding about biodiversity and scientific procedures. We also aimed to analyse the potential use of personal meaning maps (PMMs) to assess the impact of the activity…

  10. Interactive effects of global climate change and pollution on marine microbes: the way ahead.

    Science.gov (United States)

    Coelho, Francisco J R C; Santos, Ana L; Coimbra, Joana; Almeida, Adelaide; Cunha, Angela; Cleary, Daniel F R; Calado, Ricardo; Gomes, Newton C M

    2013-06-01

    Global climate change has the potential to seriously and adversely affect marine ecosystem functioning. Numerous experimental and modeling studies have demonstrated how predicted ocean acidification and increased ultraviolet radiation (UVR) can affect marine microbes. However, researchers have largely ignored interactions between ocean acidification, increased UVR and anthropogenic pollutants in marine environments. Such interactions can alter chemical speciation and the bioavailability of several organic and inorganic pollutants with potentially deleterious effects, such as modifying microbial-mediated detoxification processes. Microbes mediate major biogeochemical cycles, providing fundamental ecosystems services such as environmental detoxification and recovery. It is, therefore, important that we understand how predicted changes to oceanic pH, UVR, and temperature will affect microbial pollutant detoxification processes in marine ecosystems. The intrinsic characteristics of microbes, such as their short generation time, small size, and functional role in biogeochemical cycles combined with recent advances in molecular techniques (e.g., metagenomics and metatranscriptomics) make microbes excellent models to evaluate the consequences of various climate change scenarios on detoxification processes in marine ecosystems. In this review, we highlight the importance of microbial microcosm experiments, coupled with high-resolution molecular biology techniques, to provide a critical experimental framework to start understanding how climate change, anthropogenic pollution, and microbiological interactions may affect marine ecosystems in the future.

  11. Ocean Data Interoperability Platform (ODIP): developing a common framework for marine data management on a global scale

    Science.gov (United States)

    Glaves, Helen; Schaap, Dick

    2016-04-01

    The increasingly ocean basin level approach to marine research has led to a corresponding rise in the demand for large quantities of high quality interoperable data. This requirement for easily discoverable and readily available marine data is currently being addressed by initiatives such as SeaDataNet in Europe, Rolling Deck to Repository (R2R) in the USA and the Australian Ocean Data Network (AODN) with each having implemented an e-infrastructure to facilitate the discovery and re-use of standardised multidisciplinary marine datasets available from a network of distributed repositories, data centres etc. within their own region. However, these regional data systems have been developed in response to the specific requirements of their users and in line with the priorities of the funding agency. They have also been created independently of the marine data infrastructures in other regions often using different standards, data formats, technologies etc. that make integration of marine data from these regional systems for the purposes of basin level research difficult. Marine research at the ocean basin level requires a common global framework for marine data management which is based on existing regional marine data systems but provides an integrated solution for delivering interoperable marine data to the user. The Ocean Data Interoperability Platform (ODIP/ODIP II) project brings together those responsible for the management of the selected marine data systems and other relevant technical experts with the objective of developing interoperability across the regional e-infrastructures. The commonalities and incompatibilities between the individual data infrastructures are identified and then used as the foundation for the specification of prototype interoperability solutions which demonstrate the feasibility of sharing marine data across the regional systems and also with relevant larger global data services such as GEO, COPERNICUS, IODE, POGO etc. The potential

  12. Ocean Data Interoperability Platform: developing a common global framework for marine data management

    Science.gov (United States)

    Glaves, Helen; Schaap, Dick

    2017-04-01

    elsewhere. To add a further layer of complexity there are also global initiatives providing marine data infrastructures e.g. IOC-IODE, POGO as well as those with a wider remit which includes environmental data e.g. GEOSS, COPERNICUS etc. Ecosystem level marine research requires a common framework for marine data management that supports the sharing of data across these regional and global data systems, and provides the user with access to the data available from these services via a single point of access. This framework must be based on existing data systems and established by developing interoperability between them. The Ocean Data and Interoperability Platform (ODIP/ODIP II) project brings together those organisations responsible for maintaining selected regional data infrastructures along with other relevant experts in order to identify the common standards and best practice necessary to underpin this framework, and to evaluate the differences and commonalties between the regional data infrastructures in order to establish interoperability between them for the purposes of data sharing. This coordinated approach is being demonstrated and validated through the development of a series of prototype interoperability solutions that demonstrate the mechanisms and standards necessary to facilitate the sharing of marine data across these existing data infrastructures.

  13. State of Climate 2011 - Global Ocean Phytoplankton

    Science.gov (United States)

    Siegel, D. A.; Antoine, D.; Behrenfeld, M. J.; d'Andon, O. H. Fanton; Fields, E.; Franz, B. A.; Goryl, P.; Maritorena, S.; McClain, C. R.; Wang, M.; hide

    2012-01-01

    Phytoplankton photosynthesis in the sun lit upper layer of the global ocean is the overwhelmingly dominant source of organic matter that fuels marine ecosystems. Phytoplankton contribute roughly half of the global (land and ocean) net primary production (NPP; gross photosynthesis minus plant respiration) and phytoplankton carbon fixation is the primary conduit through which atmospheric CO2 concentrations interact with the ocean s carbon cycle. Phytoplankton productivity depends on the availability of sunlight, macronutrients (e.g., nitrogen, phosphorous), and micronutrients (e.g., iron), and thus is sensitive to climate-driven changes in the delivery of these resources to the euphotic zone

  14. Global coordination and standardisation in marine biodiversity through the World Register of Marine Species (WoRMS and related databases.

    Directory of Open Access Journals (Sweden)

    Mark J Costello

    Full Text Available The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies, 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive, of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved

  15. Global Coordination and Standardisation in Marine Biodiversity through the World Register of Marine Species (WoRMS) and Related Databases

    Science.gov (United States)

    Bouchet, Philippe; Boxshall, Geoff; Fauchald, Kristian; Gordon, Dennis; Hoeksema, Bert W.; Poore, Gary C. B.; van Soest, Rob W. M.; Stöhr, Sabine; Walter, T. Chad; Vanhoorne, Bart; Decock, Wim

    2013-01-01

    The World Register of Marine Species is an over 90% complete open-access inventory of all marine species names. Here we illustrate the scale of the problems with species names, synonyms, and their classification, and describe how WoRMS publishes online quality assured information on marine species. Within WoRMS, over 100 global, 12 regional and 4 thematic species databases are integrated with a common taxonomy. Over 240 editors from 133 institutions and 31 countries manage the content. To avoid duplication of effort, content is exchanged with 10 external databases. At present WoRMS contains 460,000 taxonomic names (from Kingdom to subspecies), 368,000 species level combinations of which 215,000 are currently accepted marine species names, and 26,000 related but non-marine species. Associated information includes 150,000 literature sources, 20,000 images, and locations of 44,000 specimens. Usage has grown linearly since its launch in 2007, with about 600,000 unique visitors to the website in 2011, and at least 90 organisations from 12 countries using WoRMS for their data management. By providing easy access to expert-validated content, WoRMS improves quality control in the use of species names, with consequent benefits to taxonomy, ecology, conservation and marine biodiversity research and management. The service manages information on species names that would otherwise be overly costly for individuals, and thus minimises errors in the application of nomenclature standards. WoRMS' content is expanding to include host-parasite relationships, additional literature sources, locations of specimens, images, distribution range, ecological, and biological data. Species are being categorised as introduced (alien, invasive), of conservation importance, and on other attributes. These developments have a multiplier effect on its potential as a resource for biodiversity research and management. As a consequence of WoRMS, we are witnessing improved communication within the

  16. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms

    KAUST Repository

    Zhang, Yifan

    2012-06-15

    Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolides molecular targets in three representative fouling organisms. In the barnacle Balanus (=Amphibalanus) amphitrite, butenolide bound to acetyl-CoA acetyltransferase 1 (ACAT1), which is involved in ketone body metabolism. Both the substrate and the product of ACAT1 increased larval settlement under butenolide treatment, suggesting its functional involvement. In the bryozoan Bugula neritina, butenolide bound to very long chain acyl-CoA dehydrogenase (ACADVL), actin, and glutathione S-transferases (GSTs). ACADVL is the first enzyme in the very long chain fatty acid β-oxidation pathway. The inhibition of this primary pathway for energy production in larvae by butenolide was supported by the finding that alternative energy sources (acetoacetate and pyruvate) increased larval attachment under butenolide treatment. In marine bacterium Vibrio sp. UST020129-010, butenolide bound to succinyl-CoA synthetase β subunit (SCSβ) and inhibited bacterial growth. ACAT1, ACADVL, and SCSβ are all involved in primary metabolism for energy production. These findings suggest that butenolide inhibits fouling by influencing the primary metabolism of target organisms. © 2012 American Chemical Society.

  17. Interannual Variation in Phytoplankton Class-Specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile Severine; Gregg, Watson W.

    2014-01-01

    We used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. First we assessed the contribution of each phytoplankton groups to the total primary production at a global scale for the period 1998-2011. Globally, diatoms were the group that contributed the most to the total phytoplankton production (50, the equivalent of 20 PgC y-1. Coccolithophores and chlorophytes each contributed to 20 (7 PgC y-1 of the total primary production and cyanobacteria represented about 10 (4 PgC y(sub-1) of the total primary production. Primary production by diatoms was highest in high latitude (45) and in major upwelling systems (Equatorial Pacific and Benguela system). We then assessed interannual variability of this group-specific primary production over the period 1998-2011. Globally the annual relative contribution of each phytoplankton groups to the total primary production varied by maximum 4 (1-2 PgC y-1. We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nio Index, MEI) and regional climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability as indicated by significant correlation (p 0.05) between the MEI and the class-specific primary production from all groups except coccolithophores. In the Atlantic, climate variability as indicated by NAO was significantly correlated to the primary production of 2 out of the 4 groups in the North Central Atlantic (diatomscyanobacteria) and in the North Atlantic (chlorophytes and coccolithophores). We found that climate variability as indicated by SAM had only a limited effect on the class-specific primary production in the Southern Ocean. These results provide a modeling and

  18. The Impact of Variable Phytoplankton Stoichiometry on Projections of Primary Production, Food Quality, and Carbon Uptake in the Global Ocean

    Science.gov (United States)

    Kwiatkowski, Lester; Aumont, Olivier; Bopp, Laurent; Ciais, Philippe

    2018-04-01

    Ocean biogeochemical models are integral components of Earth system models used to project the evolution of the ocean carbon sink, as well as potential changes in the physical and chemical environment of marine ecosystems. In such models the stoichiometry of phytoplankton C:N:P is typically fixed at the Redfield ratio. The observed stoichiometry of phytoplankton, however, has been shown to considerably vary from Redfield values due to plasticity in the expression of phytoplankton cell structures with different elemental compositions. The intrinsic structure of fixed C:N:P models therefore has the potential to bias projections of the marine response to climate change. We assess the importance of variable stoichiometry on 21st century projections of net primary production, food quality, and ocean carbon uptake using the recently developed Pelagic Interactions Scheme for Carbon and Ecosystem Studies Quota (PISCES-QUOTA) ocean biogeochemistry model. The model simulates variable phytoplankton C:N:P stoichiometry and was run under historical and business-as-usual scenario forcing from 1850 to 2100. PISCES-QUOTA projects similar 21st century global net primary production decline (7.7%) to current generation fixed stoichiometry models. Global phytoplankton N and P content or food quality is projected to decline by 1.2% and 6.4% over the 21st century, respectively. The largest reductions in food quality are in the oligotrophic subtropical gyres and Arctic Ocean where declines by the end of the century can exceed 20%. Using the change in the carbon export efficiency in PISCES-QUOTA, we estimate that fixed stoichiometry models may be underestimating 21st century cumulative ocean carbon uptake by 0.5-3.5% (2.0-15.1 PgC).

  19. Solutions for global marine litter pollution

    NARCIS (Netherlands)

    Löhr, Ansje; Savelli, Heidi; Beunen, Raoul; Kalz, Marco; Ragas, Ad; Van Belleghem, Frank

    2017-01-01

    Since the 1950s the amount of plastics in the marine environment has increased dramatically. Worldwide there is a growing concern about the risks and possible adverse effects of (micro)plastics. This paper reflects on the sources and effects of marine litter and the effects of policies and other

  20. Marine alien species as an aspect of global change

    Directory of Open Access Journals (Sweden)

    Anna Occhipinti-Ambrogi

    2010-06-01

    Full Text Available The transport of organisms across oceans is an anthropogenic agent of global change that has profoundly affected the natural distribution of littoral biota and altered the makeup of biogeographic regions. The homogenization of marine biotas is a phenomenon especially affecting coastal regions and is spearheaded by a suite of opportunistic species at the expense of native species. Climate change may exacerbate the trend: sea surface temperatures, hydrodynamics, pH and carbonate cycles, already show marked fluctuations compared to the past. Alien invasive species are impacted by the change of marine climate in a variety of ways, which are we have just begun to notice, observe and interpret. A conceptual framework has yet to be conceived that links theories on biological introductions and invasions with the physical aspects of global change. Therefore predicting the scale of invasions or their impact on biodiversity is a daunting task. Integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change. The recorded spread of alien species and analysis of patterns of invasions may serve as the starting point for searching connections with climate change descriptors. The Mediterranean Sea is home to an exceptionally large number of alien species, resulting from its exceptional history and multiple vectors. For much of the twentieth century alien thermophilic species, which had entered the Mediterranean through the Suez Canal, have been confined to the Levantine Basin. In recent years climate driven hydrographic changes have coincided with a pronounced expansion of alien thermophilic biota to the central and western basins of the Mediterranean. We discuss some changes in emergent functions and services in Mediterranean ecosystems under the combined effect of invasive species and climate changes.

  1. From global to regional and back again: common climate stressors of marine ecosystems relevant for adaptation across five ocean warming hotspots.

    Science.gov (United States)

    Popova, Ekaterina; Yool, Andrew; Byfield, Valborg; Cochrane, Kevern; Coward, Andrew C; Salim, Shyam S; Gasalla, Maria A; Henson, Stephanie A; Hobday, Alistair J; Pecl, Gretta T; Sauer, Warwick H; Roberts, Michael J

    2016-06-01

    Ocean warming 'hotspots' are regions characterized by above-average temperature increases over recent years, for which there are significant consequences for both living marine resources and the societies that depend on them. As such, they represent early warning systems for understanding the impacts of marine climate change, and test-beds for developing adaptation options for coping with those impacts. Here, we examine five hotspots off the coasts of eastern Australia, South Africa, Madagascar, India and Brazil. These particular hotspots have underpinned a large international partnership that is working towards improving community adaptation by characterizing, assessing and projecting the likely future of coastal-marine food resources through the provision and sharing of knowledge. To inform this effort, we employ a high-resolution global ocean model forced by Representative Concentration Pathway 8.5 and simulated to year 2099. In addition to the sea surface temperature, we analyse projected stratification, nutrient supply, primary production, anthropogenic CO2 -driven ocean acidification, deoxygenation and ocean circulation. Our simulation finds that the temperature-defined hotspots studied here will continue to experience warming but, with the exception of eastern Australia, may not remain the fastest warming ocean areas over the next century as the strongest warming is projected to occur in the subpolar and polar areas of the Northern Hemisphere. Additionally, we find that recent rapid change in SST is not necessarily an indicator that these areas are also hotspots of the other climatic stressors examined. However, a consistent facet of the hotspots studied here is that they are all strongly influenced by ocean circulation, which has already shown changes in the recent past and is projected to undergo further strong change into the future. In addition to the fast warming, change in local ocean circulation represents a distinct feature of present and future

  2. Microplastic distribution in global marine surface waters: results of an extensive citizen science study

    Science.gov (United States)

    Barrows, A.; Petersen, C.

    2017-12-01

    Plastic is a major pollutant throughout the world. The majority of the 322 million tons produced annually is used for single-use packaging. What makes plastic an attractive packaging material: cheap, light-weight and durable are also the features that help make it a common and persistent pollutant. There is a growing body of research on microplastic, particles less than 5 mm in size. Microfibers are the most common microplastic in the marine environment. Global estimates of marine microplastic surface concentrations are based on relatively small sample sizes when compared to the vast geographic scale of the ocean. Microplastic residence time and movement along the coast and sea surface outside of the gyres is still not well researched. This five-year project utilized global citizen scientists to collect 1,628 1-liter surface grab samples in every major ocean. The Artic and Southern oceans contained highest average of particles per liter of surface water. Open ocean samples (further than 12 nm from land, n = 686) contained a higher particle average (17 pieces L-1) than coastal samples (n = 723) 6 pieces L-1. Particles were predominantly 100 µm- 1.5 mm in length (77%), smaller than what has been captured in the majority of surface studies. Utilization of citizen scientists to collect data both in fairly accessible regions of the world as well as from areas hard to reach and therefore under sampled, provides us with a wider perspective of global microplastics occurrence. Our findings confirm global microplastic accumulation zone model predictions. The open ocean and poles have sequestered and trapped plastic for over half a century, and show that not only plastics, but anthropogenic fibers are polluting the environment. Continuing to fill knowledge gaps on microplastic shape, size and color in remote ocean areas will drive more accurate oceanographic models of plastic accumulation zones. Incorporation of smaller-sized particles in these models, which has previously

  3. Effects of acidification on olfactory-mediated behaviour in freshwater and marine ecosystems: a synthesis.

    Science.gov (United States)

    Leduc, Antoine O H C; Munday, Philip L; Brown, Grant E; Ferrari, Maud C O

    2013-01-01

    For many aquatic organisms, olfactory-mediated behaviour is essential to the maintenance of numerous fitness-enhancing activities, including foraging, reproduction and predator avoidance. Studies in both freshwater and marine ecosystems have demonstrated significant impacts of anthropogenic acidification on olfactory abilities of fish and macroinvertebrates, leading to impaired behavioural responses, with potentially far-reaching consequences to population dynamics and community structure. Whereas the ecological impacts of impaired olfactory-mediated behaviour may be similar between freshwater and marine ecosystems, the underlying mechanisms are quite distinct. In acidified freshwater, molecular change to chemical cues along with reduced olfaction sensitivity appear to be the primary causes of olfactory-mediated behavioural impairment. By contrast, experiments simulating future ocean acidification suggest that interference of high CO2 with brain neurotransmitter function is the primary cause for olfactory-mediated behavioural impairment in fish. Different physico-chemical characteristics between marine and freshwater systems are probably responsible for these distinct mechanisms of impairment, which, under globally rising CO2 levels, may lead to strikingly different consequences to olfaction. While fluctuations in pH may occur in both freshwater and marine ecosystems, marine habitat will remain alkaline despite future ocean acidification caused by globally rising CO2 levels. In this synthesis, we argue that ecosystem-specific mechanisms affecting olfaction need to be considered for effective management and conservation practices.

  4. Global aspects of marine pollution policy

    International Nuclear Information System (INIS)

    Davis, W.J.

    1990-01-01

    The source and fate of marine pollutants are discussed in overview and exemplified with the case of radioactive wastes dumped at sea. Only 10% of marine pollutants originate with deliberate dumping; the other 90% come from land-based sources. Remarkably, there is no international convention regulating pollution from all sources, including land-based. The London Dumping Convention (LDC) is the chief international treaty for regulating and limiting dumping at sea. The LDC is moving away from regulation, however, and toward prohibition of most forms of dumping at sea. A new international 'Convention for the Protection of the Oceans from Pollution' (CPOP) is now needed, incorporating new waste management principles and having jurisdiction over all sources of marine pollution, including those from land-based sources. Such a convention could foster international cooperation in the prevention of marine pollution by serving as a clearing house for the exchange of technologies in the area of toxic waste source reduction and abatement. Possible hurdles to the formation of such an international instrument are discussed along with possible solutions. (author)

  5. Biological responses of two marine organisms of ecological relevance to on-going ocean acidification and global warming.

    Science.gov (United States)

    Gomiero, A; Bellerby, R G J; Manca Zeichen, M; Babbini, L; Viarengo, A

    2018-05-01

    Recently, there has been a growing concern that climate change may rapidly and extensively alter global ecosystems with unknown consequences for terrestrial and aquatic life. While considerable emphasis has been placed on terrestrial ecology consequences, aquatic environments have received relatively little attention. Limited knowledge is available on the biological effects of increments of seawater temperature and pH decrements on key ecological species, i.e., primary producers and/or organisms representative of the basis of the trophic web. In the present study, we addressed the biological effects of global warming and ocean acidification on two model organisms, the microbenthic marine ciliate Euplotes crassus and the green alga Dunaliella tertiocleta using a suite of high level ecological endpoint tests and sub-lethal stress measures. Organisms were exposed to combinations of pH and temperature (TR1: 7.9 [pH], 25.5 °C and TR2: 7.8 [pH], 27,0 °C) simulating two possible environmental scenarios predicted to occur in the habitats of the selected species before the end of this century. The outcomes of the present study showed that the tested scenarios did not induce a significant increment of mortality on protozoa. Under the most severe exposure conditions, sub-lethal stress indices show that pH homeostatic mechanisms have energetic costs that divert energy from essential cellular processes and functions. The marine protozoan exhibited significant impairment of the lysosomal compartment and early signs of oxidative stress under these conditions. Similarly, significant impairment of photosynthetic efficiency and an increment in lipid peroxidation were observed in the autotroph model organism held under the most extreme exposure condition tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network

    NARCIS (Netherlands)

    Kölzsch, A.; Blasius, B.

    2011-01-01

    The transport of huge amounts of small aquatic organisms in the ballast tanks and at the hull of large cargo ships leads to ever increasing rates of marine bioinvasion. In this study, we apply a network theoretic approach to examine the introduction of invasive species into new ports by global

  7. Radionuclides in the study of marine processes

    International Nuclear Information System (INIS)

    Kershaw, P.J.; Woodhead, D.S.

    1991-01-01

    For many years, the radioactive properties of the naturally occurring radionuclides have been used to determine their distributions in the marine environment and, more generally, to gain an understanding of the dynamic processes which control their behaviour in attaining these distributions. More recently the inputs from human activities of both natural and artificial (i.e. man-made) radionuclides have provided additional opportunities for the study of marine processes on local, regional and global scales. The primary objective of the symposium is to provide a forum for an open discussion of the insights concerning processes in the marine environment which can be gained from studies of radionuclide behaviour. Papers have been grouped within the following principal themes; the uses of radionuclides as tracers of water transport; scavenging and particulate transport processes in the oceans as deduced from radionuclide behaviour; processes in the seabed and radionuclides in biological systems. (Author)

  8. Impact of CryoSat-2 for marine gravity field - globally and in the Arctic Ocean

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Stenseng, Lars; Knudsen, Per

    GDR data, NOAA LRM data, but also Level1b (LRM, SAR and SAR-in waveforms) data have been analyzed. A suite of eight different empirical retrackers have been developed and investigated for their ability to predict marine gravity in the Arctic Ocean. The impact of the various improvement offered by Cryo...... days repeat offered by CryoSat-2 provides denser coverage than older geodetic mission data set like ERS-1. Thirdly, the 92 degree inclination of CryoSat-2 is designed to map more of the Arctic Ocean than previous altimetric satellites. Finally, CryoSat-2 is able to operate in two new modes (SAR and SAR......Sat-2 in comparison with conventional satellite altimetry have been studied and quantified both globally but particularly for the Arctic Ocean using a large number of marine and airborne surveys providing “ground truth” marine gravity....

  9. Spatial and body-size dependent response of marine pelagic communities to projected global climate change.

    Science.gov (United States)

    Lefort, Stelly; Aumont, Olivier; Bopp, Laurent; Arsouze, Thomas; Gehlen, Marion; Maury, Olivier

    2015-01-01

    Temperature, oxygen, and food availability directly affect marine life. Climate models project a global warming of the ocean's surface (~+3 °C), a de-oxygenation of the ocean's interior (~-3%) and a decrease in total marine net primary production (~-8%) under the 'business as usual' climate change scenario (RCP8.5). We estimated the effects of these changes on biological communities using a coupled biogeochemical (PISCES)--ecosystems (APECOSM) model forced by the physical outputs of the last generation of the IPSL-CM Earth System Model. The APECOSM model is a size-structured bio-energetic model that simulates the 3D dynamical distributions of three interactive pelagic communities (epipelagic, mesopelagic, and migratory) under the effects of multiple environmental factors. The PISCES-APECOSM model ran from 1850 to 2100 under historical forcing followed by RCP8.5. Our RCP8.5 simulation highlights significant changes in the spatial distribution, biomass, and maximum body-size of the simulated pelagic communities. Biomass and maximum body-size increase at high latitude over the course of the century, reflecting the capacity of marine organisms to respond to new suitable environment. At low- and midlatitude, biomass and maximum body-size strongly decrease. In those regions, large organisms cannot maintain their high metabolic needs because of limited and declining food availability. This resource reduction enhances the competition and modifies the biomass distribution among and within the three communities: the proportion of small organisms increases in the three communities and the migrant community that initially comprised a higher proportion of small organisms is favored. The greater resilience of small body-size organisms resides in their capacity to fulfill their metabolic needs under reduced energy supply and is further favored by the release of predation pressure due to the decline of large organisms. These results suggest that small body-size organisms might be

  10. Ice nuclei in marine air: biogenic particles or dust?

    Directory of Open Access Journals (Sweden)

    S. M. Burrows

    2013-01-01

    Full Text Available Ice nuclei impact clouds, but their sources and distribution in the atmosphere are still not well known. Particularly little attention has been paid to IN sources in marine environments, although evidence from field studies suggests that IN populations in remote marine regions may be dominated by primary biogenic particles associated with sea spray. In this exploratory model study, we aim to bring attention to this long-neglected topic and identify promising target regions for future field campaigns. We assess the likely global distribution of marine biogenic ice nuclei using a combination of historical observations, satellite data and model output. By comparing simulated marine biogenic immersion IN distributions and dust immersion IN distributions, we predict strong regional differences in the importance of marine biogenic IN relative to dust IN. Our analysis suggests that marine biogenic IN are most likely to play a dominant role in determining IN concentrations in near-surface-air over the Southern Ocean, so future field campaigns aimed at investigating marine biogenic IN should target that region. Climate-related changes in the abundance and emission of biogenic marine IN could affect marine cloud properties, thereby introducing previously unconsidered feedbacks that influence the hydrological cycle and the Earth's energy balance. Furthermore, marine biogenic IN may be an important aspect to consider in proposals for marine cloud brightening by artificial sea spray production.

  11. HANPP Collection: Global Patterns in Net Primary Productivity (NPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Net Primary Productivity (NPP) portion of the HANPP Collection maps the net amount of solar energy converted to plant organic matter through...

  12. A summary of global 129I in marine waters

    DEFF Research Database (Denmark)

    He, Peng; Aldahan, A.; Possnert, G.

    2013-01-01

    of anthropogenic 129I is strongly linked to the major point sources in the Irish Sea and the English Channel and the global marine spreading pathways are partly outlined from these sources. The temporal evolution is still, however, not well defined when transport and dissipation are considered in the different...... and location also occur. Scarcity of data on 129I from the Pacific, Indian and South Atlantic Oceans demonstrates gaps in the coverage of the isotope spatial extent. These shortcomings in the spatial coverage may relate to the understanding that the anthropogenic 129I signal will take a long time...

  13. Site-level evaluation of satellite-based global terrestrial gross primary production and net primary production monitoring.

    Science.gov (United States)

    David P. Turner; William D. Ritts; Warren B. Cohen; Thomas K. Maeirsperger; Stith T. Gower; Al A. Kirschbaum; Steve W. Runnings; Maosheng Zhaos; Steven C. Wofsy; Allison L. Dunn; Beverly E. Law; John L. Campbell; Walter C. Oechel; Hyo Jung Kwon; Tilden P. Meyers; Eric E. Small; Shirley A. Kurc; John A. Gamon

    2005-01-01

    Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite-borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site-level studies across a range of biomes, with close attention to numerous scaling...

  14. Global niche of marine anaerobic metabolisms expanded by particle microenvironments

    Science.gov (United States)

    Bianchi, Daniele; Weber, Thomas S.; Kiko, Rainer; Deutsch, Curtis

    2018-04-01

    In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. Anaerobic metabolisms are thought to thrive in microenvironments that develop inside sinking organic aggregates, but the global distribution and geochemical significance of these microenvironments is poorly understood. Here, we develop a new size-resolved particle model to predict anaerobic respiration from aggregate properties and seawater chemistry. Constrained by observations of the size spectrum of sinking particles, the model predicts that denitrification and sulfate reduction can be sustained throughout vast, hypoxic expanses of the ocean, and could explain the trace metal enrichment observed in particles due to sulfide precipitation. Globally, the expansion of the anaerobic niche due to particle microenvironments doubles the rate of water column denitrification compared with estimates based on anoxic zones alone, and changes the sensitivity of the marine nitrogen cycle to deoxygenation in a warming climate.

  15. Global Warming Responses at the Primary Secondary Interface: 2. Potential Effectiveness of Education

    Science.gov (United States)

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    In an earlier paper (Skamp, Boyes, & Stanisstreet, 2009b), students' beliefs and willingness to act in relation to 16 specific actions related to global warming were compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those…

  16. Diverse effects of invasive ecosystem engineers on marine biodiversity and ecosystem functions: A global review and meta-analysis.

    Science.gov (United States)

    Guy-Haim, Tamar; Lyons, Devin A; Kotta, Jonne; Ojaveer, Henn; Queirós, Ana M; Chatzinikolaou, Eva; Arvanitidis, Christos; Como, Serena; Magni, Paolo; Blight, Andrew J; Orav-Kotta, Helen; Somerfield, Paul J; Crowe, Tasman P; Rilov, Gil

    2018-03-01

    Invasive ecosystem engineers (IEE) are potentially one of the most influential types of biological invaders. They are expected to have extensive ecological impacts by altering the physical-chemical structure of ecosystems, thereby changing the rules of existence for a broad range of resident biota. To test the generality of this expectation, we used a global systematic review and meta-analysis to examine IEE effects on the abundance of individual species and communities, biodiversity (using several indices) and ecosystem functions, focusing on marine and estuarine environments. We found that IEE had a significant effect (positive and negative) in most studies testing impacts on individual species, but the overall (cumulative) effect size was small and negative. Many individual studies showed strong IEE effects on community abundance and diversity, but the direction of effects was variable, leading to statistically non-significant overall effects in most categories. In contrast, there was a strong overall effect on most ecosystem functions we examined. IEE negatively affected metabolic functions and primary production, but positively affected nutrient flux, sedimentation and decomposition. We use the results to develop a conceptual model by highlighting pathways whereby IEE impact communities and ecosystem functions, and identify several sources of research bias in the IEE-related invasion literature. Only a few of the studies simultaneously quantified IEE effects on community/diversity and ecosystem functions. Therefore, understanding how IEE may alter biodiversity-ecosystem function relationships should be a primary focus of future studies of invasion biology. Moreover, the clear effects of IEE on ecosystem functions detected in our study suggest that scientists and environmental managers ought to examine how the effects of IEE might be manifested in the services that marine ecosystems provide to humans. © 2017 John Wiley & Sons Ltd.

  17. Ocean acidification and marine microorganisms: responses and consequences

    Directory of Open Access Journals (Sweden)

    Surajit Das

    2015-10-01

    Full Text Available Ocean acidification (OA is one of the global issues caused by rising atmospheric CO2. The rising pCO2 and resulting pH decrease has altered ocean carbonate chemistry. Microbes are key components of marine environments involved in nutrient cycles and carbon flow in marine ecosystems. However, these marine microbes and the microbial processes are sensitive to ocean pH shift. Thus, OA affects the microbial diversity, primary productivity and trace gases emission in oceans. Apart from that, it can also manipulate the microbial activities such as quorum sensing, extracellular enzyme activity and nitrogen cycling. Short-term laboratory experiments, mesocosm studies and changing marine diversity scenarios have illustrated undesirable effects of OA on marine microorganisms and ecosystems. However, from the microbial perspective, the current understanding on effect of OA is based mainly on limited experimental studies. It is challenging to predict response of marine microbes based on such experiments for this complex process. To study the response of marine microbes towards OA, multiple approaches should be implemented by using functional genomics, new generation microscopy, small-scale interaction among organisms and/or between organic matter and organisms. This review focuses on the response of marine microorganisms to OA and the experimental approaches to investigate the effect of changing ocean carbonate chemistry on microbial mediated processes.

  18. Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Directory of Open Access Journals (Sweden)

    B. Schneider

    2008-04-01

    Full Text Available Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP and export production (EP of particulate organic carbon (POC. Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006 with stronger stratification (higher sea surface temperature; SST being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL also reproduces the inverse relationship between stratification (SST and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.

  19. La lutte internationale contre le réchauffement climatique comme étant une source de dégradation des ressources marines The international fight against global warming as a source of degradation of marine resources

    Directory of Open Access Journals (Sweden)

    Syrine Ismaili

    2012-04-01

    Full Text Available Les ressources marines constituent une richesse économique d'une grande importance pour un grand nombre de pays de la planète. Du fait de l'action de l'homme, ces ressources subissent une fragilisation et une raréfaction dues entre autres à la pollution, à la surpêche, à l'urbanisation intensive...S'ajoute à cette liste, depuis quelques années, le réchauffement de la planète qui affecte d'une manière sensible la diversité biologique marine. Pourtant les réponses internationales face à cette dégradation, au delà du fait qu'elles soient timides, sont rares. Il faudra dès lors se rabattre sur les solutions de lutte globale contre le réchauffement de la planète entreprise par la communauté internationale afin de contrer cette dégradation.Marine resources are a wealth of great economic importance for many countries in the world. Due to the action of man, these resources undergo embrittlement and rarification among others to pollution, overfishing, urbanization, intensive ... Added to this list in recent years, the global warming that affects a significantly marine biodiversity. Yet the international response to this degradation, beyond the fact that they are shy, is rare. It will therefore fall back on solutions to the global fight against global warming taken by the international community to counter this degradation.

  20. Marine cloud brightening: regional applications.

    Science.gov (United States)

    Latham, John; Gadian, Alan; Fournier, Jim; Parkes, Ben; Wadhams, Peter; Chen, Jack

    2014-12-28

    The general principle behind the marine cloud brightening (MCB) climate engineering technique is that seeding marine stratocumulus clouds with substantial concentrations of roughly monodisperse sub-micrometre-sized seawater particles might significantly enhance cloud albedo and longevity, thereby producing a cooling effect. This paper is concerned with preliminary studies of the possible beneficial application of MCB to three regional issues: (1) recovery of polar ice loss, (2) weakening of developing hurricanes and (3) elimination or reduction of coral bleaching. The primary focus is on Item 1. We focus discussion herein on advantages associated with engaging in limited-area seeding, regional effects rather than global; and the levels of seeding that may be required to address changing current and near-term conditions in the Arctic. We also mention the possibility that MCB might be capable of producing a localized cooling to help stabilize the West Antarctic Ice Sheet.

  1. Contribution of Seawater Surfactants to Generated Primary Marine Aerosol Particles

    Science.gov (United States)

    Frossard, A. A.; Gerard, V.; Duplessis, P.; Kinsey, J. D.; Lu, X.; Zhu, Y.; Bisgrove, J.; Maben, J. R.; Long, M. S.; Chang, R.; Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Noziere, B.; Cohen, R. C.

    2017-12-01

    Surfactants account for minor fractions of total organic carbon in the ocean but may have major impacts on the surface tension of bursting bubbles at the sea surface that drive the production of primary marine aerosol particles (PMA). Surfactants associated with marine aerosol may also significantly reduce the surface tension of water thereby increasing the potential for cloud droplet activation and growth. During September and October 2016, PMA were produced from bursting bubbles in seawater using a high capacity generator at two biologically productive and two oligotrophic stations in the western North Atlantic, as part of a cruise on the R/V Endeavor. Surfactants were extracted from paired PMA and seawater samples, and their ionic compositions, total concentrations, and critical micelle concentrations (CMC) were quantified and compared for the four hydrographic stations. Higher surfactant concentrations were determined in the aerosol produced from biologically productive seawater compared to oligotrophic seawater, and the surfactants extracted from productive seawater were stronger (had lower CMCs) than those in the oligotrophic seawater. Surfactants associated with PMA and seawater in productive regions also varied over diel cycles, whereas those in the oligotrophic regions did not. This work demonstrates a direct link between surfactants in seawater and those in PMA.

  2. Small diversity effects on ocean primary production under environmental change in a diversity-resolving ocean ecosystem model

    DEFF Research Database (Denmark)

    Prowe, Friederike; Pahlow, M.; Dutkiewicz, S.

    2013-01-01

    Marine ecosystem models used to investigate how global change affects ocean ecosystems and their functioning typically omit pelagic diversity. Diversity, however, can affect functions such as primary production and their sensitivity to environmental changes. Using a global ocean ecosystem model...... the diversity effects on ecosystem functioning captured in ocean ecosystem models....

  3. Interannual Variation in Phytoplankton Class-specific Primary Production at a Global Scale

    Science.gov (United States)

    Rousseaux, Cecile; Gregg, Watson

    2014-01-01

    Phytoplankton is responsible for over half of the net primary production on earth. The knowledge on the contribution of various phytoplankton groups to the total primary production is still poorly understood. Data from satellite observations suggest that for upwelling regions, photosynthetic rates by microplankton is higher than that of nanoplankton but that when the spatial extent is considered, the production by nanoplankton is comparable or even larger than microplankton. Here, we used the NASA Ocean Biogeochemical Model (NOBM) combined with remote sensing data via assimilation to evaluate the contribution of 4 phytoplankton groups to the total primary production. Globally, diatoms were the group that contributed the most to the total phytoplankton production (approx. 50%) followed by coccolithophores and chlorophytes. Primary production by diatoms was highest in high latitude (>45 deg) and in major upwelling systems (Equatorial Pacific and Benguela system). We assessed the effects of climate variability on the class-specific primary production using global (i.e. Multivariate El Nino Index, MEI) and 'regional' climate indices (e.g. Southern Annular Mode (SAM), Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO)). Most interannual variability occurred in the Equatorial Pacific and was associated with climate variability. These results provide a modeling and data assimilation perspective to phytoplankton partitioning of primary production and contribute to our understanding of the dynamics of the carbon cycle in the oceans at a global scale.

  4. Exploring the role of movement in determining the global distribution of marine biomass using a coupled hydrodynamic - Size-based ecosystem model

    Science.gov (United States)

    Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.

    2015-11-01

    Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.

  5. Modelling the sequential geographical exploitation and potential collapse of marine fisheries through economic globalization, climate change and management alternatives

    Directory of Open Access Journals (Sweden)

    Gorka Merino

    2011-07-01

    Full Text Available Global marine fisheries production has reached a maximum and may even be declining. Underlying this trend is a well-understood sequence of development, overexploitation, depletion and in some instances collapse of individual fish stocks, a pattern that can sequentially link geographically distant populations. Ineffective governance, economic considerations and climate impacts are often responsible for this sequence, although the relative contribution of each factor is contentious. In this paper we use a global bioeconomic model to explore the synergistic effects of climate variability, economic pressures and management measures in causing or avoiding this sequence. The model shows how a combination of climate-induced variability in the underlying fish population production, particular patterns of demand for fish products and inadequate management is capable of driving the world’s fisheries into development, overexploitation, collapse and recovery phases consistent with observations. Furthermore, it demonstrates how a sequential pattern of overexploitation can emerge as an endogenous property of the interaction between regional environmental fluctuations and a globalized trade system. This situation is avoidable through adaptive management measures that ensure the sustainability of regional production systems in the face of increasing global environmental change and markets. It is concluded that global management measures are needed to ensure that global food supply from marine products is optimized while protecting long-term ecosystem services across the world’s oceans.

  6. Ecological Genomics of Marine Picocyanobacteria†

    Science.gov (United States)

    Scanlan, D. J.; Ostrowski, M.; Mazard, S.; Dufresne, A.; Garczarek, L.; Hess, W. R.; Post, A. F.; Hagemann, M.; Paulsen, I.; Partensky, F.

    2009-01-01

    Summary: Marine picocyanobacteria of the genera Prochlorococcus and Synechococcus numerically dominate the picophytoplankton of the world ocean, making a key contribution to global primary production. Prochlorococcus was isolated around 20 years ago and is probably the most abundant photosynthetic organism on Earth. The genus comprises specific ecotypes which are phylogenetically distinct and differ markedly in their photophysiology, allowing growth over a broad range of light and nutrient conditions within the 45°N to 40°S latitudinal belt that they occupy. Synechococcus and Prochlorococcus are closely related, together forming a discrete picophytoplankton clade, but are distinguishable by their possession of dissimilar light-harvesting apparatuses and differences in cell size and elemental composition. Synechococcus strains have a ubiquitous oceanic distribution compared to that of Prochlorococcus strains and are characterized by phylogenetically discrete lineages with a wide range of pigmentation. In this review, we put our current knowledge of marine picocyanobacterial genomics into an environmental context and present previously unpublished genomic information arising from extensive genomic comparisons in order to provide insights into the adaptations of these marine microbes to their environment and how they are reflected at the genomic level. PMID:19487728

  7. Adaptation and evolution in marine environments. Vol. 2. The impacts of global change on biodiversity

    Energy Technology Data Exchange (ETDEWEB)

    Verde, Cinzia; Di Prisco, Guido (eds.) [CNR, Napoli (Italy). Inst. of Protein Biochemistry

    2013-02-01

    Offers a regionally focussed approach. Describes research on adaptive evolution. State-of-the-art content. The second volume of ''Adaptation and Evolution in Marine Environments - The Impacts of Global Change on Biodiversity'' from the series ''From Pole to Pole'' integrates the marine biology contribution of the first tome to the IPY 2007-2009, presenting overviews of organisms (from bacteria and ciliates to higher vertebrates) thriving on polar continental shelves, slopes and deep sea. The speed and extent of warming in the Arctic and in regions of Antarctica (the Peninsula, at the present) are greater than elsewhere. Changes impact several parameters, in particular the extent of sea ice; organisms, ecosystems and communities that became finely adapted to increasing cold in the course of millions of years are now becoming vulnerable, and biodiversity is threatened. Investigating evolutionary adaptations helps to foresee the impact of changes in temperate areas, highlighting the invaluable contribution of polar marine research to present and future outcomes of the IPY in the Earth system scenario.

  8. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    Science.gov (United States)

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  9. Exposure factors for marine eutrophication impacts assessment based on a mechanistic biological model

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Koski, Marja; Hauschild, Michael Zwicky

    2015-01-01

    marine ecosystem (LME), five climate zones, and site-generic. The XFs obtained range from 0.45 (Central Arctic Ocean) to 15.9kgO2kgN-1 (Baltic Sea). While LME resolution is recommended, aggregated PE or XF per climate zone can be adopted, but not global aggregation due to high variability. The XF......Emissions of nitrogen (N) from anthropogenic sources enrich marine waters and promote planktonic growth. This newly synthesised organic carbon is eventually exported to benthic waters where aerobic respiration by heterotrophic bacteria results in the consumption of dissolved oxygen (DO......). This pathway is typical of marine eutrophication. A model is proposed to mechanistically estimate the response of coastal marine ecosystems to N inputs. It addresses the biological processes of nutrient-limited primary production (PP), metazoan consumption, and bacterial degradation, in four distinct sinking...

  10. Global patterns in human consumption of net primary production

    Science.gov (United States)

    Imhoff, Marc L.; Bounoua, Lahouari; Ricketts, Taylor; Loucks, Colby; Harriss, Robert; Lawrence, William T.

    2004-06-01

    The human population and its consumption profoundly affect the Earth's ecosystems. A particularly compelling measure of humanity's cumulative impact is the fraction of the planet's net primary production that we appropriate for our own use. Net primary production-the net amount of solar energy converted to plant organic matter through photosynthesis-can be measured in units of elemental carbon and represents the primary food energy source for the world's ecosystems. Human appropriation of net primary production, apart from leaving less for other species to use, alters the composition of the atmosphere, levels of biodiversity, energy flows within food webs and the provision of important ecosystem services. Here we present a global map showing the amount of net primary production required by humans and compare it to the total amount generated on the landscape. We then derive a spatial balance sheet of net primary production `supply' and `demand' for the world. We show that human appropriation of net primary production varies spatially from almost zero to many times the local primary production. These analyses reveal the uneven footprint of human consumption and related environmental impacts, indicate the degree to which human populations depend on net primary production `imports' and suggest policy options for slowing future growth of human appropriation of net primary production.

  11. Where and What Is Pristine Marine Aerosol?

    Science.gov (United States)

    Russell, L. M.; Frossard, A. A.; Long, M. S.; Burrows, S. M.; Elliott, S.; Bates, T. S.; Quinn, P.

    2014-12-01

    The sources and composition of atmospheric marine aerosol particles have been measured by functional group composition (from Fourier transform infrared spectroscopy) to identify the organic composition of the pristine primary marine (ocean-derived) particles as 65% hydroxyl, 21% alkane, 6% amine, and 7% carboxylic acid functional groups [Frossard et al., 2014a,b]. Pristine but non-primary components from photochemical reactions (likely from biogenic marine vapor emissions) add carboxylic acid groups. Non-pristine contributions include shipping effluent in seawater and ship emissions, which add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. The pristine primary marine (ocean-derived) organic aerosol composition is nearly identical to model generated primary marine aerosol particles from bubbled seawater, indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the generated primary marine aerosol particles remained nearly constant over a broad range of chlorophyll-a concentrations, the generated primary marine aerosol particle alkane group fraction increased with chlorophyll-a concentrations. In addition, the generated primary marine aerosol particles have a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater hydroxyl group peak location is closer to that of polysaccharides. References Cited Frossard, Amanda A., Lynn M. Russell, Paola Massoli, Timothy S. Bates, and Patricia K. Quinn, "Side-by-Side Comparison of Four Techniques Explains the Apparent Differences in the Organic Composition of Generated and Ambient Marine Aerosol Particles," Aerosol Science and Technology - Aerosol Research Letter

  12. Russian spent marine fuel as a global security risk

    International Nuclear Information System (INIS)

    Gussgard, K.; Reistad, O.

    2001-01-01

    Russian marine fuel is a trans-national security concern. This paper focuses on specific technical properties of Russian marine nuclear fuel especially relevant for evaluating different aspects on nuclear proliferation, in addition to risks associated with regional environmental degradation and illegal diversion of radiological substances. Russian fresh fuel for marine reactors has been involved in several significant cases of illicit trafficking of special nuclear materials. The amount and quality of nuclear materials in Russian spent marine fuel give also reason for concern. Not less than 200 marine reactor cores are ready for having their spent fuel unloaded and preliminary stored on shore in the Far East and North West of Russia, and large amounts of spent naval fuel have been stored at Russian military bases for decades. In order to assess the security risks associated with Russian spent marine fuel, this paper discusses the material attractiveness of spent fuel from all types of Russian marine reactors. The calculations are based on a model of a light water moderated Russian icebreaker reactor. The computer tool HELIOS, used for modelling the reactor and the reactor operations, has been extensively qualified by comparisons with experimental data and international benchmark problems for reactor physics codes as well as through feedback from applications. Some of these benchmarks and studies include fuel enrichments up to 90% in Russian marine reactors. Several fuel data cases are discussed in the paper, focusing especially on: 1) early fuel designs with low initial enrichment; 2) more modern fuel designs used in third and fourth generation of Russian submarines probably with intermediate enriched fuel; and 3) marine fuel with initial enrichment levels close to weapons-grade material. In each case the fuel has been burned until k eff has reached below 1. Case 1) has been evaluated, the calculations made as basis for this paper have concentrated on fuel with

  13. The Intergovernmental Marine Bioenergy and Carbon Sequestration Protocol: Environmental and Political Risk Reduction of Global Carbon Management (The IMBECS Protocol Draft)

    Science.gov (United States)

    Hayes, M.

    2014-12-01

    The IMBECS Protocol concept employs large cultivation and biorefinery installations, within the five Subtropical Convergence Zones (STCZs), to support the production of commodities such as carbon negative biofuels, seafood, organic fertilizer, polymers and freshwater, as a flexible and cost effective means of Global Warming Mitigation (GWM) with the primary objective being the global scale replacement of fossil fuels (FF). This governance approach is categorically distinct from all other large scale GWM governance concepts. Yet, many of the current marine related GWM technologies are adaptable to this proposals. The IMBECS technology would be managed by an intergovernmentally sanctioned non-profit foundation which would have the following functions/mission: Synthesises relevant treaty language Performs R&D activities and purchases relevant patents Under intergovernmental commission, functions as the primary responsible international actorfor environmental standards, production quotas and operational integrity Licence technology to for-profit actors under strict production/environmental standards Enforce production and environmental standards along with production quotas Provide a high level of transparency to all stakeholders Provide legal defence The IMBECS Protocol is conceptually related to the work found in the following documents/links. This list is not exhaustive: Climate Change Geoengineering The Science and Politics of Global Climate Change: A guide to the debate IPCC Special Report on Renewable Energy and Climate Change Mitigation DoE Roadmap for Algae Biofuels PodEnergy Ocean Agronomy development leaders and progenitor of this proposal. Artificial Upwelling of Deep Seawater Using the Perpetual Salt Fountain for Cultivation of Ocean Desert NASAs' OMEGA study. Cool Planet; Land based version of a carbon negative biofuel concept. Cellana; Leading developer of algae based bioproducts. The State of World Fisheries and Aquaculture Mariculture: A global analysis

  14. Estimating the global burden of thalassogenic diseases: human infectious diseases caused by wastewater pollution of the marine environment.

    Science.gov (United States)

    Shuval, Hillel

    2003-06-01

    This paper presents a preliminary attempt at obtaining an order-of-magnitude estimate of the global burden of disease (GBD) of human infectious diseases associated with swimming/bathing in coastal waters polluted by wastewater, and eating raw or lightly steamed filter-feeding shellfish harvested from such waters. Such diseases will be termed thalassogenic--caused by the sea. Until recently these human health effects have been viewed primarily as local phenomena, not generally included in the world agenda of marine scientists dealing with global marine pollution problems. The massive global scale of the problem can be visualized when one considers that the wastewater and human body wastes of a significant portion of the world's population who reside along the coastline or in the vicinity of the sea are discharged daily, directly or indirectly, into the marine coastal waters, much of it with little or no treatment. Every cubic metre of raw domestic wastewater discharged into the sea can carry millions of infectious doses of pathogenic microorganisms. It is estimated that globally, foreign and local tourists together spend some 2 billion man-days annually at coastal recreational resorts and many are often exposed there to coastal waters polluted by wastewater. Annually some 800 million meals of potentially contaminated filter-feeding shellfish/bivalves and other sea foods, harvested in polluted waters are consumed, much of it raw or lightly steamed. A number of scientific studies have shown that swimmers swallow significant amounts of polluted seawater and can become ill with gastrointestinal and respiratory diseases from the pathogens they ingest. Based on risk assessments from the World Health Organization (WHO) and academic research sources the present study has made an estimate that globally, each year, there are in excess of 120 million cases of gastrointestinal disease and in excess of 50 million cases of more severe respiratory diseases caused by swimming and

  15. A marine biogeochemical perspective on black shale deposition

    Science.gov (United States)

    Piper, D. Z.; Calvert, S. E.

    2009-06-01

    Deposition of marine black shales has commonly been interpreted as having involved a high level of marine phytoplankton production that promoted high settling rates of organic matter through the water column and high burial fluxes on the seafloor or anoxic (sulfidic) water-column conditions that led to high levels of preservation of deposited organic matter, or a combination of the two processes. Here we review the hydrography and the budgets of trace metals and phytoplankton nutrients in two modern marine basins that have permanently anoxic bottom waters. This information is then used to hindcast the hydrography and biogeochemical conditions of deposition of a black shale of Late Jurassic age (the Kimmeridge Clay Formation, Yorkshire, England) from its trace metal and organic carbon content. Comparison of the modern and Jurassic sediment compositions reveals that the rate of photic zone primary productivity in the Kimmeridge Sea, based on the accumulation rate of the marine fraction of Ni, was as high as 840 g organic carbon m - 2 yr -1. This high level was possibly tied to the maximum rise of sea level during the Late Jurassic that flooded this and other continents sufficiently to allow major open-ocean boundary currents to penetrate into epeiric seas. Sites of intense upwelling of nutrient-enriched seawater would have been transferred from the continental margins, their present location, onto the continents. This global flooding event was likely responsible for deposition of organic matter-enriched sediments in other marine basins of this age, several of which today host major petroleum source rocks. Bottom-water redox conditions in the Kimmeridge Sea, deduced from the V:Mo ratio in the marine fraction of the Kimmeridge Clay Formation, varied from oxic to anoxic, but were predominantly suboxic, or denitrifying. A high settling flux of organic matter, a result of the high primary productivity, supported a high rate of bacterial respiration that led to the

  16. Characterization of waterborne nitrogen emissions for marine eutrophication modelling in life cycle impact assessment at the damage level and global scale

    DEFF Research Database (Denmark)

    Cosme, Nuno Miguel Dias; Hauschild, Michael Zwicky

    2017-01-01

    Current life cycle impact assessment (LCIA) methods lack a consistent and globally applicable characterization model relating nitrogen (N, as dissolved inorganic nitrogen, DIN) enrichment of coastal waters to the marine eutrophication impacts at the endpoint level. This paper introduces a method...... to calculate spatially explicit characterization factors (CFs) at endpoint and damage to ecosystems levels, for waterborne nitrogen emissions, reflecting their hypoxia-related marine eutrophication impacts, modelled for 5772 river basins of the world....

  17. Global Warming Responses at the Primary Secondary Interface: 1. Students' Beliefs and Willingness to Act

    Science.gov (United States)

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    Using survey methodology, students' beliefs, and willingness to act, about 16 specific actions related to global warming are compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those actions. In general there was a disparity between…

  18. Global morphological analysis of marine viruses shows minimal regional variation and dominance of non-tailed viruses.

    Science.gov (United States)

    Brum, Jennifer R; Schenck, Ryan O; Sullivan, Matthew B

    2013-09-01

    Viruses influence oceanic ecosystems by causing mortality of microorganisms, altering nutrient and organic matter flux via lysis and auxiliary metabolic gene expression and changing the trajectory of microbial evolution through horizontal gene transfer. Limited host range and differing genetic potential of individual virus types mean that investigations into the types of viruses that exist in the ocean and their spatial distribution throughout the world's oceans are critical to understanding the global impacts of marine viruses. Here we evaluate viral morphological characteristics (morphotype, capsid diameter and tail length) using a quantitative transmission electron microscopy (qTEM) method across six of the world's oceans and seas sampled through the Tara Oceans Expedition. Extensive experimental validation of the qTEM method shows that neither sample preservation nor preparation significantly alters natural viral morphological characteristics. The global sampling analysis demonstrated that morphological characteristics did not vary consistently with depth (surface versus deep chlorophyll maximum waters) or oceanic region. Instead, temperature, salinity and oxygen concentration, but not chlorophyll a concentration, were more explanatory in evaluating differences in viral assemblage morphological characteristics. Surprisingly, given that the majority of cultivated bacterial viruses are tailed, non-tailed viruses appear to numerically dominate the upper oceans as they comprised 51-92% of the viral particles observed. Together, these results document global marine viral morphological characteristics, show that their minimal variability is more explained by environmental conditions than geography and suggest that non-tailed viruses might represent the most ecologically important targets for future research.

  19. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Science.gov (United States)

    Spracklen, D. V.; Carslaw, K. S.; Merikanto, J.; Mann, G. W.; Reddington, C. L.; Pickering, S.; Ogren, J. A.; Andrews, E.; Baltensperger, U.; Weingartner, E.; Boy, M.; Kulmala, M.; Laakso, L.; Lihavainen, H.; Kivekäs, N.; Komppula, M.; Mihalopoulos, N.; Kouvarakis, G.; Jennings, S. G.; O'Dowd, C.; Birmili, W.; Wiedensohler, A.; Weller, R.; Gras, J.; Laj, P.; Sellegri, K.; Bonn, B.; Krejci, R.; Laaksonen, A.; Hamed, A.; Minikin, A.; Harrison, R. M.; Talbot, R.; Sun, J.

    2010-05-01

    We synthesised observations of total particle number (CN) concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300-2000 cm-3 in the marine boundary layer and free troposphere (FT) and 1000-10 000 cm-3 in the continental boundary layer (BL). Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2-10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46) but fail to explain the observed seasonal cycle (R2=0.1). The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=-88%) unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=-25%). Simulated CN concentrations in the continental BL were also biased low (NMB=-74%) unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one) or kinetic-type mechanism (J proportional to sulfuric acid to the power two) with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3) than by increasing the number emission from primary anthropogenic sources (R2=0.18). The nucleation constants that resulted in best overall match between model and observed CN concentrations were consistent with values derived in previous studies from detailed case studies at individual sites. In our model, kinetic and activation

  20. Metaphors of Primary School Students Relating to the Concept of Global Warming

    Science.gov (United States)

    Dogru, Mustafa; Sarac, Esra

    2013-01-01

    The purpose of this study is to reveal the metaphors of primary school students (n = 362) relating to the concept of global warming. Data collected by completing the expression of "global warming is like..., because..." of the students were analysed by use of qualitative and quantitative data analysis techniques. According to findings of…

  1. Does the globally invasive marine angiosperm, Halophila stipulacea, have high genetic diversity or unique mutations?

    Science.gov (United States)

    Chiquillo, K.; Campese, L.; Barber, P. H.; Willette, D. A.

    2016-02-01

    Seagrasses are important primary producers in many marine ecosystems, and support a wide diversity of marine life. However, invasive seagrasses like Halophila stipulacea can have pronounced negative impacts on an ecosystem by displacing native seagrasses and changing the community composition of the reef. Endemic to the Red Sea, Persian Gulf and Indian Ocean, Halophila stipulacea has become invasive in the Mediterranean and Caribbean Seas, presumably as a result of the opening of the Suez Canal and international ship traffic. However, it is unclear why this marine angiosperm has become invasive in parts of its range and not others. It is hypothesized that invasive forms may have evolved rapidly in response to natural selection in new and novel environments. Alternatively, genetic variation of introduced populations may be uniquely suited to thrive in regions where it is invasive. In this study, we use RAD next-generation sequencing to screen thousands of SNPs to investigate the genetic basis of adaptation in both native and invasive populations. We test whether genes under selection in the native range are the same as in the invasive range, or whether new genes have arisen with the invasion of each marine basin. The comparison of SNP frequencies unique among basins and environmental variables will aid in predicting new areas of invasion, assisting in improved management strategies to combat this invasive seagrass.

  2. Identifying Sources of Marine Litter

    OpenAIRE

    VEIGA Joana Mira; FLEET David; KINSEY Sue; NILSSON Per; VLACHOGIANNI Thomais; WERNER Stefanie; GALGANI Francois; THOMPSON Richard; DAGEVOS Jeroen; GAGO Jesus; SOBRAL Paula; CRONIN Richard

    2016-01-01

    Marine litter is a global problem causing harm to marine wildlife, coastal communities and maritime activities. It also embodies an emerging concern for human health and safety. The reduction of marine litter pollution poses a complex challenge for humankind, requiring adjustments in human behaviour as well as in the different phases of the life-cycle of products and across multiple economic sectors. The Marine Strategy Framework Directive (MSFD) requires European Member States to monitor...

  3. Continental and Marine Environmental changes in Europe induced by Global Climate variability and Regional Paleogeography Changes

    OpenAIRE

    Popescu , Speranta - Maria

    2008-01-01

    version originale; My PhD and post-doctorate researches have focused on paleoclimatic, paleogeographical and paleoenvironmental reconstruction of the Mediterranean Basin and its adjacent seas (i.e. the residual former Paratethys) since 11 Ma. During this time-interval the Mediterranean marine and continental environments were affected by significant paleogeographic changes, forced by global climate and sea-level variability, plate tectonics and regional uplift of Alps s.l. and Carpathians. Tw...

  4. Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle

    OpenAIRE

    Irmis, Randall B.; Whiteside, Jessica H.

    2011-01-01

    During the end-Permian mass extinction, marine ecosystems suffered a major drop in diversity, which was maintained throughout the Early Triassic until delayed recovery during the Middle Triassic. This depressed diversity in the Early Triassic correlates with multiple major perturbations to the global carbon cycle, interpreted as either intrinsic ecosystem or external palaeoenvironmental effects. In contrast, the terrestrial record of extinction and recovery is less clear; the effects and magn...

  5. Upper temperature limits of tropical marine ectotherms: global warming implications.

    Directory of Open Access Journals (Sweden)

    Khanh Dung T Nguyen

    Full Text Available Animal physiology, ecology and evolution are affected by temperature and it is expected that community structure will be strongly influenced by global warming. This is particularly relevant in the tropics, where organisms are already living close to their upper temperature limits and hence are highly vulnerable to rising temperature. Here we present data on upper temperature limits of 34 tropical marine ectotherm species from seven phyla living in intertidal and subtidal habitats. Short term thermal tolerances and vertical distributions were correlated, i.e., upper shore animals have higher thermal tolerance than lower shore and subtidal animals; however, animals, despite their respective tidal height, were susceptible to the same temperature in the long term. When temperatures were raised by 1°C hour(-1, the upper lethal temperature range of intertidal ectotherms was 41-52°C, but this range was narrower and reduced to 37-41°C in subtidal animals. The rate of temperature change, however, affected intertidal and subtidal animals differently. In chronic heating experiments when temperature was raised weekly or monthly instead of every hour, upper temperature limits of subtidal species decreased from 40°C to 35.4°C, while the decrease was more than 10°C in high shore organisms. Hence in the long term, activity and survival of tropical marine organisms could be compromised just 2-3°C above present seawater temperatures. Differences between animals from environments that experience different levels of temperature variability suggest that the physiological mechanisms underlying thermal sensitivity may vary at different rates of warming.

  6. Neoproterozoic marine carbonates and their paleoceanographic significance

    Science.gov (United States)

    Hood, Ashleigh van Smeerdijk; Wallace, Malcolm William

    2018-01-01

    The primary mineralogy of marine carbonate precipitates has been a crucial factor in constraining the major element composition of ancient oceans. Secular changes in Phanerozoic marine chemistry, including Mg/Ca, have been well-documented using the original carbonate mineralogy of ooids, marine cements and biominerals. However, the history of Precambrian seawater chemistry is not as well constrained, partially due to the prevalence of dolomitisation in the Precambrian geological record. The Neoproterozoic ( 1000 Ma to 541 Ma) record of primary carbonate mineralogy is documented here using a combination of literature data and new analysis of marine carbonate precipitates from the Otavi Fold Belt, Namibia, the Death Valley succession, USA and the Adelaide Fold Belt, Australia. These data suggest that the last 460 million years of the Proterozoic were dominated by aragonite and high-Mg calcite precipitation in shallow marine settings. In contrast, low-Mg calcite has only been recognised in a small number of formations. In addition to aragonite and calcite precipitation, marine dolomite precipitation was widespread in Neoproterozoic oceans, including mimetic (syn-sedimentary) dolomitisation and primary dolomite marine cementation. The combination of marine aragonite, high Mg-calcite and dolomite precipitation during the Neoproterozoic suggests extremely high seawater Mg/Ca conditions relative to Phanerozoic oceans. Marine dolomite precipitation may also be linked to widespread marine anoxia during this time.

  7. Editorial: Global in scope and regionally rich: an IndiSeas workshop helps shape the future of marine ecosystem indicators

    NARCIS (Netherlands)

    Shin, Y.J.; Bundy, A.; Piet, G.J.

    2012-01-01

    This report summarizes the outcomes of an IndiSeas workshop aimed at using ecosystem indicators to evaluate the status of the world’s exploited marine ecosystems in support of an ecosystem approach to fisheries, and global policy drivers such as the 2020 targets of the Convention on Biological

  8. Marine viruses and global climate change

    NARCIS (Netherlands)

    Danovaro, R.; Corinaldesi, C.; Dell'Anno, A.; Fuhrman, J.A.; Middelburg, J.J.; Noble, R.T.; Suttle, C.A.

    2011-01-01

    Sea-surface warming, sea-ice melting and related freshening, changes in circulation and mixing regimes, and ocean acidification induced by the present climate changes are modifying marine ecosystem structure and function and have the potential to alter the cycling of carbon and nutrients in surface

  9. The global susceptibility of coastal forage fish to competition by large jellyfish

    DEFF Research Database (Denmark)

    Schnedler-Meyer, Nicolas Azaña; Mariani, Patrizio; Kiørboe, Thomas

    2016-01-01

    dominance at low primary production, and a shift towards jellyfish with increasing productivity, turbidity and fishing. We present an index of global ecosystem susceptibility to shifts in fish–jellyfish dominance that compares well with data on jellyfish distributions and trends. The results are a step......Competition between large jellyfish and forage fish for zooplankton prey is both a possible cause of jellyfish increases and a concern for the management of marine ecosystems and fisheries. Identifying principal factors affecting this competition is therefore important for marine management......, but the lack of both good quality data and a robust theoretical framework have prevented general global analyses. Here, we present a general mechanistic food web model that considers fundamental differences in feeding modes and predation pressure between fish and jellyfish. The model predicts forage fish...

  10. Worldwide Interlaboratory Comparison on the Determination of Trace Elements in the IAEA-457 Marine Sediment Sample

    International Nuclear Information System (INIS)

    2016-01-01

    The primary goal of the IAEA Environment Laboratories is to assist Member States in the use of both stable and radioisotope analytical techniques to understand, monitor and protect the environment. In this context, the major impact of large coastal cities on marine ecosystems is an issue of primary concern for the IAEA and the IAEA Environment Laboratories. The marine pollution assessments required to understand such impacts depend on accurate knowledge of contaminant concentrations in various environmental compartments. Through the IAEA Environment Laboratories, the IAEA has been assisting national laboratories and regional laboratory networks since the early 1970s through the provision of a reference material programme for the analysis of radionuclides, trace elements and organic compounds in marine samples. Quality assurance and quality control are two fundamental requirements to ensure the reliability of analytical results. Data that are not based on adequate quality assurance and quality control can be erroneous, and their misuse can lead to poor environmental management decisions. In this regard, the IAEA has a long history of organizing interlaboratory studies, which have evolved to include an increasing array of potential contaminants in the marine environment. Relevant activities comprise global interlaboratory comparison, regional proficiency tests, the production of marine reference materials and the development of reference methods for trace elements and organic pollutants analysis in marine samples. This publication summarizes the results of the IAEA-457 interlaboratory comparison on the determination of trace elements in a marine sediment sample

  11. Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web

    DEFF Research Database (Denmark)

    Niiranen, S.; Yletyinen, J.; Tomczak, M.T.

    2013-01-01

    approach to project how the interaction of climate, nutrient loads, and cod fishing may affect the future of the open Central Baltic Sea food web. Regionally downscaled global climate scenarios were, in combination with three nutrient load scenarios, used to drive an ensemble of three regional...... biogeochemical models (BGMs). An Ecopath with Ecosim food web model was then forced with the BGM results from different nutrient-climate scenarios in combination with two different cod fishing scenarios. The results showed that regional management is likely to play a major role in determining the future......Changes in climate, in combination with intensive exploitation of marine resources, have caused large-scale reorganizations in many of the world's marine ecosystems during the past decades. The Baltic Sea in Northern Europe is one of the systems most affected. In addition to being exposed...

  12. Ocean Data Interoperability Platform (ODIP): developing a common framework for marine data management on a global scale

    Science.gov (United States)

    Schaap, Dick M. A.; Glaves, Helen

    2016-04-01

    Europe, the USA, and Australia are making significant progress in facilitating the discovery, access and long term stewardship of ocean and marine data through the development, implementation, population and operation of national, regional or international distributed ocean and marine observing and data management infrastructures such as SeaDataNet, EMODnet, IOOS, R2R, and IMOS. All of these developments are resulting in the development of standards and services implemented and used by their regional communities. The Ocean Data Interoperability Platform (ODIP) project is supported by the EU FP7 Research Infrastructures programme, National Science Foundation (USA) and Australian government and has been initiated 1st October 2012. Recently the project has been continued as ODIP II for another 3 years with EU HORIZON 2020 funding. ODIP includes all the major organisations engaged in ocean data management in EU, US, and Australia. ODIP is also supported by the IOC-IODE, closely linking this activity with its Ocean Data Portal (ODP) and Ocean Data Standards Best Practices (ODSBP) projects. The ODIP platform aims to ease interoperability between the regional marine data management infrastructures. Therefore it facilitates an organised dialogue between the key infrastructure representatives by means of publishing best practice, organising a series of international workshops and fostering the development of common standards and interoperability solutions. These are evaluated and tested by means of prototype projects. The presentation will give further background on the ODIP projects and the latest information on the progress of three prototype projects addressing: 1. establishing interoperability between the regional EU, USA and Australia data discovery and access services (SeaDataNet CDI, US NODC, and IMOS MCP) and contributing to the global GEOSS and IODE-ODP portals; 2. establishing interoperability between cruise summary reporting systems in Europe, the USA and

  13. Impacts of discarded plastic bags on marine assemblages and ecosystem functioning.

    Science.gov (United States)

    Green, Dannielle Senga; Boots, Bas; Blockley, David James; Rocha, Carlos; Thompson, Richard

    2015-05-05

    The accumulation of plastic debris is a global environmental problem due to its durability, persistence, and abundance. Although effects of plastic debris on individual marine organisms, particularly mammals and birds, have been extensively documented (e.g., entanglement and choking), very little is known about effects on assemblages and consequences for ecosystem functioning. In Europe, around 40% of the plastic items produced are utilized as single-use packaging, which rapidly accumulate in waste management facilities and as litter in the environment. A range of biodegradable plastics have been developed with the aspiration of reducing the persistence of litter; however, their impacts on marine assemblages or ecosystem functioning have never been evaluated. A field experiment was conducted to assess the impact of conventional and biodegradable plastic carrier bags as litter on benthic macro- and meio-faunal assemblages and biogeochemical processes (primary productivity, redox condition, organic matter content, and pore-water nutrients) on an intertidal shore near Dublin, Ireland. After 9 weeks, the presence of either type of bag created anoxic conditions within the sediment along with reduced primary productivity and organic matter and significantly lower abundances of infaunal invertebrates. This indicates that both conventional and biodegradable bags can rapidly alter marine assemblages and the ecosystem services they provide.

  14. Sustained climate warming drives declining marine biological productivity

    Science.gov (United States)

    Moore, J. Keith; Fu, Weiwei; Primeau, Francois; Britten, Gregory L.; Lindsay, Keith; Long, Matthew; Doney, Scott C.; Mahowald, Natalie; Hoffman, Forrest; Randerson, James T.

    2018-03-01

    Climate change projections to the year 2100 may miss physical-biogeochemical feedbacks that emerge later from the cumulative effects of climate warming. In a coupled climate simulation to the year 2300, the westerly winds strengthen and shift poleward, surface waters warm, and sea ice disappears, leading to intense nutrient trapping in the Southern Ocean. The trapping drives a global-scale nutrient redistribution, with net transfer to the deep ocean. Ensuing surface nutrient reductions north of 30°S drive steady declines in primary production and carbon export (decreases of 24 and 41%, respectively, by 2300). Potential fishery yields, constrained by lower–trophic-level productivity, decrease by more than 20% globally and by nearly 60% in the North Atlantic. Continued high levels of greenhouse gas emissions could suppress marine biological productivity for a millennium.

  15. Tracking and data system support for the Mariner Mars 1971 mission. Volume 3: Orbit insertion through end of primary mission

    Science.gov (United States)

    Barnum, P. W.; Renzetti, N. A.; Textor, G. P.; Kelly, L. B.

    1973-01-01

    The Tracking and Data System (TDS) Support for the Mariner Mars 1971 Mission final report contains the deep space tracking and data acquisition activities in support of orbital operations. During this period a major NASA objective was accomplished: completion of the 180th revolution and 90th day of data gathering with the spacecraft about the planet Mars. Included are presentations of the TDS flight support pass chronology data for each of the Deep Space Stations used, and performance evaluation for the Deep Space Network Telemetry, Tracking, Command, and Monitor Systems. With the loss of Mariner 8 at launch, Mariner 9 assumed the mission plan of Mariner 8, which included the TV mapping cycles and a 12-hr orbital period. The mission plan was modified as a result of a severe dust storm on the surface of Mars, which delayed the start of the TV mapping cycles. Thus, the end of primary mission date was extended to complete the TV mapping cycles.

  16. HANPP Collection: Global Patterns in Human Appropriation of Net Primary Productivity (HANPP)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Patterns in Human Appropriation of Net Primary Productivity (HANPP) portion of the HANPP Collection represents a digital map of human appropriation of net...

  17. The importance of the human footprint in shaping the global distribution of terrestrial, freshwater and marine invaders.

    Directory of Open Access Journals (Sweden)

    Belinda Gallardo

    Full Text Available Human activities such as transport, trade and tourism are likely to influence the spatial distribution of non-native species and yet, Species Distribution Models (SDMs that aim to predict the future broad scale distribution of invaders often rely on environmental (e.g. climatic information only. This study investigates if and to what extent do human activities that directly or indirectly influence nature (hereafter the human footprint affect the global distribution of invasive species in terrestrial, freshwater and marine ecosystems. We selected 72 species including terrestrial plants, terrestrial animals, freshwater and marine invasive species of concern in a focus area located in NW Europe (encompassing Great Britain, France, The Netherlands and Belgium. Species Distribution Models were calibrated with the global occurrence of species and a set of high-resolution (9×9 km environmental (e.g. topography, climate, geology layers and human footprint proxies (e.g. the human influence index, population density, road proximity. Our analyses suggest that the global occurrence of a wide range of invaders is primarily limited by climate. Temperature tolerance was the most important factor and explained on average 42% of species distribution. Nevertheless, factors related to the human footprint explained a substantial amount (23% on average of species distributions. When global models were projected into the focus area, spatial predictions integrating the human footprint featured the highest cumulative risk scores close to transport networks (proxy for invasion pathways and in habitats with a high human influence index (proxy for propagule pressure. We conclude that human related information-currently available in the form of easily accessible maps and databases-should be routinely implemented into predictive frameworks to inform upon policies to prevent and manage invasions. Otherwise we might be seriously underestimating the species and areas under

  18. Effects of economics and demographics on global fisheries sustainability.

    Science.gov (United States)

    Ding, Qi; Wang, Yali; Chen, Xinjun; Chen, Yong

    2017-08-01

    A good understanding of social factors that lead to marine ecological change is important to developing sustainable global fisheries. We used balanced panel models and conducted cross-national time-series analyses (1970-2010) of 122 nations to examine how economic prosperity and population growth affected the sustainability of marine ecosystems. We used catches in economic exclusive zone (EEZ); mean trophic level of fishery landings (MTL); primary production required to sustain catches (expressed as percentage of local primary production [%PPR]); and an index of ecosystem overfishing (i.e., the loss in secondary production index [L index]) as indicators of ecological change in marine ecosystems. The EEZ catch, %PPR, and L index declined gradually after gross domestic product (GDP) per capita reached $15,000, $14,000, and $19,000, respectively, and MTL increased steadily once GDP per capita exceeded $20,000. These relationships suggest that economic growth and biodiversity conservation are compatible goals. However, increasing human populations would degrade marine ecosystems. Specifically, a doubling of human population caused an increase in the %PPR of 17.1% and in the L index of 0.0254 and a decline in the MTL of 0.176. A 1% increase in human population resulted in a 0.744% increase in EEZ catch. These results highlight the importance of considering social and economic factors in developing sustainable fisheries management policy. © 2016 Society for Conservation Biology.

  19. GLOBEC: Global Ocean Ecosystems Dynamics: A component of the US Global Change Research Program

    Science.gov (United States)

    1991-01-01

    GLOBEC (GLOBal ocean ECosystems dynamics) is a research initiative proposed by the oceanographic and fisheries communities to address the question of how changes in global environment are expected to affect the abundance and production of animals in the sea. The approach to this problem is to develop a fundamental understanding of the mechanisms that determine both the abundance of key marine animal populations and their variances in space and time. The assumption is that the physical environment is a major contributor to patterns of abundance and production of marine animals, in large part because the planktonic life stages typical of most marine animals are intrinsically at the mercy of the fluid motions of the medium in which they live. Consequently, the authors reason that a logical approach to predicting the potential impact of a globally changing environment is to understand how the physical environment, both directly and indirectly, contributes to animal abundance and its variability in marine ecosystems. The plans for this coordinated study of of the potential impact of global change on ocean ecosystems dynamics are discussed.

  20. Latitudinal gradients in degradation of marine dissolved organic carbon.

    Directory of Open Access Journals (Sweden)

    Carol Arnosti

    Full Text Available Heterotrophic microbial communities cycle nearly half of net primary productivity in the ocean, and play a particularly important role in transformations of dissolved organic carbon (DOC. The specific means by which these communities mediate the transformations of organic carbon are largely unknown, since the vast majority of marine bacteria have not been isolated in culture, and most measurements of DOC degradation rates have focused on uptake and metabolism of either bulk DOC or of simple model compounds (e.g. specific amino acids or sugars. Genomic investigations provide information about the potential capabilities of organisms and communities but not the extent to which such potential is expressed. We tested directly the capabilities of heterotrophic microbial communities in surface ocean waters at 32 stations spanning latitudes from 76°S to 79°N to hydrolyze a range of high molecular weight organic substrates and thereby initiate organic matter degradation. These data demonstrate the existence of a latitudinal gradient in the range of complex substrates available to heterotrophic microbial communities, paralleling the global gradient in bacterial species richness. As changing climate increasingly affects the marine environment, changes in the spectrum of substrates accessible by microbial communities may lead to shifts in the location and rate at which marine DOC is respired. Since the inventory of DOC in the ocean is comparable in magnitude to the atmospheric CO(2 reservoir, such a change could profoundly affect the global carbon cycle.

  1. Explaining global surface aerosol number concentrations in terms of primary emissions and particle formation

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2010-05-01

    Full Text Available We synthesised observations of total particle number (CN concentration from 36 sites around the world. We found that annual mean CN concentrations are typically 300–2000 cm−3 in the marine boundary layer and free troposphere (FT and 1000–10 000 cm−3 in the continental boundary layer (BL. Many sites exhibit pronounced seasonality with summer time concentrations a factor of 2–10 greater than wintertime concentrations. We used these CN observations to evaluate primary and secondary sources of particle number in a global aerosol microphysics model. We found that emissions of primary particles can reasonably reproduce the spatial pattern of observed CN concentration (R2=0.46 but fail to explain the observed seasonal cycle (R2=0.1. The modeled CN concentration in the FT was biased low (normalised mean bias, NMB=−88% unless a secondary source of particles was included, for example from binary homogeneous nucleation of sulfuric acid and water (NMB=−25%. Simulated CN concentrations in the continental BL were also biased low (NMB=−74% unless the number emission of anthropogenic primary particles was increased or a mechanism that results in particle formation in the BL was included. We ran a number of simulations where we included an empirical BL nucleation mechanism either using the activation-type mechanism (nucleation rate, J, proportional to gas-phase sulfuric acid concentration to the power one or kinetic-type mechanism (J proportional to sulfuric acid to the power two with a range of nucleation coefficients. We found that the seasonal CN cycle observed at continental BL sites was better simulated by BL particle formation (R2=0.3 than by increasing the number emission from primary anthropogenic sources (R2=0.18. The nucleation constants that resulted in best overall match between model and observed CN concentrations were

  2. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Hanna Farnelid

    Full Text Available Cyanobacteria are thought to be the main N(2-fixing organisms (diazotrophs in marine pelagic waters, but recent molecular analyses indicate that non-cyanobacterial diazotrophs are also present and active. Existing data are, however, restricted geographically and by limited sequencing depths. Our analysis of 79,090 nitrogenase (nifH PCR amplicons encoding 7,468 unique proteins from surface samples (ten DNA samples and two RNA samples collected at ten marine locations world-wide provides the first in-depth survey of a functional bacterial gene and yield insights into the composition and diversity of the nifH gene pool in marine waters. Great divergence in nifH composition was observed between sites. Cyanobacteria-like genes were most frequent among amplicons from the warmest waters, but overall the data set was dominated by nifH sequences most closely related to non-cyanobacteria. Clusters related to Alpha-, Beta-, Gamma-, and Delta-Proteobacteria were most common and showed distinct geographic distributions. Sequences related to anaerobic bacteria (nifH Cluster III were generally rare, but preponderant in cold waters, especially in the Arctic. Although the two transcript samples were dominated by unicellular cyanobacteria, 42% of the identified non-cyanobacterial nifH clusters from the corresponding DNA samples were also detected in cDNA. The study indicates that non-cyanobacteria account for a substantial part of the nifH gene pool in marine surface waters and that these genes are at least occasionally expressed. The contribution of non-cyanobacterial diazotrophs to the global N(2 fixation budget cannot be inferred from sequence data alone, but the prevalence of non-cyanobacterial nifH genes and transcripts suggest that these bacteria are ecologically significant.

  3. Marine complex adaptive systems

    NARCIS (Netherlands)

    Bigagli, Emanuele

    2017-01-01

    Anthropogenic and climate-related stressors challenge the health of nearly every part of the global oceans. They affect the capacity of oceans to regulate global weather and climate, as well as ocean productivity and food services, and result in the loss or degradation of marine habitats and

  4. Noiseonomics: the relationship between ambient noise levels in the sea and global economic trends.

    Science.gov (United States)

    Frisk, George V

    2012-01-01

    In recent years, the topic of noise in the sea and its effects on marine mammals has attracted considerable attention from both the scientific community and the general public. Since marine mammals rely heavily on acoustics as a primary means of communicating, navigating, and foraging in the ocean, any change in their acoustic environment may have an impact on their behavior. Specifically, a growing body of literature suggests that low-frequency, ambient noise levels in the open ocean increased approximately 3.3 dB per decade during the period 1950-2007. Here we show that this increase can be attributed primarily to commercial shipping activity, which in turn, can be linked to global economic growth. As a corollary, we conclude that ambient noise levels can be directly related to global economic conditions. We provide experimental evidence supporting this theory and discuss its implications for predicting future noise levels based on global economic trends.

  5. A GCM study of organic matter in marine aerosol and its potential contribution to cloud drop activation

    Directory of Open Access Journals (Sweden)

    G. J. Roelofs

    2008-02-01

    Full Text Available With the global aerosol-climate model ECHAM5-HAM we investigate the potential influence of organic aerosol originating from the ocean on aerosol mass and chemical composition and the droplet concentration and size of marine clouds. We present sensitivity simulations in which the uptake of organic matter in the marine aerosol is prescribed for each aerosol mode with varying organic mass and mixing state, and with a geographical distribution and seasonality similar to the oceanic emission of dimethyl sulfide. Measurements of aerosol mass, aerosol chemical composition and cloud drop effective radius are used to assess the representativity of the model initializations. Good agreement with the measurements is obtained when organic matter is added to the Aitken, accumulation and coarse modes simultaneously. Representing marine organics in the model leads to higher cloud drop number concentrations and thus smaller cloud drop effective radii, and this improves the agreement with measurements. The mixing state of the organics and the other aerosol matter, i.e. internal or external depending on the formation process of aerosol organics, is an important factor for this. We estimate that globally about 75 Tg C yr−1 of organic matter from marine origin enters the aerosol phase, with comparable contributions from primary emissions and secondary organic aerosol formation.

  6. Marine Science

    African Journals Online (AJOL)

    J O U R N A L O F. Marine Science. Coral reefs of Mauritius in a changing global climate ..... in confined aquifers, and a lesser influence in uncon- fined systems. On the ... massive cloud cover during the critical months, some. 70% bleaching ...

  7. Globally Deghosting for Marine Streamer with Alternating Minimization Approach in Frequency-slowness Domain

    Science.gov (United States)

    Wang, C.; Zhu, Z.; Gu, H.; Liu, C.; Liu, Z.; Jiao, Z.

    2017-12-01

    The ghost effects of the sea surface can generate notch in marine towed-streamer data, which results in narrow bandwidth of seismic data. Currently, deghosting is widely utilized to increase the bandwidth of the seismic data or the images. However, most of the conventional deghosting algorithms havenot considered the error of streamer depth causing a biased ghost-delay time (τ) with respect to primary reflection and amplitude difference coefficient (r) between ghost and primary reflection varies with offset due to rugged seabed and target depth variation. We proposed a ghost filtering operator considering the protentional biases within the ghost-delay time (τ) and the amplitude difference coefficient (r). The up-going wavefield (u), ghost-delay time (τ) and amplitude difference coefficient (r) can be obtained by utilizing alternating minimization approach for minimizing the difference between actual wavefield and theoretical wavefield in frequency-slowness domain. The main idea is to alternatively updating u, τ and r in each iteration: we update u by least-squares when we keep τ and r constant; and we then keep u constant and optimize over τ and r with a closed-form solution which is closely related to matched filtering. The convergence of the proposed algorithm is guaranteed since we have closed-form solutions for each stage. The experiments on synthetic record confirmed the reliability of the proposed algorithm. We also demonstrate our proposed method in marine VDS shot acquisition. After migration stack processing, our ghosting method significantly increases the bandwidth of the average amplitude, amplitude energy of the medium and high frequency spectrum, improving resolution of medium and deep reflection and providing higher signal-to-noise ratio with clear break point. This research is funded by China Important National Science & Technology Specific Projects (2016ZX05026001-001).

  8. Holocene environmental changes recorded in Dicksonfjorden and Woodfjorden, Svalbard: impacts of global climate changes in a glacial-marine system

    Science.gov (United States)

    Joo, Y. J.; Nam, S. I.; Son, Y. J.; Forwick, M.

    2017-12-01

    Fjords in the Svalbard archipelago are characterized by an extreme environmental gradient between 1) the glacial system affected by tidewater glaciers and seasonal sea ice inside the fjords and 2) the warm Atlantic Water intrusion by the West Spitsbergen Current from open ocean. As sediment is largely supplied from the terrestrial source area exposed along the steep slopes of the fjords, the changes in the surface processes affected by glaciers are likely preserved in the sediments in the inner fjords. On the other hand, variations in the influence of the warm Atlantic Water in the marine realm (e.g. marine productivity) can be archived in the sediment deposited in the vicinity of the entrance to the fjords. Since the last deglaciation of the Svalbard-Barents ice sheet ( 13000 yrs BP), the Svalbard fjords have faced dramatic climate changes including the early Holocene Climate Optimum (HCO) and subsequent cooling that eventually led to the current cold and dry climate. We investigate the Holocene environmental changes in both terrestrial and marine realms based on stable isotopic and inorganic geochemical analyses of sediments deposited in Dicksonfjorden and Woodfjorden in the western and northern Spitsbergen, respectively. The two fjords are expected to provide intriguing information regarding how terrestrial and marine realms of the Arctic fjords system responded to regional and global climate changes. Being a branch of the larger Isfjorden, Dicksonfjorden penetrates deeply to the land, whereas Woodfjorden is rather directly connected to the open ocean. Accordingly, the results suggest that the Dicksonfjorden sediment records mainly terrestrial signals with marked fluctuations in sediment composition that coincide with major climate changes (e.g. HCO). On the contrary, the two Woodfjorden cores collected from different parts of the fjord exhibit contrasting results, likely illustrating differing response of terrestrial and marine realms to the climate changes in

  9. Marine N2O Emissions From Nitrification and Denitrification Constrained by Modern Observations and Projected in Multimillennial Global Warming Simulations

    Science.gov (United States)

    Battaglia, G.; Joos, F.

    2018-01-01

    Nitrous oxide (N2O) is a potent greenhouse gas (GHG) and ozone destructing agent; yet global estimates of N2O emissions are uncertain. Marine N2O stems from nitrification and denitrification processes which depend on organic matter cycling and dissolved oxygen (O2). We introduce N2O as an obligate intermediate product of denitrification and as an O2-dependent by-product from nitrification in the Bern3D ocean model. A large model ensemble is used to probabilistically constrain modern and to project marine N2O production for a low (Representative Concentration Pathway (RCP)2.6) and high GHG (RCP8.5) scenario extended to A.D. 10,000. Water column N2O and surface ocean partial pressure N2O data serve as constraints in this Bayesian framework. The constrained median for modern N2O production is 4.5 (±1σ range: 3.0 to 6.1) Tg N yr-1, where 4.5% stems from denitrification. Modeled denitrification is 65.1 (40.9 to 91.6) Tg N yr-1, well within current estimates. For high GHG forcing, N2O production decreases by 7.7% over this century due to decreasing organic matter export and remineralization. Thereafter, production increases slowly by 21% due to widespread deoxygenation and high remineralization. Deoxygenation peaks in two millennia, and the global O2 inventory is reduced by a factor of 2 compared to today. Net denitrification is responsible for 7.8% of the long-term increase in N2O production. On millennial timescales, marine N2O emissions constitute a small, positive feedback to climate change. Our simulations reveal tight coupling between the marine carbon cycle, O2, N2O, and climate.

  10. Multiple episodes of extensive marine anoxia linked to global warming and continental weathering following the latest Permian mass extinction.

    Science.gov (United States)

    Zhang, Feifei; Romaniello, Stephen J; Algeo, Thomas J; Lau, Kimberly V; Clapham, Matthew E; Richoz, Sylvain; Herrmann, Achim D; Smith, Harrison; Horacek, Micha; Anbar, Ariel D

    2018-04-01

    Explaining the ~5-million-year delay in marine biotic recovery following the latest Permian mass extinction, the largest biotic crisis of the Phanerozoic, is a fundamental challenge for both geological and biological sciences. Ocean redox perturbations may have played a critical role in this delayed recovery. However, the lack of quantitative constraints on the details of Early Triassic oceanic anoxia (for example, time, duration, and extent) leaves the links between oceanic conditions and the delayed biotic recovery ambiguous. We report high-resolution U-isotope (δ 238 U) data from carbonates of the uppermost Permian to lowermost Middle Triassic Zal section (Iran) to characterize the timing and global extent of ocean redox variation during the Early Triassic. Our δ 238 U record reveals multiple negative shifts during the Early Triassic. Isotope mass-balance modeling suggests that the global area of anoxic seafloor expanded substantially in the Early Triassic, peaking during the latest Permian to mid-Griesbachian, the late Griesbachian to mid-Dienerian, the Smithian-Spathian transition, and the Early/Middle Triassic transition. Comparisons of the U-, C-, and Sr-isotope records with a modeled seawater PO 4 3- concentration curve for the Early Triassic suggest that elevated marine productivity and enhanced oceanic stratification were likely the immediate causes of expanded oceanic anoxia. The patterns of redox variation documented by the U-isotope record show a good first-order correspondence to peaks in ammonoid extinctions during the Early Triassic. Our results indicate that multiple oscillations in oceanic anoxia modulated the recovery of marine ecosystems following the latest Permian mass extinction.

  11. Hypoxia in the changing marine environment

    Science.gov (United States)

    Zhang, J.; Cowie, G.; Naqvi, S. W. A.

    2013-03-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926-9, Stramma et al 2008 Science 320 655-8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1-24).

  12. Global styrene oligomers monitoring as new chemical contamination from polystyrene plastic marine pollution.

    Science.gov (United States)

    Kwon, Bum Gun; Koizumi, Koshiro; Chung, Seon-Yong; Kodera, Yoichi; Kim, Jong-Oh; Saido, Katsuhiko

    2015-12-30

    Polystyrene (PS) plastic marine pollution is an environmental concern. However, a reliable and objective assessment of the scope of this problem, which can lead to persistent organic contaminants, has yet to be performed. Here, we show that anthropogenic styrene oligomers (SOs), a possible indicator of PS pollution in the ocean, are found globally at concentrations that are higher than those expected based on the stability of PS. SOs appear to persist to varying degrees in the seawater and sand samples collected from beaches around the world. The most persistent forms are styrene monomer, styrene dimer, and styrene trimer. Sand samples from beaches, which are commonly recreation sites, are particularly polluted with these high SOs concentrations. This finding is of interest from both scientific and public perspectives because SOs may pose potential long-term risks to the environment in combination with other endocrine disrupting chemicals. From SOs monitoring results, this study proposes a flow diagram for SOs leaching from PS cycle. Using this flow diagram, we conclude that SOs are global contaminants in sandy beaches around the world due to their broad spatial distribution. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Global resistance and resilience of primary production following extreme drought are predicted by mean annual precipitation

    Science.gov (United States)

    Stuart-Haëntjens, E. J.; De Boeck, H. J.; Lemoine, N. P.; Gough, C. M.; Kröel-Dulay, G.; Mänd, P.; Jentsch, A.; Schmidt, I. K.; Bahn, M.; Lloret, F.; Kreyling, J.; Wohlgemuth, T.; Stampfli, A.; Anderegg, W.; Classen, A. T.; Smith, M. D.

    2017-12-01

    Extreme drought is increasing globally in frequency and intensity, with uncertain consequences for the resistance and resilience of key ecosystem functions, including primary production. Primary production resistance, the capacity of an ecosystem to withstand change in primary production following extreme climate, and resilience, the degree to which primary production recovers, vary among and within ecosystem types, obscuring global patterns of resistance and resilience to extreme drought. Past syntheses on resistance have focused climatic gradients or individual ecosystem types, without assessing interactions between the two. Theory and many empirical studies suggest that forest production is more resistant but less resilient than grassland production to extreme drought, though some empirical studies reveal that these trends are not universal. Here, we conducted a global meta-analysis of sixty-four grassland and forest sites, finding that primary production resistance to extreme drought is predicted by a common continuum of mean annual precipitation (MAP). However, grasslands and forests exhibit divergent production resilience relationships with MAP. We discuss the likely mechanisms underlying the mixed production resistance and resilience patterns of forests and grasslands, including different plant species turnover times and drought adaptive strategies. These findings demonstrate the primary production responses of forests and grasslands to extreme drought are mixed, with far-reaching implications for Earth System Models, ecosystem management, and future studies of extreme drought resistance and resilience.

  14. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2013-02-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  15. Editorial: Globalization, roving bandits, and marine resources

    NARCIS (Netherlands)

    Berkes, F.; Hughes, T.P.; Steneck, R.S.; Wilson, J.A.; Bellwood, D.R.; Crona, B.; Folke, C.; Gunderson, L.H.; Leslie, H.M.; Norberg, J.; Nyström, M.; Olsson, P.; Osterblom, H.; Scheffer, M.; Worm, B.

    2006-01-01

    Overfishing is increasingly threatening the world's marine ecosystems (1, 2). The search for the social causes of this crisis has often focused on inappropriate approaches to governance and lack of incentives for conservation (3, 4). Little attention, however, has been paid to the critical impact of

  16. FATTY ACID SIGNATURES DIFFERENTIATE MARINE MACROPHYTES AT ORDINAL AND FAMILY RANKS(1).

    Science.gov (United States)

    Galloway, Aaron W E; Britton-Simmons, Kevin H; Duggins, David O; Gabrielson, Paul W; Brett, Michael T

    2012-08-01

    Primary productivity by plants and algae is the fundamental source of energy in virtually all food webs. Furthermore, photosynthetic organisms are the sole source for ω-3 and ω-6 essential fatty acids (EFA) to upper trophic levels. Because animals cannot synthesize EFA, these molecules may be useful as trophic markers for tracking sources of primary production through food webs if different primary producer groups have different EFA signatures. We tested the hypothesis that different marine macrophyte groups have distinct fatty acid (FA) signatures by conducting a phylogenetic survey of 40 marine macrophytes (seaweeds and seagrasses) representing 36 families, 21 orders, and four phyla in the San Juan Archipelago, WA, USA. We used multivariate statistics to show that FA composition differed significantly (P macrophytes confirmed that this pattern was robust on a global scale (P macrophyte taxa shows a clear relationship between macrophyte phylogeny and FA content and strongly suggests that FA signature analyses can offer a viable approach to clarifying fundamental questions about the contribution of different basal resources to food webs. Moreover, these results imply that taxa with commercially valuable EFA signatures will likely share such characteristics with other closely related taxa that have not yet been evaluated for FA content. © 2012 Phycological Society of America.

  17. MESA: Supporting Teaching and Learning about the Marine Environment--Primary Science Focus

    Science.gov (United States)

    Preston, Christine

    2010-01-01

    The Marine Education Society of Australasia (MESA) Inc. is a national organisation of marine educators that aims to bring together people interested in the study and enjoyment of coastal and marine environments. MESA representatives and members organise education and interpretation activities in support of schools and communities during a number…

  18. Substantial role of macroalgae in marine carbon sequestration

    KAUST Repository

    Krause-Jensen, Dorte; Duarte, Carlos M.

    2016-01-01

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr â '1 (with a range of 61-268 TgC yr â '1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  19. Substantial role of macroalgae in marine carbon sequestration

    KAUST Repository

    Krause-Jensen, Dorte

    2016-09-12

    Vegetated coastal habitats have been identified as important carbon sinks. In contrast to angiosperm-based habitats such as seagrass meadows, salt marshes and mangroves, marine macroalgae have largely been excluded from discussions of marine carbon sinks. Macroalgae are the dominant primary producers in the coastal zone, but they typically do not grow in habitats that are considered to accumulate large stocks of organic carbon. However, the presence of macroalgal carbon in the deep sea and sediments, where it is effectively sequestered from the atmosphere, has been reported. A synthesis of these data suggests that macroalgae could represent an important source of the carbon sequestered in marine sediments and the deep ocean. We propose two main modes for the transport of macroalgae to the deep ocean and sediments: macroalgal material drifting through submarine canyons, and the sinking of negatively buoyant macroalgal detritus. A rough estimate suggests that macroalgae could sequester about 173 TgC yr â \\'1 (with a range of 61-268 TgC yr â \\'1) globally. About 90% of this sequestration occurs through export to the deep sea, and the rest through burial in coastal sediments. This estimate exceeds that for carbon sequestered in angiosperm-based coastal habitats.

  20. Evidence That Marine Reserves Enhance Resilience to Climatic Impacts

    Science.gov (United States)

    Micheli, Fiorenza; Saenz-Arroyo, Andrea; Greenley, Ashley; Vazquez, Leonardo; Espinoza Montes, Jose Antonio; Rossetto, Marisa; De Leo, Giulio A.

    2012-01-01

    Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection. PMID:22855690

  1. Evidence that marine reserves enhance resilience to climatic impacts.

    Directory of Open Access Journals (Sweden)

    Fiorenza Micheli

    Full Text Available Establishment of marine protected areas, including fully protected marine reserves, is one of the few management tools available for local communities to combat the deleterious effect of large scale environmental impacts, including global climate change, on ocean ecosystems. Despite the common hope that reserves play this role, empirical evidence of the effectiveness of local protection against global problems is lacking. Here we show that marine reserves increase the resilience of marine populations to a mass mortality event possibly caused by climate-driven hypoxia. Despite high and widespread adult mortality of benthic invertebrates in Baja California, Mexico, that affected populations both within and outside marine reserves, juvenile replenishment of the species that supports local economies, the pink abalone Haliotis corrugata, remained stable within reserves because of large body size and high egg production of the protected adults. Thus, local protection provided resilience through greater resistance and faster recovery of protected populations. Moreover, this benefit extended to adjacent unprotected areas through larval spillover across the edges of the reserves. While climate change mitigation is being debated, coastal communities have few tools to slow down negative impacts of global environmental shifts. These results show that marine protected areas can provide such protection.

  2. Marine Science

    African Journals Online (AJOL)

    Science. The journal has a new and more modern layout, published online only, and the editorial. Board was increased to include more disciplines pertaining to marine sciences. While important chal- lenges still lie ahead, we are steadily advancing our standard to increase visibility and dissemination throughout the global ...

  3. 78 FR 49728 - Availability of Seats for National Marine Sanctuary Advisory Councils

    Science.gov (United States)

    2013-08-15

    ...: Fishing (primary member); Fishing (alternate); and Education (alternate). Florida Keys National Marine... (primary member); Research and Monitoring (alternate); Tourism--Lower Keys (primary member); and Tourism--Lower Keys (alternate). Gulf of the Farallones National Marine Sanctuary Advisory Council: Education...

  4. Changes in Eocene-Miocene shallow marine carbonate factories along the tropical SE Circum-Caribbean responded to major regional and global environmental and tectonic events

    Science.gov (United States)

    Silva-Tamayo, Juan Carlos

    2015-04-01

    Changes in the factory of Cenozoic tropical marine carbonates have been for long attributed to major variations on climatic and environmental conditions. Although important changes on the factories of Cenozoic Caribbean carbonates seem to have followed global climatic and environmental changes, the regional impact of such changes on the factories of shallow marine carbonate along the Caribbean is not well established. Moreover, the influence of transpressional tectonics on the occurrence, distribution and stratigraphy of shallow marine carbonate factories along this area is far from being well understood. Here we report detailed stratigraphic, petrographic and Sr-isotope chemostratigraphic information of several Eocene-Miocene carbonate successions deposited along the equatorial/tropical SE Circum-Caribbean (Colombia and Panama) from which we further assess the influence of changing environmental conditions, transtentional tectonics and sea level change on the development of the shallow marine carbonate factories. Our results suggest that during the Eocene-early Oligocene interval, a period of predominant high atmospheric pCO2, coralline algae constitute the principal carbonate builders of shallow marine carbonate successions along the SE Circum-Caribbean. Detailed stratigraphic and paragenetic analyses suggest the developed of laterally continuous red algae calcareous build-ups along outer-rimmed carbonate platforms. The predominance of coralline red algae over corals on the shallow marine carbonate factories was likely related to high sea surface temperatures and high turbidity. The occurrence of such build-ups was likely controlled by pronounce changes in the basin paleotopography, i.e. the occurrence of basement highs and lows, resulting from local transpressional tectonics. The occurrence of these calcareous red algae dominated factories was also controlled by diachronic opening of different sedimentary basins along the SE Circum Caribbean resulting from

  5. Plastics in the Marine Environment.

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-03

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence-albeit limited-of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  6. Plastics in the Marine Environment

    Science.gov (United States)

    Law, Kara Lavender

    2017-01-01

    Plastics contamination in the marine environment was first reported nearly 50 years ago, less than two decades after the rise of commercial plastics production, when less than 50 million metric tons were produced per year. In 2014, global plastics production surpassed 300 million metric tons per year. Plastic debris has been detected worldwide in all major marine habitats, in sizes from microns to meters. In response, concerns about risks to marine wildlife upon exposure to the varied forms of plastic debris have increased, stimulating new research into the extent and consequences of plastics contamination in the marine environment. Here, I present a framework to evaluate the current understanding of the sources, distribution, fate, and impacts of marine plastics. Despite remaining knowledge gaps in mass budgeting and challenges in investigating ecological impacts, the increasing evidence of the ubiquity of plastics contamination in the marine environment, the continued rapid growth in plastics production, and the evidence—albeit limited—of demonstrated impacts to marine wildlife support immediate implementation of source-reducing measures to decrease the potential risks of plastics in the marine ecosystem.

  7. Hypoxia in the changing marine environment

    International Nuclear Information System (INIS)

    Zhang, J; Cowie, G; Naqvi, S W A

    2013-01-01

    The predicted future of the global marine environment, as a combined result of forcing due to climate change (e.g. warming and acidification) and other anthropogenic perturbation (e.g. eutrophication), presents a challenge to the sustainability of ecosystems from tropics to high latitudes. Among the various associated phenomena of ecosystem deterioration, hypoxia can cause serious problems in coastal areas as well as oxygen minimum zones in the open ocean (Diaz and Rosenberg 2008 Science 321 926–9, Stramma et al 2008 Science 320 655–8). The negative impacts of hypoxia include changes in populations of marine organisms, such as large-scale mortality and behavioral responses, as well as variations of species distributions, biodiversity, physiological stress, and other sub-lethal effects (e.g. growth and reproduction). Social and economic activities that are related to services provided by the marine ecosystems, such as tourism and fisheries, can be negatively affected by the aesthetic outcomes as well as perceived or real impacts on seafood quality (STAP 2011 (Washington, DC: Global Environment Facility) p 88). Moreover, low oxygen concentration in marine waters can have considerable feedbacks to other compartments of the Earth system, like the emission of greenhouse gases to the atmosphere, and can affect the global biogeochemical cycles of nutrients and trace elements. It is of critical importance to prediction and adaptation strategies that the key processes of hypoxia in marine environments be precisely determined and understood (cf Zhang et al 2010 Biogeosciences 7 1–24). (synthesis and review)

  8. Primary sources of selected POPs: regional and global scale emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M

    2004-03-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale.

  9. Primary sources of selected POPs: regional and global scale emission inventories

    International Nuclear Information System (INIS)

    Breivik, Knut; Alcock, Ruth; Li Yifan; Bailey, Robert E.; Fiedler, Heidelore; Pacyna, Jozef M.

    2004-01-01

    During the last decade, a number of studies have been devoted to the sources and emissions of Persistent Organic Pollutants (POPs) at regional and global scales. While significant improvements in knowledge have been achieved for some pesticides, the quantitative understanding of the emission processes and emission patterns for 'non-pesticide' POPs are still considered limited. The key issues remaining for the non-pesticide POPs are in part determined by their general source classification. For industrial chemicals, such as the polychlorinated biphenyls (PCBs), there is considerable uncertainty with respect to the relative importance of atmospheric emissions from various source categories. For PCBs, temperature is discussed as a potential key factor influencing atmospheric emission levels and patterns. When it comes to the unintentional by-products of combustion and industrial processes (PCDD/Fs), there is still a large uncertainty with respect to the relative contribution of emissions from unregulated sources such as backyard barrel burning that requires further consideration and characterisation. For hexachlorobenzene (HCB), the relative importance of primary and secondary atmospheric emissions in controlling current atmospheric concentrations remains one of the key uncertainties. While these and other issues may remain unresolved, knowledge concerning the emissions of POPs is a prerequisite for any attempt to understand and predict the distribution and fate of these chemicals on a regional and global scale as well as to efficiently minimise future environmental burdens. - Knowledge of primary emissions is a prerequisite for understanding and predicting POPs on a regional/global scale

  10. Marine Microalgae with Anti-Cancer Properties.

    Science.gov (United States)

    Martínez Andrade, Kevin A; Lauritano, Chiara; Romano, Giovanna; Ianora, Adrianna

    2018-05-15

    Cancer is the leading cause of death globally and finding new therapeutic agents for cancer treatment remains a major challenge in the pursuit for a cure. This paper presents an overview on microalgae with anti-cancer activities. Microalgae are eukaryotic unicellular plants that contribute up to 40% of global primary productivity. They are excellent sources of pigments, lipids, carotenoids, omega-3 fatty acids, polysaccharides, vitamins and other fine chemicals, and there is an increasing demand for their use as nutraceuticals and food supplements. Some microalgae are also reported as having anti-cancer activity. In this review, we report the microalgal species that have shown anti-cancer properties, the cancer cell lines affected by algae and the concentrations of compounds/extracts tested to induce arrest of cell growth. We also report the mediums used for growing microalgae that showed anti-cancer activity and compare the bioactivity of these microalgae with marine anticancer drugs already on the market and in phase III clinical trials. Finally, we discuss why some microalgae can be promising sources of anti-cancer compounds for future development.

  11. Genome and metagenome enabled analyses reveal new insight into the global biogeography and potential urea utilization in marine Thaumarchaeota.

    Science.gov (United States)

    Ahlgren, N.; Parada, A. E.; Fuhrman, J. A.

    2016-02-01

    Marine Thaumarchaea are an abundant, important group of marine microbial communities as they fix carbon, oxidize ammonium, and thus contribute to key N and C cycles in the oceans. From an enrichment culture, we have sequenced the complete genome of a new Thaumarchaeota strain, SPOT01. Analysis of this genome and other Thaumarchaeal genomes contributes new insight into its role in N cycling and clarifies the broader biogeography of marine Thaumarchaeal genera. Phylogenomics of Thaumarchaeota genomes reveal coherent separation into clusters roughly equivalent to the genus level, and SPOT01 represents a new genus of marine Thaumarchaea. Competitive fragment recruitment of globally distributed metagenomes from TARA, Ocean Sampling Day, and those generated from a station off California shows that the SPOT01 genus is often the most abundant genus, especially where total Thaumarchaea are most abundant in the overall community. The SPOT01 genome contains urease genes allowing it to use an alternative form of N. Genomic and metagenomic analysis also reveal that among planktonic genomes and populations, the urease genes in general are more frequently found in members of the SPOT01 genus and another genus dominant in deep waters, thus we predict these two genera contribute most significantly to urea utilization among marine Thaumarchaea. Recruitment also revealed broader biogeographic and ecological patterns of the putative genera. The SPOT01 genus was most abundant at colder temperatures (45 degrees). The genus containing Nitrosopumilus maritimus had the highest temperature range, and the genus containing Candidatus Nitrosopelagicus brevis was typically most abundant at intermediate temperatures and intermediate latitudes ( 35-45 degrees). Together these genome and metagenome enabled analyses provide significant new insight into the ecology and biogeochemical contributions of marine archaea.

  12. Worldwide marine radioactivity studies assessing the picture

    International Nuclear Information System (INIS)

    Povinec, P.P.; Togawa, O.

    1998-01-01

    A growing number of sources of radioactivity from human activities are found in the marine environment. They are known to include global nuclear fallout following atmospheric weapons tests, the Chernobyl accident, discharges of radionuclides from nuclear installations, past dumping of radioactive wastes, nuclear submarine accidents, contributions from nuclear testing sites, loss of radioactive sources, and the burn-up of satellites using radioisotopes as power sources. Overall, the world's marine environment contains radionuclides that differ from one region to another. Differences are due to dynamic marine environmental processes and the particular source of radionuclides in a region. Scientific assessments of marine radioactivity, therefore, require knowledge of both the source terms and oceanic processes. Radioactivity now is deposited unevenly over the world's oceans. Global fallout is known to be mainly due to nuclear weapon tests carried out in the 1960s. On the other hand, discharges from nuclear fuel reprocessing plants or past dumping of liquid and solid radioactive wastes generally are confined to more localized areas. Even so, soluble radionuclides have been transported over long distances by prevailing ocean currents. To estimate radionuclide inputs from local sources, scientists need to better understand the distribution of radionuclides throughout the world's oceans and seas. The understanding is important for analysing the results from scientific investigations of localized areas, such as part dumping sites, which then can be reviewed more thoroughly. As a contribution to fuller understanding of the marine environment, the IAEA's Marine Environment Laboratory (MEL) started a five-year project in 1996 entitled ''Research on Worldwide Marine Radioactivity (MARS)''. The work is supported by Japan's Science and Technology Agency (STA). This article briefly review this project, and describes related research activities and scientific investigations of MEL

  13. Ecological considerations in constructing marine infrastructure: The Falmouth cruise terminal development, Jamaica

    NARCIS (Netherlands)

    Korbee, D.; Mol, A.P.J.; Tatenhove, van J.P.M.

    2015-01-01

    Cruise tourism is an important and expanding global industry. The growth of this sector,coupled with the continuous development of larger cruise ships, creates demands for new marine infrastructure. The development of these marine infrastructures takes place at the intersection of global cruise

  14. Assessing Global Marine Biodiversity Status within a Coupled Socio-Ecological Perspective

    Science.gov (United States)

    Selig, Elizabeth R.; Longo, Catherine; Halpern, Benjamin S.; Best, Benjamin D.; Hardy, Darren; Elfes, Cristiane T.; Scarborough, Courtney; Kleisner, Kristin M.; Katona, Steven K.

    2013-01-01

    People value the existence of a variety of marine species and habitats, many of which are negatively impacted by human activities. The Convention on Biological Diversity and other international and national policy agreements have set broad goals for reducing the rate of biodiversity loss. However, efforts to conserve biodiversity cannot be effective without comprehensive metrics both to assess progress towards meeting conservation goals and to account for measures that reduce pressures so that positive actions are encouraged. We developed an index based on a global assessment of the condition of marine biodiversity using publically available data to estimate the condition of species and habitats within 151 coastal countries. Our assessment also included data on social and ecological pressures on biodiversity as well as variables that indicate whether good governance is in place to reduce them. Thus, our index is a social as well as ecological measure of the current and likely future status of biodiversity. As part of our analyses, we set explicit reference points or targets that provide benchmarks for success and allow for comparative assessment of current conditions. Overall country-level scores ranged from 43 to 95 on a scale of 1 to 100, but countries that scored high for species did not necessarily score high for habitats. Although most current status scores were relatively high, likely future status scores for biodiversity were much lower in most countries due to negative trends for both species and habitats. We also found a strong positive relationship between the Human Development Index and resilience measures that could promote greater sustainability by reducing pressures. This relationship suggests that many developing countries lack effective governance, further jeopardizing their ability to maintain species and habitats in the future. PMID:23593188

  15. Distribution and importance of microplastics in the marine environment: A review of the sources, fate, effects, and potential solutions.

    Science.gov (United States)

    Auta, H S; Emenike, C U; Fauziah, S H

    2017-05-01

    The presence of microplastics in the marine environment poses a great threat to the entire ecosystem and has received much attention lately as the presence has greatly impacted oceans, lakes, seas, rivers, coastal areas and even the Polar Regions. Microplastics are found in most commonly utilized products (primary microplastics), or may originate from the fragmentation of larger plastic debris (secondary microplastics). The material enters the marine environment through terrestrial and land-based activities, especially via runoffs and is known to have great impact on marine organisms as studies have shown that large numbers of marine organisms have been affected by microplastics. Microplastic particles have been found distributed in large numbers in Africa, Asia, Southeast Asia, India, South Africa, North America, and in Europe. This review describes the sources and global distribution of microplastics in the environment, the fate and impact on marine biota, especially the food chain. Furthermore, the control measures discussed are those mapped out by both national and international environmental organizations for combating the impact from microplastics. Identifying the main sources of microplastic pollution in the environment and creating awareness through education at the public, private, and government sectors will go a long way in reducing the entry of microplastics into the environment. Also, knowing the associated behavioral mechanisms will enable better understanding of the impacts for the marine environment. However, a more promising and environmentally safe approach could be provided by exploiting the potentials of microorganisms, especially those of marine origin that can degrade microplastics. The concentration, distribution sources and fate of microplastics in the global marine environment were discussed, so also was the impact of microplastics on a wide range of marine biota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global Endemism Hotspots.

    Science.gov (United States)

    Friedlander, Alan M; Ballesteros, Enric; Caselle, Jennifer E; Gaymer, Carlos F; Palma, Alvaro T; Petit, Ignacio; Varas, Eduardo; Muñoz Wilson, Alex; Sala, Enric

    2016-01-01

    The Juan Fernández and Desventuradas islands are among the few oceanic islands belonging to Chile. They possess a unique mix of tropical, subtropical, and temperate marine species, and although close to continental South America, elements of the biota have greater affinities with the central and south Pacific owing to the Humboldt Current, which creates a strong biogeographic barrier between these islands and the continent. The Juan Fernández Archipelago has ~700 people, with the major industry being the fishery for the endemic lobster, Jasus frontalis. The Desventuradas Islands are uninhabited except for a small Chilean military garrison on San Félix Island. We compared the marine biodiversity of these islands across multiple taxonomic groups. At San Ambrosio Island (SA), in Desventuradas, the laminarian kelp (Eisenia cokeri), which is limited to Desventuradas in Chile, accounted for >50% of the benthic cover at wave exposed areas, while more sheltered sites were dominated by sea urchin barrens. The benthos at Robinson Crusoe Island (RC), in the Juan Fernández Archipelago, comprised a diverse mix of macroalgae and invertebrates, a number of which are endemic to the region. The biomass of commercially targeted fishes was >2 times higher in remote sites around RC compared to sheltered locations closest to port, and overall biomass was 35% higher around SA compared to RC, likely reflecting fishing effects around RC. The number of endemic fish species was extremely high at both islands, with 87.5% of the species surveyed at RC and 72% at SA consisting of regional endemics. Remarkably, endemics accounted for 99% of the numerical abundance of fishes surveyed at RC and 96% at SA, which is the highest assemblage-level endemism known for any individual marine ecosystem on earth. Our results highlight the uniqueness and global significance of these biodiversity hotspots exposed to very different fishing pressures.

  17. Marine Biodiversity in Juan Fernández and Desventuradas Islands, Chile: Global Endemism Hotspots

    Science.gov (United States)

    Friedlander, Alan M.; Ballesteros, Enric; Caselle, Jennifer E.; Gaymer, Carlos F.; Palma, Alvaro T.; Petit, Ignacio; Varas, Eduardo; Muñoz Wilson, Alex; Sala, Enric

    2016-01-01

    The Juan Fernández and Desventuradas islands are among the few oceanic islands belonging to Chile. They possess a unique mix of tropical, subtropical, and temperate marine species, and although close to continental South America, elements of the biota have greater affinities with the central and south Pacific owing to the Humboldt Current, which creates a strong biogeographic barrier between these islands and the continent. The Juan Fernández Archipelago has ~700 people, with the major industry being the fishery for the endemic lobster, Jasus frontalis. The Desventuradas Islands are uninhabited except for a small Chilean military garrison on San Félix Island. We compared the marine biodiversity of these islands across multiple taxonomic groups. At San Ambrosio Island (SA), in Desventuradas, the laminarian kelp (Eisenia cokeri), which is limited to Desventuradas in Chile, accounted for >50% of the benthic cover at wave exposed areas, while more sheltered sites were dominated by sea urchin barrens. The benthos at Robinson Crusoe Island (RC), in the Juan Fernández Archipelago, comprised a diverse mix of macroalgae and invertebrates, a number of which are endemic to the region. The biomass of commercially targeted fishes was >2 times higher in remote sites around RC compared to sheltered locations closest to port, and overall biomass was 35% higher around SA compared to RC, likely reflecting fishing effects around RC. The number of endemic fish species was extremely high at both islands, with 87.5% of the species surveyed at RC and 72% at SA consisting of regional endemics. Remarkably, endemics accounted for 99% of the numerical abundance of fishes surveyed at RC and 96% at SA, which is the highest assemblage-level endemism known for any individual marine ecosystem on earth. Our results highlight the uniqueness and global significance of these biodiversity hotspots exposed to very different fishing pressures. PMID:26734732

  18. Bioavailable atmospheric phosphorous supply to the global ocean: a 3-D global modeling study

    Science.gov (United States)

    Myriokefalitakis, Stelios; Nenes, Athanasios; Baker, Alex R.; Mihalopoulos, Nikolaos; Kanakidou, Maria

    2016-12-01

    The atmospheric cycle of phosphorus (P) is parameterized here in a state-of-the-art global 3-D chemistry transport model, taking into account primary emissions of total P (TP) and soluble P (DP) associated with mineral dust, combustion particles from natural and anthropogenic sources, bioaerosols, sea spray and volcanic aerosols. For the present day, global TP emissions are calculated to be roughly 1.33 Tg-P yr-1, with the mineral sources contributing more than 80 % to these emissions. The P solubilization from mineral dust under acidic atmospheric conditions is also parameterized in the model and is calculated to contribute about one-third (0.14 Tg-P yr-1) of the global DP atmospheric source. To our knowledge, a unique aspect of our global study is the explicit modeling of the evolution of phosphorus speciation in the atmosphere. The simulated present-day global annual DP deposition flux is 0.45 Tg-P yr-1 (about 40 % over oceans), showing a strong spatial and temporal variability. Present-day simulations of atmospheric P aerosol concentrations and deposition fluxes are satisfactory compared with available observations, indicating however an underestimate of about 70 % on current knowledge of the sources that drive the P atmospheric cycle. Sensitivity simulations using preindustrial (year 1850) anthropogenic and biomass burning emission scenarios showed a present-day increase of 75 % in the P solubilization flux from mineral dust, i.e., the rate at which P is converted into soluble forms, compared to preindustrial times, due to increasing atmospheric acidity over the last 150 years. Future reductions in air pollutants due to the implementation of air-quality regulations are expected to decrease the P solubilization flux from mineral dust by about 30 % in the year 2100 compared to the present day. Considering, however, that all the P contained in bioaerosols is readily available for uptake by marine organisms, and also accounting for all other DP sources, a total

  19. Shared Physiological and Molecular Responses in Marine Fish and Invertebrates to Environmental Hypoxia: Potential Biomarkers of Adverse Impacts on Marine Communities

    Science.gov (United States)

    Thomas, P.; Rahman, S.

    2016-02-01

    Knowledge of the effects of environmental exposure to hypoxia (dissolved oxygen: reproduction, growth and metabolism in both fish and invertebrates is essential for accurate predictions of its chronic impacts on marine communities. Marked disruption of reproduction and its endocrine control was observed in Atlantic croaker collected from the hypoxic region in the northern Gulf of Mexico. Recent research has shown that growth and its physiological upregulation is also impaired in hypoxia-exposed marine fish. Expression of insulin-like growth factor (IGF) binding protein (IGFBP), which inhibits growth, was increased in croaker livers, whereas plasma levels of IGF, the primary regulator of growth, were decreased in snapper after hypoxia exposure. In addition, hypoxia inducible factor-1 (HIF-1), which regulates changes in metabolism during adaptation to hypoxia, was upregulated in croaker collected from hypoxic environments. Interestingly, similar changes in the expression of IGFBP and HIF-1 have been found in marine crustaceans after hypoxia exposure, suggesting these responses to hypoxia are common to marine fish and invertebrates. Preliminary field studies indicate that hypoxia exposure also causes epigenetic modifications, including increases in global DNA methylation, and that these epigenetic changes can influence reproduction and growth in croaker. Epigenetic modifications can be passed to offspring and persist in future generations no longer exposed to an environmental stressor further aggravating its long-term adverse impacts on population abundance and delaying recovery. The growing availability of complete invertebrate genomes and high-throughput DNA sequencing indicates similar epigenetic studies can now be conducted with marine invertebrates. Collectively, the results indicate that environmental hypoxia exposure disrupts major physiological functions in fish and invertebrates critical for maintenance of their populations.

  20. Persistent marine debris

    International Nuclear Information System (INIS)

    Levy, E.M.

    1992-01-01

    In this paper the distribution of persistent marine debris, adrift on world oceans and stranded on beaches globally, is reviewed and related to the known inputs and transport by the major surface currents. Since naturally occurring processes eventually degrade petroleum in the environment, international measures to reduce the inputs have been largely successful in alleviating oil pollution on a global, if not on a local, scale. Many plastics, however, are so resistant to natural degradation that merely controlling inputs will be insufficient, and more drastic and costly measures will be needed to cope with the emerging global problem posed by these materials

  1. 52 Million Points and Counting: A New Stratification Approach for Mapping Global Marine Ecosystems

    Science.gov (United States)

    Wright, D. J.; Sayre, R.; Breyer, S.; Butler, K. A.; VanGraafeiland, K.; Goodin, K.; Kavanaugh, M.; Costello, M. J.; Cressie, N.; Basher, Z.; Harris, P. T.; Guinotte, J. M.

    2016-12-01

    We report progress on the Ecological Marine Units (EMU) project, a new undertaking commissioned by the Group on Earth Observations (GEO) as a means of developing a standardized and practical global ecosystems classification and map for the oceans, and thus a key outcome of the GEO Biodiversity Observation Network (GEO BON). The project is one of four components of the new GI-14 GEO Ecosystems Initiative within the GEO 2016 Transitional Work plan, and for eventual use by the Global Earth Observation System of Systems (GEOSS). The project is also the follow-on to a comprehensive Ecological Land Units project (ELU), also commissioned by GEO. The EMU is comprised of a global point mesh framework, created from 52,487,233 points from the NOAA World Ocean Atlas; spatial resolution is ¼° by ¼° by varying depth; temporal resolution is currently decadal; each point has x, y, z, as well as six attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many ecosystem responses. We implemented a k-means statistical clustering of the point mesh (using the pseudo-F statistic to help determine the numbers of clusters), allowing us to identify and map 37 environmentally distinct 3D regions (candidate `ecosystems') within the water column. These units can be attributed according to their productivity, direction and velocity of currents, species abundance, global seafloor geomorphology (from Harris et al.), and much more. A series of data products for open access will share the 3D point mesh and EMU clusters at the surface, bottom, and within the water column, as well as 2D and 3D web apps for exploration of the EMUs and the original World Ocean Atlas data. Future plans include a global delineation of Ecological Coastal Units (ECU) at a much finer spatial resolution (not yet commenced), as well as global ecological freshwater ecosystems (EFUs; in earliest planning stages). We will

  2. A New Global Open Source Marine Hydrocarbon Emission Site Database

    Science.gov (United States)

    Onyia, E., Jr.; Wood, W. T.; Barnard, A.; Dada, T.; Qazzaz, M.; Lee, T. R.; Herrera, E.; Sager, W.

    2017-12-01

    Hydrocarbon emission sites (e.g. seeps) discharge large volumes of fluids and gases into the oceans that are not only important for biogeochemical budgets, but also support abundant chemosynthetic communities. Documenting the locations of modern emissions is a first step towards understanding and monitoring how they affect the global state of the seafloor and oceans. Currently, no global open source (i.e. non-proprietry) detailed maps of emissions sites are available. As a solution, we have created a database that is housed within an Excel spreadsheet and use the latest versions of Earthpoint and Google Earth for position coordinate conversions and data mapping, respectively. To date, approximately 1,000 data points have been collected from referenceable sources across the globe, and we are continualy expanding the dataset. Due to the variety of spatial extents encountered, to identify each site we used two different methods: 1) point (x, y, z) locations for individual sites and; 2) delineation of areas where sites are clustered. Certain well-known areas, such as the Gulf of Mexico and the Mediterranean Sea, have a greater abundance of information; whereas significantly less information is available in other regions due to the absence of emission sites, lack of data, or because the existing data is proprietary. Although the geographical extent of the data is currently restricted to regions where the most data is publicly available, as the database matures, we expect to have more complete coverage of the world's oceans. This database is an information resource that consolidates and organizes the existing literature on hydrocarbons released into the marine environment, thereby providing a comprehensive reference for future work. We expect that the availability of seafloor hydrocarbon emission maps will benefit scientific understanding of hydrocarbon rich areas as well as potentially aiding hydrocarbon exploration and environmental impact assessements.

  3. Marine Ecological Footprint of Italian Mediterranean Fisheries

    Directory of Open Access Journals (Sweden)

    Federica de Leo

    2014-10-01

    Full Text Available The capacity of marine and coastal ecosystems to sustain seafood production and consumption is seldom accounted for and is not included in the signals that guide economic development. In this article, we review estimates of marine and coastal areas aimed at sustaining catches for seafood consumption. The aim of this paper is the assessment of the interactions between the environment, intended as a set of ecological subsystems in natural equilibrium, including the marine ecosystem, and the process of fisheries systems. In particular we analyze fisheries in Italy, which is the third biggest economy and the greatest consumer of seafood in the Eurozone, conducting an in-depth analysis of the Marine Ecological Footprint (MEF that evaluates the marine ecosystem area exploited by human populations to supply seafood and other marine products and services. The positioning of Italian fisheries shows a level of sustainability next to the threshold value. The analysis in the present study highlights the importance of absolute indicators in providing rough estimates about human dependence on ecological systems and recognizes the importance of those indicators, such as the Marine Footprint (expressed in % of Primary Production Required/Primary Production, in ensuring a high level of precision and accuracy in quantifying human activity impact on the environment.

  4. VIIRS Marine Isoprene Product and Initial Applications

    Science.gov (United States)

    Tong, D.; Wang, M.; Wang, B.; Pan, L.; Lee, P.; Goldberg, M.

    2017-12-01

    Isoprene is a reactive biogenic hydrocarbon that affects atmospheric chemistry, aerosol loading, and cloud formation. We have developed a marine isoprene emission algorithm based on ocean color data from the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar-orbiting Partnership (SNPP). and global meteorology simulated by NOAA Global Forecasting System (GFS). This algorithm is implemented to generate a multi-year data record (2012-2015) of marine isoprene. The product was validated using historic ocean observations of marine isoprene, as well as in-situ data collected during two recent cruises (SPACES/OASIS in 2014 and ASTRA-OMZ in 2015). Result shows that the VIIRS product has captured the seasonal and spatial variability of global oceanic isoprene emission, which is controlled by a myriad of biological and environmental variables including chlorophyll-a concentration, phytoplankton functional types, seawater light attenuation rate, wind speed, and sea surface temperature. The VIIRS isoprene emission displays considerable seasonal and spatial variations, with peaks in spring over seawater abundant with nutrient inputs. Year to year variations are small, with the annual global emissions ranging from 0.20 to 0.25 Tg C/yr. This new dataset provides the first multi-year observations of global isoprene emissions that can be used to study a variety of environmental issues such as coastal air quality, global aerosol, and cloud formation. Some "early-adopter" applications of this product are briefly discussed.

  5. Anthropogenic impacts on marine ecosystems in Antarctica.

    Science.gov (United States)

    Aronson, Richard B; Thatje, Sven; McClintock, James B; Hughes, Kevin A

    2011-03-01

    Antarctica is the most isolated continent on Earth, but it has not escaped the negative impacts of human activity. The unique marine ecosystems of Antarctica and their endemic faunas are affected on local and regional scales by overharvesting, pollution, and the introduction of alien species. Global climate change is also having deleterious impacts: rising sea temperatures and ocean acidification already threaten benthic and pelagic food webs. The Antarctic Treaty System can address local- to regional-scale impacts, but it does not have purview over the global problems that impinge on Antarctica, such as emissions of greenhouse gases. Failure to address human impacts simultaneously at all scales will lead to the degradation of Antarctic marine ecosystems and the homogenization of their composition, structure, and processes with marine ecosystems elsewhere. © 2011 New York Academy of Sciences.

  6. Reducing marine mammal bycatch in global fisheries: An economics approach

    Science.gov (United States)

    Lent, Rebecca; Squires, Dale

    2017-06-01

    The broader ecosystem impacts of fishing continue to present a challenge to scientists and resource managers around the world. Bycatch is of greatest concern for marine mammals, for which fishery bycatch and entanglement is the number one cause of direct mortality. Climate change will only add to the challenge, as marine species and fishing practices adapt to a changing environment, creating a dynamic pattern of overlap between fishing and species (both target and bycatch). Economists suggest policy instruments for reducing bycatch that move away from top-down, command-and-control measures (e.g. effort reduction, time/area closures, gear restrictions, bycatch quotas) towards an approach that creates incentives to reduce bycatch (e.g. transferable bycatch allowances, taxes, and other measures). The advantages of this flexible, incentive-oriented approach are even greater in a changing and increasingly variable environment, as regulatory measures would have to be adapted constantly to keep up with climate change. Unlike the regulatory process, individual operators in the fishery sector can make adjustments to their harvesting practices as soon as the incentives for such changes are apparent and inputs or operations can be modified. This paper explores policy measures that create economic incentives not only to reduce marine mammal bycatch, but also to increase compliance and induce technological advances by fishery operators. Economists also suggest exploration of direct economic incentives as have been used in other conservation programs, such as payments for economic services, in an approach that addresses marine mammal bycatch as part of a larger conservation strategy. Expanding the portfolio of mandatory and potentially, voluntary, measures to include novel approaches will provide a broader array of opportunities for successful stewardship of the marine environment.

  7. The Inter-Agency programme on marine pollution

    International Nuclear Information System (INIS)

    Carvalho, F.P.

    1998-01-01

    The Global Programme of Action (GPA) for the Protection of the Marine Environment from Land-based Activities - as well as a number of international conventions (e.g., United Nations Convention on the Law of the Sea, the Oslo and Paris Conventions) and regional agreements - are addressing the needs, The GPA sets the obligations for, and aims at assisting the States to undertake, the monitoring of contaminants in the marine environment and to control and abate pollution sources. Included among the contaminants of major concern are persistent organic pollutants (e.g., pesticides and PCBs), heavy metals, petroleum hydrocarbons, radioactive substances, nutrients, swage, and litter. Effective surveillance of contaminants of the marine environment and control of pollution depend upon a number of factors, including appropriate institutional capacity in the countries. In recent years, many countries displayed increased attention to environmental issues and, gradually, infrastructures were developed and environmental protection regulations were put into place. This article reviews the global framework for assisting countries to upgrade their capabilities for analysing data related to the marine environment, and particularly focuses on services being provided by the IAEA's Marine Environment Laboratory (MEL) in Monaco

  8. The Census of Marine Life on Seamounts: results from a global science program

    Science.gov (United States)

    Stocks, K.; Clark, M.; Rowden, A.; Consalvey, M.

    2010-12-01

    CenSeam (a Global Census of Marine Life on Seamounts) is a network of more than 500 scientists, policy makers and conservationists around the world. These participants are collaborating to increase our understanding of the factors driving seamount community composition and diversity, such that we can better understand and manage the effects of human activities. The major scientific outcomes of the CenSeam community include the findings that 1) Seamount community composition is often similar to surrounding habitats; however, community structure can be different. 2) Contrary to conventional wisdom, few seamounts follow island biogeography predictions. 3) Seamounts can support a higher benthic biomass than surrounding habitats. 4) Seamounts can support species and communities new to science, and represent range extensions for known species, which are being described from CenSeam voyages. 5) For the first time, the extent of the vulnerability and risk to seamount benthic communities from fishing has been quantified. 6) Whilst long assumed, CenSeam researchers have demonstrated that seamount communities are disturbed by fishing and are slow to recover. And 7) Seamounts might act as repositories of biodiversity during future periods of extreme environmental change, as they have likely done in the past. The major products of Censeam include 1) a book synthesizing seamount knowledge: Seamounts: Ecology, Fisheries and Conservation (from Blackwell Publishing); 2) a recent review of the structure and function of seamount benthic communities, human impacts, and seamount management and conservation (Ann Rev Mar Sci); 3) hundreds of scientific publications, including Special Issues in Marine Ecology and Oceanography (in collaboration with the Seamount Biogeogsciences Network), and a Special Collection in PLoSONE; 4) guidance documents and formal advising for seamount management communities, including the United Nations Environment Program, International Seabed Authority

  9. Reference methods and materials. A programme of support for regional and global marine pollution assessments

    International Nuclear Information System (INIS)

    1990-01-01

    This document describes a programme of comprehensive support for regional and global marine pollution assessments developed by the United Nations Environment Programme (UNEP) in cooperation with the International Atomic Energy Agency (IAEA) and the Intergovernmental Oceanographic Commission (IOC) and with the collaboration of a number of other United Nations Specialized agencies including the Food and Agriculture Organisation (FAO), the World Meteorological Organisation (WMO), the World Health Organisation (WHO) and the International Maritime Organisation (IMO). Two of the principle components of this programme, Reference Methods and Reference materials are given special attention in this document and a full Reference Method catalogue is included, giving details of over 80 methods currently available or in an advanced stage of preparation and testing. It is important that these methods are seen as a functional component of a much wider strategy necessary for assuring good quality and intercomparable data for regional and global pollution monitoring and the user is encouraged to read this document carefully before employing Reference Methods and Reference Materials in his/her laboratory. 3 figs

  10. Participatory Sensing Marine Debris: Current Trends and Future Opportunities

    Science.gov (United States)

    Jambeck, J.; Johnsen, K.

    2016-02-01

    The monitoring of litter and debris is challenging at the global scale because of spatial and temporal variability, disconnected local organizations and the use of paper and pen for documentation. The Marine Debris Tracker mobile app and citizen science program allows for the collection of global standardized data at a scale, speed and efficiency that was not previously possible. The app itself also serves as an outreach and education tool, creating an engaged participatory sensing instrument. This instrument is characterized by several aspects including range and frequency, accuracy and precision, accessibility, measurement dimensions, participant performance, and statistical analysis. Also, important to Marine Debris Tracker is open data and transparency. A web portal provides data that users have logged allowing immediate feedback to users and additional education opportunities. The engagement of users through a top tracker competition and social media keeps participants interested in the Marine Debris Tracker community. Over half a million items have been tracked globally, and maps provide both global and local distribution of data. The Marine Debris Tracker community and dataset continues to grow daily. We will present current usage and engagement, participatory sensing data distributions, choropleth maps of areas of active tracking, and discuss future technologies and platforms to expand data collection and conduct statistical analysis.

  11. Impact of primary amine group from aminophospholipids and amino acids on marine phospholipids stability: Non-enzymatic browning and lipid oxidation

    DEFF Research Database (Denmark)

    Lu, Henna Fung Sieng; Nielsen, Nina Skall; Baron, Caroline P.

    2013-01-01

    The main objective of this study was to investigate the oxidative stability and non-enzymatic browning reactions of marine PL in the presence or in the absence of primary amine group from aminophospholipids and amino acids. Marine phospholipids liposomal dispersions were prepared from two authentic......) Strecker derived volatiles, (ii) yellowness index (YI), (iii) hydrophobic and (iv) hydrophilic pyrroles content. The oxidative stability of the samples was assessed through measurement of secondary lipid derived volatile oxidation products. The result showed that the presence of PE and amino acids caused...... the formation of pyrroles, generated Strecker derived volatiles, decreased the YI development and lowered lipid oxidation. The lower degree of lipid oxidation in liposomal dispersions containing amino acids might be attributed to antioxidative properties of pyrroles or amino acids....

  12. Marine geochemistry ocean circulation, carbon cycle and climate change

    CERN Document Server

    Roy-Barman, Matthieu

    2016-01-01

    Marine geochemistry uses chemical elements and their isotopes to study how the ocean works. It brings quantitative answers to questions such as: What is the deep ocean mixing rate? How much atmospheric CO2 is pumped by the ocean? How fast are pollutants removed from the ocean? How do ecosystems react to the anthropogenic pressure? The book provides a simple introduction to the concepts (environmental chemistry, isotopes), the methods (field approach, remote sensing, modeling) and the applications (ocean circulation, carbon cycle, climate change) of marine geochemistry with a particular emphasis on isotopic tracers. Marine geochemistry is not an isolated discipline: numerous openings on physical oceanography, marine biology, climatology, geology, pollutions and ecology are proposed and provide a global vision of the ocean. It includes new topics based on ongoing research programs such as GEOTRACES, Global Carbon Project, Tara Ocean. It provides a complete outline for a course in marine geochemistry. To favor a...

  13. Analysis of global marine environmental pollution and prevention and control of marine pollution : Proposal of sollutions

    OpenAIRE

    Dong, Guo

    2017-01-01

    The ocean, the origin of life, the total area of about 360 million square kilometers, accounting for 71% of the Earth\\'s surface area. Ocean Freight has become the world\\'s most important import and export trade mode of transport. Our daily life is also closely linked with the ocean, the ocean food, marine-related products. It can be said that the ocean has become the most important part of people\\'s life around the world. However, the current situation of marine environment is not optimistic...

  14. Global investigation of interleukin-1β signaling in primary β-cells using quantitative phosphoproteomics

    DEFF Research Database (Denmark)

    Engholm-Keller, Kasper; Størling, Joachim; Pociot, Flemming

    in β-cells by which this cytokine can modulate cell-matrix interactions during inflammation, a regulation shown in other cell types. Further data analysis is currently ongoing, and the collective results of the experiments will hopefully facilitate additional insights into the effect of IL-1β......Novel Aspect: Global phosphoproteomic analysis of cytokine signaling in primary β-cells Introduction The insulin-producing β-cells of the pancreatic islets of Langerhans are targeted by aberrant immune system responses in diabetes mellitus involving cytokines, especially interleukin-1β (IL-1 β......), which initiate apoptosis of the β-cells. As only limited amounts of primary β-cells can be isolated from model organisms like mouse and rat, global phosphoproteomic analysis of these signaling events by mass spectrometry has generally been unfeasible. We have therefore developed a strategy...

  15. Modeling and Monitoring Terrestrial Primary Production in a Changing Global Environment: Toward a Multiscale Synthesis of Observation and Simulation

    Directory of Open Access Journals (Sweden)

    Shufen Pan

    2014-01-01

    Full Text Available There is a critical need to monitor and predict terrestrial primary production, the key indicator of ecosystem functioning, in a changing global environment. Here we provide a brief review of three major approaches to monitoring and predicting terrestrial primary production: (1 ground-based field measurements, (2 satellite-based observations, and (3 process-based ecosystem modelling. Much uncertainty exists in the multi-approach estimations of terrestrial gross primary production (GPP and net primary production (NPP. To improve the capacity of model simulation and prediction, it is essential to evaluate ecosystem models against ground and satellite-based measurements and observations. As a case, we have shown the performance of the dynamic land ecosystem model (DLEM at various scales from site to region to global. We also discuss how terrestrial primary production might respond to climate change and increasing atmospheric CO2 and uncertainties associated with model and data. Further progress in monitoring and predicting terrestrial primary production requires a multiscale synthesis of observations and model simulations. In the Anthropocene era in which human activity has indeed changed the Earth’s biosphere, therefore, it is essential to incorporate the socioeconomic component into terrestrial ecosystem models for accurately estimating and predicting terrestrial primary production in a changing global environment.

  16. Projected 21st century decrease in marine productivity: a multi-model analysis

    Directory of Open Access Journals (Sweden)

    M. Steinacher

    2010-03-01

    Full Text Available Changes in marine net primary productivity (PP and export of particulate organic carbon (EP are projected over the 21st century with four global coupled carbon cycle-climate models. These include representations of marine ecosystems and the carbon cycle of different structure and complexity. All four models show a decrease in global mean PP and EP between 2 and 20% by 2100 relative to preindustrial conditions, for the SRES A2 emission scenario. Two different regimes for productivity changes are consistently identified in all models. The first chain of mechanisms is dominant in the low- and mid-latitude ocean and in the North Atlantic: reduced input of macro-nutrients into the euphotic zone related to enhanced stratification, reduced mixed layer depth, and slowed circulation causes a decrease in macro-nutrient concentrations and in PP and EP. The second regime is projected for parts of the Southern Ocean: an alleviation of light and/or temperature limitation leads to an increase in PP and EP as productivity is fueled by a sustained nutrient input. A region of disagreement among the models is the Arctic, where three models project an increase in PP while one model projects a decrease. Projected changes in seasonal and interannual variability are modest in most regions. Regional model skill metrics are proposed to generate multi-model mean fields that show an improved skill in representing observation-based estimates compared to a simple multi-model average. Model results are compared to recent productivity projections with three different algorithms, usually applied to infer net primary production from satellite observations.

  17. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction

    Science.gov (United States)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; Lau, Kimberly V.; Weaver, Karrie L.; Maher, Kate; Payne, Jonathan L.

    2017-08-01

    The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia. Uranium isotopes (δ238U) in CaCO3 sediments deposited under locally well-oxygenated bottom waters can passively track seawater δ238U, which is sensitive to the global areal extent of seafloor anoxia due to preferential reduction of 238U(VI) relative to 235U(VI) in anoxic marine sediments. We measured δ238U in shallow-marine limestones from two stratigraphic sections in the Lombardy Basin, northern Italy, spanning over 400 m. We observe a ˜0.7‰ negative excursion in δ238U beginning in the lowermost Jurassic, coeval with the onset of the initial negative δ13C excursion and persisting for the duration of subsequent high δ13C values in the lower-middle Hettangian stage. The δ238U excursion cannot be realistically explained by local mixing of uranium in primary marine carbonate and reduced authigenic uranium. Based on output from a forward model of the uranium cycle, the excursion is consistent with a 40-100-fold increase in the extent of anoxic deposition occurring worldwide. Additionally, relatively constant uranium concentrations point toward increased uranium delivery to the oceans from continental weathering, which is consistent with weathering-induced eutrophication following the rapid increase in pCO2 during emplacement of the Central Atlantic Magmatic Province. The relative timing and duration of the excursion in δ238U implies that anoxia could have delayed biotic recovery well into the Hettangian stage.

  18. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    Science.gov (United States)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context

  19. Marine Litter in the context of `G7' - Nothing but empty rhetoric?

    Science.gov (United States)

    Neumann, J.; Imhoff, H.

    2016-02-01

    The G7 summit 2015 in Germany has demonstrated that the major advanced economies mark a new path and mindset beyond their classical issues of world economy, foreign-, security-, and development policy - the protection of the marine environment. Focus themes were marine litter, deep-sea mining, and the protection of the high seas. In the G7 Leaders' Declaration they "acknowledge that marine litter, in particular plastic litter, poses a global challenge, directly affecting marine and coastal life and ecosystems […]". Based on priority actions defined in the annex to the Leaders' Declaration, termed the `G7 Action Plan to combat Marine Litter' (G7AP ML), in fact a novelty to the otherwise rather restrained political statements, the German Presidency aims at further defining and specifying actions that are listed in the `G7AP ML'. This will include inter alia explicit measures and timelines. Emphasizing the global importance and willingness of the G7 to act, and aiming at a swift implementation of the action plan with the intention to establish a real and realistic tool in the race of litter input vs. reduction of anthropogenic pressure on the marine environment, is key to the envisaged approach. Thus, building on existing experiences, such as the OSPAR Regional Action Plan on Marine Litter for the North-East Atlantic, it is intended to expand the geographical range of application towards a global perspective. What has been learned - e.g. concerning the need of close collaboration with stakeholders? What has been decided - on how implementation may be done in reality? And is the `G7AP ML' a valuable add-on to other initiatives, e.g. Global Partnership on Marine Litter - United Nations Environment Programme (UNEP)? These questions will be discussed in the light of the state of the art of the G7 marine litter topic.

  20. Climate change and marine life

    DEFF Research Database (Denmark)

    Richardson, Anthony J.; Brown, Christopher J.; Brander, Keith

    2012-01-01

    A Marine Climate Impacts Workshop was held from 29 April to 3 May 2012 at the US National Center of Ecological Analysis and Synthesis in Santa Barbara. This workshop was the culmination of a series of six meetings over the past three years, which had brought together 25 experts in climate change...... ecology, analysis of large datasets, palaeontology, marine ecology and physical oceanography. Aims of these workshops were to produce a global synthesis of climate impacts on marine biota, to identify sensitive habitats and taxa, to inform the current Intergovernmental Panel on Climate Change (IPCC......) process, and to strengthen research into ecological impacts of climate change...

  1. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal

    2017-08-15

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  2. Continuous gene flow contributes to low global species abundance and distribution of a marine model diatom

    KAUST Repository

    Rastogi, Achal; Deton-Cabanillas, Anne-Flore; Rocha Jimenez Vieira, Fabio; Veluchamy, Alaguraj; Cantrel, Catherine; Wang, Gaohong; Vanormelingen, Pieter; Bowler, Chris; Piganeau, Gwenael; Tirichine, Leila; Hu, Hanhua

    2017-01-01

    Unlike terrestrial ecosystems where geographical isolation often leads to a restricted gene flow between species, genetic admixing in aquatic micro-eukaryotes is likely to be frequent. Diatoms inhabit marine ecosystems since the Mesozoic period and presently constitute one of the major primary producers in the world ocean. They are a highly diversified group of eukaryotic phytoplankton with estimates of up to 200,000 species. Since decades, Phaeodactylum tricornutum is used as a model diatom species to characterize the functional pathways, physiology and evolution of diatoms in general. In the current study, using whole genome sequencing of ten P. tricornutum strains, sampled at broad geospatial and temporal scales, we show a continuous dispersal and genetic admixing between geographically isolated strains. We also describe a very high level of heterozygosity and propose it to be a consequence of frequent ancestral admixture. Our finding that P. tricornutum sequences are plausibly detectable at low but broadly distributed levels in the world ocean further suggests that high admixing between geographically isolated strains may create a significant bottleneck, thus influencing their global abundance and distribution in nature. Finally, in an attempt to understand the functional implications of genetic diversity between different P. tricornutum ecotypes, we show the effects of domestication in inducing changes in the selection pressure on many genes and metabolic pathways. We propose these findings to have significant implications for understanding the genetic structure of diatom populations in nature and provide a framework to assess the genomic underpinnings of their ecological success.

  3. Environmental Modeling Center / Marine Modeling and Analysis Branch

    Science.gov (United States)

    weather and climate. Both have a history. Marine Meteorology Group Products Ocean Winds - Satellite Remote announcement list for changes to our products and services. SDM Contact Notes: Ocean Models -- Avichal Mehra Ocean Waves Sea Ice SST Marine Met. Real Time Ocean Forecasting System (RTOFS) Global RTOFS A hybrid

  4. Formation and growth of sulfur derived particles in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Wexler, A; Hillamo, R [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Aerosol particles modify the Earth`s radiation balance directly by scattering and absorbing solar radiation, and indirectly via their influence on cloud properties. The indirect climate forcing due to aerosols probably dominates over that of the direct forcing over global scale, and is induced primary by sulfate originating from both natural and anthropogenic sources. A large portion of the global sulfur flux is due to dimethylsulfide (DMS) released from the ocean surface, where it is produced in large quantities by various biogenic processes. DMS is believed to be the primary particulate precursor over vast oceanic regions, hence having a potential to modify aerosol climatic effects over a major portion of the Earth`s surface. The connection between marine DMS emissions and the resulting climate forcing involves several steps still not properly quantified. Among the open questions related to this system, perhaps the most critical ones are when and where the DMS-derived particles are formed in the atmosphere, and how these particles grow into sizes where they are able to alter cloud properties, such as cloud albedos, lifetimes and precipitation efficiencies, that are relevant to climate. In this work, production and growth of sulfur particles has been examined using a simple, yet realistic model that simulates the processes taking place in a remote marine boundary layer. The specific questions examined include: (1) what is the role of boundary layer dynamics in affecting the condensation nuclei (CN) and cloud condensation nuclei (CCN) production in this system, (2) what are the factors controlling the growth of fresh CN into CCN, and (3) how does the presence of boundary layer clouds interact with CN/CCN production

  5. Formation and growth of sulfur derived particles in the marine environment

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Wexler, A.; Hillamo, R. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1995-12-31

    Aerosol particles modify the Earth`s radiation balance directly by scattering and absorbing solar radiation, and indirectly via their influence on cloud properties. The indirect climate forcing due to aerosols probably dominates over that of the direct forcing over global scale, and is induced primary by sulfate originating from both natural and anthropogenic sources. A large portion of the global sulfur flux is due to dimethylsulfide (DMS) released from the ocean surface, where it is produced in large quantities by various biogenic processes. DMS is believed to be the primary particulate precursor over vast oceanic regions, hence having a potential to modify aerosol climatic effects over a major portion of the Earth`s surface. The connection between marine DMS emissions and the resulting climate forcing involves several steps still not properly quantified. Among the open questions related to this system, perhaps the most critical ones are when and where the DMS-derived particles are formed in the atmosphere, and how these particles grow into sizes where they are able to alter cloud properties, such as cloud albedos, lifetimes and precipitation efficiencies, that are relevant to climate. In this work, production and growth of sulfur particles has been examined using a simple, yet realistic model that simulates the processes taking place in a remote marine boundary layer. The specific questions examined include: (1) what is the role of boundary layer dynamics in affecting the condensation nuclei (CN) and cloud condensation nuclei (CCN) production in this system, (2) what are the factors controlling the growth of fresh CN into CCN, and (3) how does the presence of boundary layer clouds interact with CN/CCN production

  6. Global Ocean Phytoplankton

    Science.gov (United States)

    Franz, B. A.; Behrenfeld, M. J.; Siegel, D. A.; Werdell, P. J.

    2014-01-01

    Marine phytoplankton are responsible for roughly half the net primary production (NPP) on Earth, fixing atmospheric CO2 into food that fuels global ocean ecosystems and drives the ocean's biogeochemical cycles. Phytoplankton growth is highly sensitive to variations in ocean physical properties, such as upper ocean stratification and light availability within this mixed layer. Satellite ocean color sensors, such as the Sea-viewing Wide Field-of-view Sensor (SeaWiFS; McClain 2009) and Moderate Resolution Imaging Spectroradiometer (MODIS; Esaias 1998), provide observations of sufficient frequency and geographic coverage to globally monitor physically-driven changes in phytoplankton distributions. In practice, ocean color sensors retrieve the spectral distribution of visible solar radiation reflected upward from beneath the ocean surface, which can then be related to changes in the photosynthetic phytoplankton pigment, chlorophyll- a (Chla; measured in mg m-3). Here, global Chla data for 2013 are evaluated within the context of the 16-year continuous record provided through the combined observations of SeaWiFS (1997-2010) and MODIS on Aqua (MODISA; 2002-present). Ocean color measurements from the recently launched Visible and Infrared Imaging Radiometer Suite (VIIRS; 2011-present) are also considered, but results suggest that the temporal calibration of the VIIRS sensor is not yet sufficiently stable for quantitative global change studies. All MODISA (version 2013.1), SeaWiFS (version 2010.0), and VIIRS (version 2013.1) data presented here were produced by NASA using consistent Chla algorithms.

  7. Preface to: Special issue on Marine mycology

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, C.

    the fourth symposium were published in The Biology of Marine Fungi by the late S.T.Moss from the Portsmouth Polytechnic in 1986. Interestingly, the books so far were exclusively devoted to true or obligate marine fungi but several papers describing... thraustochytrids as contaminants in their primary cell cultures of marine tunicates. They are describing six closely related species of thraustochytrids, identified by molecular markers and claim that a close biological association exist between tunicates...

  8. A global biogeographic classification of the mesopelagic zone

    Science.gov (United States)

    Sutton, Tracey T.; Clark, Malcolm R.; Dunn, Daniel C.; Halpin, Patrick N.; Rogers, Alex D.; Guinotte, John; Bograd, Steven J.; Angel, Martin V.; Perez, Jose Angel A.; Wishner, Karen; Haedrich, Richard L.; Lindsay, Dhugal J.; Drazen, Jeffrey C.; Vereshchaka, Alexander; Piatkowski, Uwe; Morato, Telmo; Błachowiak-Samołyk, Katarzyna; Robison, Bruce H.; Gjerde, Kristina M.; Pierrot-Bults, Annelies; Bernal, Patricio; Reygondeau, Gabriel; Heino, Mikko

    2017-08-01

    We have developed a global biogeographic classification of the mesopelagic zone to reflect the regional scales over which the ocean interior varies in terms of biodiversity and function. An integrated approach was necessary, as global gaps in information and variable sampling methods preclude strictly statistical approaches. A panel combining expertise in oceanography, geospatial mapping, and deep-sea biology convened to collate expert opinion on the distributional patterns of pelagic fauna relative to environmental proxies (temperature, salinity, and dissolved oxygen at mesopelagic depths). An iterative Delphi Method integrating additional biological and physical data was used to classify biogeographic ecoregions and to identify the location of ecoregion boundaries or inter-regions gradients. We define 33 global mesopelagic ecoregions. Of these, 20 are oceanic while 13 are 'distant neritic.' While each is driven by a complex of controlling factors, the putative primary driver of each ecoregion was identified. While work remains to be done to produce a comprehensive and robust mesopelagic biogeography (i.e., reflecting temporal variation), we believe that the classification set forth in this study will prove to be a useful and timely input to policy planning and management for conservation of deep-pelagic marine resources. In particular, it gives an indication of the spatial scale at which faunal communities are expected to be broadly similar in composition, and hence can inform application of ecosystem-based management approaches, marine spatial planning and the distribution and spacing of networks of representative protected areas.

  9. Organic carbon burial rates in mangrove sediments: strengthening the global budget

    Science.gov (United States)

    Breithaupt, J.; Smoak, Joseph M.; Smith, Thomas J.; Sanders, Christian J.; Hoare, Armando

    2012-01-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10–15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8–15% of all OC burial in marine settings occurs in mangrove systems.

  10. Organic carbon burial rates in mangrove sediments: Strengthening the global budget

    Science.gov (United States)

    Breithaupt, Joshua L.; Smoak, Joseph M.; Smith, Thomas J., III; Sanders, Christian J.; Hoare, Armando

    2012-09-01

    Mangrove wetlands exist in the transition zone between terrestrial and marine environments and as such were historically overlooked in discussions of terrestrial and marine carbon cycling. In recent decades, mangroves have increasingly been credited with producing and burying large quantities of organic carbon (OC). The amount of available data regarding OC burial in mangrove soils has more than doubled since the last primary literature review (2003). This includes data from some of the largest, most developed mangrove forests in the world, providing an opportunity to strengthen the global estimate. First-time representation is now included for mangroves in Brazil, Colombia, Malaysia, Indonesia, China, Japan, Vietnam, and Thailand, along with additional data from Mexico and the United States. Our objective is to recalculate the centennial-scale burial rate of OC at both the local and global scales. Quantification of this rate enables better understanding of the current carbon sink capacity of mangroves as well as helps to quantify and/or validate the other aspects of the mangrove carbon budget such as import, export, and remineralization. Statistical analysis of the data supports use of the geometric mean as the most reliable central tendency measurement. Our estimate is that mangrove systems bury 163 (+40; -31) g OC m-2 yr-1 (95% C.I.). Globally, the 95% confidence interval for the annual burial rate is 26.1 (+6.3; -5.1) Tg OC. This equates to a burial fraction that is 42% larger than that of the most recent mangrove carbon budget (2008), and represents 10-15% of estimated annual mangrove production. This global rate supports previous conclusions that, on a centennial time scale, 8-15% of all OC burial in marine settings occurs in mangrove systems.

  11. Going with the flow: the role of ocean circulation in global marine ecosystems under a changing climate.

    Science.gov (United States)

    van Gennip, Simon J; Popova, Ekaterina E; Yool, Andrew; Pecl, Gretta T; Hobday, Alistair J; Sorte, Cascade J B

    2017-07-01

    Ocean warming, acidification, deoxygenation and reduced productivity are widely considered to be the major stressors to ocean ecosystems induced by emissions of CO 2 . However, an overlooked stressor is the change in ocean circulation in response to climate change. Strong changes in the intensity and position of the western boundary currents have already been observed, and the consequences of such changes for ecosystems are beginning to emerge. In this study, we address climatically induced changes in ocean circulation on a global scale but relevant to propagule dispersal for species inhabiting global shelf ecosystems, using a high-resolution global ocean model run under the IPCC RCP 8.5 scenario. The ¼ degree model resolution allows improved regional realism of the ocean circulation beyond that of available CMIP5-class models. We use a Lagrangian approach forced by modelled ocean circulation to simulate the circulation pathways that disperse planktonic life stages. Based on trajectory backtracking, we identify present-day coastal retention, dominant flow and dispersal range for coastal regions at the global scale. Projecting into the future, we identify areas of the strongest projected circulation change and present regional examples with the most significant modifications in their dominant pathways. Climatically induced changes in ocean circulation should be considered as an additional stressor of marine ecosystems in a similar way to ocean warming or acidification. © 2017 John Wiley & Sons Ltd.

  12. Global research priorities to mitigate plastic pollution impacts on marine wildlife

    Science.gov (United States)

    Vegter, Amanda C.; Barletta, Mário; Beck, Cathy A.; Borrero, Jose C.; Burton, Harry; Campbell, Marnie L.; Costa, Monica F.; Eriksen, Marcus; Eriksson, Cecilia; Estrades, Andres; Gilardi, Kirsten V.; Hardesty, Britta D.; do Sul, Juliana A. Ivar; Lavers, Jennifer L.; Lazar, Bojan; Lebreton, Laurent; Nichols, Wallace J.; Ribic, Christine A.; Ryan, Peter G.; Schuyler, Qamar A.; Smith, Stephen D. A.; Takada, Hideshige; Townsend, Kathy A.; Wabnitz, Colette C. C.; Wilcox, Chris; Young, Lindsay C.; Hamann, Mark

    2014-01-01

    Marine wildlife faces a growing number of threats across the globe, and the survival of many species and populations will be dependent on conservation action. One threat in particular that has emerged over the last 4 decades is the pollution of oceanic and coastal habitats with plastic debris. The increased occurrence of plastics in marine ecosystems mirrors the increased prevalence of plastics in society, and reflects the high durability and persistence of plastics in the environment. In an effort to guide future research and assist mitigation approaches to marine conservation, we have generated a list of 16 priority research questions based on the expert opinions of 26 researchers from around the world, whose research expertise spans several disciplines, and covers each of the world’s oceans and the taxa most at risk from plastic pollution. This paper highlights a growing concern related to threats posed to marine wildlife from microplastics and fragmented debris, the need for data at scales relevant to management, and the urgent need to develop interdisciplinary research and management partnerships to limit the release of plastics into the environment and curb the future impacts of plastic pollution.

  13. Early cenozoic differentiation of polar marine faunas.

    Directory of Open Access Journals (Sweden)

    J Alistair Crame

    Full Text Available The widespread assumption that the origin of polar marine faunas is linked to the onset of major global cooling in the Late Eocene-Early Oligocene is being increasingly challenged. The Antarctic fossil record in particular is suggesting that some modern Southern Ocean taxa may have Early Eocene or even Paleocene origins, i.e. well within the Early Cenozoic greenhouse world. A global analysis of one of the largest marine clades at the present day, the Neogastropoda, indicates that not only is there a decrease in the number of species from the tropics to the poles but also a decrease in the evenness of their distribution. A small number of neogastropod families with predominantly generalist trophic strategies at both poles points to the key role of seasonality in structuring the highest latitude marine assemblages. A distinct latitudinal gradient in seasonality is temperature-invariant and would have operated through periods of global warmth such as the Early Cenozoic. To test this concept a second global analysis was undertaken of earliest Cenozoic (Paleocene neogastropods and this does indeed show a certain degree of faunal differentiation at both poles. The Buccinidae, s.l. is especially well developed at this time, and this is a major generalist taxon at the present day. There is an element of asymmetry associated with this development of Paleocene polar faunas in that those in the south are more strongly differentiated than their northern counterparts; this can in turn be linked to the already substantial isolation of the southern high latitudes. The key role of seasonality in the formation of polar marine faunas has implications for contemporary ecosystem structure and stability.

  14. Marine heatwaves off eastern Tasmania: Trends, interannual variability, and predictability

    Science.gov (United States)

    Oliver, Eric C. J.; Lago, Véronique; Hobday, Alistair J.; Holbrook, Neil J.; Ling, Scott D.; Mundy, Craig N.

    2018-02-01

    Surface waters off eastern Tasmania are a global warming hotspot. Here, mean temperatures have been rising over several decades at nearly four times the global average rate, with concomitant changes in extreme temperatures - marine heatwaves. These changes have recently caused the marine biodiversity, fisheries and aquaculture industries off Tasmania's east coast to come under stress. In this study we quantify the long-term trends, variability and predictability of marine heatwaves off eastern Tasmania. We use a high-resolution ocean model for Tasmania's eastern continental shelf. The ocean state over the 1993-2015 period is hindcast, providing daily estimates of the three-dimensional temperature and circulation fields. Marine heatwaves are identified at the surface and subsurface from ocean temperature time series using a consistent definition. Trends in marine heatwave frequency are positive nearly everywhere and annual marine heatwave days and penetration depths indicate significant positive changes, particularly off southeastern Tasmania. A decomposition into modes of variability indicates that the East Australian Current is the dominant driver of marine heatwaves across the domain. Self-organising maps are used to identify 12 marine heatwave types, each with its own regionality, seasonality, and associated large-scale oceanic and atmospheric circulation patterns. The implications of this work for marine ecosystems and their management were revealed through review of past impacts and stakeholder discussions regarding use of these data.

  15. Indications of marine bioinvasion from network theory. An analysis of the global cargo ship network

    Science.gov (United States)

    Kölzsch, A.; Blasius, B.

    2011-12-01

    The transport of huge amounts of small aquatic organisms in the ballast tanks and at the hull of large cargo ships leads to ever increasing rates of marine bioinvasion. In this study, we apply a network theoretic approach to examine the introduction of invasive species into new ports by global shipping. This is the first stage of the invasion process where it is still possible to intervene with regulating measures. We compile a selection of widely used and newly developed network properties and apply these to analyse the structure and spread characteristics of the directed and weighted global cargo ship network (GCSN). Our results reveal that the GCSN is highly efficient, shows small world characteristics and is positive assortative, indicating that quick spread of invasive organisms between ports is likely. The GCSN shows strong community structure and contains two large communities, the Atlantic and Pacific trading groups. Ports that appear as connector hubs and are of high centralities are the Suez and Panama Canal, Singapore and Shanghai. Furthermore, from robustness analyses and the network's percolation behaviour, we evaluate differences of onboard and in-port ballast water treatment, set them into context with previous studies and advise bioinvasion management strategies.

  16. Large historical growth in global terrestrial gross primary production

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J. E.; Berry, J. A.; Seibt, U.; Smith, S. J.; Montzka, S. A.; Launois, T.; Belviso, S.; Bopp, L.; Laine, M.

    2017-04-05

    Growth in terrestrial gross primary production (GPP) may provide a feedback for climate change, but there is still strong disagreement on the extent to which biogeochemical processes may suppress this GPP growth at the ecosystem to continental scales. The consequent uncertainty in modeling of future carbon storage by the terrestrial biosphere constitutes one of the largest unknowns in global climate projections for the next century. Here we provide a global, measurement-based estimate of historical GPP growth using long-term atmospheric carbonyl sulfide (COS) records derived from ice core, firn, and ambient air samples. We interpret these records using a model that relates changes in the COS concentration to changes in its sources and sinks, the largest of which is proportional to GPP. The COS history was most consistent with simulations that assume a large historical GPP growth. Carbon-climate models that assume little to no GPP growth predicted trajectories of COS concentration over the anthropogenic era that differ from those observed. Continued COS monitoring may be useful for detecting ongoing changes in GPP while extending the ice core record to glacial cycles could provide further opportunities to evaluate earth system models.

  17. A global off-line model of size-resolved aerosol microphysics: I. Model development and prediction of aerosol properties

    Directory of Open Access Journals (Sweden)

    D. V. Spracklen

    2005-01-01

    Full Text Available A GLObal Model of Aerosol Processes (GLOMAP has been developed as an extension to the TOMCAT 3-D Eulerian off-line chemical transport model. GLOMAP simulates the evolution of the global aerosol size distribution using a sectional two-moment scheme and includes the processes of aerosol nucleation, condensation, growth, coagulation, wet and dry deposition and cloud processing. We describe the results of a global simulation of sulfuric acid and sea spray aerosol. The model captures features of the aerosol size distribution that are well established from observations in the marine boundary layer and free troposphere. Modelled condensation nuclei (CN>3nm vary between about 250–500 cm-3 in remote marine boundary layer regions and are generally in good agreement with observations. Modelled continental CN concentrations are lower than observed, which may be due to lack of some primary aerosol sources or the neglect of nucleation mechanisms other than binary homogeneous nucleation of sulfuric acid-water particles. Remote marine CN concentrations increase to around 2000–10 000 cm (at standard temperature and pressure in the upper troposphere, which agrees with typical observed vertical profiles. Cloud condensation nuclei (CCN at 0.2% supersaturation vary between about 1000 cm-3 in polluted regions and between 10 and 500 cm-3 in the remote marine boundary layer. New particle formation through sulfuric acid-water binary nucleation occurs predominantly in the upper troposphere, but the model results show that these particles contribute greatly to aerosol concentrations in the marine boundary layer. For this sulfur-sea salt system it is estimated that sea spray emissions account for only ~10% of CCN in the tropical marine boundary layer, but between 20 and 75% in the mid-latitude Southern Ocean. In a run with only natural sulfate and sea salt emissions the global mean surface CN concentration is more than 60% of that from a run with 1985 anthropogenic

  18. Relating Nimbus-7 37 GHz data to global land-surface evaporation, primary productivity and the atmospheric CO2 concentration

    Science.gov (United States)

    Choudhury, B. J.

    1988-01-01

    Global observations at 37 GHz by the Nimbus-7 SMMR are related to zonal variations of land surface evaporation and primary productivity, as well as to temporal variations of atmospheric CO2 concentration. The temporal variation of CO2 concentration and the zonal variations of evaporation and primary productivity are shown to be highly correlated with the satellite sensor data. The potential usefulness of the 37-GHz data for global biospheric and climate studies is noted.

  19. Marine pollution. Proceedings of an international symposium

    International Nuclear Information System (INIS)

    1999-07-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of Oceans. Over 400 international experts from 61 Member States and 8 international organizations delivered 114 oral presentations in plenary and parallel sessions and made 215 poster presentations. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for the studies of transport and circulation processes in the world's oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. Information on global and regional marine pollution studies programmes was also given and participants had the chance to interacts with leading experts in the field and ro discuss future trends in marine pollution studies. This TECDOC contains some of the papers submitted on issues falling within the thematic scope od the symposium which were presented in oral and poster presentations

  20. Marine pollution. Proceedings of an international symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-07-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of Oceans. Over 400 international experts from 61 Member States and 8 international organizations delivered 114 oral presentations in plenary and parallel sessions and made 215 poster presentations. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for the studies of transport and circulation processes in the world`s oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. Information on global and regional marine pollution studies programmes was also given and participants had the chance to interacts with leading experts in the field and ro discuss future trends in marine pollution studies. This TECDOC contains some of the papers submitted on issues falling within the thematic scope od the symposium which were presented in oral and poster presentations Refs, figs, tabs

  1. MODIS-based global terrestrial estimates of gross primary productivity and evapotranspiration

    Science.gov (United States)

    Ryu, Y.; Baldocchi, D. D.; Kobayashi, H.; Li, J.; van Ingen, C.; Agarwal, D.; Jackson, K.; Humphrey, M.

    2010-12-01

    We propose a novel approach to quantify gross primary productivity (GPP) and evapotranspiration (ET) at global scale (5 km resolution with 8-day interval). The MODIS-based, process-oriented approach couples photosynthesis, evaporation, two-leaf energy balance and nitrogen, which are different from the previous satellite-based approaches. We couple information from MODIS with flux towers to assess the drivers and parameters of GPP and ET. Incoming shortwave radiation components (direct and diffuse PAR, NIR) under all sky condition are modeled using a Monte-Carlo based atmospheric radiative transfer model. The MODIS Level 2 Atmospheric products are gridded and overlaid with MODIS Land products to produce spatially compatible forcing variables. GPP is modeled using a two-leaf model (sunlit and shaded leaf) and the maximum carboxylation rate is estimated using albedo-Nitrogen-leaf trait relations. The GPP is used to calculate canopy conductance via Ball-Berry model. Then, we apply Penman-Monteith equation to calculate evapotranspiration. The process-oriented approach allows us to investigate the main drivers of GPP and ET at global scale. Finally we explore the spatial and temporal variability of GPP and ET at global scale.

  2. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  3. Annual report on global environmental monitoring - 1993

    International Nuclear Information System (INIS)

    1993-01-01

    In recent decades, scientific evidence from long-term monitoring has revealed the creeping destruction of ecosystems upon which human existence depends. Recognition of this destruction is changing the international policies used to manage our planet. Vast quantities of information regarding the status of the global environment is necessary in order to achieve a solid consensus among nations for environmental policies. To detect global change early, systematic monitoring with coverage of the entire surface of the earth should be implemented under close coordination among countries and researchers from different disciplines. The resulting precise and accurate measurements should be integrated in a timely fashion into an internationally coordinated database which will be available to the decision makers. In view of this concept, the Center for Global Environmental Research was established in 1990 and started work on monitoring, data management, modeling and their integration. CGER's field of monitoring covers the stratosphere, troposphere, fresh water, marine and terrestrial ecosystems. Groups of researchers are organized to design and conduct the monitoring. After intensive examination by these researchers, the resulting data are compiled into this report to be used in academic society as well as to serve decision makers. In 1993 two series of monitoring data reached this stage of publishing. This report contains the results of the Ozone Lidar Monitoring Program and the Japan-Korea Marine Biogeochemical Monitoring Program. The Center for Global Environmental Research very much appreciates both the research staff of these programs for their long-term and patient measurements and the advisory members for their valuable recommendations to the staffs. Those researchers who wish to examine and utilize the raw or primary data are strongly encouraged to contact the Monitoring Section of the center

  4. Sources, factors, mechanisms and possible solutions to pollutants in marine ecosystems

    International Nuclear Information System (INIS)

    Mostofa, Khan M.G.; Liu, Cong-Qiang; Vione, Davide; Gao, Kunshan; Ogawa, Hiroshi

    2013-01-01

    Algal toxins or red-tide toxins produced during algal blooms are naturally-derived toxic emerging contaminants (ECs) that may kill organisms, including humans, through contaminated fish or seafood. Other ECs produced either naturally or anthropogenically ultimately flow into marine waters. Pharmaceuticals are also an important pollution source, mostly due to overproduction and incorrect disposal. Ship breaking and recycle industries (SBRIs) can also release various pollutants and substantially deteriorate habitats and marine biodiversity. Overfishing is significantly increasing due to the global food crisis, caused by an increasing world population. Organic matter (OM) pollution and global warming (GW) are key factors that exacerbate these challenges (e.g. algal blooms), to which acidification in marine waters should be added as well. Sources, factors, mechanisms and possible remedial measures of these challenges to marine ecosystems are discussed, including their eventual impact on all forms of life including humans. -- Review of sources, factors, mechanisms and possible remedial measures of key pollutants (contaminants, toxins, ship breaking, overfishing) in marine ecosystems

  5. Estimates of global cyanobacterial biomass and its distribution

    Science.gov (United States)

    Garcia-Pichel, Ferran; Belnap, Jayne; Neuer, Susanne; Schanz, Ferdinand

    2003-01-01

    We estimated global cyanobacterial biomass in the main reservoirs of cyanobacteria on Earth: marine and freshwater plankton, arid land soil crusts, and endoliths. Estimates were based on typical population density values as measured during our research, or as obtained from literature surveys, which were then coupled with data on global geographical area coverage. Among the marine plankton, the global biomass of Prochlorococcus reaches 120 × 1012 grams of carbon (g C), and that of Synechoccus some 43 × 1012 g C. This makes Prochlorococcus and Synechococcus, in that order, the most abundant cyanobacteria on Earth. Tropical marine blooms of Trichodesmium account for an additional 10 × 1012 g C worldwide. In terrestrial environments, the mass of cyanobacteria in arid land soil crusts is estimated to reach 54 × 1012 g C and that of arid land endolithic communities an additional 14 × 1012 g C. The global biomass of planktic cyanobacteria in lakes is estimated to be around 3 × 1012 g C. Our conservative estimates, which did not include some potentially significant biomass reservoirs such as polar and subarctic areas, topsoils in subhumid climates, and shallow marine and freshwater benthos, indicate that the total global cyanobacterial biomass is in the order of 3 × 1014 g C, surpassing a thousand million metric tons (1015 g) of wet biomass.

  6. Conservation physiology of marine fishes

    DEFF Research Database (Denmark)

    Jørgensen, Christian; Peck, Myron A.; Antognarelli, Fabio

    2012-01-01

    At the end of May, 17 scientists involved in an EU COST Action on Conservation Physiology of Marine Fishes met in Oristano, Sardinia, to discuss how physiology can be better used in modelling tools to aid in management of marine ecosystems. Current modelling approaches incorporate physiology...... to different extents, ranging from no explicit consideration to detailed physiological mechanisms, and across scales from a single fish to global fishery resources. Biologists from different sub-disciplines are collaborating to rise to the challenge of projecting future changes in distribution and productivity...

  7. Consumer Preferences Toward Marine Tourism Area

    Directory of Open Access Journals (Sweden)

    Silvy Fauziah

    2012-09-01

    Full Text Available The marine zone tourism is growing attracting more tourists. Pramuka Island is marine conservation area enriched with marine biodiversity in coral reefs and other natural resources. To develop this potential tourist destination, a customer-based marketing program is required to attract domestic and foreign tourists. The main vision is to understand tourist preferences for marine tourism activities and facilities. A research was conducted on Pramuka Island as a well-known marine tourism zone. The objective was to determine the key tourist preferences for marine tourism destination. Research methods utilized Cochran Q test and Conjoint analysis where the primary data were obtained from tourist respondents. The result showed that there was a tourist preference based on the five attributes considered most important, namely tourism activities, tourist attractions, types of accommodation, food and souvenirs types. This study provided marine tourism destination management with useful guidance for broader implications of the implementation of marketing programs and tourism attraction. Moreover, the results of this study consolidated the learning of a variety of academic and industrial research papers in particular for the measurement of customer preferences towards marine tourism destination.

  8. The impact of fish and the commercial marine harvest on the ocean iron cycle.

    Directory of Open Access Journals (Sweden)

    Allison R Moreno

    Full Text Available Although iron is the fourth most abundant element in the Earth's crust, bioavailable iron limits marine primary production in about one third of the ocean. This lack of iron availability has implications in climate change because the removal of carbon dioxide from the atmosphere by phytoplankton requires iron. Using literature values for global fish biomass estimates, and elemental composition data we estimate that fish biota store between 0.7-7 × 10(11 g of iron. Additionally, the global fish population recycles through excretion between 0.4-1.5 × 10(12 g of iron per year, which is of a similar magnitude as major recognized sources of iron (e.g. dust, sediments, ice sheet melting. In terms of biological impact this iron could be superior to dust inputs due to the distributed deposition and to the greater solubility of fecal pellets compared to inorganic minerals. To estimate a loss term due to anthropogenic activity the total commercial catch for 1950 to 2010 was obtained from the Food and Agriculture Organization of the United Nations. Marine catch data were separated by taxa. High and low end values for elemental composition were obtained for each taxonomic category from the literature and used to calculate iron per mass of total harvest over time. The marine commercial catch is estimated to have removed 1-6 × 10(9 g of iron in 1950, the lowest values on record. There is an annual increase to 0.7-3 × 10(10 g in 1996, which declines to 0.6-2 × 10(10 g in 2010. While small compared to the total iron terms in the cycle, these could have compounding effects on distribution and concentration patterns globally over time. These storage, recycling, and export terms of biotic iron are not currently included in ocean iron mass balance calculations. These data suggest that fish and anthropogenic activity should be included in global oceanic iron cycles.

  9. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data

    Science.gov (United States)

    Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, Allen H.; Gianelle, D.; Rossi, F.; Suyker, A.E.; Verma, S.B.

    2010-01-01

    The simulation of gross primary production (GPP) at various spatial and temporal scales remains a major challenge for quantifying the global carbon cycle. We developed a light use efficiency model, called EC-LUE, driven by only four variables: normalized difference vegetation index (NDVI), photosynthetically active radiation (PAR), air temperature, and the Bowen ratio of sensible to latent heat flux. The EC-LUE model may have the most potential to adequately address the spatial and temporal dynamics of GPP because its parameters (i.e., the potential light use efficiency and optimal plant growth temperature) are invariant across the various land cover types. However, the application of the previous EC-LUE model was hampered by poor prediction of Bowen ratio at the large spatial scale. In this study, we substituted the Bowen ratio with the ratio of evapotranspiration (ET) to net radiation, and revised the RS-PM (Remote Sensing-Penman Monteith) model for quantifying ET. Fifty-four eddy covariance towers, including various ecosystem types, were selected to calibrate and validate the revised RS-PM and EC-LUE models. The revised RS-PM model explained 82% and 68% of the observed variations of ET for all the calibration and validation sites, respectively. Using estimated ET as input, the EC-LUE model performed well in calibration and validation sites, explaining 75% and 61% of the observed GPP variation for calibration and validation sites respectively.Global patterns of ET and GPP at a spatial resolution of 0.5° latitude by 0.6° longitude during the years 2000–2003 were determined using the global MERRA dataset (Modern Era Retrospective-Analysis for Research and Applications) and MODIS (Moderate Resolution Imaging Spectroradiometer). The global estimates of ET and GPP agreed well with the other global models from the literature, with the highest ET and GPP over tropical forests and the lowest values in dry and high latitude areas. However, comparisons with observed

  10. OAE2 in marine sections at high northern palaeolatitudes?

    DEFF Research Database (Denmark)

    Lenniger, Marc; Pedersen, Gunver Krarup; Bjerrum, Christian J.

    oceanic anoxic events is the Cenomanian–Turonian boundary event (OAE2). The event is characterised by a major positive d13C excursion (ca. 2-4 ‰) in marine carbonate and both marine and terrestrial organic matter, which indicates that a major disturbance of the global carbon cycle occurred in the ocean...

  11. Understanding the drivers of marine liquid-water cloud occurrence and properties with global observations using neural networks

    Directory of Open Access Journals (Sweden)

    H. Andersen

    2017-08-01

    Full Text Available The role of aerosols, clouds and their interactions with radiation remain among the largest unknowns in the climate system. Even though the processes involved are complex, aerosol–cloud interactions are often analyzed by means of bivariate relationships. In this study, 15 years (2001–2015 of monthly satellite-retrieved near-global aerosol products are combined with reanalysis data of various meteorological parameters to predict satellite-derived marine liquid-water cloud occurrence and properties by means of region-specific artificial neural networks. The statistical models used are shown to be capable of predicting clouds, especially in regions of high cloud variability. On this monthly scale, lower-tropospheric stability is shown to be the main determinant of cloud fraction and droplet size, especially in stratocumulus regions, while boundary layer height controls the liquid-water amount and thus the optical thickness of clouds. While aerosols show the expected impact on clouds, at this scale they are less relevant than some meteorological factors. Global patterns of the derived sensitivities point to regional characteristics of aerosol and cloud processes.

  12. Primary versus secondary and anthropogenic versus natural sources of aminium ions in atmospheric particles during nine coastal and marine campaigns

    Science.gov (United States)

    Xie, H.; Yao, X.

    2017-12-01

    In this study, size-segregated dimethylaminium (DMA+) and trimethylaminium (TMA+) in atmospheric particles were measured during four coastal campaigns in Qingdao, China and five campaigns cruising over marginal seas of China and the northwest Pacific Ocean. The measured averages of DMA+ and TMA+ in PM0.056-10 (the sum of chemical concentrations from 0.056 to 10 µm) during each campaign, ranged from 0.045 to 1.1 nmol m-3 and from 0.029 to 0.53 nmol m-3, respectively. Size distributions of DMA+ and TMA+ in coastal atmospheric particles suggested that primary combustion emissions featured by mass median aerodynamic diameter (MMAD) at 0.2 µm generally yielded appreciable contributions to their observed concentrations in PM0.056-10 and sometimes dominantly contributed. In the marine atmospheres, the 0.1-0.2 µm modes of DMA+ and TMA+ also existed and sometimes dominated while they were very likely derived from primary ocean-biogenic emissions. In most of the samples during nine campaigns, secondarily-formed DMA+ and TMA+ in droplet mode with MMAD at 0.3-2 µm dominantly contributed to DMA+ and TMA+ in PM0.056-10. Overall, our results suggested that DMA+ and TMA+ in the marine atmospheric particles overwhelmingly came from ocean biogenic sources while they were likely derived from complicated anthropogenic and natural sources at the coastal sites.

  13. Structural Uncertainty in Model-Simulated Trends of Global Gross Primary Production

    Directory of Open Access Journals (Sweden)

    Zaichun Zhu

    2013-03-01

    Full Text Available Projected changes in the frequency and severity of droughts as a result of increase in greenhouse gases have a significant impact on the role of vegetation in regulating the global carbon cycle. Drought effect on vegetation Gross Primary Production (GPP is usually modeled as a function of Vapor Pressure Deficit (VPD and/or soil moisture. Climate projections suggest a strong likelihood of increasing trend in VPD, while regional changes in precipitation are less certain. This difference in projections between VPD and precipitation can cause considerable discrepancies in the predictions of vegetation behavior depending on how ecosystem models represent the drought effect. In this study, we scrutinized the model responses to drought using the 30-year record of Global Inventory Modeling and Mapping Studies (GIMMS 3g Normalized Difference Vegetation Index (NDVI dataset. A diagnostic ecosystem model, Terrestrial Observation and Prediction System (TOPS, was used to estimate global GPP from 1982 to 2009 under nine different experimental simulations. The control run of global GPP increased until 2000, but stayed constant after 2000. Among the simulations with single climate constraint (temperature, VPD, rainfall and solar radiation, only the VPD-driven simulation showed a decrease in 2000s, while the other scenarios simulated an increase in GPP. The diverging responses in 2000s can be attributed to the difference in the representation of the impact of water stress on vegetation in models, i.e., using VPD and/or precipitation. Spatial map of trend in simulated GPP using GIMMS 3g data is consistent with the GPP driven by soil moisture than the GPP driven by VPD, confirming the need for a soil moisture constraint in modeling global GPP.

  14. Tracking Dietary Sources of Short- and Medium-Chain Chlorinated Paraffins in Marine Mammals through a Subtropical Marine Food Web.

    Science.gov (United States)

    Zeng, Lixi; Lam, James C W; Chen, Hui; Du, Bibai; Leung, Kenneth M Y; Lam, Paul K S

    2017-09-05

    Our previous study revealed an elevated accumulation of short-chain chlorinated paraffins (SCCPs) and medium-chain chlorinated paraffins (MCCPs) in marine mammals from Hong Kong waters in the South China Sea. To examine the bioaccumulation potential and biomagnification in these apex predators, we sampled the dietary items of marine mammals and tracked the sources of SCCPs and MCCPs through a marine food web in this region. Sixteen fish species, seven crustacean species, and four mollusk species were collected, and the main prey species were identified for two species of marine mammals. Concentrations of ∑SCCPs and ∑MCCPs in these collected species suggested a moderate pollution level in Hong Kong waters compared to the global range. Lipid content was found to mediate congener-specific bioaccumulation in these marine species. Significantly positive correlations were observed between trophic levels and concentrations of ∑SCCPs or ∑MCCPs (p mammals was observed. This is the first report of dietary source tracking of SCCPs and MCCPs in marine mammals. The elevated biomagnification between prey and marine mammals raises environmental concerns about these contaminants.

  15. Role of Diatoms in marine biofouling

    Digital Repository Service at National Institute of Oceanography (India)

    Anil, A; Patil, J.S..; Mitbavkar, S.; DeCosta, P.M.; DeSilva, S.; Hegde, S.; Naik, R.

    . Ltd., New Delhi, pp. 293-6. de Nys, R., Leya, T., Maximilien, R., Afsar, A., Nair, P. S. R. & Steinberg, P. D. 1996. The need for standardized broad scale bioassay testing: a case study using the red alga Laurencia rigida. Biofouling 10:213-24. de...-1 Content-Type text/plain; charset=ISO-8859-1 Recent Advances on Applied Aspects of Indian Marine Algae with Reference to Global Scenario, Volume 1, A. Tewari (Ed.), 2006 Central Salt & Marine Chemicals Research Institute Role of Diatoms...

  16. The marine diversity spectrum

    DEFF Research Database (Denmark)

    Reuman, Daniel C.; Gislason, Henrik; Barnes, Carolyn

    2014-01-01

    of taxonomy (all the species in a region regardless of clade) are much less studied but are equally important and will illuminate a different set of ecological and evolutionary processes. We develop and test a mechanistic model of how diversity varies with body mass in marine ecosystems. The model predicts...... the form of the diversity spectrum', which quantifies the distribution of species' asymptotic body masses, is a species analogue of the classic size spectrum of individuals, and which we have found to be a new and widely applicable description of diversity patterns. The marine diversity spectrum...... is predicted to be approximately linear across an asymptotic mass range spanning seven orders of magnitude. Slope -0 center dot 5 is predicted for the global marine diversity spectrum for all combined pelagic zones of continental shelf seas, and slopes for large regions are predicted to lie between -0 center...

  17. Bioactivity of marine organisms. 6. Antiviral evaluation of marine algal extracts from the Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Kamat, S.Y.; Wahidullah, S.; DeSouza, L.; Naik, C.G.; Ambiye, V.; Bhakuni, D.S.; Goel, A.K.; Garg, H.S.; Srimal, R.C.

    Ethanolic extracts of Indian marine algae belonging to the Rhodophyceae, Phaeophyceae and Chlorophyceae were tested for anti-semiliki Forest (SFV), Ranikhet Disease (RDV) and Vaccinia (VV) viruses. In the primary screening of 31 seaweeds, 17...

  18. Turkish Primary Science Teacher Candidates' Understandings of Global Warming and Ozone Layer Depletion

    Science.gov (United States)

    Yalcin, Fatma Aggul; Yalcin, Mehmet

    2017-01-01

    The purpose of the study was to explore Turkish primary science teacher candidates' understanding of global warming and ozone layer depletion. In the study, as the research approach the survey method was used. The sample consisted of one hundred eighty nine third grade science teacher candidates. Data was collected using the tool developed by the…

  19. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System

    Directory of Open Access Journals (Sweden)

    Gonzalo V. Gomez-Saez

    2017-04-01

    Full Text Available The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles, characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter, supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion

  20. PRIMARY PREVENTION IS? A GLOBAL PERSPECTIVE ON HOW ORGANIZATIONS ENGAGING MEN IN PREVENTING GENDER-BASED VIOLENCE CONCEPTUALIZE AND OPERATIONALIZE THEIR WORK

    Science.gov (United States)

    Storer, Heather L.; Casey, Erin A.; Carlson, Juliana; Edleson, Jeffrey L.; Tolman, Richard M.

    2014-01-01

    Engaging men in addressing violence against women (VAW) has become a strategy in the global prevention of gender-based violence. Concurrently, Western public health frameworks have been utilized to guide prevention agendas worldwide. Using qualitative methods, this study describes how global anti-violence organizations that partner with men conceptualize primary prevention in their work. Findings suggest that ‘primary prevention’ is not a fixed term in the context of VAW and that front-line prevention work challenges rigidly delineated distinctions between levels of prevention. Much can be learned from global organizations’ unique and contextualized approaches to the prevention of VAW. PMID:26333283

  1. USCG Local Notice to Mariners: 2007

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  2. USCG Local Notice to Mariners: 1998

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  3. USCG Local Notice to Mariners: 2004

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  4. USCG Local Notice to Mariners: 2009

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  5. USCG Local Notice to Mariners: 2006

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  6. USCG Local Notice to Mariners: 2011

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  7. USCG Local Notice to Mariners: 1997

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  8. USCG Local Notice to Mariners: 2008

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  9. USCG Local Notice to Mariners: 1996

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  10. USCG Local Notice to Mariners: 2001

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  11. USCG Local Notice to Mariners: 2012

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  12. USCG Local Notice to Mariners: 1999

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  13. USCG Local Notice to Mariners: 2013

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  14. USCG Local Notice to Mariners: 2002

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  15. USCG Local Notice to Mariners: 1995

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  16. USCG Local Notice to Mariners: 2010

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  17. USCG Local Notice to Mariners: 2000

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  18. USCG Local Notice to Mariners: 2003

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  19. USCG Local Notice to Mariners: 2005

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  20. The ecological impacts of marine debris

    NARCIS (Netherlands)

    Rochman, Chelsea M.; Browne, Mark Anthony; Underwood, A.J.; Franeker, Van Jan A.; Thompson, Richard C.; Amaral-Zettler, Linda A.

    2016-01-01

    Anthropogenic debris contaminates marine habitats globally, leading to several perceived ecological impacts. Here, we critically and systematically review the literature regarding impacts of debris from several scientific fields to understand the weight of evidence regarding the ecological

  1. Integrated School of Ocean Sciences: Doctoral Education in Marine Sciences in Kiel

    Science.gov (United States)

    Bergmann, Nina; Basse, Wiebke; Prigge, Enno; Schelten, Christiane; Antia, Avan

    2016-04-01

    Marine research is a dynamic thematic focus in Kiel, Germany, uniting natural scientists, economists, lawyers, philosophers, artists and computing and medical scientists in frontier research on the scientific, economic and legal aspects of the seas. The contributing institutions are Kiel University, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel Institute for the World Economy and Muthesius University in Kiel. Marine science education in Kiel trains young scientists to investigate the role of the oceans in global change, risks arising from ocean usage and sustainable management of living and non-living marine resources. Basic fundamental research is supplemented with applied science in an international framework including partners from industry and public life. The Integrated School of Ocean Sciences (ISOS) established through the Cluster of Excellence "The Future Ocean", funded within the German Excellence Initiative, provides PhD candidates in marine sciences with interdisciplinary education outside of curricular courses. It supports the doctoral candidates through supplementary training, a framework of supervision, mentoring and mobility, the advisors through transparency and support of doctoral training in their research proposals and the contributing institutions by ensuring quality, innovation and excellence in marine doctoral education. All PhD candidates financed by the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the Collaborative Research Centre 754 "Climate-biogeochemical interactions in the tropical ocean" (SFB 754) are enrolled at the ISOS and are integrated into the larger peer community. Over 150 PhD candidate members from 6 faculties form a large interdisciplinary network. At the ISOS, they sharpen their scientific profile, are challenged to think beyond their discipline and equip themselves for life after a PhD through early exposure to topics beyond research (e.g. social responsibility, public communication

  2. Sorption of hydrophobic organic compounds to plastics in marine environments: Equilibrium

    NARCIS (Netherlands)

    Endo, S.; Koelmans, A.A.

    2016-01-01

    Marine plastics have shown to contain various environmental chemicals. For evaluating the potential of plastics to influence regional and global dynamics of these chemicals and to serve as a vector to marine biota, understanding of sorption and desorption of chemicals by plastics is important. In

  3. Emergence of Global Adaptive Governance for Stewardship of Regional Marine Resources

    Directory of Open Access Journals (Sweden)

    Henrik Österblom

    2013-06-01

    Full Text Available Overfishing has historically caused widespread stock collapses in the Southern Ocean. Until recently, illegal, unreported, and unregulated (IUU fishing threatened to result in the collapse of some of the few remaining valuable fish stocks in the region and vulnerable seabird populations. Currently, this unsustainable fishing has been reduced to less than 10% of former levels. We describe and analyze the emergence of the social-ecological governance system that made it possible to curb the fisheries crisis. For this purpose, we investigated the interplay between actors, social networks, organizations, and institutions in relation to environmental outcomes. We drew on a diversity of methods, including qualitative interviews, quantitative social network and survey data, and literature reviews. We found that the crisis triggered action of an informal group of actors over time, which led to a new organization (ISOFISH that connected two independent networks (nongovermental organizations and the fishing industry, and later (COLTO linked to an international body and convention (CCAMLR. The emergence of the global adaptive governance systems for stewardship of a regional marine resource took place over a 15-year period. We describe in detail the emergence process and illustrate the usefulness of analyzing four features of governance and understanding social-ecological processes, thereby describing structures and functions, and their link to tangible environmental outcomes.

  4. PRIMARY PREVENTION IS? A GLOBAL PERSPECTIVE ON HOW ORGANIZATIONS ENGAGING MEN IN PREVENTING GENDER-BASED VIOLENCE CONCEPTUALIZE AND OPERATIONALIZE THEIR WORK

    OpenAIRE

    Storer, Heather L.; Casey, Erin A.; Carlson, Juliana; Edleson, Jeffrey L.; Tolman, Richard M.

    2015-01-01

    © 2015, The Author(s) 2015. Engaging men in addressing violence against women (VAW) has become a strategy in the global prevention of gender-based violence. Concurrently, Western public health frameworks have been utilized to guide prevention agendas worldwide. Using qualitative methods, this study describes how global anti-violence organizations that partner with men conceptualize primary prevention in their work. Findings suggest that “primary prevention” is not a fixed term in the context ...

  5. Large benefits to marine fisheries of meeting the 1.5°C global warming target.

    Science.gov (United States)

    Cheung, William W L; Reygondeau, Gabriel; Frölicher, Thomas L

    2016-12-23

    Translating the Paris Agreement to limit global warming to 1.5°C above preindustrial level into impact-related targets facilitates communication of the benefits of mitigating climate change to policy-makers and stakeholders. Developing ecologically relevant impact-related targets for marine ecosystem services, such as fisheries, is an important step. Here, we use maximum catch potential and species turnover as climate-risk indicators for fisheries. We project that potential catches will decrease by more than 3 million metric tons per degree Celsius of warming. Species turnover is more than halved when warming is lowered from 3.5° to 1.5°C above the preindustrial level. Regionally, changes in maximum catch potential and species turnover vary across ecosystems, with the biggest risk reduction in the Indo-Pacific and Arctic regions when the Paris Agreement target is achieved. Copyright © 2016, American Association for the Advancement of Science.

  6. Astronomically forced paleoclimate change from middle Eocene to early Oligocene: continental conditions in central China compared with the global marine isotope record

    Science.gov (United States)

    Huang, C.; Hinnov, L. A.

    2010-12-01

    The early Eocene climatic optimum ended with a long interval of global cooling that began in the early Middle Eocene and ended at the Eocene-Oligocene transition. During this long-term cooling, a series of short-term warming reversals occurred in the marine realm. Here, we investigate corresponding continental climate conditions as revealed in the Qianjiang Formation of the Jianghan Basin in central China, which consists of more than 4000 m of saline lake sediments. The Qianjiang Formation includes, in its deepest sections, a halite-rich rhythmic sediment succession with dark mudstone, brownish-white siltstone and sandstone, and greyish-white halite. Alternating fresh water (humid/cool)—saline water (dry/hot) deposits reflect climate cycles driven by orbital forcing. High-resolution gamma ray (GR) logging from the basin center captures these pronounced lithological rhythms throughout the formation. Several halite-rich intervals are interpreted as short-term warming events within the middle Eocene to early Oligocene, and could be expressions of coeval warming events in the global marine oxygen isotope record, for example, the middle Eocene climate optimum (MECO) event around 41 Ma. The Eocene-Oligocene boundary is distinguished by a radical change from halite-rich to clastic sediments, indicating a dramatic climate change from warm to cool conditions. Power spectral analysis of the GR series indicates strong short (~100 kyr) eccentricity cycling during the warm/hot episodes. Amplitude modulation of the short eccentricity in the GR series occurs with a strong 405 kyr periodicity. This cycling is calibrated to the La2004 orbital eccentricity model. A climate reversal occurs at 36.5 Ma within the long-term marine cooling trend following MECO, which is reflected also in the Qianjiang GR series, with the latter indicating several brief warm/dry reversals within the trend. A ~2.6 Myr halite-rich warm interval occurs in the latest Eocene in the continental record; both

  7. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    Science.gov (United States)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  8. Lunge feeding in early marine reptiles and fast evolution of marine tetrapod feeding guilds.

    Science.gov (United States)

    Motani, Ryosuke; Chen, Xiao-hong; Jiang, Da-yong; Cheng, Long; Tintori, Andrea; Rieppel, Olivier

    2015-03-10

    Traditional wisdom holds that biotic recovery from the end-Permian extinction was slow and gradual, and was not complete until the Middle Triassic. Here, we report that the evolution of marine predator feeding guilds, and their trophic structure, proceeded faster. Marine reptile lineages with unique feeding adaptations emerged during the Early Triassic (about 248 million years ago), including the enigmatic Hupehsuchus that possessed an unusually slender mandible. A new specimen of this genus reveals a well-preserved palate and mandible, which suggest that it was a rare lunge feeder as also occurs in rorqual whales and pelicans. The diversity of feeding strategies among Triassic marine tetrapods reached their peak in the Early Triassic, soon after their first appearance in the fossil record. The diet of these early marine tetrapods most likely included soft-bodied animals that are not preserved as fossils. Early marine tetrapods most likely introduced a new trophic mechanism to redistribute nutrients to the top 10 m of the sea, where the primary productivity is highest. Therefore, a simple recovery to a Permian-like trophic structure does not explain the biotic changes seen after the Early Triassic.

  9. THE DEVELOPMENT OF MARINE SPATIAL PLANNING AND ITS APPLICATION FOR FLOATING FISH NET CULTURE

    OpenAIRE

    Dewayany Sutrisno

    2017-01-01

    Marine spatial planning has become the crucial issues for an archipelagic state such as Indonesia. The global market demand on marine economic species has been initiated the exploitation of the marine species which will become the hindrance in maintaining the sustainable marine biodiversity. Besides that, the degradation of marine species will also become the problem for traditional fishermen. Therefore, a model has to be employed to spatially manage the coastal waters as the alternative for ...

  10. Marine algal toxins: origins, health effects, and their increased occurrence

    International Nuclear Information System (INIS)

    Van Dolah, Frances M.

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. (Author)

  11. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    Science.gov (United States)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-12-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice.

  12. Primary Prevention Is? A Global Perspective on How Organizations Engaging Men in Preventing Gender-Based Violence Conceptualize and Operationalize Their Work.

    Science.gov (United States)

    Storer, Heather L; Casey, Erin A; Carlson, Juliana; Edleson, Jeffrey L; Tolman, Richard M

    2016-02-01

    Engaging men in addressing violence against women (VAW) has become a strategy in the global prevention of gender-based violence. Concurrently, Western public health frameworks have been utilized to guide prevention agendas worldwide. Using qualitative methods, this study describes how global anti-violence organizations that partner with men conceptualize primary prevention in their work. Findings suggest that "primary prevention" is not a fixed term in the context of VAW and that front-line prevention work challenges rigidly delineated distinctions between levels of prevention. Much can be learned from global organizations' unique and contextualized approaches to the prevention of VAW. © The Author(s) 2015.

  13. International marine and aviation bunker fuel. Trends, ranking of countries and comparison with national CO2 emission

    International Nuclear Information System (INIS)

    Olivier, J.G.J.; Peters, J.A.H.W.

    1999-01-01

    This report summarises and characterises fuel consumption and associated CO2 emissions from international transport based on energy statistics compiled by the International Energy Agency (IEA). Shares in 1990 and 1970-1995 trends in national and global bunker fuel consumption and associated CO2 emissions are analysed for marine and air transport. Also, the global total of international transport emissions are compared with national emissions and domestic transport emissions. During the last 25 years the average global annual increase was for marine bunkers about 0.8% and for aviation emissions about 3.3%. Annual variations per country of marine bunker fuel use larger than of aviation fuel use, sometimes more than 50%. However, the distinction between fuel use for domestic and for international aviation is more difficult to monitor. The dominant fuel in marine bunker fuel consumption is residual fuel oil ('heavy fuel oil'). The share of diesel oil has slowly increased from 11% in 1970 to 20% in 1990. Aviation fuels sold are predominantly jet fuel ('jet kerosene'). The small share of aviation gasoline is slowly decreasing: from about 4% in 1970 to 1.3% in 1990. Carbon dioxide emissions from combustion of international marine bunker fuels and aviation contributed in 1990 globally about 1.8% and 2.4% expressed as percentage of global total anthropogenic emissions (excluding deforestation). However, aviation emissions include an unknown part of domestic aviation. When comparing with total transport emissions, then international transport has a share of 20%. For both marine and aviation bunker fuel, the Top-10 of largest consuming countries account for about 2/3 of the global total; the Top-25 countries cover already 85% or more of global total CO2 emissions

  14. Respiration of new and old carbon in the surface ocean: Implications for estimates of global oceanic gross primary productivity

    Science.gov (United States)

    Carvalho, Matheus C.; Schulz, Kai G.; Eyre, Bradley D.

    2017-06-01

    New respiration (Rnew, of freshly fixated carbon) and old respiration (Rold, of storage carbon) were estimated for different regions of the global surface ocean using published data on simultaneous measurements of the following: (1) primary productivity using 14C (14PP); (2) gross primary productivity (GPP) based on 18O or O2; and (3) net community productivity (NCP) using O2. The ratio Rnew/GPP in 24 h incubations was typically between 0.1 and 0.3 regardless of depth and geographical area, demonstrating that values were almost constant regardless of large variations in temperature (0 to 27°C), irradiance (surface to 100 m deep), nutrients (nutrient-rich and nutrient-poor waters), and community composition (diatoms, flagellates, etc,). As such, between 10 and 30% of primary production in the surface ocean is respired in less than 24 h, and most respiration (between 55 and 75%) was of older carbon. Rnew was most likely associated with autotrophs, with minor contribution from heterotrophic bacteria. Patterns were less clear for Rold. Short 14C incubations are less affected by respiratory losses. Global oceanic GPP is estimated to be between 70 and 145 Gt C yr-1.Plain Language SummaryHere we present a comprehensive coverage of ocean new and old respiration. Our results show that nearly 20% of oceanic gross primary production is consumed in the first 24 h. However, most (about 60%) respiration is of older carbon fixed at least 24 h before its consumption. Rates of new respiration relative to gross primary production were remarkably constant for the entire ocean, which allowed a preliminary estimation of global primary productivity as between 70 and 145 gt C yr-1.

  15. The Ocean State Report of the Copernicus Marine Environment Monitoring Service

    Science.gov (United States)

    von Schuckmann, Karina

    2017-04-01

    COPERNICUS is the European Earth observation and monitoring programme, which aims to give the European Union autonomous and operational capability in space-based observation facilities (see the Sentinel missions) and in situ (measurements in the atmosphere, in the ocean and on the ground), and to operate six interlinked environmental monitoring services for the oceans, the atmosphere, territorial development, emergency situations, security and climate change. In this context, the Copernicus Marine Environment Monitoring Service provides an open and free access to regular and systematic information about the physical state and dynamics of the ocean and marine ecosystems for the global ocean and six European regional seas. Mercator Ocean, the French center of global ocean analysis and forecast has been entrusted by the EU to implement and operate the Copernicus Marine Service. The first Ocean State Report Copernicus Marine Environment Monitoring Service has been prepared, and is planned to appear at an annual basis (fall each year) as a unique reference for ocean state reporting. This report contains a state-of-the-art value-added synthesis of the ocean state for the global ocean and the European regional seas from the Copernicus Marine Environment Monitoring Service data products and expert analysis. This activity is aiming to reach a wide audience -from the scientific community, over climate and environmental service and agencies, environmental reporting and bodies to the general public. We will give here an overview on the report, highlight main outcomes, and introduce future plans and developments.

  16. Ingestion of marine plastic debris by green turtle(Chelonia mydas) in davao gulf, Mindanao, Philippines

    NARCIS (Netherlands)

    Abreo, Neil A.S.; Macusi, Edison D.; Blatchley, Darrell D.

    2016-01-01

    Marine plastic debris is a global problem that is threatening marine biodiversity. Different marine organisms have been exposed to the lethal and sub-lethal effects of this problem. Sub-lethal effects include reduced fitness due to reduced feeding, reduced reproductive output, limb amputation,

  17. A retrospect of anthropogenic radioactivity in the global marine environment

    DEFF Research Database (Denmark)

    Aarkrog, A.

    1998-01-01

    . The IAEA's IASAP study has evaluated the radiological consequences of these dumpings. In a recent international study (MARDOS) by the IAEA it was concluded that the doses to man from anthropogenic radionuclides in the marine environment are generally one to two orders of magnitude less than the doses from......Man-made radionuclides were introduced into the marine environment in the mid forties with the exploitation of nuclear fission for military purposes. Plutonium production reactors at Hanford, USA, released radioactivity to the Pacific Ocean via the Columbia River. In the former Soviet Union (FSU......) the military nuclear establishment at Cheliabinsk (later MAYAK) a few years later began direct discharging of fission products to the nearby Techa River, which is a part of the Ob river system, and the Arctic Ocean received man made radioactivity. In the 1950s, when atmospheric testing of thermonuclear weapons...

  18. Secondary production in shallow marine environments

    International Nuclear Information System (INIS)

    Pomeroy, L.R.

    1976-01-01

    Recommendations are discussed with regard to population ecology, microbial food webs, marine ecosystems, improved instrumentation, and effects of land and sea on shallow marine systems. The control of secondary production is discussed with regard to present status of knowledge; research needs for studies on dominant secondary producers, food webs that lead to commercial species, and significant features of the trophic structure of shallow water marine communities. Secondary production at the land-water interface is discussed with regard to present status of knowledge; importance of macrophytes to secondary production; export to secondary consumers; utilization of macrophyte primary production; and correlations between secondary production and river discharge. The role of microorganisms in secondary production is also discussed

  19. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  20. Antibacterial compounds from marine Vibrionaceae isolated on a global expedition

    DEFF Research Database (Denmark)

    Wietz, Matthias; Månsson, Maria; Gotfredsen, Charlotte Held

    2010-01-01

    known antibiotics as being responsible for the antibacterial activity; andrimid (from V. coralliilyticus) and holomycin (from P. halotolerans). Despite the isolation of already known antibiotics, our findings show that marine Vibrionaceae are a resource of antibacterial compounds and may have potential...

  1. Marine biodiversity in Japanese waters.

    Directory of Open Access Journals (Sweden)

    Katsunori Fujikura

    Full Text Available To understand marine biodiversity in Japanese waters, we have compiled information on the marine biota in Japanese waters, including the number of described species (species richness, the history of marine biology research in Japan, the state of knowledge, the number of endemic species, the number of identified but undescribed species, the number of known introduced species, and the number of taxonomic experts and identification guides, with consideration of the general ocean environmental background, such as the physical and geological settings. A total of 33,629 species have been reported to occur in Japanese waters. The state of knowledge was extremely variable, with taxa containing many inconspicuous, smaller species tending to be less well known. The total number of identified but undescribed species was at least 121,913. The total number of described species combined with the number of identified but undescribed species reached 155,542. This is the best estimate of the total number of species in Japanese waters and indicates that more than 70% of Japan's marine biodiversity remains un-described. The number of species reported as introduced into Japanese waters was 39. This is the first attempt to estimate species richness for all marine species in Japanese waters. Although its marine biota can be considered relatively well known, at least within the Asian-Pacific region, considering the vast number of different marine environments such as coral reefs, ocean trenches, ice-bound waters, methane seeps, and hydrothermal vents, much work remains to be done. We expect global change to have a tremendous impact on marine biodiversity and ecosystems. Japan is in a particularly suitable geographic situation and has a lot of facilities for conducting marine science research. Japan has an important responsibility to contribute to our understanding of life in the oceans.

  2. Marine oils: Complex, confusing, confounded?

    Directory of Open Access Journals (Sweden)

    Benjamin B. Albert

    2016-09-01

    Full Text Available Marine oils gained prominence following the report that Greenland Inuits who consumed a high-fat diet rich in long-chain n-3 polyunsaturated fatty acids (PUFAs also had low rates of cardiovascular disease. Marine n-3 PUFAs have since become a billion dollar industry, which will continue to grow based on current trends. However, recent systematic reviews question the health benefits of marine oil supplements, particularly in the prevention of cardiovascular disease. Marine oils constitute an extremely complex dietary intervention for a number of reasons: i the many chemical compounds they contain; ii the many biological processes affected by n-3 PUFAs; iii their tendency to deteriorate and form potentially toxic primary and secondary oxidation products; and iv inaccuracy in the labelling of consumer products. These complexities may confound the clinical literature, limiting the ability to make substantive conclusions for some key health outcomes. Thus, there is a pressing need for clinical trials using marine oils whose composition has been independently verified and demonstrated to be minimally oxidised. Without such data, it is premature to conclude that n-3 PUFA rich supplements are ineffective.

  3. Climate of the Arctic marine environment.

    Science.gov (United States)

    Walsh, John E

    2008-03-01

    The climate of the Arctic marine environment is characterized by strong seasonality in the incoming solar radiation and by tremendous spatial variations arising from a variety of surface types, including open ocean, sea ice, large islands, and proximity to major landmasses. Interannual and decadal-scale variations are prominent features of Arctic climate, complicating the distinction between natural and anthropogenically driven variations. Nevertheless, climate models consistently indicate that the Arctic is the most climatically sensitive region of the Northern Hemisphere, especially near the sea ice margins. The Arctic marine environment has shown changes over the past several decades, and these changes are part of a broader global warming that exceeds the range of natural variability over the past 1000 years. Record minima of sea ice coverage during the past few summers and increased melt from Greenland have important implications for the hydrographic regime of the Arctic marine environment. The recent changes in the atmosphere (temperature, precipitation, pressure), sea ice, and ocean appear to be a coordinated response to systematic variations of the large-scale atmospheric circulation, superimposed on a general warming that is likely associated with increasing greenhouse gases. The changes have been sufficiently large in some sectors (e.g., the Bering/Chukchi Seas) that consequences for marine ecosystems appear to be underway. Global climate models indicate an additional warming of several degrees Celsius in much of the Arctic marine environment by 2050. However, the warming is seasonal (largest in autumn and winter), spatially variable, and closely associated with further retreat of sea ice. Additional changes predicted for 2050 are a general decrease of sea level pressure (largest in the Bering sector) and an increase of precipitation. While predictions of changes in storminess cannot be made with confidence, the predicted reduction of sea ice cover will

  4. Viewing marine bacteria, their activity and response to environmental drivers from orbit: satellite remote sensing of bacteria.

    Science.gov (United States)

    Grimes, D Jay; Ford, Tim E; Colwell, Rita R; Baker-Austin, Craig; Martinez-Urtaza, Jaime; Subramaniam, Ajit; Capone, Douglas G

    2014-04-01

    Satellite-based remote sensing of marine microorganisms has become a useful tool in predicting human health risks associated with these microscopic targets. Early applications were focused on harmful algal blooms, but more recently methods have been developed to interrogate the ocean for bacteria. As satellite-based sensors have become more sophisticated and our ability to interpret information derived from these sensors has advanced, we have progressed from merely making fascinating pictures from space to developing process models with predictive capability. Our understanding of the role of marine microorganisms in primary production and global elemental cycles has been vastly improved as has our ability to use the combination of remote sensing data and models to provide early warning systems for disease outbreaks. This manuscript will discuss current approaches to monitoring cyanobacteria and vibrios, their activity and response to environmental drivers, and will also suggest future directions.

  5. Protection of Marine Fish Stocks at Risk of Extinction

    Science.gov (United States)

    J.A. Musick; S.A. Berkeley; G.M. Cailliet; M. Camhi; G. Huntsman; M. Nammack; Melvin L. Warren

    2000-01-01

    The American Fisheries Society (AFS) recommends that registory agencies closely scrutinize both marine fish and invertebrate stocks that may be at risk of extinction and take remedial action before populations are threatened or endungered. Initial AFS analyses of marine stocks at risk in North America show at least four primary geographic "hot spots" with...

  6. Evaluation of Organic Proxies for Quantifying Past Primary Productivity

    Science.gov (United States)

    Raja, M.; Rosell-Melé, A.; Galbraith, E.

    2017-12-01

    Ocean primary productivity is a key element of the marine carbon cycle. However, its quantitative reconstruction in the past relies on the use of biogeochemical models as the available proxy approaches are qualitative at best. Here, we present an approach that evaluates the use of phytoplanktonic biomarkers (i.e. chlorins and alkenones) as quantitative proxies to reconstruct past changes in marine productivity. We compare biomarkers contents in a global suite of core-top sediments to sea-surface chlorophyll-a abundance estimated by satellites over the last 20 years, and the results are compared to total organic carbon (TOC). We also assess satellite data and detect satellite limitations and biases due to the complexity of optical properties and the actual defined algorithms. Our findings show that sedimentary chlorins can be used to track total sea-surface chlorophyll-a abundance as an indicator for past primary productivity. However, degradation processes restrict the application of this proxy to concentrations below a threshold value (1µg/g). Below this threshold, chlorins are a useful tool to identify reducing conditions when used as part of a multiproxy approach to assess redox sedimentary conditions (e.g. using Re, U). This is based on the link between anoxic/disoxic conditions and the flux of organic matter from the sea-surface to the sediments. We also show that TOC is less accurate than chlorins for estimating sea-surface chlorophyll-a due to the contribution of terrigenous organic matter, and the different degradation pathways of all organic compounds that TOC includes. Alkenones concentration also relates to primary productivity, but they are constrained by different processes in different regions. In conclusion, as lons as specific constraints are taken into account, our study evaluates the use of chlorins and alkenones as quantitative proxies of past primary productivity, with more accuracy than by using TOC.

  7. Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility.

    Science.gov (United States)

    Fischer, Valentin; Bardet, Nathalie; Benson, Roger B J; Arkhangelsky, Maxim S; Friedman, Matt

    2016-03-08

    Despite their profound adaptations to the aquatic realm and their apparent success throughout the Triassic and the Jurassic, ichthyosaurs became extinct roughly 30 million years before the end-Cretaceous mass extinction. Current hypotheses for this early demise involve relatively minor biotic events, but are at odds with recent understanding of the ichthyosaur fossil record. Here, we show that ichthyosaurs maintained high but diminishing richness and disparity throughout the Early Cretaceous. The last ichthyosaurs are characterized by reduced rates of origination and phenotypic evolution and their elevated extinction rates correlate with increased environmental volatility. In addition, we find that ichthyosaurs suffered from a profound Early Cenomanian extinction that reduced their ecological diversity, likely contributing to their final extinction at the end of the Cenomanian. Our results support a growing body of evidence revealing that global environmental change resulted in a major, temporally staggered turnover event that profoundly reorganized marine ecosystems during the Cenomanian.

  8. A database of marine phytoplankton abundance, biomass and species composition in Australian waters

    Science.gov (United States)

    Davies, Claire H.; Coughlan, Alex; Hallegraeff, Gustaaf; Ajani, Penelope; Armbrecht, Linda; Atkins, Natalia; Bonham, Prudence; Brett, Steve; Brinkman, Richard; Burford, Michele; Clementson, Lesley; Coad, Peter; Coman, Frank; Davies, Diana; Dela-Cruz, Jocelyn; Devlin, Michelle; Edgar, Steven; Eriksen, Ruth; Furnas, Miles; Hassler, Christel; Hill, David; Holmes, Michael; Ingleton, Tim; Jameson, Ian; Leterme, Sophie C.; Lønborg, Christian; McLaughlin, James; McEnnulty, Felicity; McKinnon, A. David; Miller, Margaret; Murray, Shauna; Nayar, Sasi; Patten, Renee; Pritchard, Tim; Proctor, Roger; Purcell-Meyerink, Diane; Raes, Eric; Rissik, David; Ruszczyk, Jason; Slotwinski, Anita; Swadling, Kerrie M.; Tattersall, Katherine; Thompson, Peter; Thomson, Paul; Tonks, Mark; Trull, Thomas W.; Uribe-Palomino, Julian; Waite, Anya M.; Yauwenas, Rouna; Zammit, Anthony; Richardson, Anthony J.

    2016-06-01

    There have been many individual phytoplankton datasets collected across Australia since the mid 1900s, but most are unavailable to the research community. We have searched archives, contacted researchers, and scanned the primary and grey literature to collate 3,621,847 records of marine phytoplankton species from Australian waters from 1844 to the present. Many of these are small datasets collected for local questions, but combined they provide over 170 years of data on phytoplankton communities in Australian waters. Units and taxonomy have been standardised, obviously erroneous data removed, and all metadata included. We have lodged this dataset with the Australian Ocean Data Network (http://portal.aodn.org.au/) allowing public access. The Australian Phytoplankton Database will be invaluable for global change studies, as it allows analysis of ecological indicators of climate change and eutrophication (e.g., changes in distribution; diatom:dinoflagellate ratios). In addition, the standardised conversion of abundance records to biomass provides modellers with quantifiable data to initialise and validate ecosystem models of lower marine trophic levels.

  9. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs

    International Nuclear Information System (INIS)

    Walsh, J.J.; Lenes, J.M.; Weisberg, R.H.; Zheng, L.; Hu, C.; Fanning, K.A.; Snyder, R.; Smith, J.

    2017-01-01

    Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~ 15% of total world-wide annual asthma trigger responses, i.e. amounting to ~ 45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine. - Highlights: • Oil spills, heavy metals, and overfishing decimated zooplankton grazers • Desert expansions and eutrophication concurrently fueled diazotrophs to set free

  10. RAF 7015: Strengthening Regional Capacities for Marine Risk Assessment Using Nuclear and Related Techniques

    International Nuclear Information System (INIS)

    Okuku, E.; Mwangi, S.

    2017-01-01

    To develop and implement harmonized and integrated regional sea food safety monitoring in the MS through the application of nuclear techniques for enhanced sustainability of marine resource. Rapid urbanization and industrialization are causing alterations of the characteristics of marine environment thus threatening the ecosystem health and sustainability of marine environment and Affects public health, recreational water quality and economic viability.Threats to marine ecosystem include Over-exploitation, habitat destruction, Global warming- rise in SST, HABs and invasive species, Ocean acidification and Marine pollution

  11. A comprehensive Two-Fluid Model for Cavitation and Primary Atomization Modelling of liquid jets - Application to a large marine Diesel injector

    International Nuclear Information System (INIS)

    Habchi, Chawki; Bohbot, Julien; Schmid, Andreas; Herrmann, Kai

    2015-01-01

    In this paper, a comprehensive two-fluid model is suggested in order to compute the in-nozzle cavitating flow and the primary atomization of liquid jets, simultaneously. This model has been applied to the computation of a typical large marine Diesel injector. The numerical results have shown a strong correlation between the in-nozzle cavitating flow and the ensuing spray orientation and atomization. Indeed, the results have confirmed the existence of an off-axis liquid core. This asymmetry is likely to be at the origin of the spray deviation observed experimentally. In addition, the primary atomization begins very close to the orifice exit as in the experiments, and the smallest droplets are generated due to cavitation pocket shape oscillations located at the same side, inside the orifice. (paper)

  12. Understanding sources, sinks, and transport of marine debris

    Science.gov (United States)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  13. Ocean Data Interoperability Platform (ODIP): using regional data systems for global ocean research

    Science.gov (United States)

    Schaap, D.; Thijsse, P.; Glaves, H.

    2017-12-01

    Ocean acidification, loss of coral reefs, sustainable exploitation of the marine environment are just a few of the challenges researchers around the world are currently attempting to understand and address. However, studies of these ecosystem level challenges are impossible unless researchers can discover and re-use the large volumes of interoperable multidisciplinary data that are currently only accessible through regional and global data systems that serve discreet, and often discipline specific, user communities. The plethora of marine data systems currently in existence are also using different standards, technologies and best practices making re-use of the data problematic for those engaged in interdisciplinary marine research. The Ocean Data Interoperability Platform (ODIP) is responding to this growing demand for discoverable, accessible and reusable data by establishing the foundations for a common global framework for marine data management. But creation of such an infrastructure is a major undertaking, and one that needs to be achieved in part by establishing different levels of interoperability across existing regional and global marine e-infrastructures. Workshops organised by ODIP II facilitate dialogue between selected regional and global marine data systems in an effort to identify potential solutions that integrate these marine e-infrastructures. The outcomes of these discussions have formed the basis for a number of prototype development tasks that aim to demonstrate effective sharing of data across multiple data systems, and allow users to access data from more than one system through a single access point. The ODIP II project is currently developing four prototype solutions that are establishing interoperability between selected regional marine data management infrastructures in Europe, the USA, Canada and Australia, and with the global POGO, IODE Ocean Data Portal (ODP) and GEOSS systems. The potential impact of implementing these solutions for

  14. Local Notice to Mariners by USCG District

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  15. A framework for interactive visual analysis of heterogeneous marine data in an integrated problem solving environment

    Science.gov (United States)

    Liu, Shuai; Chen, Ge; Yao, Shifeng; Tian, Fenglin; Liu, Wei

    2017-07-01

    This paper presents a novel integrated marine visualization framework which focuses on processing, analyzing the multi-dimension spatiotemporal marine data in one workflow. Effective marine data visualization is needed in terms of extracting useful patterns, recognizing changes, and understanding physical processes in oceanography researches. However, the multi-source, multi-format, multi-dimension characteristics of marine data pose a challenge for interactive and feasible (timely) marine data analysis and visualization in one workflow. And, global multi-resolution virtual terrain environment is also needed to give oceanographers and the public a real geographic background reference and to help them to identify the geographical variation of ocean phenomena. This paper introduces a data integration and processing method to efficiently visualize and analyze the heterogeneous marine data. Based on the data we processed, several GPU-based visualization methods are explored to interactively demonstrate marine data. GPU-tessellated global terrain rendering using ETOPO1 data is realized and the video memory usage is controlled to ensure high efficiency. A modified ray-casting algorithm for the uneven multi-section Argo volume data is also presented and the transfer function is designed to analyze the 3D structure of ocean phenomena. Based on the framework we designed, an integrated visualization system is realized. The effectiveness and efficiency of the framework is demonstrated. This system is expected to make a significant contribution to the demonstration and understanding of marine physical process in a virtual global environment.

  16. The K-PG boundary: how geological events lead to collapse of marine primary producers

    Science.gov (United States)

    Hir guillaume, Le; frederic, Fluteau; yves, Goddéris

    2017-04-01

    The cause(s) of Cretaceous/Paleogene (K-Pg) mass extinction event is a matter of debate since three decades. A first scenario connects the K-Pg crisis with the Chicxulub impact while the second scenario evokes the emplacement of the Deccan traps in India as the cause for the K-Pg biodiversity collapse. Pierazzo et al. (1998) estimated that the extraterrestrial bolide lead to an instantaneously CO2 degassing ranging from 880 Gt to 2,960 Gt into the atmosphere, together with a massive release of SO2 ranging from 150 to 460 Gt.. Self et al. (2006, 2008) and Chenet et al. (2009) suggested that the emplacement of the Deccan traps released 15,000 Gt to 35,000 Gt of CO2 and 6,800 Gt to 17,000 Gt of SO2 over a 250 kyr-long period (Schoene et al., 2015). To decipher and quantify the long term environmental consequences of both events, we tested different scenarios: a pulse-like magmatic degassing, a bolide impact, and a combination of both. To understand the environmental changes and quantify biodiversity responses, we improve GEOCLIM, a coupled climate-carbon numerical model, by implementing a biodiversity model in which marine species are described by specific death/born rates, sensitivity to abiotic factors (temperature, pH, dissolved O2, calcite saturation state) and feeding relationships, each of these characteristics is assigned randomly. Preliminary simulations accounting for the eruption of the Deccan traps show that successive cooling events (S-aerosols effect) combined with a progressive acidification of surface water (caused by CO2 and SO2 injections) cause a major collapse of the marine biomass. Additional simulations in which Chicxulub impact, different community structures of primary producers will be discussed.

  17. Global marine plankton functional type biomass distributions : Phaeocystis spp

    NARCIS (Netherlands)

    Vogt, M.; O'Brien, C.; Peloquin, J.; Schoemann, V.; Breton, E.; Estrada, M.; Gibson, J.; Karentz, D.; van Leeuwe, M. A.; Stefels, J.; Widdicombe, C.; Peperzak, L.

    2012-01-01

    The planktonic haptophyte Phaeocystis has been suggested to play a fundamental role in the global biogeochemical cycling of carbon and sulphur, but little is known about its global biomass distribution. We have collected global microscopy data of the genus Phaeocystis and converted abundance data to

  18. Pre-bomb marine reservoir ages in the western north Pacific : Preliminary result on Kyoto University collection

    NARCIS (Netherlands)

    Yoneda, M; Kitagawa, H; van der Plicht, J; Uchida, M; Tanaka, A; Uehiro, T; Shibata, Y; Morita, M; Ohno, T

    2000-01-01

    The calibration of radiocarbon dates on marine materials involves a global marine calibration with regional corrections. The marine reservoir ages in the Western North Pacific have not been discussed, while it is quite important to determine the timing of palaeo-environmental changes as well as

  19. Corporate social responsibility in marine plastic debris governance.

    Science.gov (United States)

    Landon-Lane, Micah

    2018-02-01

    This paper explores the governance characteristics of marine plastic debris, some of the factors underpinning its severity, and examines the possibility of harnessing corporate social responsibility (CSR) to manage plastic use within the contextual attitudes of a contemporary global society. It argues that international and domestic law alone are insufficient to resolve the "wicked problem" of marine plastic debris, and investigates the potential of the private sector, through the philosophy of CSR, to assist in reducing the amount and impacts of marine plastic debris. To illustrate how CSR could minimise marine plastic pollution, an industry-targeted code of conduct was developed. Applying CSR would be most effective if implemented in conjunction with facilitating governance frameworks, such as supportive governmental regulation and non-governmental partnerships. This study maintains that management policies must be inclusive of all stakeholders if they are to match the scale and severity of the marine plastic debris issue. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. [Research advances in ecological stoichiometry of marine plankton].

    Science.gov (United States)

    Chen, Lei; Li, Chao-Lun

    2014-10-01

    Ecological stoichiometry can be simply defined as: The biology of elements from molecules to the biosphere, which spans all levels of the environment and of the life. It's a new idea to build a unified theory and becomes an inevitable trend to develop the ecological science. Marine ecosystems, which contribute to 50% of the biosphere biomass, are the important component of the global biogeochemical cycles. Marine zooplankton plays an important role in the material circulation and energy flow of marine ecosystems and serves as a connecting link between the preceding and the following in a more precise understanding of the key elemental cycles. However, research on ecological stoichiometry of marine plankton is fragmentary and rare. This article summarized the ecological phenomena and mechanisms of limiting elements affecting marine plankton, the response of biochemical substances to nutrition limitation, and the food chain transmission and feedback of nutrition limitation. Meanwhile, we also put forward some perspectives for future research of ecological stoichiometry of plankton in China' s seas.

  1. Elastic versus acoustic inversion for marine surveys

    KAUST Repository

    Mora, Peter; Wu, Zedong

    2018-01-01

    Full Wavefield Inversion (FWI) is a powerful and elegant approach for seismic imaging that is on the way to becoming the method of choice when processing exploration or global seismic data. In the case of processing marine survey data, one may

  2. Predicting Consumer Biomass, Size-Structure, Production, Catch Potential, Responses to Fishing and Associated Uncertainties in the World’s Marine Ecosystems

    Science.gov (United States)

    Jennings, Simon; Collingridge, Kate

    2015-01-01

    Existing estimates of fish and consumer biomass in the world’s oceans are disparate. This creates uncertainty about the roles of fish and other consumers in biogeochemical cycles and ecosystem processes, the extent of human and environmental impacts and fishery potential. We develop and use a size-based macroecological model to assess the effects of parameter uncertainty on predicted consumer biomass, production and distribution. Resulting uncertainty is large (e.g. median global biomass 4.9 billion tonnes for consumers weighing 1 g to 1000 kg; 50% uncertainty intervals of 2 to 10.4 billion tonnes; 90% uncertainty intervals of 0.3 to 26.1 billion tonnes) and driven primarily by uncertainty in trophic transfer efficiency and its relationship with predator-prey body mass ratios. Even the upper uncertainty intervals for global predictions of consumer biomass demonstrate the remarkable scarcity of marine consumers, with less than one part in 30 million by volume of the global oceans comprising tissue of macroscopic animals. Thus the apparently high densities of marine life seen in surface and coastal waters and frequently visited abundance hotspots will likely give many in society a false impression of the abundance of marine animals. Unexploited baseline biomass predictions from the simple macroecological model were used to calibrate a more complex size- and trait-based model to estimate fisheries yield and impacts. Yields are highly dependent on baseline biomass and fisheries selectivity. Predicted global sustainable fisheries yield increases ≈4 fold when smaller individuals (production estimates, which have yet to be achieved with complex models, and will therefore help to highlight priorities for future research and data collection. However, the focus on simple model structures and global processes means that non-phytoplankton primary production and several groups, structures and processes of ecological and conservation interest are not represented

  3. Ocean-Atmosphere Coupling associated with Typhoons/ Hurricane and their impacts on marine ecosystem (Invited)

    Science.gov (United States)

    Tang, D. L.

    2010-12-01

    DanLing TANG South China Sea Institute of Oceanology, Chinese Academy of Sciences,Guangzhou, China Phone (86) 13924282728; Fax/Tel: (86) 020 89023203 (off), 020 89023191 (Lab),Email,lingzistdl@126.com, Typhoon / hurricane activities and their impacts on environments have been strengthening in both intensity and spatial coverage, along with global changes in the past several decades; however, our knowledge about impact of typhoon on the marine ecosystem is very scarce. We have conducted a series studies in the South China Sea (SCS), investigating phytoplankton, sea surface temperature (SST), fishery data and related factors before, during, and after typhoon. Satellite remote sensing and in situ observation data obtained from research cruise were applied. Our study showed that typhoon can support nutrients to surface phytoplankton by inducing upwelling and vertical mixing, and typhoon rain can also nourish marine phytoplankton; both typhoon winds and rain can enhance production of marine phytoplankton. Slow-moving typhoon induced phytoplankton blooms of higher Chlorophyll-a (Chl-a), the strong typhoon induced phytoplankton blooms of a large area. We conservatively estimate that typhoon periods may account for 3.5% of the annual primary production in the oligotrophic SCS. It indicated that one typhoon may induce transport of nutrient-rich water from depth and from the coast to offshore regions, nourishing phytoplankton biomass. More observations confirmed that typhoon can induce cold eddy, and cold eddy can support eddy-shape phytoplankton bloom by upwelling. We have suggested a new index to evaluate typhoon impact on marine ecosystem and environment. This is the first time to report moving eddies and eddy-shape phytoplankton blooms associated with tropical cyclone, the relationship among tropical cyclone, cold eddy upwelling and eddy-shape phytoplankton bloom may give some viewpoint on the tropical cyclone's affection on the mesoscale circulation. Those studies may

  4. Oceanic acidification affects marine carbon pump and triggers extended marine oxygen holes.

    Science.gov (United States)

    Hofmann, Matthias; Schellnhuber, Hans-Joachim

    2009-03-03

    Rising atmospheric CO(2) levels will not only drive future global mean temperatures toward values unprecedented during the whole Quaternary but will also lead to massive acidification of sea water. This constitutes by itself an anthropogenic planetary-scale perturbation that could significantly modify oceanic biogeochemical fluxes and severely damage marine biota. As a step toward the quantification of such potential impacts, we present here a simulation-model-based assessment of the respective consequences of a business-as-usual fossil-fuel-burning scenario where a total of 4,075 Petagrams of carbon is released into the atmosphere during the current millennium. In our scenario, the atmospheric pCO(2) level peaks at approximately 1,750 microatm in the year 2200 while the sea-surface pH value drops by >0.7 units on global average, inhibiting the growth of marine calcifying organisms. The study focuses on quantifying 3 major concomitant effects. The first one is a significant (climate-stabilizing) negative feedback on rising pCO(2) levels as caused by the attenuation of biogenic calcification. The second one is related to the biological carbon pump. Because mineral ballast, notably CaCO(3), is found to play a dominant role in carrying organic matter through the water column, a reduction of its export fluxes weakens the strength of the biological carbon pump. There is, however, a third effect with severe consequences: Because organic matter is oxidized in shallow waters when mineral-ballast fluxes weaken, oxygen holes (hypoxic zones) start to expand considerably in the oceans in our model world--with potentially harmful impacts on a variety of marine ecosystems.

  5. Radiocarbon (14C) Constraints On The Fraction Of Refractory Dissolved Organic Carbon In Primary Marine Aerosol From The Northwest Atlantic

    Science.gov (United States)

    Beaupre, S. R.; Kieber, D. J.; Keene, W. C.; Long, M. S.; Frossard, A. A.; Kinsey, J. D.; Duplessis, P.; Chang, R.; Maben, J. R.; Lu, X.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Nearly all organic carbon in seawater is dissolved (DOC), with more than 95% considered refractory based on modeled average lifetimes ( 16,000 years) and characteristically old bulk radiocarbon (14C) ages (4000 - 6000 years) that exceed the timescales of overturning circulation. Although this refractory dissolved organic carbon (RDOC) is present throughout the oceans as a major reservoir of the global carbon cycle, its sources and sinks are poorly constrained. Recently, RDOC was proposed to be removed from the oceans through adsorption onto the surfaces of rising bubble plumes produced by breaking waves, ejection into the atmosphere via bubble bursting as a component of primary marine aerosol (PMA), and subsequent oxidation in the atmosphere. To test this mechanism, we used natural abundance 14C (5730 ± 40 yr half-life) to trace the fraction of RDOC in PMA produced in a high capacity generator at two biologically-productive and two oligotrophic hydrographic stations in the Northwest Atlantic Ocean during a research cruise aboard the R/V Endeavor (Sep - Oct 2016). The 14C signatures of PMA separately generated day and night from near-surface (5 m) and deep (2500 m) seawater were compared with corresponding 14C signatures in seawater of near-surface dissolved inorganic carbon (DIC, a proxy for recently produced organic matter), bulk deep DOC (a proxy for RDOC), and near-surface bulk DOC. Results constrain the selectivity of PMA formation from RDOC in natural mixtures of recently produced and refractory DOC. The implications of these results for PMA formation and RDOC biogeochemistry will be discussed.

  6. Effectiveness of biological surrogates for predicting patterns of marine biodiversity: a global meta-analysis.

    Directory of Open Access Journals (Sweden)

    Camille Mellin

    Full Text Available The use of biological surrogates as proxies for biodiversity patterns is gaining popularity, particularly in marine systems where field surveys can be expensive and species richness high. Yet, uncertainty regarding their applicability remains because of inconsistency of definitions, a lack of standard methods for estimating effectiveness, and variable spatial scales considered. We present a Bayesian meta-analysis of the effectiveness of biological surrogates in marine ecosystems. Surrogate effectiveness was defined both as the proportion of surrogacy tests where predictions based on surrogates were better than random (i.e., low probability of making a Type I error; P and as the predictability of targets using surrogates (R(2. A total of 264 published surrogacy tests combined with prior probabilities elicited from eight international experts demonstrated that the habitat, spatial scale, type of surrogate and statistical method used all influenced surrogate effectiveness, at least according to either P or R(2. The type of surrogate used (higher-taxa, cross-taxa or subset taxa was the best predictor of P, with the higher-taxa surrogates outperforming all others. The marine habitat was the best predictor of R(2, with particularly low predictability in tropical reefs. Surrogate effectiveness was greatest for higher-taxa surrogates at a <10-km spatial scale, in low-complexity marine habitats such as soft bottoms, and using multivariate-based methods. Comparisons with terrestrial studies in terms of the methods used to study surrogates revealed that marine applications still ignore some problems with several widely used statistical approaches to surrogacy. Our study provides a benchmark for the reliable use of biological surrogates in marine ecosystems, and highlights directions for future development of biological surrogates in predicting biodiversity.

  7. More surprises in the global greenhouse: Human health impacts from recent toxic marine aerosol formations, due to centennial alterations of world-wide coastal food webs.

    Science.gov (United States)

    Walsh, J J; Lenes, J M; Weisberg, R H; Zheng, L; Hu, C; Fanning, K A; Snyder, R; Smith, J

    2017-03-15

    Reductions of zooplankton biomasses and grazing pressures were observed during overfishing-induced trophic cascades and concurrent oil spills at global scales. Recent phytoplankton increments followed, once Fe-, P-, and N-nutrient limitations of commensal diazotrophs and dinoflagellates were also eliminated by respective human desertification, deforestation, and eutrophication during climate changes. Si-limitation of diatoms instead ensued during these last anthropogenic perturbations of agricultural effluents and sewage loadings. Consequently, ~15% of total world-wide annual asthma trigger responses, i.e. amounting to ~45 million adjacent humans during 2004, resulted from brevetoxin and palytoxin poisons in aerosol forms of western boundary current origins. They were denoted by greater global harmful algal bloom [HAB] abundances and breathing attacks among sea-side children during prior decadal surveys of asthma prevalence, compiled here in ten paired shelf ecosystems of western and eutrophied boundary currents. Since 1965, such inferred onshore fluxes of aerosolized DOC poisons of HABs may have served as additional wind-borne organic carriers of toxic marine MeHg, phthalate, and DDT/DDE vectors, traced by radio-iodine isotopes to potentially elicit carcinomas. During these exchanges, as much as 40% of mercury poisonings may instead have been effected by inhalation of collateral HAB-carried marine neurotoxic aerosols of MeHg, not just from eating marine fish. Health impacts in some areas were additional asthma and pneumonia episodes, as well as endocrine disruptions among the same adjacent humans, with known large local rates of thyroid cancers, physician-diagnosed pulmonary problems, and ubiquitous high indices of mercury in hair, pesticides in breast milk, and phthalates in urine. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application

    International Nuclear Information System (INIS)

    Godinho, R.M.; Cabrita, M.T.; Alves, L.C.; Pinheiro, T.

    2015-01-01

    Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution

  9. Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application

    Energy Technology Data Exchange (ETDEWEB)

    Godinho, R.M. [Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal); Instituto Português do Mar e da Atmosfera, Lisboa (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto (Portugal); Cabrita, M.T. [Instituto Português do Mar e da Atmosfera, Lisboa (Portugal); Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Porto (Portugal); Alves, L.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Sacavém (Portugal); Pinheiro, T., E-mail: murmur@ctn.ist.utl.pt [Instituto de Bioengenharia e Biociências, Instituto Superior Técnico, Universidade de Lisboa, Lisboa (Portugal)

    2015-04-01

    Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution.

  10. Deuterium depleted water effect on seawater spectral energy and marine phytoplankton

    International Nuclear Information System (INIS)

    Mirza, Maria; Zaharia, Mihaela; Cristescu, T.M.; Titescu, Gh.

    2002-01-01

    Solar radiation is the primary source of new energy in most aquatic ecosystems and it is the sun variability in amount and spectral distribution that drives many of the changes in material flux on different time and space scales. The dependency of ecosystem dynamics on sunlight is largely attributable to the simple fact that plants require solar radiation to carry out photosynthesis. The resulting primary production (the rate of the plant growth and reproduction) is an index of aquatic processes, including food web dynamics and biogeochemical cycling of compounds that affect everything from aquatic chemistry to regional and global weather patterns. Light dependent processes in plants (photo-synthesis, photoinhibition, phototaxis and photoprotection) and in aquatic environment, animal vision and microbial mediation of the photo-dissociation of chemical have evolved over millennia and most of them are regulated or at least influenced by the spectral composition of the light field The paper deals with the investigation of relations between water spectral energy modified by deuterium depleted water (DDW) and the microphyte alga Tetraselmis suecica or the total marine micro-phytoplankton growth. (authors)

  11. Leatherback sea turtle stewardship to attain local, regional, and global marine conservation and management

    Science.gov (United States)

    Randall Arauz; Todd Steiner

    2007-01-01

    The leatherback sea turtle (Dermochelys coriacea) is the largest marine reptile with one of the longest known ocean migrations in the world and an important part of marine biodiversity. It is also important to the economies of coastal communities in developing countries, especially in areas where eco-tourism has replaced unsustainable harvest and...

  12. Pilot Study on Potential Impacts of Fisheries-Induced Changes in Zooplankton Mortality on Marine Biogeochemistry

    Science.gov (United States)

    Getzlaff, Julia; Oschlies, Andreas

    2017-11-01

    In this pilot study we link the yield of industrial fisheries to changes in the zooplankton mortality in an idealized way accounting for different target species (planktivorous fish—decreased zooplankton mortality; large predators—increased zooplankton mortality). This indirect approach is used in a global coupled biogeochemistry circulation model to estimate the range of the potential impact of industrial fisheries on marine biogeochemistry. The simulated globally integrated response on phytoplankton and primary production is in line with expectations—a high (low) zooplankton mortality results in a decrease (increase) of zooplankton and an increase (decrease) of phytoplankton. In contrast, the local response of zooplankton and phytoplankton depends on the region under consideration: In nutrient-limited regions, an increase (decrease) in zooplankton mortality leads to a decrease (increase) in both zooplankton and phytoplankton biomass. In contrast, in nutrient-replete regions, such as upwelling regions, we find an opposing response: an increase (decrease) of the zooplankton mortality leads to an increase (decrease) in both zooplankton and phytoplankton biomass. The results are further evaluated by relating the potential fisheries-induced changes in zooplankton mortality to those driven by CO2 emissions in a business-as-usual 21st century emission scenario. In our idealized case, the potential fisheries-induced impact can be of similar size as warming-induced changes in marine biogeochemistry.

  13. U.S. Geological Survey assessment of global potash production and resources—A significant advancement for global development and a sustainable future.

    Science.gov (United States)

    Cocker, Mark D.; Orris, Greta J.; Wynn, Jeff

    2016-01-01

    During the past 15 yr, the global requirement for fertilizers has grown considerably, mainly due to demand by a larger and wealthier world population for more and higher-quality food. The demand and price for potash as a primary fertilizer ingredient have increased in tandem, because of the necessity to increase the quantity and quality of food production on the decreasing amount of available arable land. The primary sources of potash are evaporates, which occur mainly in marine salt basins and a few brine-bearing continental basins. World potash resources are large, but distribution is inequitable and not presently developed in countries where population and food requirements are large and increasing. There is no known substitute for potash in fertilizer, so knowledge of the world’s potash resources is critical for a sustainable future. The U.S. Geological Survey recently completed a global assessment of evaporite-hosted potash resources, which included a geographic information system–based inventory of known potash resources. This assessment included permissive areas or tracts for undiscovered resources at a scale of 1:1,000,000. Assessments of undiscovered potash resources were conducted for a number of the world’s evaporite-hosted potash basins. The data collected provide a major advance in our knowledge of global potash resources that did not exist prior to this study. The two databases include: (1) potash deposits and occurrences, and (2) potash tracts (basins that contain these deposits and occurrences and potentially undiscovered potash deposits). Data available include geology, mineralogy, grade, tonnage, depth, thickness, areal extent, and structure, as well as numerous pertinent references.

  14. Coordination and Integration of Global Ocean Observing through JCOMM

    Science.gov (United States)

    Legler, D. M.; Meldrum, D. T.; Hill, K. L.; Charpentier, E.

    2016-02-01

    The primary objective of the JCOMM Observations Coordination Group (OCG) is to provide technical coordination to implement fully integrated ocean observing system across the entire marine meteorology and oceanographic community. JCOMM OCG works in partnership with the Global Ocean Observing System, , which focusses on setting observing system requirements and conducting evalutions. JCOMM OCG initially focused on major global observing networks (e.g. Argo profiling floats, moored buoys, ship based observations, sea level stations, reference sites, etc), and is now expanding its horizon in recognition of new observing needs and new technologies/networks (e.g. ocean gliders). Over the next five years the JCOMM OCG is focusing its attention on integration and coordination in four major areas: observing network implementation particularly in response to integrated ocean observing requirements; observing system monitoring and metrics; standards and best practices; and improving integrated data management and access. This presentation will describe the scope and mission of JCOMM OCG; summarize the state of the global ocean observing system; highlight recent successes and resources for the research, prediction, and assessment communities; summarize our plans for the next several years; and suggest engagement opportunities.

  15. Marine Diesel Engine Control to meet Emission Requirements and Maintain Maneuverability

    DEFF Research Database (Denmark)

    Nielsen, Kræn Vodder; Blanke, Mogens; Eriksson, Lars

    2018-01-01

    International shipping has been reported to account for 13% of global NOx emissions and 2.1% of global green house gas emissions. Recent restrictions of NOx emissions from marine vessels have led to the development of exhaust gas recirculation (EGR) for large two-stroke diesel engines. Meanwhile...

  16. Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

    Directory of Open Access Journals (Sweden)

    Y.-W. Luo

    2012-08-01

    Full Text Available Marine N2 fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N2 to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the nifH genes and N2 fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N2 fixation rate in the global ocean is estimated to be 62 (52–73 Tg N yr−1 and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4–3.1 Tg C from cell counts and to 89 (43–150 Tg C from nifH-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 ± 9.2 Tg N yr−1, 18 ± 1.8 Tg C and 590 ± 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about ±70%. It was recently established that the most commonly applied method used to measure N2

  17. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity

    Science.gov (United States)

    Chen, Jing M.; Mo, Gang; Pisek, Jan; Liu, Jane; Deng, Feng; Ishizawa, Misa; Chan, Douglas

    2012-03-01

    Sunlit and shaded leaf separation proposed by Norman (1982) is an effective way to upscale from leaf to canopy in modeling vegetation photosynthesis. The Boreal Ecosystem Productivity Simulator (BEPS) makes use of this methodology, and has been shown to be reliable in modeling the gross primary productivity (GPP) derived from CO2flux and tree ring measurements. In this study, we use BEPS to investigate the effect of canopy architecture on the global distribution of GPP. For this purpose, we use not only leaf area index (LAI) but also the first ever global map of the foliage clumping index derived from the multiangle satellite sensor POLDER at 6 km resolution. The clumping index, which characterizes the degree of the deviation of 3-dimensional leaf spatial distributions from the random case, is used to separate sunlit and shaded LAI values for a given LAI. Our model results show that global GPP in 2003 was 132 ± 22 Pg C. Relative to this baseline case, our results also show: (1) global GPP is overestimated by 12% when accurate LAI is available but clumping is ignored, and (2) global GPP is underestimated by 9% when the effective LAI is available and clumping is ignored. The clumping effects in both cases are statistically significant (p < 0.001). The effective LAI is often derived from remote sensing by inverting the measured canopy gap fraction to LAI without considering the clumping. Global GPP would therefore be generally underestimated when remotely sensed LAI (actually effective LAI by our definition) is used. This is due to the underestimation of the shaded LAI and therefore the contribution of shaded leaves to GPP. We found that shaded leaves contribute 50%, 38%, 37%, 39%, 26%, 29% and 21% to the total GPP for broadleaf evergreen forest, broadleaf deciduous forest, evergreen conifer forest, deciduous conifer forest, shrub, C4 vegetation, and other vegetation, respectively. The global average of this ratio is 35%.

  18. The Australian Integrated Marine Observing System

    Science.gov (United States)

    Proctor, R.; Meyers, G.; Roughan, M.; Operators, I.

    2008-12-01

    The Integrated Marine Observing System (IMOS) is a 92M project established with 50M from the National Collaborative Research Infrastructure Strategy (NCRIS) and co-investments from 10 operators including Universities and government agencies (see below). It is a nationally distributed set of equipment established and maintained at sea, oceanographic data and information services that collectively will contribute to meeting the needs of marine research in both open oceans and over the continental shelf around Australia. In particular, if sustained in the long term, it will permit identification and management of climate change in the marine environment, an area of research that is as yet almost a blank page, studies relevant to conservation of marine biodiversity and research on the role of the oceans in the climate system. While as an NCRIS project IMOS is intended to support research, the data streams are also useful for many societal, environmental and economic applications, such as management of offshore industries, safety at sea, management of marine ecosystems and fisheries and tourism. The infrastructure also contributes to Australia's commitments to international programs of ocean observing and international conventions, such as the 1982 Law of the Sea Convention that established the Australian Exclusive Economic Zone, the United Nations Framework Convention on Climate Change, the Global Ocean Observing System and the intergovernmental coordinating activity Global Earth Observation System of Systems. IMOS is made up of nine national facilities that collect data, using different components of infrastructure and instruments, and two facilities that manage and provide access to data and enhanced data products, one for in situ data and a second for remotely sensed satellite data. The observing facilities include three for the open (bluewater) ocean (Argo Australia, Enhanced Ships of Opportunity and Southern Ocean Time Series), three facilities for coastal

  19. The Marine Metabolite SZ-685C Induces Apoptosis in Primary Human Nonfunctioning Pituitary Adenoma Cells by Inhibition of the Akt Pathway in Vitro

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2015-03-01

    Full Text Available Nonfunctioning pituitary adenoma (NFPA is one of the most common types of pituitary adenoma. The marine anthraquinone derivative SZ-685C has been isolated from the secondary metabolites of the mangrove endophytic fungus Halorosellinia sp. (No. 1403 which is found in the South China Sea. Recent research has shown that SZ-685C possesses anticancer and tumor suppressive effects. The tetrazolium-based colorimetric assay (MTT assay to investigate the different effect of the marine compound SZ-685C on the proliferation of primary human NFPA cells, rat normal pituitary cells (RPCs and rat prolactinoma MMQ cell lines. Hoechst 33342 dye/propidium iodide (PI double staining and fluorescein isothiocyanate-conjugated Annexin V/PI (Annexin V-FITC/PI apoptosis assays detected an enhanced rate of apoptosis in cells treated with SZ-685C. Enhanced expression levels of caspase 3 and phosphate and tensin homolog (PTEN were determined by Western blotting. Notably, the protein expression levels of Akt were decreased when the primary human NFPA cells were treated with SZ-685C. Here, we show that SZ-685C induces apoptosis of human NFPA cells through inhibition of the Akt pathway in vitro. The understanding of apoptosis has provided the basis for novel targeted therapies that can induce death in cancer cells or sensitize them to established cytotoxic agents and radiation therapy.

  20. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols

    Science.gov (United States)

    Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.

    2012-04-01

    Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with

  1. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  2. Revitalising primary healthcare requires an equitable global economic system - now more than ever.

    Science.gov (United States)

    Sanders, David; Baum, Fran E; Benos, Alexis; Legge, David

    2011-08-01

    The promised revitalisation of primary healthcare (PHC) is happening at a time when the contradictions and unfairness of the global economic system have become clear, suggesting that the current system is unsustainable. In the past two decades, one of the most significant impediments to the implementation of comprehensive PHC has been neoliberal economic policies and their imposition globally. This article questions what will be required for PHC to flourish. PHC incorporates five key principles: equitable provision of services, comprehensive care, intersectoral action, community involvement and appropriate technology. This article considers intersectoral action and comprehensiveness and their potential to be implemented in the current global environment. It highlights the constraints to intersectoral action through a case study of nutrition in the context of globalisation of the food chain. It also explores the challenges to implementing a comprehensive approach to health that are posed by neoliberal health sector reforms and donor practices. The paper concludes that even well-designed health systems based on PHC have little influence over the broader economic forces that shape their operation and their ability to improve health. Reforming these economic forces will require greater regulation of the national and global economic environment to emphasise people's health rather than private profit, and action to address climate change. Revitalisation of PHC and progress towards health equity are unlikely without strong regulation of the market. The further development and strengthening of social movements for health will be key to successful advocacy action.

  3. Comparison between summertime and wintertime Arctic Ocean primary marine aerosol properties

    Directory of Open Access Journals (Sweden)

    J. Zábori

    2013-05-01

    Full Text Available Primary marine aerosols (PMAs are an important source of cloud condensation nuclei, and one of the key elements of the remote marine radiative budget. Changes occurring in the rapidly warming Arctic, most importantly the decreasing sea ice extent, will alter PMA production and hence the Arctic climate through a set of feedback processes. In light of this, laboratory experiments with Arctic Ocean water during both Arctic winter and summer were conducted and focused on PMA emissions as a function of season and water properties. Total particle number concentrations and particle number size distributions were used to characterize the PMA population. A comprehensive data set from the Arctic summer and winter showed a decrease in PMA concentrations for the covered water temperature (Tw range between −1°C and 15°C. A sharp decrease in PMA emissions for a Tw increase from −1°C to 4°C was followed by a lower rate of change in PMA emissions for Tw up to about 6°C. Near constant number concentrations for water temperatures between 6°C to 10°C and higher were recorded. Even though the total particle number concentration changes for overlapping Tw ranges were consistent between the summer and winter measurements, the distribution of particle number concentrations among the different sizes varied between the seasons. Median particle number concentrations for a dry diameter (DpDp > 0.125μm, the particle number concentrations during winter were mostly higher than in summer (up to 50%. The normalized particle number size distribution as a function of water temperature was examined for both winter and summer measurements. An increase in Tw from −1°C to 10°C during winter measurements showed a decrease in the peak of relative particle number concentration at about a Dp of 0.180μm, while an increase was observed for particles with Dp > 1μm. Summer measurements exhibited a relative shift to smaller particle sizes for an increase of Tw in the range

  4. Impact of climate change and ocean acidification on the marine nitrogen cycle

    International Nuclear Information System (INIS)

    Martinez-Rey, Jorge

    2015-01-01

    The marine nitrogen cycle is responsible for two climate feedbacks in the Earth System. Firstly, it modulates the fixed nitrogen pool available for phytoplankton growth and hence it modulates in part the strength of the biological pump, one of the mechanisms contributing to the oceanic uptake of anthropogenic CO 2 . Secondly, the nitrogen cycle produces a powerful greenhouse gas and ozone (O 3 ) depletion agent called nitrous oxide (N 2 O). Future changes of the nitrogen cycle in response to global warming, ocean deoxygenation and ocean acidification are largely unknown. Processes such as N 2 -fixation, nitrification, denitrification and N 2 O production will experience changes under the simultaneous effect of these three stressors. Global ocean biogeochemical models allow us to study such interactions. Using NEMO-PISCES and the CMIP5 model ensemble we project changes in year 2100 under the business-as-usual high CO 2 emissions scenario in global scale N 2 -fixation rates, nitrification rates, N 2 O production and N 2 O sea-to-air fluxes adding CO 2 sensitive functions into the model parameterizations. Second order effects due to the combination of global warming in tandem with ocean acidification on the fixed nitrogen pool, primary productivity and N 2 O radiative forcing feedbacks are also evaluated in this thesis. (author) [fr

  5. Study of Marine Ecotourism Potential of Cubadak Island West Sumatera Province

    OpenAIRE

    Yulan, Nofri Andri; Nasution, Syafruddin; Yoswaty, Dessy

    2014-01-01

    The aim of study is to identify tourist object of Cubadak island and its potential level for marine ecotourism by used of survey method. Both primary and secondary data were collected by meaning, interviewing, and investigating directly. Interviewing sampling method was used purposively, particularly for tourist sample were used as accidental sampling. The result showed that Cubadak Island has a big potential in marine tourism and possess a big chance to develop in marine ecotourism sector. I...

  6. Marine ecosystem resilience during extreme deoxygenation: the Early Jurassic oceanic anoxic event.

    Science.gov (United States)

    Caswell, Bryony A; Frid, Christopher L J

    2017-01-01

    Global warming during the Early Jurassic, and associated widespread ocean deoxygenation, was comparable in scale with the changes projected for the next century. This study quantifies the impact of severe global environmental change on the biological traits of marine communities that define the ecological roles and functions they deliver. We document centennial-millennial variability in the biological trait composition of Early Jurassic (Toarcian) seafloor communities and examine how this changed during the event using biological traits analysis. Environmental changes preceding the global oceanic anoxic event (OAE) produced an ecological shift leading to stressed benthic palaeocommunities with reduced resilience to the subsequent OAE. Changes in traits and ecological succession coincided with major environmental changes; and were of similar nature and magnitude to those in severely deoxygenated benthic communities today despite the very different timescales. Changes in community composition were linked to local redox conditions whereas changes in populations of opportunists were driven by primary productivity. Throughout most of the OAE substitutions by tolerant taxa conserved the trait composition and hence functioning, but periods of severe deoxygenation caused benthic defaunation that would have resulted in functional collapse. Following the OAE recovery was slow probably because the global nature of the event restricted opportunities for recruitment from outside the basin. Our findings suggest that future systems undergoing deoxygenation may initially show functional resilience, but severe global deoxygenation will impact traits and ecosystem functioning and, by limiting the species pool, will slow recovery rates.

  7. Expanding the World of Marine Bacterial and Archaeal Clades

    Science.gov (United States)

    Yilmaz, Pelin; Yarza, Pablo; Rapp, Josephine Z.; Glöckner, Frank O.

    2016-01-01

    Determining which microbial taxa are out there, where they live, and what they are doing is a driving approach in marine microbial ecology. The importance of these questions is underlined by concerted, large-scale, and global ocean sampling initiatives, for example the International Census of Marine Microbes, Ocean Sampling Day, or Tara Oceans. Given decades of effort, we know that the large majority of marine Bacteria and Archaea belong to about a dozen phyla. In addition to the classically culturable Bacteria and Archaea, at least 50 “clades,” at different taxonomic depths, exist. These account for the majority of marine microbial diversity, but there is still an underexplored and less abundant portion remaining. We refer to these hitherto unrecognized clades as unknown, as their boundaries, names, and classifications are not available. In this work, we were able to characterize up to 92 of these unknown clades found within the bacterial and archaeal phylogenetic diversity currently reported for marine water column environments. We mined the SILVA 16S rRNA gene datasets for sequences originating from the marine water column. Instead of the usual subjective taxa delineation and nomenclature methods, we applied the candidate taxonomic unit (CTU) circumscription system, along with a standardized nomenclature to the sequences in newly constructed phylogenetic trees. With this new phylogenetic and taxonomic framework, we performed an analysis of ICoMM rRNA gene amplicon datasets to gain insights into the global distribution of the new marine clades, their ecology, biogeography, and interaction with oceanographic variables. Most of the new clades we identified were interspersed by known taxa with cultivated members, whose genome sequences are available. This result encouraged us to perform metabolic predictions for the novel marine clades using the PICRUSt approach. Our work also provides an update on the taxonomy of several phyla and widely known marine clades as

  8. Marine botany. Second edition

    International Nuclear Information System (INIS)

    Dawes, C.J.

    1998-01-01

    Marine plants are a diverse group that include unicellular algae, seaweeds, seagrasses, salt marshes, and mangrove forests. They carry out a variety of ecological functions and serve as the primary producers in coastal wetlands and oceanic waters. The theme that connects such a wide variety of plants is their ecology, which was also emphasized in the 1981 edition. The goal of this revision is to present taxonomic, physiological, chemical, and ecological aspects of marine plants, their adaptations, and how abiotic and biotic factors interact in their communities. The data are presented in a concise, comparative manner in order to identify similarities and differences between communities such as salt marsh and mangroves or subtidal seaweeds and seagrasses. To accomplish this, the text is organized into five chapters that introduce the marine habitats, consider abiotic and biotic factors, and anthropogenic influences on the communities followed by seven chapters that deal with microalgae, seaweeds, salt marshes, mangroves, seagrasses, and coral reefs. Two appendixes are included; one presents simple field techniques and the other is a summary of seaweed uses

  9. Research on intact marine ecosystems: a lost era.

    Science.gov (United States)

    Stachowitsch, Michael

    2003-07-01

    It is proposed that a new, fifth era should be added to the four historical phases of marine research identified by Rupert Riedl, specifically an era devoted to studying and ameliorating disturbed marine ecosystems. In an age of global environmental deterioration, many marine ecosystems and organisms are high on the list of threatened entities. This poor status prompts research that would otherwise have been unnecessary and hinders research that would normally have been conducted. I argue that research into intact marine ecosystems is becoming increasingly difficult, and that most of our future insights into marine habitats will stem from knowledge gained by examining various disfunctions of those systems rather than their functions. The new era will therefore differ from past research in its underlying aim, the range of topics studied, the selection and funding of those topics, the validity of its conclusions, and in its urgency. Sea turtles and cetaceans are cited as case studies at the organismic level, shallow-water benthic communities, including coral reefs, at the ecosystem level.

  10. Uranium isotope evidence for an expansion of marine anoxia during the end-Triassic extinction

    NARCIS (Netherlands)

    Jost, Adam B.; Bachan, Aviv; van de Schootbrugge, Bas; Lau, Kimberly V.; Weaver, Karrie L.; Maher, Kate; Payne, Jonathan L.

    The end-Triassic extinction coincided with an increase in marine black shale deposition and biomarkers for photic zone euxinia, suggesting that anoxia played a role in suppressing marine biodiversity. However, global changes in ocean anoxia are difficult to quantify using proxies for local anoxia.

  11. Marine Gravity from GEOSAT Poster - Report MGG-8

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This full color poster of Marine Gravity from GEOSAT over the Southern Ocean is Report MGG-8. In many areas of the global ocean, the depth of the seafloor is not...

  12. Directional and Spectral Irradiance in Ocean Models: Effects on Simulated Global Phytoplankton, Nutrients, and Primary Production

    Science.gov (United States)

    Gregg, Watson W.; Rousseaux, Cecile S.

    2016-01-01

    The importance of including directional and spectral light in simulations of ocean radiative transfer was investigated using a coupled biogeochemical-circulation-radiative model of the global oceans. The effort focused on phytoplankton abundances, nutrient concentrations and vertically-integrated net primary production. The importance was approached by sequentially removing directional (i.e., direct vs. diffuse) and spectral irradiance and comparing results of the above variables to a fully directionally and spectrally-resolved model. In each case the total irradiance was kept constant; it was only the pathways and spectral nature that were changed. Assuming all irradiance was diffuse had negligible effect on global ocean primary production. Global nitrate and total chlorophyll concentrations declined by about 20% each. The largest changes occurred in the tropics and sub-tropics rather than the high latitudes, where most of the irradiance is already diffuse. Disregarding spectral irradiance had effects that depended upon the choice of attenuation wavelength. The wavelength closest to the spectrally-resolved model, 500 nm, produced lower nitrate (19%) and chlorophyll (8%) and higher primary production (2%) than the spectral model. Phytoplankton relative abundances were very sensitive to the choice of non-spectral wavelength transmittance. The combined effects of neglecting both directional and spectral irradiance exacerbated the differences, despite using attenuation at 500 nm. Global nitrate decreased 33% and chlorophyll decreased 24%. Changes in phytoplankton community structure were considerable, representing a change from chlorophytes to cyanobacteria and coccolithophores. This suggested a shift in community function, from light-limitation to nutrient limitation: lower demands for nutrients from cyanobacteria and coccolithophores favored them over the more nutrient-demanding chlorophytes. Although diatoms have the highest nutrient demands in the model, their

  13. Marine Structures: consuming and producing energy

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Jensen, Jørgen Juncher

    2009-01-01

    and hydrocarbons. • The oceans receive 70 % of our primary sustainable energy source, i.e. the radiation from the sun; this thermal energy can be harvested in the form of thermal, wind, current or wave energy, salt gradients etc. To exploit these possibilities marine structures are required....

  14. Characterisation of North American Brucella isolates from marine mammals.

    Science.gov (United States)

    Whatmore, Adrian M; Dawson, Claire; Muchowski, Jakub; Perrett, Lorraine L; Stubberfield, Emma; Koylass, Mark; Foster, Geoffrey; Davison, Nicholas J; Quance, Christine; Sidor, Inga F; Field, Cara L; St Leger, Judy

    2017-01-01

    Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs) associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals.

  15. The Research on International Development Path of China’s Marine Biopharmaceutical Industry

    Directory of Open Access Journals (Sweden)

    Xiu-Mei Fu

    2018-02-01

    Full Text Available Under the backdrop of the Maritime Silk Road Initiative, the study on the international development of China’s marine biopharmaceutical industry based on factor allocation is of great practical significance for industrial sustainability and building the industry into a leading international player in the global market. In this paper, we first identify the leading factors that influence the development of the marine biopharmaceutical industry, namely, resources, technologies, talents, investments and policies. Furthermore, the hierarchical structure model of these factors was established and analyzed using the analytic hierarchy process (AHP. The importance ranking of these constraints was identified, as follows: technologies > talents > resources > policies > investments. Then, based on the theory of comparative advantage and game theory, we analyzed the necessity of China’s marine biopharmaceutical industry going global, that is, international cooperation may lay a solid foundation for the win-win outcome of this industry in countries along the Maritime Silk Road. According to the status quo of China’s marine biopharmaceutical industry, based on these findings, an international factor–allocation cooperation path was designed, and the path chart of the international development of the marine biopharmaceutical industry was drawn. Finally, methods for the development of China’s marine biopharmaceutical industry were proposed, which covers efforts to protect marine resources, promote R&D for core technologies, establish a strong talent pool, encourage more investments, provide policy support and promote worldwide cooperation. It is the first report to investigate the path of the sustainable exploitation of the marine biopharmaceutical industry from the perspective of factor allocation amidst the backdrop of the Maritime Silk Road Initiative.

  16. Electricity from wave and tide an introduction to marine energy

    CERN Document Server

    Lynn, Paul A

    2014-01-01

    This is a concise yet technically authoritative overview of modern marine energy devices with the goal of sustainable electricity generation. With 165 full-colour illustrations and photographs of devices at an advanced stage, the book provides inspiring case studies of today's most promising marine energy devices and developments, including full-scale grid-connected prototypes tested in sea conditions. It also covers the European Marine Energy Centre (EMEC) in Orkney, Scotland, where many of the devices are assessed. Topics discussed: global resources - drawing energy from the World's waves and tides history of wave and tidal stream systems theoretical background to modern developments conversion of marine energy into grid electricity modern wave energy converters and tidal stream energy converters. This book is aimed at a wide readership including professionals, policy makers and employees in the energy sector needing an introduction to marine energy. Its descriptive style and technical level will also appea...

  17. Assessment of SMAP soil moisture for global simulation of gross primary production

    Science.gov (United States)

    He, Liming; Chen, Jing M.; Liu, Jane; Bélair, Stéphane; Luo, Xiangzhong

    2017-07-01

    In this study, high-quality soil moisture data derived from the Soil Moisture Active Passive (SMAP) satellite measurements are evaluated from a perspective of improving the estimation of the global gross primary production (GPP) using a process-based ecosystem model, namely, the Boreal Ecosystem Productivity Simulator (BEPS). The SMAP soil moisture data are assimilated into BEPS using an ensemble Kalman filter. The correlation coefficient (r) between simulated GPP from the sunlit leaves and Sun-induced chlorophyll fluorescence (SIF) measured by Global Ozone Monitoring Experiment-2 is used as an indicator to evaluate the performance of the GPP simulation. Areas with SMAP data in low quality (i.e., forests), or with SIF in low magnitude (e.g., deserts), or both are excluded from the analysis. With the assimilated SMAP data, the r value is enhanced for Africa, Asia, and North America by 0.016, 0.013, and 0.013, respectively (p r appears in single-cropping agricultural land where the irrigation is not considered in the model but well captured by SMAP (e.g., 0.09 in North America, p < 0.05). With the assimilation of SMAP, areas with weak model performances are identified in double or triple cropping cropland (e.g., part of North China Plain) and/or mountainous area (e.g., Spain and Turkey). The correlation coefficient is enhanced by 0.01 in global average for shrub, grass, and cropland. This enhancement is small and insignificant because nonwater-stressed areas are included.

  18. Hydrocarbon-degrading sulfate-reducing bacteria in marine hydrocarbon seep sediments

    OpenAIRE

    Kleindienst, Sara

    2012-01-01

    Microorganisms are key players in our biosphere because of their ability to degrade various organic compounds including a wide range of hydrocarbons. At marine hydrocarbon seeps, more than 90% of sulfate reduction (SR) is potentially coupled to non-methane hydrocarbon oxidation. Several hydrocarbon-degrading sulfate-reducing bacteria (SRB) were enriched or isolated from marine sediments. However, in situ active SRB remained largely unknown. In the present thesis, the global distribution and a...

  19. Marine Pharmacology in 2012–2013: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action

    Directory of Open Access Journals (Sweden)

    Alejandro M. S. Mayer

    2017-08-01

    Full Text Available The peer-reviewed marine pharmacology literature from 2012 to 2013 was systematically reviewed, consistent with the 1998–2011 reviews of this series. Marine pharmacology research from 2012 to 2013, conducted by scientists from 42 countries in addition to the United States, reported findings on the preclinical pharmacology of 257 marine compounds. The preclinical pharmacology of compounds isolated from marine organisms revealed antibacterial, antifungal, antiprotozoal, antituberculosis, antiviral and anthelmitic pharmacological activities for 113 marine natural products. In addition, 75 marine compounds were reported to have antidiabetic and anti-inflammatory activities and affect the immune and nervous system. Finally, 69 marine compounds were shown to display miscellaneous mechanisms of action which could contribute to novel pharmacological classes. Thus, in 2012–2013, the preclinical marine natural product pharmacology pipeline provided novel pharmacology and lead compounds to the clinical marine pharmaceutical pipeline, and contributed significantly to potentially novel therapeutic approaches to several global disease categories.

  20. How many marine aliens in Europe?

    Directory of Open Access Journals (Sweden)

    Stelios Katsanevakis

    2013-01-01

    Full Text Available In the framework of the European Alien Species Information Network (EASIN; http://easin.jrc.ec.europa.eu/, an inventory of marine alienspecies in Europe was created by critically reviewing existing information in 34 global, European, regional and national databases. In total, 1369 marine alien species have been reported in the European seas (including 110 cryptogenic and 139 questionable species; this is a substantial increase from the 737 species previously reported in 2009 based on the DAISIE (Delivering Alien Invasive Species Inventories for Europe; http://www.europe-aliens.org dataset. Most of the reported species were invertebrates (63.3%, followed by chromists (13.7%, vertebrates (11.6%, and plants (10.1%. Mollusca is the most numerous phylum, followed by Arthropoda, Chordata, and Annelida. Thecountries with the highest reported numbers of marine alien species were Israel, Turkey, Italy, France, Egypt and Greece. A reporting bias is evident as efforts for monitoring and reporting alien species vary among countries.

  1. Are greenhouse gas emissions from international shipping a type of marine pollution?

    International Nuclear Information System (INIS)

    Shi, Yubing

    2016-01-01

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of ‘conditional’ marine pollution. - Highlights: • Greenhouse gas (GHG) emissions from international shipping are a type of ‘conditional’ marine pollution. • Shipping CO 2 may be treated as marine pollution under the 1972 London Dumping Convention. • Countries have adopted different legislation concerning the legal nature of GHG emissions from ships. • Regulating CO 2 emissions from ships as marine pollution may expedite global GHG emissions reduction.

  2. Differentiating littering, urban runoff and marine transport as sources of marine debris in coastal and estuarine environments

    Science.gov (United States)

    Willis, Kathryn; Denise Hardesty, Britta; Kriwoken, Lorne; Wilcox, Chris

    2017-03-01

    Marine debris is a burgeoning global issue with economic, ecological and aesthetic impacts. While there are many studies now addressing this topic, the influence of urbanisation factors such as local population density, stormwater drains and roads on the distribution of coastal litter remains poorly understood. To address this knowledge gap, we carried out standardized surveys at 224 transect surveys at 67 sites in two estuaries and along the open coast in Tasmania, Australia. We explored the relative support for three hypotheses regarding the sources of the debris; direct deposition by beachgoers, transport from surrounding areas via storm water drains and coastal runoff, and onshore transport from the marine system. We found strong support for all three mechanisms, however, onshore transport from the marine reservoir was the most important mechanism. Overall, the three models together explained 45.8 percent of the variation in our observations. Our results also suggest that most debris released into the marine environment is deposited locally, which may be the answer to where all the missing plastic is in the ocean. Furthermore, local interventions are likely to be most effective in reducing land-based inputs into the ocean.

  3. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana

    2015-12-15

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  4. Multiple stressors for oceanic primary production

    KAUST Repository

    Agusti, Susana; Llabré s, Moira; Lubiá n, Luis M.; Moreno-Ostos, Enrique; Estrada, Marta; Duarte, Carlos M.; Cerezo, Maria I.

    2015-01-01

    Marine ecosystems are increasingly exposed to stress factors of anthropogenic origin that change their function, structure and services they deliver society. Climate change occurs simultaneously with other changes in the environment acting jointly in a context of global environmental change. For oceanic phytoplankton communities, the research conducted so far has identified stress factors associated with global change and their impact individually (warming, acidification, increased UVB radiation, pollutants). But when several stressors act simultaneously interactions and responses are not equal to the sum of individual impacts, but may have synergistic effects (the effects are multiplied) or antagonistic (cancel out the effects) that hinder predictions of the vulnerability of ecosystems to global change. Here we will examine the vulnerability of oceanic primary producers to the accumulation of different stressors associated with global change. The trend for autotrophic picoplankton to increase with temperature in the ocean has led to predictions that autotrophic picoplankton abundance will increase with warming. However, it is documented a trend towards a decline in productivity, due to declined autotroph biomass and production with warming and the associated stratification in the subtropical ocean. Models predicting an increase in abundance are in contradiction with the reported decrease in productivity in several oceanic areas, and associate oligotrophication. Here we perform a global study to analyze the relationships of autotrophic picoplankton with oceanic temperature, nutrients, underwater light and ultraviolet B (UVB) radiation, and productivity. We built a model to project the future changes of autotrophic picoplankton considering multiple environmental changes in future climate scenarios for the subtropical gyres. We considered increased water temperature, and associated changes in productivity and underwater light and UVB. The model show that warming and

  5. Optimising the use of marine tephrochronology in the North Atlantic: a detailed investigation of the Faroe Marine Ash Zones II, III and IV

    Science.gov (United States)

    Griggs, Adam J.; Davies, Siwan M.; Abbott, Peter M.; Rasmussen, Tine L.; Palmer, Adrian P.

    2014-12-01

    Tephrochronology is central to the INTIMATE goals for testing the degree of climatic synchroneity during abrupt climatic events that punctuated the last glacial period. Since their identification in North Atlantic marine sequences, the Faroe Marine Ash Zone II (FMAZ II), FMAZ III and FMAZ IV have received considerable attention due to their potential for high-precision synchronisation with the Greenland ice-cores. In order to optimise the use of these horizons as isochronous markers, a detailed re-investigation of their geochemical composition, sedimentology and the processes that deposited each ash zone is presented. Shard concentration profiles, geochemical homogeneity and micro-sedimentological structures are investigated for each ash zone preserved within core JM11-19PC, retrieved from the southeastern Norwegian Sea on the central North Faroe Slope. This approach allows a thorough assessment of primary ash-fall preservation and secondary depositional features and demonstrates its value for assessing depositional integrity in the marine environment. Results indicate that the FMAZ II and IV are well-resolved primary deposits that can be used as isochrons for high-precision correlation studies. We outline key recommendations for future marine tephra studies and provide a protocol for optimising the application of tephrochronology to meet the INTIMATE synchronisation goals.

  6. Primary marine aerosol emissions from the Mediterranean Sea during pre-bloom and oligotrophic conditions: correlations to seawater chlorophyll a from a mesocosm study

    Science.gov (United States)

    Schwier, A. N.; Rose, C.; Asmi, E.; Ebling, A. M.; Landing, W. M.; Marro, S.; Pedrotti, M.-L.; Sallon, A.; Iuculano, F.; Agusti, S.; Tsiola, A.; Pitta, P.; Louis, J.; Guieu, C.; Gazeau, F.; Sellegri, K.

    2015-07-01

    The effect of ocean acidification and changing water conditions on primary (and secondary) marine aerosol emissions is not well understood on a regional or a global scale. To investigate this effect as well as the indirect effect on aerosol that changing biogeochemical parameters can have, ~ 52 m3 pelagic mesocosms were deployed for several weeks in the Mediterranean Sea during both winter pre-bloom and summer oligotrophic conditions and were subjected to various levels of CO2 to simulate the conditions foreseen in this region for the coming decades. After seawater sampling, primary bubble-bursting aerosol experiments were performed using a plunging water jet system to test both chemical and physical aerosol parameters (10-400 nm). Comparing results obtained during pre-bloom and oligotrophic conditions, we find the same four log-normal modal diameters (18.5 ± 0.6, 37.5 ± 1.4, 91.5 ± 2.0, 260 ± 3.2 nm) describing the aerosol size distribution during both campaigns, yet pre-bloom conditions significantly increased the number fraction of the second (Aitken) mode, with an amplitude correlated to virus-like particles, heterotrophic prokaryotes, TEPs (transparent exopolymeric particles), chlorophyll a and other pigments. Organic fractions determined from kappa closure calculations for the diameter, Dp ~ 50 nm, were much larger during the pre-bloom period (64 %) than during the oligotrophic period (38 %), and the organic fraction decreased as the particle size increased. Combining data from both campaigns together, strong positive correlations were found between the organic fraction of the aerosol and chlorophyll a concentrations, heterotrophic and autotrophic bacteria abundance, and dissolved organic carbon (DOC) concentrations. As a consequence of the changes in the organic fraction and the size distributions between pre-bloom and oligotrophic periods, we find that the ratio of cloud condensation nuclei (CCN) to condensation nuclei (CN) slightly decreased during the

  7. Recent Advances in Drug Discovery from South African Marine Invertebrates

    Directory of Open Access Journals (Sweden)

    Michael T. Davies-Coleman

    2015-10-01

    Full Text Available Recent developments in marine drug discovery from three South African marine invertebrates, the tube worm Cephalodiscus gilchristi, the ascidian Lissoclinum sp. and the sponge Topsentia pachastrelloides, are presented. Recent reports of the bioactivity and synthesis of the anti-cancer secondary metabolites cephalostatin and mandelalides (from C. gilchristi and Lissoclinum sp., respectively and various analogues are presented. The threat of drug-resistant pathogens, e.g., methicillin-resistant Staphylococcus aureus (MRSA, is assuming greater global significance, and medicinal chemistry strategies to exploit the potent MRSA PK inhibition, first revealed by two marine secondary metabolites, cis-3,4-dihydrohamacanthin B and bromodeoxytopsentin from T. pachastrelloides, are compared.

  8. Marine mammal distribution in the open ocean: a comparison of ocean color data products and levant time scales

    Science.gov (United States)

    Ohern, J.

    2016-02-01

    Marine mammals are generally located in areas of enhanced surface primary productivity, though they may forage much deeper within the water column and higher on the food chain. Numerous studies over the past several decades have utilized ocean color data from remote sensing instruments (CZCS, MODIS, and others) to asses both the quantity and time scales over which surface primary productivity relates to marine mammal distribution. In areas of sustained upwelling, primary productivity may essentially grow in the secondary levels of productivity (the zooplankton and nektonic species on which marine mammals forage). However, in many open ocean habitats a simple trophic cascade does not explain relatively short time lags between enhanced surface productivity and marine mammal presence. Other dynamic features that entrain prey or attract marine mammals may be responsible for the correlations between marine mammals and ocean color. In order to investigate these features, two MODIS (moderate imaging spectroradiometer) data products, the concentration as well as the standard deviation of surface chlorophyll were used in conjunction with marine mammal sightings collected within Ecuadorian waters. Time lags between enhanced surface chlorophyll and marine mammal presence were on the order of 2-4 weeks, however correlations were much stronger when the standard deviation of spatially binned images was used, rather than the chlorophyll concentrations. Time lags also varied between Balaenopterid and Odontocete cetaceans. Overall, the standard deviation of surface chlorophyll proved a useful tool for assessing potential relationships between marine mammal sightings and surface chlorophyll.

  9. Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage.

    Science.gov (United States)

    Morillas, Héctor; Maguregui, Maite; García-Florentino, Cristina; Marcaida, Iker; Madariaga, Juan Manuel

    2016-04-15

    Dry deposition is one of the most dangerous processes that can take place in the environment where the compounds that are suspended in the atmosphere can react directly on different surrounding materials, promoting decay processes. Usually this process is related with industrial/urban fog and/or marine aerosol in the coastal areas. Particularly, marine aerosol transports different types of salts which can be deposited on building materials and by dry deposition promotes different decay pathways. A new analytical methodology based on the combined use of Raman Spectroscopy and SEM-EDS (point-by-point and imaging) was applied. For that purpose, firstly evaporated seawater (presence of Primary Marine Aerosol (PMA)) was analyzed. After that, using a self-made passive sampler (SMPS), different suspended particles coming from marine aerosol (transformed particles in the atmosphere (Secondary Marine Aerosol (SMA)) and metallic airborne particulate matter coming from anthropogenic sources, were analyzed. Finally in order to observe if SMA and metallic particles identified in the SMPS can be deposited on a building, sandstone samples from La Galea Fortress (Getxo, north of Spain) located in front of the sea and in the place where the passive sampler was mounted were analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Toxicology of Marine Mammals: New Developments and Opportunities.

    Science.gov (United States)

    Weijs, Liesbeth; Zaccaroni, Annalisa

    2016-01-01

    It is widely recognized that marine mammals are exposed to a wide variety of pollutants, with a weight of evidence indicating impacts on their health. Since hundreds of new chemicals enter the global market every year,the methods, approaches and technologies used to characterize pollution levels or impacts are also in a constant state of flux. However, legal and ethical constraints often limit the type and extent of toxicological research being carried out in marine mammals. Nevertheless, new and emerging in vivo, in vitro as well as in silico research opportunities abound in the field of marine mammal toxicology. In the application of findings to population-, species-, or habitat-related risk assessments, the identification of causal relationships which inform source apportionment is important. This, in turn, is informed by a comprehensive understanding of contaminant classes, profiles and fate overspace and time. Such considerations figure prominently in the design and interpretation of marine mammal (eco)-toxicology research. This mini-review attempts to follow the evolution behind marine mammal toxicology until now,highlight some of the research that has been done and suggest opportunities for future research. This Special Issue will showcase new developments in marine mammal toxicology, approaches for exposure-effect research in risk assessment as well as future opportunities.

  11. Marine disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1980-01-01

    In a general sense, the main attraction of the marine environment as a repository for the wastes generated by human activities lies in the degree of dispersion and dilution which is readily attainable. However, the capacity of the oceans to receive wastes without unacceptable consequences is clearly finite and this is even more true of localized marine environments such as estuaries, coastal waters and semi-enclosed seas. Radionuclides have always been present in the marine environment and marine organisms and humans consuming marine foodstuffs have always been exposed, to some degree, to radiation from this source. The hazard associated with ionizing radiations is dependent upon the adsorption of energy from the radiation field within some biological entity. Thus any disposal of radioactive wastes into the marine environment has consequences, the acceptability of which must be assessed in terms of the possible resultant increase in radiation exposure of human and aquatic populations. In the United Kingdom the primary consideration has been and remains the safe-guarding of public health. The control procedures are therefore designed to minimize as far as practicable the degree of human exposure within the overall limits recommended as acceptable by the International Commission on Radiological Protection. There are several approaches through which control could be exercised and the strenghs and weaknesses of each are considered. In this review the detailed application of the critical path technique to the control of the discharge into the north-east Irish Sea from the fuel reprocessing plant at Windscale is given as a practical example. It will be further demonstrated that when human exposure is controlled in this way no significant risk attaches to the increased radiation exposure experienced by populations of marine organisms in the area. (orig.) [de

  12. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics

    NARCIS (Netherlands)

    Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A.; Gibb, Stuart

    2018-01-01

    There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing

  13. Herbivory on freshwater and marine macrophytes

    NARCIS (Netherlands)

    Bakker, Elisabeth S.; Wood, Kevin A.; Pagès, Jordi F.; Veen, G.F.; Christianen, Marjolijn J.A.; Santamaría, Luis; Nolet, Bart A.; Hilt, Sabine

    2016-01-01

    Until the 1990s, herbivory on aquatic vascular plants was considered to be of minor importance, and the predominant view was that freshwater and marine macrophytes did not take part in the food web: their primary fate was the detritivorous pathway. In the last 25 years, a substantial body of

  14. Transporting ideas between marine and social sciences: experiences from interdisciplinary research programs

    Directory of Open Access Journals (Sweden)

    Lucy M. Turner

    2017-03-01

    Full Text Available The oceans comprise 70% of the surface area of our planet, contain some of the world’s richest natural resources and are one of the most significant drivers of global climate patterns. As the marine environment continues to increase in importance as both an essential resource reservoir and facilitator of global change, it is apparent that to find long-term sustainable solutions for our use of the sea and its resources and thus to engage in a sustainable blue economy, an integrated interdisciplinary approach is needed. As a result, interdisciplinary working is proliferating. We report here our experiences of forming interdisciplinary teams (marine ecologists, ecophysiologists, social scientists, environmental economists and environmental law specialists to answer questions pertaining to the effects of anthropogenic-driven global change on the sustainability of resource use from the marine environment, and thus to transport ideas outwards from disciplinary confines. We use a framework derived from the literature on interdisciplinarity to enable us to explore processes of knowledge integration in two ongoing research projects, based on analyses of the purpose, form and degree of knowledge integration within each project. These teams were initially focused around a graduate program, explicitly designed for interdisciplinary training across the natural and social sciences, at the Gothenburg Centre for Marine Research at the University of Gothenburg, thus allowing us to reflect on our own experiences within the context of other multi-national, interdisciplinary graduate training and associated research programs.

  15. IAEA reference materials for quality assurance of marine radioactivity measurements

    International Nuclear Information System (INIS)

    Povinec, P.P.; Pham, M.K.

    2001-01-01

    The IAEA's Marine Environment Laboratory has been assisting laboratories in Analytical Quality Control Services (AQCS) for the analysis of radionuclides in the marine environment since the early seventies. AQCS through world-wide and regional intercomparison exercises and the provision of reference methods and reference materials (RM) have been recognized as an important component of quality assurance/quality control. A total of 43 intercomparison exercises were organized and 37 RM were produced for marine radioactivity studies. All important marine matrices were covered, e.g., seawater, marine sediments of different chemical compositions, fish, shellfish and seaplants. RM were prepared from samples collected at contaminated sites (e.g., the Irish Sea, the Baltic Sea, the Arabian Sea, Mururoa and Bikini Atolls, etc.) as well as from sites affected only by global fallout (e.g., the Pacific Ocean). Available RM are listed in the IAEA biennial catalogue and can be purchased at a minimal price. An overview of prepared RM for radionuclides in marine matrices is presented and discussed in more detail. (author)

  16. Sources of radioactivity in the marine environment and their relative contributions to overall dose assessment from marine radioactivity (MARDOS). Final report of a co-ordinated research programme

    International Nuclear Information System (INIS)

    1995-10-01

    The document provides data on radionuclide levels in the marine environment and estimates doses from marine radioactivity through ingestion of sea food. Two radionuclides -natural Po210 and Cs 137 -are studied, as they are radiologically the most important representatives of each class of marine radioactivity on global scale. The results of the study confirm that the dominant contribution to doses comes from natural Po 210 in fish and shellfish and that the contribution of anthropogenic Sc 137 (mostly coming from nuclear weapons test) is negligible (100 to 1000 time lower) 14 refs, 12 figs, 13 tabs

  17. Sources of radioactivity in the marine environment and their relative contributions to overall dose assessment from marine radioactivity (MARDOS). Final report of a co-ordinated research programme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The document provides data on radionuclide levels in the marine environment and estimates doses from marine radioactivity through ingestion of sea food. Two radionuclides -natural Po210 and Cs 137 -are studied, as they are radiologically the most important representatives of each class of marine radioactivity on global scale. The results of the study confirm that the dominant contribution to doses comes from natural Po 210 in fish and shellfish and that the contribution of anthropogenic Sc 137 (mostly coming from nuclear weapons test) is negligible (100 to 1000 time lower) 14 refs, 12 figs, 13 tabs.

  18. Redox-dependent phosphorus burial in modern and ancient marine sediments. Geologica Ultraiectina (334)

    NARCIS (Netherlands)

    Kraal, P.

    2011-01-01

    Phosphorus (P) is an essential nutrient in Earth’s biosphere that helps regulate marine primary productivity. Burial in sediments is the only pathway for long-term removal of P from the marine reservoir, the efficiency of which depends strongly on the redox state of the bottom waters;

  19. 75 FR 20344 - Taking and Importing Marine Mammals; Taking Marine Mammals Incidental to Rocket Launches from...

    Science.gov (United States)

    2010-04-19

    ... traditional haulout site) during the December 7 survey; however, this has been the trend during the past few... subsistence uses. In addition, NMFS must prescribe regulations that include permissible methods of taking and... missile on July 18, 2008 at 1:47:00 a.m. ADT. Aerial surveys to document marine mammals in the primary...

  20. Global trends in significant wave height and marine wind speed from the ERA-20CM

    Science.gov (United States)

    Aarnes, Ole Johan; Breivik, Øyvind

    2016-04-01

    The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.

  1. Global deposition of airborne dioxin.

    Science.gov (United States)

    Booth, Shawn; Hui, Joe; Alojado, Zoraida; Lam, Vicky; Cheung, William; Zeller, Dirk; Steyn, Douw; Pauly, Daniel

    2013-10-15

    We present a global dioxin model that simulates one year of atmospheric emissions, transport processes, and depositions to the earth's terrestrial and marine habitats. We map starting emission levels for each land area, and we also map the resulting deposits to terrestrial and marine environments. This model confirms that 'hot spots' of deposition are likely to be in northern Europe, eastern North America, and in parts of Asia with the highest marine dioxin depositions being the northeast and northwest Atlantic, western Pacific, northern Indian Ocean and the Mediterranean. It also reveals that approximately 40% of airborne dioxin emissions are deposited to marine environments and that many countries in Africa receive more dioxin than they produce, which results in these countries being disproportionately impacted. Since human exposure to dioxin is largely through diet, this work highlights food producing areas that receive higher atmospheric deposits of dioxin than others. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability.

    Science.gov (United States)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-08-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26-141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture.

  3. Progress Towards a Global Understanding of Plankton Dynamics: The Global Alliance of CPR Surveys (GACS)

    Science.gov (United States)

    Batten, S.; Richardson, A.; Melrose, C.; Muxagata, E.; Hosie, G.; Verheye, H.; Hall, J.; Edwards, M.; Koubbi, P.; Abu-Alhaija, R.; Chiba, S.; Wilson, W.; Nagappa, R.; Takahashi, K.

    2016-02-01

    The Continuous Plankton Recorder (CPR) was first used in 1931 to routinely sample plankton and its continued deployment now sustains the longest-running, and spatially most extensive marine biological sampling programme in the world. Towed behind, for the most part commercial, ships it collects plankton samples from the surface waters that are subsequently analysed to provide taxonomically-resolved abundance data on a broad range of planktonic organisms from the size of coccolithophores to euphausiids. Plankton appear to integrate changes in the physical environment and by underpinning most marine food-webs, pass on this variability to higher trophic levels which have societal value. CPRs are deployed increasingly around the globe in discrete regional surveys that until recently interacted in an informal way. In 2011 the Global Alliance of CPR Surveys (GACS) was launched to bring these surveys together to collaborate more productively and address issues such as: methodological standardization, data integration, capacity building, and data analysis. Early products include a combined global database and regularly-released global marine ecological status reports. There are, of course, limitations to the exploitation of CPR data as well as the current geographic coverage. A current focus of GACS is integration of the data with models to meaningfully extrapolate across time and space. In this way the output could be used to provide more robust synoptic representations of key plankton variables. Recent years have also seen the CPR used as a platform in itself with the inclusion of additional sensors and water samplers that can sample the microplankton. The archive of samples has already been used for some molecular investigations and curation of samples is maintained for future studies. Thus the CPR is a key element of any regional to global ocean observing system of biodiversity.

  4. Marine wildlife entanglement: Assessing knowledge, attitudes, and relevant behaviour in the Australian community

    International Nuclear Information System (INIS)

    Pearson, Elissa; Mellish, Sarah; Sanders, Ben; Litchfield, Carla

    2014-01-01

    Highlights: • Marine debris and marine wildlife entanglement remains a significant global issue. • We examined awareness of this issue in an Australian community sample. • Findings reveal gaps exist in terms of what entanglement is and the risks posed. • Enhancing community understanding may facilitate greater conservation action. • The ‘Seal the Loop’ initiative provides one potential mechanism for such education. - Abstract: Marine debris remains a global challenge, with significant impacts on wildlife. Despite this, there is a paucity of research examining public understanding about marine wildlife entanglement [MWE], particularly within an Australian context. The present study surveyed two hundred and thirteen participants across three coastal sites to assess familiarity with MWE and the effectiveness of a new community education initiative ‘Seal the Loop’ [STL]. Results revealed attitudes toward marine wildlife were very positive (M 40.5, SD 4.12); however 32% of participants were unable to correctly explain what MWE is and risks to wildlife were under-estimated. STL may be one method to enhance public understanding and engagement-if community familiarity with the program can be increased. For those aware of STL (<13% of the sample at the time of the study), findings revealed this was having a positive impact (e.g. learning something new, changed waste disposal behaviours)

  5. Climate Change, Globalization and Geopolitics in the New Maritime Arctic

    Science.gov (United States)

    Brigham, L. W.

    2011-12-01

    Early in the 21st century a confluence of climate change, globalization and geopolitics is shaping the future of the maritime Arctic. This nexus is also fostering greater linkage of the Arctic to the rest of the planet. Arctic sea ice is undergoing a historic transformation of thinning, extent reduction in all seasons, and reduction in the area of multiyear ice in the central Arctic Ocean. Global Climate Model simulations of Arctic sea ice indicate multiyear ice could disappear by 2030 for a short period of time each summer. These physical changes invite greater marine access, longer seasons of navigation, and potential, summer trans-Arctic voyages. As a result, enhanced marine safety, environmental protection, and maritime security measures are under development. Coupled with climate change as a key driver of regional change is the current and future integration of the Arctic's natural wealth with global markets (oil, gas and hard minerals). Abundant freshwater in the Arctic could also be a future commodity of value. Recent events such as drilling for hydrocarbons off Greenland's west coast and the summer marine transport of natural resources from the Russian Arctic to China across the top of Eurasia are indicators of greater global economic ties to the Arctic. Plausible Arctic futures indicate continued integration with global issues and increased complexity of a range of regional economic, security and environmental challenges.

  6. A minireview of marine algal virus — Coccolithoviruses

    Science.gov (United States)

    Liu, Jingwen; Xu, Miaomiao; Zheng, Tianling

    2015-04-01

    Coccolithophorid is unicellular marine microalgae with a global distribution in temperate and sub-temperate oceanic regions and has the ability to produce `the coccoliths'. It is considered to be the second most productive calcifying organism on earth and becoming an important factor in the global carbonate cycle. Emiliania huxleyi is one of the only two bloom-forming coccolithophores and becomes a species crucial to the study of global biogeochemical cycles and climate modeling. Coccolithoviruse is a recently discovered group of viruses infecting the marine coccolithophorid E. huxleyi. They are a major cause of coccolithophore bloom termination, and DMSP concentration is increasing in the process of viral lysis. Phylogenetic evidences support that some genes are functional both in E. huxleyi and its virus (EhV). Horizontal gene transfer (HGT) of multiple functionally coupled enzymes occurs in E. huxleyi and its DNA virus EhV has been confirmed, which contributes to the diversification and adaptation of plankton in the oceans and also critically regulates virus-host infection by allowing viruses to control host metabolic pathways for their replication. Therefore, it is of particular interest to understand this host-virus interaction. On this issue, we have made a minireview of coccolithoviruses focusing on the basic characteristics, phylogenesis, horizontal gene transfer and the interaction between the host and its viruses, as well as its important role in global biogeochemical cycling.

  7. Concept for a hyperspectral remote sensing algorithm for floating marine macro plastics.

    Science.gov (United States)

    Goddijn-Murphy, Lonneke; Peters, Steef; van Sebille, Erik; James, Neil A; Gibb, Stuart

    2018-01-01

    There is growing global concern over the chemical, biological and ecological impact of plastics in the ocean. Remote sensing has the potential to provide long-term, global monitoring but for marine plastics it is still in its early stages. Some progress has been made in hyperspectral remote sensing of marine macroplastics in the visible (VIS) to short wave infrared (SWIR) spectrum. We present a reflectance model of sunlight interacting with a sea surface littered with macro plastics, based on geometrical optics and the spectral signatures of plastic and seawater. This is a first step towards the development of a remote sensing algorithm for marine plastic using light reflectance measurements in air. Our model takes the colour, transparency, reflectivity and shape of plastic litter into account. This concept model can aid the design of laboratory, field and Earth observation measurements in the VIS-SWIR spectrum and explain the results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms.

    Science.gov (United States)

    Berry, Kathryn L E; Hoogenboom, Mia O; Flores, Florita; Negri, Andrew P

    2016-05-13

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l(-1)) of suspended coal dust (coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l(-1)) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  9. Tectonic and environmental factors controlling on the evolution of Oligo-Miocene shallow marine carbonate factories along a tropical SE Circum-Caribbean

    Science.gov (United States)

    Silva-Tamayo, J. C.; Lara, M. E.; Nana Yobo, L.; Erdal, Y. D.; Sanchez, J.; Zapata-Ramirez, P. A.

    2017-10-01

    The evolution of the Cenozoic Circum-Caribbean shallow marine carbonate factories and ecosystems has been for long attributed to major global climatic and environmental changes. Although temporal variations in the Cenozoic shallow marine carbonate factories in this region seem to follow global trends, the potential effects of regional processes, such tectonic activity and local environmental change, on the evolution of the shallow marine carbonate factories are not well established. Here we present detailed sedimentologic and stratigraphic information from Middle Oligocene - Middle Miocene (Chattian-Burdigalian) shallow marine carbonate successions of the Siamana Formation in the Cocinetas sub-basin, Alta Guajira Basin, Guajira Peninsula, northern Colombia. We document the potential effects of regional tectonics and local environmental deterioration on the evolution of the Oligocene-Miocene tropical shallow marine carbonate factories along the SE Circum-Caribbean. Our results show that mixed heterozoan-photozoan biotic associations dominated the shallow marine carbonate factories during the Chattian, while purely photozoan biotic associations constituted the primary carbonate factory during the Aquitanian-Burdigalian transition. The Chattian mixed heterozoan/photozoan biotic association is associated with the development of mixed carbonate/siliciclastic shelves along which detached patchy reef areas occur. The onset of the Aquitanian-Burdigalian purely photozoan biotic associations parallels the increase in coral diversity as well as the occurence of rimmed/detached carbonate platforms in the northern part of the basin. The development of the rimmed/detached platforms coincides with a time of increased basin subsidence and increased silicilcastic input along the southernmost part of the basin. A significant change in the carbonate factory occurs in the Late Burdigalian, when purely heterozoan (rodalgal) biotic associations constituted the main shallow marine

  10. Characterisation of North American Brucella isolates from marine mammals.

    Directory of Open Access Journals (Sweden)

    Adrian M Whatmore

    Full Text Available Extension of known ecological niches of Brucella has included the description of two novel species from marine mammals. Brucella pinnipedialis is associated predominantly with seals, while two major Brucella ceti clades, most commonly associated with porpoises or dolphins respectively, have been identified. To date there has been limited characterisation of Brucella isolates obtained from marine mammals outside Northern European waters, including North American waters. To address this gap, and extend knowledge of the global population structure and host associations of these Brucella species, 61 isolates from marine mammals inhabiting North American waters were subject to molecular and phenotypic characterisation enabling comparison with existing European isolates. The majority of isolates represent genotypes previously described in Europe although novel genotypes were identified in both B. ceti clades. Harp seals were found to carry B. pinnipedialis genotypes previously confined to hooded seals among a diverse repertoire of sequence types (STs associated with this species. For the first time Brucella isolates were characterised from beluga whales and found to represent a number of distinct B. pinnipedialis genotypes. In addition the known host range of ST27 was extended with the identification of this ST from California sea lion samples. Finally the performance of the frequently used diagnostic tool Bruce-ladder, in differentiating B. ceti and B. pinnipedialis, was critically assessed based on improved knowledge of the global population structure of Brucella associated with marine mammals.

  11. Navigating transformations in governance of Chilean marine coastal resources

    NARCIS (Netherlands)

    Gelcich, S.; Hughes, T.P.; Olsson, P.; Folke, C.; Defeo, O.; Fernandez, M.; Foale, S.; Gunderson, L.H.; Rodriguez-Sickert, C.; Scheffer, M.; Steneck, R.S.; Castilla, J.C.

    2010-01-01

    Marine ecosystems are in decline. New transformational changes in governance are urgently required to cope with overfishing, pollution, global changes, and other drivers of degradation. Here we explore social, political, and ecological aspects of a transformation in governance of Chile's coastal

  12. In situ observation of plutonium transfer processes in the marine environment

    International Nuclear Information System (INIS)

    Guary, J.-C.; Fraizier, Andre

    1975-09-01

    A preliminary observation of plutonium transfer processes in the marine environment was carried out and showed that concentration of the radionuclide was lower when marine organisms stood at a higher trophic level. This observation supplemented by an investigation on contamination pathways showed that plutonium was not concentrated along the food chain and its uptake occured preferentially by direct contact of species with seawater, a process chiefly affecting producers and primary consumers. It appeared that the marine sediment was not a significant vector of plutonium transfer in burrowing species [fr

  13. Marine spatial planning and Good Environmental Status: a perspective on spatial and temporal dimensions

    Directory of Open Access Journals (Sweden)

    Alison J. Gilbert

    2015-03-01

    Full Text Available The European Union Marine Strategy Framework Directive requires the Good Environmental Status of marine environments in Europe's regional seas; yet, maritime activities, including sources of marine degradation, are diversifying and intensifying in an increasingly globalized world. Marine spatial planning is emerging as a tool for rationalizing competing uses of the marine environment while guarding its quality. A directive guiding the development of such plans by European Union member states is currently being formulated. There is an undeniable need for marine spatial planning. However, we argue that considerable care must be taken with marine spatial planning, as the spatial and temporal scales of maritime activities and of Good Environmental Status may be mismatched. We identify four principles for careful and explicit consideration to align the requirements of the two directives and enable marine spatial planning to support the achievement of Good Environmental Status in Europe's regional seas.

  14. MARKETING SYSTEM OF MARINE FISH IN BANGLADESH: AN EMPIRICAL STUDY

    OpenAIRE

    Islam, M. Serajul; Miah, Tofazzal Hossain; Haque, Md. Mojammel

    2000-01-01

    This paper was designed to investigate the present status of marine fish marketing aiming to determine marketing costs, margins and profits of marketing intermediaries both in domestic and export marketing. Primary data were collected by survey method wherein various market intermediaries were interviewed from selected districts for eliciting information at various stages of marine fish marketing. The study revealed that marketing margin as well as marketing profit both were relatively higher...

  15. Using Marine and Freshwater Fish Environmental Intelligence Networks Under Different Climate Change Scenarios to Evaluate the Effectiveness of the Minamata Convention on Mercury

    Science.gov (United States)

    Bank, M. S.

    2017-12-01

    The Minamata Convention on Mercury was recently ratified and will go into effect on August 16, 2017. As noted in the convention text, fish are an important source of nutrition to consumers worldwide and several marine and freshwater species represent important links in the global source-receptor dynamics of methylmercury. However, despite its importance, a coordinated global program for marine and freshwater fish species using accredited laboratories, reproducible data and reliable models is still lacking. In recent years fish mercury science has evolved significantly with its use of advanced technologies and computational models to address this complex and ubiquitous environmental and public health issue. These advances in the field have made it essential that transparency be enhanced to ensure that fish mercury studies used in support of the convention are truly reproducible and scientifically sound. One primary goal of this presentation is to evaluate fish bioinformatics and methods, results and inferential reproducibility as it relates to aggregated uncertainty in mercury fish research models, science, and biomonitoring. I use models, environmental intelligence networks and simulations of the effects of a changing climate on methylmercury in marine and freshwater fish to examine how climate change and the convention itself may create further uncertainties for policymakers to consider. Lastly, I will also present an environmental intelligence framework for fish mercury bioaccumulation models and biomonitoring in support of the evaluation of the effectiveness of the Minamata Convention on Mercury.

  16. Ecological roulette: the global transport of nonindigenous marine organisms.

    Science.gov (United States)

    Cariton, J T; Geller, J B

    1993-07-02

    Ocean-going ships carry, as ballast, seawater that is taken on in port and released at subsequent ports of call. Plankton samples from Japanese ballast water released in Oregon contained 367 taxa. Most taxa with a planktonic phase in their life cycle were found in ballast water, as were all major marine habitat and trophic groups. Transport of entire coastal planktonic assemblages across oceanic barriers to similar habitats renders bays, estuaries, and inland waters among the most threatened ecosystems in the world. Presence of taxonomically difficult or inconspicuous taxa in these samples suggests that ballast water invasions are already pervasive.

  17. Simulating ecological changes caused by marine energy devices

    Science.gov (United States)

    Schuchert, Pia; Elsaesser, Bjoern; Pritchard, Daniel; Kregting, Louise

    2015-04-01

    Marine renewable energy from wave and tidal technology has the potential to contribute significantly globally to energy security for future generations. However common to both tidal and wave energy extraction systems is concern regarding the potential environmental consequences of the deployment of the technology as environmental and ecological effects are so far poorly understood. Ecological surveys and studies to investigate the environmental impacts are time consuming and costly and are generally reactive; a more efficient approach is to develop 2 and 3D linked hydrodynamic-ecological modelling which has the potential to be proactive and to allow forecasting of the effects of array installation. The objective of the study was to explore tools which can help model and evaluate possible far- and near field changes in the environment and ecosystem caused by the introduction of arrays of marine energy devices. Using the commercial software, MIKE by DHI, we can predict and model possible changes in the ecosystem. MIKE21 and ECOLab modelling software provide the opportunity to couple high level hydrodynamic models with process based ecological models and/or agent based models (ABM). The flow solutions of the model were determined in an idealised tidal basin with the dimensions similar to that of Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen. In the first instance a simple process oriented ecological NPZD model was developed which are used to model marine and freshwater systems describing four state variables, Nutrient, Phytoplankton, Zooplankton and Detritus. The ecological model was run and evaluated under two hydrodynamic scenarios of the idealised basin. This included no tidal turbines (control) and an array of 55 turbines, an extreme scenario. Whilst an array of turbines has an effect on the hydrodynamics of the Lough, it is unlikely to see an extreme effect on the NPZD model

  18. Global Patterns in Ecological Indicators of Marine Food Webs: A Modelling Approach

    Science.gov (United States)

    Heymans, Johanna Jacomina; Coll, Marta; Libralato, Simone; Morissette, Lyne; Christensen, Villy

    2014-01-01

    Background Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. Methodology In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. Principal findings Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST); primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as seagrass and macroalgae

  19. Global patterns in ecological indicators of marine food webs: a modelling approach.

    Directory of Open Access Journals (Sweden)

    Johanna Jacomina Heymans

    Full Text Available BACKGROUND: Ecological attributes estimated from food web models have the potential to be indicators of good environmental status given their capabilities to describe redundancy, food web changes, and sensitivity to fishing. They can be used as a baseline to show how they might be modified in the future with human impacts such as climate change, acidification, eutrophication, or overfishing. METHODOLOGY: In this study ecological network analysis indicators of 105 marine food web models were tested for variation with traits such as ecosystem type, latitude, ocean basin, depth, size, time period, and exploitation state, whilst also considering structural properties of the models such as number of linkages, number of living functional groups or total number of functional groups as covariate factors. PRINCIPAL FINDINGS: Eight indicators were robust to model construction: relative ascendency; relative overhead; redundancy; total systems throughput (TST; primary production/TST; consumption/TST; export/TST; and total biomass of the community. Large-scale differences were seen in the ecosystems of the Atlantic and Pacific Oceans, with the Western Atlantic being more complex with an increased ability to mitigate impacts, while the Eastern Atlantic showed lower internal complexity. In addition, the Eastern Pacific was less organised than the Eastern Atlantic although both of these systems had increased primary production as eastern boundary current systems. Differences by ecosystem type highlighted coral reefs as having the largest energy flow and total biomass per unit of surface, while lagoons, estuaries, and bays had lower transfer efficiencies and higher recycling. These differences prevailed over time, although some traits changed with fishing intensity. Keystone groups were mainly higher trophic level species with mostly top-down effects, while structural/dominant groups were mainly lower trophic level groups (benthic primary producers such as

  20. Global seafloor geomorphic features map: applications for ocean conservation and management

    Science.gov (United States)

    Harris, P. T.; Macmillan-Lawler, M.; Rupp, J.; Baker, E.

    2013-12-01

    Seafloor geomorphology, mapped and measured by marine scientists, has proven to be a very useful physical attribute for ocean management because different geomorphic features (eg. submarine canyons, seamounts, spreading ridges, escarpments, plateaus, trenches etc.) are commonly associated with particular suites of habitats and biological communities. Although we now have better bathymetric datasets than ever before, there has been little effort to integrate these data to create an updated map of seabed geomorphic features or habitats. Currently the best available global seafloor geomorphic features map is over 30 years old. A new global seafloor geomorphic features map (GSGM) has been created based on the analysis and interpretation of the SRTM (Shuttle Radar Topography Mission) 30 arc-second (~1 km) global bathymetry grid. The new map includes global spatial data layers for 29 categories of geomorphic features, defined by the International Hydrographic Organisation. The new geomorphic features map will allow: 1) Characterization of bioregions in terms of their geomorphic content (eg. GOODS bioregions, Large Marine Ecosystems (LMEs), ecologically or biologically significant areas (EBSA)); 2) Prediction of the potential spatial distribution of vulnerable marine ecosystems (VME) and marine genetic resources (MGR; eg. associated with hydrothermal vent communities, shelf-incising submarine canyons and seamounts rising to a specified depth); and 3) Characterization of national marine jurisdictions in terms of their inventory of geomorphic features and their global representativeness of features. To demonstrate the utility of the GSGM, we have conducted an analysis of the geomorphic feature content of the current global inventory of marine protected areas (MPAs) to assess the extent to which features are currently represented. The analysis shows that many features have very low representation, for example fans and rises have less than 1 per cent of their total area

  1. Survival and bioturbation effects of common marine macrofauna in coastal soils newly flooded with seawater

    DEFF Research Database (Denmark)

    Valdemarsen, Thomas Bruun; Quintana, Cintia Organo; Thorsen, Sandra Walløe

    Low-lying coastal soils are at risk of being permanently flooded due to global sea level rise, but how will these areas develop as habitat for marine species? We conducted an experiment to evaluate the habitat quality of flooded soils for common marine polychaetes (Marenzelleria viridis, Nereis d...

  2. Marine viruses--major players in the global ecosystem.

    Science.gov (United States)

    Suttle, Curtis A

    2007-10-01

    Viruses are by far the most abundant 'lifeforms' in the oceans and are the reservoir of most of the genetic diversity in the sea. The estimated 10(30) viruses in the ocean, if stretched end to end, would span farther than the nearest 60 galaxies. Every second, approximately 10(23) viral infections occur in the ocean. These infections are a major source of mortality, and cause disease in a range of organisms, from shrimp to whales. As a result, viruses influence the composition of marine communities and are a major force behind biogeochemical cycles. Each infection has the potential to introduce new genetic information into an organism or progeny virus, thereby driving the evolution of both host and viral assemblages. Probing this vast reservoir of genetic and biological diversity continues to yield exciting discoveries.

  3. Improving Global Gross Primary Productivity Estimates by Computing Optimum Light Use Efficiencies Using Flux Tower Data

    Science.gov (United States)

    Madani, Nima; Kimball, John S.; Running, Steven W.

    2017-11-01

    In the light use efficiency (LUE) approach of estimating the gross primary productivity (GPP), plant productivity is linearly related to absorbed photosynthetically active radiation assuming that plants absorb and convert solar energy into biomass within a maximum LUE (LUEmax) rate, which is assumed to vary conservatively within a given biome type. However, it has been shown that photosynthetic efficiency can vary within biomes. In this study, we used 149 global CO2 flux towers to derive the optimum LUE (LUEopt) under prevailing climate conditions for each tower location, stratified according to model training and test sites. Unlike LUEmax, LUEopt varies according to heterogeneous landscape characteristics and species traits. The LUEopt data showed large spatial variability within and between biome types, so that a simple biome classification explained only 29% of LUEopt variability over 95 global tower training sites. The use of explanatory variables in a mixed effect regression model explained 62.2% of the spatial variability in tower LUEopt data. The resulting regression model was used for global extrapolation of the LUEopt data and GPP estimation. The GPP estimated using the new LUEopt map showed significant improvement relative to global tower data, including a 15% R2 increase and 34% root-mean-square error reduction relative to baseline GPP calculations derived from biome-specific LUEmax constants. The new global LUEopt map is expected to improve the performance of LUE-based GPP algorithms for better assessment and monitoring of global terrestrial productivity and carbon dynamics.

  4. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability

    International Nuclear Information System (INIS)

    Erb, Karl-Heinz; Haberl, Helmut; Plutzar, Christoph

    2012-01-01

    The future bioenergy crop potential depends on (1) changes in the food system (food demand, agricultural technology), (2) political stability and investment security, (3) biodiversity conservation, (4) avoidance of long carbon payback times from deforestation, and (5) energy crop yields. Using a biophysical biomass-balance model, we analyze how these factors affect global primary bioenergy potentials in 2050. The model calculates biomass supply and demand balances for eleven world regions, eleven food categories, seven food crop types and two livestock categories, integrating agricultural forecasts and scenarios with a consistent global land use and NPP database. The TREND scenario results in a global primary bioenergy potential of 77 EJ/yr, alternative assumptions on food-system changes result in a range of 26–141 EJ/yr. Exclusion of areas for biodiversity conservation and inaccessible land in failed states reduces the bioenergy potential by up to 45%. Optimistic assumptions on future energy crop yields increase the potential by up to 48%, while pessimistic assumptions lower the potential by 26%. We conclude that the design of sustainable bioenergy crop production policies needs to resolve difficult trade-offs such as food vs. energy supply, renewable energy vs. biodiversity conservation or yield growth vs. reduction of environmental problems of intensive agriculture. - Highlights: ► Global energy crop potentials in 2050 are calculated with a biophysical biomass-balance model. ► The study is focused on dedicated energy crops, forestry and residues are excluded. ► Depending on food-system change, global energy crop potentials range from 26–141 EJ/yr. ► Exclusion of protected areas and failed states may reduce the potential up to 45%. ► The bioenergy potential may be 26% lower or 45% higher, depending on energy crop yields.

  5. Distribution of mesozooplankton biomass in the global ocean

    Directory of Open Access Journals (Sweden)

    R. Moriarty

    2013-02-01

    Full Text Available Mesozooplankton are cosmopolitan within the sunlit layers of the global ocean. They are important in the pelagic food web, having a significant feedback to primary production through their consumption of phytoplankton and microzooplankton. In many regions of the global ocean, they are also the primary contributors to vertical particle flux in the oceans. Through both they affect the biogeochemical cycling of carbon and other nutrients in the oceans. Little, however, is known about their global distribution and biomass. While global maps of mesozooplankton biomass do exist in the literature, they are usually in the form of hand-drawn maps for which the original data associated with these maps are not readily available. The dataset presented in this synthesis has been in development since the late 1990s, is an integral part of the Coastal and Oceanic Plankton Ecology, Production, and Observation Database (COPEPOD, and is now also part of a wider community effort to provide a global picture of carbon biomass data for key plankton functional types, in particular to support the development of marine ecosystem models. A total of 153 163 biomass values were collected, from a variety of sources, for mesozooplankton. Of those 2% were originally recorded as dry mass, 26% as wet mass, 5% as settled volume, and 68% as displacement volume. Using a variety of non-linear biomass conversions from the literature, the data have been converted from their original units to carbon biomass. Depth-integrated values were then used to calculate an estimate of mesozooplankton global biomass. Global epipelagic mesozooplankton biomass, to a depth of 200 m, had a mean of 5.9 μg C L−1, median of 2.7 μg C L−1 and a standard deviation of 10.6 μg C L−1. The global annual average estimate of mesozooplankton in the top 200 m, based on the median value, was 0.19 Pg C. Biomass was highest in the Northern Hemisphere, and there were slight decreases from polar oceans (40

  6. Marine hydrogeology: recent accomplishments and future opportunities

    Science.gov (United States)

    Fisher, A. T.

    2005-03-01

    Marine hydrogeology is a broad-ranging scientific discipline involving the exploration of fluid-rock interactions below the seafloor. Studies have been conducted at seafloor spreading centers, mid-plate locations, and in plate- and continental-margin environments. Although many seafloor locations are remote, there are aspects of marine systems that make them uniquely suited for hydrologic analysis. Newly developed tools and techniques, and the establishment of several multidisciplinary programs for oceanographic exploration, have helped to push marine hydrogeology forward over the last several decades. Most marine hydrogeologic work has focused on measurement or estimation of hydrogeologic properties within the shallow subsurface, but additional work has emphasized measurements of local and global fluxes, fluid source and sink terms, and quantitative links between hydrogeologic, chemical, tectonic, biological, and geophysical processes. In addition to summarizing selected results from a small number of case studies, this paper includes a description of several new experiments and programs that will provide outstanding opportunities to address fundamental hydrogeologic questions within the seafloor during the next 20-30 years. L'hydrogéologie marine est une large discipline scientifique impliquant l' exploration des interactions entre les fluides et les roches sous les fonds marins. Des études ont été menées dans les différents environnements sous-marins (zone abyssale, plaque océanique, marges continentales). Bien que de nombreux fonds marins soient connus, il existe des aspects des systèmes marins qui les rendent inadaptés à l'analyse hydrologique. De nouveaux outils et techniques, et la mise en oeuvre de nombreux programmes multidisciplinaires d'exploration océanographique, ont aidé à pousser en avant l'hydrogéologie marine ces dix dernières années. La plus part des études hydrogéologiques se sont concentrées jusqu'à présent sur la mesure ou

  7. Biodiversity and studies of marine symbiotic siphonostomatoids off ...

    African Journals Online (AJOL)

    Current knowledge of the biodiversity of the symbiotic marine siphonostomatoids from South African waters (136 species) is sparse compared to that globally (1 388 species). The difference is especially apparent when taking into account the diversity of fish (more than 2 000 species) and invertebrates (approximately 12 ...

  8. Anthropogenic Forcing of Carbonate and Organic Carbon Preservation in Marine Sediments.

    Science.gov (United States)

    Keil, Richard

    2017-01-03

    Carbon preservation in marine sediments, supplemented by that in large lakes, is the primary mechanism that moves carbon from the active surficial carbon cycle to the slower geologic carbon cycle. Preservation rates are low relative to the rates at which carbon moves between surface pools, which has led to the preservation term largely being ignored when evaluating anthropogenic forcing of the global carbon cycle. However, a variety of anthropogenic drivers-including ocean warming, deoxygenation, and acidification, as well as human-induced changes in sediment delivery to the ocean and mixing and irrigation of continental margin sediments-all work to decrease the already small carbon preservation term. These drivers affect the cycling of both carbonate and organic carbon in the ocean. The overall effect of anthropogenic forcing in the modern ocean is to decrease delivery of carbon to sediments, increase sedimentary dissolution and remineralization, and subsequently decrease overall carbon preservation.

  9. Temperature dependence of CO2-enhanced primary production in the European Arctic Ocean

    KAUST Repository

    Holding, J. M.

    2015-08-31

    The Arctic Ocean is warming at two to three times the global rate1 and is perceived to be a bellwether for ocean acidification2, 3. Increased CO2 concentrations are expected to have a fertilization effect on marine autotrophs4, and higher temperatures should lead to increased rates of planktonic primary production5. Yet, simultaneous assessment of warming and increased CO2 on primary production in the Arctic has not been conducted. Here we test the expectation that CO2-enhanced gross primary production (GPP) may be temperature dependent, using data from several oceanographic cruises and experiments from both spring and summer in the European sector of the Arctic Ocean. Results confirm that CO2 enhances GPP (by a factor of up to ten) over a range of 145–2,099 μatm; however, the greatest effects are observed only at lower temperatures and are constrained by nutrient and light availability to the spring period. The temperature dependence of CO2-enhanced primary production has significant implications for metabolic balance in a warmer, CO2-enriched Arctic Ocean in the future. In particular, it indicates that a twofold increase in primary production during the spring is likely in the Arctic.

  10. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, Darci; Sinninghe Damsté, Jaap S

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  11. Lipids as paleomarkers to constrain the marine nitrogen cycle

    NARCIS (Netherlands)

    Rush, D.; Sinninghe Damsté, J.S.

    2017-01-01

    Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction-oxidation transformations of bio-available nitrogen. Within marine

  12. Marine protected areas increase resilience among coral reef communities.

    Science.gov (United States)

    Mellin, Camille; Aaron MacNeil, M; Cheal, Alistair J; Emslie, Michael J; Julian Caley, M

    2016-06-01

    With marine biodiversity declining globally at accelerating rates, maximising the effectiveness of conservation has become a key goal for local, national and international regulators. Marine protected areas (MPAs) have been widely advocated for conserving and managing marine biodiversity yet, despite extensive research, their benefits for conserving non-target species and wider ecosystem functions remain unclear. Here, we demonstrate that MPAs can increase the resilience of coral reef communities to natural disturbances, including coral bleaching, coral diseases, Acanthaster planci outbreaks and storms. Using a 20-year time series from Australia's Great Barrier Reef, we show that within MPAs, (1) reef community composition was 21-38% more stable; (2) the magnitude of disturbance impacts was 30% lower and (3) subsequent recovery was 20% faster that in adjacent unprotected habitats. Our results demonstrate that MPAs can increase the resilience of marine communities to natural disturbance possibly through herbivory, trophic cascades and portfolio effects. © 2016 John Wiley & Sons Ltd/CNRS.

  13. Neurotoxic Syndromes in Marine Poisonings a Review

    Directory of Open Access Journals (Sweden)

    Gholam Hossein Mohebbi

    2014-08-01

    Full Text Available Background: Marine neurotoxins as of Marine biotoxins are natural toxins that produced mainly by dinoflagellates, diatoms and several species of invertebrates and fish. Marine poisoning results from the ingestion of marine animals contain these toxins and causes considerable adverse effects. Materials and methods: This review provides some facts about the structures of marine neurotoxins, their molecular target and pharmacology, analytical methods for their detection and quantitation, diagnosis and laboratory testing, clinical manifestations, as well as prevention and treatment, if were obtainable. Furthermore, we focus on marine poisoning and various associated neurological syndromes like ciguatera, tetrodotoxin poisoning, and paralytic shellfish poisoning, after ingestion of the common marine toxins. Results: A number of neurotoxins that prescribed according to their potency (LD50 are: Maitotoxin, Ciguatoxins and Palytoxin, Tetrodotoxin and Saxitoxin, Brevetoxins, Azaspiracid, Yessotoxin, Cooliatoxin, Domoic acid and Conotoxins, Respectively. The primary target of most marine neurotoxins is voltage gated sodium channels and the resulting block of ion conductance through these channels. Moreover, these compounds interact with voltage-gated potassium and calcium channels and modulate the flux of stated ions into many cell types. As well, the target recognized for palytoxin is the Na+- K+ /ATPase. Conclusion: Results of reviewed studies revealed that, the Ciguatera is the commonest syndrome of marine poisoning, but is rarely lethal. Puffer fish poisoning results from the ingestion of fish containing tetrodotoxin and paralytic shellfish poisoning are less common, but have a higher fatality rate than ciguatera. Despite their high toxicity, no much research has been done on some of the toxins, like maitotoxin. In addition, there have remained unknown the pharmacological effects, mechanism of action and molecular target of some toxins such as

  14. Marine environment news. Vol. 2, no. 2

    International Nuclear Information System (INIS)

    2004-09-01

    This issue of the Newsletter carries articles on Tracers to reveal Global Role of Southern Oceans in Climate Change, a Technical Cooperation project on contamination in Mediterranean Sea and an article Marine Environment Laboratory (MEL) and Harmful Algal Blooms: nuclear methods serving seafood toxicity management. News items on training, personnel and intercomparison exercise are also covered

  15. Global analysis of anthropogenic debris ingestion by sea turtles.

    Science.gov (United States)

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. © 2013 The Authors. Conservation Biology published by Wiley Periodicals, Inc., on behalf of the Society for Conservation Biology.

  16. International symposium on marine pollution. Extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-31

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of the Oceans. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for studies of transport and circulation processes in the world`s oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. This document contains extended synopses of 390 oral and poster presentations made at the symposium. Each synopsis was indexed separately. Refs, figs, tabs

  17. International symposium on marine pollution. Extended synopses

    International Nuclear Information System (INIS)

    1998-01-01

    The marine environment - understanding and protecting for the future were at the forefront of the International Symposium on Marine Pollution convened in Monaco from 5 to 9 October 1998, as one of the major events of the UN International Year of the Oceans. New achievements were reported in identifying the sources of pollution, on the behaviour and fate of contaminants in seawater, biota and sediments, on the use of radioactive and non-radioactive tracers for studies of transport and circulation processes in the world's oceans and seas, on studies of radioactive waste dumping sites and nuclear weapons test sites, on local, regional and global computer modelling of the transport of contaminants and on many other topics in marine pollution. New developments in high sensitivity analytical measurements of contaminants with emphasis on nuclear and isotopic methods were also presented. This document contains extended synopses of 390 oral and poster presentations made at the symposium. Each synopsis was indexed separately

  18. Avalanches of sediment form deep-marine depositions

    NARCIS (Netherlands)

    Pohl, Florian|info:eu-repo/dai/nl/34309424X

    2017-01-01

    The deep ocean is the largest sedimentary system basin on the planet. It serves as the primary storage point for all terrestrially weathered sediment that makes it beyond the near-shore environment. These deep-marine offshore deposits have become a focus of attention in exploration due to the

  19. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks

    Directory of Open Access Journals (Sweden)

    N. R. Bates

    2009-11-01

    Full Text Available At present, although seasonal sea-ice cover mitigates atmosphere-ocean gas exchange, the Arctic Ocean takes up carbon dioxide (CO2 on the order of −66 to −199 Tg C year−1 (1012 g C, contributing 5–14% to the global balance of CO2 sinks and sources. Because of this, the Arctic Ocean has an important influence on the global carbon cycle, with the marine carbon cycle and atmosphere-ocean CO2 exchanges sensitive to Arctic Ocean and global climate change feedbacks. In the near-term, further sea-ice loss and increases in phytoplankton growth rates are expected to increase the uptake of CO2 by Arctic Ocean surface waters, although mitigated somewhat by surface warming in the Arctic. Thus, the capacity of the Arctic Ocean to uptake CO2 is expected to alter in response to environmental changes driven largely by climate. These changes are likely to continue to modify the physics, biogeochemistry, and ecology of the Arctic Ocean in ways that are not yet fully understood. In surface waters, sea-ice melt, river runoff, cooling and uptake of CO2 through air-sea gas exchange combine to decrease the calcium carbonate (CaCO3 mineral saturation states (Ω of seawater while seasonal phytoplankton primary production (PP mitigates this effect. Biological amplification of ocean acidification effects in subsurface waters, due to the remineralization of organic matter, is likely to reduce the ability of many species to produce CaCO3 shells or tests with profound implications for Arctic marine ecosystems

  20. Global climate evolution during the last deglaciation

    OpenAIRE

    Clark, Peter U.; Shakun, Jeremy D.; Baker, Paul A.; Bartlein, Patrick J.; Brewer, Simon; Brook, Ed; Carlson, Anders E.; Cheng, Hai; Kaufman, Darrell S.; Liu, Zhengyu; Marchitto, Thomas M.; Mix, Alan C.; Morrill, Carrie; Otto-Bliesner, Bette L.; Pahnke, Katharina

    2012-01-01

    Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth’s climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to th...

  1. Tracing Uganda's global primary organic pineapple value chain ...

    African Journals Online (AJOL)

    The organic sector is one of the fastest growing sectors globally. ... opportunity for developing countries to export high value products in the global market. ... It is clear from the study that the chain is private- sector-driven, has relatively young ...

  2. How are climate and marine biological outbreaks functionally linked?

    Science.gov (United States)

    Hayes, Marshall L.; Bonaventura, Joseph; Mitchell, Todd P.; Prospero, Joseph M.; Shinn, Eugene A.; Van Dolah, Frances; Barber, Richard T.

    2001-01-01

    Since the mid-1970s, large-scale episodic events such as disease epidemics, mass mortalities, harmful algal blooms and other population explosions have been occurring in marine environments at an historically unprecedented rate. The variety of organisms involved (host, pathogens and other opportunists) and the absolute number of episodes have also increased during this period. Are these changes coincidental? Between 1972 and 1976, a global climate regime shift took place, and it is manifest most clearly by a change in strength of the North Pacific and North Atlantic pressure systems. Consequences of this regime shift are: (1) prolonged drought conditions in the Sahel region of Africa; (2) increased dust supply to the global atmosphere, by a factor of approximately four; (3) increased easterly trade winds across the Atlantic; (4) increased eolian transport of dust to the Atlantic and Caribbean basins; and (5) increased deposition of iron-rich eolian dust to typically iron-poor marine regions. On the basis of well-documented climate and dust observations and the widely accepted increase in marine outbreak rates, this paper proposes that the increased iron supply has altered the micronutrient factors limiting growth of opportunistic organisms and virulence of pathogenic microbes, particularly in macronutrient-rich coastal systems.

  3. Traditions and New Perspectives for Marine Radioecology in Romania

    Energy Technology Data Exchange (ETDEWEB)

    Patrascu, V.; Bologa, A. S. [Grigore Antipa National Institute for Marine Research and Development, Constanta (Romania)

    2013-07-15

    The Marine Radioecology Laboratory started its operation in the 1980s, when Romania launched a nuclear programme. Its first activities were developed within a collaboration framework. The beta and gamma global methods have been used for radioactivity measurements in marine samples or in situ. Experimental work was followed by monochannel spectrometry using radiotracers in biota. The IAEA has supported and improved the use of modern methods such as high resolution multichannel spectrometry and liquid scintillation counting. Sustainable monitoring of marine radioactivity has been initiated. Participation in national and international intercomparison tests gave good results. Many research projects and scientific collaborations have been supported. The published results are a reference for further work and impact assessments of contaminants. Nowadays, using European funds, the Laboratory has new perspectives based on modern methods and installations. (author)

  4. Contribution of fish to the marine inorganic carbon cycle.

    Science.gov (United States)

    Wilson, R W; Millero, F J; Taylor, J R; Walsh, P J; Christensen, V; Jennings, S; Grosell, M

    2009-01-16

    Oceanic production of calcium carbonate is conventionally attributed to marine plankton (coccolithophores and foraminifera). Here we report that marine fish produce precipitated carbonates within their intestines and excrete these at high rates. When combined with estimates of global fish biomass, this suggests that marine fish contribute 3 to 15% of total oceanic carbonate production. Fish carbonates have a higher magnesium content and solubility than traditional sources, yielding faster dissolution with depth. This may explain up to a quarter of the increase in titratable alkalinity within 1000 meters of the ocean surface, a controversial phenomenon that has puzzled oceanographers for decades. We also predict that fish carbonate production may rise in response to future environmental changes in carbon dioxide, and thus become an increasingly important component of the inorganic carbon cycle.

  5. Denali Ice Core Record of North Pacific Sea Surface Temperatures and Marine Primary Productivity

    Science.gov (United States)

    Polashenski, D.; Osterberg, E. C.; Kreutz, K. J.; Winski, D.; Wake, C. P.; Ferris, D. G.; Introne, D.; Campbell, S. W.

    2016-12-01

    Chemical analyses of precipitation preserved in glacial ice cores provide a unique opportunity to study changes in atmospheric circulation patterns and ocean surface conditions through time. In this study, we aim to investigate changes in both the physical and biological parameters of the north-central Pacific Ocean and Bering Sea over the twentieth century using the deuterium excess (d-excess) and methanesulfonic acid (MSA) records from the Mt. Hunter ice cores drilled in Denali National Park, Alaska. These parallel, 208 m-long ice cores were drilled to bedrock during the 2013 field season on the Mt. Hunter plateau (63° N, 151° W, 3,900 m above sea level) by a collaborative research team consisting of members from Dartmouth College and the Universities of Maine and New Hampshire. The cores were sampled on a continuous melter system at Dartmouth College and analyzed for the concentrations major ions (Dionex IC) and trace metals (Element2 ICPMS), and for stable water isotope ratios (Picarro). The depth-age scale has been accurately dated to 400 AD using annual layer counting of several chemical species and further validated using known historical volcanic eruptions and the Cesium-137 spike associated with nuclear weapons testing in 1963. We use HYSPLIT back trajectory modeling to identify likely source areas of moisture and aerosol MSA being transported to the core site. Satellite imagery allows for a direct comparison between chlorophyll a concentrations in these source areas and MSA concentrations in the core record. Preliminary analysis of chlorophyll a and MSA concentrations, both derived almost exclusively from marine biota, suggest that the Mt. Hunter ice cores reflect changes in North Pacific and Bering Sea marine primary productivity. Analysis of the water isotope and MSA data in conjunction with climate reanalysis products shows significant correlations (psea surface temperatures in the Bering Sea and North Central Pacific. These findings, coupled with

  6. Tropical rainforest response to marine sky brightening climate engineering

    Science.gov (United States)

    Muri, Helene; Niemeier, Ulrike; Kristjánsson, Jón Egill

    2015-04-01

    Tropical forests represent a major atmospheric carbon dioxide sink. Here the gross primary productivity (GPP) response of tropical rainforests to climate engineering via marine sky brightening under a future scenario is investigated in three Earth system models. The model response is diverse, and in two of the three models, the tropical GPP shows a decrease from the marine sky brightening climate engineering. Partial correlation analysis indicates precipitation to be important in one of those models, while precipitation and temperature are limiting factors in the other. One model experiences a reversal of its Amazon dieback under marine sky brightening. There, the strongest partial correlation of GPP is to temperature and incoming solar radiation at the surface. Carbon fertilization provides a higher future tropical rainforest GPP overall, both with and without climate engineering. Salt damage to plants and soils could be an important aspect of marine sky brightening.

  7. New Insights into the Diversity of Marine Picoeukaryotes

    Science.gov (United States)

    Not, Fabrice; del Campo, Javier; Balagué, Vanessa; de Vargas, Colomban; Massana, Ramon

    2009-01-01

    Over the last decade, culture-independent surveys of marine picoeukaryotic diversity based on 18S ribosomal DNA clone libraries have unveiled numerous sequences of novel high-rank taxa. This newfound diversity has significantly altered our understanding of marine microbial food webs and the evolution of eukaryotes. However, the current picture of marine eukaryotic biodiversity may be significantly skewed by PCR amplification biases, occurrence of rDNA genes in multiple copies within a single cell, and the capacity of DNA to persist as extracellular material. In this study we performed an analysis of the metagenomic dataset from the Global Ocean Survey (GOS) expedition, seeking eukaryotic ribosomal signatures. This PCR-free approach revealed similar phylogenetic patterns to clone library surveys, suggesting that PCR steps do not impose major biases in the exploration of environmental DNA. The different cell size fractions within the GOS dataset, however, displayed a distinct picture. High protistan diversity in the Marine Stramenopiles) appeared as potentially prominent grazers and we observed a significant decrease in the contribution of alveolate and radiolarian sequences, which overwhelmingly dominated rDNA libraries. The rRNA approach appears to be less affected by taxon-specific rDNA copy number and likely better depicts the biogeochemical significance of marine protists. PMID:19787059

  8. Toward Operationalizing Resilience Concepts in Australian Marine Sectors Coping with Climate Change

    Directory of Open Access Journals (Sweden)

    Julie L. Davidson

    2013-09-01

    Full Text Available We seek to contribute to the scholarship on operationalizing resilience concepts via a working resilience indicator framework. Although it requires further refinement, this practical framework provides a useful baseline for generating awareness and understanding of the complexity and diversity of variables that impinge on resilience. It has potential value for the evaluation, benchmarking, monitoring, and reporting of marine system resilience. The necessity for such a framework is a consequence of the levels of complexity and uncertainty associated with climate change and other global change stressors in marine social-ecological systems, and the problems involved in assessing their resilience. There is a need for: (1 methodologies that bring together knowledge from diverse sources and disciplines to investigate the complexity and uncertainty of interactions between climate, ocean, and human systems and (2 frameworks to facilitate the evaluation and monitoring of the social-ecological resilience of marine-dependent sectors. Accordingly, our main objective is to demonstrate the virtues of combining a case study methodology with complex adaptive systems approaches as a means to improve understanding of the multifaceted dynamics of marine sectors experiencing climate change. The resilience indicator framework, the main product of the methodology, is developed using four case studies across key Australian marine biodiversity and resource sectors already experiencing impacts from climate and other global changes. It comprises a set of resilience dimensions with a candidate set of abstract and concrete resilience indicators. Its design ensures an integrated approach to resilience evaluation.

  9. Flourishing ocean drives the end-Permian marine mass extinction.

    Science.gov (United States)

    Schobben, Martin; Stebbins, Alan; Ghaderi, Abbas; Strauss, Harald; Korn, Dieter; Korte, Christoph

    2015-08-18

    The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian-Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.

  10. Ontogenetic variability in the feeding behavior of a marine amphipod in response to ocean acidification.

    Science.gov (United States)

    Benítez, Samanta; Duarte, Cristian; López, Jorge; Manríquez, Patricio H; Navarro, Jorge M; Bonta, Cesar C; Torres, Rodrigo; Quijón, Pedro A

    2016-11-15

    Global stressors like ocean acidification (OA) are expected to influence the quality or palatability of primary producers like algae. Such changes can trigger a response on algal consumers' feeding strategies, and this response may not necessarily be the same for the consumers during the ontogeny. We used a mesocosm's system to expose algae to current and projected OA conditions (390 and 1000ppm, respectively) and then compared the feeding behavior and absorption efficiency of juvenile and adult stages of the amphipod Orchestoidea tuberculata. Specifically, we measured consumption rates (with and without a choice) and absorption efficiency on algae exposed and not exposed to OA. Our results show that OA affect the amphipod's consumption and feeding preferences, and that these effects were related with the analyzed ontogenetic stage (juveniles versus adults). These results support the existence of an ontogenetic change in the response of this species and others similar marine invertebrates to OA, which highlight the need to incorporate different life stages in the study of OA or others global stressors. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Marine Pharmacology in 2009–2011: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis, and Antiviral Activities; Affecting the Immune and Nervous Systems, and other Miscellaneous Mechanisms of Action †

    Science.gov (United States)

    Mayer, Alejandro M. S.; Rodríguez, Abimael D.; Taglialatela-Scafati, Orazio; Fusetani, Nobuhiro

    2013-01-01

    The peer-reviewed marine pharmacology literature from 2009 to 2011 is presented in this review, following the format used in the 1998–2008 reviews of this series. The pharmacology of structurally-characterized compounds isolated from marine animals, algae, fungi and bacteria is discussed in a comprehensive manner. Antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral pharmacological activities were reported for 102 marine natural products. Additionally, 60 marine compounds were observed to affect the immune and nervous system as well as possess antidiabetic and anti-inflammatory effects. Finally, 68 marine metabolites were shown to interact with a variety of receptors and molecular targets, and thus will probably contribute to multiple pharmacological classes upon further mechanism of action studies. Marine pharmacology during 2009–2011 remained a global enterprise, with researchers from 35 countries, and the United States, contributing to the preclinical pharmacology of 262 marine compounds which are part of the preclinical pharmaceutical pipeline. Continued pharmacological research with marine natural products will contribute to enhance the marine pharmaceutical clinical pipeline, which in 2013 consisted of 17 marine natural products, analogs or derivatives targeting a limited number of disease categories. PMID:23880931

  12. Recent developments in high-resolution global altimetric gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  13. Functional responses and scaling in predator-prey interactions of marine fishes: contemporary issues and emerging concepts

    NARCIS (Netherlands)

    Hunsicker, M.E.; Ciannelli, L.; Bailey, K.M.; Buckel, J.A.; White, J.W.; Link, J.S.; Essington, T.E.; Gaichas, S.; Anderson, T.W.; Brodeur, R.D.; Chan, K.S.; Chen, K.; Englund, G.; Frank, K.T.; Freitas, V.; Hixon, M.A.; Hurst, T.; Johnson, D.W.; Kitchell, J.F.; Reese, D.; Rose, G.A.; Sjodin, H.; Sydeman, W.J.; van der Veer, H.W.; Vollset, K.; Zador, S.

    2011-01-01

    Predatorprey interactions are a primary structuring force vital to the resilience of marine communities and sustainability of the worlds oceans. Human influences on marine ecosystems mediate changes in species interactions. This generality is evinced by the cascading effects of overharvesting top

  14. New marine science organization formed

    Science.gov (United States)

    Wooster, Warren S.

    A new international organization, the North Pacific Marine Science Organization (PICES) will be established to promote and coordinate marine scientific research in the northern North Pacific Ocean and the Berlin Sea. This was decided in Ottawa on December 12, 1990, when a draft convention was approved by representatives of Canada, China, Japan, the United States, and the Soviet Union. PICES will focus on research on the ocean environment and its interactions with land and atmosphere, its role and response to global weather and climate change, its flora, fauna and ecosystems, its uses and resources, and impacts upon it from human activities. Such studies relate not only to the effects of fishing and environmental change on fish stocks but also to such issues as the impacts of oil spills and other forms of pollution and the eventual consequences of climate change for uses of the ocean and its resources.

  15. Performance and Quality Assessment of the Forthcoming Copernicus Marine Service Global Ocean Monitoring and Forecasting Real-Time System

    Science.gov (United States)

    Lellouche, J. M.; Le Galloudec, O.; Greiner, E.; Garric, G.; Regnier, C.; Drillet, Y.

    2016-02-01

    Mercator Ocean currently delivers in real-time daily services (weekly analyses and daily forecast) with a global 1/12° high resolution system. The model component is the NEMO platform driven at the surface by the IFS ECMWF atmospheric analyses and forecasts. Observations are assimilated by means of a reduced-order Kalman filter with a 3D multivariate modal decomposition of the forecast error. It includes an adaptive-error estimate and a localization algorithm. Along track altimeter data, satellite Sea Surface Temperature and in situ temperature and salinity vertical profiles are jointly assimilated to estimate the initial conditions for numerical ocean forecasting. A 3D-Var scheme provides a correction for the slowly-evolving large-scale biases in temperature and salinity.Since May 2015, Mercator Ocean opened the Copernicus Marine Service (CMS) and is in charge of the global ocean analyses and forecast, at eddy resolving resolution. In this context, R&D activities have been conducted at Mercator Ocean these last years in order to improve the real-time 1/12° global system for the next CMS version in 2016. The ocean/sea-ice model and the assimilation scheme benefit among others from the following improvements: large-scale and objective correction of atmospheric quantities with satellite data, new Mean Dynamic Topography taking into account the last version of GOCE geoid, new adaptive tuning of some observational errors, new Quality Control on the assimilated temperature and salinity vertical profiles based on dynamic height criteria, assimilation of satellite sea-ice concentration, new freshwater runoff from ice sheets melting …This presentation doesn't focus on the impact of each update, but rather on the overall behavior of the system integrating all updates. This assessment reports on the products quality improvements, highlighting the level of performance and the reliability of the new system.

  16. Simulated coal spill causes mortality and growth inhibition in tropical marine organisms

    Science.gov (United States)

    Berry, Kathryn L. E.; Hoogenboom, Mia O.; Flores, Florita; Negri, Andrew P.

    2016-05-01

    Coal is a principal fossil fuel driving economic and social development, and increases in global coal shipments have paralleled expansion of the industry. To identify the potential harm associated with chronic marine coal contamination, three taxa abundant in tropical marine ecosystems (the coral Acropora tenuis, the reef fish Acanthochromis polyacanthus and the seagrass Halodule uninervis) were exposed to five concentrations (0-275 mg coal l-1) of suspended coal dust (<63 μm) over 28 d. Results demonstrate that chronic coal exposure can cause considerable lethal effects on corals, and reductions in seagrass and fish growth rates. Coral survivorship and seagrass growth rates were inversely related to increasing coal concentrations (≥38 mg coal l-1) and effects increased between 14 and 28 d, whereas fish growth rates were similarly depressed at all coal concentrations tested. This investigation provides novel insights into direct coal impacts on key tropical taxa for application in the assessment of risks posed by increasing coal shipments in globally threatened marine ecosystems.

  17. Design and implementation of a marine animal alert system to support Marine Renewable Energy

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

    2013-08-08

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

  18. Impacts of climate extremes on gross primary production under global warming

    International Nuclear Information System (INIS)

    Williams, I N; Torn, M S; Riley, W J; Wehner, M F

    2014-01-01

    The impacts of historical droughts and heat-waves on ecosystems are often considered indicative of future global warming impacts, under the assumption that water stress sets in above a fixed high temperature threshold. Historical and future (RCP8.5) Earth system model (ESM) climate projections were analyzed in this study to illustrate changes in the temperatures for onset of water stress under global warming. The ESMs examined here predict sharp declines in gross primary production (GPP) at warm temperature extremes in historical climates, similar to the observed correlations between GPP and temperature during historical heat-waves and droughts. However, soil moisture increases at the warm end of the temperature range, and the temperature at which soil moisture declines with temperature shifts to a higher temperature. The temperature for onset of water stress thus increases under global warming and is associated with a shift in the temperature for maximum GPP to warmer temperatures. Despite the shift in this local temperature optimum, the impacts of warm extremes on GPP are approximately invariant when extremes are defined relative to the optimal temperature within each climate period. The GPP sensitivity to these relative temperature extremes therefore remains similar between future and present climates, suggesting that the heat- and drought-induced GPP reductions seen recently can be expected to be similar in the future, and may be underestimates of future impacts given model projections of increased frequency and persistence of heat-waves and droughts. The local temperature optimum can be understood as the temperature at which the combination of water stress and light limitations is minimized, and this concept gives insights into how GPP responds to climate extremes in both historical and future climate periods. Both cold (temperature and light-limited) and warm (water-limited) relative temperature extremes become more persistent in future climate projections

  19. Butenolide inhibits marine fouling by altering the primary metabolism of three target organisms

    KAUST Repository

    Zhang, Yifan; Zhang, Huoming; He, Lisheng; Liu, Changdong; Xü , Ying; Qian, Peiyuan

    2012-01-01

    Butenolide is a very promising antifouling compound that inhibits ship hull fouling by a variety of marine organisms, but its antifouling mechanism was previously unknown. Here we report the first study of butenolides molecular targets in three

  20. Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot.

    Science.gov (United States)

    Caputi, Nick; Kangas, Mervi; Denham, Ainslie; Feng, Ming; Pearce, Alan; Hetzel, Yasha; Chandrapavan, Arani

    2016-06-01

    An extreme marine heat wave which affected 2000 km of the midwest coast of Australia occurred in the 2010/11 austral summer, with sea-surface temperature (SST) anomalies of 2-5°C above normal climatology. The heat wave was influenced by a strong Leeuwin Current during an extreme La Niña event at a global warming hot spot in the Indian Ocean. This event had a significant effect on the marine ecosystem with changes to seagrass/algae and coral habitats, as well as fish kills and southern extension of the range of some tropical species. The effect has been exacerbated by above-average SST in the following two summers, 2011/12 and 2012/13. This study examined the major impact the event had on invertebrate fisheries and the management adaption applied. A 99% mortality of Roei abalone ( Haliotis roei ) and major reductions in recruitment of scallops ( Amusium balloti ), king ( Penaeus latisulcatus ) and tiger ( P. esculentus ) prawns, and blue swimmer crabs were detected with management adapting with effort reductions or spatial/temporal closures to protect the spawning stock and restocking being evaluated. This study illustrates that fisheries management under extreme temperature events requires an early identification of temperature hot spots, early detection of abundance changes (preferably using pre-recruit surveys), and flexible harvest strategies which allow a quick response to minimize the effect of heavy fishing on poor recruitment to enable protection of the spawning stock. This has required researchers, managers, and industry to adapt to fish stocks affected by an extreme environmental event that may become more frequent due to climate change.

  1. Detection of cadmium radioactivity in the marine environment

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Eagle, R.J.; Anglin, D.L.

    1980-12-01

    Sediment and tissues from different marine organisms recently collected atolls of the Marshall Islands have been found to contain measurable amounts of /sup 113m/Cd previously deposited to the atolls during the testing of nuclear devices at the Pacific Proving Grounds. /sup 113m/Cd has been also detected in some internal organs of mullet collected from the east coast of the United States in an area contaminated only with global fallout debris. This is one of the few summaries to show that this long-lived radionuclide (T/sub 1/2/ = 14.6 yr) exists and persists in the marine environment. It is the dominant anthropogenic radionuclide in the liver of some pelagic fish from Bikini and Enewetak Atolls and is found concentrated in other tissues and organs of all fish analyzed. Dose to man from /sup 113m/Cd ingestion is being assessed at the Marshall Islands and should be done at any other global site where contamination by this radionuclide is suspected in the aquatic environment

  2. Detection of cadmium radioactivity in the marine environment

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Eagle, R.J.; Anglin, D.L.

    1981-01-01

    Sediment and tissues from different marine organisms recently collected at atolls of the Marshall Islands have been found to contain measurable amounts of 113 Cdsup(m) previously deposited to the atolls during the testing of nuclear devices at the Pacific Proving Grounds. Cadmium-113m has been also detected in some internal organs of mullet collected from the east coast of the United States of America in an area contaminated only with global fall-out debris. This is one of the few summaries to show that this long-lived radionuclide (Tsub(1/2) = 14.6 years) exists and persists in the marine environment. It is the dominate anthropogenic radionuclide in the liver of some pelagic fish from Bikini and Enewetak Atolls and is found concentrated in other tissues and organs of all fish analysed. Dose to man from 113 Cdsup(m) ingestion is being assessed at the Marshall Islands and should be carried out at any other global site where contamination by this radionuclide is suspected in the aquatic environment. (author)

  3. CeDAMar global database of abyssal biological sampling

    OpenAIRE

    Stuart, Carol T.; Arbizu, Pedro Martinez; Smith, Craig R.; Molodtsova, Tina; Brandt, Angelika; Etter, Ron J.; Escobar-briones, Elva; Fabri, Marie-claire; Rex, Michael A.

    2008-01-01

    The Census of the Diversity of Abyssal Marine Life (CeDAMar), a division of the Census of Marine Life, has compiled the first comprehensive global database of biological samples taken in the abyssal plains of the world ocean. It is an essential resource for planning future exploration of the abyss, for synthesizing patterns of biogeography and biodiversity, and for environmentally safe exploitation of natural resources. The database is described in this article, and made available to investig...

  4. Climate sensitivity of marine energy

    OpenAIRE

    Harrison, Gareth; Wallace, Robin

    2005-01-01

    Marine energy has a significant role to play in lowering carbon emissions within the energy sector. Paradoxically, it may be susceptible to changes in climate that will result from rising carbon emissions. Wind patterns are expected to change and this will alter wave regimes. Despite a lack of definite proof of a link to global warming, wind and wave conditions have been changing over the past few decades. Changes in the wind and wave climate will affect offshore wind and wave energy conversi...

  5. World Register of marine Cave Species (WoRCS: a new Thematic Species Database for marine and anchialine cave biodiversity

    Directory of Open Access Journals (Sweden)

    Vasilis Gerovasileiou

    2016-09-01

    Full Text Available Scientific exploration of marine cave environments and anchialine ecosystems over recent decades has led to outstanding discoveries of novel taxa, increasing our knowledge of biodiversity. However, biological research on underwater caves has taken place only in a few areas of the world and relevant information remains fragmented in isolated publications and databases. This fragmentation makes assessing the conservation status of marine cave species especially problematic, and this issue should be addressed urgently given the stresses resulting from planned and rampant development in the coastal zone worldwide. The goal of the World Register of marine Cave Species (WoRCS initiative is to create a comprehensive taxonomic and ecological database of known species from marine caves and anchialine systems worldwide and to present this as a Thematic Species Database (TSD of the World Register of marine Species (WoRMS. WoRCS will incorporate ecological data (e.g., type of environment, salinity regimes, and cave zone as well as geographical information on the distribution of species in cave and anchialine environments. Biodiversity data will be progressively assembled from individual database sources at regional, national or local levels, as well as from literature sources (estimate: >20,000 existing records of cave-dwelling species scattered in several databases. Information will be organized in the WoRCS database following a standard glossary based on existing terminology. Cave-related information will be managed by the WoRCS thematic editors with all data dynamically linked to WoRMS and its team of taxonomic editors. In order to mobilize data into global biogeographic databases, a Gazetteer of the Marine and Anchialine Caves of the World will be established. The presence records of species could be eventually georeferenced for submission to the Ocean Biogeographic Information System (OBIS and constitute an important dataset for biogeographical and

  6. Toward global planning of sustainable use of the earth. Development of global eco-engineering

    Energy Technology Data Exchange (ETDEWEB)

    Murai, S [ed.; School of Advanced Technologies, Asian Institute of Technology, Bangkok (Thailand)

    1995-07-01

    Better understanding of global environmental systems and the magnitude of human impacts is the most fundamental research task for developing an ecologically sound basis for the continuous human habitation and sustainable development of the earth`s limited resources. Although many research projects are already underway to begin addressing these issues, using global data mainly obtained from remote sensing technologies, our knowledge is far from sufficient. This volume is intended to promote further research towards the development of global eco-engineering which is seeking continuous human habitation and improvement of human welfare, based on the sustainable utilization of global environmental resources and preservation of global eco-systems. In the 42 papers in this volume a variety of disciplines is covered, including remote sensing, geography, meteorology, biology, biochemistry, ecology, marines science, hydrology, agriculture, environmental engineering, urban planning, social science, economy, ethics and philosophy. 160 figs., 66 tabs., 760 refs.

  7. Marine natural products in prevention and treatment of osteoporosis

    Directory of Open Access Journals (Sweden)

    Zahra Ghanbari

    2015-05-01

    Full Text Available Undoubtedly, pharmaceutical and nutritional factors play an important role in the prevention of age-related bone loss. According to the several studies so far, the effects of nutrients and bioactive components which are extracted from marine resources are very promising in osteoporosis. Most of these investigations have been done on various marine algae extracts. Since, algae are rich source of essential minerals, primary and secondary unique natural products, several amino acids and growth factors their extracts show favorable effects on bone metabolism. Moreover, it has been shown that marine nutrients such as marine fishes, shrimp and crabs increase the absorption of calcium and bone collagen synthesis or reduce the production of prostaglandins and decrease the deoxypyridinoline disposal. On the other hand, secondary products which are extracted and characterized from marine organisms such as mollusks, fungi, bacteria, sponges and coral reefs show anti-osteoporosis activities via the inhibition of osteoclast differentiation and the induction of apoptosis in osteoclasts like cells or stimulation of osteoblast differentiation. Although, several investigations have been done in this area, many of studies have been carried out on animal models, like ovariectomy-induced bone loss in mice. Hence, clinical investigations are warranted to develop marine natural products against bone loss and to prevent osteoporosis.

  8. Assessing marine biotechnology research centres in peripheral regions: developing global and local STI indicators

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, D.K.R.; Schoen, A.; Laurens, P.; Horellou, S.; Colas, P.; Larédo, P.

    2016-07-01

    Our study tackles the challenge of developing STI indicators for assessing marine biotechnology (Blue Bio) research institutes that are geographically located in peripheral regions, far from major metropolitan areas. The promise of Blue Bio couples (a) the promise of new sources of knowledge and innovation with (b) the promise to stimulate jobs and growth in regions which struggle to prosper due to a number of factors (such as economic migration from peripheries to large cities, decline of traditional coastal economic activity etc.). In this paper we outline the context of Marine Biotechnology assessment, the framework that is being used, and the first results of its application. (Author)

  9. Typology and indicators of ecosystem services for marine spatial planning and management.

    Science.gov (United States)

    Böhnke-Henrichs, Anne; Baulcomb, Corinne; Koss, Rebecca; Hussain, S Salman; de Groot, Rudolf S

    2013-11-30

    The ecosystem services concept provides both an analytical and communicative tool to identify and quantify the link between human welfare and the environment, and thus to evaluate the ramifications of management interventions. Marine spatial planning (MSP) and Ecosystem-based Management (EBM) are a form of management intervention that has become increasingly popular and important globally. The ecosystem service concept is rarely applied in marine planning and management to date which we argue is due to the lack of a well-structured, systematic classification and assessment of marine ecosystem services. In this paper we not only develop such a typology but also provide guidance to select appropriate indicators for all relevant ecosystem services. We apply this marine-specific ecosystem service typology to MSP and EBM. We thus provide not only a novel theoretical construct but also show how the ecosystem services concept can be used in marine planning and management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms.

    Science.gov (United States)

    Zark, Maren; Riebesell, Ulf; Dittmar, Thorsten

    2015-10-01

    Marine dissolved organic matter (DOM) is one of the largest active organic carbon reservoirs on Earth, and changes in its pool size or composition could have a major impact on the global carbon cycle. Ocean acidification is a potential driver for these changes because it influences marine primary production and heterotrophic respiration. We simulated ocean acidification as expected for a "business-as-usual" emission scenario in the year 2100 in an unprecedented long-term mesocosm study. The large-scale experiments (50 m(3) each) covered a full seasonal cycle of marine production in a Swedish Fjord. Five mesocosms were artificially enriched in CO2 to the partial pressure expected in the year 2100 (900 μatm), and five more served as controls (400 μatm). We applied ultrahigh-resolution mass spectrometry to monitor the succession of 7360 distinct DOM formulae over the course of the experiment. Plankton blooms had a clear effect on DOM concentration and molecular composition. This succession was reproducible across all 10 mesocosms, independent of CO2 treatment. In contrast to the temporal trend, there were no significant differences in DOM concentration and composition between present-day and year 2100 CO2 levels at any time point of the experiment. On the basis of our results, ocean acidification alone is unlikely to affect the seasonal accumulation of DOM in productive coastal environments.

  11. Global patterns and predictions of seafloor biomass using random forests.

    Directory of Open Access Journals (Sweden)

    Chih-Lin Wei

    Full Text Available A comprehensive seafloor biomass and abundance database has been constructed from 24 oceanographic institutions worldwide within the Census of Marine Life (CoML field projects. The machine-learning algorithm, Random Forests, was employed to model and predict seafloor standing stocks from surface primary production, water-column integrated and export particulate organic matter (POM, seafloor relief, and bottom water properties. The predictive models explain 63% to 88% of stock variance among the major size groups. Individual and composite maps of predicted global seafloor biomass and abundance are generated for bacteria, meiofauna, macrofauna, and megafauna (invertebrates and fishes. Patterns of benthic standing stocks were positive functions of surface primary production and delivery of the particulate organic carbon (POC flux to the seafloor. At a regional scale, the census maps illustrate that integrated biomass is highest at the poles, on continental margins associated with coastal upwelling and with broad zones associated with equatorial divergence. Lowest values are consistently encountered on the central abyssal plains of major ocean basins The shift of biomass dominance groups with depth is shown to be affected by the decrease in average body size rather than abundance, presumably due to decrease in quantity and quality of food supply. This biomass census and associated maps are vital components of mechanistic deep-sea food web models and global carbon cycling, and as such provide fundamental information that can be incorporated into evidence-based management.

  12. Quantitative and functional characterization of the hyper-conserved protein of Prochlorococcus and marine Synechococcus.

    Directory of Open Access Journals (Sweden)

    Caroline E Whidden

    Full Text Available A large fraction of any bacterial genome consists of hypothetical protein-coding open reading frames (ORFs. While most of these ORFs are present only in one or a few sequenced genomes, a few are conserved, often across large phylogenetic distances. Such conservation provides clues to likely uncharacterized cellular functions that need to be elucidated. Marine cyanobacteria from the Prochlorococcus/marine Synechococcus clade are dominant bacteria in oceanic waters and are significant contributors to global primary production. A Hyper Conserved Protein (PSHCP of unknown function is 100% conserved at the amino acid level in genomes of Prochlorococcus/marine Synechococcus, but lacks homologs outside of this clade. In this study we investigated Prochlorococcus marinus strains MED4 and MIT 9313 and Synechococcus sp. strain WH 8102 for the transcription of the PSHCP gene using RT-Q-PCR, for the presence of the protein product through quantitative immunoblotting, and for the protein's binding partners in a pull down assay. Significant transcription of the gene was detected in all strains. The PSHCP protein content varied between 8±1 fmol and 26±9 fmol per ug total protein, depending on the strain. The 50 S ribosomal protein L2, the Photosystem I protein PsaD and the Ycf48-like protein were found associated with the PSHCP protein in all strains and not appreciably or at all in control experiments. We hypothesize that PSHCP is a protein associated with the ribosome, and is possibly involved in photosystem assembly.

  13. Removing vessels from the water for biofouling treatment has the potential to introduce mobile non-indigenous marine species.

    Science.gov (United States)

    Coutts, Ashley D M; Valentine, Joseph P; Edgar, Graham J; Davey, Adam; Burgess-Wilson, Bella

    2010-09-01

    Vessels found contaminated with biofouling non-indigenous marine species are predominantly removed from the water and treated in vessel maintenance facilities (i.e., slipways, travel lifts and dry-docks). Using pre-fouled settlement plates to simulate a vessel's removal from the water for treatment, we demonstrate that a range of mobile organisms (including non-indigenous marine species) may be lost to the marine environment as a consequence of this process. We also determined that different levels of biofouling (primary, secondary and tertiary) and emersion durations (0.5, 5 and 15 min) affected the abundance and composition of mobile taxa lost to the marine environment. Primary biofouling plates lost 3.2% of total animals, secondary plates lost 19.8% and tertiary plates lost 8.2%, while hanging duration had only minor effects. The results suggest that removing vessels contaminated with biofouling non-indigenous marine species from the water for treatment may not be as biosecure as is currently recognised. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Limits to gene flow in a cosmopolitan marine planktonic diatom.

    Science.gov (United States)

    Casteleyn, Griet; Leliaert, Frederik; Backeljau, Thierry; Debeer, Ann-Eline; Kotaki, Yuichi; Rhodes, Lesley; Lundholm, Nina; Sabbe, Koen; Vyverman, Wim

    2010-07-20

    The role of geographic isolation in marine microbial speciation is hotly debated because of the high dispersal potential and large population sizes of planktonic microorganisms and the apparent lack of strong dispersal barriers in the open sea. Here, we show that gene flow between distant populations of the globally distributed, bloom-forming diatom species Pseudo-nitzschia pungens (clade I) is limited and follows a strong isolation by distance pattern. Furthermore, phylogenetic analysis implies that under appropriate geographic and environmental circumstances, like the pronounced climatic changes in the Pleistocene, population structuring may lead to speciation and hence may play an important role in diversification of marine planktonic microorganisms. A better understanding of the factors that control population structuring is thus essential to reveal the role of allopatric speciation in marine microorganisms.

  15. Ecosystem-based design rules for marine sand extraction sites

    NARCIS (Netherlands)

    de Jong, Maarten F.; Borsje, Bas W.; Baptist, Martin J.; van der Wal, Jan Tjalling; Lindeboom, Han J.; Hoekstra, Piet

    2016-01-01

    The demand for marine sand in the Netherlands as well as globally is increasing. Over the last decades, only shallow sand extraction of 2m below the seabed was allowed on the Dutch Continental Shelf (DCS). To guarantee sufficient supply and to decrease the surface area of direct impact, the Dutch

  16. UV radiation in marine ectotherms: Molecular effects and responses

    International Nuclear Information System (INIS)

    Dahms, Hans-U.; Lee, Jae-Seong

    2010-01-01

    This review summarizes current knowledge on ultraviolet radiation (UVR)-induced cellular and molecular damage in marine ectotherms (invertebrates and fish). UVR impairs sperm motility, reduces fertilization, and causes embryo malformation that in turn affects recruitment and therefore the sustainability of natural populations. The direct molecular effects of UVR are mediated by absorption of certain wavelengths by specific macromolecules and the dissipation of the absorbed energy via photochemical reactions. Most organisms have defense mechanisms that either prevent UVR-induced damage, or mechanisms that repair the damage. Photoprotective pigments, antioxidant defense compounds, and cell cycle development genes are some of the molecules involved in UVR defense. Photoenzymatic repair and nucleotide excision repair are the two primary DNA repair systems in marine ectotherms. We anticipate that toxicogenomic studies will gain importance in UVR research because they can elucidate the primary processes involved in UVR damage and the cellular response to this damage.

  17. Cumulative effects of planned industrial development and climate change on marine ecosystems

    Directory of Open Access Journals (Sweden)

    Cathryn Clarke Murray

    2015-07-01

    Full Text Available With increasing human population, large scale climate changes, and the interaction of multiple stressors, understanding cumulative effects on marine ecosystems is increasingly important. Two major drivers of change in coastal and marine ecosystems are industrial developments with acute impacts on local ecosystems, and global climate change stressors with widespread impacts. We conducted a cumulative effects mapping analysis of the marine waters of British Columbia, Canada, under different scenarios: climate change and planned developments. At the coast-wide scale, climate change drove the largest change in cumulative effects with both widespread impacts and high vulnerability scores. Where the impacts of planned developments occur, planned industrial and pipeline activities had high cumulative effects, but the footprint of these effects was comparatively localized. Nearshore habitats were at greatest risk from planned industrial and pipeline activities; in particular, the impacts of planned pipelines on rocky intertidal habitats were predicted to cause the highest change in cumulative effects. This method of incorporating planned industrial development in cumulative effects mapping allows explicit comparison of different scenarios with the potential to be used in environmental impact assessments at various scales. Its use allows resource managers to consider cumulative effect hotspots when making decisions regarding industrial developments and avoid unacceptable cumulative effects. Management needs to consider both global and local stressors in managing marine ecosystems for the protection of biodiversity and the provisioning of ecosystem services.

  18. Marine anoxia and delayed Earth system recovery after the end-Permian extinction.

    Science.gov (United States)

    Lau, Kimberly V; Maher, Kate; Altiner, Demir; Kelley, Brian M; Kump, Lee R; Lehrmann, Daniel J; Silva-Tamayo, Juan Carlos; Weaver, Karrie L; Yu, Meiyi; Payne, Jonathan L

    2016-03-01

    Delayed Earth system recovery following the end-Permian mass extinction is often attributed to severe ocean anoxia. However, the extent and duration of Early Triassic anoxia remains poorly constrained. Here we use paired records of uranium concentrations ([U]) and (238)U/(235)U isotopic compositions (δ(238)U) of Upper Permian-Upper Triassic marine limestones from China and Turkey to quantify variations in global seafloor redox conditions. We observe abrupt decreases in [U] and δ(238)U across the end-Permian extinction horizon, from ∼3 ppm and -0.15‰ to ∼0.3 ppm and -0.77‰, followed by a gradual return to preextinction values over the subsequent 5 million years. These trends imply a factor of 100 increase in the extent of seafloor anoxia and suggest the presence of a shallow oxygen minimum zone (OMZ) that inhibited the recovery of benthic animal diversity and marine ecosystem function. We hypothesize that in the Early Triassic oceans-characterized by prolonged shallow anoxia that may have impinged onto continental shelves-global biogeochemical cycles and marine ecosystem structure became more sensitive to variation in the position of the OMZ. Under this hypothesis, the Middle Triassic decline in bottom water anoxia, stabilization of biogeochemical cycles, and diversification of marine animals together reflect the development of a deeper and less extensive OMZ, which regulated Earth system recovery following the end-Permian catastrophe.

  19. Sensitivity to deliberate sea salt seeding of marine clouds - observations and model simulations

    OpenAIRE

    Alterskjaer, K.; Kristjansson, J. E.; Seland, O.

    2012-01-01

    Sea salt seeding of marine clouds to increase their albedo is a proposed technique to counteract or slow global warming. In this study, we first investigate the susceptibility of marine clouds to sea salt injections, using observational data of cloud droplet number concentration, cloud optical depth, and liquid cloud fraction from the MODIS (Moderate Resolution Imaging Spectroradiometer) instruments on board the Aqua and Terra satellites. We then compare the derived susceptibility function to...

  20. Viruses in the marine environment: community dynamics, phage-host interactions and genomic structure

    OpenAIRE

    Lara de la Casa, Elena

    2014-01-01

    There are an estimated 1030 viruses in the world oceans, the majority of which are phages (viruses that infect bacteria). Extensive research has demonstrated the significant influence of marine phages on microbial abundance, community structure, genetic exchange and global biogeochemical cycles. In this thesis, we contribute to increase the knowledge about the ecological role of viruses in marine systems, but also we aimed to provide a better understanding about the interactions between phage...

  1. Ecology of the marine protists, the Labyrinthulomycetes (Thraustochytrids and Labyrinthulids)

    Digital Repository Service at National Institute of Oceanography (India)

    Raghukumar, S.

    dermal lesions of rainbow trout raised under artificially induced polluted condi- tions (Polglase et al. 1986), but again may not have been the primary cause of the lesions. Non-parasitic associations with marine animals While parasitic associations...

  2. Marine nitrous oxide emissions: An unknown liability for the international water sector

    International Nuclear Information System (INIS)

    Short, Michael D.; Peters, Gregory M.; Peirson, William L.; Ashbolt, Nicholas J.

    2013-01-01

    Highlights: • IPCC methodology for indirect marine nitrous oxide (N 2 O) emissions does not exist. • The water sector has an unknown N 2 O emissions liability from marine sewage disposal. • We model global sewage-nitrogen (N) emissions to coastal oceans during 1970–2050. • Emission factors for marine N 2 O will enable water sector N 2 O emissions accounting. • Industry benefits will include future revenue streams and better N emissions policy. -- Abstract: Reliable estimates of anthropogenic greenhouse gas (GHG) emissions are essential for setting effective climate policy at both the sector and national level. Current IPCC Guidelines for calculating nitrous oxide (N 2 O) emissions from sewage management are both highly uncertain and incomplete; a major methodological gap relates to the calculation of indirect N 2 O emissions from sewage disposed to marine environments. Here we apply a novel approach to estimate past and future global sewage-nitrogen emissions to coastal oceans and the potential marine N 2 O emissions linked to this nitrogen source. Then, by estimating the future cost associated with this largely uncharacterized emission source, we demonstrate the industry significance of developing a methodology for estimating N 2 O emissions from marine receiving environments. The capacity to accurately estimate, monitor and report GHG emissions has important consequences for informing future policy decisions regarding both mitigation and adaptation. A robust N 2 O emissions estimation methodology for sewage-nitrogen disposed to coastal oceans will allow the international water sector to more accurately and comprehensively inventory its N 2 O emissions. This will in turn allow for proper accounting of related future emissions liabilities while also enabling the sector to capitalize on any future economic returns linked to this source – providing much-needed capital to support the sector's future infrastructure and climate change adaptation challenges

  3. Influence of dispersants on petroleum bioavailability in a marine food chain

    International Nuclear Information System (INIS)

    Wolfe, M.; Tjeerdema, R.

    1995-01-01

    When crude oil is accidentally released into the ocean it threatens many levels of marine life. Intervention, in the form of chemical dispersing agents, may alter the normal behavior of petroleum hydrocarbons (PH) by increasing their functional water solubility and the extent of their exposure to sub-surface marine organisms. Further, the dispersing agent may modify bioavailability as a result of altered interactions between dispersed PH droplets and organismal cell membranes, To date, little information exists on the sub-lethal effects of dispersants and factors modifying their role in the bioavailability and disposition of PH in marine food chains. The objective of the current research was to determine the impact of dispersing agents on PH bioavailability to primary levels of a marine food chain. Uptake, bioaccumulation, deputation, and metabolic transformation of a model PH, 14 C-naphthalene, were measured and compared for dispersed Prudhoe Bay Crude Oil (PBCO) vs. undispersed preparations of the water-accommodated fractions (WAF) of PBCO at two salinities (22 and 34 ppt) employing Isochrysis galbana, a primary producer, and Brachionus plicatilis, a primary consumer. Fractionation and identification of metabolites was done by HPLC co-chromatography with analytical standards, and quantitation was done by liquid scintillation counting. GC-FID characterization of WAF and dispersed oil preparations shows higher concentrations of petroleum hydrocarbons and a greater number of individual constituents in the dispersed oil preparations. However, short term (eight hour) and long term (two week) static exposure studies indicate the uptake of 14 C-naphthalene from WAF preparations is inhibited by up to 50% from dispersed oil preparations. Results of comparative static and flow-through chamber exposure studies will be presented

  4. Influence of dispersants on petroleum bioavailability in a marine food chain

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, M.; Tjeerdema, R. [Univ. of California, Santa Cruz, CA (United States). Dept. of Chemistry and Biochemistry; Sowby, M. [California Dept. of Fish and Game, Sacramento, CA (United States)

    1995-12-31

    When crude oil is accidentally released into the ocean it threatens many levels of marine life. Intervention, in the form of chemical dispersing agents, may alter the normal behavior of petroleum hydrocarbons (PH) by increasing their functional water solubility and the extent of their exposure to sub-surface marine organisms. Further, the dispersing agent may modify bioavailability as a result of altered interactions between dispersed PH droplets and organismal cell membranes, To date, little information exists on the sub-lethal effects of dispersants and factors modifying their role in the bioavailability and disposition of PH in marine food chains. The objective of the current research was to determine the impact of dispersing agents on PH bioavailability to primary levels of a marine food chain. Uptake, bioaccumulation, deputation, and metabolic transformation of a model PH, {sup 14}C-naphthalene, were measured and compared for dispersed Prudhoe Bay Crude Oil (PBCO) vs. undispersed preparations of the water-accommodated fractions (WAF) of PBCO at two salinities (22 and 34 ppt) employing Isochrysis galbana, a primary producer, and Brachionus plicatilis, a primary consumer. Fractionation and identification of metabolites was done by HPLC co-chromatography with analytical standards, and quantitation was done by liquid scintillation counting. GC-FID characterization of WAF and dispersed oil preparations shows higher concentrations of petroleum hydrocarbons and a greater number of individual constituents in the dispersed oil preparations. However, short term (eight hour) and long term (two week) static exposure studies indicate the uptake of{sup 14}C-naphthalene from WAF preparations is inhibited by up to 50% from dispersed oil preparations. Results of comparative static and flow-through chamber exposure studies will be presented.

  5. Marine biogeography and evolution : Diversity patterns of planktonic gastropods and amphipods

    NARCIS (Netherlands)

    Burridge, A.K.

    2017-01-01

    Current changes in the oceans, including global warming and ocean acidification, are partially caused by human activity, unlike earlier episodes of change throughout geological history. Understanding and forecasting the responses of marine organisms to these changes is top priority for scientists,

  6. Designing a primary science curriculum in a globalizing world: How do social constructivism and Vietnamese culture meet?

    Science.gov (United States)

    Hằng, Ngô Vũ Thu; Meijer, Marijn Roland; Bulte, Astrid M. W.; Pilot, Albert

    2017-09-01

    The implementation of social constructivist approaches to learning science in primary education in Vietnamese culture as an example of Confucian heritage culture remains challenging and problematic. This theoretical paper focuses on the initial phase of a design-based research approach; that is, the description of the design of a formal, written curriculum for primary science education in which features of social constructivist approaches to learning are synthesized with essential aspects of Vietnamese culture. The written design comprises learning aims, a framework that is the synthesis of learning functions, learning settings and educational expectations for learning phases, and exemplary curriculum units. Learning aims are formulated to comprehensively develop scientific knowledge, skills, and attitudes toward science for primary students. Derived from these learning aims, the designed framework consists of four learning phases respectively labeled as Engagement, Experience, Exchange, and Follow-up. The designed framework refers to knowledge of the "nature of science" education and characteristics of Vietnamese culture as an example of Confucian heritage culture. The curriculum design aims to serve as an educational product that addresses previously analyzed problems of primary science education in the Vietnamese culture in a globalizing world.

  7. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    International Nuclear Information System (INIS)

    Lacey, Forrest; Henze, Daven

    2015-01-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  8. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    Science.gov (United States)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  9. Global Human Appropriation of Net Primary Production and Associated Resource Decoupling: 2010-2050.

    Science.gov (United States)

    Zhou, Chuanbin; Elshkaki, Ayman; Graedel, T E

    2018-02-06

    Human appropriation of net primary production (HANPP) methodology has previously been developed to assess the intensity of anthropogenic extraction of biomass resources. However, there is limited analysis concerning future trends of HANPP. Here we present four scenarios for global biomass demand and HANPP harv (the most key component of HANPP) from 2010 to 2050 by incorporating data on expanded historical drivers and disaggregated biomass demand (food, wood material, and fuelwood). The results show that the biomass demand has the lowest value in the equitability world scenario (an egalitarian vision) and the highest value in the security foremost scenario (an isolationist vision). The biomass demand for food and materials increases over time, while fuelwood demand decreases over time. Global HANPP harv rises to between 8.5 and 10.1 Pg C/yr in 2050 in the four scenarios, 14-35% above its value in 2010, and some 50% of HANPP harv is calculated to be crop residues, wood residues, and food losses in the future. HANPP harv in developing regions (Asia, Africa, and Latin America) increases faster than that in more-developed regions (North America and Europe), due to urbanization, population growth, and increasing income. Decoupling of HANPP harv and socioeconomic development is also discussed in this work.

  10. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  11. Marine Sciences

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    PNL research in the marine sciences is focused on establishing a basic understanding of the mechanisms of stress and tolerance in marine organisms exposed to contaminants. Several environmental stressors had been investigated in earlier energy-related research. In a landmark study, for example, PNL had established that the severity of fish disease caused by the common infectious agent, Flexobacter columnaris, was seriously aggravated by thermal enhancement and certain ecological factors. Subsequent studies demonstrated that the primary immune response in fish, challenged by columnaris, could be permanently suppressed by comparatively low tritium exposures. The research has suggested that a potential exists for a significant biological impact when an aquatic stressor is added to an ambient background of other stressors, which may include heat, heavy metal ions, radiation or infectious microorganisms. More recently, PNL investigators have shown that in response to heavy metal contaminants, animals synthesize specific proteins (metallothioneins), which bind and sequester metals in the animals, thus decreasing metal mobility and effects. Companion studies with host-specific intracellular pathogens are being used to investigate the effects of heavy metals on the synthesis of immune proteins, which mitigate disease processes. The results of these studies aid in predicting the ecological effects of energy-related contaminants on valued fin and shellfish species

  12. Biology, genome organization and evolution of parvoviruses in marine shrimp

    Science.gov (United States)

    A number of parvoviruses are now know to infect marine shrimp, and these viruses alone or in combination with other viruses have the potential to cause major losses in shrimp aquaculture globally. This review provides a comprehensive overview of the biology, genome organization, gene expression, and...

  13. Concentrations of sup(113m)Cd in the marine environment

    International Nuclear Information System (INIS)

    Noshkin, V.E.; Wong, K.M.; Eagle, R.J.; Anglin, D.L.

    1980-01-01

    A preliminary report is presented of sup(113m)Cd concentrations measured in sediment and tissue samples of marine organisms collected around different atols in the Marshall Islands which are considered to be representative of the levels expected at these latitudes from global fallout deposition. (U.K.)

  14. Ecosystem-based design rules for marine sand extraction sites

    NARCIS (Netherlands)

    Jong, de Maarten F.; Borsje, Bas W.; Baptist, Martin J.; Wal, van der Jan Tjalling; Lindeboom, Han J.; Hoekstra, Piet

    2016-01-01

    The demand for marine sand in the Netherlands as well as globally is increasing. Over the last decades, only shallow sand extraction of 2m below the seabed was allowed on the Dutch Continental Shelf (DCS). To guarantee sufficient supply and to decrease the surface area of direct impact, the Dutch

  15. Tracing carbon flow in an arctic marine food web using fatty acid-stable isotope analysis.

    Science.gov (United States)

    Budge, S M; Wooller, M J; Springer, A M; Iverson, S J; McRoy, C P; Divoky, G J

    2008-08-01

    Global warming and the loss of sea ice threaten to alter patterns of productivity in arctic marine ecosystems because of a likely decline in primary productivity by sea ice algae. Estimates of the contribution of ice algae to total primary production range widely, from just 3 to >50%, and the importance of ice algae to higher trophic levels remains unknown. To help answer this question, we investigated a novel approach to food web studies by combining the two established methods of stable isotope analysis and fatty acid (FA) analysis--we determined the C isotopic composition of individual diatom FA and traced these biomarkers in consumers. Samples were collected near Barrow, Alaska and included ice algae, pelagic phytoplankton, zooplankton, fish, seabirds, pinnipeds and cetaceans. Ice algae and pelagic phytoplankton had distinctive overall FA signatures and clear differences in delta(13)C for two specific diatom FA biomarkers: 16:4n-1 (-24.0+/-2.4 and -30.7+/-0.8 per thousand, respectively) and 20:5n-3 (-18.3+/-2.0 and -26.9+/-0.7 per thousand, respectively). Nearly all delta(13)C values of these two FA in consumers fell between the two stable isotopic end members. A mass balance equation indicated that FA material derived from ice algae, compared to pelagic diatoms, averaged 71% (44-107%) in consumers based on delta(13)C values of 16:4n-1, but only 24% (0-61%) based on 20:5n-3. Our estimates derived from 16:4n-1, which is produced only by diatoms, probably best represented the contribution of ice algae relative to pelagic diatoms. However, many types of algae produce 20:5n-3, so the lower value derived from it likely represented a more realistic estimate of the proportion of ice algae material relative to all other types of phytoplankton. These preliminary results demonstrate the potential value of compound-specific isotope analysis of marine lipids to trace C flow through marine food webs and provide a foundation for future work.

  16. Selenium Uptake and Volatilization by Marine Algae

    Science.gov (United States)

    Luxem, Katja E.; Vriens, Bas; Wagner, Bettina; Behra, Renata; Winkel, Lenny H. E.

    2015-04-01

    Selenium (Se) is an essential trace nutrient for humans. An estimated one half to one billion people worldwide suffer from Se deficiency, which is due to low concentrations and bioavailability of Se in soils where crops are grown. It has been hypothesized that more than half of the atmospheric Se deposition to soils is derived from the marine system, where microorganisms methylate and volatilize Se. Based on model results from the late 1980s, the atmospheric flux of these biogenic volatile Se compounds is around 9 Gt/year, with two thirds coming from the marine biosphere. Algae, fungi, and bacteria are known to methylate Se. Although algal Se uptake, metabolism, and methylation influence the speciation and bioavailability of Se in the oceans, these processes have not been quantified under environmentally relevant conditions and are likely to differ among organisms. Therefore, we are investigating the uptake and methylation of the two main inorganic Se species (selenate and selenite) by three globally relevant microalgae: Phaeocystis globosa, the coccolithophorid Emiliania huxleyi, and the diatom Thalassiosira oceanica. Selenium uptake and methylation were quantified in a batch experiment, where parallel gas-tight microcosms in a climate chamber were coupled to a gas-trapping system. For E. huxleyi, selenite uptake was strongly dependent on aqueous phosphate concentrations, which agrees with prior evidence that selenite uptake by phosphate transporters is a significant Se source for marine algae. Selenate uptake was much lower than selenite uptake. The most important volatile Se compounds produced were dimethyl selenide, dimethyl diselenide, and dimethyl selenyl sulfide. Production rates of volatile Se species were larger with increasing intracellular Se concentration and in the decline phase of the alga. Similar experiments are being carried out with P. globosa and T. oceanica. Our results indicate that marine algae are important for the global cycling of Se

  17. Integrating mental health into primary care: a global perspective

    National Research Council Canada - National Science Library

    Funk, Michelle

    2008-01-01

    ... for mental disorders is enormous 4. Primary care for mental health enhances access 5. Primary care for mental health promotes respect of human rights 6. Primary care for mental health is affordab...

  18. Understanding the Transport of Patagonian Dust and Its Influence on Marine Biological Activity in the South Atlantic Ocean

    Science.gov (United States)

    Johnson, Matthew; Meskhidze, Nicholas; Kiliyanpilakkil, Praju; Gasso, Santiago

    2010-01-01

    Modeling and remote sensing techniques were applied to examine the horizontal and vertical transport pathways of Patagonian dust and quantify the effect of soluble-iron- laden mineral dust deposition on marine primary productivity in the South Atlantic Ocean (SAO) surface waters. The global chemistry transport model GEOS-Chem, implemented with an iron dissolution scheme, was applied to evaluate the atmospheric transport and deposition of mineral dust and bioavailable iron during two dust outbreaks originating in the source regions of Patagonia. In addition to this "rapidly released" iron, offline calculations were also carried out to estimate the amount of bioavailable iron leached during the residence time of dust in the ocean mixed layer. Model simulations showed that the horizontal and vertical transport pathways of Patagonian dust plumes were largely influenced by the synoptic meteorological patterns of high and low pressure systems. Model-predicted horizontal and vertical transport pathways of Patagonian dust over the SAO were in reasonable agreement with remotely-sensed data. Comparison between remotely-sensed and offline calculated ocean surface chlorophyll-a concentrations indicated that, for the two dust outbreaks examined in this study, the deposition of bioavailable iron in the SAO through atmospheric pathways was insignificant. As the two dust transport episodes examined here represent typical outflows of mineral dust from South American sources, our study suggests that the atmospheric deposition of mineral dust is unlikely to induce large scale marine primary productivity and carbon sequestration in the South Atlantic sector of the Southern Ocean.

  19. Geo-Seas - a pan-European infrastructure for the management of marine geological and geophysical data.

    Science.gov (United States)

    Glaves, Helen; Graham, Colin

    2010-05-01

    countries. This makes the direct use of primary data in an integrated way very difficult and also hampers use of the data sets in a harmonised way to produce multidisciplinary data products and services. To ensure interoperability with other marine environmental data types Geo-Seas ISO19115 metadata, OGC and GeoSciML standards will be used as the basis for the metadata profiles for the geological and geophysical data. This will be largely achieved by modifying the SeaDataNet metadata standard profile (Common Data Index or CDI), which is itself based upon the ISO19115 standard, to accommodate the requirements of the Geo-Seas project. The overall objective of Geo-Seas project is to build and deploy a unified marine geoscientific data infrastructure within Europe which will in effect provide a data grid for the sharing of marine geological and geophysical data. This will result in a major improvement in the locating, accessing and delivery of federated marine geological and geophysical data and data products from national geological surveys and research institutes across Europe. There is an emphasis on interoperability both with other disciplines as well as with other key framework projects including the European Marine Observation and Data Network (EMODNet) and One Geology - Europe. In addition, a key objective of the Geo-Seas project is to underpin European directives such as INSPIRE as well as recent framework programmes on both the global and European scale, for example Global Earth Observation System of Systems (GEOSS) and Global Monitoring for Environment and Security (GMES), all of which are intended to encourage the exchange of data and information. Geo-Seas consortium partners: NERC-BGS (United Kingdom), NERC-BODC (United Kingdom), NERC-NOCS (United Kingdom), MARIS (Netherlands), IFREMER (France), BRGM (France), TNO (Netherlands), BSH (Germany), IGME (Spain), INETI (Portugal), IGME (Greece), GSI (Ireland), BGR (Germany), OGS (Italy), GEUS (Denmark), NGU (Norway), PGI

  20. Marine sediments and Beryllium-10 record of the geomagnetic moment variations during the Brunhes period.

    Science.gov (United States)

    Ménabréaz, Lucie; Thouveny, Nicolas; Bourlès, Didier; Demory, François

    2010-05-01

    Over millennial time scales, the atmospheric production of the cosmonuclid 10Be (half-life 1.387 ± 0.012 Ma [Shmeleff et al., 2009; Korschinek et al., 2009]) is modulated by the geomagnetic field strength, following a negative power law (e.g. Lal, 1988; Masarik and Beer, 2009). With respect to paleomagnetic reconstructions, 10Be-derived paleointensity records can therefore constitute an alternative, global and independent reading of the dipole moment variations. During the last years, efforts have been made to extract a geomagnetic signal from single and stacked 10Be records in natural archives such as ice and marine sediments (e.g. Carcaillet et al., 2004; Christl et al., 2007; Muscheler et al., 2005). In marine sediments, the 10Be concentration results from complex interplay of several processes: cosmogenic production, adsorption on sediment particles, redistribution by fluviatile and oceanic transport, and deposition. Therefore, a correction procedure is required to consider both sediment redistribution and enhanced scavenging, which can alter the primary signatures. To reconstruct the succession of field intensity lows accompanying excursions during the Brunhes chron, we investigated authigenic 10Be/9Be record of marine sequences also studied for paleomagnetism and oxygen isotopes. Mid and low latitude sites were preferred in order to benefit from the most efficient modulation by the magnetospheric shielding. We present a high resolution authigenic 10Be/9Be record of the last 50 ka recovered from the Portuguese Margin, that deciphers the cosmonuclide 10Be overproduction created by the geomagnetic dipole low associated with the Laschamp excursion. This record is compared to other proxy records of the geomagnetic field variations for the same time interval: (1) the relative paleointensity (RPI) reconstructed from the same sediments and the GLOPIS-75 record (Laj et al., 2004), (2) the absolute VDM record based on absolute paleointensities measured on lava flows