WorldWideScience

Sample records for global long-term energy

  1. Long-term global nuclear energy and fuel cycle strategies

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1997-01-01

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E 3 (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E 3 model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E 3 model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues

  2. Long-term global nuclear energy and fuel cycle strategies

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A. [Los Alamos National Lab., NM (United States). Technology and Safety Assessment Div.

    1997-09-24

    The Global Nuclear Vision Project is examining, using scenario building techniques, a range of long-term nuclear energy futures. The exploration and assessment of optimal nuclear fuel-cycle and material strategies is an essential element of the study. To this end, an established global E{sup 3} (energy/economics/environmental) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Consistent nuclear energy scenarios are constructed using this multi-regional E{sup 3} model, wherein future demands for nuclear power are projected in price competition with other energy sources under a wide range of long-term demographic (population, workforce size and productivity), economic (price-, population-, and income-determined demand for energy services, price- and population-modified GNP, resource depletion, world-market fossil energy prices), policy (taxes, tariffs, sanctions), and top-level technological (energy intensity and end-use efficiency improvements) drivers. Using the framework provided by the global E{sup 3} model, the impacts of both external and internal drivers are investigated. The ability to connect external and internal drivers through this modeling framework allows the study of impacts and tradeoffs between fossil- versus nuclear-fuel burning, that includes interactions between cost, environmental, proliferation, resource, and policy issues.

  3. Analysis on long-term perspectives of sustainable nuclear energy towards global warming protection

    International Nuclear Information System (INIS)

    Yamazawa, M.; Ichimura, E.; Shibata, Y.; Kobayashi, K.; Wajima, T.

    1998-01-01

    Study of long-term perspectives of the nuclear power generation was made from the point of views of both CO 2 emission constraints and sustainability of nuclear energy. To this end, STREAM (Semi-empirical TRiple E Analysis Model) program, as a social model, has been developed by Tokyo Electric Power Co. and Hitachi, Ltd. Using this program, long-term world demands of primary and nuclear energy were deduced, in view of the protection against the global warming due to the CO 2 gas accumulation. The inevitable conclusion has been drawn that nuclear energy plays an indispensable role in the reduction of green house effect. Evaluations were then made on conditions that the nuclear power system would be the long-term major sustainable energy source. (author)

  4. Global economics/energy/environmental (E3) modeling of long-term nuclear energy futures

    International Nuclear Information System (INIS)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-01-01

    A global energy, economics, environment (E 3 ) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors

  5. Global long-term cost dynamics of offshore wind electricity generation

    NARCIS (Netherlands)

    Gernaat, David E H J; Van Vuuren, Detlef P.; Van Vliet, Jasper; Sullivan, Patrick; Arent, Douglas J.

    2014-01-01

    Using the IMAGE/TIMER (The Targets IMage Energy Regional) long-term integrated assessment model, this paper explores the regional and global potential of offshore wind to contribute to global electricity production. We develop long-term cost supply curve for offshore wind, a representation of the

  6. Global economics/energy/environmental (E{sup 3}) modeling of long-term nuclear energy futures

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.; Davidson, J.W.; Bathke, C.G.; Arthur, E.D.; Wagner, R.L. Jr.

    1997-09-01

    A global energy, economics, environment (E{sup 3}) model has been adopted and modified with a simplified, but comprehensive and multi-regional, nuclear energy module. Using this model, consistent nuclear energy scenarios are constructed. A spectrum of future is examined at two levels in a hierarchy of scenario attributes in which drivers are either external or internal to nuclear energy. Impacts of a range of nuclear fuel-cycle scenarios are reflected back to the higher-level scenario attributes. An emphasis is placed on nuclear materials inventories (in magnitude, location, and form) and their contribution to the long-term sustainability of nuclear energy and the future competitiveness of both conventional and advanced nuclear reactors.

  7. Analysis of long-term energy scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lemming, J.; Morthorst, P.E.

    1998-09-01

    When addressing the role of fusion energy in the 21. century, the evaluation of possible future structures in the electricity market and the energy sector as a whole, can be a useful tool. Because fusion energy still needs demonstration, commercialized fusion energy is not likely to be a reality within the next few decades. Therefore long-term scenarios are needed describing the energy markets, which fusion energy eventually will be part of. This report performs an analysis of two of the most detailed existing long-term scenarios describing possible futures of the energy system. The aim is to clarify the frames in which the future development of the global energy demand, as well as the structure of the energy system can be expected to develop towards the year 2100. (au) 19 refs.

  8. Long-term alternative energy R and D strategies

    International Nuclear Information System (INIS)

    1981-01-01

    Within the coming decades a transition must be initiated from oil and gas to 'unlimited' primary energy sources, i.e., nuclear and solar energy. Ever more expensive fossil energy forms will have to provide for an intermediary solution to the growing global energy demand. While a rather clear-cut picture of the energy problem has emerged on the global level, a straightforward translation to the national or even to the company level is not available. The current study contract between the European Economic Community and the International Institute for Applied Systems Analysis (IIASA) is a first exercice designed to transfer the global results to the intermediary level of the ''Subregion'' of the European Community. In operational terms the contract aims at identifying long-term (up to 2030) alternative energy R and D strategies for twelve European countries that would be consistent with the global scenarios, identified by IIASA

  9. Comparing long term energy scenarios

    International Nuclear Information System (INIS)

    Cumo, M.; Simbolotti, G.

    2001-01-01

    Major projection studies by international organizations and senior analysts have been compared with reference to individual key parameters (population, energy demand/supply, resources, technology, emissions and global warming) to understand trends and implications of the different scenarios. Then, looking at the long term (i.e., 2050 and beyond), parameters and trends have been compared together to understand and quantify whether and when possible crisis or market turbulence might occur due to shortage of resources or environmental problems [it

  10. Projection of primary energy in electricity generation with evaluation of demand and supply of energy in the medium-term horizon (2020), long-term (2035) and very long term (2060)

    International Nuclear Information System (INIS)

    Mafra, Olga Y.; Alvim, Carlos Feu; Eidelman, Frida; Guimaraes, Leonam dos Santos

    2013-01-01

    The Global Energy demand and the participation of electricity in scenarios of medium (2020), long (2035) and very long (2060) terms are estimated. It is also evaluated the share of different primary energies in electricity generation and their availability in the country. Three economic scenarios were considered and different hypothesis regarding the participation of nuclear energy were analyzed. (author)

  11. Long-term strategies in world energy supply

    International Nuclear Information System (INIS)

    Haefele, W.

    1980-01-01

    The International Institute for Applied Systems Analysis of Laxenburg, Austria has carried out a comprehensive systems analysis in which the problems of the long-term world energy supply are treated first qualitatively and then quantiatively. The results of this five-year study have been published in a book entitled 'Energy in a Finite World: a Global Energy Systems Analysis.' This summary of the book indicates that the world's energy supply in the next fifty years will not be limited by resources, but the rates at which new technologies will be built up. (orig.) [de

  12. Shifting Global Climate Governance: Creating Long-Term Goals Through UNFCCC Article 2

    Directory of Open Access Journals (Sweden)

    P. Brian Fisher

    2011-12-01

    Full Text Available I argue that the long-term risk of global climate change has been mischaracterized as an environmental issue, and therefore, solutions based solely on national emission targets will be ineffective. Thus, this paper argues for establishing long-term goals emphasizing both adaptation and clean energy to generate equitable and effective global climate policy that addresses this fundamental threat. This requires defining and operationalizing the overall objective contained in Article 2 of the United Nations Framework Convention on Climate Change. A second key aspect to operationalizing Article 2 is to understand those ‘particularly vulnerable’ as declared in the Article and in various climate agreements. Once operationalized, these long-term objectives can be achieved through approaches that emphasize the development of clean energy (and concomitant technology, and adaptation within vulnerable communities in their local context. It necessitates dropping formal mechanisms at the current core of the regime designed to regulate national emissions, and instead build the core of the regime around the ‘stabilization’ of both the climate system through clean energy and vulnerable people through effective adaptation.

  13. Modelling the long-term deployment of electricity storage in the global energy system

    International Nuclear Information System (INIS)

    Despres, Jacques

    2015-01-01

    The current development of wind and solar power sources calls for an improvement of long-term energy models. Indeed, high shares of variable wind and solar productions have short- and long-term impacts on the power system, requiring the development of flexibility options: fast-reacting power plants, demand response, grid enhancement or electricity storage. Our first main contribution is the modelling of electricity storage and grid expansion in the POLES model (Prospective Outlook on Long-term Energy Systems). We set up new investment mechanisms, where storage development is based on several combined economic values. After categorising the long-term energy models and the power sector modelling tools in a common typology, we showed the need for a better integration of both approaches. Therefore, the second major contribution of our work is the yearly coupling of POLES to a short-term optimisation of the power sector operation, with the European Unit Commitment and Dispatch model (EUCAD). The two-way data exchange allows the long-term coherent scenarios of POLES to be directly backed by the short-term technical detail of EUCAD. Our results forecast a strong and rather quick development of the cheapest flexibility options: grid interconnections, pumped hydro storage and demand response programs, including electric vehicle charging optimisation and vehicle-to-grid storage. The more expensive battery storage presumably finds enough system value in the second half of the century. A sensitivity analysis shows that improving the fixed costs of batteries impacts more the investments than improving their efficiency. We also show the explicit dependency between storage and variable renewable energy sources. (author) [fr

  14. Multisource Estimation of Long-term Global Terrestrial Surface Radiation

    Science.gov (United States)

    Peng, L.; Sheffield, J.

    2017-12-01

    Land surface net radiation is the essential energy source at the earth's surface. It determines the surface energy budget and its partitioning, drives the hydrological cycle by providing available energy, and offers heat, light, and energy for biological processes. Individual components in net radiation have changed historically due to natural and anthropogenic climate change and land use change. Decadal variations in radiation such as global dimming or brightening have important implications for hydrological and carbon cycles. In order to assess the trends and variability of net radiation and evapotranspiration, there is a need for accurate estimates of long-term terrestrial surface radiation. While large progress in measuring top of atmosphere energy budget has been made, huge discrepancies exist among ground observations, satellite retrievals, and reanalysis fields of surface radiation, due to the lack of observational networks, the difficulty in measuring from space, and the uncertainty in algorithm parameters. To overcome the weakness of single source datasets, we propose a multi-source merging approach to fully utilize and combine multiple datasets of radiation components separately, as they are complementary in space and time. First, we conduct diagnostic analysis of multiple satellite and reanalysis datasets based on in-situ measurements such as Global Energy Balance Archive (GEBA), existing validation studies, and other information such as network density and consistency with other meteorological variables. Then, we calculate the optimal weighted average of multiple datasets by minimizing the variance of error between in-situ measurements and other observations. Finally, we quantify the uncertainties in the estimates of surface net radiation and employ physical constraints based on the surface energy balance to reduce these uncertainties. The final dataset is evaluated in terms of the long-term variability and its attribution to changes in individual

  15. Long term energy and emission implications of a global shift to electricity-based public rail transportation system

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Kim, Son H.

    2015-01-01

    With high reliance on light-duty vehicles in the present, the future of global transportation system is also geared towards private modes, which has significant energy and emission implications. Public transportation has been argued as an alternative strategy for meeting the rising transportation demands of the growing world, especially the poor, in a sustainable and energy efficient way. The present study analyzes an important yet under-researched question – what are the long-term energy and emission implications of an electric rail based passenger transportation system for meeting both long and short distance passenter transportation needs? We analyze a suite of electric rail share scenarios with and without climate policy. In the reference scenario, the transportation system will evolve towards dominance of fossil based light-duty vehicles. We find that an electric rail policy is more successful than an economy wide climate policy in reducing transport sector energy demand and emissions. Economy wide emissions however can only be reduced through a broader climate policy, the cost of which can be reduced by hundreds of billions of dollars across the century when implemented in combination with the transport sector focused electric rail policy. Moreover, higher share of electric rail enhances energy security for oil importing nations and reduces vehicular congestion and road infrastructure requirement as well. -- Highlights: •Economy wide carbon price policy will have little impact on transportation emissions. •Focused energy and emission mitigation policies required for transportation sector. •Large global shift towards electric rail based public transport is one possible option. •Transport sector focused policy will have marginal impact on total global emissions. •A combined transport sector and economy wide policy can reduce costs significantly

  16. Energy in 2010 - 2020. Long term challenges; Energie 2010-2020. Les defis du long terme

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, Benjamin [ed.] [Centre National de la Recherche Scientifique (CNRS), 75 - Paris (France)

    2000-02-02

    This report presents the results of a workshop intending to anticipate the long term challenges, to guide better the short term power options, to understand the available political, economical and technical assumptions for the prospective world situation, to give some strategic hints on the necessary transition. Indeed, the difficult issue which the workshop tried to tackle was how should we prepare to reveal the energetic challenge of the development of the eight to ten billion inhabitants of our Planet in the next century without jeopardizing its existence. The energetic problems, a hardcore of the international preoccupation of both growth and environment, as it was recently evidenced by the climatic conference in Kyoto, have ever been the object of a particular attention on the part of General Commissariat of Plan. Thus, the commission 'Energy in 2010 - 2020' has been instituted in April 1996 in order to update the works done in 1990 - 1991 by the commission 'Energy 2010'. Soon it occurred to this new commission the task of illuminating its works by a long term (2050 - 2100) world prospective analysis of the challenges and problems linked to energy, growth and environment. In conclusion, this document tried to find answers to questions like: - which are the risks the energy consumption augmentation entail? - can we control them by appropriate urbanism and transport policies or technological innovation?. Four options for immediate action are suggested: - the energy efficiency should become a priority objective of policies; -coping with the long term challenges requires acting at present; - building the transition between governmental leadership and market; - taking profit of all the possible synergies between short and long term planning.

  17. Nuclear power from a long term global perspective

    International Nuclear Information System (INIS)

    Davis, D.A.

    1994-01-01

    The global problem with energy, now and into the longer term, is the same as the global problem with food. There is no absolute shortage of either and nor is there likely to be. But the pattern of availability is such that large numbers of people have inadequate supplies of one or the other, or of both. Thus, in considering global energy futures the problems are more about energy distribution than about its absolute availability: it is important that in arguing its case for expansion the nuclear industry bears that fact in mind. (Author)

  18. Nuclear Energy, Long Term Requirements

    International Nuclear Information System (INIS)

    Knapp, V.

    2006-01-01

    There are serious warnings about depletion of oil and gas and even more serious warnings about dangers of climate change caused by emission of carbon dioxide. Should developed countries be called to replace CO2 emitting energy sources as soon as possible, and the time available may not be longer then few decades, can nuclear energy answer the call and what are the requirements? Assuming optimistic contribution of renewable energy sources, can nuclear energy expand to several times present level in order to replace large part of fossil fuels use? Paper considers intermediate and long-term requirements. Future of nuclear power depends on satisfactory answers on several questions. First group of questions are those important for near and intermediate future. They deal with economics and safety of nuclear power stations in the first place. On the same time scale a generally accepted concept for radioactive waste disposal is also required. All these issues are in the focus of present research and development. Safer and more economical reactors are targets of international efforts in Generation IV and INPRO projects, but aiming further ahead these innovative projects are also addressing issues such as waste reduction and proliferation resistance. However, even assuming successful technical development of these projects, and there is no reason to doubt it, long term and large-scale nuclear power use is thereby not yet secured. If nuclear power is to play an essential role in the long-term future energy production and in reduction of CO2 emission, than several additional questions must be replied. These questions will deal with long-term nuclear fuel sufficiency, with necessary contribution of nuclear power in sectors of transport and industrial processes and with nuclear proliferation safety. This last issue is more political then technical, thus sometimes neglected by nuclear engineers, yet it will have essential role for the long-term prospects of nuclear power. The

  19. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    DEFF Research Database (Denmark)

    Liu, Y.; Melillo, J.; Niu, S.

    2011-01-01

    a coordinated approach that combines long-term, large-scale global change experiments with process studies and modeling. Long-term global change manipulative experiments, especially in high-priority ecosystems such as tropical forests and high-latitude regions, are essential to maximize information gain......Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation...... to be the most effective strategy to gain the best information on long-term ecosystem dynamics in response to global change....

  20. Designing indicators of long-term energy supply security

    International Nuclear Information System (INIS)

    Jansen, J.C.; Van Arkel, W.G.; Boots, M.G.

    2004-01-01

    To our knowledge, so far amazingly little research work has been undertaken to construct meaningful indicators of long-run energy supply security for a particular nation or region. Currently, in addressing energy supply security, policy makers tend to emphasise short-term supply disruptions. In contrast, this pre-study accords with the broader Sustainability Outlook in considering the long-term perspective. This report starts with taking stock, in a concise way, of the official EU energy outlook and issues related to the opportunities to administer changes in the energy mix at the level of major energy use categories. Then a brief survey of relevant literature is made on long-term strategies to ensure survival of systems - be it biological, social, etc. - in an environment largely characterised by high uncertainty and a lot of unchartered territory. We found the work of Andrew Stirling very inspiring in this context. Based on his work and considering the limitations of the present research activity, we retained the Shannon index as the best 'simple' indicator of diversity. In the core of the report, the Shannon index is elaborated into four indicators of long-term energy supply security. Stepwise, additional aspects of long-term energy supply security are introduced. These aspects are: Diversification of energy sources in energy supply; Diversification of imports with respect to imported energy sources; Long-term political stability in regions of origin; The resource base in regions of origin, including the home region/country itself. After small adjustments to allow for data availability, these indicators were applied to the reference year 2030 of four long-term scenarios with data of base year 1995 and projections for underlying variables provided by the Netherlands Environmental Assessment Agency (MNP). Preliminary interpretation of the results suggests the usefulness of the indicators presented in this report. A second activity undertaken in this report was

  1. Studies of global warming and global energy

    International Nuclear Information System (INIS)

    Inaba, Atsushi

    1993-01-01

    Global warming caused by increase in atmospheric CO 2 concentration has been the focus of many recent global energy studies. CO 2 is emitted to the atmosphere mainly from the combustion of fossil fuels. This means that global warming is fundamentally a problem of the global energy system. An analysis of the findings of recent global energy studies is made in this report. The results are categorized from the viewpoint of concern about global warming. The analysis includes energy use and CO 2 emissions, measures taken to restrain CO 2 emissions and the cost of such measure, and suggestions for long term global energy generation. Following this comparative analysis, each of the studies is reviewed in detail. (author) 63 refs

  2. Who owns the long term? Perspectives from global business leaders.

    Science.gov (United States)

    Lévy, Maurice; Eskew, Mike; Bernotat, Wulf H; Barner, Marianne

    2007-01-01

    Day-to-day management is challenging enough for CEOs. How do they manage for the long term as well? We posed that question to four top executives of global companies. According to Maurice Levy, chairman and CEO of Publicis Groupe, building the future is really about building the present and keeping close to the front line--those who deal with your customers and markets. He also attributes his company's success in large part to knowing when to take action: In a market where clients' needs steer your long-term future, timing is everything. UPS Chairman and CEO Mike Eskew emphasizes staying true to your vision and values over the long run, despite meeting obstacles along the way. It took more than 20 years, and many lessons learned, to produce consistent profits in what is today the company's fastest-growing and most profitable business: international small packages. Wulf H. Bernotat, CEO of E.ON, examines the challenges facing business leaders and politicians as they try to balance energy needs against potential environmental damage. He calls for educating people about consumption and waste, and he maintains that a diverse and reliable mix of energy sources is the only way to ensure a secure supply while protecting our environment. Finally, Marianne Barner, the director of corporate communications and ombudsman for children's issues at IKEA, discusses how the company is taking steps to improve the environment and be otherwise socially responsible. For example, it's partnering with NGOs to address child labor issues and, on its own, is working to help mitigate climate change. IKEA's goals include using renewable sources for 100% of its energy needs and cutting its overall energy consumption by 25%.

  3. Global energy / CO2 projections

    International Nuclear Information System (INIS)

    Sinyak, Y.

    1990-09-01

    Section headings are: (1) Social and economic problems of the 21 st century and the role of energy supply systems (2) Energy-environment interactions as a central point of energy research activities (3) New ways of technological progress and its impacts on energy demand and supply (4) Long-term global energy projections (5) Comparative analysis of global long-term energy / CO 2 studies (6) Conclusions. The author shows that, in order to alleviate the negative impacts of energy systems on the climate, it will be necessary to undertake tremendous efforts to improve the energy use efficiency, to drastically change the primary energy mix, and, at the same time, to take action to reduce greenhouse emissions from other sources and increase the CO 2 sink through enhanced reforestation. (Quittner)

  4. Analysis on long-term perspective of nuclear energy in the global energy system in terms of CO2 mitigation

    International Nuclear Information System (INIS)

    Sugiyama, T.; Uotani, M.

    2001-01-01

    The value of nuclear energy is analyzed for prevention of global warming and climate change by means of a global energy model, which finds the cost minimum energy system over the time range of 2000 - 2100. Six scenarios are examined in this analysis, considering two scenarios of economic growth rate, two scenarios of electrification rate, and FBR introduction or not. The results indicate that progress of electricity generation is the key to reduce the global CO 2 emission, and the role of FBRs with its nuclear fuel cycle is very robust against any economic conditions. (author)

  5. Long-term climate monitoring by the global climate observing system

    International Nuclear Information System (INIS)

    Karl, T.R.

    1995-12-01

    Is the climate warming? Is the hydrologic cycle changing? Is the atmospheric/oceanic circulation changing? Is the climate becoming more variable or extreme? Is radiative forcing of the climate changing? are complex questions not only from the standpoint of a multi-variate problem, but because of the various aspects of spatial and temporal sampling that must be considered on a global scale. The development of a Global Climate Observing System (GCOS) offers the opportunity for scientists to do something about existing observing deficiencies in light of the importance of documenting long-term climate changes that may already be affected by anthropogenic changes of atmospheric composition and land use as well as other naturally occurring changes. As an important step toward improving the present inadequacies, a workshop was held to help define the long-term monitoring requirements minimally needed to address the five questions posed above, with special emphasis on detecting anthropogenic climate change and its potential impact on managed and unmanaged systems The workshop focussed on three broad areas related to long-term climate monitoring: (a) the scientific rationale for the long-term climate products (including their accuracy, resolution, and homogeneity) required from our observing systems as related to climate monitoring and climate change detection and attribution; (b) the status of long-term climate products and the observing systems from which these data are derived; and (c) implementation strategies necessary to fulfill item (a) in light of existing systems. Item (c) was treated more in terms of feasibility rather than as a specific implementation plan. figs., tabs., refs

  6. Long term plan of atomic energy development and utilization

    International Nuclear Information System (INIS)

    1982-01-01

    The atomic energy utilization and development in Japan have progressed remarkably, and already nuclear power generation has borne an important part in electric power supply, while radiation has been utilized in the fields of industry, agriculture, medicine and so on. Now, atomic energy is indispensable for national life and industrial activity. The former long term plan was decided in September, 1978, and the new long term plan should be established since the situation has changed largely. The energy substituting for petroleum has been demanded, and the expectation to nuclear power generation has heightened because it enables stable and economical power supply. The independently developed technology related to atomic energy must be put in practical use. The peaceful utilization of atomic energy must be promoted, while contributing to the nuclear non-proliferation policy. The Atomic Energy Commission of Japan decided the new long term plan to clearly show the outline of the important measures related to atomic energy development and utilization in 10 years hereafter, and the method of its promotion. The basic concept of atomic energy development and utilization, the long term prospect and the concept on the promotion, the method of promoting the development and utilization, and the problems of funds, engineers and location are described. (kako, I.)

  7. Long-term energy futures: the critical role of technology

    International Nuclear Information System (INIS)

    Grubler, A.

    1999-01-01

    The paper briefly reviews the results of a 5-year study conducted by IIASA jointly with the World Energy Council (WEC) on long term-energy perspectives. After summarizing the study's main findings, the paper addresses the crucial role of technological change in the evolution of long-term energy futures and in responding to key long-term uncertainties in the domains of energy demand growth, economics, as well as environmental protection. Based on most recent empirical and methodological findings, long-term dynamics of technological change portray a number of distinct features that need to be taken account of in technology and energy policy. First, success of innovation efforts and ultimate outcomes of technological are uncertain. Second, new, improved technologies are not a free good, but require continued dedicated efforts. Third, technological knowledge (as resulting from R and D and accumulation of experience, i.e. technological learning) exhibits characteristics of (uncertain) increasing returns. Forth, due to innovation - diffusion lags, technological interdependence, and infrastructure needs (network externalities), rates of change in large-scale energy systems are necessarily slow. This implies acting sooner rather than later as a contigency policy to respond to long-term social, economic and environmental uncertainties, most notably possible climate change. Rather than picking technological 'winners' the results of the IIASA-WEC scenario studies are seen most appropriate to guide technology and R and D portfolio analysis. Nonetheless, robust persistent patterns of technological change invariably occur across all scenarios. Examples of primising groups of technologies are given. The crucial importance of meeting long-energy demand in developing countries, assuring large-scale infrastructure investments, maintaining a strong and diversified R AND D protfolio, as well as to dvise new institutional mechnisms for technology development and diffusion for instance

  8. Samish Indian Nation Long-Term Strategic Energy Plan

    Energy Technology Data Exchange (ETDEWEB)

    Christine Woodward; B. Beckley; K. Hagen

    2005-06-30

    The Tribes strategic energy planning effort is divided into three phases: (1) Completing an Energy Resource Assessment; (2) Developing a Long-Term Strategic Energy Plan; and (3) Preparing a Strategic Energy Implementation Plan for the Samish Homelands. The Samish Indian Nation developed a comprehensive Strategic Energy plan to set policy for future development on tribal land that consists of a long-term, integrated, systems approach to providing a framework under which the Samish Community can use resources efficiently, create energy-efficient infrastructures, and protect and enhance quality of life. Development of the Strategic Energy plan will help the Samish Nation create a healthy community that will sustain current and future generations by addressing economic, environmental, and social issues while respecting the Samish Indian Nation culture and traditions.

  9. Delayed Dopamine Signaling of Energy Level Builds Appetitive Long-Term Memory in Drosophila

    OpenAIRE

    Pierre-Yves Musso; Paul Tchenio; Thomas Preat

    2015-01-01

    Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level t...

  10. Fiscal 1999 survey report on survey of long-term strategy on energy technology. Long-term energy technological strategy survey (Long-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (choki energy gijutsu senryaku chosa))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    To enhance still more effectively the research and development of energy-related/environmental technologies, research and development strategies have to be worked out from a long-term view point and policy resources such as investment in research and development should be optimally distributed after clarifying and defining the course to follow toward the achievement of research and development goals. This project aims to conduct studies, and to show the course to follow in the future, towards the establishment of a long-term energy technological strategy by investigating energy systems for around 2050, interim energy systems at the intermediate stage, and innovative energy technologies for realizing such energy systems. In Chapter 1, the position of the survey and its purpose and prerequisites are shown. In Chapter 2, the history of social and economic conditions surrounding energy/environmental technologies and of energy situation up to the present time is compiled, and the outlook is analyzed and predicted. In Chapter 3, formulation of a long-term energy technological strategy is discussed. In Chapter 5, how to embody such a strategy is shown. (NEDO)

  11. Delayed Dopamine Signaling of Energy Level Builds Appetitive Long-Term Memory in Drosophila

    Directory of Open Access Journals (Sweden)

    Pierre-Yves Musso

    2015-02-01

    Full Text Available Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value.

  12. Delayed dopamine signaling of energy level builds appetitive long-term memory in Drosophila.

    Science.gov (United States)

    Musso, Pierre-Yves; Tchenio, Paul; Preat, Thomas

    2015-02-24

    Sensory cues relevant to a food source, such as odors, can be associated with post-ingestion signals related either to food energetic value or toxicity. Despite numerous behavioral studies, a global understanding of the mechanisms underlying these long delay associations remains out of reach. Here, we demonstrate in Drosophila that the long-term association between an odor and a nutritious sugar depends on delayed post-ingestion signaling of energy level. We show at the neural circuit level that the activity of two pairs of dopaminergic neurons is necessary and sufficient to signal energy level to the olfactory memory center. Accordingly, we have identified in these dopaminergic neurons a delayed calcium trace that correlates with appetitive long-term memory formation. Altogether, these findings demonstrate that the Drosophila brain remembers food quality through a two-step mechanism that consists of the integration of olfactory and gustatory sensory information and then post-ingestion energetic value. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Closing the gap between short- and long-term scenarios for nuclear energy

    International Nuclear Information System (INIS)

    Toth, F. L.; Rogner, H.-H.

    2005-01-01

    Many scenarios published in recent years explore the driving forces and assess plausible ranges of global energy use and the resources they draw on. Some scenarios (e.g., OECD IEA, Organization for Economic Co-operation and Development International Energy Agency, 2004) focus on the next decade or two and project the evolution of world energy demand, supply as well as the resources, technologies, and prices to match them. Other scenarios (e.g., the Special Report on Emissions Scenarios, SRES, prepared by the Intergovernmental Panel on Climate Change, IPCC, 2000) explore the long term with a view to resource availability and depletion, technological transformations, and environmental concerns, predominantly climate change. A persistent gap (see Figure 1) can be observed in the projections for nuclear energy: near-term scenarios typically project a flat or slightly declining contribution of nuclear energy to the world energy supply whereas medium- and long-term scenarios anticipate significant increases. The magnitude of the gap between the OECD IEA (2002) projections and the median of the 40 IPCC SRES scenarios for the year 2020 amounts to almost 300 GWe installed capacity. Reasons for the gap originate in the differences between the analytical frameworks (including projection techniques) adopted by the short- and long-term studies. Another, closely related reason is the difference in the underlying assumptions, particularly their relations to recent trends and the current situation. In addition, near-term projections are heavily influenced by the social context (perceived unpopularity or outright rejection of nuclear power after Chernobyl), political factors (government pronouncements and policies at the national level, diplomacy and balancing of national positions at international organizations), economic aspects (energy market deregulation and liberalization unveiling excess capacities; financial risks), technology matters (the role of learning, definition of

  14. China's building energy demand: Long-term implications from a detailed assessment

    International Nuclear Information System (INIS)

    Eom, Jiyong; Clarke, Leon; Kim, Son H.; Kyle, Page; Patel, Pralit

    2012-01-01

    Buildings are an important contributor to China's energy consumption and attendant CO 2 emissions. Measures to address energy consumption and associated emissions from the buildings sector will be an important part of strategy to reduce the country's CO 2 emissions. This study presents a detailed, service-based model of China's building energy demand, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explored long-term pathways of China's building energy demand and identified opportunities to reduce greenhouse gas emissions. A range of different scenarios was also developed to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth: In the reference scenarios, the sector's final energy demand will increase by 110–150% by 2050 and 160–220% by 2095 from its 2005 level. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy. -- Highlights: ► We developed a building energy model for China, nested in an integrated-assessment framework. ► We explore long-term pathways of China's building energy use by implementing a range of scenarios. ► China's building energy consumption will continue to grow and be electrified over the century. ► Improved building energy technology will slow down the growth in building energy consumption. ► Electrification will be accelerated by the implementation of carbon policy.

  15. Ukraine National Energy Current State and Modelling its Long-Term Development

    International Nuclear Information System (INIS)

    Shulzhenko, S.

    2016-01-01

    Structure of Ukrainian energy sector, its current challenges, drivers of its development and possible long-term pathways, and methodological approaches and methods of mathematical modelling of long-term national energy development.(author).

  16. Post-Kyoto policy implications on the energy system: A TIAM-FR long-term planning exercise

    Energy Technology Data Exchange (ETDEWEB)

    Selosse, Sandrine; Assoumou, Edi; Maizi, Nadia; Mazauric, Vincent

    2010-09-15

    The aim of this study is to discuss the long term analysis of post-Kyoto commitments, with the modelling tool ETSAP-TIAM-FR. Through the specification of CO2 mitigation targets scenarios covering the period 2000-2050, this analysis focuses on the effects of these carbon constraints on several indicators such as global and regional CO2 emissions, the cost of the climate policy, carbon marginal costs, the primary energy consumption and the energy mix. This paper compares global efforts of CO2 mitigation with the cost of carbon and finally discusses the development of CCS technologies.

  17. Some aspects of hydrogen as a long-term energy carrier

    International Nuclear Information System (INIS)

    Quakernaat, J.; De Jong, K.P.; Van Wechem, H.M.H.; Okken, P.A.; Lako, P.; Ybema, J.R.

    1994-11-01

    Hydrogen as a secondary energy carrier received extensive and worldwide attention some ten to fifteen years ago. The developments in the energy market since then have reduced the interest in hydrogen. However, the increased concern for the environment and new technical options have brought hydrogen to the centre of attention once again. These considerations led to the organization of the National Hydrogen Seminar, held on 19 November 1993 at ECN, Petten, Netherlands. Eight experts in the field of hydrogen illustrated the possibilities and prospects of the production, storage and use of hydrogen as an energy carrier. In this report three of these contributions are presented, for which separate abstracts have been prepared. The first paper is on hydrogen in a global long-term perspective, in the second paper carbon is considered as a hydrogen carrier or as a disappearing skeleton, and in the third paper attention is paid to the cost effective integration of hydrogen in energy systems with CO 2 constraints

  18. Zero emission targets as long-term global goals for climate protection

    International Nuclear Information System (INIS)

    Rogelj, Joeri; Riahi, Keywan; Schaeffer, Michiel; Hare, William; Meinshausen, Malte; Knutti, Reto; Alcamo, Joseph

    2015-01-01

    Recently, assessments have robustly linked stabilization of global-mean temperature rise to the necessity of limiting the total amount of emitted carbon-dioxide (CO 2 ). Halting global warming thus requires virtually zero annual CO 2 emissions at some point. Policymakers have now incorporated this concept in the negotiating text for a new global climate agreement, but confusion remains about concepts like carbon neutrality, climate neutrality, full decarbonization, and net zero carbon or net zero greenhouse gas (GHG) emissions. Here we clarify these concepts, discuss their appropriateness to serve as a long-term global benchmark for achieving temperature targets, and provide a detailed quantification. We find that with current pledges and for a likely (>66%) chance of staying below 2 °C, the scenario literature suggests net zero CO 2 emissions between 2060 and 2070, with net negative CO 2 emissions thereafter. Because of residual non-CO 2 emissions, net zero is always reached later for total GHG emissions than for CO 2 . Net zero emissions targets are a useful focal point for policy, linking a global temperature target and socio-economic pathways to a necessary long-term limit on cumulative CO 2 emissions. (letter)

  19. Long term planning for wind energy development

    International Nuclear Information System (INIS)

    Trinick, M.

    1995-01-01

    In a planning system intended to be governed primarily by policies in statutory plans a reasonable horizon for long term planning is 10 years or longer. Because of statutory requirements, developers have no option but to pay due regard to, and take a full part in, long term planning. The paper examines the type of policies which have emerged in the last few years to cater for wind energy development. It canvasses the merits of different types of policies. Finally, it discusses the policy framework which may emerge to cater for development outside NFFO. (Author)

  20. Long-Term Problems of Nuclear Energy, October 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner) [de

  1. Long-Term Problems of Nuclear Energy, December 1976

    International Nuclear Information System (INIS)

    Broda, E.

    1976-01-01

    The Text was written by Enelbert Broda in Oktober 1976. In this report, the physicist and chemist Engelbert Broda discusses various areas of peaceful uses of nuclear energy and concludes that the negative aspects outweigh the positive and that the use of nuclear energy has to be rejected in the long term. In 16 chapters the biggest and most dangerous problems are discussed. Include the unresolved question of disposal, problems of reprocessing and transport of fissile materials, the proliferation of nuclear weapons technology, risks of terrorism, dismantling and decontamination of old nuclear power plants, the toxicity of fissile material, as well as the general unprofitable use of nuclear power plants. As a long-term alternative the author suggests an intensification of the exploitation of solar energy, as well as a deliberate restriction of the rising demand for energy.(roessner)

  2. Time-Dependent Global Sensitivity Analysis for Long-Term Degeneracy Model Using Polynomial Chaos

    Directory of Open Access Journals (Sweden)

    Jianbin Guo

    2014-07-01

    Full Text Available Global sensitivity is used to quantify the influence of uncertain model inputs on the output variability of static models in general. However, very few approaches can be applied for the sensitivity analysis of long-term degeneracy models, as far as time-dependent reliability is concerned. The reason is that the static sensitivity may not reflect the completed sensitivity during the entire life circle. This paper presents time-dependent global sensitivity analysis for long-term degeneracy models based on polynomial chaos expansion (PCE. Sobol’ indices are employed as the time-dependent global sensitivity since they provide accurate information on the selected uncertain inputs. In order to compute Sobol’ indices more efficiently, this paper proposes a moving least squares (MLS method to obtain the time-dependent PCE coefficients with acceptable simulation effort. Then Sobol’ indices can be calculated analytically as a postprocessing of the time-dependent PCE coefficients with almost no additional cost. A test case is used to show how to conduct the proposed method, then this approach is applied to an engineering case, and the time-dependent global sensitivity is obtained for the long-term degeneracy mechanism model.

  3. Environmental radioactivity. Global transport, distribution and its long-term variation

    International Nuclear Information System (INIS)

    Hirose, Katsumi

    2015-01-01

    Fukushima Dai-ichi Nuclear Power Plant (F1NPP) accident, which occurred as a result of huge earthquake and resulting tsunami, had a severe impact on world communities as did Japanese, because of cause of serious radioactivity contamination in the environment. Long-term effects of radioactivity contamination from F1NPP are concerned. To assess the long-term environmental effects of the F1NPP accident, it is important to review the history of global radioactivity contamination, which started from Hiroshima and Nagasaki nuclear explosions in Aug. 1945. Radionuclides released in the environment as a result of atmospheric nuclear explosions, nuclear reactor accident and others are migrated between atmosphere, hydrosphere, biosphere and lithosphere according to natural processes. We describe long-term environmental behaviors of anthropogenic radionuclides derived from the atmospheric nuclear explosions and others, which is useful to predict the behaviors and fate of the F1NPP-derived radionuclides. (author)

  4. Projection of primary energy in electricity generation with evaluation of demand and supply of energy in the medium-term horizon (2020), long-term (2035) and very long term (2060); Projecao das energias primarias na geracao de eletricidade com avaliacao da demanda e oferta de energia, em horizonte de medio prazo (2020), longo prazo (2035) e muito longo prazo (2060)

    Energy Technology Data Exchange (ETDEWEB)

    Mafra, Olga Y.; Alvim, Carlos Feu; Eidelman, Frida [Brasil e Economia (Brazil); Guimaraes, Leonam dos Santos [Eletrobras Eletronuclear, Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The Global Energy demand and the participation of electricity in scenarios of medium (2020), long (2035) and very long (2060) terms are estimated. It is also evaluated the share of different primary energies in electricity generation and their availability in the country. Three economic scenarios were considered and different hypothesis regarding the participation of nuclear energy were analyzed. (author)

  5. Global prospects for nuclear power development in the long term

    International Nuclear Information System (INIS)

    Semenov, Boris A.

    1994-01-01

    supply, in the world and by region. In the long term, up to 2100, the broad range of uncertainties with regard to population, economic growth and technology evolution prevent from any sound forecast in the field of energy and in particular of nuclear power. The scenario presented in the paper has been prepared for the Inter Governmental Panel on Climate Change (IPCC) in order to illustrate the potential role of nuclear power in alleviating greenhouse gas emissions. The global energy demand projections established by IPCC, which serve as a basis for the nuclear power scenario, assume high economic growth, drastic energy efficiency improvement and the implementation of voluntary policies for greenhouse gas reduction. Under these assumptions, it is estimated that the total primary energy consumption in the world will reach some 660 EJ per annum in 2100 as compared to 330 EJ per annum in 1985. Since the world population is expected to more than double during this time frame, it means that the average energy consumption per capita will a sustained deployment of nuclear power worldwide as a means to reduce greenhouse gas emissions from the energy sector. Although this scenario would require strong commitment to the development of nuclear energy, technical and industrial capabilities would enable its implementation. In view of the potential role of nuclear power in sustainable energy supply strategies, there is a need for continued research and development aiming towards the design and implementation of advanced reactors with enhanced safety, technical and economic performance. Natural nuclear fuel resources could support a broad deployment of nuclear energy production as a major part of the mix of options for sustainable supply in the long term. The challenge for the nuclear industry is to restore the confidence in nuclear energy and enhance its social acceptability through the design and implementation of sound technical solutions for nuclear power plants, fuel cycle

  6. Greek long-term energy consumption prediction using artificial neural networks

    International Nuclear Information System (INIS)

    Ekonomou, L.

    2010-01-01

    In this paper artificial neural networks (ANN) are addressed in order the Greek long-term energy consumption to be predicted. The multilayer perceptron model (MLP) has been used for this purpose by testing several possible architectures in order to be selected the one with the best generalizing ability. Actual recorded input and output data that influence long-term energy consumption were used in the training, validation and testing process. The developed ANN model is used for the prediction of 2005-2008, 2010, 2012 and 2015 Greek energy consumption. The produced ANN results for years 2005-2008 were compared with the results produced by a linear regression method, a support vector machine method and with real energy consumption records showing a great accuracy. The proposed approach can be useful in the effective implementation of energy policies, since accurate predictions of energy consumption affect the capital investment, the environmental quality, the revenue analysis, the market research management, while conserve at the same time the supply security. Furthermore it constitutes an accurate tool for the Greek long-term energy consumption prediction problem, which up today has not been faced effectively.

  7. Long-term equilibrium effects of constraints in energy supply

    International Nuclear Information System (INIS)

    Brookes, L.G.

    1984-01-01

    The subject is covered in sections, entitled: introduction; the economic role of energy; the economics of energy price; a first attempt to model long term effects (energy consumption and economic activity); what is a price hike (energy supply and demand functions before and after price hike); modelling energy price hikes; implications and lessons for nuclear energy; the present reality. (U.K.)

  8. Does nuclear energy save global environment?

    International Nuclear Information System (INIS)

    Matsui, Kazuaki

    2006-01-01

    Since the ecological footprint analysis in 1970s suggested changing consumption patterns and overpopulation concerns, energy policy such as energy conservation and use of renewable energy has become of prime importance. Several results of the long-term energy demand and supply analysis in 2050 or 2100 to reduce drastically carbon dioxide emission as a measure against global warming, showed the necessity of nuclear power deployment as well as maximum efforts to save energy, exploitation of the separation and disposal of carbon dioxide, and shifting energy sources to fuels that emit less greenhouse gases or non-fossil fuels. As a promising means to contribute to long-term energy supply, nuclear power generation is expected with improving safety, economic efficiency, environmental adaptability, and nuclear proliferation resistance of the technologies. (T.Tanaka)

  9. What do near-term observations tell us about long-term developments in greenhouse gas emissions? A letter

    NARCIS (Netherlands)

    Vuuren, van D.P.; Edmonds, J.; Smith, S.J.; Calvin, K.V.; Karas, J.; Kainuma, M.; Nakicenovic, N.; Riahi, K.; Ruijven, B.J.; Swart, R.J.; Thomson, A.

    2010-01-01

    Long-term scenarios developed by integrated assessment models are used in climate research to provide an indication of plausible long-term emissions of greenhouse gases and other radiatively active substances based on developments in the global energy system, land-use and the emissions associated

  10. An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan

    OpenAIRE

    Syed Aziz Ur Rehman; Yanpeng Cai; Rizwan Fazal; Gordhan Das Walasai; Nayyar Hussain Mirjat

    2017-01-01

    Energy planning and policy development require an in-depth assessment of energy resources and long-term demand forecast estimates. Pakistan, unfortunately, lacks reliable data on its energy resources as well do not have dependable long-term energy demand forecasts. As a result, the policy makers could not come up with an effective energy policy in the history of the country. Energy demand forecast has attained greatest ever attention in the perspective of growing population and diminishing fo...

  11. Long-term availability of global uranium resources

    International Nuclear Information System (INIS)

    Monnet, Antoine

    2016-01-01

    From a global perspective, a low-carbon path to development driven by a growth of nuclear power production raises issues about the availability of uranium resources. Future technologies allowing nuclear reactors to overcome the need for natural uranium will take time to fully deploy. To address these issues, we analyze the conditions of availability of uranium in the 21. century. The first two conditions are technical accessibility and economic interest, both related to the cost of production. We study them using a model that estimates the ultimate uranium resources (amounts of both discovered and undiscovered resources) and their costs. This model splits the world into regions and the resource estimate for each region derives from the present knowledge of the deposits and economic filtering. The output is a long-term supply curve that illustrates the quantities of uranium that are technically accessible as a function of their cost of production. We identify the main uncertainties of these estimates and we show that with no regional breakdown, the ultimate resources are underestimated. The other conditions of availability of uranium covered in our study are related to the market dynamics, i.e. they derive from the supply and demand clearing mechanism. To assess their influence, they are introduced as dynamic constraints in a partial equilibrium model. This model of the uranium market is deterministic, and market players are represented by regions. For instance, it takes into account the short-term correlation between price and exploration expenditures, which is the subject of a dedicate econometric study. In the longer term, constraints include anticipation of demand by consumers and a gradual depletion of the cheapest ultimate resources. Through a series of prospective simulations, we demonstrate the strong influence on long-term price trends of both the growth rate of demand during the 21. century and its anticipation. Conversely, the uncertainties related to the

  12. Energy globalization

    International Nuclear Information System (INIS)

    Tierno Andres

    1997-01-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum

  13. The long-term relationships among China's energy consumption sources and adjustments to its renewable energy policy

    International Nuclear Information System (INIS)

    Zou Gaolu

    2012-01-01

    To reduce its consumption of coal and oil in its primary energy consumption, China promotes the development of renewable energy resources. I have analysed the long-term relationship among China's primary energy consumption sources. Changes in coal consumption lead those in the consumption of other energy sources in the long term. Coal and oil fuels substitute for each other equally. The long-term elasticities of China's coal consumption relative to its hydroelectricity consumption were greater than one and nearly equal during the two sample periods. Therefore, increased hydroelectricity consumption did not imply a reduction in coal consumption. China holds abundant hydroelectricity, wind and, solar energy potential. China must prevent an excessive escalation of its economy and resultant energy demand to realise a meaningful substitution of coal with hydroelectricity. Moreover, China must develop and use wind and solar energy sources. Natural gas can be a good substitute for coal, given its moderate price growth and affordable price levels. - Highlights: ► Coal consumption changes lead those of other energy sources in the long term. ► Coal and oil fuels substitute for each other equally. ► Increased hydroelectricity consumption has not meant lower coal consumption. ► Wind, solar and natural gas are China's promising energy sources.

  14. Global estimation of long-term persistence in annual river runoff

    Science.gov (United States)

    Markonis, Y.; Moustakis, Y.; Nasika, C.; Sychova, P.; Dimitriadis, P.; Hanel, M.; Máca, P.; Papalexiou, S. M.

    2018-03-01

    Long-term persistence (LTP) of annual river runoff is a topic of ongoing hydrological research, due to its implications to water resources management. Here, we estimate its strength, measured by the Hurst coefficient H, in 696 annual, globally distributed, streamflow records with at least 80 years of data. We use three estimation methods (maximum likelihood estimator, Whittle estimator and least squares variance) resulting in similar mean values of H close to 0.65. Subsequently, we explore potential factors influencing H by two linear (Spearman's rank correlation, multiple linear regression) and two non-linear (self-organizing maps, random forests) techniques. Catchment area is found to be crucial for medium to larger watersheds, while climatic controls, such as aridity index, have higher impact to smaller ones. Our findings indicate that long-term persistence is weaker than found in other studies, suggesting that enhanced LTP is encountered in large-catchment rivers, were the effect of spatial aggregation is more intense. However, we also show that the estimated values of H can be reproduced by a short-term persistence stochastic model such as an auto-regressive AR(1) process. A direct consequence is that some of the most common methods for the estimation of H coefficient, might not be suitable for discriminating short- and long-term persistence even in long observational records.

  15. Global long-term ozone trends derived from different observed and modelled data sets

    Science.gov (United States)

    Coldewey-Egbers, M.; Loyola, D.; Zimmer, W.; van Roozendael, M.; Lerot, C.; Dameris, M.; Garny, H.; Braesicke, P.; Koukouli, M.; Balis, D.

    2012-04-01

    The long-term behaviour of stratospheric ozone amounts during the past three decades is investigated on a global scale using different observed and modelled data sets. Three European satellite sensors GOME/ERS-2, SCIAMACHY/ENVISAT, and GOME-2/METOP are combined and a merged global monthly mean total ozone product has been prepared using an inter-satellite calibration approach. The data set covers the 16-years period from June 1995 to June 2011 and it exhibits an excellent long-term stability, which is required for such trend studies. A multiple linear least-squares regression algorithm using different explanatory variables is applied to the time series and statistically significant positive trends are detected in the northern mid latitudes and subtropics. Global trends are also estimated using a second satellite-based Merged Ozone Data set (MOD) provided by NASA. For few selected geographical regions ozone trends are additionally calculated using well-maintained measurements of individual Dobson/Brewer ground-based instruments. A reasonable agreement in the spatial patterns of the trends is found amongst the European satellite, the NASA satellite, and the ground-based observations. Furthermore, two long-term simulations obtained with the Chemistry-Climate Models E39C-A provided by German Aerospace Center and UMUKCA-UCAM provided by University of Cambridge are analysed.

  16. Energy and ethics. Ethical aspects of a future global power generation; Energie und Ethik. Ethische Aspekte zukuenftiger globaler Stromerzeugung

    Energy Technology Data Exchange (ETDEWEB)

    Gethmann, C.F. [Duisburg-Essen Univ. (Germany). Inst. fuer Philosophie; Europaeische Akademie Bad Neuenahr-Ahrweiler GmbH, Essen (Germany)

    2008-07-01

    The article deals with ethical questions regarding a future global energy supply by considering the normative aspects of economic efficiency, long-term liabilities, environmental sustainability, social acceptability and distributive equity. Regarding the ethical issues dealt with in the debate on the global energy supply, in particular two postulates arise: Both an improvement in knowledge and an improvement in the categories and procedures of ethical reflection are required. (orig.)

  17. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  18. Development of an Integrated Global Energy Model

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1999-01-01

    The primary objective of this research was to develop a forefront analysis tool for application to enhance understanding of long-term, global, nuclear-energy and nuclear-material futures. To this end, an existing economics-energy-environmental (E 3 ) model was adopted, modified, and elaborated to examine this problem in a multi-regional (13), long-term (approximately2,100) context. The E 3 model so developed was applied to create a Los Alamos presence in this E 3 area through ''niche analyses'' that provide input to the formulation of policies dealing with and shaping of nuclear-energy and nuclear-materials futures. Results from analyses using the E 3 model have been presented at a variety of national and international conferences and workshops. Through use of the E 3 model Los Alamos was afforded the opportunity to participate in a multi-national E 3 study team that is examining a range of global, long-term nuclear issues under the auspices of the IAEA during the 1998-99 period . Finally, the E 3 model developed under this LDRD project is being used as an important component in more recent Nuclear Material Management Systems (NMMS) project

  19. Energy systems scenario modelling and long term forecasting of hourly electricity demand

    Directory of Open Access Journals (Sweden)

    Poul Alberg Østergaard

    2015-06-01

    Full Text Available The Danish energy system is undergoing a transition from a system based on storable fossil fuels to a system based on fluctuating renewable energy sources. At the same time, more of and more of the energy system is becoming electrified; transportation, heating and fuel usage in industry and elsewhere. This article investigates the development of the Danish energy system in a medium year 2030 situation as well as in a long-term year 2050 situation. The analyses are based on scenario development by the Danish Climate Commission. In the short term, it is investigated what the effects will be of having flexible or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model. The results show that even with a limited short-term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrated wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long-term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps and electric vehicles in the long-term future overshadows any effects of changes in hourly demand curve profiles.

  20. The Electrification of Energy: Long-Term Trends and Opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, Jeffrey Y. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fouquet, Roger [London School of Economics and Political Science (United Kingdom); Schubert, E. Fred [Rensselaer Polytechnic Inst., Troy, NY (United States)

    2017-11-01

    Here, we present and analyze three powerful long-term historical trends in energy, particularly electrical energy, as well as the opportunities and challenges associated with these trends. The first trend is from a world containing a diversity of energy currencies to one whose predominant currency is electricity, driven by electricity’s transportability, exchangeability, and steadily decreasing cost. The second trend is from electricity generated from a diversity of sources to electricity generated predominantly by free-fuel sources, driven by their steadily decreasing cost and long-term abundance. These trends necessitate a just-emerging third trend: from a grid in which electricity is transported uni-directionally, traded at near-static prices, and consumed under direct human control; to a grid in which electricity is transported bi-directionally, traded at dynamic prices, and consumed under human-tailored agential control. Early acceptance and appreciation of these trends will accelerate their remaking of humanity’s energy landscape into one in which energy is much more affordable, abundant and efficiently deployed than it is today; with major economic, geo-political, and environmental benefits to human society.

  1. Coordinated approaches to quantify long-term ecosystem dynamics in response to global change

    Science.gov (United States)

    Yiqi Luo; Jerry Melillo; Shuli Niu; Claus Beier; James S. Clark; Aime E.T. Classen; Eric Dividson; Jeffrey S. Dukes; R. Dave Evans; Christopher B. Field; Claudia I. Czimczik; Michael Keller; Bruce A. Kimball; Lara M. Kueppers; Richard J. Norby; Shannon L. Pelini; Elise Pendall; Edward Rastetter; Johan Six; Melinda Smith; Mark G. Tjoelker; Margaret S. Torn

    2011-01-01

    Many serious ecosystem consequences of climate change will take decades or even centuries to emerge. Long-term ecological responses to global change are strongly regulated by slow processes, such as changes in species composition, carbon dynamics in soil and by long-lived plants, and accumulation of nutrient capitals. Understanding and predicting these processes...

  2. Global Energy Transitions and the Challenge of Climate Change

    International Nuclear Information System (INIS)

    Riahi, K.

    2008-01-01

    Global emissions of greenhouse-gases have increased markedly as a result of human activities since pre-industrial times. This increase in emissions has lead to unequivocal global warming, which is evident from observations of increases in global average air and ocean temperatures, widespread melting of snow and ice, and rising global average sea level. Reducing the risk of irreversible climate impacts requires thus the mitigation of global GHG emissions aiming at the long-term stabilization of atmospheric GHG concentrations. Achieving this goal translates into the need of reducing emissions to virtually zero over long time-frames. Yet international agreement on a long-term climate policy target remains a distant prospect, due to both scientific uncertainty and political disagreement on the appropriate balance between mitigation costs and reduced risks of dangerous impacts. At the same time, growing emissions of greenhouse gases continue to increase the amount of climate change we are committed to over the long term. Over the next few decades, these growing emissions may make some potentially desirable long term goals unattainable. Recent analysis conducted at IIASA indicates the need of major energy transitions over the next few decades. For example, staying below the target suggested by the European Union of 2 C warming (with just a 50% likelihood) will require the massive deployment of zero-carbon energy by 2050, and a tippling of the contribution of zero-carbon energy globally to more than 60% by that time. Although there are large uncertainties with respect to the deployment of individual future technologies, there is strong evidence that no single mitigation measure alone would be sufficient for achieving the stabilization of GHG concentrations at low levels. A wide portfolio of technologies across all GHG-intensive sectors is needed for cost-effective emissions reductions. The bulk of these emissions reductions would need to come from the energy sector, with

  3. Fiscal 1999 survey report on long-term energy technological strategies and the like. Long-term energy technological strategy survey (Medium-term energy technological strategy survey); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Choki energy gijutsu senryaku chosa (chuki energy gijutsu senryaku chosa)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Energy strategies to be implemented under the New Sunshine Program by around 2010 have been compiled, with nation's industrial technological strategies, long-term energy outlook, and the like taken into consideration. The present survey aims to work out medium-term energy technological strategies. In Chapter 2, by conducting studies on the state of energy strategies in the national industry technological strategies as primarily compiled, long-term energy supply and demand outlook, and the history so far of the New Sunshine Program, and social conditions surrounding energy/environmental technologies and energy conditions are arranged in order and then analyzed with a view to deriving social needs. In Chapter 3, in view of the derived social needs, medium-term energy technological strategies are broken down into strategic target details, based on the important regions and major and minor strategic targets of the national industry technological strategies. In Chapter 4, medium-term energy technological strategies are worked out. In Chapter 5, 'basic ideas,' 'measures for promoting technology development,' 'return of the fruits to society' are mentioned as the methods of realizing the strategies. In Chapter 6, surveys and researches are summarized, and future development is predicted. (NEDO)

  4. Diversity in OECD energy consumption: Achievements and long-term goals

    International Nuclear Information System (INIS)

    Heal, D.W.

    1990-01-01

    Energy consumption in the industrialized world has resumed a rising trend but has been moderated by increased energy efficiency. The demand for energy is also being spread more evenly over a variety of fuels. This paper provides a measure for diversity and examines the implications for energy prices, while reiterating the long-term goal of lower energy consumption

  5. An overview of Ontario's 2013 long term energy plan

    International Nuclear Information System (INIS)

    Jobe, C.

    2014-01-01

    Ontario's 2013 Long Term Energy /Plan (LTEP) takes a pragmatic approach. The plan is designed to balance the following five principles namely: Cost effectiveness, Reliability, Clean energy, Community engagement, and Emphasis on conservation and demand management before building new generation. By taking a pragmatic and flexible approach and balancing these principles, Ontario's 2013 Long Term Energy Plan builds on the foundation laid by the 2010 LTEP while also lowering the projected total system costs. The key elements of the 2013 LTEP are described in this paper by highlighting the major features of these elements. (author)

  6. The role of nuclear energy system for Korean long-term energy supply strategy

    International Nuclear Information System (INIS)

    Chae, K.N.; Lee, D.G.; Lim, C.Y.; Lee, B.W.

    1995-01-01

    The energy supply optimization model MESSAGE-III is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Emphasis is placed on the potential contribution of nuclear energy in case of environmental constraints and energy resource limitation. The time horizon is 1993-2040. A program to forecast useful energy demand is developed, and optimization is performed from the overall energy system to the nuclear energy system. Reactor and fuel cycle strategy and the expanded utilization options for nuclear energy system are suggested. FBRs, HTGRs and thorium fuel cycle would play key roles in the long run. The most important factors for nuclear energy in Korean energy supply strategy would be the availability of fossil fuels, CO 2 reduction regulation, and the supply capability of nuclear energy. (author)

  7. Implications of the international reduction pledges on long-term energy system changes and costs in China and India

    International Nuclear Information System (INIS)

    Lucas, Paul L.; Shukla, P.R.; Chen, Wenying; Ruijven, Bas J. van; Dhar, Subash; Elzen, Michel G.J. den; Vuuren, Detlef P. van

    2013-01-01

    This paper analyses the impact of postponing global mitigation action on abatement costs and energy systems changes in China and India. It compares energy-system changes and mitigation costs from a global and two national energy-system models under two global emission pathways with medium likelihood of meeting the 2 °C target: a least-cost pathway and a pathway that postpones ambitious mitigation action, starting from the Copenhagen Accord pledges. Both pathways have similar 2010–2050 cumulative greenhouse gas emissions. The analysis shows that postponing mitigation action increases the lock-in in less energy efficient technologies and results in much higher cumulative mitigation costs. The models agree that carbon capture and storage (CCS) and nuclear energy are important mitigation technologies, while the shares of biofuels and other renewables vary largely over the models. Differences between India and China with respect to the timing of emission reductions and the choice of mitigation measures relate to differences in projections of rapid economic change, capital stock turnover and technological development. Furthermore, depending on the way it is implemented, climate policy could increase indoor air pollution, but it is likely to provide synergies for energy security. These relations should be taken into account when designing national climate policies. - highlights: • We analyze long-term impacts of the international pledges for China and India. • We compare a least-cost pathway with a pathway starting from the Copenhagen pledges. • Postponing mitigation action implies much higher cumulative mitigation costs. • Postponing increases fossil fuel dependence and requires deeper long-term reductions. • Countries differ mainly due to different periods of rapid economic change

  8. China's Building Energy Use: A Long-Term Perspective based on a Detailed Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Kyle, G. Page; Patel, Pralit L.

    2012-01-13

    We present here a detailed, service-based model of China's building energy use, nested in the GCAM (Global Change Assessment Model) integrated assessment framework. Using the model, we explore long-term pathways of China's building energy use and identify opportunities of reducing greenhouse gas emissions. The inclusion of a structural model of building energy demands within an integrated assessment framework represents a major methodological advance. It allows for a structural understanding of the drivers of building energy consumption while simultaneously considering the other human and natural system interactions that influence changes in the global energy system and climate. We also explore a range of different scenarios to gain insights into how China's building sector might evolve and what the implications might be for improved building energy technology and carbon policies. The analysis suggests that China's building energy growth will not wane anytime soon, although technology improvement will put downward pressure on this growth. Also, regardless of the scenarios represented, the growth will involve the continued, rapid electrification of the buildings sector throughout the century, and this transition will be accelerated by the implementation of carbon policy.

  9. Long-term energy planning with uncertain environmental performance metrics

    International Nuclear Information System (INIS)

    Parkinson, Simon C.; Djilali, Ned

    2015-01-01

    Highlights: • Environmental performance uncertainty considered in a long-term energy planning model. • Application to electricity generation planning in British Columbia. • Interactions with climate change mitigation and adaptation strategy are assessed. • Performance risk-hedging impacts the technology investment strategy. • Sensitivity of results to model formulation is discussed. - Abstract: Environmental performance (EP) uncertainties span a number of energy technology options, and pose planning risk when the energy system is subject to environmental constraints. This paper presents two approaches to integrating EP uncertainty into the long-term energy planning framework. The methodologies consider stochastic EP metrics across multiple energy technology options, and produce a development strategy that hedges against the risk of exceeding environmental targets. Both methods are compared within a case study of emission-constrained electricity generation planning in British Columbia, Canada. The analysis provides important insight into model formulation and the interactions with concurrent environmental policy uncertainties. EP risk is found to be particularly important in situations where environmental constraints become increasingly stringent. Model results indicate allocation of a modest risk premium in these situations can provide valuable hedging against EP risk

  10. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. [Lawrence Berkeley Lab., CA (United States)]|[Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics]|[Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.; Hwang, R. [Lawrence Berkeley Lab., CA (United States)

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model`s parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  11. A model for Long-term Industrial Energy Forecasting (LIEF)

    Energy Technology Data Exchange (ETDEWEB)

    Ross, M. (Lawrence Berkeley Lab., CA (United States) Michigan Univ., Ann Arbor, MI (United States). Dept. of Physics Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.); Hwang, R. (Lawrence Berkeley Lab., CA (United States))

    1992-02-01

    The purpose of this report is to establish the content and structural validity of the Long-term Industrial Energy Forecasting (LIEF) model, and to provide estimates for the model's parameters. The model is intended to provide decision makers with a relatively simple, yet credible tool to forecast the impacts of policies which affect long-term energy demand in the manufacturing sector. Particular strengths of this model are its relative simplicity which facilitates both ease of use and understanding of results, and the inclusion of relevant causal relationships which provide useful policy handles. The modeling approach of LIEF is intermediate between top-down econometric modeling and bottom-up technology models. It relies on the following simple concept, that trends in aggregate energy demand are dependent upon the factors: (1) trends in total production; (2) sectoral or structural shift, that is, changes in the mix of industrial output from energy-intensive to energy non-intensive sectors; and (3) changes in real energy intensity due to technical change and energy-price effects as measured by the amount of energy used per unit of manufacturing output (KBtu per constant $ of output). The manufacturing sector is first disaggregated according to their historic output growth rates, energy intensities and recycling opportunities. Exogenous, macroeconomic forecasts of individual subsector growth rates and energy prices can then be combined with endogenous forecasts of real energy intensity trends to yield forecasts of overall energy demand. 75 refs.

  12. Hydrogen in a global long-term perspective

    International Nuclear Information System (INIS)

    Quakernaat, J.

    1994-01-01

    For many countries, the hydrogen economy offers an operational objective for their long-term energy structure. At the end of the next century, the world will depend on the predominate use of carbon-free and carbon-neutral sources of energy, such as flow energy, energy from modern biomass, and safe nuclear energy. The direct and indirect costs involved in the use of traditional energy supplies will increase sharply in the process of time, so that the economic feasibility of a less intensive use of energy and the introduction of alternative energy supply systems will no longer be insurmountable problems. The supply and demand structures of energy will be optimally blended by the use of hydrogen and electricity, an almost ideal combination of secondary energy carriers. With these carriers, practically every centralized or decentralized, environmentally sound energy supply can be permanently maintained, both within and outside of industrialized, metropolitan areas. The economic development of developing countries will depend on the predominate use of relatively 'cheap' fossil energy carriers (coal, petroleum and natural gas), as well as on the accompanying energy supplies structures. Yet those countries as well, similar to the wealthy industrial countries, will have to start using the highly capital intensive and very energy efficient energy supply systems and energy consumption technologies. This requires innovative strategies that are aimed at compensating developing countries (temporarily) for their lack of purchasing power and knowledge infrastructure. The costs involved in the hydrogen chain are still too high, and the world energy prices are still too low for such a transfer to take place. The attention, however, will focus on drastic energy saving, decarbonization of fossil fuels, substitution to natural gas, the opening up of flow energy, biomass production, and the development of inherent, safe nuclear energy. 49 refs

  13. Global warming combat policies in energy sector of Iran

    International Nuclear Information System (INIS)

    Rahimi, N.; Karbassi, A. R.; Abbaspour, M.

    2002-01-01

    Among the efforts to slow the potential for climate change are measures to reduce emissions of CO 2 from energy use, and promote long-term storage of carbon in forests and soils. Important environmental changes due to climate change and global warming pose potentially significant risks to humans, social systems, and natural world. Many uncertainties remain regarding precise timing,magnitude, and regional patterns of climate change and the extent to which mankind and nature can adapt to any changes. Estimating technical / economical / environmental potentials for reducing CO 2 emission in energy sector and preventing of global warming is one of the main activities, which have been performed for the first time in Iran. By use of 26 factors, model on global warming combat policies in energy sector of Iran in long-medium and short term determine decreasing amount of CO 2 emission. The results and also method of providing this model will be described in this paper

  14. The impacts of wind technology advancement on future global energy

    International Nuclear Information System (INIS)

    Zhang, Xiaochun; Ma, Chun; Song, Xia; Zhou, Yuyu; Chen, Weiping

    2016-01-01

    Highlights: • Integrated assessment model perform a series of scenarios of technology advances. • Explore the potential roles of wind energy technology advance in global energy. • Technology advance impacts on energy consumption and global low carbon market. • Technology advance influences on global energy security and stability. - Abstract: To avoid additional global warming and environmental damage, energy systems need to rely on the use of low carbon technologies like wind energy. However, supply uncertainties, production costs, and energy security are the main factors considered by the global economies when reshaping their energy systems. Here, we explore the potential roles of wind energy technology advancement in future global electricity generations, costs, and energy security. We use an integrated assessment model performing a series of technology advancement scenarios. The results show that double of the capital cost reduction causes 40% of generation increase and 10% of cost ​decrease on average in the long-term global wind electricity market. Today’s technology advancement could bring us the benefit of increasing electricity production in the future 40–50 years, and decreasing electricity cost in the future 90–100 years. The technology advancement of wind energy can help to keep global energy security and stability. An aggressive development and deployment of wind energy could in the long-term avoid 1/3 of gas and 1/28 of coal burned, and keep 1/2 biomass and 1/20 nuclear fuel saved from the global electricity system. The key is that wind resources are free and carbon-free. The results of this study are useful in broad coverage ranges from innovative technologies and systems of renewable energy to the economic industrial and domestic use of energy with no or minor impact on the environment.

  15. A novel inclusion of intermittent generation resources in long term energy auctions

    International Nuclear Information System (INIS)

    Marambio, Rodrigo; Rudnick, Hugh

    2017-01-01

    Long term energy auctions are positioning as a valuable tool in order to attract new investments into power systems, especially in Latin American countries where emergent economies characteristics and their correspondent risks are usually present. Even though the focus of these auctions is the long term, there are short term issues involved which actual auction designs fail to include, resulting in an energy allocation that is not necessarily optimal for the system, a condition which becomes more evident in the presence of intermittent renewable technologies. A novel mechanism is formulated to obtain the optimal allocation in long term energy auctions, considering short term generation profiles from both intermittent and conventional base load technologies, and also their risk aversions. The proposed mechanism is developed and simulations are made for some scenarios in the Chilean power market, with different levels of renewable penetration. Significant cost savings are achieved for the final consumers in relation to energy purchases, in comparison with a mechanism that follows the demand profile. As more renewable intermittent capacity enters the power system it is evident the need for changes in the energy auctions allocation mechanisms, including elements to exploit the synergies among participants in the short term. - Highlights: • Risk management consideration in technology neutral auctions allocation. • Allocation mechanism in technology neutral auctions with intermittent technologies. • Renewable and conventional technologies energy auction offer curves. • Increase bid prices in auctions as a consequence of solar technology support.

  16. Outlook for world nuclear power generation and long-term energy supply and demand situations

    International Nuclear Information System (INIS)

    Matsuo, Yuhji

    2012-01-01

    In this article, the author presents a long-term outlook for the world's nuclear generating capacity, taking into account the nuclear policy changes after Fukushima Daiichi nuclear power plant accident. World primary energy demand will grow from 11.2 billion tons of oil equivalent (toe) in 2009 to 17.3 billion toe in 2035. Along with this rapid increase in global energy consumption, the world's nuclear generating capacity will grow from 392 GW in 2010 to 484 GW in 2020 and 574 GW in 2035 in the 'Reference scenario'. Even in the 'Low nuclear scenario', where the maximum impact of Fukushima accident to the nuclear policies of each government is assumed, it will continue to grow in the future, exceeding 500 GW in 2035. In particular, Asian countries such as China and India will lead the growth both in the energy demand and in the nuclear power capacity. Therefore, it is essential to better ensure the safety of nuclear power generation. It is important for technologically developed countries, including Japan, to make active contributions to the establishment of a global nuclear safety control system. On the other hand, energy security and global warming will continue to be major issues, which will make it indispensable to make the best effort to save energy and expand renewable energy utilization. Japan is competitive in energy-saving and environmental conservation technologies, thus further development and utilization of there technologies should be a key option of Japan's growth growth strategy in the future. (author)

  17. Fusion energy in context: its fitness for the long term

    International Nuclear Information System (INIS)

    Holdren, J.P.

    1978-01-01

    Long-term limits to growth in energy will be imposed not by inability to expand supply, but by the rising environmental and social costs of doing so. These costs will therefore be cental issues in choosing long-term options. Fusion, like solar energy, is not one possibility but many, some with very attractive environmental characteristics and others perhaps little better in these regards than fission. None of the fusion options will be cheap, and none is likely to be widely available before the year 2010. The most attractive forms of fusion may require greater investments of time and money to achieve, but they are the real reason for wanting fusion at all

  18. The role of nuclear energy for Korean long-term energy supply strategy : application of energy demand-supply model

    International Nuclear Information System (INIS)

    Chae, Kyu Nam

    1995-02-01

    An energy demand and supply analysis is carried out to establish the future nuclear energy system of Korea in the situation of environmental restriction and resource depletion. Based on the useful energy intensity concept, a long-term energy demand forecasting model FIN2USE is developed to integrate with a supply model. The energy supply optimization model MESSAGE is improved to evaluate the role of nuclear energy system in Korean long-term energy supply strategy. Long-term demand for useful energy used as an exogeneous input of the energy supply model is derived from the trend of useful energy intensity by sectors and energy carriers. Supply-side optimization is performed for the overall energy system linked with the reactor and nuclear fuel cycle strategy. The limitation of fossil fuel resources and the CO 2 emission constraints are reflected as determinants of the future energy system. As a result of optimization of energy system using linear programming with the objective of total discounted system cost, the optimal energy system is obtained with detailed results on the nuclear sector for various scenarios. It is shown that the relative importance of nuclear energy would increase especially in the cases of CO 2 emission constraint. It is concluded that nuclear reactor strategy and fuel cycle strategy should be incorporated with national energy strategy and be changed according to environmental restriction and energy demand scenarios. It is shown that this modelling approach is suitable for a decision support system of nuclear energy policy

  19. The long-term global prospects for energy

    International Nuclear Information System (INIS)

    Ion, D.C.

    1985-01-01

    The subject is covered in sections, entitled: coal (accessible coal in significant coalfields in the 10 major producing countries, 1983; major coal production and exports, 1980 and estimates 1990 and 2000); crude oil (proved reserves and production, 1950 to present); resources for the future; possible future availability; economic growth, energy and oil demand; competition between coal and oil; stability of oil supplies; oil prices; natural gas (proved reserves; production); hydroelectricity; nuclear power; the renewable or inexhaustible energy sources; conclusions. (U.K.)

  20. Macro-economic and energy scenarios for Japan through the long-term

    International Nuclear Information System (INIS)

    Mankin, Shuichi

    1986-03-01

    As one of studies and systems analyses on the role of VHTR and process heat utilization in future energy systems, long-term macro economic and energy scenarios of Japan until the year 2030 have been generated. This paper presents,; 1) the outline of the long-term macro econometric model and the energy system dynamics model by which these scenarios were generated, 2) back grounds and prospects on future societies of Japan and exogeneous assumptions for calculations, and 3) macro energy and economic scenarios generated. Reflecting the present economic prospects, these scenarios are seemed to be of extremely low-growth type, however, the role of VHTR and its energy systems could be prospected clealy to play a large and important role within these scenario regions. Basic philosophies of scenario generations are also mentioned in this paper. (author)

  1. Compressed air system best practice programmes: What needs to change to secure long-term energy savings for New Zealand?

    International Nuclear Information System (INIS)

    Neale, James R.; Kamp, Peter J.J.

    2009-01-01

    The establishment of a compressed air system (CAS) best practice programme is a key component of one of the initial industrial energy efficiency programmes being driven by New Zealand government ministries and agencies. In a global context this is not a new initiative in that existing programmes have been functioning in Europe and USA, yet in each of these cases the impact ten years-on has been patchy with limited long-term improvements in overall energy efficiency. The New Zealand CAS best practice programme currently under development is sponsored by the Electricity Commission (EC) and the Energy Efficiency Conservation Authority (EECA). It takes a new approach in policy direction, with variations from those used in other international programmes. A significant level of electricity levy money is to be committed to this programme and it is timely to highlight its merits and potential weaknesses, and what is required to generate long-term energy savings beyond the levels achieved by more mature overseas programmes.

  2. Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley [National Renewable Energy Lab. (NREL), Golden, CO (United States); Frew, Bethany [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mai, Trieu [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bistline, John [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Blanford, Geoffrey [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Young, David [Electric Power Research Inst. (EPRI), Knoxville, TN (United States); Marcy, Cara [U.S. Energy Information Administration, Washington, DC (United States); Namovicz, Chris [U.S. Energy Information Administration, Washington, DC (United States); Edelman, Risa [US Environmental Protection Agency (EPA), Washington, DC (United States); Meroney, Bill [US Environmental Protection Agency (EPA), Washington, DC (United States); Sims, Ryan [US Environmental Protection Agency (EPA), Washington, DC (United States); Stenhouse, Jeb [US Environmental Protection Agency (EPA), Washington, DC (United States); Donohoo-Vallett, Paul [Dept. of Energy (DOE), Washington DC (United States)

    2017-11-01

    Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision-makers. With the recent surge in variable renewable energy (VRE) generators — primarily wind and solar photovoltaics — the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. This report summarizes the analyses and model experiments that were conducted as part of two workshops on modeling VRE for national-scale capacity expansion models. It discusses the various methods for treating VRE among four modeling teams from the Electric Power Research Institute (EPRI), the U.S. Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), and the National Renewable Energy Laboratory (NREL). The report reviews the findings from the two workshops and emphasizes the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making. This research is intended to inform the energy modeling community on the modeling of variable renewable resources, and is not intended to advocate for or against any particular energy technologies, resources, or policies.

  3. The long-term Global LAnd Surface Satellite (GLASS) product suite and applications

    Science.gov (United States)

    Liang, S.

    2015-12-01

    Our Earth's environment is experiencing rapid changes due to natural variability and human activities. To monitor, understand and predict environment changes to meet the economic, social and environmental needs, use of long-term high-quality satellite data products is critical. The Global LAnd Surface Satellite (GLASS) product suite, generated at Beijing Normal University, currently includes 12 products, including leaf area index (LAI), broadband shortwave albedo, broadband longwave emissivity, downwelling shortwave radiation and photosynthetically active radiation, land surface skin temperature, longwave net radiation, daytime all-wave net radiation, fraction of absorbed photosynetically active radiation absorbed by green vegetation (FAPAR), fraction of green vegetation coverage, gross primary productivity (GPP), and evapotranspiration (ET). Most products span from 1981-2014. The algorithms for producing these products have been published in the top remote sensing related journals and books. More and more applications have being reported in the scientific literature. The GLASS products are freely available at the Center for Global Change Data Processing and Analysis of Beijing Normal University (http://www.bnu-datacenter.com/), and the University of Maryland Global Land Cover Facility (http://glcf.umd.edu). After briefly introducing the basic characteristics of GLASS products, we will present some applications on the long-term environmental changes detected from GLASS products at both global and local scales. Detailed analysis of regional hotspots, such as Greenland, Tibetan plateau, and northern China, will be emphasized, where environmental changes have been mainly associated with climate warming, drought, land-atmosphere interactions, and human activities.

  4. Global energy modeling - A biophysical approach

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Michael

    2010-09-15

    This paper contrasts the standard economic approach to energy modelling with energy models using a biophysical approach. Neither of these approaches includes changing energy-returns-on-investment (EROI) due to declining resource quality or the capital intensive nature of renewable energy sources. Both of these factors will become increasingly important in the future. An extension to the biophysical approach is outlined which encompasses a dynamic EROI function that explicitly incorporates technological learning. The model is used to explore several scenarios of long-term future energy supply especially concerning the global transition to renewable energy sources in the quest for a sustainable energy system.

  5. Global Uranium Supply Ensured for Long Term, New Report Shows

    International Nuclear Information System (INIS)

    2012-01-01

    Full text: Uranium resources and production are on the rise with the security of uranium supply ensured for the long term, according to a new report by the OECD Nuclear Energy Agency (NEA) and the International Atomic Energy Agency (IAEA). Uranium 2011: Resources, Production and Demand, commonly referred to as the ''Red Book'', shows that total identified uranium resources have grown 12.5% since 2008. However, the costs of production have also increased, leading to reductions in lower cost category resources. These figures, which reflect the situation as of 1 January 2011, mean that total identified resources are sufficient for over 100 years of supply based on current requirements. Global uranium mine production increased by over 25% between 2008 and 2010 because of significantly increased production in Kazakhstan, currently the world's leading producer. The increased resource base has been achieved thanks to a 22% increase in uranium exploration and mine development expenditures between 2008 and 2010, which in 2010 totalled over $2 billion. Demand for uranium is expected to continue to rise for the foreseeable future. Although the Fukushima Daiichi nuclear accident has affected nuclear power projects and policies in some countries, nuclear power remains a key part of the global energy mix. Several governments have plans for new nuclear power plant construction, with the strongest expansion expected in China, India, the Republic of Korea and the Russian Federation. The speed and magnitude of growth in generating capacity elsewhere is still to be determined. By the year 2035, according to the joint NEA-IAEA Secretariat, world nuclear electricity generating capacity is projected to grow from 375 GWe net (at the end of 2010) to between 540 GWe net in the low demand case and 746 GWe net in the high demand case, increases of 44% and 99% respectively. Accordingly, world annual reactor-related uranium requirements are projected to rise from 63 875 tonnes of uranium metal

  6. Energy Systems Scenario Modelling and Long Term Forecasting of Hourly Electricity Demand

    DEFF Research Database (Denmark)

    Alberg Østergaard, Poul; Møller Andersen, Frits; Kwon, Pil Seok

    2015-01-01

    . The results show that even with a limited short term electric car fleet, these will have a significant effect on the energy system; the energy system’s ability to integrate wind power and the demand for condensing power generation capacity in the system. Charging patterns and flexibility have significant...... or inflexible electric vehicles and individual heat pumps, and in the long term it is investigated what the effects of changes in the load profiles due to changing weights of demand sectors are. The analyses are based on energy systems simulations using EnergyPLAN and demand forecasting using the Helena model...... effects on this. Likewise, individual heat pumps may affect the system operation if they are equipped with heat storages. The analyses also show that the long term changes in electricity demand curve profiles have little impact on the energy system performance. The flexibility given by heat pumps...

  7. Analysis of Long-term Energy and Carbon Emission Scenarios for India

    International Nuclear Information System (INIS)

    Rajesh, N.; Kapshe, M.; Shukla, P.R.; Garg, A.; Rana, A.

    2003-01-01

    In the coming years India faces great challenges in energy and environment. The path of development chosen by India, upon which lies the future growth of energy and emission trajectories, would be greatly influenced by technological developments both within and outside the country, economic cooperation between countries, and global cooperation in limiting greenhouse gas emissions. This paper discusses the integrated modeling system used for developing and analyzing the long-term trajectories and presents results for the scenarios developed. In the context of ongoing market reforms two scenarios - accelerated and decelerated reforms - are developed depicting fast and slow progress in energy sector reforms compared to expectations in the baseline scenario. Accelerated market reforms would spur improvements in technological efficiencies. Reforms would lower investment risks in India, thereby stimulating increased levels of foreign direct investment. On the other hand in decelerated reform scenario economic growth is lower than that in the base case, there is low access to capital, and technological improvements lag behind those in the base case. In another scenario we assume specific policy interventions for penetration of renewable technologies over the baseline scenario, for promotion and accelerated deployment of renewable energy technologies over and above the baseline assumptions. A scenario with carbon (c) constraints has also been developed and the results discussed

  8. Long vs. short-term energy storage:sensitivity analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Schoenung, Susan M. (Longitude 122 West, Inc., Menlo Park, CA); Hassenzahl, William V. (,Advanced Energy Analysis, Piedmont, CA)

    2007-07-01

    This report extends earlier work to characterize long-duration and short-duration energy storage technologies, primarily on the basis of life-cycle cost, and to investigate sensitivities to various input assumptions. Another technology--asymmetric lead-carbon capacitors--has also been added. Energy storage technologies are examined for three application categories--bulk energy storage, distributed generation, and power quality--with significant variations in discharge time and storage capacity. Sensitivity analyses include cost of electricity and natural gas, and system life, which impacts replacement costs and capital carrying charges. Results are presented in terms of annual cost, $/kW-yr. A major variable affecting system cost is hours of storage available for discharge.

  9. Analysis of Long-Term Global Solar Radiation, Sunshine Duration and Air Temperature Data of Ankara and Modeling with Curve Fitting Methods

    Directory of Open Access Journals (Sweden)

    Mehmet YEŞİLBUDAK

    2018-03-01

    Full Text Available The information about solar parameters is important in the installation of photovoltaic energy systems that are reliable, environmentally friendly and sustainable. In this study, initially, long-term global solar radiation, sunshine duration and air temperature data of Ankara are analyzed on the annual, monthly and daily basis, elaborately. Afterwards, three different empirical methods that are polynomial, Gaussian and Fourier are used for the purpose of modeling long-term monthly total global solar radiation, monthly total sunshine duration and monthly mean air temperature data. The coefficient of determination and the root mean square error are computed as statistical test metrics in order to compare data modeling performance of the mentioned empirical methods. The empirical methods that provide the best results enable to model the solar characteristics of Ankara more accurately and the achieved outcomes constitute the significant resource for other locations with similar climatic conditions.

  10. Comparing long term energy scenarios; Scenari energetici di lungo termine

    Energy Technology Data Exchange (ETDEWEB)

    Cumo, M.; Simbolotti, G. [Rome Univ. La Sapienza, Rome (Italy)

    2001-02-01

    Major projection studies by international organizations and senior analysts have been compared with reference to individual key parameters (population, energy demand/supply, resources, technology, emissions and global warming) to understand trends and implications of the different scenarios. Then, looking at the long term (i.e., 2050 and beyond), parameters and trends have been compared together to understand and quantify whether and when possible crisis or market turbulence might occur due to shortage of resources or environmental problems. [Italian] Viene presentato un confronto degli scenari energetici di lungo termine formulati dalle agenzie internazionali e dai maggiori analisti del settore con particolare riferimento alla evoluzione di specifici parametri quali sviluppo demografico, domanda e offerta di energia, risorse energetiche, sviluppo tecnologico, emissioni e relativi cambiamenti climatici. L'evoluzione e l'interdipendenza dei singoli aspetti vengono analizzate al fine di individuare la possibile evenienza di crisi o turbolenze dei mercati energetici indotte da carenza di risorse o da problemi ambientali.

  11. Long-term scenarios and strategies for the deployment of renewable energies in Germany

    International Nuclear Information System (INIS)

    Pregger, Thomas; Nitsch, Joachim; Naegler, Tobias

    2013-01-01

    The transformation of the energy supply in Germany (the “Energiewende”) as described in the German Federal government’s ‘Energy Concept’ (Energiekonzept, 2010) is based on a political consensus about long-term targets for energy efficiency and renewable energies. The aim of this article is to present a consistent scenario for this transformation process reflecting the long-term implementation of renewable energies and the possible future structure of the German energy system as a whole. Structural and economic effects of this development are derived and discussed. It summarizes results of scenario analyses done by the department of Systems Analysis and Technology Assessment of the German Aerospace Center as part of a three-year research project for the German Federal Ministry for the Environment. The underlying study provides a detailed data base reflecting a long-term roadmap for the energy system transformation in Germany. The scenarios show that the policy targets are consistent and can be achieved, if appropriate policy measures are to be implemented. The economic analysis shows the amount of investments and the strong market dynamics required for new generation technologies but also the huge economic benefits that can result from this development path in terms of fuel cost savings and lower fuel imports. - Highlights: • Long-term scenario for the German energy system according to the political targets. • Comparison of three variants with differing developments of the fleets of vehicles. • Analysis of economic effects: investments, generation and differential costs. • Importance of strategies in the sectors electricity, heat, and transportation. • Recommended measures for the successful implementation of the CO 2 reductions

  12. Long-term program on research, development and application of atomic energy

    International Nuclear Information System (INIS)

    2000-01-01

    As the Committee of Atomic Energy in Japan has established eight times of the 'long-term basic program on development and application of atomic energy at every five years since 1956, these have consistently done every important roles as a leader of programmable promotion of policies on research, development and application of atomic energy in Japan. And, they also have showed some basic concepts on its research, development and application such as safety security, keeping of peaceful application, and so on, and also done a role as a strength with universality for promotion of their sure practices. Then, the Committee requested some surveys and discussions on establishment decided as a new long-term program on May, 1999, to a meeting on establishment of the long-term program, so as to clearly show a basic plan and its promoting measures on research, development and application of atomic energy to be adopted by Japan through the 21st Century under understanding of changes of various affairs after establishment of the previous program, to Japanese peoples, international society and nuclear relatives. The finished program is composed of two parts which are the first part of describing some messages toward Japanese peoples and society and international society and the second part of expressing concrete indications and promoting measures for practicing research, development and application of atomic energy. Here was shown on all sentences of the establishment containing the two parts of present condition and future way on research, development and application of atomic energy' and 'future evolution of research, development and application of atomic energy'. (G.K.)

  13. Long-term tradeoffs between nuclear- and fossil-fuel burning

    International Nuclear Information System (INIS)

    Krakowski, R.A.

    1996-01-01

    A global energy/economics/environmental (E 3 ) model has been adapted with a nuclear energy/materials model to understand better open-quotes top-levelclose quotes, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a open-quotes business-as-usualclose quotes (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year ∼2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations)

  14. Modeling of long-term energy system of Japan

    International Nuclear Information System (INIS)

    Gotoh, Yoshitaka; Sato, Osamu; Tadokoro, Yoshihiro

    1999-07-01

    In order to analyze the future potential of reducing carbon dioxide emissions, the long-term energy system of Japan was modeled following the framework of the MARKAL model, and the database of energy technology characteristics was developed. First, a reference energy system was built by incorporating all important energy sources and technologies that will be available until the year 2050. This system consists of 25 primary energy sources, 33 technologies for electric power generation and/or low temperature heat production, 97 technologies for energy transformation, storage, and distribution, and 170 end-use technologies. Second, the database was developed for the characteristics of individual technologies in the system. The characteristic data consists of input and output of energy carriers, efficiency, availability, lifetime, investment cost, operation and maintenance cost, CO 2 emission coefficient, and others. Since a large number of technologies are included in the system, this report focuses modeling of a supply side, and involves the database of energy technologies other than for end-use purposes. (author)

  15. Potentials for energy savings and long term energy demand of Croatian households sector

    International Nuclear Information System (INIS)

    Pukšec, Tomislav; Vad Mathiesen, Brian; Duić, Neven

    2013-01-01

    Highlights: ► Long term energy demand of Croatian households sector has been modelled. ► Developed model can describe the whole households sector. ► Main modes include heating, cooling, electrical appliances, cooking and hot water. ► Different scenarios regarding future energy demand are presented and discussed. -- Abstract: Households represent one of the most interesting sectors, when analyzing Croatia’s energy balance. It makes up one of the largest energy consumers with around 75 PJ per year, which is almost 29% of Croatia’s final energy demand. Considering this consumption, implementing various mechanisms, which would lead to improvements in energy efficiency of this sector, seems relevant. In order to plan future energy systems, important would be to know future possibilities and needs regarding energy demand of different sectors. Through this paper, long term energy demand projections of Croatian households sector will be shown. Focus of the paper will be on various mechanisms influencing future energy demand scenarios. Important would be to quantify this influence, whether positive or negative, and see which mechanisms would be the most significant. Energy demand projections in this paper are based upon bottom-up approach model which combines and processes a large number of input data. The model will be compared to Croatian National Energy Strategy and certain differences and conclusions will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which leads to lower GHG emissions and lower Croatian dependence on foreign fossil fuels.

  16. A review of 'long-term energy supply and demand outlook'

    International Nuclear Information System (INIS)

    Hoshino, Yuko; Hamagata, Sumio; Nagata, Yutaka

    2016-01-01

    In this paper, we reviewed the 'Long-term Energy Supply and Demand Outlook' based on our original Japan's Economy and Energy Outlook toward 2030. 'The Long-term Energy Supply and Demand Outlook' was based on the following three basic policies: (1) Energy self-sufficiency rate in 2030 should be around 25 percent. (2) Electricity Costs in 2030 should be lower than the current level in 2013. (3) Emissions target of GHGs in 2030 should not be lower than that of EU and the US. Moreover, there were many assumptions or constraints, such as assumed economic growth rate consistent to the government's macro-economic policy and the share of renewable energy more than 20 percent. In order to satisfy the above mentioned conditions, an extraordinary energy saving should be implemented in the scenario. The assumed intensity of energy saving is as much as that after the two oil crises. We estimated the cost of that magnitude of energy saving based on our model simulation, which revealed that in order to achieve the energy saving target, the electricity price should be 80% higher than the business as usual case. In addition, we reviewed the long-term energy supply and demand scenarios of major developed countries such as the UK, the US, Italy, Germany and Australia. We found that most of the scenarios depend on a large scale of energy saving in order to achieve the GHG emissions reductions targets. The reality of those energy saving targets should be carefully re-examined under the low oil price environment. (author)

  17. Short-term influences and long-term fundamentals: stabilizing and destabilizing effects in the energy industries

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Silvan [Royal Inst. of International Affairs, London (United Kingdom)

    1992-10-01

    The ideology of the market economy has become dominant in all walks of economic life and the energy industries are no exception. In the oil business, the stabilizing structures of the international majors and of long-term prices have been replaced by industrial fragmentation and market price mechanisms. Monopolies in other energy industries are being progressively dismantled. This live experiment is being conducted on an industry which historically has suffered from feast and famine economics and has tried to protect itself through various forms of cartelization. The short-term effects of this open market have so far tended to improve flexibility and consumer choice. The price instability has proved manageable. The danger is that cash flow compression will reduced investments in the future and an ability to make very long lead time shifts in the energy mix. For this some government intervention in markets is necessary. (author).

  18. The relationship of long term global temperature change and human fertility.

    Science.gov (United States)

    Fisch, Harry; Andrews, Howard F; Fisch, Karen S; Golden, Robert; Liberson, Gary; Olsson, Carl A

    2003-07-01

    According to the United Nations, global fertility has declined in the last century as reflected by a decline in birth rates. The earth's surface air temperature has increased considerably and is referred to as global warming. Since changes in temperature are well known to influence fertility we sought to determine if a statistical relationship exists between long-term changes in global air temperatures and birth rates. The most complete and reliable birth rate data in the 20th century was available in 19 industrialized countries. Using bivariate and multiple regression analysis, we compared yearly birth rates from these countries to global air temperatures from 1900 to 1994.A common pattern of change in birth rates was noted for the 19 industrialized countries studied. In general, birth rates declined markedly throughout the century except during the baby boom period of approximately 1940 to 1964. An inverse relationship was found between changes in global temperatures and birth rates in all 19 countries. Controlling for the linear yearly decline in birth rates over time, this relationship remained statistically significant for all the 19 countries in aggregate and in seven countries individually (phuman fertility may have been influenced by change in environmental temperatures.

  19. Alterations to global but not local motion processing in long-term ecstasy (MDMA) users.

    Science.gov (United States)

    White, Claire; Brown, John; Edwards, Mark

    2014-07-01

    Growing evidence indicates that the main psychoactive ingredient in the illegal drug "ecstasy" (methylendioxymethamphetamine) causes reduced activity in the serotonin and gamma-aminobutyric acid (GABA) systems in humans. On the basis of substantial serotonin input to the occipital lobe, recent research investigated visual processing in long-term users and found a larger magnitude of the tilt aftereffect, interpreted to reflect broadened orientation tuning bandwidths. Further research found higher orientation discrimination thresholds and reduced long-range interactions in the primary visual area of ecstasy users. The aim of the present research was to investigate whether serotonin-mediated V1 visual processing deficits in ecstasy users extend to motion processing mechanisms. Forty-five participants (21 controls, 24 drug users) completed two psychophysical studies: A direction discrimination study directly measured local motion processing in V1, while a motion coherence task tested global motion processing in area V5/MT. "Primary" ecstasy users (n = 18), those without substantial polydrug use, had significantly lower global motion thresholds than controls [p = 0.027, Cohen's d = 0.78 (large)], indicating increased sensitivity to global motion stimuli, but no difference in local motion processing (p = 0.365). These results extend on previous research investigating the long-term effects of illicit drugs on visual processing. Two possible explanations are explored: defuse attentional processes may be facilitating spatial pooling of motion signals in users. Alternatively, it may be that a GABA-mediated disruption to V5/MT processing is reducing spatial suppression and therefore improving global motion perception in ecstasy users.

  20. Structural change of the economy, technological progress and long-term energy demand

    International Nuclear Information System (INIS)

    Klinge Jacobsen, H.

    2000-01-01

    The material included in the report is a collection of papers dealing with different issues related to the topics included in the title. Some of these papers have already either been published or presented at various conferences. Together with a general introduction, they constitute the author's PhD dissertation. The dissertation includes six papers and two shorter notes on different aspects of structural change of the economy and energy demand. Three different issues related to long-term energy demand are discussed: (1) the importance of technological change and its representation in energy-economy modelling, (2) an integration of two different modelling approaches, and (3) the effect on energy demand of structural changes exemplified by changes in the energy supply sector and in Danish trade patterns. The report highlights a few aspects of the interaction between structural economic changes and energy demand, but it does not intend to cover a wide range of issues related to these topics. In the introductory chapter some discussions and thoughts about issues not covered by the articles are brought forward. The introductory chapter includes an overview of possible relations between longterm energy demand and the economy, technical progress demography, social conditions and politics. The first two papers discuss the importance for projections of long-term energy demand of the way in which technological progress is modelled. These papers focus on energy-economy modelling. A paper dealing with two different approaches to energy demand modelling and the possible integration of these approaches in the Danish case follows next. The integrated Danish model, is then used for analysing different revenue recycling principles in relation to a CO 2 tax. The effect of subsidising biomass use is compared with recycling through corporate tax rates. Then a paper follows describing the structural change of a specific sector, namely the energy supply sector, and the implications for

  1. Long term outlook for gas supply and demand 2007-2030

    International Nuclear Information System (INIS)

    2010-05-01

    Given the economic crisis and the even greater focus of energy policy in recent years on energy efficiency and renewables, earlier expectations in respect of gas demand have to be lowered. Nonetheless, there are still good prospects for gas expanding its position in the EU energy market in the medium to long term. Environmental friendliness and highly efficient technologies in all areas of energy supply give gas a key role in a realistic EU climate policy, the goals of which cannot be achieved solely through increased use of renewables. Its green qualities make gas attractive in direct utilisation in homes and businesses, in centralised power generation, in local CHP plant (including micro-CHP), and - in some member states - in the transport sector too. The current slump in demand is accompanied by strong supply pressure on European procurement markets. Experts do not predict that the present excess supply situation will continue in the long term. It is expected that imports to Europe will rise in order to compensate for the impending fall in domestic European production and to supply additional gas. The procurement challenge cannot be considered in isolation from global developments. The increasing demand for gas worldwide will intensify the competition for global gas reserves on international markets. The European gas industry emphasises the importance of fostering long-term relationships with major suppliers, transit countries and key partners in the EU as well as with multilateral organisations and structures.

  2. Sustainable energy supply - a key to global growth

    International Nuclear Information System (INIS)

    Wright, J.K.

    2002-01-01

    From this overall concept of what constitutes sustainability, a range of considerations on equity of energy supply across regions, time scales over which fuel and energy source mixes and technology changes and the like, can be developed. Within the spatial dimension, considerations of sustainability that operate at the global scale need to be translated to the operations of large and small companies, national and local governments down to individual households. It is a complex mix in an increasingly complex world. But one thing is certain, the world's energy demand is going to continue to increase. This demand will be largely satisfied by fossil fuels and this use is not sustainable using current technology in the long term. Massive changes are required to turn the world around onto a more sustainable pathway that will probably take many decades even to make a significant start. The aim of this paper is to briefly explore some of the possible technological options that will guide us on the road to a more sustainable energy future. A genuinely sustainable energy system that also promotes sustainable growth with an improving standard of living for all is obviously a major challenge. At the same time the global demand for energy will continue to increase. On the global scale, the prospect of climate change imposes a major long-term constraint on the use of GHG emitting fuels and generating technologies. The long-term development of a sustainable energy system will require multiple interventions and a pluralistic approach to energy management. Ingredients within the mix are likely to require: 1. innovation in the way we currently generate and supply power 2. continued integration and greater penetration of renewables 3. greater use of embedded and distributed energy generation 4. aggressive end-use efficiency 5. development of technologies to enable continued use of fossil fuels until the transition to sustainability is completed. A combination of market and regulatory

  3. An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan

    Directory of Open Access Journals (Sweden)

    Syed Aziz Ur Rehman

    2017-11-01

    Full Text Available Energy planning and policy development require an in-depth assessment of energy resources and long-term demand forecast estimates. Pakistan, unfortunately, lacks reliable data on its energy resources as well do not have dependable long-term energy demand forecasts. As a result, the policy makers could not come up with an effective energy policy in the history of the country. Energy demand forecast has attained greatest ever attention in the perspective of growing population and diminishing fossil fuel resources. In this study, Pakistan’s energy demand forecast for electricity, natural gas, oil, coal and LPG across all the sectors of the economy have been undertaken. Three different energy demand forecasting methodologies, i.e., Autoregressive Integrated Moving Average (ARIMA, Holt-Winter and Long-range Energy Alternate Planning (LEAP model were used. The demand forecast estimates of each of these methods were compared using annual energy demand data. The results of this study suggest that ARIMA is more appropriate for energy demand forecasting for Pakistan compared to Holt-Winter model and LEAP model. It is estimated that industrial sector’s demand shall be highest in the year 2035 followed by transport and domestic sectors. The results further suggest that energy fuel mix will change considerably, such that oil will be the most highly consumed energy form (38.16% followed by natural gas (36.57%, electricity (16.22%, coal (7.52% and LPG (1.52% in 2035. In view of higher demand forecast of fossil fuels consumption, this study recommends that government should take the initiative for harnessing renewable energy resources for meeting future energy demand to not only avert huge import bill but also achieving energy security and sustainability in the long run.

  4. Long-Term Energy Trends – Where Will We Be in 2050?

    OpenAIRE

    DIAZ-RAINEY, Ivan

    2009-01-01

    4TH ENERDAY CONFERENCE ON ENERGY ECONOMICS AND TECHNOLOGY, TU DRESDEN APRIL 3RD, 2009 The fourth gathering of the popular ENERDAY Conference was a one day event guided by the giddy-sounding theme of “LONG-TERM ENERGY TRENDS – WHERE WILL WE BE IN 2050?” The event attracted over 90 European experts in energy policy, energy technology and energy economics from academia, regulators, consultancies, and the energy industry itself. The event took place under the umbrella of TU Dres...

  5. Improving the long-term sustainability of health aid: are Global Health Partnerships leading the way?

    Science.gov (United States)

    Dodd, Rebecca; Lane, Christopher

    2010-09-01

    Over the last decade development assistance for health has more than doubled. This increase provides an unprecedented opportunity to scale up health services, and in doing so, achieve the health Millennium Development Goals. However, sustaining scaling up will in turn require sustainable donor support until domestic health financing can substitute for it. The provision of long-term predictable finance is of particular concern in health because the bulk of costs are recurrent and many interventions require sustained, multi-year support to be successful. This is also true for health systems strengthening efforts. As the bulk of new aid resources flow through Global Health Partnerships (GHPs), their ability to make long-term commitments is critical to health systems development. In order to better understand the constraints that prevent development partners from making long-term commitments of health aid, the World Health Organization reviewed the practices of seven major health partners in committing development assistance funds over the long term. The review found increasing evidence of long-term commitments of aid for health in each of the seven agencies. The GHPs and their funders have been at the forefront of this trend, pioneering many of the new approaches. The study concludes that all partners have scope to improve the duration of aid within existing rules and regulations, and that the main constraints to doing so are political. Predictability is even more of a concern in current global economic circumstances, as access to resources begins to be squeezed. In this context it is important that we learn from GHPs, which have successfully tested innovative approaches to both raising and disbursing health funds. The prospects for change associated with the new administration in the United States-the largest health donor and the most unpredictable, but also a major supporter of GHPs-make this task even more urgent.

  6. Proposal of a molten-salt system for long-term energy production

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2002-01-01

    Within the framework of nuclear waste management studies, the 'ose-composent' concept is considered to be an attractive option for the long-term perspective. This paper proposes a new system called TASSE ('Thorium-based Accelerator-drives System with Simplified fuel cycle for long-term Energy production') destined for the current French park renewal. The main idea of the TASSE concept is to simplify both the front end and the back end of the fuel cycle. Its major goal is to provide electricity with low waste production and economical competitiveness. (author)

  7. The role and position of nuclear energy in the long-term energy supply of China

    International Nuclear Information System (INIS)

    Bao Yunqiao

    1992-03-01

    The history for development of world nuclear energy and policies in various countries are retrospected, and the development of world nuclear energy is reviewed. On the basis of analysis for the economy of nuclear power in abroad, it is verified that the cost of nuclear power is cheaper than that of coal-fired power. In the future, the nuclear power is still competitive in economy. The prospect for long-term energy supply in China is predicted on the present situation of energy industry. It is estimated that the gap between energy demands and supply will become larger and larger. The solution is to develop nuclear energy in south-east area. The long-term demands of electricity and electrical resources are estimated in China, and if nuclear energy is utilized, it will optimize the constitution of electricity. The economy of nuclear power is also evaluated. It is expected that the nuclear power will be cheaper than that of coal-fired power in China after equipment are made domestically and serially. From the analysis of the conditions of communication, transportation and pollution, the development of nuclear energy will reduce the tension of transportation and improve the environmental quality. Finally, the prospect of developing nuclear heating and the supply level of uranium resources in China are analyzed

  8. Biofuels in the long-run global energy supply mix for transportation.

    Science.gov (United States)

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels.

  9. Long-term effects on nursing alumni: Assessing a course in public and global health.

    Science.gov (United States)

    Palmer, Sheri P; Lundberg, Karen; de la Cruz, Karen; Corbett, Cheryl; Heaston, Sondra; Reed, Shelly; Williams, Mary

    The impact of a cultural awareness course among nursing students may affect the particular person for years to come. Cultural awareness can be taught via many methods, often requiring study abroad and/or extreme investment of time, money and effort. There is little research on sustained effects on nursing alumni from such a course. The purpose of this descriptive survey study was to determine the long term outcomes of a cultural awareness course and 2) compare the long term effects between alumni who went abroad and those who chose to complete the course locally. One hundred and twenty-one nursing alumni completed the International Education Survey (IES) (Zorn, 1996) with additional open-ended questions. Quantitative and qualitative results concluded: 1) nursing alumni were influenced long term by a course dedicated to public and global health and 2) all alumni had statistically significant IES scores but alumni who studied abroad had the greatest increase. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Role and potential of renewable energy and energy efficiency for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  11. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn

    Science.gov (United States)

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emis-sions, and global warming potential (GWP) in irrigated systems, however,...

  12. Role of thorium in ensuring long term energy security to India

    International Nuclear Information System (INIS)

    Malhotra, S.K.

    2013-01-01

    Role of nuclear power in ensuring energy security to the world is inevitable due to a) dwindling fossil fuel resources and b) need for minimising green house gas emission that poses the risk of global climate change. India, keeping in mind its limited uranium and vast thorium resources, is pursuing a three stage nuclear power programme. The first stage is based on reactors that use uranium as fuel. It comprises of the indigenous Pressurised Heavy Water Reactors using natural uranium as fuel and light water reactors that employ enriched uranium as fuel and are to be set up in technical collaboration with other countries. The second stage is based on fast breeder reactors that employ plutonium derived from reprocessing of spent fuel from the first stage reactors. The third stage envisages reactors which will employ thorium based fuel after its irradiation in the second stage reactors. This programme is sequential in nature and has an ultimate objective of securing long term energy security to India through judicial use of its thorium resources. Thorium based reactors offer advantages in terms of better neutronic characteristics of thorium, it being better fertile host for plutonium disposition and better thermo-mechanical properties and slower fuel deterioration of thorium oxide. It is planned to introduce thorium in the Indian Nuclear Power Programme after sufficient (about 200 GWe) capacity build-up in the second stage. DAE is a global leader in the development of the entire thorium fuel cycle. It has a mature technology for extraction of thorium and preparation of thoria pellets. It has long back carried out irradiation of thoria pellets in its research reactors and also in PHWRs, post irradiation examination and reprocessing of irradiated thoria, fabrication of 233 U based fuel. It has KAMINI - the world's only operating reactor employing 233 U as fuel. An Advanced Heavy Water Reactor (AHWR) has been designed as a technology demonstrator for large scale

  13. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    International Nuclear Information System (INIS)

    Soerensen, B.; Meibom, P.; Kuemmel, B.

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  14. Long-term scenarios for global energy demand and supply. Four global greenhouse mitigation scenarios. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, B; Meibom, P [Technical Univ. of Denmark, Lyngby (Denmark); Kuemmel, B [Royal Agricultural and Veterinary Univ., Tastrup (Denmark)

    1999-01-01

    The scenario method is used to investigate energy demand and supply systems for the 21st century. A geographical information system (GIS) is employed to assess the spatial match between supply and demand, and the robustness of the scenario against changes in assumptions is discussed, for scenarios using fossil fuels without carbon dioxide emissions, nuclear fuels with reduced accident and proliferation risks, and renewable energy from local and from more centralised installations: The year 2050 demand scenario is based on a very high goal satisfaction in all regions of the world, for the middle UN population projection. All energy efficiency measures that are technically ready and economic today are assumed in effect by year 2050. An increased fraction of total activities are assumed to occur in non-material sectors. Technical, economic and implementation issues are discussed, including the resilience to changes in particularly demand assumptions and the type of framework that would allow energy policy to employ any of (or a mix of) the scenario options. Results are presented as average energy flows per unit of land area. This geographically based presentation method gives additional insights, particularly for the dispersed renewable energy systems, but in all cases it allows to identify the need for energy transmission and trade between regions, and to display it in a visually suggestive fashion. The scenarios are examples of greenhouse mitigation scenarios, all characterised by near-zero emissions of greenhouse gases to the atmosphere. All are more expensive than the present system, but only if the cost of the negative impacts from the current system is neglected. As options for global energy policy during the next decades, the clean fossil and the renewable energy options (possibly in combination) are the only realistic ones, because the safe nuclear option requires research and development that most likely will take longer time, if it can at all be carried

  15. Energy renovation of single-family houses in Denmark utilising long-term financing based on equity

    DEFF Research Database (Denmark)

    Kragh, Jesper; Rose, Jørgen

    2011-01-01

    This paper aims to present an economic overview of the opportunities for energy renovation of single-family houses in Denmark financed over the long term. The paper focuses on the economic difference between energy savings and the repayment of investment. Taking out the average remaining 20% equity...... in long-term property mortgage loans and utilising it for extensive energy renovation improves both the economy and the extent of included measures. Approximately 30% of energy consumption in Denmark is used for space heating. The existing 1 million single-family houses account for approximately half...

  16. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2011-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  17. Potentials for energy savings and long term energy demands for Croatian households sector

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Duic, Neven

    2013-01-01

    demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels....... relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both...... financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom...

  18. Nuclear energy contribution to restraining greenhouse gas emissions and long-term energy production

    International Nuclear Information System (INIS)

    Khoda-Bakhsh, R.

    2004-01-01

    An important source of greenhouse gases, in particular Co 2 , is fossil fuel combustion for energy applications. Since nuclear power is an energy source that does not produce Co 2 , nuclear energy is already making a contribution to restraining greenhouse gas emissions. Because it has been internationally decided to reduce carbon dioxide emission before the year 2005 in order to avoid the green house catastrophy of the earth's atmosphere, and since there is an urgent need of energy especially in the developing countries, there is now a strong demand for alternative energy sources. While the established low cost energy production by light water nuclear fission reactors could be a solution for a period of transition (limited by resources of the light Uranium isotope), fusion energy is of interest for long- term and large scale energy production to provide the increased energy demand

  19. Evaluating the Long-term Water Cycle Trends at a Global-scale using Satellite and Assimilation Datasets

    Science.gov (United States)

    Kim, H.; Lakshmi, V.

    2017-12-01

    Global-scale soil moisture and rainfall products retrieved from remotely sensed and assimilation datasets provide an effective way to monitor near surface soil moisture content and precipitation with sub-daily temporal resolution. In the present study, we employed the concept of the stored precipitation fraction Fp(f) in order to examine the long-term water cycle trends at a global-scale. The analysis was done for Fp(f) trends with the various geophysical aspects such as climate zone, land use classifications, amount of vegetation, and soil properties. Furthermore, we compared a global-scale Fp(f) using different microwave-based satellite soil moisture datasets. The Fp(f) is calculated by utilized surface soil moisture dataset from Soil Moisture Active Passive (SMAP), Soil Moisture and Ocean Salinity, Advanced Scatterometer, Advanced Microwave Scanning Radiometer 2, and precipitation information from Global Precipitation Measurement Mission and Global Land Data Assimilation System. Different results from microwave-based soil moisture dataset showed discordant results particularly over arid and highly vegetated regions. The results of this study provide us new insights of the long-term water cycle trends over different land surface areas. Thereby also highlighting the advantages of the recently available GPM and SMAP datasets for the uses in various hydrometeorological applications.

  20. An econometric study on long-term energy outlook and the implications of renewable energy utilization in Malaysia

    International Nuclear Information System (INIS)

    Gan, Peck Yean; Li, ZhiDong

    2008-01-01

    We developed a comprehensive econometric model to study the long-term outlook of Malaysia's economy, energy and environment to 2030. Our projections under the reference scenario indicated that Malaysia's gross domestic production (GDP) is expected to average 4.6% from 2004 to 2030, and total primary energy consumption will triple by 2030. Coal import will increase following governmental policy of intensifying its use for power generation. Oil import is predicted to take place by 2013 and reach 45 Mtoe in 2030. Hence, in the near future, Malaysia's energy import dependency will rise. Carbon emissions will triple by 2030. On the other hand, our projections under an alternative renewable energy (RE) scenario showed that the utilization of RE is a strategic option to improve the long-term energy security and environmental performance of Malaysia. However, substantial governmental involvements and support, as well as the establishment of a regulatory framework are necessary. (author)

  1. Global variation in the long-term seasonal changes observed in ionospheric F region data

    Directory of Open Access Journals (Sweden)

    C. J. Scott

    2015-04-01

    Full Text Available Long-term variability has previously been observed in the relative magnitude of annual and semi-annual variations in the critical frequency (related to the peak electron concentration of the ionospheric F2 layer (foF2. In this paper we investigate the global patterns in such variability by calculating the time varying power ratio of semi-annual to annual components seen in ionospheric foF2 data sequences from 77 ionospheric monitoring stations around the world. The temporal variation in power ratios observed at each station was then correlated with the same parameter calculated from similar epochs for the Slough/Chilton data set (for which there exists the longest continuous sequence of ionospheric data. This technique reveals strong regional variation in the data, which bears a striking similarity to the regional variation observed in long-term changes to the height of the ionospheric F2 layer. We argue that since both the height and peak density of the ionospheric F2 region are influenced by changes to thermospheric circulation and composition, the observed long-term and regional variability can be explained by such changes. In the absence of long-term measurements of thermospheric composition, detailed modelling work is required to investigate these processes.

  2. Energy Efficiency in Building as a Basic Prerequisite for a Long Term Energy Strategies Realization, Environmental Protection and Sustainability

    International Nuclear Information System (INIS)

    Miscevic, Lj.

    2006-01-01

    Energy efficiency in buildings at the low-energy and 'passive house' standard levels is presently the basic prerequisite for considering and formulating long term strategies, which with the task of meeting energy needs and system maintenance respond to requests of environmental protection and improvements in the context of sustainable development. Orientation to sustainable development is integrated in the development strategies of Croatia. The application of renewable energy sources, in particular solar energy in passive and active systems in the architecture is permanently confirmed by conducting energy monitoring and growing number of domestic studies, projects and realizations. The long-time research project of the European Union Cost Efficient Passive Houses as European Standards (CEPHEUS) with scientific monitoring corroborated energy and economic efficiency of such architectural designs in Germany, France, Austria, and Switzerland. Thus, the 'passive house' is proposed as a standard of residential architecture, but also of the construction of other functional types of architecture in general. The accomplished energy efficiency and verified favorable profitability of investment developed new forms of incentives to low-energy and passive architecture and relevant changes in concepts of long term energy strategies in the European Union member states. In Austria the 1000th passive house was built, and the city of Frankfurt/M brought decision regarding financing building construction through the city budget at the 'passive house' level. The new Technical Regulation on energy savings and thermal protection in Croatia, which is effectively in force as of 1 July, is a long-awaited step towards energy efficiency. Although, according to this Regulation the tolerance in energy use for space heating goes, in worst case calculation, up to 89 kWh/m2 a year, any other more favorable calculation with obligation to calculate the share of solar radiation for buildings, opens

  3. Biochemical Mechanisms and Energy Strategies of Geobacter sulfurreducens for Long- Term Survival

    Science.gov (United States)

    Helmus, R. A.; Liermann, L. J.; Brantley, S. L.; Tien, M.

    2008-12-01

    Numerous species of bacteria have been observed to exhibit a growth advantage in stationary phase (GASP) phenotype, indicating that microorganisms starved of an energy source may adapt to allow for long-term survival. Understanding how Geobacter sulfurreducens persists using various metal forms as energy sources and whether a GASP phenotype develops during long-term growth are important for efficient application of this bacterium to sites requiring engineered bioremediation of soluble metals. Thus, we investigated the growth kinetics and survival of G. sulfurreducens. The growth rate of G. sulfurreducens was highest when cultured with soluble iron and generally higher on iron oxide than manganese oxide, suggesting that soluble metal forms are more readily utilized as energy sources by G. sulfurreducens. By monitoring the abundance of G. sulfurreducens in batch cultures for >6 months, distinct growth, stationary, and prolonged starvation phases were observed and a cell density of 105- 106 cells/mL persisted under long-term starvation conditions. The outgrowth of an aged G. sulfurreducens strain co-cultured with a young strain was monitored as a measure of the existence of the GASP phenotype. As the strains aged, the rpoS gene was cloned and sequenced at different stages of growth to identify mutations corresponding to a growth advantage. The results of these studies provide insight into the use of various metal forms for growth by G. sulfurreducens and its ability to persist when starved of energy sources.

  4. Long term building energy demand for India: Disaggregating end use energy services in an integrated assessment modeling framework

    International Nuclear Information System (INIS)

    Chaturvedi, Vaibhav; Eom, Jiyong; Clarke, Leon E.; Shukla, Priyadarshi R.

    2014-01-01

    With increasing population, income, and urbanization, meeting the energy service demands for the building sector will be a huge challenge for Indian energy policy. Although there is broad consensus that the Indian building sector will grow and evolve over the coming century, there is little understanding of the potential nature of this evolution over the longer term. The present study uses a technologically detailed, service based building energy model nested in the long term, global, integrated assessment framework, GCAM, to produce scenarios of the evolution of the Indian buildings sector up through the end of the century. The results support the idea that as India evolves toward developed country per-capita income levels, its building sector will largely evolve to resemble those of the currently developed countries (heavy reliance on electricity both for increasing cooling loads and a range of emerging appliance and other plug loads), albeit with unique characteristics based on its climate conditions (cooling dominating heating and even more so with climate change), on fuel preferences that may linger from the present (for example, a preference for gas for cooking), and vestiges of its development path (including remnants of rural poor that use substantial quantities of traditional biomass). - Highlights: ► Building sector final energy demand in India will grow to over five times by century end. ► Space cooling and appliance services will grow substantially in the future. ► Energy service demands will be met predominantly by electricity and gas. ► Urban centers will face huge demand for floor space and building energy services. ► Carbon tax policy will have little effect on reducing building energy demands

  5. Global assessment of surfing conditions: seasonal, interannual and long-term variability

    Science.gov (United States)

    Espejo, A.; Losada, I.; Mendez, F.

    2012-12-01

    International surfing destinations owe a great debt to specific combinations of wind-wave, thermal conditions and local bathymetry. As surf quality depends on a vast number of geophysical variables, a multivariable standardized index on the basis of expert judgment is proposed to analyze surf resource in a worldwide domain. Data needed is obtained by combining several datasets (reanalyses): 60-year satellite-calibrated spectral wave hindcast (GOW, WaveWatchIII), wind fields from NCEP/NCAR, global sea surface temperature from ERSST.v3b, and global tides from TPXO7.1. A summary of the global surf resource is presented, which highlights the high degree of variability in surfable events. According to general atmospheric circulation, results show that west facing low to middle latitude coasts are more suitable for surfing, especially those in Southern Hemisphere. Month to month analysis reveals strong seasonal changes in the occurrence of surfable events, enhancing those in North Atlantic or North Pacific. Interannual variability is investigated by comparing occurrence values with global and regional climate patterns showing a great influence at both, global and regional scales. Analysis of long term trends shows an increase in the probability of surfable events over the west facing coasts on the planet (i.e. + 30 hours/year in California). The resulting maps provide useful information for surfers and surf related stakeholders, coastal planning, education, and basic research.; Figure 1. Global distribution of medium quality (a) and high quality surf conditions probability (b).

  6. Energy Policy and Long Term Energy Demand in Croatian Households Sector

    International Nuclear Information System (INIS)

    Puksec, T.; Duic, N.

    2011-01-01

    Households sector in Croatia represents one of the largest consumers of energy today with around 75,75PJ, which is almost 29% of Croatia's final energy demand. Considering this consumption, implementing different mechanisms that would lead to improvements in energy efficiency in this sector seems relevant. In order to plan future energy systems it is important to know future possibilities and needs regarding energy demand for different sectors. Through this paper long term energy demand projections for Croatian households sector will be shown with a special emphasis on different mechanisms, both financial, legal but also technological that will influence future energy demand scenarios. It is important to see how these mechanisms influence, positive or negative, on future energy demand and which mechanism would be most influential. Energy demand predictions in this paper are based upon bottom-up approach model which combines and process large number of input data. The Model will be compared to Croatian national Energy Strategy and certain difference will be presented. One of the major conclusions shown in this paper is significant possibilities for energy efficiency improvements and lower energy demand in the future, based on careful and rational energy planning. Different financial, legal and technological mechanisms can lead to significant savings in the households sector which also leads to lesser greenhouse gas emissions and lower Croatian dependence on foreign fossil fuels. (author)

  7. How consistent are global long-term satellite LAI products in terms of interannual variability and trend?

    Science.gov (United States)

    Jiang, C.; Ryu, Y.; Fang, H.

    2016-12-01

    Proper usage of global satellite LAI products requires comprehensive evaluation. To address this issue, the Committee on Earth Observation Satellites (CEOS) Land Product Validation (LPV) subgroup proposed a four-stage validation hierarchy. During the past decade, great efforts have been made following this validation framework, mainly focused on absolute magnitude, seasonal trajectory, and spatial pattern of those global satellite LAI products. However, interannual variability and trends of global satellite LAI products have been investigated marginally. Targeting on this gap, we made an intercomparison between seven global satellite LAI datasets, including four short-term ones: MODIS C5, MODIS C6, GEOV1, MERIS, and three long-term products ones: LAI3g, GLASS, and GLOBMAP. We calculated global annual LAI time series for each dataset, among which we found substantial differences. During the overlapped period (2003 - 2011), MODIS C5, GLASS and GLOBMAP have positive correlation (r > 0.6) between each other, while MODIS C6, GEOV1, MERIS, and LAI3g are highly consistent (r > 0.7) in interannual variations. However, the previous three datasets show negative trends, all of which use MODIS C5 reflectance data, whereas the latter four show positive trends, using MODIS C6, SPOT/VGT, ENVISAT/MERIS, and NOAA/AVHRR, respectively. During the pre-MODIS era (1982 - 1999), the three AVHRR-based datasets (LAI3g, GLASS and GLOBMAP) agree well (r > 0.7), yet all of them show oscillation related with NOAA platform changes. In addition, both GLASS and GLOBMAP show clear cut-points around 2000 when they move from AVHRR to MODIS. Such inconsistency is also visible for GEOV1, which uses SPOT-4 and SPOT-5 before and after 2002. We further investigate the map-to-map deviations among these products. This study highlights that continuous sensor calibration and cross calibration are essential to obtain reliable global LAI time series.

  8. An econometric study on long-term energy outlook and the implications of renewable energy utilization in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Peck Yean [Department of Engineering-Energy and Environment Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Li, ZhiDong [Department of Management and Information System Science, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188 (Japan)

    2008-02-15

    We developed a comprehensive econometric model to study the long-term outlook of Malaysia's economy, energy and environment to 2030. Our projections under the reference scenario indicated that Malaysia's gross domestic production (GDP) is expected to average 4.6% from 2004 to 2030, and total primary energy consumption will triple by 2030. Coal import will increase following governmental policy of intensifying its use for power generation. Oil import is predicted to take place by 2013 and reach 45 Mtoe in 2030. Hence, in the near future, Malaysia's energy import dependency will rise. Carbon emissions will triple by 2030. On the other hand, our projections under an alternative renewable energy (RE) scenario showed that the utilization of RE is a strategic option to improve the long-term energy security and environmental performance of Malaysia. However, substantial governmental involvements and support, as well as the establishment of a regulatory framework are necessary. (author)

  9. The global historical climatology network: Long-term monthly temperature, precipitation, and pressure data

    International Nuclear Information System (INIS)

    Vose, R.S.; Schmoyer, R.L.; Peterson, T.C.; Steurer, P.M.; Heim, R.R. Jr.; Karl, T.R.; Eischeid, J.K.

    1992-01-01

    Interest in global climate change has risen dramatically during the past several decades. In a similar fashion, the number of data sets available to study global change has also increased. Unfortunately, many different organizations and researchers have compiled these data sets, making it confusing and time consuming for individuals to acquire the most comprehensive data. In response to this rapid growth in the number of global data sets, DOE's Carbon Dioxide Information Analysis Center (CDIAC) and NOAA's National Climatic Data Center (NCDC) established the Global Historical Climatology Network (GHCN) project. The purpose of this project is to compile an improved data set of long-term monthly mean temperature, precipitation, sea level pressure, and station pressure for as dense a network of global stations as possible. Specifically, the GHCN project seeks to consolidate the numerous preexisting national-, regional-, and global-scale data sets into a single global data base; to subject the data to rigorous quality control; and to update, enhance, and distribute the data set at regular intervals. The purpose of this paper is to describe the compilation and contents of the GHCN data base (i.e., GHCN Version 1.0)

  10. Long-term cost targets for nuclear energy

    International Nuclear Information System (INIS)

    Rogner, H.H.; McDonald, A.

    2004-01-01

    In 2000 the International Atomic Energy Agency (IAEA) began the International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) to help guide nuclear R and D strategies targeted on anticipated mid-century energy system needs. One part of INPRO seeks to develop cost targets for new designs to be competitive in mid-century markets. The starting point was the 40 scenarios of the Special Report on Emissions Scenarios (SRES) of the Intergovernmental Panel on Climate Change. This paper summarizes four of the SRES scenarios, one from each of the four SRES scenario families. It discusses their implications for nuclear energy, including cost targets, and develops for each an 'aggressive nuclear' variant. The aggressive nuclear variants estimate the potential market for nuclear energy if, by improving faster than assumed by the SRES authors, nuclear energy can make inroads into vulnerable market shares projected for its competitors. In addition to projected demands for nuclear generated electricity, hydrogen and heat, the aggressive variants include prospective demand for nuclear desalination and use in upgrading fossil fuels. The paper then presents learning rates and implied cost targets consistent with the aggressive nuclear variants of the SRES scenarios. One provocative initial result is that many of the scenarios with substantial nuclear expansion do not seem to require big reductions in nuclear investment costs. One interpretation discussed at the end of the paper highlights the difference between cost reductions consistent with long-term energy system optimization based on perfect foresight, and cost reductions necessary to attract private investment in today's 'deregulating' and uncertain energy markets. (orig.)

  11. Hydrogen based global renewable energy network

    Energy Technology Data Exchange (ETDEWEB)

    Akai, Makoto [Mechanical Engineering Laboratory, AIST, MITI, Namiki, Tsukuba (Japan)

    1993-12-31

    In the last quarter of this century, global environmental problem has emerged as a major scientific, political and social issue. Specific Problems include: depletion of ozone layer by chlorofluorocarbons (CFCs), acid rain, destruction of tropical forests and desertification, pollution of the sea and global wanning due to the greenhouse effect by carbon dioxide and others. Among these problems, particular attention of the world has been focused on the global warming because it has direct linkage to energy consumption which our economic development depends on so far. On the other hand, the future program of The Sunshine Project for alternative energy technology R&D, The Moonlight Project for energy conservation technology R&D, and The Global Environmental Technology Program for environmental problem mitigating technology R&D which are Japan`s national projects being promoted by their Agency of Industrial Science and Technology (AIST) in the Ministry of International Trade and Industry have been reexamined in view of recent changes in the situations surrounding new energy technology. In this regard, The New Sunshine Program will be established by integrating these three activities to accelerate R&D in the field of energy and environmental technologies. In the reexamination, additional stress has been laid on the contribution to solving global environmental problem through development of clean renewable energies which constitute a major part of the {open_quotes}New Earth 21{close_quotes}, a comprehensive, long-term and international cooperative program proposed by MITI. The present paper discusses the results of feasibility study on hydrogen energy system leading to the concept of WE-NET following a brief summary on R&D status on solar and wind energy in Japan.

  12. Development of a dispatch model of the European power system for coupling with a long-term foresight energy model

    International Nuclear Information System (INIS)

    Despres, Jacques

    2015-12-01

    Renewable sources of electricity production are strongly increasing in many parts of the world. The production costs are going down quickly, thus accelerating the deployment of new solar and wind electricity generation. In the long-term, these variable sources of electricity could represent a high share of the power system. However, long-term foresight energy models have difficulties describing precisely the integration challenges of Variable Renewable Energy Sources (VRES) such as wind or solar. They just do not represent the short-term technical constraints of the power sector. The objective of this paper is to show a new approach of the representation of the challenges of variability in the long-term foresight energy model POLES (Prospective Outlook on Long-term Energy Systems). We develop a short-term optimization model for the power sector operation, EUCAD (European Unit Commitment and Dispatch) and we couple it to POLES year after year. The direct coupling, with bi-directional exchanges of information, brings technical precision to the long-term coherence of energy scenarios. (author)

  13. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    Science.gov (United States)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p impact on the crop growth trend.

  14. A comparative study of long-term energy demand and potential greenhouse gas emission control in Bangladesh

    International Nuclear Information System (INIS)

    Khalaquazzaman, Mohammad

    2005-02-01

    This report presents a comparative study of long-term energy demand and potential greenhouse gas emissions projections from energy demand and supply sectors in Bangladesh covering the period 2000 to 2020. The study was conducted employing the IAEA's tool ENPEP- BALANCE model. This study presents a reliable energy system plan with minimal carbon emission for the country. Primary energy demands distributed by energy carriers and electricity demand have been projected based on macro-economic growth scenarios constructed for national energy policy of 1996. The conservation of indigenous energy resources was emphasized to build a long-term secured energy supply system. The potential energy supply options including nuclear energy and prospective greenhouse gas mitigation options were analyzed

  15. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn.

    Science.gov (United States)

    Jin, Virginia L; Schmer, Marty R; Stewart, Catherine E; Sindelar, Aaron J; Varvel, Gary E; Wienhold, Brian J

    2017-07-01

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emissions, and global warming potential (GWP) in irrigated systems, however, remain relatively unknown. Here, residue and tillage management effects were quantified by measuring soil nitrous oxide (N 2 O) and methane (CH 4 ) fluxes and SOC changes (ΔSOC) at a long-term, irrigated continuous corn (Zea mays L.) system in eastern Nebraska, United States. Management treatments began in 2002, and measured treatments included no or high stover removal (0 or 6.8 Mg DM ha -1  yr -1 , respectively) under no-till (NT) or conventional disk tillage (CT) with full irrigation (n = 4). Soil N 2 O and CH 4 fluxes were measured for five crop-years (2011-2015), and ΔSOC was determined on an equivalent mass basis to ~30 cm soil depth. Both area- and yield-scaled soil N 2 O emissions were greater with stover retention compared to removal and for CT compared to NT, with no interaction between stover and tillage practices. Methane comprised <1% of total emissions, with NT being CH 4 neutral and CT a CH 4 source. Surface SOC decreased with stover removal and with CT after 14 years of management. When ΔSOC, soil GHG emissions, and agronomic energy usage were used to calculate system GWP, all management systems were net GHG sources. Conservation practices (NT, stover retention) each decreased system GWP compared to conventional practices (CT, stover removal), but pairing conservation practices conferred no additional mitigation benefit. Although cropping system, management equipment/timing/history, soil type, location, weather, and the depth to which ΔSOC is measured affect the GWP outcomes of irrigated systems at large, this long-term irrigated study provides valuable empirical evidence of how management decisions can impact soil GHG emissions and surface

  16. Long-term scenarios of energy use and carbon emissions: Summary of results

    International Nuclear Information System (INIS)

    Sathaye, J.

    1991-01-01

    Energy use in developing countries has risen more quickly than in the industrialized world, with a consequent increase in the developing world's share in global modern energy use from 16% in 1970 to 24% in 1987. As a result, while the developing countries' share of carbon dioxide emissions is small today, it is growing rapidly. The following is a brief summary of the aggregate results derived from the work on long-term energy and carbon emissions scenarios for China, India, Indonesia, Korea, Argentina, Brazil, Mexico, Venezuela, Nigeria, Ghana, Sierra Leone and the sic members of the Gulf Cooperation Council (GCC). The countries experience varying rates of population growth between 1985 and 2025. The fastest growth rates occur in Africa - particularly in Nigeria and Ghana - and in the GCC. In Korea and China, where the governments have implemented policies to control the expansion of the population, the growth rates remain significantly lower. The economic growth rates correspond with national projections and/or expert judgment. GDP shows a wide variance across the study countries; and in each country distinct factors account for the differences in rates of growth. Argentina, for example, experiences a relatively slow increase in GDP as the foundation of its economy moves away from manufacturing and towards agriculture-based industry. In contrast, Korea's development of its less energy-intensive industries continues to fuel high rates of economic growth between 1985 and 2025

  17. Economical comparison of imported energy sources in terms of long-term production planning

    International Nuclear Information System (INIS)

    Gungor, Z.

    1999-01-01

    In this paper, the Turkish energy production sector is studied and power plants fueled by natural gas, imported coal and nuclear power are compared in terms of long-term (1996-2010) production economy. A net present value is used for comparing nuclear, coal and natural gas power plants. A scenario approach is utilized in establishing the effects of different factors, such as inflation rate, unit of investment costs, load factor change, discount rate and fuel price changes. Six different scenarios of interest are developed and discussed. The study ends with conclusions and recommendations based on a study of a reference scenario and alternative scenarios. (author)

  18. Prospective opportunities for using the innovative nuclear reactors in Armenian energy sector long-term programme development

    International Nuclear Information System (INIS)

    Gevorgyan, A.

    2003-01-01

    gases such as CO 2 CO, SO 2 and NOx, which are responsible for acid rain and global warming, some 35% of the present electricity generation is based on fossil fuels (natural gas), giving emission of 1 267 213 tons of CO 2 , 3355 tons of NOx, 960 tons of CO; and 9 tons of SO 2 . Although, some radioactive materials are released to the environment during normal operation of nuclear power plants and other nuclear fuel cycle facilities, the amounts released are very small and strictly kept within the permissible limits. So, we can say that the option with combined cycle scenario, from this point of view, is not as preferable as that with the nuclear scenario. Taking into consideration also a social aspect, we can see that in case of realization of an option of energy sector development with the nuclear scenario, it is expected that more than 10.000 workers will be employed in the construction process. Considerable part of industry and transport infrastructure of the country will be involved. For the country that suffers a transition period, such huge construction may be a locomotive for the whole economy. The implementation of nuclear option would also make it possible to include the costs of decommissioning of the old units of the ANPP into the tariff on the electricity generated by the new nuclear unit. Thus, the analysis performed has shown that the sustainable energy long-term development in Armenia can be achieved provided that the nuclear scenario will be implemented as the preferable, in view of all aspects, of the two above-mentioned scenarios considered. This may be ensured in case of utilization of innovative nuclear reactors with high-level operational safety and economic indicators. (author)

  19. Impacts of high energy prices on long-term energy-economic scenarios for Germany

    Energy Technology Data Exchange (ETDEWEB)

    Krey, V.; Markewitz, P. [Research Center Juelich, Inst. of Energy Res., Systems Analysis and Technology Evaluation, Juelich (Germany); Horn, M. [DIW Berlin, Berlin (Germany); Matthes, C.; Graichen, V.; Harthan, R.O.; Repenning, J. [Oeko-Institut, Berlin (Germany)

    2007-05-15

    Prices of oil and other fossil fuels on global markets have reached a high level in recent years. These levels were not able to be reproduced on the basis of scenarios and prognoses that were published in the past. New scenarios, based on higher energy price trajectories, have appeared only recently. The future role of various energy carriers and technologies in energy-economic scenarios will greatly depend on the level of energy prices. Therefore, an analysis of the impact of high energy prices on long-term scenarios for Germany was undertaken. Based on a reference scenario with moderate prices, a series of consistent high price scenarios for primary and secondary energy carriers were developed. Two scenarios with (i) continuously rising price trajectories and (ii) a price shock with a price peak during the period 2010-15 and a subsequent decline to the reference level are analysed. Two types of models have been applied in the analysis. The IKARUS energy systems optimisation model covers the whole of the German energy system from primary energy supply down to the end-use sectors. Key results in both high price scenarios include a replacement of natural gas by hard coal and renewable energy sources in electricity and heat generation. Backstop technologies like coal liquefaction begin to play a role under such conditions. Up to 10% of final energy consumption is saved in the end-use sectors, with the residential and transport sector being the greatest contributors. Even without additional restrictions, CO{sub 2} emissions significantly drop in comparison to the reference scenario. The ELIAS electricity investment analysis model focuses on the power sector. In the reference scenario with current allocation rules in the emissions trading scheme, the CO{sub 2} emissions decrease relatively steadily. The development is characterised by the phaseout of nuclear energy which is counterweighted by the increase of renewable. In the high price scenario, the CO{sub 2

  20. Long term agreements energy efficiency. Progress 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-11-01

    Long Term Agreements (LTAs) on energy efficiency have been contracted with various business sectors since 1992, as part of energy conservation policy: industrial sectors, commercial services, agrarian sectors and non-profit services. LTAs are voluntary agreements between a specific sector and the Minister of Economic Affairs. In some cases, the Minister of Agriculture, Nature Management and Fisheries is also involved. The sector commits to an effort to improve energy efficiency by a particular percentage within an agreed period. As at 31 December 1999, a total of 29 LTAs had been contracted with industrial sectors and 14 with non-industrial ones. This report describes the progress of the LTAs in 1999. It reviews the energy efficiency improvements realised through the LTAs, both overall and in each individual sector. The aim is to make the efforts and results in the various sectors accessible to the general public. Appendix 1 describes the positioning of the LTA instrument. This Appendix provides and insight into the position of the LTAs within the overall set of policy instruments. It also covers the subsidy schemes and fiscal instruments that support the LTAs, the relationships between LTAs and environmental policy and new developments relating to the LTAs in the years ahead. Appendices 2 to 6 contain the reports on the LTAs and a list of abbreviations (Appendix 7)

  1. Long-term development of the Swedish market of energy wood

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, C H

    1980-03-01

    The aim of the report is to elucidate the long-term development. The sort of wood for industrial purposes also seems to be best suited for the introduction in fuel supply. This might change the conditions precedent for the manufacturing - refining industry. The appraisement should thus cover the total wood market. The report considers three time spans namely the historical development, the description of the actual situation and an estimate of the future. The actual situation presents large regional differences which must be observed for times to come. The potential of the wood industry is its proximity to the European market, its character of long-term productivity, the technical qualifications and its unexploited opportunities as to the markets and the raw materials. The problems of the industry are the following: economy, the energy situation and the limited supply of raw products. The essential parts of the strategy of means are as follows - marketing, product development, the utilization of the qualities of the raw products, improvement of process techniques and the development of a market for energy wood and peat. The study presents recommendations of continued analysis of the market based upon regions of the size of administrative districts.

  2. Communication on energy: who pays for the long-term costs of nuclear power

    International Nuclear Information System (INIS)

    Jeffery, J.W.

    1987-01-01

    The question in the title arises in making a fair comparison between a coal-fired station, which has no long-term costs, and a nuclear station, whose large long-term costs are discounted into insignificance by the present method of calculation. This problem was raised by the present author in his evidence to the Sizewell Inquiry, and has recently been discussed by the House of Commons Select Committee on Energy, who expressed grave disquiet that 'the costs of decommissioning become almost irrelevant to the current economics of nuclear power'. The present article analyses the bizarre effects of long-term discounting, and suggests a method of making a fair and symmetrical comparison between coal-fired and nuclear stations. (author)

  3. Assessing Smart Grids contribution to the energy transition with long-term scenarios

    International Nuclear Information System (INIS)

    Bouckaert, Stephanie

    2013-01-01

    In the context of discussions on the energy transition, the general consensus is that part of the solution could come from Smart Grids to deal both with climate and energy issues. Prospective energy systems models may be used to estimate the long-term development of the energy system in order to meet future energy demands while taking into account environmental and technical constraints. These historical models are demand driven and should from now on evolve to considerate future developments of the electricity system. In this study, we have implemented some functionalities related to the concept of Smart Grids in a long-term planning model (demand-side integration, storage, renewable energy). This approach makes it possible to evaluate their benefits separately or collectively, taking into account possible interactions between these functionalities. We have also implemented an indicator reflecting the level of reliability of the electricity system in our model. This additional parameter enables to constrain future electricity systems to ensure a level of reliability identical to the existing one. Our analysis is demonstrated by the case of the Reunion Island, which aims to produce electricity using 100% renewable sources by 2030, and for which Smart Grids functionalities are also potential solutions for reaching this objective. (author) [fr

  4. Comparative assessment of different energy sources and their potential role in long-term sustainable energy mix

    International Nuclear Information System (INIS)

    Kagramanian, V.S.

    2001-01-01

    In the debate on sustainable energy future, the role of nuclear power is a contentious issue. Many, who are outside of the nuclear community, do not even consider nuclear, because of public concerns on nuclear safety, radioactive waste and non-proliferation issues. For example, the United Nations Development Program, in its document Energy After Rio does not suggest a specific role for nuclear power except in the most doubtful of terms. On the contrary, most nuclear organisations and related industries see nuclear power as the only mature carbon-free electricity generating option that can be deployed even on a much larger scale than today. This paper analyses the potential role of nuclear power in the context of the global sustainable energy future. The fundamental features of sustainable energy development are examined in terms of the following compatibility constraints: Demand driven compatibility; Natural resource compatibility; Environmental compatibility; Geopolitical compatibility; and Economic compatibility

  5. The relationship between energy intensity and income levels: Forecasting long term energy demand in Asian emerging countries

    International Nuclear Information System (INIS)

    Galli, R.; Univ. della Svizzera Italiana, Lugano

    1998-01-01

    This paper analyzes long-term trends in energy intensity for ten Asian emerging countries to test for a non-monotonic relationship between energy intensity and income in the author's sample. Energy demand functions are estimated during 1973--1990 using a quadratic function of log income. The long-run coefficient on squared income is found to be negative and significant, indicating a change in trend of energy intensity. The estimates are then used to evaluate a medium-term forecast of energy demand in the Asian countries, using both a log-linear and a quadratic model. It is found that in medium to high income countries the quadratic model performs better than the log-linear, with an average error of 9% against 43% in 1995. For the region as a whole, the quadratic model appears more adequate with a forecast error of 16% against 28% in 1995. These results are consistent with a process of dematerialization, which occurs as a result of a reduction of resource use per unit of GDP once an economy passes some threshold level of GDP per capita

  6. Variable Renewable Energy in Long-Term Planning Models: A Multi-Model Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Cole, Wesley J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Frew, Bethany A. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Mai, Trieu T. [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Sun, Yinong [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Bistline, John [Electric Power Research Inst., Palo Alto, CA (United States); Blanford, Geoffrey [Electric Power Research Inst., Palo Alto, CA (United States); Young, David [Electric Power Research Inst., Palo Alto, CA (United States); Marcy, Cara [Energy Information Administration, Washington, DC (United States); Namovicz, Chris [Energy Information Administration, Washington, DC (United States); Edelman, Risa [Environmental Protection Agency, Washington, DC (United States); Meroney, Bill [Environmental Protection Agency; Sims, Ryan [Environmental Protection Agency; Stenhouse, Jeb [Environmental Protection Agency; Donohoo-Vallett, Paul [U.S. Department of Energy

    2017-11-03

    Long-term capacity expansion models of the U.S. electricity sector have long been used to inform electric sector stakeholders and decision makers. With the recent surge in variable renewable energy (VRE) generators - primarily wind and solar photovoltaics - the need to appropriately represent VRE generators in these long-term models has increased. VRE generators are especially difficult to represent for a variety of reasons, including their variability, uncertainty, and spatial diversity. To assess current best practices, share methods and data, and identify future research needs for VRE representation in capacity expansion models, four capacity expansion modeling teams from the Electric Power Research Institute, the U.S. Energy Information Administration, the U.S. Environmental Protection Agency, and the National Renewable Energy Laboratory conducted two workshops of VRE modeling for national-scale capacity expansion models. The workshops covered a wide range of VRE topics, including transmission and VRE resource data, VRE capacity value, dispatch and operational modeling, distributed generation, and temporal and spatial resolution. The objectives of the workshops were both to better understand these topics and to improve the representation of VRE across the suite of models. Given these goals, each team incorporated model updates and performed additional analyses between the first and second workshops. This report summarizes the analyses and model 'experiments' that were conducted as part of these workshops as well as the various methods for treating VRE among the four modeling teams. The report also reviews the findings and learnings from the two workshops. We emphasize the areas where there is still need for additional research and development on analysis tools to incorporate VRE into long-term planning and decision-making.

  7. A systematic review of long-term outcomes in ADHD: global publication trends

    Directory of Open Access Journals (Sweden)

    Paul eHodgkins

    2012-01-01

    Full Text Available There is increased global recognition of attention deficit hyperactivity disorder (ADHD as a serious medical condition with long-term consequences. Although originally conceived of as a childhood disorder, ADHD is being increasingly recognized in adults. Individual geographic regions may have specific interests and objectives for the study of ADHD. A systematic review of long-term outcomes (LTOs in ADHD was conducted to evaluate research on ADHD LTOs on a global scale. Studies that were at least two years in duration were examined. We identified nine outcomes of interest and classified studies by specific geographical regions, age groups studied and study design by region and over time. Published studies of LTOs in ADHD have increased in all geographical regions over the past three decades, with a peak number of publications in 2008. Although many world regions have published on ADHD LTOs, the majority of studies have emerged from the US and Canada, followed by Europe. While investigators in the US and Canada were predominantly interested in drug addiction as a LTO, European researchers were more interested in antisocial behavior, and Eastern Asian investigators focused on both of these LTOs as well as self-esteem. Proportionally fewer prospective longitudinal studies and proportionally more retrospective and cross-sectional studies have been published in more recent decades. Finally, more studies focusing on ADHD in adolescents and adults have been conducted in recent years, and particularly adolescents in Eastern Asia. This systematic review analysis of publication trends in ADHD LTOs reflects geographically-based interests that change over time.

  8. Long-term continuous energy injection in the afterglow of GRB 060729

    International Nuclear Information System (INIS)

    Xu Ming; Huang Yongfeng; Lu Tan

    2009-01-01

    A long plateau phase and an amazing level of brightness have been observed in the X-ray afterglow of GRB 060729. This peculiar light curve is likely due to long-term energy injection in external shock. Here, we present a detailed numerical study of the energy injection process of magnetic dipole radiation from a strongly magnetized millisecond pulsar and model the multi-band afterglow observations. It is found that this model can successfully explain the long plateaus in the observed X-ray and optical afterglow light curves. The sharp break following the plateaus could be due to the rapid decline of the emission power of the central pulsar. At an even later time (∼ 5 x 10 6 s), an obvious jet break appears, which implies a relatively large half opening angle of θ ∼ 0.3 for the GRB ejecta. Due to the energy injection, the Lorentz factor of the outflow is still larger than two even at 10 7 s after the GRB trigger, making the X-ray afterglow of this burst detectable by Chandra even 642 d after the burst.

  9. GLOBALLY INCREASED CROP GROWTH AND CROPPING INTENSITY FROM THE LONG-TERM SATELLITE-BASED OBSERVATIONS

    Directory of Open Access Journals (Sweden)

    B. Chen

    2018-04-01

    Full Text Available Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001, and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  10. Energy development and environment: What about solar energy in a long term perspective?

    Science.gov (United States)

    Dessus, Benjamin; Pharabod, Francois

    After decades of strong growth, the next century might be that in which the world population is stabilized around 11 billion inhabitants. Next century's main concerns include the development hoped for the probable consequences of an increase of the greenhouse effect due to main induced emissions, and the risks posed by possible dissemination of nuclear energy to all the regions of the globe. In order to shed some light on these questions, we propose an energy scenario, based on an analysis of evolution of demographics, energy needs, renewable and fossil reserves, environmental issues, technological possibilities and regional imbalances. This scenario shows that solar energy could contribute significantly in the long term energy mix. We discuss the respective advantages and drawbacks of the different solar technologies: solar power satellites, ground solar power plants and decentralized applications, as they to the needs that must be satisfied.

  11. Long-Term Monitoring of Utility-Scale Solar Energy Development and Application of Remote Sensing Technologies: Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, Yuki [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Grippo, Mark A. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division; Smith, Karen P. [Argonne National Lab. (ANL), Argonne, IL (United States). Environmental Science Division

    2014-09-30

    In anticipation of increased utility-scale solar energy development over the next 20 to 50 years, federal agencies and other organizations have identified a need to develop comprehensive long-term monitoring programs specific to solar energy development. Increasingly, stakeholders are requesting that federal agencies, such as the U.S. Department of the Interior Bureau of Land Management (BLM), develop rigorous and comprehensive long-term monitoring programs. Argonne National Laboratory (Argonne) is assisting the BLM in developing an effective long-term monitoring plan as required by the BLM Solar Energy Program to study the environmental effects of solar energy development. The monitoring data can be used to protect land resources from harmful development practices while at the same time reducing restrictions on utility-scale solar energy development that are determined to be unnecessary. The development of a long-term monitoring plan that incorporates regional datasets, prioritizes requirements in the context of landscape-scale conditions and trends, and integrates cost-effective data collection methods (such as remote sensing technologies) will translate into lower monitoring costs and increased certainty for solar developers regarding requirements for developing projects on public lands. This outcome will support U.S. Department of Energy (DOE) Sunshot Program goals. For this reason, the DOE provided funding for the work presented in this report.

  12. Long-term scenarios for sustainable energy use in Germany

    International Nuclear Information System (INIS)

    Fischedick, M.; Nitsch, J.; Lechtenboehmer, S.; Hanke, T.; Barthel, C.; Jungbluth, C.; Assmann, D.; Brueggen, T. vor der; Trieb, F.; Nast, M.; Langniss, O.; Brischke, L.A.

    2002-01-01

    The study was able to show, and explain vividly through scenarios describing change processes, that a sustainable use of energy (aimed, among other things, at reducing CO 2 emissions by 80% by 2050 compared with 1990 levels) is technically feasible, economically viable, compatible with farther-reaching objectives of energy policy (e.g. supply security), and does not, in spite of the substantial need for change, present the players involved with any insurmountable problems but, rather, constitutes both a challenge and an opportunity. Such a development is possible only if the efforts launched to give momentum to the increased use of renewable energy sources are continued consistently, the impending need for replacement and renewal within the generation system is consistently utilised for increasing efficiency and a reorientation mainly towards combined heat and power production, and energy saving is made a new focal point of energy policy. Furthermore, with regard to long-term infrastructure requirements (decentralisation, new fuels), the necessary decisions must be prepared at an early stage and sufficiently robust lines of development must be identified and followed. (orig.) [de

  13. Evaluation of long-term global radiation measurements in Denmark and Sweden

    DEFF Research Database (Denmark)

    Skalík, Lukáš; Lulkovičová, Otília; Furbo, Simon

    The climate, especially global radiation is one of the key factors influencing the energy yield of solar energy systems. In connection with planning and optimization of energy efficient buildings and solar energy systems it is important to know the climate data of the area where the buildings...... of the atmosphere, increased duration of periods without clouds and/or combination of both these effects. Twenty years of measurements from a climate station in Lyngby, Denmark show that the global radiation increase is almost 3.5 kWh/m2 per year, corresponding to a growth of 7 % for the last 20 years. The global....../systems are located. This study is based on yearly and monthly values of global radiation based on measurements from a climate station placed on the roof of building 119 at Technical University of Denmark in Kgs. Lyngby, from different Danish climate stations runned by Danish Meteorological Institute and from...

  14. Reporting on Long-Term Value Creation—The Example of Public Canadian Energy and Mining Companies

    Directory of Open Access Journals (Sweden)

    Petra F. A. Dilling

    2016-09-01

    Full Text Available This study empirically analyzes reporting on long-term value creation for Canadian public mining and energy companies. It represents an important first step in determining the quality of reporting and its determinants for large public companies. In this exploratory empirical study, a reporting quality scoring index was developed to measure disclosure quality of long-term value creation reporting. Content analysis was used to examine financial and sustainability reports for a sample of twenty Canadian public mining and energy companies. Corporate disclosure quality scores were then calculated by assessing the quality of reporting in four main categories. The findings suggest that overall disclosure quality on long-term value creation is still low. Companies disclosing higher quality information on long-term value creation are of bigger size, operate in the basic materials sector, have an independent board, are listed in the Dow Jones Sustainability Index, experience higher stock volatility and use more words related to long-term value creation in their annual financial and non-financial reports. In order to increase and restore stakeholder trust and credibility as well as a tool to maintain stability, it is strongly recommended to introduce adequate mandatory standardization resulting in a set of internationally recognized reporting standards as well as a requirement for external assurance of reports.

  15. Long term socio-ecological research across temporal and spatial scales

    Science.gov (United States)

    Singh, S. J.; Haberl, H.

    2012-04-01

    Long term socio-ecological research across temporal and spatial scales Simron Jit Singh and Helmut Haberl Institute of Social Ecology, Vienna, Austria Understanding trajectories of change in coupled socio-ecological (or human-environment) systems requires monitoring and analysis at several spatial and temporal scales. Long-term ecosystem research (LTER) is a strand of research coupled with observation systems and infrastructures (LTER sites) aimed at understanding how global change affects ecosystems around the world. In recent years it has been increasingly recognized that sustainability concerns require extending this approach to long-term socio-ecological research, i.e. a more integrated perspective that focuses on interaction processes between society and ecosystems over longer time periods. Thus, Long-Term Socio-Ecological Research, abbreviated LTSER, aims at observing, analyzing, understanding and modelling of changes in coupled socio-ecological systems over long periods of time. Indeed, the magnitude of the problems we now face is an outcome of a much longer process, accelerated by industrialisation since the nineteenth century. The paper will provide an overview of a book (in press) on LTSER with particular emphasis on 'socio-ecological transitions' in terms of material, energy and land use dynamics across temporal and spatial scales.

  16. US long-term energy intensity: Backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, Hadi; Oravetz, Matthew A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency-especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand ε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions

  17. US long-term energy intensity: backcast and projection

    International Nuclear Information System (INIS)

    Dowlatabadi, H.; Oravetz, M.A.

    2006-01-01

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, π, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demandε. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires π to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with π than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO 2 emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  18. US long-term energy intensity: backcast and projection

    Energy Technology Data Exchange (ETDEWEB)

    Dowlatabadi, H. [University of British Columbia, Vancouver (Canada); Oravetz, M.A. [International Energy Agency, Paris (France)

    2006-11-15

    Energy intensity of the economy is often modeled as being determined by the combined effect of a fixed price elasticity of demand, and an exogenously specified, fixed technical change parameter denoted as the autonomous energy efficiency improvement (AEEI). Typically, the AEEI rate is set to 0.5-1.5% improvement per annum. Here, we study historic aggregate energy intensity trends for the US from 1954 to 1994. We show that the historic trends are inconsistent with an autonomous model of improved energy efficiency - especially when the model is used to inform policies that impact energy prices. As an alternative we propose a model of price-induced efficiency, {pi}, in which aggregate energy intensity trends respond to changes in energy prices beyond price elasticity of demand{epsilon}. Our exercise reveals that the aggregate price elasticity of energy demand of the US economy has declined by roughly 15% over the past four decades. But beyond this decline, bringing our simulations and historical data into close correspondence requires {pi} to change sign before and after 1974. Before 1974, after accounting for price elasticity of demand, the economy was growing less energy efficient. After 1974, after accounting for the price elasticity of demand, the economy was growing more energy efficient. Furthermore, since 1984, the rate of energy efficiency gain has been declining. When projections of long-term energy use are compared, those with a price-induced energy efficiency formulation generate significantly more price sensitive energy use and emissions trajectories. When in the business as usual scenario energy prices are expected to be rising, climate policies involve lower shadow carbon prices with {pi} than with AEEI formulations. In scenarios where energy prices are relatively flat, energy intensity rises leading to CO{sub 2} emissions far higher than standard business as usual projections utilizing AEEI assumptions. (Author)

  19. Implications of renewable energy technologies in the Bangladesh power sector. Long-term planning strategies

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Alam Hossain

    2010-10-04

    Bangladesh is facing daunting energy challenges: Security concerns over growing fuel imports, limited domestic energy resources for power generation, and projected demands for electricity that will exceed domestic supply capabilities within a few years. By acknowledging the potential of renewable energy resources, the country could possibly meet its unprecedented energy demand, thus increasing electricity accessibility for all and enhancing energy security through their advancement. The integration of renewable energy technologies in the power sector through national energy planning would, therefore, be a step in the right direction, not only for sustainable development of the country but also as part of Bangladesh's responsibility toward the global common task of environmental protection. This study estimates the potential of renewable energy sources for power generation in Bangladesh from the viewpoint of different promising available technologies. Future long-term electricity demand in Bangladesh is projected based on three economic growth scenarios. The energy planning model LEAP is applied to forecast the energy requirements from 2005 to 2035. Different policy scenarios, e.g., accelerated renewable energy production, null coal import, CO2 emission reduction targets and carbon taxes in the power sector from 2005 to 2035 are explored. The analyses are based on a long-term energy system model of Bangladesh using the MARKAL model. Prospects for the power sector development of the country are identified, which ensure energy security and mitigate environmental impacts. The technical potential of grid-connected solar photovoltaic and wind energy are estimated at 50174 MW and 4614 MW, respectively. The potential of energy from biomass and small hydro power plants is estimated at 566 MW and 125 MW, respectively. Total electricity consumption was 18 TWh in 2005 and is projected to increase about 7 times to 132 TWh by 2035 in the low GDP growth scenario. In the

  20. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis

    DEFF Research Database (Denmark)

    Münster, Marie; Meibom, Peter

    2010-01-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy...... production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments...... and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO2 quota costs are analysed. It is demonstrated that the waste...

  1. Technological progress and long-term energy demand - a survey of recent approaches and a Danish case

    DEFF Research Database (Denmark)

    Klinge Jacobsen, Henrik

    2001-01-01

    This paper discusses di!erent approaches to incorporating technological progress in energy-economy models and the e!ecton long-term energy demand projections. Approaches to modelling based on an exogenous annual change of energy e$ciencyto an endogenous explanation of innovation for energy...... technologies are covered. Technological progress is an important issue for modelling long-term energy demand and is often characterised as the main contributor to the di!erent energy demand forecasts from di!erent models. New economic theoretical developments in the "elds of endogenous growth and industrial...... description, two models of residential energy demand in Denmark are compared. A Danish macroeconometric model is compared to a technological vintage model that is covering electric appliances and residential heating demand. The energy demand projection of the two models diverges, and the underlying...

  2. Formulating an optimal long-term energy supply strategy for Syria using MESSAGE model

    International Nuclear Information System (INIS)

    Hainoun, A.; Seif Aldin, M.; Almoustafa, S.

    2010-01-01

    An optimal long-term energy supply strategy has been formulated based on minimizing the total system costs for the entire study period 2003-2030. The national energy chain was modelled covering all energy levels and conversion technologies. The results indicate that the primary energy will grow at annual average rate of 4.8% arriving 68 Mtoe in 2030. The total installed electric capacity will be optimally expanded from 6885 to 19500 MW in 2030. Furthermore, to ensure supply security the future national energy system will rely mainly upon oil and natural gas (NG) with limited contribution of renewables and nuclear to the end of study period. The share of NG will increase gradually up to 2020 and then retreat. Owing to the continuous decrease of oil production, oil export is expected to vanish in 2012 and the country will import about 63% of its primary energy demand in 2030. Thus, the expected long-term development of national energy sector indicates a hard challenge for the future national economy. The employing of sensitivity analysis clarifies the importance of wind turbines operation time and discount rate. The analysis proves that nuclear option is insensitive to overnight cost increase up to 85% of the reference case value.

  3. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  4. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production); Contribution a une proposition d'un developpement a long terme de l'energie nucleaire: le concept TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    Energy Technology Data Exchange (ETDEWEB)

    Berthou, V

    2000-10-30

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  5. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis

    DEFF Research Database (Denmark)

    Tian, Feng; Fensholt, Rasmus; Verbesselt, Jan

    2015-01-01

    -sensor NDVI time series by analyzing the co-occurrence between breaks in the NDVI time series and sensor shifts from GIMMS3g (Global Inventory Modeling and Mapping Studies 3rd generation), VIP3 (Vegetation Index and Phenology version 3), LTDR4 (Long Term Data Record version 4) and SPOT-VGT (Système Pour l......, potentially introducing uncertainties in NDVI trend analysis. Platform/sensor change from VGT-1 to VGT-2 is found to cause a significant positive break in the SPOT-VGT NDVI time series. Potential artifacts exist in humid, dry-subhumid, semi-arid and hyper-arid regions of GIMMS3g NDVI, whereas no signs...

  6. Long-term climate policy implications of phasing out fossil fuel subsidies

    International Nuclear Information System (INIS)

    Schwanitz, Valeria Jana; Piontek, Franziska; Bertram, Christoph; Luderer, Gunnar

    2014-01-01

    It is often argued that fossil fuel subsidies hamper the transition towards a sustainable energy supply as they incentivize wasteful consumption. We assess implications of a subsidy phase-out for the mitigation of climate change and the low-carbon transformation of the energy system, using the global energy–economy model REMIND. We compare our results with those obtained by the International Energy Agency (based on the World Energy Model) and by the Organization for Economic Co-Operation and Development (OECD-Model ENV-Linkages), providing the long-term perspective of an intertemporal optimization model. The results are analyzed in the two dimensions of subsidy phase-out and climate policy scenarios. We confirm short-term benefits of phasing-out fossil fuel subsidies as found in prior studies. However, these benefits are only sustained to a small extent in the long term, if dedicated climate policies are weak or nonexistent. Most remarkably we find that a removal of fossil fuel subsidies, if not complemented by other policies, can slow down a global transition towards a renewable based energy system. The reason is that world market prices for fossil fuels may drop due to a removal of subsidies. Thus, low carbon alternatives would encounter comparative disadvantages. - Highlights: • We assess implications of phasing out fossil fuel subsidies on the mitigation of climate change. • The removal of subsidies leads to a net-reduction in the use of energy. • Emission reductions contribute little to stabilize greenhouse gases at 450 ppm if not combined with climate policies. • Low carbon alternatives may encounter comparative disadvantages due to relative price changes at world markets

  7. Long-term monitoring of Sacramento Shade program trees: tree survival, growth and energy-saving performance

    Science.gov (United States)

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Long-term survival and growth of urban forests are critical to achieve the targeted benefits of urban tree planting programs, such as building energy savings from tree shade. However, little is known about how trees perform in the long-term, especially in residential areas. Given this gap in the literature, we monitored 22-years of post-planting survival, growth, and...

  8. Global energy and technology trends

    International Nuclear Information System (INIS)

    Rogner, Hans-Holger

    2008-01-01

    from the world's nuclear power reactors has continued to climb steadily, although the amount of new nuclear capacity coming on line each year has dropped substanially since its peak in 1980s. Looking ahead to nuclear power's prospects in the new century, four features stand out: (1) new nuclear power plants are not being built fast enough to maintain nuclear power's 16% share of global electricity generation; (2) current expansion, as well as near-term and long term growth prospects, are centered in Asia; (3) but 2002 also saw some signs of revitalized growth in Western Europe and North america, where growth has stagnated because of economics, market liberalization, and excess capacity; (4) long-term projections for nuclear power, particularly in the event of international agreement to significantly limit greenhouse gas (GHG) emissions, are more bullish than near term trends. The key determining factor will be economics. In considering how to meet the world's growing need for enegy, it is important to recognize that each country is unique in itself and that every country uses a mix of energy supplies because: (1) different technologies are needed to meet diferent needs, e.g. for baseload power in contrast to peak power, or for meeting concentrated demand in megacities in contrast to that required by small users in remote areas; (2) evolution of the energy supply is uneven, and new technologies replace older ones in fits and starts and with overlaps; (3) different investors choose different technologies based on different requirements and perceptions about profitability and risk; (4) fast growing countries like China may need to expand all energy sources simultaneously just to keep up with growing demand. Moreover, the right mix for each country depends partly on how fast a country's energy demand is growing; on the country's energy resources and alternatives; on the available financing options and whether the investment is in a deregulated market that values rapid

  9. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs.

    Directory of Open Access Journals (Sweden)

    Jihan Xia

    Full Text Available A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, P<0.01, insulin level (4.60-fold, P<0.01, heart weight (1.82-fold, P<0.05 and heart volume (1.60-fold, P<0.05 compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (P<0.05, ≥1.5-fold change, including 591 up-regulated and 431 down-regulated genes in the HFHSD group relative to the control group. KEGG analysis indicated that the observed heart disorder involved the signal transduction-related MAPK, cytokine, and PPAR signaling pathways, energy metabolism-related fatty acid and oxidative phosphorylation signaling pathways, heart function signaling-related focal adhesion, axon guidance, hypertrophic cardiomyopathy and actin cytoskeleton signaling pathways, inflammation and apoptosis pathways, and others. Quantitative RT-PCR assays identified several important differentially expressed heart-related genes, including STAT3, ACSL4, ATF4, FADD, PPP3CA, CD74, SLA-8, VCL, ACTN2 and FGFR1, which may be targets of further research. This study shows that a long-term, high-energy diet induces obesity, cardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research.

  10. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site

    Energy Technology Data Exchange (ETDEWEB)

    Carta, Jose A. [Department of Mechanical Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Velazquez, Sergio [Department of Electronics and Automatics Engineering, University of Las Palmas de Gran Canaria, Campus de Tafira s/n, 35017 Las Palmas de Gran Canaria, Canary Islands (Spain); Matias, J.M. [Department of Statistics, University of Vigo, Lagoas Marcosende, 36200 Vigo (Spain)

    2011-02-15

    Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station. (author)

  11. Use of Bayesian networks classifiers for long-term mean wind turbine energy output estimation at a potential wind energy conversion site

    International Nuclear Information System (INIS)

    Carta, Jose A.; Velazquez, Sergio; Matias, J.M.

    2011-01-01

    Due to the interannual variability of wind speed a feasibility analysis for the installation of a Wind Energy Conversion System at a particular site requires estimation of the long-term mean wind turbine energy output. A method is proposed in this paper which, based on probabilistic Bayesian networks (BNs), enables estimation of the long-term mean wind speed histogram for a site where few measurements of the wind resource are available. For this purpose, the proposed method allows the use of multiple reference stations with a long history of wind speed and wind direction measurements. That is to say, the model that is proposed in this paper is able to involve and make use of regional information about the wind resource. With the estimated long-term wind speed histogram and the power curve of a wind turbine it is possible to use the method of bins to determine the long-term mean energy output for that wind turbine. The intelligent system employed, the knowledgebase of which is a joint probability function of all the model variables, uses efficient calculation techniques for conditional probabilities to perform the reasoning. This enables automatic model learning and inference to be performed efficiently based on the available evidence. The proposed model is applied in this paper to wind speeds and wind directions recorded at four weather stations located in the Canary Islands (Spain). Ten years of mean hourly wind speed and direction data are available for these stations. One of the conclusions reached is that the BN with three reference stations gave fewer errors between the real and estimated long-term mean wind turbine energy output than when using two measure-correlate-predict algorithms which were evaluated and which use a linear regression between the candidate station and one reference station.

  12. Geochemical constraints on sustainable development: Can an advanced global economy achieve long-term stability?

    Science.gov (United States)

    Pickard, William F.

    2008-04-01

    The eighty-one stable chemical elements are examined individually with respect to (i) recent annual demand and (ii) worst case long-term availability in a distant future in which they must be extracted from the background sources of air, seawater, and ordinary rock. It is shown that, if a conventional use scenario is envisioned, the supplies of ruthenium, rhodium, palladium, tellurium, rhenium, osmium, iridium, platinum, gold, and especially phosphorus will be questionable while the supplies of copper, zinc, molybdenum, silver, cadmium, tin, antimony, tungsten, mercury, lead, and bismuth will be inadequate. It is therefore concluded that, in the long run, only the promotion of massive recycling and substitution technologies will suffice to maintain the global industrial society now developing.

  13. An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response

    International Nuclear Information System (INIS)

    Koltsaklis, Nikolaos E.; Liu, Pei; Georgiadis, Michael C.

    2015-01-01

    The power sector faces a rapid transformation worldwide from a dominant fossil-fueled towards a low carbon electricity generation mix. Renewable energy technologies (RES) are steadily becoming a greater part of the global energy mix, in particular in regions that have put in place policies and measures to promote their utilization. This paper presents an optimization-based approach to address the generation expansion planning (GEP) problem of a large-scale, central power system in a highly uncertain and volatile electricity industry environment. A multi-regional, multi-period linear mixed-integer linear programming (MILP) model is presented, combining optimization techniques with a Monte Carlo (MCA) method and demand response concepts. The optimization goal concerns the minimization of the total discounted cost by determining optimal power capacity additions per time interval and region, and the power generation mix per technology and time period. The model is evaluated on the Greek power system (GPS), taking also into consideration the scheduled interconnection of the mainland power system with those of selected autonomous islands (Cyclades and Crete), and aims at providing full insight into the composition of the long-term energy roadmap at a national level. - Highlights: • A spatial, multi-period, long-term generation expansion planning model is presented. • A Monte-Carlo method along with a demand response mechanism are incorporated. • Autonomous power systems interconnection is considered. • Electricity and CO 2 emission trade are taken into account. • Lignite, natural gas and wind power comprise the dominant power technologies

  14. Energy globalization; La globalizacion de la energia

    Energy Technology Data Exchange (ETDEWEB)

    Andres, Tierno

    1997-08-01

    Toward the future, the petroleum could stop to be the main energy source in the world and the oil companies will only survive if they are adjusted to the new winds that blow in the general energy sector. It will no longer be enough to be the owner of the resource (petroleum or gas) so that a company subsists and be profitable in the long term. The future, it will depend in great measure of the vision with which the oil companies face the globalization concept that begins to experience the world in the energy sector. Concepts like globalization, competition, integration and diversification is something that the companies of the hydrocarbons sector will have very present. Globalization means that it should be been attentive to what happens in the world, beyond of the limits of its territory, or to be caught by competitive surprises that can originate in very distant places. The search of cleaner and friendlier energy sources with the means it is not the only threat that it should fear the petroleum. Their substitution for electricity in the big projects of massive transport, the technology of the communications, the optic fiber and the same relationships with the aboriginal communities are aspects that also compete with the future of the petroleum.

  15. Implication of Paris Agreement in the context of long-term climate mitigation goals.

    Science.gov (United States)

    Fujimori, Shinichiro; Su, Xuanming; Liu, Jing-Yu; Hasegawa, Tomoko; Takahashi, Kiyoshi; Masui, Toshihiko; Takimi, Maho

    2016-01-01

    The Paris Agreement confirmed the global aim to achieve a long-term climate goal, in which the global increase in mean temperature is kept below 2 °C compared to the preindustrial level. We investigated the implications of the near-term emissions targets (for around the year 2030) in the context of the long-term climate mitigation goal using the Asia-Pacific Integrated Model framework. To achieve the 2 °C goal, a large greenhouse gas emissions reduction is required, either in the early or latter half of this century. In the mid-term (from 2030 to 2050), it may be necessary to consider rapid changes to the existing energy or socioeconomic systems, while long-term measures (after 2050) will rely on the substantial use of biomass combined with carbon capture and storage technology or afforestation, which will eventually realize so-called negative CO2 emissions. With respect to the policy context, two suggestions are provided here. The first is the review and revision of the nationally determined contributions (NDCs) in 2020, with an additional reduction target to the current NDCs being one workable alternative. The second suggestion is a concrete and numerical mid-term emissions reduction target, for example to be met by 2040 or 2050, which could also help to achieve the long-term climate goal.

  16. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  17. Energy Choices. Global Energy Trends and Problems to Supply the Energy Demand; Vaegval Energi. Globala energitrender och problem att tillgodose energibehoven

    Energy Technology Data Exchange (ETDEWEB)

    Radetzki, Marian (Luleaa Univ. of Technology, Luleaa (Sweden))

    2008-09-15

    Although the use of renewable fuels is increasing, oil and other fossil fuels still dominate the global energy supply the next decades, as shown by a review of energy sector development from 1990 to today and projections up to 2030. Nothing indicates that the supplies of oil or any other fossil fuel will be depleted during the coming decades. Resource Nationalism has long characterized the oil market. OPEC has since 1970 successfully controlled the supply and price of oil for its producing member countries. The cartel's grip on the oil market has been strengthened in the 2000s commodity boom, not least as a result of improved production discipline among member countries. At the same time, the long-term trend in the world's great centers of consumption is towards a lower degree of self-sufficiency in energy. The EU dependence on import of oil is expected to rise to over ninety per cent by year 2030. In order to secure a stable energy supply, clear strategies in the oil-importing countries are needed. Tools include diversified import, storage and securing supplies through futures trading on commodity exchanges. Energy policy has long been focused on supply. But the environmental aspects of energy production and use has grown in importance and now the climate issue dominates the energy policy. So far, however, the policy measures to curb the effects of climate change has been both limited and cost-ineffective. The cost to seriously limit emissions of greenhouse gases will be high. To carry out serious climate measures will annually take at least one percent of global GDP, according to an estimate by the British economist Nicholas Stern. This can be compared to the additional cost of approximately five percent of global GDP as energy consumers had to absorb between 2005 and 2008 because of rising prices for fossil fuels

  18. Long-term energy supply contracts in European competition policy: Fuzzy not crazy

    International Nuclear Information System (INIS)

    Hauteclocque, Adrien de; Glachant, Jean-Michel

    2009-01-01

    Long-term supply contracts often have ambiguous effects on the competitive structure, investment and consumer welfare in the long term. In the new market context, these effects are likely to be worsened and thus even harder to assess. Since liberalization and especially since the release of the Energy Sector Inquiry in early 2007, the portfolio of long-term supply contracts of the former incumbents have become a priority for review by the European Commission and the national competition authorities. It is widely believed that European Competition authorities take a dogmatic view on these contracts and systemically emphasize the risk of foreclosure over their positive effects on investment and operation. This paper depicts the methodology that has emerged in the recent line of cases and argues that this interpretation is largely misguided. It shows that a multiple-step approach is used to reduce regulation costs and balance anti-competitive effects with potential efficiency gains. However, if an economic approach is now clearly implemented, competition policy is constrained by the procedural aspect of the legal process and the remedies imposed remain open for discussion.

  19. A long-term, integrated impact assessment of alternative building energy code scenarios in China

    International Nuclear Information System (INIS)

    Yu, Sha; Eom, Jiyong; Evans, Meredydd; Clarke, Leon

    2014-01-01

    China is the second largest building energy user in the world, ranking first and third in residential and commercial energy consumption. Beginning in the early 1980s, the Chinese government has developed a variety of building energy codes to improve building energy efficiency and reduce total energy demand. This paper studies the impact of building energy codes on energy use and CO 2 emissions by using a detailed building energy model that represents four distinct climate zones each with three building types, nested in a long-term integrated assessment framework GCAM. An advanced building stock module, coupled with the building energy model, is developed to reflect the characteristics of future building stock and its interaction with the development of building energy codes in China. This paper also evaluates the impacts of building codes on building energy demand in the presence of economy-wide carbon policy. We find that building energy codes would reduce Chinese building energy use by 13–22% depending on building code scenarios, with a similar effect preserved even under the carbon policy. The impact of building energy codes shows regional and sectoral variation due to regionally differentiated responses of heating and cooling services to shell efficiency improvement. - Highlights: • We assessed long-term impacts of building codes and climate policy using GCAM. • Building energy codes would reduce Chinese building energy use by 13–22%. • The impacts of codes on building energy use vary by climate region and sub-sector

  20. Regional Analysis of Long-term Local and Synoptic Effects on Wind Velocity and Energy Patterns in Complex Terrain

    Science.gov (United States)

    Belu, R.; Koracin, D. R.

    2017-12-01

    Investments in renewable energy are justified in both environmental and economic terms. Climate change risks call for mitigation strategies aimed to reduce pollutant emissions, while the energy supply is facing high uncertainty by the current or future global economic and political contexts. Wind energy is playing a strategic role in the efforts of any country for sustainable development and energy supply security. Wind energy is a weather and climate-dependent resource, having a natural spatio-temporal variability at time scales ranging from fraction of seconds to seasons and years, while at spatial scales is strongly affected by the topography and vegetation. Main objective of the study is to investigate spatio-temporal characteristics of the wind velocity in the Southwest U.S., that are relevant to wind energy assessment, analysis, development, operation, and grid integration, by using long-term multiple meteorological tower observations. Wind velocity data and other meteorological parameters from five towers, located near Tonopah, Nevada, operated between 2003 to 2008, and from three towers are located in Carson Valley, Nevada, operated between 2006 and 2014 were used in this study. Multi-annual wind speed data collected did not show significant increase trends with increasing elevation; the differences are mainly governed by the topographic complexity, including local atmospheric circulations. Auto- and cross-correlations show a strong coherence between the wind speed and direction with slowly decreasing amplitude of the multi-day periodicity with increasing lag periods. Besides pronounced diurnal periodicity at all locations, detrended fluctuation analysis also showed significant seasonal and annual periodicities, and long-memory persistence with similar characteristics. In spite of significant differences in mean wind speeds among the towers, due to location specifics, the relatively high auto- and cross-correlation coefficients among the towers indicate

  1. Contribution to a proposition for a long term development of nuclear energy: the TASSE concept (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy Production)

    International Nuclear Information System (INIS)

    Berthou, V.

    2000-01-01

    Nuclear industry creates waste which are in the middle of the discussion concerning the Nuclear Energy future. At this time, important decisions for the Energy production must be taken, so numerous researches are conducted within the framework of the Bataille law. The goal of these studies is to find a range of solutions concerning the waste management. An innovative system, called TASSE (Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production), is studied in this thesis. This reactor is included in a long term strategy, and is destined for the renewal of the reactor park. In the first part of this work, the main characteristics of TASSE have been defined. They are commensurate with some specific requirements such as: to insure a large time to the Nuclear Energy, to reduce the waste production in an important way, to eliminate waste already stocked in the present park, to insure the non proliferation, and to be economically competitive. Neutronics studies of TASSE have been done. A calculation procedure has been developed to reach the system equilibrium state. Several types of molten salts as well as a pebble-bed fuel have been studied. Thus, an optimal fuel has been brought out in regard to some parameters such as the burn up level, the spectrum, the waste toxicity, the cycle type. Eventually, various TASSE core layout have been envisaged. (author)

  2. Neutron balance as indicator of long-term resource availability in growing nuclear energy system

    Energy Technology Data Exchange (ETDEWEB)

    Blandinskiy, Victor [National Research Centre ' ' Kurchatov Institute' ' , Moscow (Russian Federation)

    2017-09-15

    The article describes neutron balance in nuclear energy system as necessary but not sufficient indicator of long-term sustainability. Three models are introduced to evaluate neutron balance based on nuclide chain evolution and reaction rates comparison. The indicator introduced is used to compare several nuclear energy systems consisting of thermal, fast and molten salt reactors.

  3. Developing a long-term global tourism transport model using a behavioural approach: implications for sustainable tourism policy making.

    NARCIS (Netherlands)

    Peeters, P.M.

    2013-01-01

    This paper explores the creation and use of a long-term global tourism transport model for private and public sector tourism policy makers. Given that technology is unlikely to reduce tourism transport's impact on climate change sufficiently to avoid serious dangers, behavioural change is necessary.

  4. A systematic review of global publication trends regarding long-term outcomes of ADHD.

    Science.gov (United States)

    Hodgkins, Paul; Arnold, L Eugene; Shaw, Monica; Caci, Hervé; Kahle, Jennifer; Woods, Alisa G; Young, Susan

    2011-01-01

    There is increased global recognition of attention deficit hyperactivity disorder (ADHD) as a serious medical condition with long-term consequences. Although originally conceived of as a childhood disorder, ADHD is being increasingly recognized in adults. Individual geographic regions may have specific interests and objectives for the study of ADHD. A systematic review of long-term outcomes (LTOs) in ADHD was conducted to evaluate research on ADHD LTOs on a global scale. Studies that were at least 2 years in duration were examined. A total of 351 studies were identified in the final analysis. We identified nine outcomes of interest and classified studies by specific geographical regions, age groups studied and study design by region and over time. Published studies of LTOs in ADHD have increased in all geographical regions over the past three decades, with a peak number of 42 publications in 2008. This rise in publications on ADHD LTOs may reflect a rise in global interest and recognition of consequences and impairment associated with ADHD. Although many world regions have published on ADHD LTOs, the majority of studies have emerged from the US and Canada, followed by Europe. While investigators in the US and Canada were predominantly interested in drug addiction as a LTO, European researchers were more interested in antisocial behavior, and Eastern Asian investigators focused on both of these LTOs as well as self-esteem. Geographical differences in the focus of ADHD LTO studies may reflect regional variations in cultural values. Proportionally fewer prospective longitudinal studies and proportionally more retrospective and cross-sectional studies have been published in more recent decades. Finally, more studies focusing on ADHD in adolescents and adults have been conducted in recent years, and particularly adolescents in Eastern Asia. These changes in basic study design may reflect an increase in the recognition that ADHD is a lifetime chronic disorder. This

  5. A Systematic Review of Global Publication Trends Regarding Long-Term Outcomes of ADHD

    Science.gov (United States)

    Hodgkins, Paul; Arnold, L. Eugene; Shaw, Monica; Caci, Hervé; Kahle, Jennifer; Woods, Alisa G; Young, Susan

    2012-01-01

    There is increased global recognition of attention deficit hyperactivity disorder (ADHD) as a serious medical condition with long-term consequences. Although originally conceived of as a childhood disorder, ADHD is being increasingly recognized in adults. Individual geographic regions may have specific interests and objectives for the study of ADHD. A systematic review of long-term outcomes (LTOs) in ADHD was conducted to evaluate research on ADHD LTOs on a global scale. Studies that were at least 2 years in duration were examined. A total of 351 studies were identified in the final analysis. We identified nine outcomes of interest and classified studies by specific geographical regions, age groups studied and study design by region and over time. Published studies of LTOs in ADHD have increased in all geographical regions over the past three decades, with a peak number of 42 publications in 2008. This rise in publications on ADHD LTOs may reflect a rise in global interest and recognition of consequences and impairment associated with ADHD. Although many world regions have published on ADHD LTOs, the majority of studies have emerged from the US and Canada, followed by Europe. While investigators in the US and Canada were predominantly interested in drug addiction as a LTO, European researchers were more interested in antisocial behavior, and Eastern Asian investigators focused on both of these LTOs as well as self-esteem. Geographical differences in the focus of ADHD LTO studies may reflect regional variations in cultural values. Proportionally fewer prospective longitudinal studies and proportionally more retrospective and cross-sectional studies have been published in more recent decades. Finally, more studies focusing on ADHD in adolescents and adults have been conducted in recent years, and particularly adolescents in Eastern Asia. These changes in basic study design may reflect an increase in the recognition that ADHD is a lifetime chronic disorder. This

  6. Long-term perspectives: energy, development and the environment

    International Nuclear Information System (INIS)

    Nakicenovic, N.

    1997-01-01

    The worldwide demand for energy and the need to minimize the environmental impact present a challenge which has been addressed by the International Institute for Applied Systems Analysis (IIASA) and the World Energy Council (WEC). This paper summarizes the findings of a joint two-year IIASA-WEC study to explore the prospects for improving the global availability and quality of energy services, and the wider implications that these improvements may have. (Author)

  7. Business Organisational Structures of Global Companies: Use of the Territorial Model to Ensure Long-Term Growth

    Directory of Open Access Journals (Sweden)

    Hana Stverkova

    2018-06-01

    Full Text Available In today’s turbulently expanding business environment, during the fourth industrial revolution, it is necessary to respond to market trends and to adapt strategy and organisational structure appropriately. The article is focused on the reorganisation and optimisation of the business organisation structure of global companies. The purpose of this paper is to analyse and evaluate the use of the territorial business structure, within the framework of a global company, based on experimental research. Experiences with the introduction of a territorial organisational structure in a corporate enterprise have proven to be highly effective long-term, with productivity and sales volumes increasing. This territorial setting can be considered as a competitive advantage, which matches predicted market trends and is suitable for global businesses.

  8. Near-term Forecasting of Solar Total and Direct Irradiance for Solar Energy Applications

    Science.gov (United States)

    Long, C. N.; Riihimaki, L. D.; Berg, L. K.

    2012-12-01

    Integration of solar renewable energy into the power grid, like wind energy, is hindered by the variable nature of the solar resource. One challenge of the integration problem for shorter time periods is the phenomenon of "ramping events" where the electrical output of the solar power system increases or decreases significantly and rapidly over periods of minutes or less. Advance warning, of even just a few minutes, allows power system operators to compensate for the ramping. However, the ability for short-term prediction on such local "point" scales is beyond the abilities of typical model-based weather forecasting. Use of surface-based solar radiation measurements has been recognized as a likely solution for providing input for near-term (5 to 30 minute) forecasts of solar energy availability and variability. However, it must be noted that while fixed-orientation photovoltaic panel systems use the total (global) downwelling solar radiation, tracking photovoltaic and solar concentrator systems use only the direct normal component of the solar radiation. Thus even accurate near-term forecasts of total solar radiation will under many circumstances include inherent inaccuracies with respect to tracking systems due to lack of information of the direct component of the solar radiation. We will present examples and statistical analyses of solar radiation partitioning showing the differences in the behavior of the total/direct radiation with respect to the near-term forecast issue. We will present an overview of the possibility of using a network of unique new commercially available total/diffuse radiometers in conjunction with a near-real-time adaptation of the Shortwave Radiative Flux Analysis methodology (Long and Ackerman, 2000; Long et al., 2006). The results are used, in conjunction with persistence and tendency forecast techniques, to provide more accurate near-term forecasts of cloudiness, and both total and direct normal solar irradiance availability and

  9. Interactive Cosegmentation Using Global and Local Energy Optimization

    OpenAIRE

    Xingping Dong,; Jianbing Shen,; Shao, Ling; Yang, Ming-Hsuan

    2015-01-01

    We propose a novel interactive cosegmentation method using global and local energy optimization. The global energy includes two terms: 1) the global scribbled energy and 2) the interimage energy. The first one utilizes the user scribbles to build the Gaussian mixture model and improve the cosegmentation performance. The second one is a global constraint, which attempts to match the histograms of common objects. To minimize the local energy, we apply the spline regression to learn the smoothne...

  10. Long-term solar activity and terrestrial connections. Part I: theory

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun – either now or in the past, the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  11. Long-term implications of alternative light-duty vehicle technologies for global greenhouse gas emissions and primary energy demands

    International Nuclear Information System (INIS)

    Kyle, Page; Kim, Son H.

    2011-01-01

    This study assesses global light-duty vehicle (LDV) transport in the upcoming century, and the implications of vehicle technology advancement and fuel-switching on greenhouse gas emissions and primary energy demands. Five different vehicle technology scenarios are analyzed with and without a CO 2 emissions mitigation policy using the GCAM integrated assessment model: a reference internal combustion engine vehicle scenario, an advanced internal combustion engine vehicle scenario, and three alternative fuel vehicle scenarios in which all LDVs are switched to natural gas, electricity, or hydrogen by 2050. The emissions mitigation policy is a global CO 2 emissions price pathway that achieves 450 ppmv CO 2 at the end of the century with reference vehicle technologies. The scenarios demonstrate considerable emissions mitigation potential from LDV technology; with and without emissions pricing, global CO 2 concentrations in 2095 are reduced about 10 ppmv by advanced ICEV technologies and natural gas vehicles, and 25 ppmv by electric or hydrogen vehicles. All technological advances in vehicles are important for reducing the oil demands of LDV transport and their corresponding CO 2 emissions. Among advanced and alternative vehicle technologies, electricity- and hydrogen-powered vehicles are especially valuable for reducing whole-system emissions and total primary energy. - Highlights: → Alternative-fuel LDVs reduce whole-system CO 2 emissions, even without carbon pricing. → Alternative-fuel LDVs enhance the CO 2 mitigation capacity of the transportation sector. → Electric and hydrogen vehicles reduce whole-system primary energy supporting LDV transport.

  12. Advances in the implementation of a generic long term model for the hydro industry

    International Nuclear Information System (INIS)

    Welt, F.

    2004-01-01

    This presentation describes the Vista Long Term (LT) simulation and decision tool developed for the hydropower and water resource industries by Synexus Global. Vista maximizes the value of hydro resources while addressing environmental concerns. It improves water resource management for all uses over the long term. The tool has been used and adapted to many systems around the world, including Bonneville Power Administration, Reliant Energy, PacifiCorp and Great Lakes Power in the United States and Nova Scotia Power, Yukon Energy, and Newfoundland Hydro in Canada. Vista also helps to plan alternative operating policies and system upgrades by maximizing the expected value of generation and transactions. The tool provides reservoir releases, generation, flows, levels and transactions. Hydroelectric generating facilities that use the Vista tool have improved clean energy production as well as increased revenues resulting from reservoir and plant optimization. tabs., figs

  13. Long-term perspectives of the worldwide use of nuclear power

    International Nuclear Information System (INIS)

    Jaek, W.

    1981-01-01

    The world energy scenarios developed by WEC and IIASA, which contain analyses and estimates on the long-term development perspectives of regional development areas, show that the worldwide energy requirement can no longer be met without the large-scale expansion of nuclear power. This implies an expansion on nuclear power in the next forty or fifty years to more than the 38 countries at present known to use or wanting to use nuclear power. With respect to the aspects of supply and non-proliferation, the question of the geographic distribution of future nuclear power plants is becoming more and more important. If the more global statements in the different world energy scenarios can be translated into information about the potential use of nuclear power in specific countries in the fifty years, this will allow a picture of a possible nuclear future to be sketched, on the basis of which considerations of non-proliferation and nuclear transfer can be put on a firm basis. This is not meant to be another set of long-term forecasts of nuclear power, but a concrete implementation of world energy scenarios and the consequences with respect to non-proliferation and transfer potentially arising from them. (orig.) [de

  14. Long term perspectives: energy, development and the environment

    International Nuclear Information System (INIS)

    Nakicenovic, N.

    1996-01-01

    The International Institute for Applied Systems Analysis (IIASA) is investigating the linkages between energy use, development, and environmental change. In a collaborative study with the World Energy Council (WEC) an integrated assessment framework has been used to explore the prospects for improving the global availability and quality of energy services and the wider implications of such improvements. Consequences, such as the likely financing needs and environmental impacts, have been considered. The main features and findings of the joint IIASA-WEC two-year study are summarised in this paper. (8 figures; 6 references). (UK)

  15. Long-term sampling of CO2 from waste-to-energy plants: 14C determination methodology, data variation and uncertainty

    DEFF Research Database (Denmark)

    Fuglsang, Karsten; Pedersen, Niels Hald; Larsen, Anna Warberg

    2014-01-01

    A dedicated sampling and measurement method was developed for long-term measurements of biogenic and fossil-derived CO2 from thermal waste-to-energy processes. Based on long-term sampling of CO2 and 14C determination, plant-specific emission factors can be determined more accurately, and the annual...... emission of fossil CO2 from waste-to-energy plants can be monitored according to carbon trading schemes and renewable energy certificates. Weekly and monthly measurements were performed at five Danish waste incinerators. Significant variations between fractions of biogenic CO2 emitted were observed...... was ± 4.0 pmC (95 % confidence interval) at 62 pmC. The long-term sampling method was found to be useful for waste incinerators for determination of annual fossil and biogenic CO2 emissions with relatively low uncertainty....

  16. Increased mitochondrial energy efficiency in skeletal muscle after long-term fasting: its relevance to animal performance.

    Science.gov (United States)

    Bourguignon, Aurore; Rameau, Anaïs; Toullec, Gaëlle; Romestaing, Caroline; Roussel, Damien

    2017-07-01

    In the final stage of fasting, skeletal muscle mass and protein content drastically decrease when the maintenance of efficient locomotor activity becomes crucial for animals to reactivate feeding behaviour and survive a very long period of starvation. As mitochondrial metabolism represents the main physiological link between the endogenous energy store and animal performance, the aim of this study was to determine how a very long, natural period of fasting affected skeletal muscle mitochondrial bioenergetics in king penguin ( Aptenodytes patagonicus ) chicks. Rates of mitochondrial oxidative phosphorylation were measured in pectoralis permeabilized fibres and isolated mitochondria. Mitochondrial ATP synthesis efficiency and the activities of respiratory chain complexes were measured in mitochondria isolated from pectoralis muscle. Results from long-term (4-5 months) naturally fasted chicks were compared with those from short-term (10 day) fasted birds. The respiratory activities of muscle fibres and isolated mitochondria were reduced by 60% and 45%, respectively, on average in long-term fasted chicks compared with short-term fasted birds. Oxidative capacity and mitochondrial content of pectoralis muscle were lowered by long-term fasting. Bioenergetic analysis of pectoralis muscle also revealed that mitochondria were, on average, 25% more energy efficient in the final stage of fasting (4-5 months) than after 10 days of fasting (short-term fasted birds). These results suggest that the strong reduction in respiratory capacity of pectoralis muscle was partly alleviated by increased mitochondrial ATP synthesis efficiency. Such oxidative phosphorylation optimization can impact animal performance, e.g. the metabolic cost of locomotion or the foraging efficiency. © 2017. Published by The Company of Biologists Ltd.

  17. The long-term forecast of Taiwan's energy supply and demand: LEAP model application

    International Nuclear Information System (INIS)

    Huang, Yophy; Bor, Yunchang Jeffrey; Peng, Chieh-Yu

    2011-01-01

    The long-term forecasting of energy supply and demand is an extremely important topic of fundamental research in Taiwan due to Taiwan's lack of natural resources, dependence on energy imports, and the nation's pursuit of sustainable development. In this article, we provide an overview of energy supply and demand in Taiwan, and a summary of the historical evolution and current status of its energy policies, as background to a description of the preparation and application of a Long-range Energy Alternatives Planning System (LEAP) model of Taiwan's energy sector. The Taiwan LEAP model is used to compare future energy demand and supply patterns, as well as greenhouse gas emissions, for several alternative scenarios of energy policy and energy sector evolution. Results of scenarios featuring 'business-as-usual' policies, aggressive energy-efficiency improvement policies, and on-schedule retirement of Taiwan's three existing nuclear plants are provided and compared, along with sensitivity cases exploring the impacts of lower economic growth assumptions. A concluding section provides an interpretation of the implications of model results for future energy and climate policies in Taiwan. - Research highlights: → The LEAP model is useful for international energy policy comparison. → Nuclear power plants have significant, positive impacts on CO 2 emission. → The most effective energy policy is to adopt demand-side management. → Reasonable energy pricing provides incentives for energy efficiency and conservation. → Financial crisis has less impact on energy demand than aggressive energy policy.

  18. Long- and Short-Term Cryptocurrency Volatility Components: A GARCH-MIDAS Analysis

    Directory of Open Access Journals (Sweden)

    Christian Conrad

    2018-05-01

    Full Text Available We use the GARCH-MIDAS model to extract the long- and short-term volatility components of cryptocurrencies. As potential drivers of Bitcoin volatility, we consider measures of volatility and risk in the US stock market as well as a measure of global economic activity. We find that S&P 500 realized volatility has a negative and highly significant effect on long-term Bitcoin volatility. The finding is atypical for volatility co-movements across financial markets. Moreover, we find that the S&P 500 volatility risk premium has a significantly positive effect on long-term Bitcoin volatility. Finally, we find a strong positive association between the Baltic dry index and long-term Bitcoin volatility. This result shows that Bitcoin volatility is closely linked to global economic activity. Overall, our findings can be used to construct improved forecasts of long-term Bitcoin volatility.

  19. Change of nuclear administrative system and long-term program for nuclear energy in Japan

    International Nuclear Information System (INIS)

    Yun, S. W.; Yang, M. H.; Jeong, H. S.

    2001-01-01

    Japanese new governmental adminstrative system was restructured and became in operation from January 1, 2001 including newly establishment of the Ministry of Cabinet. Accordingly, Japanese nuclear administrative system were also changed significantly, in order to reflect the changing policy environment and response to them more efficiently in the use and development of nuclear energy. Atomic Energy Commission, Nuclear Safety Commission administrated by Science and Technology Agency in the past, were moved to the Ministry of Cabinet, and Integrated Science and Technology Council was also newly established under the Ministry of Cabinet. And Ministry of Economy, Trade and Industry(METI) is in charge of nuclear energy policy and the Ministry of Education, Culture, Sports, Science and Technology(MEXT) is in charge of nuclear academic science consequently. At the same time, the revision work of 'Long-term Program for Research, Development and Utilization of Nuclear of Japan' established in 1994, has been carried out from 1999 in order to set up the long term based national nuclear policy towards the 21st century, and finally the results were open to the public in November 2000. Major changes of nuclear policy of Japan the will be good references in the establishing future national nuclear policy for the use and development of nuclear energy

  20. Applying Advances in GPM Radiometer Intercalibration and Algorithm Development to a Long-Term TRMM/GPM Global Precipitation Dataset

    Science.gov (United States)

    Berg, W. K.

    2016-12-01

    The Global Precipitation Mission (GPM) Core Observatory, which was launched in February of 2014, provides a number of advances for satellite monitoring of precipitation including a dual-frequency radar, high frequency channels on the GPM Microwave Imager (GMI), and coverage over middle and high latitudes. The GPM concept, however, is about producing unified precipitation retrievals from a constellation of microwave radiometers to provide approximately 3-hourly global sampling. This involves intercalibration of the input brightness temperatures from the constellation radiometers, development of an apriori precipitation database using observations from the state-of-the-art GPM radiometer and radars, and accounting for sensor differences in the retrieval algorithm in a physically-consistent way. Efforts by the GPM inter-satellite calibration working group, or XCAL team, and the radiometer algorithm team to create unified precipitation retrievals from the GPM radiometer constellation were fully implemented into the current version 4 GPM precipitation products. These include precipitation estimates from a total of seven conical-scanning and six cross-track scanning radiometers as well as high spatial and temporal resolution global level 3 gridded products. Work is now underway to extend this unified constellation-based approach to the combined TRMM/GPM data record starting in late 1997. The goal is to create a long-term global precipitation dataset employing these state-of-the-art calibration and retrieval algorithm approaches. This new long-term global precipitation dataset will incorporate the physics provided by the combined GPM GMI and DPR sensors into the apriori database, extend prior TRMM constellation observations to high latitudes, and expand the available TRMM precipitation data to the full constellation of available conical and cross-track scanning radiometers. This combined TRMM/GPM precipitation data record will thus provide a high-quality high

  1. Long-term energy savings and greenhouse gas emission reductions in the Swiss residential sector

    International Nuclear Information System (INIS)

    Siller, Thomas; Kost, Michael; Imboden, Dieter

    2007-01-01

    The aim of this paper is to explore the possibilities to reach two long-term targets regarding energy consumption and greenhouse gas emissions of the Swiss residential building stock: a reduction of the final energy consumption by a factor of 3 and of CO 2 emissions by a factor of 5 until 2050. A model is constructed to describe the dynamics of the energy-relevant properties of the residential building stock. Appropriate scenarios are discussed in terms of decisions made during construction or renovation of residential buildings which affect heat demand and determine the energy carriers used for heating and hot water generation. We show that both targets could be reached, although ambitious efforts are necessary. The central element of a successful strategy is to reduce the specific heat demand of existing buildings during renovation and to substitute the heating and hot water systems by less carbon intensive ones. Our results suggest that there is more flexibility to reach the emission target than the energy reduction target

  2. Novel effects of demand side management data on accuracy of electrical energy consumption modeling and long-term forecasting

    International Nuclear Information System (INIS)

    Ardakani, F.J.; Ardehali, M.M.

    2014-01-01

    Highlights: • Novel effects of DSM data on electricity consumption forecasting is examined. • Optimal ANN models based on IPSO and SFL algorithms are developed. • Addition of DSM data to socio-economic indicators data reduces MAPE by 36%. - Abstract: Worldwide implementation of demand side management (DSM) programs has had positive impacts on electrical energy consumption (EEC) and the examination of their effects on long-term forecasting is warranted. The objective of this study is to investigate the effects of historical DSM data on accuracy of EEC modeling and long-term forecasting. To achieve the objective, optimal artificial neural network (ANN) models based on improved particle swarm optimization (IPSO) and shuffled frog-leaping (SFL) algorithms are developed for EEC forecasting. For long-term EEC modeling and forecasting for the U.S. for 2010–2030, two historical data types used in conjunction with developed models include (i) EEC and (ii) socio-economic indicators, namely, gross domestic product, energy imports, energy exports, and population for 1967–2009 period. Simulation results from IPSO-ANN and SFL-ANN models show that using socio-economic indicators as input data achieves lower mean absolute percentage error (MAPE) for long-term EEC forecasting, as compared with EEC data. Based on IPSO-ANN, it is found that, for the U.S. EEC long-term forecasting, the addition of DSM data to socio-economic indicators data reduces MAPE by 36% and results in the estimated difference of 3592.8 MBOE (5849.9 TW h) in EEC for 2010–2030

  3. Global Change Research Related to the Earth's Energy and Hydrologic Cycle

    Science.gov (United States)

    1998-01-01

    The Institute for Global Change Research and Education (IGCRE) is a joint initiative of the Universities Space Research Association (USRA) and the University of Alabama in Huntsville (UAH) for coordinating and facilitating research and education relevant to global environmental change. Created in 1992 with primary support from the National Aeronautics and Space Administration (NASA), IGCRE fosters participation by university, private sector and government scientists who seek to develop long-term collaborative research in global change science, focusing on the role of water and energy in the Earth's atmosphere and physical climate system. IGCRE is also chartered to address educational needs of Earth system and global change science, including the preparation of future scientists and training of primary and secondary education teachers.

  4. The great transformation of global energy supply. Central messages of the world energy congress; Die Grosse Transformation der Weltenergieversorgung. Zentrale Botschaften des World Energy Congress

    Energy Technology Data Exchange (ETDEWEB)

    Schiffer, Hans-Wilhelm [World Energy Council, London (United Kingdom). World Energy Resources

    2016-12-15

    The 23rd World Energy Congress, held in Istanbul from October 9 to 13, 2016, brought together some 4500 delegates from around the world. It is the world's largest international energy conference held every three years by the World Energy Council in changing world regions. The congress was a unique opportunity to present a comprehensive view of current and long-term global energy issues. [German] Der 23. Weltenergie-Kongress, veranstaltet vom 9. bis 13.10.2016 in Istanbul, brachte etwa 4500 Delegierte aus der ganzen Welt zusammen. Es ist die weltweit groesste internationale Energiekonferenz, die alle drei Jahre vom World Energy Council in wechselnden Weltregionen ausgerichtet wird. Mit dem Kongress wurde die einzigartige Gelegenheit wahrgenommen, einen umfassenden Blick sowohl auf die aktuellen als auch auf die langfristig global relevanten Energiethemen zu richten.

  5. Century long observation constrained global dynamic downscaling and hydrologic implication

    Science.gov (United States)

    Kim, H.; Yoshimura, K.; Chang, E.; Famiglietti, J. S.; Oki, T.

    2012-12-01

    It has been suggested that greenhouse gas induced warming climate causes the acceleration of large scale hydrologic cycles, and, indeed, many regions on the Earth have been suffered by hydrologic extremes getting more frequent. However, historical observations are not able to provide enough information in comprehensive manner to understand their long-term variability and/or global distributions. In this study, a century long high resolution global climate data is developed in order to break through existing limitations. 20th Century Reanalysis (20CR) which has relatively low spatial resolution (~2.0°) and longer term availability (140 years) is dynamically downscaled into global T248 (~0.5°) resolution using Experimental Climate Prediction Center (ECPC) Global Spectral Model (GSM) by spectral nudging data assimilation technique. Also, Global Precipitation Climatology Centre (GPCC) and Climate Research Unit (CRU) observational data are adopted to reduce model dependent uncertainty. Downscaled product successfully represents realistic geographical detail keeping low frequency signal in mean state and spatiotemporal variability, while previous bias correction method fails to reproduce high frequency variability. Newly developed data is used to investigate how long-term large scale terrestrial hydrologic cycles have been changed globally and how they have been interacted with various climate modes, such as El-Niño Southern Oscillation (ENSO) and Atlantic Multidecadal Oscillation (AMO). As a further application, it will be used to provide atmospheric boundary condition of multiple land surface models in the Global Soil Wetness Project Phase 3 (GSWP3).

  6. Long-term multipactor discharge in multicarrier systems

    International Nuclear Information System (INIS)

    Anza, S.; Vicente, C.; Gimeno, B.; Boria, V. E.; Armendariz, J.

    2007-01-01

    A new mechanism of long-term multipactor in multicarrier systems is studied employing both analytical and numerical methods. In particular, the investigation is focused on the impact that a realistic secondary emission yield at low energies produces on the development of long term multipactor. A novel analytical model for this interperiod charge accumulation is presented using the traditional multipactor theory for parallel plates, and approximating the multicarrier signal as a single-carrier signal modulated by a pulsed signal envelope. The analytical predictions are verified by numerical simulations for a typical rectangular waveguide. The analytical and numerical results demonstrate that the susceptibility of the system to develop a long-term multipactor discharge increases with higher values of low-energy secondary emission yield

  7. Global risks from energy consumption

    International Nuclear Information System (INIS)

    von Hippel, F.

    1983-01-01

    A discussion of some of the global risks associated with current and frequently proposed future levels of consumption of energy from oil, coal, fission, fusion, and renewable sources points out the the dangers are serious and relatively near term. These include world war over Persian Gulf oil, climate change due to the buildup of atmospheric carbon dioxide, the accelerated proliferation of nuclear weapons, and competition between food and energy for land and water. The author urges placing a greater emphasis on how we use energy and how to reduce energy waste. At the levels of consumption which economically justified levels of energy efficiency could bring about, enough flexibility could develop in our choice of a future energy-supply mix to dramatically reduce the associated global risks. 47 references, 3 figures

  8. Long-Term Forecast 2012 - An impact analysis of existing policy instruments in energy- and climate area; Laangsiktsprognos 2012 - En konsekvensanalys av gaellande styrmedel inom energi- och klimatomraadet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-01

    The Energy Agency has a mandate that under 'Ordinance on climate reporting' (SFS 2005:626) out projections for the energy sector of the European Parliament and Council Decision No 280/2004/EC concerning a 'Mechanism for monitoring the emissions of the Community greenhouse gas'. This report contains a reference trajectory until 2030, and two sensitivity scenarios. The forecast is based on existing instruments, which means that results of the report should not be regarded as a proper projection of future energy, but as the impact of current policy instruments given different conditions such as economic growth and fuel prices. The Energy Authority's long-term forecasts are studied energy system's long-term development on the basis of policy instruments and several assumed conditions. The conditions for this long-term prognosis was established in January 2012 and has its basis in the policy instruments decided until the turn of 2011/2012. The work was partially done in conjunction with the Environmental Protection Agency assignments 'Assignment to provide input to a Swedish road map for Sweden without greenhouse gas emissions in 2050' as reported in December 2012. For a short-term development of the energy system the reader is referred to the Energy Authority's short-term forecasts that extend two to three years into the future and that are produced twice a year. Energy Agency's long-term projections are impact assessments with time horizon of 10-20 years which aims to describe the energy system's future development, provided a range of assumed conditions. If any of these conditions change it will also change forecast results. Economic development is an important assumption for the assessment of future energy.

  9. A general equilibrium view of global rebound effects

    International Nuclear Information System (INIS)

    Wei Taoyuan

    2010-01-01

    How do energy efficiency gains affect energy consumption? The effects are generally called 'rebound effects' in the literature. Previous studies have extensively focused on only part of the global economy to study rebound effects, e.g. energy consumption by households, one industry, or one country. However, since the global economy is highly connected among countries, these studies may lead to misleading conclusions if the rebound effects in the rest of the economy are significant. Recently Saunders (2008) analyzes the demand side by taking the global economy as a whole. Wei (2007) also provides a general analysis by using Cobb-Douglas production functions for the global economy. The present article expands Wei (2007) general analysis to explore the rebound effects from an economist's viewpoint by taking the global economy as a whole and applying general forms of production functions. The analysis provides new insights related to rebound effects: we highlight the role of energy supply as a determinant of rebound. We show that the substitution between energy resources and other productive resources is more relevant to long term rebound. We predict that long term rebound may be lower than short term rebound. And we also discover that super-conservation can happen in both the short term and the long term.

  10. Workshop on IAEA Tools for Nuclear Energy System Assessment for Long-Term Planning and Development

    International Nuclear Information System (INIS)

    2009-01-01

    The purpose of the workshop is to present to Member States tools and methods that are available from the IAEA in support of long-term energy planning and nuclear energy system assessments, both focusing on the sustainable development of nuclear energy. This includes tools devoted to energy system planning, indicators for sustainable energy development, the INPRO methodology for Nuclear Energy System Assessment (NESA) and tools for analysing nuclear fuel cycle material balance. The workshop also intends to obtain feedback from Member States on applying the tools, share experiences and lessons learned, and identify needs for IAEA support

  11. Perspective of long term demand and supply of energy and general inspection of energy policy

    International Nuclear Information System (INIS)

    1983-01-01

    Since the oil crisis, Japanese energy policy was promoted to get rid of the excess dependence on petroleum and to attain energy security, but energy situation largely changed during the past ten years, and it has become necessary to make general inspection on the long term demand and supply of energy and the energy policy. After the second oil crisis, the worldwide demand of petroleum decreased drastically due to the rapid price rise, and the base price of crude oil was lowered for the first time. It is necessary to positively endeavor to reduce energy cost with new idea. The points of the general inspection are the correspondence of the energy policy to the large structural change of energy, the most desirable system for attaining the optimum structure of energy demand and supply and the utilization of market mechanism as far as possible. This report is the results of discussion held eight times since April, 1983. The change of energy situation in Japan and abroad and the perspective, the new problems in energy countermeasures and the trend of response, the preferential and effective promotion of general energy countermeasures and so on are reported. This report shows the fundamental direction of energy countermeasures hereafter, and the concrete and special examination must be made on many remaining problems. (Kako, I.)

  12. Long-Term Stewardship Program Science and Technology Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Joan McDonald

    2002-09-01

    Many of the United States’ hazardous and radioactively contaminated waste sites will not be sufficiently remediated to allow unrestricted land use because funding and technology limitations preclude cleanup to pristine conditions. This means that after cleanup is completed, the Department of Energy will have long-term stewardship responsibilities to monitor and safeguard more than 100 sites that still contain residual contamination. Long-term stewardship encompasses all physical and institutional controls, institutions, information, and other mechanisms required to protect human health and the environment from the hazards remaining. The Department of Energy Long-Term Stewardship National Program is in the early stages of development, so considerable planning is still required to identify all the specific roles and responsibilities, policies, and activities needed over the next few years to support the program’s mission. The Idaho National Engineering and Environmental Laboratory was tasked with leading the development of Science and Technology within the Long-Term Stewardship National Program. As part of that role, a task was undertaken to identify the existing science and technology related requirements, identify gaps and conflicts that exist, and make recommendations to the Department of Energy for future requirements related to science and technology requirements for long-term stewardship. This work is summarized in this document.

  13. Paris and its long-term temperature goal: First steps on a long road

    Science.gov (United States)

    Rogelj, J.

    2017-12-01

    As a means to achieve its long-term temperature goal, the Paris Agreement put in place a system of regularly updated country pledges alternating with global stocktaking exercises that assess progress towards achieving the Paris goals. By now, the vast majority of countries have submitted their intended actions (also known as Nationally Determined Contributions - NDCs). This begs the question what these amount to and whether they are in line with the agreement`s long-term temperature goal. A structured sensitivity analysis of the emissions implications of the Paris pledges has been carried out, showing that the ambiguity and imprecision of the NDCs leaves open a wide range of possible outcomes by 2030. This range has important implications for the feasibility and cost of pathways that attempt to limit warming to the temperature goals of the Agreement. We identify salient steps to reduce the overall uncertainty, and explore the minimum requirements that have to be met for integrated energy-economy-land models to still find options to stay within the temperature limits of the Paris Agreement. These requirements come under the form of near-term emissions reductions, and assumptions about the deployment of carbon-dioxide removal technologies in the second half of the century.

  14. Storm impacts on a high energy sandy beach system, northwest Ireland: short (event) to long term (decadal) behaviour

    Science.gov (United States)

    Guisado-Pintado, Emilia; Jackson, Derek; Cooper, Andrew; O'Connor, Marianne

    2017-04-01

    Long-term monitoring of beach dynamics is an important element in risk prevention and management of both natural and human resources at the coast. The predicted intensification in storminess (frequency, duration and magnitude), partly associated with climate change, represents a pressing concern for coastal communities globally and has undoubtedly led to an improvement in available techniques and technologies for observation and analysis. Here we examine a high energy Atlantic beach system at Five Fingers strand (NW Ireland) to help understand hydrodynamic forcing on beach response under various wave energy scenarios. The system, which has been modally attuned to a large swell wave environment, periodically undergoes significant morphological changes over various spatial and temporal scales manifest in the development and movements of dynamic nearshore bars and a nearshore ebb-tide delta. A combination of field and laboratory techniques (GPS, Terrestrial Laser Scanning (TLS) Instrumentation, Drone surveys) implemented from the shoreface to the beach, captures the response and evolution of the system over the short (event), medium (weeks to months) and long-term (multiyear) timescale. Numerical modelling of nearshore wave hydrodynamics (using SWAN wave simulation model) helps understanding wave forcing across shoreface area and is ran under a number of iterative time intervals. Here, we investigate the role of infrequent and sometimes extreme events in the system to understand the importance of clustering of storminess and the occurrence of single high-magnitude storm events that perturb the inlet-beach system and thus induce key morphodynamic changes. Preliminary results show that ultimately the configuration of the ebb-tide channel influences the geomorphic response of the system. In the short term, a storm induced erosion of the shoreface is observed, which also appears to lead to changes in the ebb-tide channel, and ultimately the welding of a nearshore bar

  15. A retrospective investigation of energy efficiency standards: policies may have accelerated long term declines in appliance costs

    International Nuclear Information System (INIS)

    Van Buskirk, R D; Kantner, C L S; Gerke, B F; Chu, S

    2014-01-01

    We perform a retrospective investigation of multi-decade trends in price and life-cycle cost (LCC) for home appliances in periods with and without energy efficiency (EE) standards and labeling polices. In contrast to the classical picture of the impact of efficiency standards, the introduction and updating of appliance standards is not associated with a long-term increase in purchase price; rather, quality-adjusted prices undergo a continued or accelerated long-term decline. In addition, long term trends in appliance LCCs—which include operating costs—consistently show an accelerated long term decline with EE policies. We also show that the incremental price of efficiency improvements has declined faster than the baseline product price for selected products. These observations are inconsistent with a view of EE standards that supposes a perfectly competitive market with static supply costs. These results suggest that EE policies may be associated with other forces at play, such as innovation and learning-by-doing in appliance production and design, that can affect long term trends in quality-adjusted prices and LCCs. (letter)

  16. Nuclear power: renaissance or relapse? Global climate change and long-term Three Mile Island activists' narratives.

    Science.gov (United States)

    Culley, Marci R; Angelique, Holly

    2010-06-01

    Community narratives are increasingly important as people move towards an ecologically sustainable society. Global climate change is a multi-faceted problem with multiple stakeholders. The voices of affected communities must be heard as we make decisions of global significance. We document the narratives of long-term anti-nuclear activists near the Three Mile Island (TMI) nuclear power plant who speak out in the dawn of a nuclear renaissance/relapse. While nuclear power is marketed as a "green" solution to global warming, their narratives reveal three areas for consideration; (1) significant problems with nuclear technology, (2) lessons "not" learned from the TMI disaster, and (3) hopes for a sustainable future. Nuclear waste, untrustworthy officials and economic issues were among the problems cited. Deceptive shaping of public opinion, nuclear illiteracy, and an aging anti-nuclear movement were reasons cited for the lessons not learned. However, many remain optimistic and envision increased participation to create an ecologically-balanced world.

  17. A heuristic evaluation of long-term global sea level acceleration

    Science.gov (United States)

    Spada, Giorgio; Olivieri, Marco; Galassi, Gaia

    2015-05-01

    In view of the scientific and social implications, the global mean sea level rise (GMSLR) and its possible causes and future trend have been a challenge for so long. For the twentieth century, reconstructions generally indicate a rate of GMSLR in the range of 1.5 to 2.0 mm yr-1. However, the existence of nonlinear trends is still debated, and current estimates of the secular acceleration are subject to ample uncertainties. Here we use various GMSLR estimates published on scholarly journals since the 1940s for a heuristic assessment of global sea level acceleration. The approach, alternative to sea level reconstructions, is based on simple statistical methods and exploits the principles of meta-analysis. Our results point to a global sea level acceleration of 0.54 ± 0.27 mm/yr/century (1σ) between 1898 and 1975. This supports independent estimates and suggests that a sea level acceleration since the early 1900s is more likely than currently believed.

  18. Uncertain long-run emissions targets, CO2 price and global energy transition. A general equilibrium approach

    International Nuclear Information System (INIS)

    Durand-Lasserve, Olivier; Smeers, Yves; Pierru, Axel

    2010-01-01

    The persistent uncertainty about mid-century CO 2 emissions targets is likely to affect not only the technological choices that energy-producing firms will make in the future but also their current investment decisions. We illustrate this effect on CO 2 price and global energy transition within a MERGE-type general-equilibrium model framework, by considering simple stochastic CO 2 policy scenarios. In these scenarios, economic agents know that credible long-run CO 2 emissions targets will be set in 2020, with two possible outcomes: either a hard cap or a soft cap. Each scenario is characterized by the relative probabilities of both possible caps. We derive consistent stochastic trajectories - with two branches after 2020 - for prices and quantities of energy commodities and CO 2 emissions permits. The impact of uncertain long-run CO 2 emissions targets on prices and technological trajectories is discussed. In addition, a simple marginal approach allows us to analyze the Hotelling rule with risk premia observed for certain scenarios. (author)

  19. Long-term energy services security: What is it and how can it be measured and valued?

    International Nuclear Information System (INIS)

    Jansen, Jaap C.; Seebregts, Ad J.

    2010-01-01

    The paper reviews some recent approaches towards measuring the extent of long-term energy security and security externality valuation. It starts out to discuss the contextual connotations of notions of 'energy security' in medium to long-term time frames and reviews some indicators that have been proposed to quantify it. Special attention is paid to two of these approaches, which the authors helped to develop, i.e. diversity-based indices and the Supply/Demand Index. The paper takes issue with conventional welfare economic approaches that neglect: (i) the scope on the demand side for raising security and (ii) negative feedback mechanisms of socio-political impacts of international rent transfers in fossil fuels exporting countries. The concept of energy services security is proposed with a demand-side focus. This enables application of an integrated approach to gauge the resilience of a society to meet the needs of its population for energy services over longer timescales ahead from various interrelated perspectives. Propositions are made on the attribution of security externalities to the use of fossil fuels, policies, and suggestions for further improvements of measures for energy services security.

  20. Fiscal 1997 report on the investigational research on the evaluation of a global energy system as global environmental protection technology. 2; 1997 nendo chosa hokokusho (chikyu kankyo taisaku gijutsu to shite no global energy system no hyoka ni kansuru chosa kenkyu). 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    An energy supply system which is globally formed for global environmental protection is called a global energy system (GES), in which to achieve substantial CO2 reduction, various measures against CO2 are introduced to energy systems extending from places of fuel supply to places of fuel consumption. For the study of a scenario for introduction such a GES, it is necessary to investigate the GES presently proposed and make a traverse evaluation of it under uniform preconditions and evaluation criteria. Concretely, following a case study of evaluating performance of the GES with a power system as the final form from viewpoints of economy, energy balance, CO2 emissions, etc., the paper arranged characteristics of liquid fuel supply systems including methanol from a traverse aspect, made evaluation of performance and possibilities of the introduction in the areas concretely named, and studied positioning of this energy system, scenario for the future introduction and possibilities of the introduction from global and long-term aspects. 79 refs., 102 figs., 77 tabs.

  1. Self-reported immature defense style as a predictor of outcome in short-term and long-term psychotherapy.

    Science.gov (United States)

    Laaksonen, Maarit A; Sirkiä, Carlos; Knekt, Paul; Lindfors, Olavi

    2014-07-01

    Identification of pretreatment patient characteristics predictive of psychotherapy outcome could help to guide treatment choices. This study evaluates patients' initial level of immature defense style as a predictor of the outcome of short-term versus long-term psychotherapy. In the Helsinki Psychotherapy Study, 326 adult outpatients with mood or anxiety disorder were randomized to individual short-term (psychodynamic or solution-focused) or long-term (psychodynamic) psychotherapy. Their defense style was assessed at baseline using the 88-item Defense Style Questionnaire and classified as low or high around the median value of the respective score. Both specific (Beck Depression Inventory [BDI], Hamilton Depression Rating Scale [HDRS], Symptom Check List Anxiety Scale [SCL-90-Anx], Hamilton Anxiety Rating Scale [HARS]) and global (Symptom Check List Global Severity Index [SCL-90-GSI], Global Assessment of Functioning Scale [GAF]) psychiatric symptoms were measured at baseline and 3-7 times during a 3-year follow-up. Patients with high use of immature defense style experienced greater symptom reduction in long-term than in short-term psychotherapy by the end of the 3-year follow-up (50% vs. 34%). Patients with low use of immature defense style experienced faster symptom reduction in short-term than in long-term psychotherapy during the first year of follow-up (34% vs. 19%). Knowledge of patients' initial level of immature defense style may potentially be utilized in tailoring treatments. Further research on defense styles as outcome predictors in psychotherapies of different types is needed.

  2. Evaluation of the long-term agreement on energy efficiency in the mushroom sector [in the Netherlands]; Evaluatie Meerjaren Afspraak energie in de Paddestoelensector

    Energy Technology Data Exchange (ETDEWEB)

    Lemmens, P.A.E. [et al.] [HAS KennisTransfer, Den Bosch (Netherlands)

    2005-08-15

    In 1998, the Long-Term Agreement on energy efficiency for the mushroom cultivation sector was signed by the Dutch Ministry of Economic Affairs and representatives of the mushroom cultivation sector. The main consideration were improvement of the sector's image, cost reductions, increasing awareness and preservation of a relatively beneficial energy rate. In the Long-Term Agreement, the target for 2005 was to realize an energy efficiency improvement of 20% compared to the year 1995 (reference year) and to strive for 5% sustainable energy deployment in 2005 [Dutch] In 1998 is de Meerjarenafspraak Energie voor de paddestoelensector ondertekend door het Ministerie van Economische Zaken en de vertegenwoordiging van de paddestoelensector met als belangrijkste overwegingen verbetering van het imago van de sector, kostenbeperking, bewustwording en behoud van een relatief voordelig energietarief. In de Meerjarenafspraak is als doel gesteld om in 2005 een verbetering van de energie-efficiency te realiseren van 20% ten opzichte van het jaar 1995 (basisjaar) en te streven naar 5% gebruik van duurzame energie in 2005.

  3. Global challenges in energy

    International Nuclear Information System (INIS)

    Dorian, James P.; Franssen, Herman T.; Simbeck, Dale R. MD

    2006-01-01

    Environmental and security concerns are stimulating global interest in hydrogen power, renewable energy, and advanced transportation technologies, but no significant movement away from oil and a carbon-based world economy is expected soon. Over the longer-term, however, a transition from fossil fuels to a non-carbon-based economy will likely occur, affecting the type of environment future generations may encounter. Key challenges will face the world's energy industry over the next few decades to ensure a smooth transition-challenges which will require government and industry solutions beginning as early as today. This paper identifies four critical challenges in energy and the choices which will have to be made on how best to confront growing pollution caused by fossil fuels and how to facilitate an eventual revolutionary-like transition to a non-carbon-based global economy

  4. Long-term energy planning of Croatian power system using multi-objective optimization with focus on renewable energy and integration of electric vehicles

    International Nuclear Information System (INIS)

    Prebeg, Pero; Gasparovic, Goran; Krajacic, Goran; Duic, Neven

    2016-01-01

    Highlights: • Optimization of supply side long-term energy planning of large power system. • Integration of renewable sources and electrical vehicles in large power system. • Multi-level, multi-objective optimization for a design of energy system. • Historical river flow data analysis for modeling of aggregated hydropower potential. - Abstract: Due to the stochastic nature and variability of renewable energy sources (RES), it is necessary to integrate still expensive storage capacities into an energy system with a high share of RES and to model appropriate energy market. The study presented here considers all energy carriers, however, only the electricity carrier is modeled in detail, with notion taken for the heating demand that is covered but without proper modeling of storage. A proposed two-level approach with multi-objective optimization on the global level, was used to design a Croatian Energy System (CES), where electric vehicles (EVs) are integrated to serve as battery storage in Vehicle-to-Grid (V2G) mode, for a scenario between 2015 and 2050. In addition, case study includes nine aggregated hydro power plants, one for each river basin in Croatia. Also, case study includes solar and wind power plants modeled for six locations in Croatia: Osijek, Zagreb, Rijeka, Sibenik, Split and Dubrovnik. The resulting Pareto front suggests that with assumed future costs of fuels and technology certain level of conventional energy sources will have to remain in the energy system to take into the account unfavourable weather conditions and to cover heating demand, which also results in significantly lower load factors for those power plants. Also, variants with more RES share have lower total energy system load factor and significantly higher installed capacity.

  5. The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets

    International Nuclear Information System (INIS)

    Fais, Birgit; Sabio, Nagore; Strachan, Neil

    2016-01-01

    Highlights: • A new industrial modelling approach in a whole energy systems model is developed. • The contribution of UK industry to long-term energy policy targets is analysed. • Emission reductions of up to 77% can be achieved in the UK industry until 2050. • The UK industry sector is essential for achieving the overall efficiency commitments. • UK industry can make a moderate contribution to the expansion of renewable energies. - Abstract: This paper evaluates the critical contribution of the industry sector to long-term decarbonisation, efficiency and renewable energy policy targets. Its methodological novelty is the incorporation of a process-oriented modelling approach based on a comprehensive technology database for the industry sector in a national energy system model for the UK (UKTM), allowing quantification of the role of both decarbonisation of upstream energy vectors and of mitigation options in the industrial sub-categories. This enhanced model is then applied in a comparative policy scenario analysis that explores various target dimensions on emission mitigation, renewable energy and energy efficiency at both a national and European level. The results show that ambitious emission cuts in the industry sector of up to 77% until 2050 compared to 2010 can be achieved. Moreover, with a reduction in industrial energy demand of up to 31% between 2010 and 2050, the sector is essential for achieving the overall efficiency commitments. The industry sector also makes a moderate contribution to the expansion of renewable energies mostly through the use of biomass for low-temperature heating services. However, additional sub-targets on renewable sources and energy efficiency need to be assessed critically, as they can significantly distort the cost-efficiency of the long-term mitigation pathway.

  6. Long-term optimal energy mix planning towards high energy security and low GHG emission

    International Nuclear Information System (INIS)

    Thangavelu, Sundar Raj; Khambadkone, Ashwin M.; Karimi, Iftekhar A.

    2015-01-01

    Highlights: • We develop long-term energy planning considering the future uncertain inputs. • We analyze the effect of uncertain inputs on the energy cost and energy security. • Conventional energy mix prone to cause high energy cost and energy security issues. • Stochastic and optimal energy mix show benefits over conventional energy planning. • Nuclear option consideration reduces the energy cost and carbon emissions. - Abstract: Conventional energy planning focused on energy cost, GHG emission and renewable contribution based on future energy demand, fuel price, etc. Uncertainty in the projected variables such as energy demand, volatile fuel price and evolution of renewable technologies will influence the cost of energy when projected over a period of 15–30 years. Inaccurate projected variables could affect energy security and lead to the risk of high energy cost, high emission and low energy security. The energy security is an ability of generation capacity to meet the future energy demand. In order to minimize the risks, a generic methodology is presented to determine an optimal energy mix for a period of around 15 years. The proposed optimal energy mix is a right combination of energy sources that minimize the risk caused due to future uncertainties related to the energy sources. The proposed methodology uses stochastic optimization to address future uncertainties over a planning horizon and minimize the variations in the desired performance criteria such as energy security and costs. The developed methodology is validated using a case study for a South East Asian region with diverse fuel sources consists of wind, solar, geothermal, coal, biomass and natural gas, etc. The derived optimal energy mix decision outperformed the conventional energy planning by remaining stable and feasible against 79% of future energy demand scenarios at the expense of 0–10% increase in the energy cost. Including the nuclear option in the energy mix resulted 26

  7. Energy stores are not altered by long-term partial sleep deprivation in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Susan T Harbison

    2009-07-01

    Full Text Available Recent human studies reveal a widespread association between short sleep and obesity. Two hypotheses, which are not mutually exclusive, might explain this association. First, genetic factors that reduce endogenous sleep times might also impact energy stores, an assertion that we confirmed in a previous study. Second, metabolism may be altered by chronic partial sleep deprivation. Here we address the second assertion by measuring the impact of long-term partial sleep deprivation on energy stores using Drosophila as a model. We subjected flies to long-term partial sleep deprivation via two different methods: a mechanical stimulus and a light stimulus. We then measured whole-body triglycerides and glycogen, two important sources of energy for the fly, and compared them to un-stimulated controls. We also measured changes in energy stores in response to a random circadian clock shift. Sex and line-dependent alterations in glycogen and/or triglyceride levels occurred in response to the circadian clock shift and in flies subjected to a single night of sleep deprivation using light. Thus, consistent with previous studies, our findings suggest that acute sleep loss and changes to the circadian clock can alter metabolism. Significant changes in energy stores were also observed when flies were subjected to chronic sleep loss via the mechanical stimulus, although not the light stimulus. Interestingly, mechanical stimulation resulted in the same change in energy stores even when it was not associated with sleep deprivation, suggesting that the changes are caused by stress rather than sleep loss. These findings emphasize the importance of taking stress into account when evaluating the relationship between sleep loss and metabolism.

  8. Reliable in the long run? Petroleum policy and long-term oil supplier reliability

    International Nuclear Information System (INIS)

    Toft, Peter; Duero, Arash

    2011-01-01

    Accelerating oil import dependence in energy consuming nations highlights the importance of having energy supplies at sufficient levels and at stable and reasonable prices. Consequently, it is crucial that oil exporters realize their full production potential. Current debates on energy security are often focused on short-term risks e.g. sudden disruptions due to wars, domestic instability, etc. However, when it comes to assessing oil supplier reliability it is equally important to assess their longer term ability and willingness to deliver oil to the global market. This study analyzes the effects of petroleum investment policies on crude oil production trends in 14 major oil producing countries (2000-2010) by focusing on the political-institutional frameworks that shape the investment conditions for the upstream oil sector. Our findings indicate that countries with less favorable oil sector frameworks systematically performed worse than countries with investor friendly and privatized sectors. The findings indicate that assessments based on remaining reserves and planned production capacities alone could inflate expectations about future oil supplies in a world where remaining crude reserves are located in countries with unfavorable investment frameworks. - Highlights: → We explore if policies favoring state-ownership in upstream oil undermine output expectations. → We compare petroleum policies of 14 major oil producers vis-a-vis production trends 2000-2010. → We find major differences between countries favorable to state-owned or private investors. → Substantial private investment seems needed for oil production to meet long-term demand growth.

  9. Long-Term Outcome of Low-Energy Extracorporeal Shock Wave Therapy for Plantar Fasciitis: Comparative Analysis According to Ultrasonographic Findings

    Science.gov (United States)

    Park, Jong-Wan; Yoon, Kyungjae; Chun, Kwang-Soo; Lee, Joon-Youn; Park, Hee-Jin; Lee, So-Yeon

    2014-01-01

    Objective To investigate the long-term effect of low-energy extracorporeal shock wave therapy (ESWT) for plantar fasciitis (PF) according to ultrasonography (US) findings. Methods Thirty feet of 25 patients with clinical diagnosis of PF were enrolled and divided into two groups (Apparent-US and Uncertain-US) according to US findings, such as plantar fascia thickening or hypoechogenicity. Inclusion criteria were symptom duration >6 months and a fair or poor grade in Roles-Maudsley score (RMS). ESWT (0.10 mJ/mm2, 600 shocks) was given once a week for 6 weeks. Numeric rating scale (NRS) and RMS were evaluated prior to each ESWT session, at short-term follow-up (one week after all ESWT sessions) and long-term follow-up telephone interview (mean 24 months after ESWT). Good and excellent grade in RMS were considered as treatment success. Results Repeated measure ANOVA demonstrated that NRS significantly decreased with time after ESWT up to the long-term follow-up (time effect, p<0.001) without group-time interaction (p=0.641), indicating that ESWT equally decreased pain in both groups. Overall success rate was 63.3% (short-term follow-up) and 80.0% (long-term follow-up). In comparative analysis between groups, success rate of Apparent-US and Uncertain-US at short-term follow-up was 61.9% and 66.7%, respectively, and 85.7% and 66.7%, respectively, at long-term follow-up. Conclusion If other causes of heel pain are ruled out through meticulous physical examination and ultrasonography, low-energy ESWT in PF seems to be beneficial regardless of US findings. In terms of success rate, however, long-term outcome of Apparent-US appears to be superior to Uncertain-US. PMID:25229032

  10. A Comparison of the Long Term Interdependence of Southeast Asian Equity Markets

    Directory of Open Access Journals (Sweden)

    Raisul Islam

    2014-06-01

    Full Text Available The purpose of this paper is to examine the equity market crisis contagion in major Asian economic markets. A comparative assessment of Asian markets during the Asian Financial Crisis and Global Financial crisis may clearly identify the changing nature of long term integration of major Asian markets. The selection criteria of specific Asian markets of different peripheries depend particularly on the roles and structure of these markets. The impact of the global financial contagion and the lingering financial linkage in the aftermath of crisis will explain the reaction of the majority of Asian markets to global linkage. While majority of the studies focused on dynamic short term association in European and MENA contagions in the post global financial crisis period; after the global financial crisis, attention paid to long term Asian contagion adds new perspective to hitherto disorganized theories.

  11. Dynamics of energy technologies and global change

    International Nuclear Information System (INIS)

    Grubler, A.; Nakicenovic, N.; Victor, D.G.

    1999-01-01

    Technological choices largely determine the long-term characteristics of industrial society, including impacts on the natural environment. However, the treatment of technology in existing models that are used to project economic and environmental futures remains highly stylized. Based on work over two decades at IIASA, we present a useful typology for technology analysis and discuss methods that can be used to analyze the impact of technological changes on the global environment, especially global warming. Our focus is energy technologies, the main source of many atmospheric environmental problems. We show that much improved treatment of technology is possible with a combination of historical analysis and new modeling techniques. In the historical record, we identify characteristic 'learning rates' that allow simple quantified characterization of the improvement in cost and performance due to cumulative experience and investments. We also identify patterns, processes and timescales that typify the diffusion of new technologies in competitive markets. Technologies that are long-lived and are components of interlocking networks typically require the longest time to diffuse and co-evolve with other technologies in the network; such network effects yield high barriers to entry even for superior competitors. These simple observations allow three improvements to modeling of technological change and its consequences for global environmental change. One is that the replacement of long-lived infrastructures over time has also replaced the fuels that power the economy to yield progressively more energy per unit of carbon pollution - from coal to oil to gas. Such replacement has 'decarbonized' the global primary energy supply 0.3% per year. In contrast, most baseline projections for emissions of carbon, the chief cause of global warming, ignore this robust historical trend and show Iittle or no decarbonization. A second improvement is that by incorporating learning curves and

  12. Short-term versus long-term contracting for uranium enrichment services

    International Nuclear Information System (INIS)

    Rudy, G.P.

    1990-01-01

    The US Department of Energy (US DOE) is the world's largest and most experienced supplier of uranium enrichment services. Through the late 1970s and early 1980s, emerging market forces transformed what was once a monopoly into a highly competitive industry. In the early 1980's the DOE lost market share. But as we enter the 1990s, new market forces have emerged. The US DOE believes a responsible balance between long-term and short-term contracting will be the key to success and the key to assuring the long-term health and reliability of the nuclear fuel industry. The US DOE intends to be in this nuclear business for a long time and will continue to offer reliable and responsive services second to none

  13. High estimates of supply constrained emissions scenarios for long-term climate risk assessment

    International Nuclear Information System (INIS)

    Ward, James D.; Mohr, Steve H.; Myers, Baden R.; Nel, Willem P.

    2012-01-01

    The simulated effects of anthropogenic global warming have become important in many fields and most models agree that significant impacts are becoming unavoidable in the face of slow action. Improvements to model accuracy rely primarily on the refinement of parameter sensitivities and on plausible future carbon emissions trajectories. Carbon emissions are the leading cause of global warming, yet current considerations of future emissions do not consider structural limits to fossil fuel supply, invoking a wide range of uncertainty. Moreover, outdated assumptions regarding the future abundance of fossil energy could contribute to misleading projections of both economic growth and climate change vulnerability. Here we present an easily replicable mathematical model that considers fundamental supply-side constraints and demonstrate its use in a stochastic analysis to produce a theoretical upper limit to future emissions. The results show a significant reduction in prior uncertainty around projected long term emissions, and even assuming high estimates of all fossil fuel resources and high growth of unconventional production, cumulative emissions tend to align to the current medium emissions scenarios in the second half of this century. This significant finding provides much-needed guidance on developing relevant emissions scenarios for long term climate change impact studies. - Highlights: ► GHG emissions from conventional and unconventional fossil fuels modelled nationally. ► Assuming worst-case: large resource, high growth, rapid uptake of unconventional. ► Long-term cumulative emissions align well with the SRES medium emissions scenario. ► High emissions are unlikely to be sustained through the second half of this century. ► Model designed to be easily extended to test other scenarios e.g. energy shortages.

  14. CLIMATE CHANGE: LONG-TERM TRENDS AND SHORT-TERM OSCILLATIONS

    Institute of Scientific and Technical Information of China (English)

    GAO Xin-quan; ZHANG Xin; QIAN Wei-hong

    2006-01-01

    Identifying the Northern Hemisphere (NH) temperature reconstruction and instrumental data for the past 1000 years shows that climate change in the last millennium includes long-term trends and various oscillations. Two long-term trends and the quasi-70-year oscillation were detected in the global temperature series for the last 140 years and the NH millennium series. One important feature was emphasized that temperature decreases slowly but it increases rapidly based on the analysis of different series. Benefits can be obtained of climate change from understanding various long-term trends and oscillations. Millennial temperature proxies from the natural climate system and time series of nonlinear model system are used in understanding the natural climate change and recognizing potential benefits by using the method of wavelet transform analysis. The results from numerical modeling show that major oscillations contained in numerical solutions on the interdecadal timescale are consistent with that of natural proxies. It seems that these oscillations in the climate change are not directly linked with the solar radiation as an external forcing. This investigation may conclude that the climate variability at the interdecadal timescale strongly depends on the internal nonlinear effects in the climate system.

  15. Long term impacts of nuclear energy: On which purpose do we try to evaluate them?

    International Nuclear Information System (INIS)

    Beutler, Didier

    1998-01-01

    The indicators and the time limits for evaluation of the long term impacts of nuclear energy depend on the purpose: assessing the total cost of electricity generation; comparing different nuclear strategies; responding to public acceptance concerns; elaborating and selecting the most sustainable energy systems. Indicators that can be used are: consumption of non renewable resources; concentrations in the environment; individual exposures; collective dose; potential radiotoxicity. For all of them predicted or conditional values can be applied

  16. Long-term and realistic global change manipulations had low impact on diversity of soil biota in temperate heathland

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Damgaard, Christian; Schmidt, Inger K

    2017-01-01

    C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two...... and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term....

  17. Long-term scenarios and strategies for the deployment of renewable energies in Germany in view of European and global developments. Summary of the final report

    Energy Technology Data Exchange (ETDEWEB)

    Nitsch, Joachim; Pregger, Thomas; Scholz, Yvonne [Deutsches Zentrum fuer Luft- und Raumfahrt, Stuttgart (Germany). Abt. Systemanalyse und Technikbewertung] [and others

    2012-03-31

    The German Federal government's ''Energy Concept'' [Energiekonzept 2010] of 28 September 2010 and the subsequent energy laws of summer 2011 presented a long-term political timetable for climate protection and the transformation of the energy supply in Germany [the ''Energiewende'']. It calls for emissions of greenhouse gases in Germany to be reduced by 80% to 95% from the 1990 level by the year 2050. For energy-related CO{sub 2} emissions alone, this target requires a reduction of at least 85%, aiming in the final result at a power supply that is almost emission-free. A transformation of the power supply to renewable sources of energy, accompanied by a substantial increase in energy efficiency, is the appropriate strategy for this. The challenges presented by this transformation of the power system are considerable, and their full extent has not yet been grasped. This study presents results of systems-analysis examinations of the transformation of electricity, heat, and fuel generation that were developed as part of a three-year research project for the Federal Ministry of the Environment (final report [Nitsch et al. 2012]). The work is based on projects carried out in previous years by the DLR with varying project partners for the Federal Ministry for the Environment, Nature Conservation, and Nuclear Safety (BMU) and the Federal Environment Agency (UBA). In essence, self-consistent energy scenarios for long-term expansion of renewables and for the remaining supply of energy, and the structural and economic effects to be derived from these, were developed. In addition, the project partners, the DLR in Stuttgart and the Fraunhofer Institut fur Windenergie und Energiesystemtechnik (IWES) in Kassel, performed simulations of the future electricity supply as it develops over time, some of them with spatial resolution. This enabled the scenarios for electricity generation to be validated with respect to load coverage, and also

  18. Results of the long-term agreements on energy efficiency. Results 2011; Resultatenbrochure convenanten Meerjarenafspraken energie-efficientie 2011

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    The Dutch long-term agreement on Energy Efficiency with various sectors of the industry, the food and beverages industry and the services sector is a covenant aimed at enhancing energy efficiency among medium-sized enterprises. Participants in the covenant include businesses, the Dutch government and the Competent Authority Environmental Protection Act. Participation of businesses means that they must make energy efficiency plans, take measures and deliver annual results for monitoring. In this report the results of 2011 are presented [Dutch] De Meerjarenafspraken Energie-Efficientie met verschillende sectoren uit de industrie, de voedings- en genotmiddelenindustrie en de dienstensector, is een convenant gericht op het bevorderen van de energie-efficientie bij middelgrote bedrijven. Deelnemers aan het convenant zijn de bedrijven, de Rijksoverheid en het Bevoegd Gezag Wet Milieubeheer. Voor bedrijven betekent deelname dat zij energiebesparingplannen maken, maatregelen nemen en dat zij jaarlijks de resultaten hiervan aanleveren voor de monitoring. In dit rapport worden de resultaten van 2011 gepresenteerd.

  19. Nuclear energy; real problems of the long term development

    International Nuclear Information System (INIS)

    Knapp, V.

    1996-01-01

    Whilst general public accepts the operation of western designed nuclear power stations as safe, waste management and decommission still figure as open problems, although such views are not in agreement with technical and economic status of these operations. A concern with imagined problems can have the effect of neglecting the real ones. In considering the long term development of nuclear energy the real problems can be associated with the wide use of plutonium and multiplication of national reprocessing and enrichment installations. Nuclear proliferation safety could be retained and developed through establishment of international nuclear fuel centres. Their operation would be particularly beneficial for small or medium nuclear countries. Several arguments are given why it is not premature to initiate a study which would identify and analyze the problems of establishing an international nuclear fuel centre. Central Europe could be a region which could be served by one of such nuclear fuel centres. (author)

  20. Mexico's long-term energy outlook : results of a detailed energy supply and demand simulation

    International Nuclear Information System (INIS)

    Conzelmann, G.; Quintanilla, J.; Conde, L.A.; Fernandez, J.; Mar, E.; Martin del Campo, C.; Serrato, G.; Ortega, R.

    2006-01-01

    This article discussed the results of a bottom-up analysis of Mexico's energy markets which was conducted using an energy and power evaluation program. The program was used to develop energy market forecasts to the year 2025. In the first phase of the study, dynamic optimization software was used to determine the optimal, least-cost generation system expansion path to meet growing demand for electricity. A separate model was used to determine the optimal generating strategy of mixed hydro-thermal electric power systems. In phase 2, a nonlinear market-based approach was used to determine the energy supply and demand balance for the entire energy system, as well as the response of various segments of the energy system to changes in energy price and demand levels. Basic input parameters included information on the energy system structure; base-year energy statistics; and, technical and policy constraints. A total of 14 scenarios were modelled to examine variations in load growth, sensitivities to changes in projected fuel prices, variations in assumed natural gas availability, system reliability targets, and the potential for additional nuclear capacity. Forecasts for the entire energy system were then developed for 4 scenarios: (1) reference case; (2) limited gas scenario; (3) renewable energy; and (4) additional nuclear power generation capacity. Results of the study showed that Mexico's crude oil production is projected to increase annually by 1 per cent to 2025. Imports of petroleum products resulting from the country's rapidly growing transportation sector will increase. Demand for natural gas is expected to outpace projected domestic production. The long-term market outlook for Mexico's electricity industry shows a heavy reliance on natural gas-based generating technologies. It was concluded that alternative results for a constrained-gas scenario showed a substantial shift to coal-based generation and associated effects on the natural gas market. 4 refs., 26

  1. The Tasse concept (thorium based accelerator driven system with simplified fuel cycle for long term energy production)

    International Nuclear Information System (INIS)

    Berthou, V.; Slessarev, I.; Salvatores, M.

    2001-01-01

    Within the framework of the nuclear waste management studies, the ''one-component''. concept has to be considered as an attractive option in the long-term perspective. This paper proposes a new system called TASSE (''Thorium based Accelerator driven System with Simplified fuel cycle for long term Energy production''.), destined to the current French park renewal. The main idea of the TASSE concept is to simplify both the front and the back end of the fuel cycle, and his major goals are to provide electricity with low waste production, and with an economical competitiveness. (author)

  2. Long-term results after Ilizarov treatment for severe high-energy injuries of the elbow.

    Science.gov (United States)

    Fodor, Lucian; Ullmann, Yehuda; Soudry, Michael; Lerner, Alexander

    2009-06-01

    Clinical aspects, such as the long-term results after circular external fixation and functional rehabilitation after high-energy injuries of the elbow joint, have not received sufficient attention in the literature. Fourteen patients with high-energy elbow injuries were treated in our hospital over the last 15 years with a circular external fixation frame. The mechanism of injury was blast in eight patients, gunshot wounds in two, motor vehicle crash in two, and fall from height in two. Twelve patients had high-energy open periarticular fractures, nine had Gustillo-Anderson 3B fractures, and three had Gustillo-Anderson 3C fractures. Two patients suffered from closed high-energy periarticular elbow injuries. Seven patients had associated peripheral neurologic injuries and three had vascular injuries. Average Ilizarov fixation time was 20 weeks (range, 6-47 weeks). The follow-up period varied from 1.5 years to 11 years. The average arc of elbow flexion was 110.4 degrees and extension was 19.6 degrees. The average arc of forearm rotation was of 63.5 degrees for pronation (range, 5-90 degrees) and 63.2 degrees for supination (range, 5-90 degrees). The average Mayo Elbow Performance Index score was 84 points (range, 60-100) and the average Khalfayan functional score was 83.4 (range, 68.7-100). Long-term follow-up proved that the hinged Ilizarov/hybrid frame represents a useful instrument to provide stabilization of the elbow joint while facilitating early movements and physiotherapy. The main indication is patients who suffered from open high-energy contaminated fractures with extensive soft-tissue damage (e.g., blast, war injuries) and combined bone and ligaments injuries.

  3. Evaluation of nuclear power development scenarios in romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C.; Apostol, M.; Visan, I.; Prodea, I.

    2015-01-01

    The paper summarizes the results of RATEN ICN Pitesti experts' activities in the IAEA's Collaborative Project INPRO-SYNERGIES. Romanian study proposes to evaluate and analyze development of the nuclear capacity and increasing of its share in national energy sector, envisaging the long term national and regional energy sustainability by keeping options open for the future while bringing solutions to short/medium-term challenges. The study focused on the modelling of national NES (Nuclear Energy System) development on short and medium-term (time horizon 2050), considering the existing NFC (Nuclear Fuel Cycle) infrastructure and legislation, provisions of strategic documents in force and including also the possibility of regional collaboration regarding U/fresh fuel supply and SF (Spent Fuel) storage, as services provided at international market prices. The energy system modelling was realized by using the IAEA's MESSAGE program. The study results offer a clear image and also the possible answer to several key questions regarding: potential of nuclear energy to participate with an important share in national energy mix, in conditions of cost competitiveness, safety and security of supply; impact on national energy mix portfolio of capacities and electricity production; impact on Uranium domestic resources; economic projection/investments needed for new nuclear capacities addition; fresh fuel requirements for nuclear capacities; SF annually discharged and transferred to interim wet storage for cooling; SF volume in interim dry storage, etc. (authors)

  4. CERN Services for Long Term Data Preservation

    CERN Document Server

    Shiers, Jamie; Blomer, Jakob; Ganis, Gerardo; Dallmeier-Tiessen, Sunje; Simko, Tibor; Cancio Melia, German; CERN. Geneva. IT Department

    2016-01-01

    In this paper we describe the services that are offered by CERN for Long Term preservation of High Energy Physics (HEP) data, with the Large Hadron Collider (LHC) as a key use case. Data preservation is a strategic goal for European High Energy Physics (HEP), as well as for the HEP community worldwide and we position our work in this global content. Specifically, we target the preservation of the scientific data, together with the software, documentation and computing environment needed to process, (re-)analyse or otherwise (re-)use the data. The target data volumes range from hundreds of petabytes (PB – 10^15 bytes) to hundreds of exabytes (EB – 10^18 bytes) for a target duration of several decades. The Use Cases driving data preservation are presented together with metrics that allow us to measure how close we are to meeting our goals, including the possibility for formal certification for at least part of this work. Almost all of the services that we describe are fully generic – the exception being A...

  5. Long term radioactive waste management

    International Nuclear Information System (INIS)

    Lavie, J.M.

    1984-01-01

    In France, waste management, a sensitive issue in term of public opinion, is developing quickly, and due to twenty years of experience, is now reaching maturity. With the launching of the French nuclear programme, the use of radioactive sources in radiotherapy and industry, waste management has become an industrial activity. Waste management is an integrated system dealing with the wastes from their production to the long term disposal, including their identification, sortage, treatment, packaging, collection and transport. This system aims at guaranteing the protection of present and future populations with an available technology. In regard to their long term management, and the design of disposals, radioactive wastes are divided in three categories. This classification takes into account the different radioisotopes contained, their half life and their total activity. Presently short-lived wastes are stored in the shallowland disposal of the ''Centre de la Manche''. Set up within the French Atomic Energy Commission (CEA), the National Agency for waste management (ANDRA) is responsible within the framework of legislative and regulatory provisions for long term waste management in France [fr

  6. Long-term affected energy production of waste to energy technologies identified by use of energy system analysis.

    Science.gov (United States)

    Münster, M; Meibom, P

    2010-12-01

    Affected energy production is often decisive for the outcome of consequential life-cycle assessments when comparing the potential environmental impact of products or services. Affected energy production is however difficult to determine. In this article the future long-term affected energy production is identified by use of energy system analysis. The focus is on different uses of waste for energy production. The Waste-to-Energy technologies analysed include co-combustion of coal and waste, anaerobic digestion and thermal gasification. The analysis is based on optimization of both investments and production of electricity, district heating and bio-fuel in a future possible energy system in 2025 in the countries of the Northern European electricity market (Denmark, Norway, Sweden, Finland and Germany). Scenarios with different CO(2) quota costs are analysed. It is demonstrated that the waste incineration continues to treat the largest amount of waste. Investments in new waste incineration capacity may, however, be superseded by investments in new Waste-to-Energy technologies, particularly those utilising sorted fractions such as organic waste and refuse derived fuel. The changed use of waste proves to always affect a combination of technologies. What is affected varies among the different Waste-to-Energy technologies and is furthermore dependent on the CO(2) quota costs and on the geographical scope. The necessity for investments in flexibility measures varies with the different technologies such as storage of heat and waste as well as expansion of district heating networks. Finally, inflexible technologies such as nuclear power plants are shown to be affected. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. Short-term power plant operation scheduling in thermal systems with long-term boundary conditions

    International Nuclear Information System (INIS)

    Wolter, H.

    1990-01-01

    For the first time, the modeling of long-term quantitative conditions within the short-term planning of the application of power stations is made via their shadow prices. It corresponds to a decomposition of the quantitative conditions by means of the method of the Langrange relaxation. The shadow prices determined by the planning for energy application regarding long- term quantitative conditions pass into the short-term planning for power station application and subsidize or rather punish the application of limited amounts as for as they are not claimed for sufficiently or excessively. The clear advantage of this modeling is that the short-term planning of power station application can deviate from the envisioned energy application regarding the total optimum, because the shadow prices contain all information about the cost effect of the energy shifts in the residual total period, which become necessary due to the deviations in the short-term period to be planned in the current short-term period. (orig./DG) [de

  8. Technologies for sustainable energy development in the long term. Proceedings

    DEFF Research Database (Denmark)

    Sønderberg Petersen, Leif; Larsen, Hans Hvidtfeldt

    2005-01-01

    The Risø International Energy Conference took place 23 - 25 May 2005 and the aim of the conference was to present and discuss new developments and trends in energy technologies which may make major contributions to sustainable energy developments in thecoming decades. The conference addressed R......&D related to the individual technologies as well as their integration into the local, regional and global energy systems. The proceedings are prepared from papers presented at the conference and received withcorrections, if any, until the final deadline on 15 June 2005....

  9. Which way to go. Observations based on discussion on global perspectives and energy strategies

    Energy Technology Data Exchange (ETDEWEB)

    Sassin, W; Lovins, A; Meadows, D; Penczynski, P

    1977-09-01

    One of the most controversial topics of the present time seems to be the world's future energy supply and demand. To establish a balanced view, the IIASA Energy Systems Program has sought periodically to compare its own work with that of other groups researching similar areas. At the beginning of 1977, Dennis Meadows, co-author of the Club-of-Rome study ''Limits to Growth'', and Amory Lovins of ''Friends of the Earth'' joined IIASA for a limited time. Both of them favor a ''soft technology'' path for the world's future energy system. Their stay at IIASA was an opportunity to check whether or not their results provide for a deeper understanding of a complex global future. This short note summarizes some conclusions that emerged from discussions of D. Meadows, A. Lovins, and members of the Energy Systems Program. In searching for the sources of opposing conclusions with respect to nuclear, large-scale solar, coal, renewable sources in a local or regional context (like wind, wave power, biomass utilization, and small-scale solar heat) and energy conservation measures such as better insulation or the co-generation of electricity and process heat, it turned out to be helpful to address the following questions: (1) Which long-term fundamental problems other than energy questions have to be faced by mankind within the coming 50 years. (2) Is the appropriate scale for analyzing these problems global, regional, or local. (3) In which subsectors should the economy be disaggregated in order to tackle the problem of self-reliance and resilience. (4) How can one define a technological solution for the energy supply with respect to the anticipated state of affairs in terms of do's and not in terms of don'ts. (5) How can one specify an energy strategy leading from today's situation into a long-term future when the goals to be achieved vary with time and in principle are subject to revision. (MCW)

  10. Preliminary long-term stability criteria for compressed air energy storage caverns in salt domes

    Energy Technology Data Exchange (ETDEWEB)

    Thoms, R.L.; Martinez, J.D.

    1978-08-01

    Air storage caverns, which are an essential and integral component of a CAES plant, should be designed and operated so as to perform satisfactorily over the intended life of the overall facility. It follows that the long-term ''stability'' of air storage caverns must be considered as a primary concern in projecting the satisfactory operation of CAES facilities. As used in the report, ''stability'' of a storage cavern implies the extent to which an acceptable amount of cavern storage volume can be utilized with routine maintenance for a specified time interval, e.g., 35 years. In this context, cavern stability is relative to both planned utilization and time interval of operation. The objective of the study was to review the existing literature and consult knowledgeable workers in the storage industry, and then report state-of-the-art findings relative to long-term stability of compressed air energy storage caverns in salt domes. Further, preliminary cavern stability criteria were to be presented in a form consistent with the amount of information available on cavern performance in salt domes. Another objective of the study was to outline a methodology for determining the long-term stability of site-specific CAES cavern systems in salt domes.

  11. Global synthesis of long-term cloud condensation nuclei observations

    Science.gov (United States)

    Schmale, Julia; Henning, Silvia; Stratmann, Frank; Henzing, Bas; Schlag, Patrick; Aalto, Pasi; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Krüger, Mira; Jefferson, Anne; Whitehead, James; Carslaw, Ken; Yum, Seong Soo; Kristensson, Adam; Baltensperger, Urs; Gysel, Martin

    2016-04-01

    Cloud condensation nuclei (CCN) are aerosol particles with the ability to activate into droplets at a given super saturation and therefore influence the microphysical and optical properties of clouds. To predict cloud radiative properties understanding the spatial and temporal variability of CCN concentrations in different environments is important. However, currently, the effects of atmospheric particles on changes in cloud radiative forcing are still the largest contribution of uncertainty in climate forcing prediction (IPCC, 2013). Numerous intensive field campaigns have already explored detailed characteristics of CCN in many locations around the world. However, these rather short-term observations can generally not address seasonal or inter-annual variations and a comparison between campaign sites is difficult due to the higher influence of specific environmental circumstances on short-term measurements results. Here, we present results of more long-term CCN and aerosol number concentrations as well as size distribution data covering at least one full year between 2006 and 2014. The 12 locations include ACTRIS stations (http://www.actris.net/) in Europe, and further sites in North America, Brazil and Korea. The sites are located in different environments allowing for temporal and spatial characterization of CCN variability in different atmospheric regimes. Those include marine, remote-continental, boreal forest, rain forest, Arctic and monsoon-influenced environments, as well as boundary layer and free tropospheric conditions. The aerosol populations and their activation behavior show significant differences across the stations. While peak concentrations of CCN are observed in summer at the high altitude sites, in the Arctic the highest concentrations occur during the Haze period in spring. The rural-marine and rural-continental sites exhibit similar CCN concentration characteristics with a relatively flat annual cycle. At some stations, e.g. in the boreal

  12. The long-term forecast of Taiwan's energy supply and demand: LEAP model application

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yophy, E-mail: yohuanghaka@gmail.com [Deptartment of Public Finance and Tax Administration, National Taipei College of Business, Taipei Taiwan, 10051 (China); Bor, Yunchang Jeffrey [Deptartment of Economics, Chinese Culture University, Yang-Ming-Shan, Taipei, 11114, Taiwan (China); Peng, Chieh-Yu [Statistics Department, Taoyuan District Court, No. 1 Fazhi Road, Taoyuan City 33053, Taiwan (China)

    2011-11-15

    The long-term forecasting of energy supply and demand is an extremely important topic of fundamental research in Taiwan due to Taiwan's lack of natural resources, dependence on energy imports, and the nation's pursuit of sustainable development. In this article, we provide an overview of energy supply and demand in Taiwan, and a summary of the historical evolution and current status of its energy policies, as background to a description of the preparation and application of a Long-range Energy Alternatives Planning System (LEAP) model of Taiwan's energy sector. The Taiwan LEAP model is used to compare future energy demand and supply patterns, as well as greenhouse gas emissions, for several alternative scenarios of energy policy and energy sector evolution. Results of scenarios featuring 'business-as-usual' policies, aggressive energy-efficiency improvement policies, and on-schedule retirement of Taiwan's three existing nuclear plants are provided and compared, along with sensitivity cases exploring the impacts of lower economic growth assumptions. A concluding section provides an interpretation of the implications of model results for future energy and climate policies in Taiwan. - Research Highlights: > The LEAP model is useful for international energy policy comparison. > Nuclear power plants have significant, positive impacts on CO{sub 2} emission. > The most effective energy policy is to adopt demand-side management. > Reasonable energy pricing provides incentives for energy efficiency and conservation. > Financial crisis has less impact on energy demand than aggressive energy policy.

  13. Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, P.F. [Univ. of California, Berkeley, CA (United States)

    1996-05-01

    If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu waste forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups.

  14. Long-term retrievability and safeguards for immobilized weapons plutonium in geologic storage

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1996-01-01

    If plutonium is not ultimately used as an energy source, the quantity of excess weapons plutonium (w-Pu) that would go into a US repository will be small compared to the quantity of plutonium contained in the commercial spent fuel in the repository, and the US repository(ies) will likely be only one (or two) locations out of many around the world where commercial spent fuel will be stored. Therefore excess weapons plutonium creates a small perturbation to the long-term (over 200,000 yr) global safeguard requirements for spent fuel. There are details in the differences between spent fuel and immobilized w-Pu waste forms (i.e. chemical separation methods, utility for weapons, nuclear testing requirements), but these are sufficiently small to be unlikely to play a significant role in any US political decision to rebuild weapons inventories, or to change the long-term risks of theft by subnational groups

  15. A Global Look at Future Trends in the Renewable Energy Resource

    Science.gov (United States)

    Chen, S.; Freedman, J. M.; Kirk-Davidoff, D. B.; Brower, M.

    2017-12-01

    With the aggressive deployment of utility-scale and distributed generation of wind and solar energy systems, an accurate estimate of the uncertainty associated with future resource trends and plant performance is crucial in maintaining financial integrity in the renewable energy markets. With continuing concerns regarding climate change, the move towards energy resiliency, and the cost-competitiveness of renewables, a rapidly expanding fleet of utility-scale wind and solar power facilities and distributed generation of both resources is now being incorporated into the electric distribution grid. Although solar and wind account for about 3% of global power production, renewable energy is now and will continue to be the world's fastest-growing energy source. With deeper penetration of renewables, confidence in future power production output on a spectrum of temporal and spatial scales is crucial to grid stability for long-term planning and achieving national and international targets in the reduction of greenhouse gas emissions. Here, we use output from a diverse subset of Earth System Models (Climate Model Inter-comparison Project-Phase 5 members) to produce projected trends and uncertainties in regional and global seasonal and inter-annual wind and solar power production and respective capacity factors through the end of the 21st century. Our trends and uncertainty analysis focuses on the Representative Concentration Pathways (RCP) 4.5 and RCP 8.5 scenarios. For wind and solar energy production estimates, we extract surface layer wind (extrapolated to hub height), irradiance, cloud fraction, and temperature (air temperature affects density [hence wind power production] and the efficiency of photovoltaic [PV] systems), output from the CMIP5 ensemble mean fields for the period 2020 - 2099 and an historical baseline for POR of 1986 - 2005 (compared with long-term observations and the ERA-Interim Reanalysis). Results include representative statistics such as the

  16. Long-Term Fundamentals of the 2008 Economic Crisis

    OpenAIRE

    David Mayer-Foulkes

    2009-01-01

    The current economic crisis has long-term causes that are rooted in the economic dynamics of globalization. I construct a Solow-style endogenous model of capital accumulation, technological change, trade and cheap-factor-seeking foreign direct investment (FDI), based on myopic agents. Combining advanced technologies with low costs, FDI yields extraordinary profits that generate asymmetric innovation incentives that explain the following stylized facts. Globalization (a) increases capital accu...

  17. Assessment of nuclear energy cost competitiveness against alternative energy sources in Romania envisaging the long-term national energy sustainability

    International Nuclear Information System (INIS)

    Margeanu, C. A.

    2016-01-01

    The paper includes some of the results obtained by RATEN ICN Pitesti experts in the IAEA.s Collaborative Project INPRO-SYNERGIES. The case study proposed to evaluate and analyze the nuclear capacity development and increasing of its share in the national energy sector, envisaging the long term national and regional energy sustainability by keeping collaboration options open for the future while bringing solutions to short/medium-term challenges. The following technologies, considered as future competing technologies for electric energy generation in Romania, were selected: nuclear technology (represented by PHWR CANDU Units 3 and 4 - CANDU new, advanced HWR - Adv. HWR, and advanced PWR - Adv. PWR) and, as alternative energy sources, classical technology (represented by Coal-fired power plant using lignite fossil fuel, with carbon capture - Coal_new, and Gas-fired power plant operating on combined cycle, with carbon capture - Gas_new). The study included assessment of specific economic indicators, sensitivity analyses being performed on Levelised Unit Energy Cost (LUEC) variation due to different perturbations (e.g. discount rate, overnight costs, etc). Robustness indices (RI) of LUEC were also calculated by considering simultaneous variation of input parameters for the considered power plants. The economic analyses have been performed by using the IAEA.s NEST program. The study results confirmed that in Romania, under the national specific conditions defined, electricity produced by nuclear power plants is cost competitive against coal and gas fired power plants electricity. The highest impact of considered perturbations on LUEC has been observed for capital intensive technologies (nuclear technologies) comparatively with the classic power plants, especially for discount rate changes. (authors)

  18. SM2RAIN-CCI: a new global long-term rainfall data set derived from ESA CCI soil moisture

    Science.gov (United States)

    Ciabatta, Luca; Massari, Christian; Brocca, Luca; Gruber, Alexander; Reimer, Christoph; Hahn, Sebastian; Paulik, Christoph; Dorigo, Wouter; Kidd, Richard; Wagner, Wolfgang

    2018-02-01

    Accurate and long-term rainfall estimates are the main inputs for several applications, from crop modeling to climate analysis. In this study, we present a new rainfall data set (SM2RAIN-CCI) obtained from the inversion of the satellite soil moisture (SM) observations derived from the ESA Climate Change Initiative (CCI) via SM2RAIN (Brocca et al., 2014). Daily rainfall estimates are generated for an 18-year long period (1998-2015), with a spatial sampling of 0.25° on a global scale, and are based on the integration of the ACTIVE and the PASSIVE ESA CCI SM data sets.The quality of the SM2RAIN-CCI rainfall data set is evaluated by comparing it with two state-of-the-art rainfall satellite products, i.e. the Tropical Measurement Mission Multi-satellite Precipitation Analysis 3B42 real-time product (TMPA 3B42RT) and the Climate Prediction Center Morphing Technique (CMORPH), and one modeled data set (ERA-Interim). A quality check is carried out on a global scale at 1° of spatial sampling and 5 days of temporal sampling by comparing these products with the gauge-based Global Precipitation Climatology Centre Full Data Daily (GPCC-FDD) product. SM2RAIN-CCI shows relatively good results in terms of correlation coefficient (median value > 0.56), root mean square difference (RMSD, median value test the capabilities of the data set to correctly identify rainfall events under different climate and precipitation regimes.The SM2RAIN-CCI rainfall data set is freely available at https://doi.org/10.5281/zenodo.846259.

  19. The Global Energy Balance Archive (GEBA): A database for the worldwide measured surface energy fluxes

    Science.gov (United States)

    Wild, Martin; Ohmura, Atsumu; Schär, Christoph; Müller, Guido; Hakuba, Maria Z.; Mystakidis, Stefanos; Arsenovic, Pavle; Sanchez-Lorenzo, Arturo

    2017-02-01

    The Global Energy Balance Archive (GEBA) is a database for the worldwide measured energy fluxes at the Earth's surface. GEBA is maintained at ETH Zurich (Switzerland) and has been founded in the 1980s by Prof. Atsumu Ohmura. It has continuously been updated and currently contains around 2500 stations with 500`000 monthly mean entries of various surface energy balance components. Many of the records extend over several decades. The most widely measured quantity available in GEBA is the solar radiation incident at the Earth's surface ("global radiation"). The data sources include, in addition to the World Radiation Data Centre (WRDC) in St. Petersburg, data reports from National Weather Services, data from different research networks (BSRN, ARM, SURFRAD), data published in peer-reviewed publications and data obtained through personal communications. Different quality checks are applied to check for gross errors in the dataset. GEBA is used in various research applications, such as for the quantification of the global energy balance and its spatiotemporal variation, or for the estimation of long-term trends in the surface fluxes, which enabled the detection of multi-decadal variations in surface solar radiation, known as "global dimming" and "brightening". GEBA is further extensively used for the evaluation of climate models and satellite-derived surface flux products. On a more applied level, GEBA provides the basis for engineering applications in the context of solar power generation, water management, agricultural production and tourism. GEBA is publicly accessible over the internet via www.geba.ethz.ch.

  20. Long-term record of top-of-atmosphere albedo generated from AVHRR data

    Science.gov (United States)

    Song, Z.

    2017-12-01

    Top-of-Atmosphere (TOA) albedo is a fundamental component of Earth's energy budget. Previously, long-term accurate TOA albedo products did not exist due to the lack of stable broadband observations. With a new albedo estimation methodology based on multispectral observations, TOA albedo since 1981 has been retrieved using data from the Advanced Very High Resolution Radiometer (AVHRR), which provides the longest record of satellite observations across the globe. To develop the long-term TOA albedo record, the instantaneous TOA albedo was calculated by the direct estimation method, which was built on training data pairs from coincident AVHRR TOA reflectance and Moderate Resolution Imaging Spectroradiometer (MODIS) TOA albedo. The instantaneous TOA albedo was then converted to daily mean and monthly mean albedo based on the diurnal curves from geostationary satellites. The TOA albedo results (AVHRR-TAL) were compared with Clouds and the Earth's Radiant Energy System (CERES) flux products for 2007. The monthly mean AVHRR-TAL agreed well with the CERES products, with a root mean square difference (RMSD) of 0.032 and a bias of 0.013. In addition, AVHRR-TAL showed similar seasonal variations to those seen in the CERES products. Further analysis on long-term time series showed good consistency between the two datasets (R2 > 0.95 and relative RMSD < 4%) from 2000 to 2015. Although some calibration issues remain to be solved, our datasets show the potential ability to observe the global TOA albedo from 1981 to the present.

  1. The long-term forecast of Pakistan's electricity supply and demand: An application of long range energy alternatives planning

    International Nuclear Information System (INIS)

    Perwez, Usama; Sohail, Ahmed; Hassan, Syed Fahad; Zia, Usman

    2015-01-01

    The long-term forecasting of electricity demand and supply has assumed significant importance in fundamental research to provide sustainable solutions to the electricity issues. In this article, we provide an overview of structure of electric power sector of Pakistan and a summary of historical electricity demand & supply data, current status of divergent set of energy policies as a framework for development and application of a LEAP (Long-range Energy Alternate Planning) model of Pakistan's electric power sector. Pakistan's LEAP model is used to analyze the supply policy selections and demand assumptions for future power generation system on the basis of economics, technicality and implicit environmental implications. Three scenarios are enacted over the study period (2011–2030) which include BAU (Business-As-Usual), NC (New Coal) & GF (Green Future). The results of these scenarios are compared in terms of projected electricity demand & supply, net present cost analysis (discount rate at 4%, 7% and 10%) and GHG (greenhouse gas) emission reductions, along with sensitivity analysis to study the effect of varying parameters on total cost. A concluding section illustrates the policy implications of model for futuristic power generation and environmental policies in Pakistan. - Highlights: • Pakistan-specific electricity demand model is presented. • None of the scenarios exceeded the price of 12 US Cents/kWh. • By 2030, fuel cost is the most dominant factor to influence electricity per unit cost. • By 2030, CO_2 emissions per unit electricity will increase significantly in coal scenario relative to others. • By 2030, the penetration of renewable energy and conservation policies can save 70.6 tWh electricity.

  2. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    1998-05-01

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.Key words. Solar activity · Kolmogorov algorithm

  3. Statistical model of global uranium resources and long-term availability

    International Nuclear Information System (INIS)

    Monnet, A.; Gabriel, S.; Percebois, J.

    2016-01-01

    Most recent studies on the long-term supply of uranium make simplistic assumptions on the available resources and their production costs. Some consider the whole uranium quantities in the Earth's crust and then estimate the production costs based on the ore grade only, disregarding the size of ore bodies and the mining techniques. Other studies consider the resources reported by countries for a given cost category, disregarding undiscovered or unreported quantities. In both cases, the resource estimations are sorted following a cost merit order. In this paper, we describe a methodology based on 'geological environments'. It provides a more detailed resource estimation and it is more flexible regarding cost modelling. The global uranium resource estimation introduced in this paper results from the sum of independent resource estimations from different geological environments. A geological environment is defined by its own geographical boundaries, resource dispersion (average grade and size of ore bodies and their variance), and cost function. With this definition, uranium resources are considered within ore bodies. The deposit breakdown of resources is modelled using a bivariate statistical approach where size and grade are the two random variables. This makes resource estimates possible for individual projects. Adding up all geological environments provides a distribution of all Earth's crust resources in which ore bodies are sorted by size and grade. This subset-based estimation is convenient to model specific cost structures. (authors)

  4. China's transportation energy consumption and CO2 emissions from a global perspective

    International Nuclear Information System (INIS)

    Yin, Xiang; Chen, Wenying; Eom, Jiyong; Clarke, Leon E.; Kim, Son H.; Patel, Pralit L.; Yu, Sha; Kyle, G. Page

    2015-01-01

    Rapidly growing energy demand from China's transportation sector in the last two decades have raised concerns over national energy security, local air pollution, and carbon dioxide (CO 2 ) emissions, and there is broad consensus that China's transportation sector will continue to grow in the coming decades. This paper explores the future development of China's transportation sector in terms of service demands, final energy consumption, and CO 2 emissions, and their interactions with global climate policy. This study develops a detailed China transportation energy model that is nested in an integrated assessment model—Global Change Assessment Model (GCAM)—to evaluate the long-term energy consumption and CO 2 emissions of China's transportation sector from a global perspective. The analysis suggests that, without major policy intervention, future transportation energy consumption and CO 2 emissions will continue to rapidly increase and the transportation sector will remain heavily reliant on fossil fuels. Although carbon price policies may significantly reduce the sector's energy consumption and CO 2 emissions, the associated changes in service demands and modal split will be modest, particularly in the passenger transport sector. The analysis also suggests that it is more difficult to decarbonize the transportation sector than other sectors of the economy, primarily owing to its heavy reliance on petroleum products. -- Highlights: •Transport sector in China are analyzed from a global perspective. •Passenger transport turnover reduction and modal shifts is less sensitive to carbon price. •Bio-fuel, electricity and H 2 will play an important role for carbon mitigation in transport sector. •The transport sector is more difficult to decarbonize than other sectors

  5. long term energy long term energy performan performan power pla

    African Journals Online (AJOL)

    User

    roviding an energy performance analysis of Egbin thermal power plan tive Rankine .... effects [8]. The Egbin Electric power business unit is a steam thermal plant that makes use of steam to drive its ..... cogeneration plant- a case study.” Part A: ...

  6. Global Energy-Economy-Environment (E3) Scenarios to 2050 and Beyond

    International Nuclear Information System (INIS)

    Schrattenholzer, L.

    2005-01-01

    The Environmentally Compatible Energy Strategies (ECS) Program at the International Institute for Applied Systems Analysis (IIASA) develops policy-relevant global and world-regional energy perspectives. The basic premise of the ECS's research program is a global trend of d ecarbonization . Firstly, decarbonization includes a trend toward ever-greater efficiency, or ever less waste, in society's use of energy resources. Secondly, it includes a trend towards less carbon-intensive fossil fuels (e.g., from coal toward natural gas) and, further, to non-fossil fuels, especially renewable energy carriers. Technological change is generally regarded as one of the key drivers of sustained economic growth. Long-term energy scenarios developed at IIASA and elsewhere show that, depending on key assumptions on drivers such as population, economic growth and technological development, global energy development can be environmentally unsustainable. First, energy development might not lead to stabilizing greenhouse concentrations and might thus have significant negative impacts on the global climate. In addition, some, especially coal-intensive, scenarios might lead to levels of acid deposition at which significant damage to sensitive ecosystems is expected to occur in Europe and, even more so, in Asia. A continuation of the observed historical long-term trends of decarbonization, dematerialization, and energy efficiency improvements might therefore not be sufficient to achieve sustainable growth. Targeted technological development aiming at accelerating decarbonization, dematerialization, and/or efficiency improvement may be one of the most effective means for reconciling economic growth with global environmental objectives. This might require a step-up in investments in R and D and in the demonstration of technologies so as to stimulate both learning-by-searching and learning-by-doing. In this presentation, global E3 scenarios will be summarized in the following three groups: Non

  7. Long-Term Nuclear Knowledge Management (NKM) on Nuclear Production of Hydrogen - A Case Study of the Japan Atomic Energy Research Institute (JAERI)

    International Nuclear Information System (INIS)

    Yanagisawa, Kazuaki

    2007-01-01

    In Japan, so-called a formal nuclear policy; The Framework for Nuclear Energy Policy is built up by Japan Atomic Energy Commission at every 5-year, in which not only a conventional light water reactor (LWR) but also a fast breeder reactor (FBR), HTGR and a fusion reactor (FR) is referred as a prominent candidate of long-term (<100 years) nuclear energy source. The policy makers might have multi-purpose scenarios for a future of innovated nuclear energy systems through results of various discussions at their level. According to long-term nuclear knowledge management, the author made ex ante evaluation of HTGR known as the intellectual assets of JAERI 1, from the viewpoint of hypothetical benefits under conditions of substantial uncertainty. Nuclear knowledge management (NKM) is an integrated, systematic approach to identifying, managing and sharing an organization's nuclear knowledge, and enabling persons to create new nuclear knowledge collectively and thereby helping achieve the objectives. NKM identifies, optimizes, and actively manages intellectual assets either in the form of explicit knowledge held in intangible products or tacit knowledge possessed by individuals or communities in the nuclear fields. In the present study the authors wish not only to show the validity of long-term NKM as a key factor of HTGR but also to assess their hypothetical benefits through the year 2050 under conditions of substantial uncertainty. It should be stressed that those factors are important intellectual assets of JAERI developed to date. Additionally, in the Framework for Nuclear Energy Policy constructed up by the Japan Atomic Energy Commission, a LWR, a fast breeder reactor (FBR), a HTGR, and a fusion reactor (FR) are all defined as eligible and prominent candidates for long-term nuclear energy sources. In this sense, we estimate here a direct market creation of (1) hydrogen energy production and (2) electricity generation, by commercialized HTGR through the year 2050 with

  8. Critical mid-term uncertainties in long-term decarbonisation pathways

    International Nuclear Information System (INIS)

    Usher, Will; Strachan, Neil

    2012-01-01

    Over the next decade, large energy investments are required in the UK to meet growing energy service demands and legally binding emission targets under a pioneering policy agenda. These are necessary despite deep mid-term (2025–2030) uncertainties over which national policy makers have little control. We investigate the effect of two critical mid-term uncertainties on optimal near-term investment decisions using a two-stage stochastic energy system model. The results show that where future fossil fuel prices are uncertain: (i) the near term hedging strategy to 2030 differs from any one deterministic fuel price scenario and is structurally dissimilar to a simple ‘average’ of the deterministic scenarios, and (ii) multiple recourse strategies from 2030 are perturbed by path dependencies caused by hedging investments. Evaluating the uncertainty under a decarbonisation agenda shows that fossil fuel price uncertainty is very expensive at around £20 billion. The addition of novel mitigation options reduces the value of fossil fuel price uncertainty to £11 billion. Uncertain biomass import availability shows a much lower value of uncertainty at £300 million. This paper reveals the complex relationship between the flexibility of the energy system and mitigating the costs of uncertainty due to the path-dependencies caused by the long-life times of both infrastructures and generation technologies. - Highlights: ► Critical mid-term uncertainties affect near-term investments in UK energy system. ► Deterministic scenarios give conflicting near-term actions. ► Stochastic scenarios give one near-term hedging strategy. ► Technologies exhibit path dependency or flexibility. ► Fossil fuel price uncertainty is very expensive, biomass availability uncertainty is not.

  9. Short term decisions for long term problems - The effect of foresight on model based energy systems analysis

    International Nuclear Information System (INIS)

    Keppo, Ilkka; Strubegger, Manfred

    2010-01-01

    This paper presents the development and demonstration of a limited foresight energy system model. The presented model is implemented as an extension to a large, linear optimization model, MESSAGE. The motivation behind changing the model is to provide an alternative decision framework, where information for the full time frame is not available immediately and sequential decision making under incomplete information is implied. While the traditional optimization framework provides the globally optimal decisions for the modeled problem, the framework presented here may offer a better description of the decision environment, under which decision makers must operate. We further modify the model to accommodate flexible dynamic constraints, which give an option to implement investments faster, albeit with a higher cost. Finally, the operation of the model is demonstrated using a moving window of foresight, with which decisions are taken for the next 30 years, but can be reconsidered later, when more information becomes available. We find that the results demonstrate some of the pitfalls of short term planning, e.g. lagging investments during earlier periods lead to higher requirements later during the century. Furthermore, the energy system remains more reliant on fossil based energy carriers, leading to higher greenhouse gas emissions.

  10. Long-term outlook for global natural uranium and uranium enrichment supply and demand situations after the impact of Fukushima Daiichi Nuclear Power Plant accident

    International Nuclear Information System (INIS)

    Matsuo, Yuhji; Murakami, Tomoko

    2012-01-01

    In this paper, the authors propose long-term projections of global nuclear power generation, uranium production, and uranium enrichment capacities by region, and estimate the trade flows of natural uranium and uranium enrichment activities in 2020 and 2035. In spite of the rapid nuclear power generation capacity growth expected especially in Asia, the natural uranium and uranium enrichment trade will not be tightened by 2020 due to the projected increase in both natural uranium production and uranium enrichment capacities, which may cause a drop in natural uranium and uranium enrichment prices. Thus, there is a great possibility that the current projects for capacity expansion will be delayed considerably. However, in the 'high-demand scenario', where nuclear expansion will be accelerated due to growing concerns about global warming and energy security issues, additional investments in uranium production and enrichment facilities will be needed by 2035. In Asia, the self-sufficiency ratio for both natural uranium supply and uranium enrichment activities will remain relatively low until 2035. However, the Herfindahl-Hirschman (HH) index of natural uranium and uranium enrichment activity trade to Asia will be lowered considerably up to 2035, indicating that nuclear capacity expansion can contribute to enhancing energy security in Asia. (author)

  11. World in transition 3 towards sustainable energy systems

    CERN Document Server

    2014-01-01

    'The publication of World in Transition: Towards Sustainable Energy Systems is timely indeed. The World Summit on Sustainable Development gave great prominence to this challenge, but failed to agree on a quantitative, time-bound target for the introduction of renewable energy sources. The German Advisory Council on Global Change (WBGU) has now produced a report with a global focus, which is essential in view of the global impacts of climate change. The report provides a convincing long-term analysis, which is also essential. Global energy policies have to take a long-term perspective, over the

  12. Uncertain long-run emissions targets, CO{sub 2} price and global energy transition: A general equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Durand-Lasserve, Olivier, E-mail: olivier.durand@uclouvain.b [Universite Catholique de Louvain (UCL), CORE, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (Belgium); Pierru, Axel, E-mail: axel.pierru@ifp.f [IFP, Economics Department, 232 Avenue Napoleon Bonaparte, 92852 Rueil-Malmaison (France); Smeers, Yves, E-mail: yves.smeers@uclouvain.ac.b [Universite Catholique de Louvain (UCL), CORE, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (Belgium)

    2010-09-15

    The persistent uncertainty about mid-century CO{sub 2} emissions targets is likely to affect not only the technological choices that energy-producing firms will make in the future but also their current investment decisions. We illustrate this effect on CO{sub 2} price and global energy transition within a MERGE-type general-equilibrium model framework, by considering simple stochastic CO{sub 2} policy scenarios. In these scenarios, economic agents know that credible long-run CO{sub 2} emissions targets will be set in 2020, with two possible outcomes: either a 'hard cap' or a 'soft cap'. Each scenario is characterized by the relative probabilities of both possible caps. We derive consistent stochastic trajectories-with two branches after 2020-for prices and quantities of energy commodities and CO{sub 2} emissions permits. The impact of uncertain long-run CO{sub 2} emissions targets on prices and technological trajectories is discussed. In addition, a simple marginal approach allows us to analyze the Hotelling rule with risk premia observed for certain scenarios.

  13. Uncertain long-run emissions targets, CO{sub 2} price and global energy transition. A general equilibrium approach

    Energy Technology Data Exchange (ETDEWEB)

    Durand-Lasserve, Olivier; Smeers, Yves [Universite Catholique de Louvain (UCL), CORE, Voie du Roman Pays 34, B-1348 Louvain-la-Neuve (Belgium); Pierru, Axel [IFP, Economics Department, 232 Avenue Napoleon Bonaparte, 92852 Rueil-Malmaison (France)

    2010-09-15

    The persistent uncertainty about mid-century CO{sub 2} emissions targets is likely to affect not only the technological choices that energy-producing firms will make in the future but also their current investment decisions. We illustrate this effect on CO{sub 2} price and global energy transition within a MERGE-type general-equilibrium model framework, by considering simple stochastic CO{sub 2} policy scenarios. In these scenarios, economic agents know that credible long-run CO{sub 2} emissions targets will be set in 2020, with two possible outcomes: either a hard cap or a soft cap. Each scenario is characterized by the relative probabilities of both possible caps. We derive consistent stochastic trajectories - with two branches after 2020 - for prices and quantities of energy commodities and CO{sub 2} emissions permits. The impact of uncertain long-run CO{sub 2} emissions targets on prices and technological trajectories is discussed. In addition, a simple marginal approach allows us to analyze the Hotelling rule with risk premia observed for certain scenarios. (author)

  14. Long-term Studies of Marine Halogen Release

    Science.gov (United States)

    Tschritter, J.; Holla, R.; Frieß, U.; Platt, U.

    2009-04-01

    Institute of Enviromental Physics, Heidelberg, Germany. Long term measurements of atmospheric trace gases using multi-axis DOAS instruments are pursued at the new SOLAS observatory on the island of Sao Vicente, (Cape Verde). This research is part of the SOPRAN (Surface Ocean Processes in the ANthropocene) project (Fördernummer:03F0462F). Reactive halogen species (RHS) such as bromine- and iodine- containing species play major roles in the chemistry of ozone in both the troposphere and lower stratosphere and thus possibly influence the ozone budget on a global scale. In addition iodine-species emitted from the ocean surface have been shown to be responsible for the production of new atmospheric particles in the marine boundary layer. This may have an effect on cloud formation and radiation transfer on local and global scales. Long term measurements of RHS abundances will help to identify their key regions and processes for formation. A new long term Multi-MAX-DOAS instrument has been installed at the SOLAS observatory on the island of Sao Vicente, (Cape Verde). The main focus of these unique measurements is the investigation of reactive halogen chemistry in the subtropical marine boundary layer based on measurements of BrO, IO, and possibly OIO. Because of its wide spectral range also the use for O4-retrievals to gain aerosol profiles is possible. IO has been detected with mixing ratios up to 1.3 ppt. For BrO an upper limit of 2 ppt could be determined.

  15. Gap filling strategies for long term energy flux data sets

    DEFF Research Database (Denmark)

    Falge, E.; Baldocchi, D.; Olson, R.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used...... for hydrological and meteorological applications. We adapted methods of gap filling for NEE (net ecosystem exchange of carbon) to energy fluxes and applied them to data sets available from the EUROFLUX and AmeriFlux eddy covariance databases. The average data coverage for the sites selected was 69% and 75......% for latent heat (lambdaE) and sensible heat (H). The methods were based on mean diurnal variations (half-hourly binned means of fluxes based on previous and subsequent days, MDV) and look-up tables for fluxes during assorted meteorological conditions (LookUp), and the impact of different gap filling methods...

  16. The uranium industry: long-term planning for short-term competition

    International Nuclear Information System (INIS)

    Vottero, X.; Georges Capus, G.

    2001-01-01

    Long term planning for short term competition Today, uranium producers face new challenges in terms of both production (new regulatory, environmental and social constraints) and market conditions (new sources of uranium supply, very low prices and tough competition). In such a context, long-term planning is not just a prerequisite to survive in the nuclear fuel cycle industry. In fact, it also contributes to sustaining nuclear electricity generation facing fierce competition from other energy sources in increasingly deregulated markets. Firstly, the risk of investing in new mining projects in western countries is growing because, on the one hand, of very erratic market conditions and, on the other hand, of increasingly lengthy, complex and unpredictable regulatory conditions. Secondly, the supply of other sources of uranium (uranium derived from nuclear weapons, uranium produced in CIS countries, ...) involve other risks, mainly related to politics and commercial restrictions. Consequently, competitive uranium supply requires not only technical competence but also financial strength and good marketing capabilities in order to anticipate long-term market trends, in terms of both demand and supply. It also requires taking into account new parameters such as politics, environment, regulations, etc. Today, a supplier dedicated to the sustainable production of nuclear electricity must manage a broad range of long-term risks inherent to the procurement of uranium. Taking into account all these parameters in a context of short-term, fast-changing market is a great challenge for the future generation. World Uranium Civilian Supply and Demand. (authors)

  17. Evaluation of long term leaching of borosilicate glasses

    International Nuclear Information System (INIS)

    Lanza, F.; Parnisari, E.

    1978-01-01

    For the evaluation of long term hazard of glass, data on long term glass leaching are needed. Moreover for long term leaching a model of homogeneous dissolution seems reasonable and ask for confirmation. Tests were performed at 30 0 , 80 0 , 100 0 , using an apparatus of the Soxhlet type, to 3.600 hours. Results were obtained as a weight loss and analysed following a relation with time composed by a parabolic and a linear part. Analysis of the surface layer using energy dispersion X ray spectrometry were performed. A critical analysis of the results and of the apparatus is presented

  18. Integrating global energy and climate governance: The changing role of the International Energy Agency

    International Nuclear Information System (INIS)

    Heubaum, Harald; Biermann, Frank

    2015-01-01

    Despite the long-recognized interlinkages between global energy consumption and climate change, there has historically been only limited policy interaction, let alone integration, between the two fields. This compartmentalization is mirrored in scholarship, where much research has focused on the fragmentation of, respectively, global energy and global climate governance, but only little has been said about how these fields might be integrated. Our analysis of the International Energy Agency’s (IEA) changing activities in recent years shows that governance integration – both within global energy governance and between global energy and climate governance – is now happening. The IEA has broadened its portfolio to embrace the full spectrum of energy issues, including renewable energy and climate change; it has built and is expanding key partnerships with both the UN climate convention and the International Renewable Energy Agency (IRENA); and it has become an authoritative advocate for the inter-related goals of a low-carbon transition and climate change mitigation. We show that these developments are not the result of a top-down plan, but have rather emerged through the Agency’s various efforts to pursue its energy-centric mandate in a fast-changing global policy environment. - Highlights: • Assesses integration between global energy and global climate governance. • Analyzes organizational change in the IEA and its impact on governance integration. • Discusses recent activities and advocacy by the IEA in relation to climate change.

  19. Regional improvement of global reanalyses by means of a new long-term Mediterranean hindcasted precipitation dataset: a first study over the Iberian Peninsula

    Directory of Open Access Journals (Sweden)

    M. G. Sotillo

    2006-01-01

    Full Text Available Generation of a Mediterranean long-term (1958-2001 homogeneous high resolution environmental database constituted the main objective whitin the HIPOCAS Project. The high number of parameters included in this database allows a complete characterization of Mediterranean storms. In this paper, the HIPOCAS precipitation reliability over the Iberian Peninsula and the Balearic Islands is evaluated against long-term in-situ observations from Iberia. In order to provide a more complete study, comparisons of the HIPOCAS field with NCEP/NCAR and ERA global reanalysis show the important improvement in the characterisation of the observed precipitation introduced by the HIPOCAS hindcast.

  20. Emulation of long-term changes in global climate: application to the late Pliocene and future

    Directory of Open Access Journals (Sweden)

    N. S. Lord

    2017-11-01

    Full Text Available Multi-millennial transient simulations of climate changes have a range of important applications, such as for investigating key geologic events and transitions for which high-resolution palaeoenvironmental proxy data are available, or for projecting the long-term impacts of future climate evolution on the performance of geological repositories for the disposal of radioactive wastes. However, due to the high computational requirements of current fully coupled general circulation models (GCMs, long-term simulations can generally only be performed with less complex models and/or at lower spatial resolution. In this study, we present novel long-term continuous projections of climate evolution based on the output from GCMs, via the use of a statistical emulator. The emulator is calibrated using ensembles of GCM simulations, which have varying orbital configurations and atmospheric CO2 concentrations and enables a variety of investigations of long-term climate change to be conducted, which would not be possible with other modelling techniques on the same temporal and spatial scales. To illustrate the potential applications, we apply the emulator to the late Pliocene (by modelling surface air temperature – SAT, comparing its results with palaeo-proxy data for a number of global sites, and to the next 200 kyr (thousand years (by modelling SAT and precipitation. A range of CO2 scenarios are prescribed for each period. During the late Pliocene, we find that emulated SAT varies on an approximately precessional timescale, with evidence of increased obliquity response at times. A comparison of atmospheric CO2 concentration for this period, estimated using the proxy sea surface temperature (SST data from different sites and emulator results, finds that relatively similar CO2 concentrations are estimated based on sites at lower latitudes, whereas higher-latitude sites show larger discrepancies. In our second illustrative application, spanning the next

  1. Global energy security and the implications for the EU

    International Nuclear Information System (INIS)

    Umbach, Frank

    2010-01-01

    The following article will analyse the global and geopolitical dimensions of the future international energy security and its implications for Europe and the EU-27. In this context, I will discuss to which extent the EU's newly proclaimed 'Energy Action Plan' of the EU Spring summit of 2007 and its declared common energy (foreign) policy are a sufficient strategy to cope with the new global and geopolitical challenges. The article concludes the following: (1) The interlinkage between globally designed traditional energy security concepts - that rely just on economic factors and 'market-strategies' - and domestic as well as regional political stability demands new thinking with regard to both energy supply security and foreign and security policies. (2) Although after the Russian-Ukrainian gas conflict in January 2006, energy security has forced its way up the European energy and foreign policy agendas, the EU-27 member states have largely failed to forge a coherent European energy security and energy foreign policy strategy after their Spring summit of 2007 because its declared political solidarity has been still lacking. But the 2nd Strategic Energy Review of November 2008 has recommended new initiatives to overcome this lack by promoting concrete infrastructure and other projects for enhancing Europe's supply security and its political solidarity as part of a common energy (foreign) policy. If the EU is able to implement the March 2007 and November 2008 decisions, the EU oil and gas demand will drastically reduce and freeze at current levels. In this case, Putin's energy policies by using Russia's energy resources and pipeline monopolies as a political instrument to enforce its economic and geopolitical interests will be proved as self-defeating in Russia's long-term strategic interests. It will reduce Gazprom's gas exports to a much smaller EU gas market than originally forecasted as the result of a deliberate EU policy of decreasing its overall gas demand and

  2. EnerFuture: Long Term Energy Scenarios 'Understanding our energy future'. Key graphs and analysis, Enerdata - Global Energy Forecasting

    International Nuclear Information System (INIS)

    2011-01-01

    Enerdata analyses 4 future energy scenarios accounting for 2 economic growth assumptions combined with 2 alternative carbon emission mitigation policies. In this study, a series of analyses supported by graphs assess the energy consumption and intensity forecasts in emerging and developed markets. In particular, one analysis is dedicated to energies competition, including gas, coal and renewable energies. (authors)

  3. Scenarios of the long term evolution of the energy sector. Energy needs, choices and possibilities: Shell's scenarios for 2050. The long-term evolution of the energy sector. A vision of the 2020-2050 energy mix. Phase dynamics analysis of energy demand scenarios

    International Nuclear Information System (INIS)

    Chevallier, B.; Appert, O; Bauquis, P.R.; Alba, P.

    2002-01-01

    This dossier comprises 4 articles dealing with energy scenarios. The first article presents the prospective studies carried out by the Shell group which lead to the construction of two scenarios entitled: 'dynamics as usual' and 'the spirit of the coming age'. Both scenarios foresee an explosion of the primary energy demand for the coming next 50 years (multiplied by a factor of 2 to 2.8 with respect to 2000) with a decline of hydrocarbons for the benefit of gas and renewable energies (including bio-fuels), while nuclear and coal will still represent a quarter of our needs. However, the main uncertainty remains the demographic expansion during the next 50 years. The second article presents the energy models and projections of the IEA for the long-term evolution of the energy sector (petroleum, gas, coal, renewable energy and uranium resources) and the main uncertainties of these projections (economic growth, environmental policies, technological evolutions). The third article presents the agreements and divergences of the author's forecasts for 2050 with Shell's scenarios, while the last article makes a comparison between the IEA, IIASA-CME and Shell scenarios using a phase dynamics analysis. (J.S.)

  4. Deviations in energy sensing predict long-term weight change in overweight Native Americans.

    Science.gov (United States)

    Basolo, Alessio; Votruba, Susanne B; Heinitz, Sascha; Krakoff, Jonathan; Piaggi, Paolo

    2018-05-01

    Energy expenditure (EE), as reflective of body energy demand, has been proposed to be the key driver of food intake, possibly influencing weight change in humans. Variation in this energy-sensing link (overeating relative to weight-maintaining energy requirements) may lead to weight gain over time. Sixty-one overweight otherwise healthy Native Americans (age: 34.0 ± 7.9 years, body fat: 39.7 ± 9.5%, 36 males) were admitted to our clinical research unit for measurements of body composition by dual-energy X-ray absorptiometry, and 24-h EE and respiratory quotient (RQ) in a whole-room indirect calorimeter during energy balance and weight stability. Following this, ad libitum food intake was assessed for three days using computerized vending machines. Body weight change under unrestricted free-living conditions was assessed at an outpatient follow-up visit (median follow-up time = 1.7 years). Total ad libitum food intake (3-day average) was positively associated with 24-h EE (r = 0.44, p energy requirements can be assessed and predicts long-term weight gain, suggesting that variation in energy sensing may influence appetite by favoring overeating thus promoting obesity development. Copyright © 2018. Published by Elsevier Inc.

  5. Long term energy demand projection and potential for energy savings of Croatian tourism–catering trade sector

    International Nuclear Information System (INIS)

    Irsag, Bojan; Pukšec, Tomislav; Duić, Neven

    2012-01-01

    Today, tourism represents one of the backbones of Croatian economy and one of the main factors of its growth. Combined with catering trade sector, tourism represents a significant energy consumer that has the tendencies of future growth. Since services sector, which tourism–catering trade sector is a part of, is not yet well described regarding future energy balances it would be very interesting to see how could possible future growth in tourism influence energy consumption of the services sector in Croatia. Through this paper long term energy demand projections of tourism–catering trade sector were studied with special emphasis on future growth of tourism in Croatia as well as different mechanisms that might lead to certain energy savings. Bottom-up approach was chosen as the most suitable one since it allows better quantification of different measures, technological or legal, that would influence future energy demand. Downside of this approach is extensive input data that is required to analyse and model future energy demand which is roughly divided into heating/cooling section and all other consumption. Results show that additional energy savings in the tourism–catering trade sector are possible if careful and rational demand side planning is in place. -- Highlights: ► Future energy demand of Croatian touristm–catering trade sector has been modelled. ► Model is roughly divided into two basic modes (heating/cooling and all other consumption). ► Different factors influencing future energy demand were implemented into the model. ► Possibilities for energy efficiency improvements have been presented.

  6. Long-term energy and climate implications of carbon capture and storage deployment strategies in the US coal-fired electricity fleet.

    Science.gov (United States)

    Sathre, Roger; Masanet, Eric

    2012-09-04

    To understand the long-term energy and climate implications of different implementation strategies for carbon capture and storage (CCS) in the US coal-fired electricity fleet, we integrate three analytical elements: scenario projection of energy supply systems, temporally explicit life cycle modeling, and time-dependent calculation of radiative forcing. Assuming continued large-scale use of coal for electricity generation, we find that aggressive implementation of CCS could reduce cumulative greenhouse gas emissions (CO(2), CH(4), and N(2)O) from the US coal-fired power fleet through 2100 by 37-58%. Cumulative radiative forcing through 2100 would be reduced by only 24-46%, due to the front-loaded time profile of the emissions and the long atmospheric residence time of CO(2). The efficiency of energy conversion and carbon capture technologies strongly affects the amount of primary energy used but has little effect on greenhouse gas emissions or radiative forcing. Delaying implementation of CCS deployment significantly increases long-term radiative forcing. This study highlights the time-dynamic nature of potential climate benefits and energy costs of different CCS deployment pathways and identifies opportunities and constraints of successful CCS implementation.

  7. Global warming and nuclear power

    International Nuclear Information System (INIS)

    Hodgson, P.E.

    1999-01-01

    The problems of pollution, global warming and renewable energy sources are not going to go away. Governments need to act with urgency if they are to produce a long-term energy policy. This paper looks at the current energy situation, and how this would project into the future without the instigation of radical changes. It concludes that nuclear is the best option available for averting a growing energy, pollution and global warming crisis. (author)

  8. The Fukushima nuclear accident and its effect on global energy security

    International Nuclear Information System (INIS)

    Hayashi, Masatsugu; Hughes, Larry

    2013-01-01

    The March 2011 nuclear accident at the Fukushima Daiichi nuclear power station affected both short- and long-term energy-security in Japan, resulting in crisis-driven, ad hoc energy policy and, because of the decision to shutter all nuclear reactors, increased the country’s demand for fossil fuels, primarily natural gas. However, the effects of the accident on energy security were not restricted to Japan; for example, the worldwide availability and affordability of liquefied natural gas were affected by Japan’s increased demand; while the accident itself resulted in the loss of public acceptability of nuclear power and led countries, such as Germany and Italy, to immediately shut down some of the nuclear reactors or abandon plans to build new ones. This paper examines some of the short-term effects on global energy security following the accident at Fukushima, focusing on the main replacement fuel, liquefied natural gas. It shows, amongst other things, that the accident increased investment in liquefied natural gas projects around the world. The paper shows that despite Fukushima contributing to nuclear power’s loss of acceptability in most developed countries, it is still seen as an essential way of improving energy security in many countries and, despite what its critics may say, will probably continue to be used as a significant source of low-carbon electricity. - Highlights: ► Japan’s demands for fossil fuels raised the price of LNG and low-sulfur crudes. ► The accident affected the global price of uranium and producer share prices. ► The accident accelerated foreign-direct investment in LNG projects worldwide. ► The change in public perception toward nuclear power was relatively limited. ► A radical shift in global nuclear policy seems to be unrealistic after Fukushima

  9. Review of economic and energy sector implications of adopting global climate change policies

    Energy Technology Data Exchange (ETDEWEB)

    Novak, M.H.

    1997-12-31

    This paper summarizes a number of studies examining potential economic impacts of global climate change policies. Implications for the United States as a whole, the U.S. energy sector, the U.S. economy, businesses and consumers, and world economies are considered. Impact assessments are performed of U.S. carbon emissions, carbon taxes, and carbon restrictions by comparing estimates from various organizations. The following conclusions were made from the economic studies: (1) the economic cost of carbon abatement is expensive; (2) the cost of unilateral action is very expensive with little quantifiable evidence that global emissions are reduced; (3) multilateral actions of developed countries are also very expensive, but there is quantifiable evidence of global emissions reductions; and (4) global actions have only been theoretically addressed. Paralleling these findings, the energy analyses show that the U.S. is technologically unprepared to give up fossil fuels. As a result: (1) carbon is not stabilized without a high tax, (2) stabilization of carbon is elusive, (3) technology is the only long-term answer, and (4) targeted programs may be appropriate to force technology development. 8 tabs.

  10. Insulin signaling is acutely required for long-term memory in Drosophila.

    Science.gov (United States)

    Chambers, Daniel B; Androschuk, Alaura; Rosenfelt, Cory; Langer, Steven; Harding, Mark; Bolduc, Francois V

    2015-01-01

    Memory formation has been shown recently to be dependent on energy status in Drosophila. A well-established energy sensor is the insulin signaling (InS) pathway. Previous studies in various animal models including human have revealed the role of insulin levels in short-term memory but its role in long-term memory remains less clear. We therefore investigated genetically the spatial and temporal role of InS using the olfactory learning and long-term memory model in Drosophila. We found that InS is involved in both learning and memory. InS in the mushroom body is required for learning and long-term memory whereas long-term memory specifically is impaired after InS signaling disruption in the ellipsoid body, where it regulates the level of p70s6k, a downstream target of InS and a marker of protein synthesis. Finally, we show also that InS is acutely required for long-term memory formation in adult flies.

  11. Long-term constraints on human activity

    Energy Technology Data Exchange (ETDEWEB)

    Lovins, A. B.

    1976-04-01

    Biophysical and other ''outer limits'' of food, land, water, climatic change, stratospheric chemistry, energy, hazardous substances, non-fuel minerals, human stress, and social and ecological stability raise fundamental questions about present trends in management methods and in global organization. The diverse outer limits reflect complex, poorly perceived, and often unsuspected, interconnections between numerous biological and geophysical processes, many of which are obscure or still unknown. Our lack of predictive power, let alone of quantitative understanding, implies a need to treat essential life-support systems with great caution and forbearance, lest we erode safety margins whose importance we do not yet appreciate. Even those outer limits which now seem remote are relevant to present policy, as their timely avoidance may require us to discard otherwise attractive short-term policies in favor of others that offer less immediate advantage but that retain options which may be needed later. Such alternative policies may have to rely more on social than on technical innovation in order to address underlying disequilibria rather than merely palliating their symptoms. Moreover, some outer limits are sufficiently imminent, or require such long lead-times to avoid, that fundamental changes in policy, in institutions, and in the degree of global interdependence, seem necessary if we are to live to enjoy some of the later and more interesting limits to human activity.

  12. Valuation of long-term investments in energy assets under uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Abadie, L. M. [Bilbao Bizkaia Kutxa, Gran Via 30, 48009 Bilbao (Spain)

    2009-07-01

    This paper aims to contribute to the development of valuation models for long-term investments while keeping an eye on market prices. The adopted methodology is rooted on the existence of markets for futures and options on commodities related to energy investments. These markets are getting ever-increasingly liquid with ever-longer maturities while trading contracts. We discuss the advantages of this approach relative to other alternatives such as the Net Present Value (NPV) or the Internal Rate of Return (IRR), despite a limited increase in the complexity of the models involved. More specifically, using the valuation methods well-known to energy-finance academics, the paper shows how to: break down an investment into its constituent parts, apply to each of them the corresponding risk premium, value annuities on assets with a deterministic or stochastic behavior, and value the options that are available to its owner, in order to get an overall value of the investment project. It also includes an application to improvement in coal consumption, where futures markets are used to get a numerical estimate of the parameters that are required for valuation. The results are then compared with those from traditional methodologies. Conclusions for this type of investments under uncertainty are derived. (author)

  13. Valuation of Long-Term Investments in Energy Assets under Uncertainty

    Directory of Open Access Journals (Sweden)

    Luis M. Abadie

    2009-09-01

    Full Text Available This paper aims to contribute to the development of valuation models for long-term investments while keeping an eye on market prices. The adopted methodology is rooted on the existence of markets for futures and options on commodities related to energy investments. These markets are getting ever-increasingly liquid with ever-longer maturities while trading contracts. We discuss the advantages of this approach relative to other alternatives such as the Net Present Value (NPV or the Internal Rate of Return (IRR, despite a limited increase in the complexity of the models involved. More specifically, using the valuation methods well-known to energy-finance academics, the paper shows how to: break down an investment into its constituent parts, apply to each of them the corresponding risk premium, value annuities on assets with a deterministic or stochastic behavior, and value the options that are available to its owner, in order to get an overall value of the investment project. It also includes an application to improvement in coal consumption, where futures markets are used to get a numerical estimate of the parameters that are required for valuation. The results are then compared with those from traditional methodologies. Conclusions for this type of investments under uncertainty are derived.

  14. Valuation of long-term investments in energy assets under uncertainty

    International Nuclear Information System (INIS)

    Abadie, L. M.

    2009-01-01

    This paper aims to contribute to the development of valuation models for long-term investments while keeping an eye on market prices. The adopted methodology is rooted on the existence of markets for futures and options on commodities related to energy investments. These markets are getting ever-increasingly liquid with ever-longer maturities while trading contracts. We discuss the advantages of this approach relative to other alternatives such as the Net Present Value (NPV) or the Internal Rate of Return (IRR), despite a limited increase in the complexity of the models involved. More specifically, using the valuation methods well-known to energy-finance academics, the paper shows how to: break down an investment into its constituent parts, apply to each of them the corresponding risk premium, value annuities on assets with a deterministic or stochastic behavior, and value the options that are available to its owner, in order to get an overall value of the investment project. It also includes an application to improvement in coal consumption, where futures markets are used to get a numerical estimate of the parameters that are required for valuation. The results are then compared with those from traditional methodologies. Conclusions for this type of investments under uncertainty are derived. (author)

  15. A Long-Term Mathematical Model for Mining Industries

    OpenAIRE

    Achdou , Yves; Giraud , Pierre-Noel; Lasry , Jean-Michel; Lions , Pierre-Louis

    2016-01-01

    International audience; A parcimonious long term model is proposed for a mining industry. Knowing the dynamics of the global reserve, the strategy of each production unit consists of an optimal control problem with two controls, first the flux invested into prospection and the building of new extraction facilities, second the production rate. In turn, the dynamics of the global reserve depends on the individual strategies of the producers, so the models leads to an equilibrium, which is descr...

  16. International Clean Energy System Using Hydrogen Conversion (WE-NET). subtask 3. Study on the global network; Suiso riyo kokusai clean energy system gijutsu (WE-NET). subtask 3. Global network kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    As a part of the WE-NET project, the introduction condition of hydrogen as substituting energy and CO2 reduction effect were analyzed using a global energy model. The WE-NET project aims at global-wide introduction of clean energy by converting abundant renewable clean energy into hydrogen transportable to distant consumers all over the world. The study result in fiscal 1996 is as follows. Undeveloped hydroelectric resources in the world are estimated to be 12 trillion kWh/y equivalent to the existing developed one in the world. Since the cost of the hydroelectric power generation projects over 1000MW in the planning stage is estimated to be 0.02-0.05$/kWh lower than that of other renewable energies, such projects are expected as energy source in the initial stage of the practical WE-NET project. The GREEN model was modified by adding a hydrogen analysis function, and extending an analysis period. The modified model allowed evaluation of the long-term important role of hydrogen energy, in particular, the capability of CO2 gas reduction all over the world. 28 refs., 92 figs., 56 tabs.

  17. Qualitative and quantitative assessment of the short- and long-term consequences of opting out of nuclear energy

    International Nuclear Information System (INIS)

    Briem, G.; Halstrick, M.; Heilemann, U.; Hillebrand, B.; Kiy, M.; Neuhaus, R.; Knieper, O.; Schmidt, H.W.; Weiss, T.

    1986-08-01

    A reference scenario establishes the prospective development of the energy and overall economy under status-quo conditions, i.e. assuming especially the continued use of nuclear energy, while two scenarios (alternative I: 'immediate opting out' and alternative II: 'opting out in the long term') try to assess the consequences of a shutdown of nuclear energy for the economic development of the Federal Republic of Germany. Especially, the study deals with the effects on the power industry, the ecological consequences, and the overall economic effects both in the short and long run. In all three scenarios, the development of the home consumption of electric power is first of all determined by a structure model of the entire economy. The capacity required to meet that demand and its use are calculated with the aid of a power plant model; short- and long-term cost-minimization programmes making allowance especially for fuel and capital costs from the elements from which these quantities are derived. Fuel and capital costs operate as variables in the structure model to determine the sectoral and overall economic development. The report in addition investigates separately, in partial models, the effects on the chemical industry and the branches of industry processing iron, steel, and non-ferrous metals, all of which are greatly in demand of electric power. (orig./UA) [de

  18. Undertaking high impact strategies: The role of national efficiency measures in long-term energy and emission reduction in steel making

    International Nuclear Information System (INIS)

    Xu, Tengfang; Karali, Nihan; Sathaye, Jayant

    2014-01-01

    Highlights: • Evaluate long-term effects of national energy efficiency in steel making. • Use bottom-up optimization for projection in China, India and the U.S. • The effects include changes in steel production, energy use, emissions, and costs. • Three emission targets induce different structural changes and investments. • Projected energy and CO 2 intensity declines in each country from 2010 to 2050. - Abstract: In this paper, we applied bottom-up linear optimization modeling to analyze long-term national impacts of implementing energy efficiency measures on energy savings, CO 2 -emission reduction, production, and costs of steel making in China, India, and the U.S. We first established two base scenarios representing business-as-usual steel production for each country from 2010 to 2050; Base scenario (in which no efficiency measure is available) and Base-E scenario (in which efficiency measures are available), and model scenarios representing various emission-reduction targets that affects production, annual energy use and costs with the goal of cost minimization. A higher emission-reduction target generally induces larger structural changes and increased investments in nation-wide efficiency measures, in addition to autonomous improvement expected in the Base scenario. Given the same emission-reduction target compared to the base scenario, intensity of annual energy use and emissions exhibits declining trends in each country from year 2010 to 2050. While a higher emission-reduction target result in more energy reduction from the base scenario, such reduction can become more expensive to achieve. The results advance our understanding of long-term effects of national energy efficiency applications under different sets of emission-reduction targets for steel sectors in the three major economies, and provide useful implications for high impact strategies to manage production structures, production costs, energy use, and emission reduction in steel making

  19. Effects of long-term price increases for oil

    International Nuclear Information System (INIS)

    Voehringer, F.; Mueller, A.; Boehringer, C.

    2007-03-01

    This comprehensive report for the Swiss Federal Office of Energy (SFOE) takes a look at the effects of higher oil prices in the long-term. Scenarios examined include those with high oil prices of 80 to 140 dollars per barrel and those with drastic shortages resulting from peak extraction in the years 2010 and 2020. Long-term economic balances form the basis of the report, short-term influences and psychological effects are not addressed. The possible dangers for the earth's climate caused by the substitution of oil by coal-based products are discussed, as well as the sequestration of carbon dioxide. Ethanol and the associated conflicts of land use are examined and the decreasing cost-effectiveness of co-generation power generation is looked at. Alternatives such as atomic power, hydropower, solar energy, geothermal energy, biogas and wind power are discussed. The effect of the changing energy scene on economic growth and welfare aspects in Switzerland are examined. The authors conclude that high oil prices have considerable impacts on the economy and are not a substitute for an internationally co-ordinated climate policy

  20. CO2 emissions and economic activity: Short- and long-run economic determinants of scale, energy intensity and carbon intensity

    International Nuclear Information System (INIS)

    Andersson, Fredrik N.G.; Karpestam, Peter

    2013-01-01

    We analyze the short-term and the long-term determinants of energy intensity, carbon intensity and scale effects for eight developed economies and two emerging economies from 1973 to 2007. Our results show that there is a difference between the short-term and the long-term results and that climate policy are more likely to affect emission over the long-term than over the short-term. Climate policies should therefore be aimed at a time horizon of at least 8 years and year-on-year changes in emissions contains little information about the trend path of emissions. In the long-run capital accumulation is the main driver of emissions. Productivity growth reduces the energy intensity while the real oil price reduces both the energy intensity and the carbon intensity. The real oil price effect suggests that a global carbon tax is an important policy tool to reduce emissions, but our results also suggest that a carbon tax is likely to be insufficient decouple emission from economic growth. Such a decoupling is likely to require a structural transformation of the economy. The key policy challenge is thus to build new economic structures where investments in green technologies are more profitable. - Highlights: • We model determinants of scale, energy intensity and carbon intensity. • Using band spectrum regressions, we separate between short and long run effects. • Different economic variables affect emission in the short and long run. • CO 2 reducing policies should have a long run horizon of (at least 8 years). • A low carbon society requires a structural transformation of the economy

  1. Finding synergy between local competitiveness and global sustainability to provide a future to nuclear energy

    International Nuclear Information System (INIS)

    Van Den Durpel, Luc; Yacout, Abdellatif; Wade, Dave

    2008-01-01

    The world's future energy needs will require a mix of energy conversion technologies matched to the local energy market needs while also responding to both local and global socio-political concerns, e.g. energy security, environmental impact, safety and non-proliferation. There is growing recognition worldwide that nuclear energy should not only be part of the solution but maybe as well play a larger share in future's energy supply. The sustainability of future nuclear energy systems is hereby important and a variety of studies have already shown that sustainability of nuclear energy from a resource perspective is achievable via the nuclear fuel cycle though where economic sustainability is essentially defined by the nuclear power plants. The main challenge in deploying sustainable nuclear energy systems will be to find synergies between this local competitiveness of nuclear power plants and the global resource sustainability defined via the nuclear fuel cycle. Both may go hand-in-hand in the long-term but may need government guidance in starting the transition towards such future sustainable nuclear energy systems. (authors)

  2. Long-term scenario alternatives and their implications: LEAP model application of Panama's electricity sector

    International Nuclear Information System (INIS)

    McPherson, Madeleine; Karney, Bryan

    2014-01-01

    Panama recently enacted a new law, which aims to promote wind energy by mandating long term power purchase tenders. The implications of this new law lend some uncertainty to Panama's electricity development pathway. This paper quantitatively analyzes the current status of power generation in Panama, and explores various potential future scenarios and the associated impacts on the system marginal cost, global warming potential, and resource diversity index. To this end, this study applies the scenario development methodology developed by Schwartz in the context of the energy-economic modeling platform ‘Long-range Energy Alternative Planning’ (LEAP). Four scenarios are developed and analyzed. The Business as Usual scenario extrapolates the electricity generation trend that has been observed over the last decade; it is compared to three alternative scenarios which have more specific objectives. Scenario 1 encourages climate mitigation without incorporating new technologies in the generation mix, Scenario 2 maximizes resource diversity, and Scenario 3 minimizes global warming potential. For each scenario, the composition of the electricity generation profile, system marginal cost, global warming potential, and resource diversity is predicted quantitatively. These scenarios to not attempt to forecast likely developments, but rather illuminate the tradeoffs that different development pathways entail. - Highlights: • This paper models Panama's electricity sector using the LEAP model platform. • Four scenarios are developed and analyzed. • Impact analysis includes: system cost, global warming potential, resource diversity index. • Panama can achieve a sustainable grid with existing technologies and costs. • There is an tradeoff between the resource diversity and global warming potential

  3. Long-term solar activity and terrestrial connections. Part II: at the beckon of the sun?

    Directory of Open Access Journals (Sweden)

    N. D. Diamantides

    Full Text Available The research task described herein aims at the structuring of an analytical tool that traces the time course of geophysical phenomena, regional or global, and compares it to the course of long-term solar conditions, long-term meaning decades or a few centuries. The model is based on the premise that since in a last analysis the preponderance of atmospheric, hydrospheric, and, possibly, some aspects of geospheric phenomena are, or have been, powered by energy issuing from the sun - either now or in the past - the long-term behavior of such phenomena is ultimately "connected" to long-term changes occurring in the sun itself. Accordingly, the proposed research firstly derives and models a stable surrogate pattern for the long-term solar activity, secondly introduces a transfer-function algorithm for modeling the connection between the surrogate and terrestrial phenomena viewed as partners in the connection, and thirdly probes the connection outcome for episodic or unanticipated effects that may arise due to the fact that in the present context, the connection, should it exist, is very likely nonlinear. Part I of the study presents the theory of the concept, while Part II demonstrates the concept's pertinence to a number of terrestrial phenomena.

    Key words. Solar activity · Kolmogorov algorithm

  4. The global greenhouse effect and the advanced nuclear energy system

    International Nuclear Information System (INIS)

    Byong Whi Lee

    1998-01-01

    In spite of future uncertainty, Korea is very much committed to nuclear energy as a major source of electric power expansion, because of its lack of domestic energy resources. A long term nuclear power program has resulted in 11 nuclear power plants of 9.6 GWe in operation, 2 units under construction and 7 planned. This means that the share of nuclear power in Korean electricity production would be about 38% in 2006. Many other countries were faced with the problem of global warming which is related to carbondioxide emission from the use of fossil fuels. According to Korean experience, it could be concluded that substitution of fossil fuels would be the most efficient and economic means of reducing the greenhouse gas emissions. In addition to nuclear and hydropower, the most promising other non-fossil sources are geothermal energy, biomass, solar thermal energy, photovoltaic systems, wind power, tidal power, wave power and ocean thermal electric conversion

  5. University of Minnesota Aquifer Thermal Energy Storage (ATES) project report on the first long-term cycle

    Science.gov (United States)

    Walton, M.

    1991-10-01

    The technical feasibility of high-temperature (greater than 100 C) aquifer thermal energy storage (IOTAS) in a deep, confined aquifer was tested in a series of experimental cycles at the University of Minnesota's St. Paul field test facility (FTF). This report describes the additions to the FTF for the long-term cycles and the details of the first long-term cycle (LT1) that was conducted from November 1984 through May 1985. Heat recovery; operational experience; and thermal, chemical, hydrologic, and geologic aspects of LT1 are reported. The permits for long-term cycles required the addition of a monitoring well 30.5 m from the storage well for monitoring near the edge of the thermally affected area and allowed the addition of a cation-exchange water softener to enable continuous operation during the injection phase. Approximately 62 percent of the 9.47 GWh of energy added to the 9.21 x 10(exp 4) cu m of ground water stored in the aquifer LT1 was recovered. Ion-exchange water softening of the heated and stored ground water prevented scaling in the system heat exchangers and the storage well and changed the major-ion chemistry of the stored water. Temperatures at the storage horizons in site monitoring wells reached as high as 108 C during the injection phase of LT1. Following heat recovery, temperatures were less than 30 C at the same locations. Less permeable horizons underwent slow temperature changes. No thermal or chemical effects were observed at the remote monitoring site.

  6. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  7. The uranium industry: long term planning for short term competition

    International Nuclear Information System (INIS)

    Vottero, X.

    2000-01-01

    Today, uranium producers face new challenges in terms of both production (new regulatory, environmental and social constraints) and market conditions (new sources of uranium supply, very low prices and tough competition). In such a context, long-term planning is not just a prerequisite to survive in the nuclear fuel cycle industry. In fact, it also contributes to sustaining nuclear electricity generation facing fierce competition from other energy sources in increasingly deregulated markets. (authors)

  8. 20 year long term air quality trends in Israel

    Science.gov (United States)

    Luria, M.

    2017-12-01

    The Israeli air monitoring network was established in the mid 1990's with dozens of measuring sites near most populated areas. During these past 20 years the Israel economy has increased significantly. The population grew by 30%, energy consumption and power generation by more than 40% and the number of motor vehicles increased by nearly 50%. Most of the fossil energy is consumed by the electric power industry that has changed immensely during this period. Until the early 2000's the vast majority of the electricity was generated from coal and heavy oil. However, during the last ten years natural gas has gradually becomes the major source for power generation and for most of the heavy industry. In the present study we examined the impact of these economic trends on the major criteria air pollution parameters; O3, NOx, SO2 and PM10. The analyses was based on the long term trend of median value (50th percentile) and the 90th percentile. The results revealed that SO2 levels throughout the country decreased to very low levels, with the 90th percentile near the detection limit. The levels of PM10, that are relatively high compare with other global regions, did not show any trend during the 20 year period. This is consistent with the fact that most particulate matter results from long range transport of dust from the surrounding deserts. The long term trend of NOx indicates a gradual and steady increase at most measuring sites, which is consistent with the increase of fossil fuel consumption. The increase in NOx levels is most likely the cause for the significant increase in O3 levels found at most sites in a few of them to levels that are considered as an environmental hazard.

  9. The role of electricity storage and hydrogen technologies in enabling global low-carbon energy transitions

    OpenAIRE

    McPherson, M.; Johnson, N.; Strubegger, M.

    2018-01-01

    Previous studies have noted the importance of electricity storage and hydrogen technologies for enabling large-scale variable renewable energy (VRE) deployment in long-term climate change mitigation scenarios. However, global studies, which typically use integrated assessment models, assume a fixed cost trajectory for storage and hydrogen technologies; thereby ignoring the sensitivity of VRE deployment and/or mitigation costs to uncertainties in future storage and hydrogen technology costs. Y...

  10. Stochastic Modeling of Long-Term and Extreme Value Estimation of Wind and Sea Conditions for Probabilistic Reliability Assessments of Wave Energy Devices

    DEFF Research Database (Denmark)

    Ambühl, Simon; Kofoed, Jens Peter; Sørensen, John Dalsgaard

    2014-01-01

    Wave energy power plants are expected to become one of the major future contribution to the sustainable electricity production. Optimal design of wave energy power plants is associated with modeling of physical, statistical, measurement and model uncertainties. This paper presents stochastic models...... for the significant wave height, the mean zero-crossing wave period and the wind speed for long-term and extreme estimations. The long-term estimation focuses on annual statistical distributions, the inter-annual variation of distribution parameters and the statistical uncertainty due to limited amount of data...

  11. Exploring the possibilities for setting up sustainable energy systems for the long term: two visions for the Dutch energy system in 2050

    International Nuclear Information System (INIS)

    Treffers, D.J.; Faaij, A.P.C.; Spakman, J.; Seebregts, A.

    2005-01-01

    In this paper, two long-term visions of the Dutch future energy system are composed, analysed and evaluated. Both visions were set up to meet the requirement to reduce the GHG emissions with 80% in 2050 in comparison to 1990. The two visions start from very different perspectives and contexts. Quantitative analysis shows that when economic growth and energy use follow a business as usual development, emissions of GreenHouse Gases (GHG) can increase up to 250% of 1990 levels. The two, rather opposing, visions show that it is feasible to combine (strong) economic growth with far going reduction of GHG emissions, provided a number of key options are developed and applied. These options were chosen and discussed during several meetings by stakeholders in a dialogue process, using feedback from scientists, and consist of improvements in energy efficiency in industry, CO 2 neutral feedstocks for transportation, renewable energy and highly insulated buildings in the built environment and improvements in the primary production of the agricultural sector. It is clear that drastic changes in many areas in society are required to obtain the desired GHG-emission levels in 2050. The results also show though, that such a development can be realised in different ways. In other words, there are various ways to implement a low GHG emission economy in the long term

  12. Role of the breeder in long-term energy economics

    International Nuclear Information System (INIS)

    Kosobud, R.F.; Daly, T.A.; Chang, Y.I.

    1982-01-01

    Private and public decisions affecting the use of nuclear and other energy technologies over a long-run time horizon were studied using the ETA-MACRO model which provides for economic- and energy-sector interactions. The impact on the use of competing energy technologies of a public decision to apply benefit-cost analysis to the production of carbon dioxide that enters the atmosphere is considered. Assuming the public choice is to impose an appropriate penalty tax on those technologies which generate CO 2 and to allow decentralized private decisions to choose the optimal mix of energy technologies that maximize a nonlinear objective function subject to constraints, the study showed that breeder technology provides a much-larger share of domestically consumed energy. Having the breeder technology available as a substitute permits control of CO 2 without significant reductions in consumption or gross national product growth paths

  13. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

  14. Clustering of short and long-term co-movements in international financial and commodity markets in wavelet domain

    Science.gov (United States)

    Lahmiri, Salim; Uddin, Gazi Salah; Bekiros, Stelios

    2017-11-01

    We propose a general framework for measuring short and long term dynamics in asset classes based on the wavelet presentation of clustering analysis. The empirical results show strong evidence of instability of the financial system aftermath of the global financial crisis. Indeed, both short and long-term dynamics have significantly changed after the global financial crisis. This study provides an interesting insights complex structure of global financial and economic system.

  15. Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective

    International Nuclear Information System (INIS)

    Monteleone, Massimo; Cammerino, Anna Rita Bernadette; Garofalo, Pasquale; Delivand, Mitra Kami

    2015-01-01

    Highlights: • Energy balance and GHG savings of a straw-to-electricity value chain were determined. • An “expanded” LCA was performed, from farm field to electricity delivery. • Both direct and indirect factors of land use change have been considered in the analysis. • No-tillage and crop rotation significantly improved the system performance. • A win–win, sustainable solution for the energy use of straw has been identified. - Abstract: This study examined some management strategies of wheat cultivation system and its sustainability in using straw as an energy feedstock. According to the EU regulatory framework on biofuels, no GHG emissions should be assigned to straws when they are used for energy. Given this relevance in the current energy policy, it is advisable to include all possible marginal effects related to land use, resource utilization and management changes in the comparison of different biomass options. Coherently, an expanded life cycle assessment (LCA) was applied to include the upstream cultivation phase and to make a comparison between “straw to soil” and “straw to energy”. Different crop management conditions in Southern Italy were simulated, by using the CropSyst model, to estimate the long-term soil organic carbon and annual N 2 O soil emissions. Three wheat cropping systems were considered: the conventional single wheat system without straw removal (W0) and with partial straw removal (W1), together with a no-tillage “wheat-wheat-herbage” rotation system with partial straw removal (W2). The results of the simulations were integrated in the LCA to compare fossil energy consumption and greenhouse gas (GHG) emissions of straw-to-electricity with respect to the fossil-based electricity system. The “improved” rotational wheat cropping system (W2) gave the best performance in terms both of GHG savings and fossil displacement, thus stressing that straw use for energy generation in parallel with the optimization of the

  16. Evaluation of the long-term energy analysis program used for the 1978 EIA Administrator's Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, R. W.; Weisbin, C. R.; Alsmiller, Jr., R. G.

    1981-10-01

    An evaluation of the Long-Term Energy Analysis Program (LEAP), a computer model of the energy portion of the US economy that was used for the 1995-2020 projections in its 1978 Annual Report to Congress, is presented. An overview of the 1978 version, LEAP Model 22C, is followed by an analysis of the important results needed by its users. The model is then evaluated on the basis of: (1) the adequacy of its documentation; (2) the local experience in operating the model; (3) the adequacy of the numerical techniques used; (4) the soundness of the economic and technical foundations of the model equations; and (5) the degree to which the computer program has been verified. To show which parameters strongly influence the results and to approach the question of whether the model can project important results with sufficient accuracy to support qualitative conclusions, the numerical sensitivities of some important results to model input parameters are described. The input data are categorized and discussed, and uncertainties are given for some parameters as examples. From this background and from the relation of LEAP to other available approaches for long-term energy modeling, an overall evaluation is given of the model's suitability for use by the EIA.

  17. Emulation of long-term changes in global climate: Application to the late Pliocene and future

    KAUST Repository

    Lord, Natalie S.

    2017-04-26

    Multi-millennial transient simulations of climate changes have a range of important applications, such as for investigating key geologic events and transitions for which high-resolution palaeoenvironmental proxy data are available, or for projecting the long-term impacts of future climate evolution on the performance of geological repositories for the disposal of radioactive wastes. However, due to the high computational requirements of current fully coupled general circulation models (GCMs), long-term simulations can generally only be performed with less complex models and/or at lower spatial resolution. In this study, we present novel long-term

  18. Emulation of long-term changes in global climate: application to the late Pliocene and future

    KAUST Repository

    Lord, Natalie S.

    2017-11-16

    Multi-millennial transient simulations of climate changes have a range of important applications, such as for investigating key geologic events and transitions for which high-resolution palaeoenvironmental proxy data are available, or for projecting the long-term impacts of future climate evolution on the performance of geological repositories for the disposal of radioactive wastes. However, due to the high computational requirements of current fully coupled general circulation models (GCMs), long-term simulations can generally only be performed with less complex models and/or at lower spatial resolution. In this study, we present novel long-term

  19. Emulation of long-term changes in global climate: application to the late Pliocene and future

    KAUST Repository

    Lord, Natalie S.; Crucifix, Michel; Lunt, Dan J.; Thorne, Mike C.; Bounceur, Nabila; Dowsett, Harry; O& apos; Brien, Charlotte L.; Ridgwell, Andy

    2017-01-01

    Multi-millennial transient simulations of climate changes have a range of important applications, such as for investigating key geologic events and transitions for which high-resolution palaeoenvironmental proxy data are available, or for projecting the long-term impacts of future climate evolution on the performance of geological repositories for the disposal of radioactive wastes. However, due to the high computational requirements of current fully coupled general circulation models (GCMs), long-term simulations can generally only be performed with less complex models and/or at lower spatial resolution. In this study, we present novel long-term

  20. Emulation of long-term changes in global climate: Application to the late Pliocene and future

    KAUST Repository

    Lord, Natalie S.; Crucifix, Michel; Lunt, Dan J.; Thorne, Mike C.; Bounceur, Nabila; Dowsett, Harry; O& apos; Brien, Charlotte L.; Ridgwell, Andy

    2017-01-01

    Multi-millennial transient simulations of climate changes have a range of important applications, such as for investigating key geologic events and transitions for which high-resolution palaeoenvironmental proxy data are available, or for projecting the long-term impacts of future climate evolution on the performance of geological repositories for the disposal of radioactive wastes. However, due to the high computational requirements of current fully coupled general circulation models (GCMs), long-term simulations can generally only be performed with less complex models and/or at lower spatial resolution. In this study, we present novel long-term

  1. New energy technology cope with global environmental problems

    International Nuclear Information System (INIS)

    Tsuchimoto, Tatsuya

    1991-01-01

    At present, the national and private storage of oil is the quantity for about 140 days in total, and it can cope with the temporary fear of oil supply, but if the Gulf War was prolonged, the large effect should be exerted to the energy supply. The reduction of the degree of oil dependence and the increase of the dependence on nonfossil fuel are taken up as the basic idea of the long term energy demand and supply in Japan. Also in the action plan for preventing global warming, the further promotion of energy conservation and the adoption of clean energy were decided to be carried out for decreasing carbon dioxide. In this report, among clean energies, the technology of electric power generation by sun beam, wind force and geotherm is described. The power generation by sun beam has many features, but the energy density is low, and the area for installation becomes large. The cost of power generation is relatively high. The power generation by wind force is superior in its environmental characteristics, and has been already put in practical use in USA and Europe. The problem is the reliability of the system. The geothermal power generation is available also in Japan, and is important for the energy security. The plants of about 270 MW are installed in Japan. (K.I.)

  2. Audit of long-term and short-term liabilities

    Directory of Open Access Journals (Sweden)

    Korinko M.D.

    2017-03-01

    Full Text Available The article determines the importance of long-term and short-term liabilities for the management of financial and material resources of an enterprise. It reviews the aim, objects and information generators for realization of audit of short-term and long-term obligations. The organizing and methodical providing of audit of long-term and short-term liabilities of an enterprise are generalized. The authors distinguish the stages of realization of audit of long-term and short-term liabilities, the aim of audit on each of the presented stages, and recommend methodical techniques. It is fixed that it is necessary to conduct the estimation of the systems of internal control and record-keeping of an enterprise by implementation of public accountant procedures for determination of volume and maintenance of selection realization. After estimating the indicated systems, a public accountant determines the methodology for realization of public accountant verification of long-term and short-term liabilities. The analytical procedures that public accountants are expedient to use for realization of audit of short-term and long-term obligations are determined. The authors suggest the classification of the educed defects on the results of the conducted public accountant verification of short-term and long-term obligations.

  3. Long-term outcomes of young people who attempted suicide

    NARCIS (Netherlands)

    Grisham, Jessica R; Williams, Alishia D

    2014-01-01

    IMPORTANCE Suicidal behavior has increased since the onset of the global recession, a trend that may have long-term health and social implications. OBJECTIVE To test whether suicide attempts among young people signal increased risk for later poor health and social functioning above and beyond a

  4. Determinants of the pace of global innovation in energy technologies.

    Science.gov (United States)

    Bettencourt, Luís M A; Trancik, Jessika E; Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970-2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time.

  5. Long-term global distribution of earth's shortwave radiation budget at the top of atmosphere

    Directory of Open Access Journals (Sweden)

    N. Hatzianastassiou

    2004-01-01

    Full Text Available The mean monthly shortwave (SW radiation budget at the top of atmosphere (TOA was computed on 2.5° longitude-latitude resolution for the 14-year period from 1984 to 1997, using a radiative transfer model with long-term climatological data from the International Satellite Cloud Climatology Project (ISCCP-D2 supplemented by data from the National Centers for Environmental Prediction – National Center for Atmospheric Research (NCEP-NCAR Global Reanalysis project, and other global data bases such as TIROS Operational Vertical Sounder (TOVS and Global Aerosol Data Set (GADS. The model radiative fluxes at TOA were validated against Earth Radiation Budget Experiment (ERBE S4 scanner satellite data (1985–1989. The model is able to predict the seasonal and geographical variation of SW TOA fluxes. On a mean annual and global basis, the model is in very good agreement with ERBE, overestimating the outgoing SW radiation at TOA (OSR by 0.93 Wm-2 (or by 0.92%, within the ERBE uncertainties. At pixel level, the OSR differences between model and ERBE are mostly within ±10 Wm-2, with ±5 Wm-2 over extended regions, while there exist some geographic areas with differences of up to 40 Wm-2, associated with uncertainties in cloud properties and surface albedo. The 14-year average model results give a planetary albedo equal to 29.6% and a TOA OSR flux of 101.2 Wm-2. A significant linearly decreasing trend in OSR and planetary albedo was found, equal to 2.3 Wm-2 and 0.6% (in absolute values, respectively, over the 14-year period (from January 1984 to December 1997, indicating an increasing solar planetary warming. This planetary SW radiative heating occurs in the tropical and sub-tropical areas (20° S–20° N, with clouds being the most likely cause. The computed global mean OSR anomaly ranges within ±4 Wm-2, with signals from El Niño and La Niña events or Pinatubo eruption, whereas significant negative OSR anomalies, starting from year 1992, are also

  6. The profound reach of the 11 April 2012 M 8.6 Indian Ocean earthquake: Short‐term global triggering followed by a longer‐term global shadow

    Science.gov (United States)

    Pollitz, Fred; Burgmann, Roland; Stein, Ross S.; Sevilgen, Volkan

    2014-01-01

    The 11 April 2012 M 8.6 Indian Ocean earthquake was an unusually large intraoceanic strike‐slip event. For several days, the global M≥4.5 and M≥6.5 seismicity rate at remote distances (i.e., thousands of kilometers from the mainshock) was elevated. The strike‐slip mainshock appears through its Love waves to have triggered a global burst of strike‐slip aftershocks over several days. But the M≥6.5 rate subsequently dropped to zero for the succeeding 95 days, although the M≤6.0 global rate was close to background during this period. Such an extended period without an M≥6.5 event has happened rarely over the past century, and never after a large mainshock. Quiescent periods following previous large (M≥8) mainshocks over the past century are either much shorter or begin so long after a given mainshock that no physical interpretation is warranted. The 2012 mainshock is unique in terms of both the short‐lived global increase and subsequent long quiescent period. We believe that the two components are linked and interpret this pattern as the product of dynamic stressing of a global system of faults. Transient dynamic stresses can encourage short‐term triggering, but, paradoxically, it can also inhibit rupture temporarily until background tectonic loading restores the system to its premainshock stress levels.

  7. Energy for the long run: fission or fusion

    International Nuclear Information System (INIS)

    Kulcinski, G.L.; Kessler, G.; Holdren, J.; Haefele, W.

    1979-01-01

    The alternatives of the most likely and controversial long-range energy sources, fusion and fast-breeder fission, are compared in several areas: potential biological and social hazards, costs of research and development, capital costs, technical complexity, and time factors. It is concluded that from biological and social hazards standpoint, fusion is preferable to fast-breeder fission reactors; however, the LMFBR has already passed on the threshold of scientific and engineering feasibility. It is pointed out that LMFBR should not be compared with short-term energy sources, e.g. coal or oil, but should be compared only with other long-term energy sources, e.g. other types of breeder reactors

  8. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond

    OpenAIRE

    Lisa V. Alexander

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) first attempted a global assessment of long-term changes in temperature and precipitation extremes in its Third Assessment Report in 2001. While data quality and coverage were limited, the report still concluded that heavy precipitation events had increased and that there had been, very likely, a reduction in the frequency of extreme low temperatures and increases in the frequency of extreme high temperatures. That overall assessment had ch...

  9. Analysis on Japan's long-term energy outlook considering massive deployment of variable renewable energy under nuclear energy scenario

    International Nuclear Information System (INIS)

    Komiyama, Ryoichi; Fujii, Yasumasa

    2012-01-01

    This paper investigates Japan's long-term energy outlook to 2050 considering massive deployment of solar photovoltaic (PV) system and wind power generation under nuclear energy scenario. The extensive introduction of PV system and wind power system are expected to play an important role in enhancing electricity supply security after Fukushima Nuclear Power Accident which has increased the uncertainty of future additional construction of nuclear power plant in Japan. On these backgrounds, we develop integrated energy assessment model comprised of both econometric energy demand and supply model and optimal power generation mix model. The latter model is able to explicitly analyze the impact of output fluctuation in variable renewable in detailed time resolution at 10 minutes on consecutive 365 days, incorporating the role of stationary battery technology. Simulation results reveal that intermittent fluctuation derived from high penetration level of those renewables is controlled by quick load following operation by natural gas combined cycle power plant, pumped-storage hydro power, stationary battery technology and the output suppression of PV and wind power. The results show as well that massive penetration of the renewables does not necessarily require the comparable scale of stationary battery capacity. Additionally, on the scenario which assumes the decommissioning of nuclear power plants which lifetime are over 40 years, required PV capacity in 2050 amounts to more than double of PV installment potential in both building and abandoned farmland area. (author)

  10. Advice on a long-term strategy on energy and climate change

    International Nuclear Information System (INIS)

    2006-06-01

    A study was conducted to examine how climate change would affect Canada's economy and environment, with a focus on what a low carbon future might look like for Canada over the next 45 years. Two questions formed the basis of this research that examined how Canada can protect and enhance its national interest with regard to energy and climate change issues between now and the mid-twenty first century and what Canada currently needs to do in order to achieve this. A scenario was developed as part of this study in order to demonstrate one way in which Canada can achieve a significant reduction in energy related GHG emissions by 2050. For illustrative purposes, it was necessary to have a quantifiable definition of what a significant reduction would look like, and therefore, it was decided that a long-term domestic reduction of energy-related GHG emissions by 60 per cent by 2050 would be used as it is roughly consistent with similar targets adopted or being considered by other OECD countries. The scope of this analysis covered energy-related GHG emissions such as carbon dioxide, methane and nitrous oxide that result from the production and consumption of fossil fuels. The paper provided a summary of key findings from the study and discussed Canada's unique environmental challenges. Study characteristics, scope of the analysis and assumptions were also identified. A 60 per cent GHG reduction wedge diagram was provided to illustrate the scenario under consideration. Strategic priorities were also presented identifying where transformations will need to occur. These priorities include energy efficiency improvements, carbon capture and sequestration in the oil and gas sector, and electricity generation. The paper also provided several conclusions and next steps. One of the principal conclusions was that there can be a domestic solution to making significant GHG reductions by mid-century, but significant reductions can be achieved only if energy is used more efficiently and

  11. Part I. Alternative fuel-cycle and deployment strategies: their influence on long-term energy supply and resource usage

    International Nuclear Information System (INIS)

    Till, C.E.; Chang, Y.I.; Rudolph, R.R.

    1980-01-01

    This report examines the implications of alternative fast breeder fuel cycles and deployment strategies on long-term energy supply and uranium resource utilization. An international-aggregate treatment for nuclear energy demand and resource base assumptions was adopted where specific assumptions were necessary for system analyses, but the primary emphasis was placed on understanding the general relationships between energy demand, uranium resource and breeder deployment option. The fast breeder deployment options studied include the reference Pu/U cycle as well as alternative cycles with varying degrees of thorium utilization

  12. Genesis, goals and achievements of Long-Term Ecological Research at the global scale: A critical review of ILTER and future directions.

    Science.gov (United States)

    Mirtl, M; T Borer, E; Djukic, I; Forsius, M; Haubold, H; Hugo, W; Jourdan, J; Lindenmayer, D; McDowell, W H; Muraoka, H; Orenstein, D E; Pauw, J C; Peterseil, J; Shibata, H; Wohner, C; Yu, X; Haase, P

    2018-06-01

    Since its founding in 1993 the International Long-term Ecological Research Network (ILTER) has gone through pronounced development phases. The current network comprises 44 active member LTER networks representing 700 LTER Sites and ~80 LTSER Platforms across all continents, active in the fields of ecosystem, critical zone and socio-ecological research. The critical challenges and most important achievements of the initial phase have now become state-of-the-art in networking for excellent science. At the same time increasing integration, accelerating technology, networking of resources and a strong pull for more socially relevant scientific information have been modifying the mission and goals of ILTER. This article provides a critical review of ILTER's mission, goals, development and impacts. Major characteristics, tools, services, partnerships and selected examples of relative strengths relevant for advancing ILTER are presented. We elaborate on the tradeoffs between the needs of the scientific community and stakeholder expectations. The embedding of ILTER in an increasingly collaborative landscape of global environmental observation and ecological research networks and infrastructures is also reflected by developments of pioneering regional and national LTER networks such as SAEON in South Africa, CERN/CEOBEX in China, TERN in Australia or eLTER RI in Europe. The primary role of ILTER is currently seen as a mechanism to investigate ecosystem structure, function, and services in response to a wide range of environmental forcings using long-term, place-based research. We suggest four main fields of activities and advancements for the next decade through development/delivery of a: (1) Global multi-disciplinary community of researchers and research institutes; (2) Strategic global framework and strong partnerships in ecosystem observation and research; (3) Global Research Infrastructure (GRI); and (4) a scientific knowledge factory for societally relevant information

  13. Long-term follow-up study and long-term care of childhood cancer survivors

    Directory of Open Access Journals (Sweden)

    Hyeon Jin Park

    2010-04-01

    Full Text Available The number of long-term survivors is increasing in the western countries due to remarkable improvements in the treatment of childhood cancer. The long-term complications of childhood cancer survivors in these countries were brought to light by the childhood cancer survivor studies. In Korea, the 5-year survival rate of childhood cancer patients is approaching 70%; therefore, it is extremely important to undertake similar long-term follow-up studies and comprehensive long-term care for our population. On the basis of the experiences of childhood cancer survivorship care of the western countries and the current Korean status of childhood cancer survivors, long-term follow-up study and long-term care systems need to be established in Korea in the near future. This system might contribute to the improvement of the quality of life of childhood cancer survivors through effective intervention strategies.

  14. Who governs energy? The challenges facing global energy governance

    International Nuclear Information System (INIS)

    Florini, Ann; Sovacool, Benjamin K.

    2009-01-01

    This article conceptualizes the energy problems facing society from a global governance perspective. It argues that a notion of 'global energy governance,' taken to mean international collective action efforts undertaken to manage and distribute energy resources and provide energy services, offers a meaningful and useful framework for assessing energy-related challenges. The article begins by exploring the concepts of governance, global governance, and global energy governance. It then examines some of the existing institutions in place to establish and carry out rules and norms governing global energy problems and describes the range of institutional design options available to policymakers. It briefly traces the role of a selection of these institutions, from inter-governmental organizations to summit processes to multilateral development banks to global action networks, in responding to energy issues, and points out their strengths and weaknesses. The article concludes by analyzing how the various approaches to global governance differ in their applicability to addressing the conundrums of global energy problems.

  15. Who governs energy? The challenges facing global energy governance

    Energy Technology Data Exchange (ETDEWEB)

    Florini, Ann; Sovacool, Benjamin K. [Centre on Asia and Globalisation, Lee Kuan Yew School of Public Policy, National University of Singapore, Singapore 259772 (Singapore)

    2009-12-15

    This article conceptualizes the energy problems facing society from a global governance perspective. It argues that a notion of 'global energy governance,' taken to mean international collective action efforts undertaken to manage and distribute energy resources and provide energy services, offers a meaningful and useful framework for assessing energy-related challenges. The article begins by exploring the concepts of governance, global governance, and global energy governance. It then examines some of the existing institutions in place to establish and carry out rules and norms governing global energy problems and describes the range of institutional design options available to policymakers. It briefly traces the role of a selection of these institutions, from inter-governmental organizations to summit processes to multilateral development banks to global action networks, in responding to energy issues, and points out their strengths and weaknesses. The article concludes by analyzing how the various approaches to global governance differ in their applicability to addressing the conundrums of global energy problems. (author)

  16. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  17. Role of the breeder in long term energy economics

    International Nuclear Information System (INIS)

    Kosobud, R.F.; Chang, Y.I.; Daly, T.A.

    1982-01-01

    In this study the authors report the results of their study of private and public decisions affecting the use of nuclear and other energy technologies over a long run time horizon. For this purpose, the authors employ the well known ETA-MACRO model which provides for economic and energy sector interactions. In this first of their planned series of studies, they consider the impact on the use of competing energy technologies of a public decision to apply benefit-cost analysis to the production of carbon dioxide (CO 2 ) that enters the atmosphere. Assuming the public choice is to impose an appropriate penalty tax on those technologies which generate CO 2 and to allow decentralized private decisions to choose the optimal mix of energy technologies that maximize a nonlinear objective function subject to constraints, the authors find that the breeder technology is chosen to provide a much larger share of domestically consumed energy. Having the breeder technology available as a substitute permits control of CO 2 without significant reductions in consumption or gross national product growth paths

  18. Canada's role in the global energy picture: making the case for a more coherent national energy approach

    Energy Technology Data Exchange (ETDEWEB)

    Gass, Philip; Drexhage, John [International Institute for Sustainable Development (Canada)

    2010-07-01

    Given Canada's position in the present global energy dynamic, there are opportunities for private sector economic actors to make large-scale investments in traditional energy resources such as oil, natural gas, hydropower and uranium. Canada, with so much to offer in terms of resources and potential for private investment, could play a leadership role in the push to develop clean energy. There is a need to articulate an overarching, coherent vision, not only in terms of Canada's stance on energy development but also in terms of national strategy. This is a critical moment, not only for Canada but for the whole world, when an effective, sustainable blueprint needs to be drawn up. If we can make a coherent case for a clean energy vision of the future, then Canada will make global progress in the energy field. Moreover, it seems clear that global governance with respect to energy issues will continue to be a topic of growing interest. Canada needs to give serious thought to what its position and its contribution will be with respect to a clean energy future.

  19. Short-term and long-term Interconnectedness of stock returns in Western Europe and the global market

    OpenAIRE

    Panda, Ajaya Kumar; Nanda, Swagatika

    2017-01-01

    Background: The present study examines the short term dynamics and long term equilibrium relationship among the stock markets of 17 countries in Western Europe as well as the world market, using time series techniques. Methods: Weekly returns of market benchmark indices of the respective countries are used from the second week of 1995 to the fourth week of December 2013. Results: The study finds that the market returns of Austria, Belgium, the Netherlands, and France are relatively less dynam...

  20. Global energy efficiency improvement in the log term: a demand- and supply-side perspective

    NARCIS (Netherlands)

    Graus, W.H.J.; Blomen, E.; Worrell, E.

    2011-01-01

    This study assessed technical potentials for energy efficiency improvement in 2050 in a global context. The reference scenario is based on the World Energy Outlook of the International Energy Agency 2007 edition and assumptions regarding gross domestic product developments after 2030. In the

  1. Long Term Incentives for Residential Customers Using Dynamic Tariff

    DEFF Research Database (Denmark)

    Huang, Shaojun; Wu, Qiuwei; Nielsen, Arne Hejde

    2015-01-01

    This paper reviews several grid tariff schemes, including flat tariff, time-of-use, time-varying tariff, demand charge and dynamic tariff (DT), from the perspective of the long term incentives. The long term incentives can motivate the owners of flexible demands to change their energy consumption...... behavior in such a way that the power system operation issues, such as system balance and congestion, can be alleviated. From the comparison study, including analysis and case study, the DT scheme outperforms the other tariff schemes in terms of cost saving and network operation condition improving....

  2. Long-term stability analysis of the left bank abutment slope at Jinping I hydropower station

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-06-01

    Full Text Available The time-dependent behavior of the left bank abutment slope at Jinping I hydropower station has a major influence on the normal operation and long-term safety of the hydropower station. To solve this problem, a geomechanical model containing various faults and weak structural planes is established, and numerical simulation is conducted under normal water load condition using FLAC3D, incorporating creep model proposed based on thermodynamics with internal state variables theory. The creep deformations of the left bank abutment slope are obtained, and the changes of principal stresses and deformations of the dam body are analyzed. The long-term stability of the left bank abutment slope is evaluated according to the integral curves of energy dissipation rate in domain and its derivative with respect to time, and the non-equilibrium evolution rules and the characteristic time can also be determined using these curves. Numerical results show that the left bank abutment slope tends to be stable in a global sense, and the stress concentration is released. It is also indicated that more attention should be paid to some weak regions within the slope in the long-term deformation process.

  3. UNEP-IOC-WMO-IUCN meeting of experts on a long-term global monitoring system of coastal and near-shore phenomena related to climate change, pilot projects and mangroves and coral reefs

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This meeting was held to develop strategies for long-term global monitoring of coastal and near-shore phenomena related to climate change, specifically mangroves and coral reefs. The agenda included an overview of the Global Ocean Observing System (GOOS) initiative, modules and pilot phase activities. Action plans for the implementation of long-term monitoring of mangrove and coral reef ecosystems were developed including; potential impacts of climate change and sea level rise on mangroves and coral reefs, consideration of parameters, consideration of methodologies, relationships of proposed activities to relevant national, regional and international developments, consideration of monitoring sites, and future implementation.

  4. Long term energy plan of Mongolian with nuclear power plant using Message code

    Energy Technology Data Exchange (ETDEWEB)

    Tsolmonbaatar, Batmunkh; Roh, Myung Sub [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-10-15

    In this paper, an overview of the current situation of Mongolia's energy sector and its role and contribution in the country's economy and environment, and a comprehensive assessment of the sector, are provided. Most importantly, the Model for Energy Supply Strategy Alternatives and their General Environmental Impacts (MESSAGE) model used to forecast the future energy supply and demand and to build and compare possible scenarios that could sustain economic development, environmental sustainability, and energy security in the country. In this paper, two scenarios for long-term energy development in Mongolia by 2040 were built using the MESSAGE model, and 2010 was set as the base year. The forecasting of the energy demand and supply was shown as a build the first model of Mongolia energy system to forecast the potentials of using NPP technology in the energy mix of Mongolia energy system. The industry and mining project sectors are expected to remain as the main energy consumers in the next decades. The demand of the sector will be three times of the total energy demand by 2040. The development of big mining projects and the increasing number of vehicles in Mongolia are the main factors that will contribute to the increased demand. Coal still accounts for the largest share in Mongolia's total primary energy demand. MESSAGE result shown in fig.2, which shows an exponential increase in coal resources demand in the future. It will be big issue to environmental impact (e.g., CO{sub 2} emission). The estimated CO{sub 2} emissions from fuel combustion are 13.0 million tones in Mongolia, this should be mitigated significantly, to meet the CO{sub 2} reduction target.

  5. The Global Energy Challenge

    DEFF Research Database (Denmark)

    Connolly, David

    2011-01-01

    This report gives a brief overview of the global energy challenge and subsequently outlines how and where renewable energy could be developed to solve these issues. The report does not go into a lot of detail on these issues and hence, it is meant as an overview only. The report begins by outlining...... the causes of global climate change, concluding that energy-related emissions are the primary contributors to the problem. As a result, global energy production is analysed in more detail, discussing how it has evolved over the last 30 years and also, how it is expected to evolve in the coming 30 years....... Afterwards, the security of the world’s energy supply is investigated and it becomes clear that there is both an inevitable shortage of fossil fuels and a dangerous separation of supply and demand. The final topic discussed is renewable energy, since it is one sustainable solution to the global energy...

  6. Long-term effects of climate change on Europe's water resources

    NARCIS (Netherlands)

    Domnisoru, A.

    2006-01-01

    Climate variations from last century show a global warming trend. Evidence from the past reveals that the anthropogenic greenhouse effect caused changes in climate parameters (temperature, precipitation and evaporation) at the European scale as well. On long-term this might have essential impact on

  7. A study on energy security and nuclear energy role

    International Nuclear Information System (INIS)

    Ujita, Hiroshi

    2011-01-01

    Energy security was a major concern for OECD governments in the early 1970s. Since then, successive oil crises, volatility of hydrocarbon prices, as well as terrorist risks and natural disasters, have brought the issue back to the centre stage of policy agendas. Here, an energy security concept has been proposed, which is defined by time frame and space frame as well. Wide-meaning energy security is divided broadly into two categories. One is short-term (∼10 y) energy crisis, which is narrow-meaning energy security. Short-term energy crisis is further divided into contingent crisis, such as energy supply chain (sealane) interruption due to conflict, accident, terrorism, etc., and structural crisis, such as price fluctuations, supply shortage, energy demand increase in Asia, technology development stagnation, etc. The other is long-term (∼100 y) energy crisis and global energy problems, such as fossil fuel exhaustion and global warming. (author)

  8. Long-term economic outlook. Annual review

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    This review provides economic growth forecast tables for Ontario, Canada, the US, Western Europe, and Japan. Economic growth, government policy, the long-term prospects for inflation, interest rates and foreign exchange rates, trends in the Canadian dollar, and energy markets and prices are also reviewed. Data generally cover 1965-2025. Appendices give a summary of historical and forecast data. 18 figs., 16 tabs.

  9. Long range global warming

    International Nuclear Information System (INIS)

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-01-01

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth's steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth's temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic

  10. Measuring Short-term Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Ensuring energy security has been at the centre of the IEA mission since its inception, following the oil crises of the early 1970s. While the security of oil supplies remains important, contemporary energy security policies must address all energy sources and cover a comprehensive range of natural, economic and political risks that affect energy sources, infrastructures and services. In response to this challenge, the IEA is currently developing a Model Of Short-term Energy Security (MOSES) to evaluate the energy security risks and resilience capacities of its member countries. The current version of MOSES covers short-term security of supply for primary energy sources and secondary fuels among IEA countries. It also lays the foundation for analysis of vulnerabilities of electricity and end-use energy sectors. MOSES contains a novel approach to analysing energy security, which can be used to identify energy security priorities, as a starting point for national energy security assessments and to track the evolution of a country's energy security profile. By grouping together countries with similar 'energy security profiles', MOSES depicts the energy security landscape of IEA countries. By extending the MOSES methodology to electricity security and energy services in the future, the IEA aims to develop a comprehensive policy-relevant perspective on global energy security. This Brochure provides and overview of the analysis and results. Readers interested in an in-depth discussion of methodology are referred to the MOSES Working Paper.

  11. SHORT-TERM AND LONG-TERM WATER LEVEL PREDICTION AT ONE RIVER MEASUREMENT LOCATION

    Directory of Open Access Journals (Sweden)

    Rudolf Scitovski

    2012-12-01

    Full Text Available Global hydrological cycles mainly depend on climate changes whose occurrence is predominantly triggered by solar and terrestrial influence, and the knowledge of the high water regime is widely applied in hydrology. Regular monitoring and studying of river water level behavior is important from several perspectives. On the basis of the given data, by using modifications of general approaches known from literature, especially from investigation in hydrology, the problem of long- and short-term water level forecast at one river measurement location is considered in the paper. Long-term forecasting is considered as the problem of investigating the periodicity of water level behavior by using linear-trigonometric regression and short-term forecasting is based on the modification of the nearest neighbor method. The proposed methods are tested on data referring to the Drava River level by Donji Miholjac, Croatia, in the period between the beginning of 1900 and the end of 2012.

  12. Determinants of the Pace of Global Innovation in Energy Technologies

    Science.gov (United States)

    Kaur, Jasleen

    2013-01-01

    Understanding the factors driving innovation in energy technologies is of critical importance to mitigating climate change and addressing other energy-related global challenges. Low levels of innovation, measured in terms of energy patent filings, were noted in the 1980s and 90s as an issue of concern and were attributed to limited investment in public and private research and development (R&D). Here we build a comprehensive global database of energy patents covering the period 1970–2009, which is unique in its temporal and geographical scope. Analysis of the data reveals a recent, marked departure from historical trends. A sharp increase in rates of patenting has occurred over the last decade, particularly in renewable technologies, despite continued low levels of R&D funding. To solve the puzzle of fast innovation despite modest R&D increases, we develop a model that explains the nonlinear response observed in the empirical data of technological innovation to various types of investment. The model reveals a regular relationship between patents, R&D funding, and growing markets across technologies, and accurately predicts patenting rates at different stages of technological maturity and market development. We show quantitatively how growing markets have formed a vital complement to public R&D in driving innovative activity. These two forms of investment have each leveraged the effect of the other in driving patenting trends over long periods of time. PMID:24155867

  13. Methodology of long term behaviour study of containment materials

    International Nuclear Information System (INIS)

    Vernaz, E.; Godon, N.

    1994-01-01

    Here is the presentation of the papers shown in the colloquium on environment and ceramics; the Atomic Energy Commissariat (Cea) have been working for fifteen years on the long term behaviour of fission products glasses on very long periods, about several millions years. The method of studies is detailed. 2 refs

  14. Long-term surveillance plan for the Lowman, Idaho, disposal site

    International Nuclear Information System (INIS)

    1993-09-01

    The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992)

  15. Long-term climatic change and sustainable ground water resources management

    International Nuclear Information System (INIS)

    Loaiciga, Hugo A

    2009-01-01

    Atmospheric concentrations of greenhouse gases (GHGs), prominently carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), and halocarbons, have risen from fossil-fuel combustion, deforestation, agriculture, and industry. There is currently heated national and international debate about the consequences of such increasing concentrations of GHGs on the Earth's climate, and, ultimately, on life and society in the world as we know it. This paper reviews (i) long-term patterns of climate change, secular climatic variability, and predicted population growth and their relation to water resources management, and, specifically, to ground water resources management, (ii) means available for mitigating and adapting to trends of climatic change and climatic variability and their impacts on ground water resources. Long-term (that is, over hundreds of millions of years), global-scale, climatic fluctuations are compared with more recent (in the Holocene) patterns of the global and regional climates to shed light on the meaning of rising mean surface temperature over the last century or so, especially in regions whose historical hydroclimatic records exhibit large inter-annual variability. One example of regional ground water resources response to global warming and population growth is presented.

  16. [Long-term psychiatric hospitalizations].

    Science.gov (United States)

    Plancke, L; Amariei, A

    2017-02-01

    Long-term hospitalizations in psychiatry raise the question of desocialisation of the patients and the inherent costs. Individual indicators were extracted from a medical administrative database containing full-time psychiatric hospitalizations for the period 2011-2013 of people over 16 years old living in the French region of Nord-Pas-de-Calais. We calculated the proportion of people who had experienced a hospitalization with a duration of 292 days or more during the study period. A bivariate analysis was conducted, then ecological data (level of health-care offer, the deprivation index and the size of the municipalities of residence) were included into a multilevel regression model in order to identify the factors significantly related to variability of long-term hospitalization rates. Among hospitalized individuals in psychiatry, 2.6% had had at least one hospitalization of 292 days or more during the observation period; the number of days in long-term hospitalization represented 22.5% of the total of days of full-time hospitalization in psychiatry. The bivariate analysis revealed that seniority in the psychiatric system was strongly correlated with long hospitalization rates. In the multivariate analysis, the individual indicators the most related to an increased risk of long-term hospitalization were: total lack of autonomy (OR=9.0; 95% CI: 6.7-12.2; P<001); diagnoses of psychological development disorders (OR=9.7; CI95%: 4.5-20.6; P<.001); mental retardation (OR=4.5; CI95%: 2.5-8.2; P<.001): schizophrenia (OR=3.0; CI95%: 1.7-5.2; P<.001); compulsory hospitalization (OR=1.7; CI95%: 1.4-2.1; P<.001); having experienced therapeutic isolation (OR=1.8; CI95%: 1.5-2.1; P<.001). Variations of long-term hospitalization rates depending on the type of establishment were very high, but the density of hospital beds or intensity of ambulatory activity services were not significantly linked to long-term hospitalization. The inhabitants of small urban units had

  17. How long-term dynamics of sediment subduction controls short-term dynamics of seismicity

    Science.gov (United States)

    Brizzi, S.; van Zelst, I.; van Dinther, Y.; Funiciello, F.; Corbi, F.

    2017-12-01

    Most of the world's greatest earthquakes occur along the subduction megathrust. Weak and porous sediments have been suggested to homogenize the plate interface and thereby promote lateral rupture propagation and great earthquakes. However, the importance of sediment thickness, let alone their physical role, is not yet unequivocally established. Based on a multivariate statistical analysis of a global database of 62 subduction segments, we confirm that sediment thickness is one of the key parameters controlling the maximum magnitude a megathrust can generate. Moreover, Monte Carlo simulations highlighted that the occurrence of great earthquakes on sediment-rich subduction segments is very unlikely (p-value≪0.05) related to pure chance. To understand how sediments in the subduction channel regulate earthquake size, this study extends and demystifies multivariate, spatiotemporally limited data through numerical modeling. We use the 2D Seismo-Thermo-Mechanical modeling approach to simulate both the long- and short-term dynamics of subduction and related seismogenesis (van Dinther et al., JGR, 2013). These models solve for the conservation of mass, momentum and energy using a visco-elasto-plastic rheology with rate-dependent friction. Results show that subducted sediments have a strong influence on the long-term evolution of the convergent margin. Increasing the sediment thickness on the incoming plate from 0 to 6 km causes a decrease of slab dip from 23° to 10°. This, in addition to increased radiogenic heating, extends isotherms, thereby widening the seismogenic portion of the megathrust from 80 to 150 km. Consequently, over tens of thousands of years, we observe that the maximum moment magnitude of megathrust earthquakes increases from 8.2 to 9.2 for these shallower and warmer interfaces. In addition, we observe more and larger splay faults, which could enhance vertical seafloor displacements. These results highlight the primary role of subducted sediments in

  18. Locked into Copenhagen pledges - Implications of short-term emission targets for the cost and feasibility of long-term climate goals

    NARCIS (Netherlands)

    Riahi, Keywan; Kriegler, Elmar; Johnson, Nils; Bertram, Christoph; den Elzen, Michel; Eom, Jiyong; Schaeffer, Michiel; Edmonds, Jae; Isaac, Morna; Krey, Volker; Longden, Thomas; Luderer, Gunnar; Méjean, Aurélie; McCollum, David L.; Mima, Silvana; Turton, Hal; van Vuuren, Detlef P.; Wada, Kenichi; Bosetti, Valentina; Capros, Pantelis; Criqui, Patrick; Hamdi-Cherif, Meriem; Kainuma, Mikiko; Edenhofer, Ottmar

    2015-01-01

    This paper provides an overview of the AMPERE modeling comparison project with focus on the implications of near-term policies for the costs and attainability of long-term climate objectives. Nine modeling teams participated in the project to explore the consequences of global emissions following

  19. Long-term potentiation and long-term depression: a clinical perspective

    Directory of Open Access Journals (Sweden)

    Timothy V.P. Bliss

    2011-01-01

    Full Text Available Long-term potentiation and long-term depression are enduring changes in synaptic strength, induced by specific patterns of synaptic activity, that have received much attention as cellular models of information storage in the central nervous system. Work in a number of brain regions, from the spinal cord to the cerebral cortex, and in many animal species, ranging from invertebrates to humans, has demonstrated a reliable capacity for chemical synapses to undergo lasting changes in efficacy in response to a variety of induction protocols. In addition to their physiological relevance, long-term potentiation and depression may have important clinical applications. A growing insight into the molecular mechanisms underlying these processes, and technological advances in non-invasive manipulation of brain activity, now puts us at the threshold of harnessing long-term potentiation and depression and other forms of synaptic, cellular and circuit plasticity to manipulate synaptic strength in the human nervous system. Drugs may be used to erase or treat pathological synaptic states and non-invasive stimulation devices may be used to artificially induce synaptic plasticity to ameliorate conditions arising from disrupted synaptic drive. These approaches hold promise for the treatment of a variety of neurological conditions, including neuropathic pain, epilepsy, depression, amblyopia, tinnitus and stroke.

  20. Global warming, energy use, and economic growth

    Science.gov (United States)

    Khanna, Neha

    The dissertation comprises four papers that explore the interactions between global warming, energy use, and economic growth. While the papers are separate entities, they share the underlying theme of highlighting national differences in the growth experience and their implications for long-term energy use and climate change. The first paper provides an overview of some key economic issues in the climate change literature. In doing so, the paper critically appraises the 1995 draft report of Working Group III of the Intergovernmental Panel on Climate Change. The focus is the choice of a pure rate of time preference in the economic modeling of climate change, abatement costs differentials between developed and developing countries, and contrasting implications of standard discount rates and value of life estimates for these two country groups. The second paper develops a global model that takes account of the depletion of oil resources in the context of a geo-economic model for climate change. It is found that in the presence of non-decreasing carbon and energy intensities and declining petroleum availability, the carbon emissions trajectory is much higher than that typically projected by other models of this genre. Furthermore, by introducing price and income sensitive demand functions for fossil fuels, the model provides a framework to assess the effectiveness of fuel specific carbon taxes in reducing the COsb2 emissions trajectory. Cross-price substitution effects necessitate unrealistically high tax rates in order to lower the projected emissions trajectory to the optimal level. The economic structure of five integrated assessment models for climate change is reviewed in the third paper, with a special focus on the macroeconomic and damage assessment modules. The final paper undertakes an econometric estimation of the changing shares of capital, labour, energy, and technical change in explaining the growth patterns of 38 countries. Production elasticities vary by

  1. Long Term Monitoring of Atmospheric Composition at NOAA - Driving Science with 60 Year-old Records

    Science.gov (United States)

    Butler, J. H.

    2017-12-01

    NOAA's Global Monitoring Division and its precursor organizations have provided some of the longest real-time records of the trends and distributions of climatically relevant substances in the atmosphere, some going back for 60 years (http://www.esrl.noaa.gov/gmd). The focus of these measurements has been on obtaining reliable records of global trends and distributions of these substances, but the experimental design and use of measurements have advanced over time with evolving scientific questions. Today, and into this century, scientific questions continue to progress and the observing systems that address them will need to progress accordingly. Long-term, ground based observing systems in NOAA's Global Monitoring Division focus largely on three sets of questions, two of which align with WCRP grand challenges. These are Carbon Cycle System Feedbacks, Trends in Surface Radiation and Cloud Distributions, and Recovery of Stratospheric Ozone. The data collected and analyzed help us understand radiative forcing, climate sensitivity, air quality, climate modification, renewable energy options, and arctic processes, and they are useful for verifying model output and satellite retrievals. Regional information will become increasingly important for mitigating and adapting to climate change, and this information must be accurate, precise, and without bias. NOAA, with its long-standing networks and its role in providing calibrations for partnering organizations, is well positioned to provide the linkages necessary to assure that regional measurements are comparable. This presentation will identify major, climate-relevant findings that have come from NOAA's networks in the past and will address the long-term monitoring needs to support decision-making over coming decades as society begins to seriously address climate change.

  2. Long-term surveillance plan for the Gunnison, Colorado disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  3. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  4. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-05-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

  5. Long-term surveillance plan for the South Clive disposal site Clive, Utah

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. This LSTP describes the long-term surveillance program the DOE will implement to ensure the South Clive disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  6. Study on fusion energy conformity with global environmental issues

    International Nuclear Information System (INIS)

    Kurihara, Kenichi

    1998-01-01

    Global environmental conformity has been one of the most important issues discussed recently as being required for all human activities. From this point of view, this report investigates whether nuclear fusion can be a benign energy source for the global environment. First of all, we chose the following global environmental problems: (1) Global warming, (2) Acid rain, (3) Ozonosphere destruction, (4) Air pollution, (5) Environmental hormones, (6) Radiation and radioactive materials, (7) Electromagnetic waves, and (8) Heat drainage from an energy source. Secondly, these problems were fully surveyed in terms of their relationships with proposed nuclear fusion power plant. Finally, as a result of this discussion, it was confirmed that a fusion power plant would not produce any new problems, but would partially contribute to solving some of the environmental problems. (author)

  7. A Global Assessment of the Chemical Recalcitrance of Seagrass Tissues: Implications for Long-Term Carbon Sequestration

    Directory of Open Access Journals (Sweden)

    Stacey M. Trevathan-Tackett

    2017-06-01

    Full Text Available Seagrass ecosystems have recently been identified for their role in climate change mitigation due to their globally-significant carbon sinks; yet, the capacity of seagrasses to sequester carbon has been shown to vary greatly among seagrass ecosystems. The recalcitrant nature of seagrass tissues, or the resistance to degradation back into carbon dioxide, is one aspect thought to influence sediment carbon stocks. In this study, a global survey investigated how the macromolecular chemistry of seagrass leaves, sheaths/stems, rhizomes and roots varied across 23 species from 16 countries. The goal was to understand how this seagrass chemistry might influence the capacity of seagrasses to contribute to sediment carbon stocks. Three non-destructive analytical chemical analyses were used to investigate seagrass chemistry: thermogravimetric analysis (TGA and solid state 13C-NMR and infrared spectroscopy. A strong latitudinal influence on carbon quality was found, whereby temperate seagrasses contained 5% relatively more labile carbon, and tropical seagrasses contained 3% relatively more refractory carbon. Sheath/stem tissues significantly varied across taxa, with larger morphologies typically containing more refractory carbon than smaller morphologies. Rhizomes were characterized by a higher proportion of labile carbon (16% of total organic matter compared to 8–10% in other tissues; however, high rhizome biomass production and slower remineralization in anoxic sediments will likely enhance these below-ground tissues' contributions to long-term carbon stocks. Our study provides a standardized and global dataset on seagrass carbon quality across tissue types, taxa and geography that can be incorporated in carbon sequestration and storage models as well as ecosystem valuation and management strategies.

  8. Sustainable Mobility: Using a Global Energy Model to Inform Vehicle Technology Choices in a Decarbonized Economy

    Directory of Open Access Journals (Sweden)

    Timothy Wallington

    2013-04-01

    Full Text Available The reduction of CO2 emissions associated with vehicle use is an important element of a global transition to sustainable mobility and is a major long-term challenge for society. Vehicle and fuel technologies are part of a global energy system, and assessing the impact of the availability of clean energy technologies and advanced vehicle technologies on sustainable mobility is a complex task. The global energy transition (GET model accounts for interactions between the different energy sectors, and we illustrate its use to inform vehicle technology choices in a decarbonizing economy. The aim of this study is to assess how uncertainties in future vehicle technology cost, as well as how developments in other energy sectors, affect cost-effective fuel and vehicle technology choices. Given the uncertainties in future costs and efficiencies for light-duty vehicle and fuel technologies, there is no clear fuel/vehicle technology winner that can be discerned at the present time. We conclude that a portfolio approach with research and development of multiple fuel and vehicle technology pathways is the best way forward to achieve the desired result of affordable and sustainable personal mobility. The practical ramifications of this analysis are illustrated in the portfolio approach to providing sustainable mobility adopted by the Ford Motor Company.

  9. Potential global climate change

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Global economic integration and growth contribute much to the construction of energy plants, vehicles and other industrial products that produces carbon emission and in effect cause the destruction of the environment. A coordinated policy and response worldwide to curb emissions and to effect global climate change must be introduced. Improvement in scientific understanding is required to monitor how much emission reduction is necessary. In the near term, especially in the next seven years, sustained research and development for low carbon or carbon-free energy is necessary. Other measures must also be introduced, such as limiting the use of vehicles, closing down inefficient power plants, etc. In the long term, the use of the electric car, use solar energy, etc. is required. Reforestation must also be considered to absorb large amounts of carbon in the atmosphere

  10. Long-Term Surveillance and Maintenance Plan for the U.S. Department of Energy Amchitka, Alaska, Site

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-01

    This Long-Term Surveillance and Maintenance Plan describes how the U.S. Department of Energy (DOE) intends to fulfill its mission to maintain protection of human health and the environment at the Amchitka, Alaska, Site1. Three underground nuclear tests were conducted on Amchitka Island. The U.S. Department of Defense, in conjunction with the U.S. Atomic Energy Commission (AEC), conducted the first nuclear test (Long Shot) to provide data that would improve the United States' capability of detecting underground nuclear explosions. The second nuclear test (Milrow) was a weapons-related test conducted by AEC as a means to study the feasibility of detonating a much larger device. The final nuclear test (Cannikin), the largest United States underground test, was a weapons-related test. Surface disturbances associated with these tests have been remediated. However, radioactivity remains deep below the surface, contained in and around the test cavities, for which no feasible remediation technology has been identified. In 2006, the groundwater model (Hassan et al. 2002) was updated using 2005 data collected by the Consortium for Risk Evaluation with Stakeholder Participation. Model simulation results indicate there is no breakthrough or seepage of radionuclides into the marine environment within 2,000 years. The Amchitka conceptual model is reasonable; the flow and transport simulation is based on the best available information and data. The simulation results are a quantitative prediction supported by the best available science and technology. This Long-Term Surveillance and Maintenance Plan is an additional step intended for the protection of human health and the environment. This plan may be modified from time to time in the future consistent with the mission to protect human health

  11. Gap filling strategies for long term energy flux data sets

    NARCIS (Netherlands)

    Falge, E.; Baldocchi, D.; Olson, R.; Anthoni, P.; Aubinet, M.; Bernhofer, C.; Burba, G.; Ceulemans, R.; Clement, R.; Dolman, H.; Granier, A.; Gross, P.; Grünwald, T.; Hollinger, D.; Jensen, N.O.; Katul, G.; Keronen, P.; Kowalski, A.; Lai, C.T.; Law, B.E.; Meyers, T.; Moncrieff, J.; Moors, E.J.; Munger, J.W.; Pilegaard, K.; Rebmann, C.; Suyker, A.; Tenhunen, J.; Tu, K.

    2001-01-01

    At present a network of over 100 field sites are measuring carbon dioxide, water vapor and sensible heat fluxes between the biosphere and atmosphere, on a nearly continuous basis. Gaps in the long term measurements of evaporation and sensible heat flux must be filled before these data can be used

  12. Long-term uranium supply-demand analyses

    International Nuclear Information System (INIS)

    1986-12-01

    It is the intention of this study to investigate the long-term uranium supply demand situation using a number of supply and demand related assumptions. For supply, these assumptions as used in the Resources and Production Projection (RAPP) model include country economic development status, and consequent lead times for exploration and development, uranium development status, country infrastructure, and uranium resources including the Reasonably Assured (RAR), Estimated Additional, Categories I and II, (EAR-I and II) and Speculative Resource categories. The demand assumptions were based on the ''pure'' reactor strategies developed by the NEA Working Party on Nuclear Fuel Cycle Requirements for the 1986 OECD (NEA)/IAEA reports ''Nuclear Energy and its Fuel Cycle: Prospects to 2025''. In addition for this study, a mixed strategy case was computed using the averages of the Plutonium (Pu) burning LWR high, and the improved LWR low cases. It is understandable that such a long-term analysis cannot present hard facts, but it can show which variables may in fact influence the long-term supply-demand situation. It is hoped that results of this study will provide valuable information for planners in the uranium supply and demand fields. Periodical re-analyses with updated data bases will be needed from time to time

  13. Nuclear energy development in the 21st century: Global scenarios and regional trends

    International Nuclear Information System (INIS)

    2010-01-01

    The International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO) was launched in 2000, on the basis of a resolution of the IAEA General Conference (GC(44)/RES/21). INPRO helps ensure that sustainable nuclear energy is available in the twenty-first century and seeks to bring together all interested Member States - both technology holders and technology users - to consider joint actions to achieve desired innovations. As of July 2010, 30 countries and the European Commission are members of INPRO. Programme Area B of INPRO, Global Vision - Scenarios and Pathways to Sustainable Nuclear Power Development, is aimed at providing a better understanding of the role of nuclear energy in the context of long term sustainable development. Its objective is to develop global and regional nuclear energy scenarios on the basis of a scientific-technical pathway analysis that lead to a global vision on sustainable nuclear energy development in the twenty-first century, and to support Member States in working towards that vision. This report presents the results of a study undertaken under Programme Area B in INPRO on Nuclear Energy Development in the Twenty-first Century: Global Scenarios and Regional Trends Studies on Nuclear Capacity Growth and Material Flow between Regions. The report does not develop a global vision for nuclear deployment per se, but presents a limited set of technical scenarios of nuclear deployment and considers their implications. It considers a global energy supply system composed of several reactor and fuel cycle types available today and of fast reactors that may be developed in the future to illustrate a possible modelling approach to identify the potential role of interregional transfer of nuclear fuel resources in supporting the global growth of nuclear energy. The study was performed with the participation of sixteen experts from nine INPRO Member States and included a dynamic simulation of material flows in nuclear energy systems using

  14. Long-Term Symbolic Learning

    National Research Council Canada - National Science Library

    Kennedy, William G; Trafton, J. G

    2007-01-01

    What are the characteristics of long-term learning? We investigated the characteristics of long-term, symbolic learning using the Soar and ACT-R cognitive architectures running cognitive models of two simple tasks...

  15. The Fukushima Nuclear Accident and a Long-Term Energy Vision for Japan

    International Nuclear Information System (INIS)

    Yuhara, Tetsuo

    2012-04-01

    Ifri and the Canon Institute for Global Studies are launching a series of policy papers presenting the analyses of senior Japanese researchers on how the triple disasters that hit the archipelago last March have impacted Japan's economic, environmental and energy policies as well as country's crisis management system. This paper presents the author's opinion regarding the media coverage of the Fukushima accident and the consequences of this serious accident for the Japanese energy policy

  16. Long-term decline of the Amazon carbon sink.

    Science.gov (United States)

    Brienen, R J W; Phillips, O L; Feldpausch, T R; Gloor, E; Baker, T R; Lloyd, J; Lopez-Gonzalez, G; Monteagudo-Mendoza, A; Malhi, Y; Lewis, S L; Vásquez Martinez, R; Alexiades, M; Álvarez Dávila, E; Alvarez-Loayza, P; Andrade, A; Aragão, L E O C; Araujo-Murakami, A; Arets, E J M M; Arroyo, L; Aymard C, G A; Bánki, O S; Baraloto, C; Barroso, J; Bonal, D; Boot, R G A; Camargo, J L C; Castilho, C V; Chama, V; Chao, K J; Chave, J; Comiskey, J A; Cornejo Valverde, F; da Costa, L; de Oliveira, E A; Di Fiore, A; Erwin, T L; Fauset, S; Forsthofer, M; Galbraith, D R; Grahame, E S; Groot, N; Hérault, B; Higuchi, N; Honorio Coronado, E N; Keeling, H; Killeen, T J; Laurance, W F; Laurance, S; Licona, J; Magnussen, W E; Marimon, B S; Marimon-Junior, B H; Mendoza, C; Neill, D A; Nogueira, E M; Núñez, P; Pallqui Camacho, N C; Parada, A; Pardo-Molina, G; Peacock, J; Peña-Claros, M; Pickavance, G C; Pitman, N C A; Poorter, L; Prieto, A; Quesada, C A; Ramírez, F; Ramírez-Angulo, H; Restrepo, Z; Roopsind, A; Rudas, A; Salomão, R P; Schwarz, M; Silva, N; Silva-Espejo, J E; Silveira, M; Stropp, J; Talbot, J; ter Steege, H; Teran-Aguilar, J; Terborgh, J; Thomas-Caesar, R; Toledo, M; Torello-Raventos, M; Umetsu, R K; van der Heijden, G M F; van der Hout, P; Guimarães Vieira, I C; Vieira, S A; Vilanova, E; Vos, V A; Zagt, R J

    2015-03-19

    Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.

  17. Pediatric polytrauma : Short-term and long-term outcomes

    NARCIS (Netherlands)

    vanderSluis, CK; Kingma, J; Eisma, WH; tenDuis, HJ

    Objective: To assess the short-term and long-term outcomes of pediatric polytrauma patients and to analyze the extent to which short-term outcomes can predict long-term outcomes. Materials and Methods: Ail pediatric polytrauma patients (Injury Severity Score of greater than or equal to 16, less than

  18. Excavation-drier method of energy-peat extraction reduces long-term climatic impact

    Energy Technology Data Exchange (ETDEWEB)

    Silvan, N.; Silvan, K.; Laine, J. [Finnish Forest Research Inst., Parkano (Finland)], e-mail: niko.silvan@metla.fi; Vaisanen, S.; Soukka, R. [Lappeenranta Univ.of Techology (Finland)

    2012-11-01

    Climatic impacts of energy-peat extraction are of increasing concern due to EU emissions trading requirements. A new excavation-drier peat extraction method has been developed to reduce the climatic impact and increase the efficiency of peat extraction. To quantify and compare the soil GHG fluxes of the excavation drier and the traditional milling methods, as well as the areas from which the energy peat is planned to be extracted in the future (extraction reserve area types), soil CO{sub 2}, CH{sub 4} and N{sub 2}O fluxes were measured during 2006-2007 at three sites in Finland. Within each site, fluxes were measured from drained extraction reserve areas, extraction fields and stockpiles of both methods and additionally from the biomass driers of the excavation-drier method. The Life Cycle Assessment (LCA), described at a principal level in ISO Standards 14040:2006 and 14044:2006, was used to assess the long-term (100 years) climatic impact from peatland utilisation with respect to land use and energy production chains where utilisation of coal was replaced with peat. Coal was used as a reference since in many cases peat and coal can replace each other in same power plants. According to this study, the peat extraction method used was of lesser significance than the extraction reserve area type in regards to the climatic impact. However, the excavation-drier method seems to cause a slightly reduced climatic impact as compared with the prevailing milling method. (orig.)

  19. The hydrogen energy economy: its long-term role in greenhouse gas reduction

    Energy Technology Data Exchange (ETDEWEB)

    Geoff Dutton; Abigail Bristow; Matthew Page; Charlotte Kelly; Jim Watson; Alison Tetteh [CCLRC Rutherford Appleton Laboratory, Didcot (United Kingdom). Energy Research Unit (ERU)

    2005-01-15

    The potential contribution and viability of the hydrogen energy economy towards reducing UK carbon dioxide emissions in the time horizon to 2050 has been assessed using a quantitative model of the UK energy system in the context of a set of diverse socio-economic scenarios. It is argued that different sets of prevailing circumstances are likely to result in very different opportunities for hydrogen and hence very different transition pathways and ultimate penetration levels. The decision on whether to strategically encourage a transition to the hydrogen economy and the ultimate environmental benefits of such a transformation will depend on the outcome of a number of important political and social decisions. These include the acceptability of large scale carbon dioxide sequestration (hydrogen derived from fossil fuels), decisions about land-use (hydrogen from biomass), a possible doubling (or more) of the current electricity production capacity with a high penetration of renewable electricity (hydrogen from electrolysis of water), and/or the public acceptability of a large scale nuclear renaissance (hydrogen from electrolysis of water or from thermo-chemical cycles). Any rapid transition to a fully developed hydrogen economy would require a contribution from at least some and possibly all of these sources. Such a transition could result in a marked decrease in carbon dioxide emissions over the long term, but might even result in increased emissions within the shorter term (due to the initial use of hydrogen derived from fossil fuels without carbon dioxide sequestration or from the bulk grid electricity supply resulting in increased load factors and lifetimes of old fossil-fired power plant to meet the increased overall demand). 47 refs., 45 figs., 19 tabs., 3 apps.

  20. International Long-term Data and Analysis Preservation

    CERN Document Server

    Shiers, J; Rahal, G; South, D; Guelzow, V; CERN. Geneva. IT Department

    2011-01-01

    The preservation of scientific data for long-term use and re-analysis has been identified as a key requirement in the field of High Energy Physics and other disciplines such as Astronomy and Astrophysics, as well as Life and Earth Sciences. In collaboration with related projects in the US (in particular in close collaboration with the National Science Foundation and Department of Energy) the proposed project would take the work of the Data Preservation in HEP Study group that defines the physics motivation for long-term data preservation and many of the associated issues, and extend this to cover not only the existing use cases but also consider the needs of the LHC experiments at CERN. This work would ensure the persistent availability of existing data and enable it to be shared between organisations and across national boundaries. Now is the time to define standards for data and meta-data formats and address access and authorization issues for on-going experiments (e.g. those at the LHC) – issues that hav...

  1. The role of bioenergy in the UK's energy future formulation and modelling of long-term UK bioenergy scenarios

    International Nuclear Information System (INIS)

    Jablonski, Sophie; Bauen, Ausilio; Strachan, Neil; Brand, Christian

    2010-01-01

    This paper explores the prospects and policy implications for bioenergy to contribute to a long-term sustainable UK energy system. The UK MARKAL technology-focused energy systems dynamic cost optimisation model - which has been used to quantify the costs and benefits of alternative energy strategies in UK policy making - is enhanced with detailed representation of bio-energy chains and end-uses. This provides an important advance in linking bioenergy expert-knowledge with a whole system modelling approach, in order to better understand the potential role of bioenergy in an evolving energy system. The new BIOSYS-MARKAL model is used to run four scenarios constructed along the pillars of UK energy policy objectives (low carbon and energy security). The results are analysed in terms of bioenergy resources use and bioenergy pathways penetration in different end use sectors. The main findings suggest that the complexity of different bioenergy pathways may have been overlooked in previous modelling exercises. A range of bioenergy pathways - notably bio-heat and biofuels for transport - may have a much wider potential role to play. The extent to which this potential is fulfilled will be further determined by resources availability, and market segment constraints, as well as policy measures to improve deployment. (author)

  2. Evaluation of the long-term power generation mix: The case study of South Korea's energy policy

    International Nuclear Information System (INIS)

    Min, Daiki; Chung, Jaewoo

    2013-01-01

    This paper presents a practical portfolio model for the long-term power generation mix problem. The proposed model optimizes the power generation mix by striking a trade-off between the expected cost of power generation and its variability. We use Monte Carlo simulation techniques to consider the uncertainty associated with future electricity demand, fuel prices and their correlations, and the capital costs of power plants. Unlike in the case of conventional power generation mix models, we employ CVaR (Conditional Value-at-Risk) in designing variability to consider events that are rare but enormously expensive. A comprehensive analysis on South Korea's generation policy using the portfolio model shows that a large annual cost is additionally charged to substitute a portion of nuclear energy with other alternatives. Nonetheless, if Korea has to reduce its dependency on nuclear energy because of undermined social receptivity from the Fukushima disaster, it turns out that LNG or coal could be a secure candidate from an economic perspective. - Author-Highlights: • We develop a stochastic optimization model for long-term power generation mix. • Monte Carlo sampling method and scenario trees are used to solve the model. • The model is verified using the data provided by Korean government. • We evaluate Korea's existing nuclear expansion policy. • We analyze the cost of replacing nuclear energy with others in South Korea

  3. The long-run forecasting of energy prices using the model of shifting trend

    International Nuclear Information System (INIS)

    Radchenko, Stanislav

    2005-01-01

    Developing models for accurate long-term energy price forecasting is an important problem because these forecasts should be useful in determining both supply and demand of energy. On the supply side, long-term forecasts determine investment decisions of energy-related companies. On the demand side, investments in physical capital and durable goods depend on price forecasts of a particular energy type. Forecasting long-run rend movements in energy prices is very important on the macroeconomic level for several developing countries because energy prices have large impacts on their real output, the balance of payments, fiscal policy, etc. Pindyck (1999) argues that the dynamics of real energy prices is mean-reverting to trend lines with slopes and levels that are shifting unpredictably over time. The hypothesis of shifting long-term trend lines was statistically tested by Benard et al. (2004). The authors find statistically significant instabilities for coal and natural gas prices. I continue the research of energy prices in the framework of continuously shifting levels and slopes of trend lines started by Pindyck (1999). The examined model offers both parsimonious approach and perspective on the developments in energy markets. Using the model of depletable resource production, Pindyck (1999) argued that the forecast of energy prices in the model is based on the long-run total marginal cost. Because the model of a shifting trend is based on the competitive behavior, one may examine deviations of oil producers from the competitive behavior by studying the difference between actual prices and long-term forecasts. To construct the long-run forecasts (10-year-ahead and 15-year-ahead) of energy prices, I modify the univariate shifting trends model of Pindyck (1999). I relax some assumptions on model parameters, the assumption of white noise error term, and propose a new Bayesian approach utilizing a Gibbs sampling algorithm to estimate the model with autocorrelation. To

  4. Energy for sustainable development in Malaysia: Energy policy and alternative energy

    International Nuclear Information System (INIS)

    Rahman Mohamed, Abdul; Lee, Keat Teong

    2006-01-01

    Energy is often known as the catalyst for development. Globally, the per capita consumption of energy is often used as a barometer to measure the level of economic development in a particular country. Realizing the importance of energy as a vital component in economic and social development, the government of Malaysia has been continuously reviewing its energy policy to ensure long-term reliability and security of energy supply. Concentrated efforts are being undertaken to ensure the sustainability of energy resources, both depletable and renewable. The aim of this paper is to describe the various energy policies adopted in Malaysia to ensure long-term reliability and security of energy supply. The role of both, non-renewable and renewable sources of energy in the current Five-Fuel Diversification Strategy energy mix will also be discussed. Apart from that, this paper will also describe the various alternative energy and the implementation of energy efficiency program in Malaysia

  5. Global energy supply the day before yesterday, the day after tomorrow, today, tomorrow - a qualitative modeling approach

    International Nuclear Information System (INIS)

    Herrmann, D.

    2004-01-01

    Current developments, and peak world market price levels, of oil, which add to the prices also of natural gas and other energy resources, give rise to the question whether there is any reason to expect fundamental changes and trend reversals in energy prices and on energy markets on a medium to long term basis. Attempts to find answers to such questions about the future can be helped by looking back into the more than three hundred years of global history of the development of modern industrial-sale power supply. Over that period of time, there have always been changes of boundary conditions and reversals of trends, respectively; step by step, by trial and error, a structural change has evolved from the use mainly of renewable energy resources to the primary use of fossil fuels supplemented by nuclear power. A model is presented which is able not only to describe and explain in a consistent and plausible way the global qualitative development of industrial-scale energy supply over the three different development periods, as far as contents go, between 1700 and 2100, but also allows higher resolution to be achieved in terms both of contents and time. The modeling approach is applied to the entire era of energy supply on an industrial scale, and should be seen as a representation of the specific perspective in this approach for further discussion. (orig.)

  6. Long-term monitoring of blazars - the DWARF network

    Science.gov (United States)

    Backes, Michael; Biland, Adrian; Boller, Andrea; Braun, Isabel; Bretz, Thomas; Commichau, Sebastian; Commichau, Volker; Dorner, Daniela; von Gunten, Hanspeter; Gendotti, Adamo; Grimm, Oliver; Hildebrand, Dorothée; Horisberger, Urs; Krähenbühl, Thomas; Kranich, Daniel; Lustermann, Werner; Mannheim, Karl; Neise, Dominik; Pauss, Felicitas; Renker, Dieter; Rhode, Wolfgang; Rissi, Michael; Rollke, Sebastian; Röser, Ulf; Stark, Luisa Sabrina; Stucki, Jean-Pierre; Viertel, Gert; Vogler, Patrick; Weitzel, Quirin

    The variability of the very high energy (VHE) emission from blazars seems to be connected with the feeding and propagation of relativistic jets and with their origin in supermassive black hole binaries. The key to understanding their properties is measuring well-sampled gamma-ray lightcurves, revealing the typical source behavior unbiased by prior knowledge from other wavebands. Using ground-based gamma-ray observatories with exposures limited by dark-time, a global network of several telescopes is needed to carry out fulltime measurements. Obviously, such observations are time-consuming and, therefore, cannot be carried out with the present state of the art instruments. The DWARF telescope on the Canary Island of La Palma is dedicated to monitoring observations. It is currently being set up, employing a costefficient and robotic design. Part of this project is the future construction of a distributed network of small telescopes. The physical motivation of VHE long-term monitoring will be outlined in detail and the perspective for a network for 24/7 observations will be presented.

  7. Benchmarks of Global Clean Energy Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Chung, Donald [National Renewable Energy Lab. (NREL), Golden, CO (United States); Keyser, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Mann, Margaret [National Renewable Energy Lab. (NREL), Golden, CO (United States); Engel-Cox, Jill [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The Clean Energy Manufacturing Analysis Center (CEMAC), sponsored by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE), provides objective analysis and up-to-date data on global supply chains and manufacturing of clean energy technologies. Benchmarks of Global Clean Energy Manufacturing sheds light on several fundamental questions about the global clean technology manufacturing enterprise: How does clean energy technology manufacturing impact national economies? What are the economic opportunities across the manufacturing supply chain? What are the global dynamics of clean energy technology manufacturing?

  8. Population growth, energy consumption, pollution abatement - looking for the global consensus

    International Nuclear Information System (INIS)

    Czakainski, M.

    1993-01-01

    A new system of the world for solutions to the energy supply problem was damanded by the representatives of China and India at the Madrid congress of the World Energy Council. Drastic energy conservation measures were requested from the Western World. It is still a long way to go to a global consensus about energy consumption, pollution abatement and the protection of the climate. (DG) [de

  9. Global Energy Scenarios to 2040. Understanding our energy future - 2016 Edition

    International Nuclear Information System (INIS)

    2016-01-01

    transition from the current energy system towards a long-term decarbonization, with substantial efforts on energy efficiency, initiatives to phase out fossil fuel subsidies and a real emergence of renewable energy technologies. This is achieved through ambitious policies both at the national and international level and through strict carbon constraints. Deployment of low-carbon technologies plays a key role, supported by significant R and D efforts to reduce their cost and improve their performance. In the power sector, RES become the main source of electricity generation around 2040; there is a growing adaptation of cleaner coal technologies and a wide-scale of deployment of CCS. Nuclear turns to be an attractive option. Talks at the COP-21 are successful, governments commit to returning to the negotiating table and revise their emissions goal every five years. This new 'green deal' leads to a reduction factor of 2 of world emissions by 2050. In the Ener-Brown scenario, OPEC output continues to rise to maintain its market share while the unconventional oil and gas boom in North America carries on and gets exported to other world regions (China, Argentina...). With less tensions, oil and gas prices are expected to remain weak: prices slowly recover from present collapse, but remain well below the last decades highs. Confirmed energy commitments in some regions as well as technological innovation foster a significant development of low energy intensive processes and technologies. Renewables achieve a substantial deployment but affordable fossil fuels still remain a competitive and attractive source of energy. Without a global agreement, non-coordinated policies result in soaring CO_2 emissions across the world, towards +5-6 deg. C temperature increase by the end of the century. The paper will present in detail some results related to the Ener-Blue scenario (INDCs), its impacts on different energy sources and geographical regions, as well as its challenges in implementation

  10. Risk assessment for long-term post-accident sequences

    International Nuclear Information System (INIS)

    Ellia-Hervy, A.; Ducamp, F.

    1987-11-01

    Probabilistic risk analysis, currently conducted by the CEA (French Atomic Energy Commission) for the French replicate series of 900 MWe power plants, has identified accident sequences requiring long-term operation of some systems after the initiating event. They have been named long-term sequences. Quantification of probabilities of such sequences cannot rely exclusively on equipment failure-on-demand data: it must also take into account operating failures, the probability of which increase with time. Specific studies have therefore been conducted for a number of plant systems actuated during these long-term sequences. This has required: - Definition of the most realistic equipment utilization strategies based on existing emergency procedures for 900 MWe French plants. - Evaluation of the potential to repair failed equipment, given accessibility, repair time, and specific radiation conditions for the given sequence. - Definition of the event bringing the long-term sequence to an end. - Establishment of an appropriate quantification method, capable of taking into account the evolution of assumptions concerning equipment utilization strategies or repair conditions over time. The accident sequence quantification method based on realistic scenarios has been used in the risk assessment of the initiating event loss of reactor coolant accident occurring at power and at shutdown. Compared with the results obtained from conventional methods, this method redistributes the relative weight of accident sequences and also demonstrates that the long term can be a significant contribution to the probability of core melt

  11. Development of a model to optimize global use of nuclear energy considering competition of seawater uranium and reprocessing

    International Nuclear Information System (INIS)

    Undarmaa, Baatarkhuu; Horio, Kenta; Fujii, Yasumasa; Komiyama, Ryoichi

    2017-01-01

    In order to sustain long-term energy security and to mitigate the climate change, nuclear power remains an important baseload option for the global power generation mix. To utilize nuclear power in long-term, some important concerns such as economics, stability of fuel supply and spent fuel amount should be evaluated. Model developed in this study optimizes the global use nuclear power considering such issues. The Model is based on linear programming and calculates the best mix of nuclear reactor types by minimizing the current value of total power generation cost within the target period (next 100 years). Possibility of fuel cycle options such as reprocessing, seawater uranium and thorium utilization are also taken in to account, along with remaining spent fuel and plutonium stock. As result. reprocessing and uranium from seawater become essential part of nuclear fuel cycle in the long run. Amount of stored spent fuel is reduced following the deployment of Fast Breeder Reactor. Also, as an extension of current model, a baseload power generation mix model, which estimates the optimal mix of nuclear and coal-fired power generation will be introduced. (author)

  12. Foreign exchange risk in terms of global financial crisis

    Directory of Open Access Journals (Sweden)

    Michał Buszko

    2009-12-01

    Full Text Available Fx risk is one of the most important types of risk of financial activity. In practice, this risk comprises several risk aspects related to currencies exchanging, however most often it is identified with unexpected changes of their prices. In terms of the global financial crisis of 2007–2009, the fx risk has raised significantly, revealing a high daily volatility, increased spreads and the reversal of long-term exchange rate trends. Such increased risk especially influenced emerging markets economies, including Poland. Its consequence was quick strengthening of Polish currency at the beginning of the global crisis followed by a very sudden fall of its value. This event led to a substantial increase of banking risk, investment funds and corporate operations. It changed the structure of GDP sources as well as generated huge losses for exporting companies, using currency options hedging strategies.

  13. Short-term versus long-term market opportunities and financial constraints

    International Nuclear Information System (INIS)

    Ferrari, Angelo

    1999-01-01

    This presentation discusses gas developments in Europe, the European Gas Directive, short term vs. long term, and Snam's new challenges. The European gas market is characterized by (1) The role of gas in meeting the demand for energy, which varies greatly from one country to another, (2) A growing market, (3) Decreasing role of domestic production, and (4) Increasing imports. Within the European Union, the Gas Directive aims to transform single national markets into one integrated European market by introducing third party access to the network for eligible clients as a means of increasing the competition between operators. The Gas Directive would appear to modify the form of the market rather than its size, and in particular the sharing of responsibility and risk among operators. The market in the future will offer operators the possibility to exploit opportunities deriving mainly from demands for increased flexibility. Opportunities linked to entrepreneurial initiatives require long-term investments characteristic of the gas business. Risks and opportunities must be balanced evenly between different operators. If everyone takes on their own risks and responsibilities, this means a wider distribution of the risks of long-term vs. short-term, currently borne by the gas companies that are integrated, into a market that tends to favour the short-term. A gradual liberalization process should allow incumbent operators to gradually diversify their activities in new gas market areas or enter new business activities. They could move beyond their local and European boundaries in pursuit of an international dimension. The market will have to make the transition from the national to the European dimension: as an example, Snam covers 90% of the Italian market, but its share of an integrated European market will be about 15%

  14. Energy policy: challenges of a global vision; Politique energetique: les enjeux d'une vision globale

    Energy Technology Data Exchange (ETDEWEB)

    Destot, Michel [ed.] [Depute de l' Isere, Assemblee Nationale, Paris (France)

    2000-02-18

    This is the proceedings of the 2. parliamentary gathering on energy held on 14 October 1999. The document presents the talks by Mr Michel Destot (as special rapporteur of the Industry's budget in National Assembly) and Laurent Fabius, President of National Assembly, and Jean-Claude Gayssot, Minister of Equipment, Transport and Dwelling, at the opening session, three round tables, the colloquium synthesis and the closing session. The round tables addressed the following issues: - 1. International and long-term approach guided predominantly by energy demand; - 2. Energy solutions in the struggle against greenhouse effect; - 3. Challenges of opening the European energy market (internationalization and decentralization). At the first round table, Yves Martin, President of the technical section of General Council of Mines, structured his introductory report emphasizing the specific issues of three time horizons: the present, characterized by abundant energy offer; the horizon of 10 to 20 years, that of the energy suppliers which is orienting their investments; the horizon of more than half a century, corresponding to responses of far-reaching actions imposed by energy demand and which must be the object of governments' policies. Jean-Yves Le Deaut, deputy of Meurthe-et-Moselle discussed the risks of climate change, resources' exhaustion, nuclear power and the issue of developing the renewable energies. The problems raised by energy demand by the year 2050 to met the needs of an earth population of 9 billions were mentioned by Philippe Trepant, the president of French Union of oil industries. Energy problems from a globalization standpoint were discussed also by Benjamin Dessus, Director of Ecodev program of CNRS. Policy in the field of mastering greenhouse gas releases was mentioned in the talk by Michel Mousel, president of Inter-ministerial Mission for greenhouse effect. In the frame of 2. round table questions relating to energy management, renewable

  15. Long-term surveillance plan for the Mexican Hat Disposal Site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-02-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSP (based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program), documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  16. Analysis on long-term change of energy system structure in Japan considering CO2 emission and domestic demand

    International Nuclear Information System (INIS)

    Kurokawa, Shingo; Tabe, Yutaka; Chikahisa, Takemi

    2011-01-01

    Long-term change of energy system structure in Japan was analyzed to investigate the effect of the CO 2 emission reduction level on the reduction cost using MARKAL model. The MARKAL is composed of energy resources, energy supply technologies, energy ultimate demand technologies and energy service demands with them connected by energy carriers. This paper presents analyses investigating the CO 2 reduction cost and the energy structure change until 2050. Here, we focused on the domestic investment to reduce CO 2 emission. It was shown that the CO 2 reduction until 40% level promotes the energy conversion from coal to natural gas and it causes the increase in total cost of the imported fuel. The higher CO 2 reduction, however, increases the domestic investment for low-emission vehicles, photovoltaic power generation and so on, and decreases the overseas investment, although the total CO 2 reduction cost is increased. This contributes to the revitalization of Japanese economy, together with the reduction of overseas investment. (author)

  17. Near-Term Actions to Address Long-Term Climate Risk

    Science.gov (United States)

    Lempert, R. J.

    2014-12-01

    Addressing climate change requires effective long-term policy making, which occurs when reflecting on potential events decades or more in the future causes policy makers to choose near-term actions different than those they would otherwise pursue. Contrary to some expectations, policy makers do sometimes make such long-term decisions, but not as commonly and successfully as climate change may require. In recent years however, the new capabilities of analytic decision support tools, combined with improved understanding of cognitive and organizational behaviors, has significantly improved the methods available for organizations to manage longer-term climate risks. In particular, these tools allow decision makers to understand what near-term actions consistently contribute to achieving both short- and long-term societal goals, even in the face of deep uncertainty regarding the long-term future. This talk will describe applications of these approaches for infrastructure, water, and flood risk management planning, as well as studies of how near-term choices about policy architectures can affect long-term greenhouse gas emission reduction pathways.

  18. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1995-11-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the US Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  19. Global Energy Security and Its Geopolitical Impediments: The Case of the Caspian Region

    NARCIS (Netherlands)

    Amineh, M.P.; Houweling, H.

    2007-01-01

    This article discusses the global geopolitics of energy security in the post-Cold War environment. Energy companies headquartered in western countries have long history of accessing energy resources beyond borders through invasion of the host by their home state, followed by domination and the

  20. The Development of a Long-Term, Continually Updated Global Solar Resource at 10 km Resolution: Preliminary Results From Test Processing and Continuing Plans

    Science.gov (United States)

    Stackhouse, P.; Perez, R.; Sengupta, M.; Knapp, K.; Cox, Stephen; Mikovitz, J. Colleen; Zhang, T.; Hemker, K.; Schlemmer, J.; Kivalov, S.

    2014-01-01

    Background: Considering the likelihood of global climatic weather pattern changes and the global competition for energy resources, there is an increasing need to provide improved and continuously updated global Earth surface solar resource information. Toward this end, a project was funded under the NASA Applied Science program involving the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC), National Renewable Energy Laboratory (NREL), the State University of New York/Albany (SUNY) and the NOAA National Climatic Data Center (NCDC) to provide NREL with a global long-term advanced global solar mapping production system for improved depiction of historical solar resources and variability and to provide a mechanism for continual updates of solar resource information. This new production system is made possible by the efforts of NOAA and NASA to completely reprocess the International Satellite Cloud Climatology Project (ISCCP) data set that provides satellite visible and infrared radiances together with retrieved cloud and surface properties on a 3-hourly basis beginning from July 1983. The old version of the ISCCP data provided this information for all the world TMs available geosynchronous satellite systems and NOAA TMs AVHRR data sets at a 30 km effective resolution. This new version aims to provide a new and improved satellite calibration at an effective 10 km resolution. Thus, working with SUNY, NASA will develop and test an improved production system that will enable NREL to continually update the Earth TM solar resource. Objective and Methods: In this presentation, we provide a general overview of this project together with samples of the new solar irradiance mapped data products and comparisons to surface measurements at various locations across the world. An assessment of the solar resource values relative to calibration uncertainty and assumptions are presented. Errors resulting assumptions in snow cover and background aerosol

  1. Local Government Implementation of Long-Term Stewardship at Two DOE Facilities

    Energy Technology Data Exchange (ETDEWEB)

    John Pendergrass; Roman Czebiniak; Kelly Mott; Seth Kirshenberg; Audrey Eidelman; Zachary Lamb; Erica Pencak; Wendy Sandoz

    2003-08-13

    The Department of Energy (DOE) is responsible for cleaning up the radioactive and chemical contamination that resulted from the production of nuclear weapons. At more than one hundred sites throughout the country DOE will leave some contamination in place after the cleanup is complete. In order to protect human health and the environment from the remaining contamination DOE, U.S. Environmental Protection Agency (EPA), state environmental regulatory agencies, local governments, citizens and other entities will need to undertake long-term stewardship of such sites. Long-term stewardship includes a wide range of actions needed to protect human health in the environment for as long as the risk from the contamination remains above acceptable levels, such as barriers, caps, and other engineering controls and land use controls, signs, notices, records, and other institutional controls. In this report the Environmental Law Institute (ELI) and the Energy Communities Alliance (ECA) examine how local governments, state environmental agencies, and real property professionals implement long-term stewardship at two DOE facilities, Losa Alamos National Laboratory and Oak Ridge Reservation.

  2. Integrated assessment of the health and economic benefits of long-term renewable energy development in China

    Science.gov (United States)

    Dai, H.; Xie, Y.; Zhang, Y.

    2017-12-01

    Context/Purpose: Power generation from renewable energy (RE) could substitute huge amount of fossil energy in the power sector and have substantial co-benefits of air quality and human health improvement. In 2016, China National Renewable Energy Center (CNREC) released China Renewable Energy Outlook, CREO2016 and CREO2017, towards 2030 and 2050, respectively, in which two scenarios are proposed, namely, a conservative "Stated Policy" scenario and a more ambitious "High RE" scenario. This study, together with CNREC, aims to quantify the health and economic benefits of developing renewable energy at the provincial level in China up to 2030 and 2050. Methods: For this purpose, we developed an integrated approach that combines a power dispatch model at CNREC, an air pollutant emission projection model using energy consumption data from the Long-range Energy Alternatives Planning System (LEAP) model, an air quality model (GEOS-Chem at Harvard), an own-developed health model, and a macro economic model (Computable General Equilibrium model). Results: All together, we attempt to quantify how developing RE could reduce the concentration of PM2.5 and ozone in 30 provinces of China, how the human health could be improved in terms of mortality, morbidity and work hour loss, and what is the economic value of the health improvement in terms of increased GDP and the value of statistical life lost. The results show that developing RE as stated in the CREO2016 could prevent chronic mortality of 286 thousand people in China in 2030 alone, the value of saved statistical life is worthy 1200 billion Yuan, equivalent to 1.2% of GDP. In addition, averagely, due to reduced mortality and improved morbidity each person could work additionally by 1.16 hours per year, this could contribute to an increase of GDP by 0.1% in 2030. The assessment up to 2050 is still underway. Interpretation: The results imply that when the external benefit of renewable energy is taken into account, RE could be

  3. Long Term Financing of Infrastructure

    OpenAIRE

    Sinha, Sidharth

    2014-01-01

    Infrastructure projects, given their long life, require long term financing. The main sources of long term financings are insurance and pension funds who seek long term investments with low credit risk. However, in India household financial savings are mainly invested in bank deposits. Insurance and pension funds account for only a small percentage of household financial savings. In addition most infrastructure projects do not qualify for investment by insurance and pension funds because of t...

  4. Lessons from the use of a long-term energy model for consequential life cycle assessment: the BTL case

    International Nuclear Information System (INIS)

    Menten, Fabio; Tchung-Ming, Stephane; Lorne, Daphne; Bouvart, Frederique

    2013-11-01

    The main objective of this study is to develop a methodology adapted to the prospective environmental evaluation of actions in the energy sector. It describes how a bottom-up long-term energy model can be used in a life cycle assessment (LCA) framework. The proposed methodology is applied in a case study about the global warming impacts occurring as a consequence of the future production of synthetic diesel from biomass 'biomass to liquids' - BTL), a second generation biofuel, in France. The results show a high sensitivity of the system-wide GHG balance to (i) the policy context and to (ii) the economic environment. Both influence the substitutions occurring within the system due to the production of BTL. Under the specific conditions of this study, the consequences of introducing BTL are not clear-cut. Therefore, we focus on the lessons from the detailed analysis of the results more than in the precise-looking projections, illustrating how this type of models can be used for strategic planning (industry and policy makers). TIMES-type models allow a detailed description of the numerous technologies affected by BTL production and how these vary under different policy scenarios. Moreover, some recommendations are presented, which should contribute for a proper systematization of consequential and prospective LCA methodologies. We provide argumentation on how to define a functional unit and system boundaries that are better linked with the goal of the study. Other crucial methodological issues are also discussed: how to treat temporal aspects in such environmental evaluation and how to increase the consistency of life cycle assessments. (authors)

  5. Long-term stability of the Clear-PEM detector modules

    International Nuclear Information System (INIS)

    Amaral, Pedro; Bruyndonckx, Peter; Carrico, Bruno; Ferreira, Miguel; Luyten, Joan; Moura, Rui; Ortigao, Catarina; Rodrigues, Pedro; Silva, Jose C. da; Trindade, Andreia; Varela, Joao

    2007-01-01

    Experimental evaluation of the imaging system Clear-PEM for positron emission mammography, under development within the framework of the crystal clear collaboration at CERN, is presented in terms of its long-term stability. The detector modules and experimental setup are described. Time evolution results of signal yield, energy resolution, depth-of-interaction and inter-channel crosstalk for a reference detector module are reported

  6. A long-term view of worldwide fossil fuel prices

    International Nuclear Information System (INIS)

    Shafiee, Shahriar; Topal, Erkan

    2010-01-01

    This paper reviews a long-term trend of worldwide fossil fuel prices in the future by introducing a new method to forecast oil, natural gas and coal prices. The first section of this study analyses the global fossil fuel market and the historical trend of real and nominal fossil fuel prices from 1950 to 2008. Historical fossil fuel price analysis shows that coal prices are decreasing, while natural gas prices are increasing. The second section reviews previously available price modelling techniques and proposes a new comprehensive version of the long-term trend reverting jump and dip diffusion model. The third section uses the new model to forecast fossil fuel prices in nominal and real terms from 2009 to 2018. The new model follows the extrapolation of the historical sinusoidal trend of nominal and real fossil fuel prices. The historical trends show an increase in nominal/real oil and natural gas prices plus nominal coal prices, as well as a decrease in real coal prices. Furthermore, the new model forecasts that oil, natural gas and coal will stay in jump for the next couple of years and after that they will revert back to the long-term trend until 2018. (author)

  7. Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1997-06-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  8. Long-term surveillance plan for the Mexican Hat disposal site, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1996-01-01

    This plan describes the long-term surveillance activities for the Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site at Mexican Hat, Utah. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal site continues to function as designed. This long-term surveillance plan (LTSP) was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive material (RRM). This LTSPC documents the land ownership interests and details how the long-term care of the disposal site will be accomplished

  9. Long-term surveillance plan for the Estes Gulch disposal site near Rifle, Colorado

    International Nuclear Information System (INIS)

    1997-07-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site near Rifle, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Estes Gulch disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  10. Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-07-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney Disposal Site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  11. Bottom-Up modeling, a tool for decision support for long-term policy on energy and environment - The TIMES model applied to the energy intensive industries

    International Nuclear Information System (INIS)

    Djemaa, A.

    2009-01-01

    Among the energy users in France and Europe, some industrial sectors are very important and should have a key role when assessing the final energy demand patterns in the future. The aim of our work is to apply a prospective model for the long range analysis of energy/technology choices in the industrial sector, focussing on the energy-intensive sectors. The modelling tool applied in this study is the TIMES model (family of best known MARKAL model). It is an economic linear programming model generator for local, national or multi regional energy systems, which provides a technology-rich basis for estimating energy dynamics over a long term, multi period time. We illustrate our work with nine energy-intensive industrial sectors: paper, steel, glass, cement, lime, tiles, brick, ceramics and plaster. It includes a detailed description of the processes involved in the production of industrial products, providing typical energy uses in each process step. In our analysis, we identified for each industry, several commercially available state-of-the-art technologies, characterized and chosen by the Model on the basis of cost effectiveness. Furthermore, we calculated potential energy savings, carbon dioxide emissions' reduction and we estimated the energy impact of a technological rupture. This work indicates that there still exists a significant potential for energy savings and carbon dioxide emissions' reduction in all industries. (author)

  12. Economics of Energy Conservation: A Case Study

    OpenAIRE

    Gunatilake, Herath; Padmakanthi, Dhammika

    2008-01-01

    Global energy security relies heavily on exhaustible fossil fuels, whose use contributes significantly to global environmental problems. The recent unprecedented rise in oil prices and the threat of global warming highlight the urgent need for solutions to the energy and environment problem. Shifting to clean renewable energy sources - the long-term solution - has been slow despite efforts of the global community since the 1970s. Demand side management (DSM) is part of the solution to the ene...

  13. HIV-related politics in long-term perspective.

    Science.gov (United States)

    Friedman, S R

    1998-06-01

    Some long-term, large-scale socio-economic changes may affect the politics of HIV and other emerging viruses such as hepatitis C. It is useful to ask why the potential peace dividend of the early 1990s failed to provide adequate resources for HIV-related social and medical service delivery in developed or developing nations. This failure can be understood by looking at long-term global economic trends and the pressures they put on governments and corporations. They have produced a period in which fundamental issues of political and economic structure are at stake and, often, the response is a divide-and-rule politics to promote stability. National politics differ in terms of the extent to which such a 'politics of scapegoating' is institutionalized and in terms of which groups are scapegoated. Groups such as drug injectors, gay and bisexual men and sex traders are particularly likely to be targeted both by the scapegoaters and by HIV. Given this framework, how should public health professionals and activists engaged in HIV-related issues respond? Under what circumstances should we orient efforts upwards towards corporate, political or bureaucratic leaders? Under what circumstances, and how, should we orient towards popular forces? Relatedly, we need to consider an issue we often ignore: What do we have to offer potential allies? That is, in terms of their goals, philosophies and needs, why should they ally with us?

  14. Long term steam oxidation of TP 347H FG in power plants

    DEFF Research Database (Denmark)

    Hansson, Anette Nørgaard; Korcakova, Leona; Hald, John

    2005-01-01

    The long term oxidation behaviour of TP 347H FG at ultra supercritical steam conditions was assessed by exposing the steel in test superheater loops in a Danish coal-fired power plant. The steamside oxide layer was investigated with scanning electron microscopy and energy dispersive Xray diffract......The long term oxidation behaviour of TP 347H FG at ultra supercritical steam conditions was assessed by exposing the steel in test superheater loops in a Danish coal-fired power plant. The steamside oxide layer was investigated with scanning electron microscopy and energy dispersive Xray...

  15. Long term stability of power systems

    Energy Technology Data Exchange (ETDEWEB)

    Kundur, P; Gao, B [Powertech Labs. Inc., Surrey, BC (Canada)

    1994-12-31

    Power system long term stability is still a developing subject. In this paper we provide our perspectives and experiences related to long term stability. The paper begins with the description of the nature of the long term stability problem, followed by the discussion of issues related to the modeling and solution techniques of tools for long term stability analysis. Cases studies are presented to illustrate the voltage stability aspect and plant dynamics aspect of long term stability. (author) 20 refs., 11 figs.

  16. Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site

    International Nuclear Information System (INIS)

    1996-07-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy's (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials

  17. Local and global Casimir energies for a semitransparent cylindrical shell

    International Nuclear Information System (INIS)

    Cavero-Pelaez, Ines; Milton, Kimball A; Kirsten, Klaus

    2007-01-01

    The local Casimir energy density and the global Casimir energy for a massless scalar field associated with a λδ-function potential in a (3 + 1)-dimensional circular cylindrical geometry are considered. The global energy is examined for both weak and strong coupling, the latter being the well-studied Dirichlet cylinder case. For weak coupling, through O(λ 2 ), the total energy is shown to vanish by both analytic and numerical arguments, based both on Green's-function and zeta-function techniques. Divergences occurring in the calculation are shown to be absorbable by renormalization of physical parameters of the model. The global energy may be obtained by integrating the local energy density only when the latter is supplemented by an energy term residing precisely on the surface of the cylinder. The latter is identified as the integrated local energy density of the cylindrical shell when the latter is physically expanded to have finite thickness. Inside and outside the δ-function shell, the local energy density diverges as the surface of the shell is approached; the divergence is weakest when the conformal stress tensor is used to define the energy density. A real global divergence first occurs in O(λ 3 ), as anticipated, but the proof is supplied here for the first time; this divergence is entirely associated with the surface energy and does not reflect divergences in the local energy density as the surface is approached

  18. A nonparametric approach for evaluating long-term energy policy scenarios: An application to the Greek energy system

    OpenAIRE

    Halkos, George; Tzeremes, Nickolaos; Tzeremes, Panagiotis

    2014-01-01

    This paper by using Long-range Energy Alternatives Planning System (LEAP) constructs four different renewable energy scenarios for the Greek transport, energy, and industry sectors. By projecting the demand for renewable energy and the associated resulting carbon dioxide emissions up to the years 2020 and 2030, the paper applies in a second stage data envelopment analysis (DEA) evaluating the Greek renewable energy policy. As a result, it provides a quantitative measure for future renewable e...

  19. Long-term surveillance plan for the Green River, Utah, disposal site

    International Nuclear Information System (INIS)

    1997-06-01

    The long-term surveillance plan (LTSP) for the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Green River disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents whether the land and interests are owned by the United States or an Indian tribe and details how the long-term care of the disposal site will be carried out. The Green River, Utah, LTSP is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  20. Economic thinking, sustainable development and the role of solar energy in the 21st century

    International Nuclear Information System (INIS)

    Hohmeyer, O.

    1993-01-01

    The long term survival of mankind will only be possible if economic thinking as well as economic theory understands that the world economy is only a subsystem of the global ecological system. Only if the scale of the economic system stays within the limits determined by the long term resource availability and the assimilative capacity of the global ecological system, sustainable development and the survival of mankind can be achieved. Solar energy as the only long term energy source supplied from outside the global ecological system needs to be a central building block of sustainable development. Today the main obstacle for a widespread use of solar energy is its relative price. The paper shows that the present prices of non-renewable energy sources are heavily subsidized by not including the costs of health and environmental damages as well as the long term costs of wasting non-renewable energy sources at the expense of future generations. If these costs are taken into account the relative costs of solar energy look far more favorable than present market prices show. Photovoltaic electricity generation may become cost effective within this decade

  1. Global energy perspectives until 2050

    International Nuclear Information System (INIS)

    Schiffer, H.W.

    2008-01-01

    A sustained energy supply must do equal justice to the goals of economic, environmental and social compatibility. If there is a conflict of goals, the object cannot be to maximize one parameter from this bundle of goals; a balance should rather be sought between the set targets. An analysis of long-term projections for world energy supply shows that a greater convergence between expected developments and those considered necessary for climate policy reasons can only be reached by consistently pursuing all approaches suitable for achieving the targets set - e. g. in climate protection - at a minimum cost. The solution is not one of 'either - or' but of 'both - and'. (orig.)

  2. The effect of long-term dexfenfluramine treatment on 24-hour energy expenditure in man. A double-blind placebo controlled study

    DEFF Research Database (Denmark)

    Breum, L; Astrup, A; Andersen, T

    1990-01-01

    In order to investigate the effect of long-term treatment with dexfenfluramine (dF) on 24-hour energy expenditure (EE), 10 obese females were studied in a double-blind design. Shortly before and 4 weeks after cessation of a 13 months treatment period with either dF (30 mg/day) or placebo (PL...... differences. The conclusion is therefore that dF possesses no significant thermogenic effect during long-term administration in human obese subjects.......) the 24-hour EE was measured. The measurements were performed using a 24 m3 direct heat sink calorimeter with continuous real time measurements of evaporative and sensible heat losses. The patients performed a standardized program of exercise, rest and meals. The measurements were performed at 24 degrees...

  3. Long-term surveillance plan for the Shiprock Disposal site, Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-09-01

    The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents the land ownership interests and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  4. German energy transition at the crossroad: global pressures or green energy island

    International Nuclear Information System (INIS)

    Umbach, Frank

    2015-05-01

    In reaction to the March 2011 nuclear disaster that occurred in Fukushima/Japan, Germany has unilaterally decided to launch an energy transition of hitherto unseen dimensions. Berlin set extremely ambitious objectives such as phasing out nuclear energy by 2020, as well as, in the long run, the creation of a sustainable and autarkic energy system. Reactions to this decision differed. Within her own country, Angela Merkel's energy transition was largely acclaimed, although it represented a total u-turn with respect to the previous policy which consisted of prolonging nuclear reactors' lifespan. Abroad and notably among Germany's European partners, it has, in turn, been heavily criticized. These partners had not been consulted prior to decisions being taken, despite the huge impact these decisions had and continue to have on their own energy security. Four years after Angela Merkel announced the German energy transition, it is obvious that a lot of effort still needs to be put into it and that the objectives defined are far from having been reached. German energy policy has failed to adapt to its global context, notably characterized by the U.S. shale gas revolution, geopolitical upheaval, the great polluters' absent willingness to commit to climate protection, etc. At the time being, it has also failed to find a sustainable equilibrium between environmental protection, energy security and economic competitiveness. Moreover, Germany needs to act in accordance with its European partners, without whom it will not be able to tackle the global challenge of climate change and attain to European energy security. If Germany fails to reach these objectives, it may see its competitiveness and geopolitical influence decline at the global level, which would also have repercussions on the EU's standing in the world. (author)

  5. Planning India's long-term energy shipment infrastructures for electricity and coal

    International Nuclear Information System (INIS)

    Bowen, Brian H.; Canchi, Devendra; Lalit, Vishal Agarwal; Preckel, Paul V.; Sparrow, F.T.; Irwin, Marty W.

    2010-01-01

    The Purdue Long-Term Electricity Trading and Capacity Expansion Planning Model simultaneously optimizes both transmission and generation capacity expansions. Most commercial electricity system planning software is limited to only transmission planning. An application of the model to India's national power grid, for 2008-2028, indicates substantial transmission expansion is the cost-effective means of meeting the needs of the nation's growing economy. An electricity demand growth rate of 4% over the 20-year planning horizon requires more than a 50% increase in the Government's forecasted transmission capacity expansion, and 8% demand growth requires more than a six-fold increase in the planned transmission capacity expansion. The model minimizes the long-term expansion costs (operational and capital) for the nation's five existing regional power grids and suggests the need for large increases in load-carrying capability between them. Changes in coal policy affect both the location of new thermal power plants and the optimal pattern inter-regional transmission expansions.

  6. Long-term intensive management increased carbon occluded in phytolith (PhytOC) in bamboo forest soils

    Science.gov (United States)

    Huang, Zhang-Ting; Li, Yong-Fu; Jiang, Pei-Kun; Chang, Scott X.; Song, Zhao-Liang; Liu, Juan; Zhou, Guo-Mo

    2014-01-01

    Carbon (C) occluded in phytolith (PhytOC) is highly stable at millennium scale and its accumulation in soils can help increase long-term C sequestration. Here, we report that soil PhytOC storage significantly increased with increasing duration under intensive management (mulching and fertilization) in Lei bamboo (Phyllostachys praecox) plantations. The PhytOC storage in 0-40 cm soil layer in bamboo plantations increased by 217 Mg C ha-1, 20 years after being converted from paddy fields. The PhytOC accumulated at 79 kg C ha-1 yr-1, a rate far exceeding the global mean long-term soil C accumulation rate of 24 kg C ha-1 yr-1 reported in the literature. Approximately 86% of the increased PhytOC came from the large amount of mulch applied. Our data clearly demonstrate the decadal scale management effect on PhytOC accumulation, suggesting that heavy mulching is a potential method for increasing long-term organic C storage in soils for mitigating global climate change.

  7. Long-term impacts of electricity generation systems. Draft technical report

    International Nuclear Information System (INIS)

    1998-01-01

    Estimation of health and environmental impacts in a distant future driven by current electricity generation systems is not a well established scientific field. This issue includes many uncertainties which are seen in many processes of the impact estimation such as valuation techniques of environmental impacts for a long-term, and technology choice and policy options for a long run. When the IAEA held the Technical Committee Meeting on Estimating and Comparing Risks from Energy Systems in the Far Future in October 1997 in Vienna, there were many questions raised up from the participants on these issues. The purpose of this document is to introduce typical discussions at the Meeting, and to give a guidance to the methodological approaches for the readers. The decision making process is not central to this technical document. The main issue explained in the document is the ways of presenting health and environmental impacts in a distant future for decision makers. The primarily targeted readers of this document are, therefore, experts who will make the impact assessment and document the results to governmental offices and/or representatives of general public. For those who further implement decision making study, several documents are available from the IAEA. (in preparation 29]). To provide an effective guidance to the methodological approaches, several issues which are currently recognized as typical examples of the impacts on future generations were chosen. Global climate change, nuclear and non-nuclear wastes, long lived radionuclides dispersing world-wide, land use, and resource depletion are briefly discussed to illustrate several technical difficulties in estimating the impacts in the far future. About technology choice, the discussions illustrated in this document are based on only marginal increase of currently available electricity production systems. For smooth introduction of currently available methodological approaches to readers, issues like future

  8. The role of global economic policy uncertainty in long-run volatilities and correlations of U.S. industry-level stock returns and crude oil.

    Science.gov (United States)

    Yu, Honghai; Fang, Libing; Sun, Boyang

    2018-01-01

    We investigate how Global Economic Policy Uncertainty (GEPU) drives the long-run components of volatilities and correlations in crude oil and U.S. industry-level stock markets. Using the modified generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) and dynamic conditional correlation mixed data sampling (DCC-MIDAS) specifications, we find that GEPU is positively related to the long-run volatility of Financials and Consumer Discretionary industries; however, it is negatively related to Information Technology, Materials, Telecommunication Services and Energy. Unlike the mixed role of GEPU in the long-run volatilities, the long-run correlations are all positively related to GEPU across the industries. Additionally, the rankings of the correlations of Energy and Materials are time-invariant and classified as high, with the little exception of the latter. The Consumer Staples industry is time-invariant in the low-ranking group. Our results are helpful to policy makers and investors with long-term concerns.

  9. Barrier analogs: Long-term performance issues, preliminary studies, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Waugh, W.J. [Rust Geotech, Inc., Grand Junction, CO (United States). Environmental Sciences Lab.; Chatters, J.C.; Last, G.V.; Bjornstad, B.N.; Link, S.O. [Pacific Northwest Lab., Richland, WA (United States); Hunter, C.R. [Cascade Earth Sciences, La Grande, OR (United States)

    1994-02-01

    The US Department of Energy`s Hanford Protective Barrier Development Program is funding studies of natural analogs of the long-term performance of waste site covers. Natural-analog studies examine past environments as evidence for projecting the future performance of engineered structures. The information generated by analog studies is needed to (1) evaluate the designs and results of short term experiments and demonstrations, (2) formulate performance-modeling problems that bound expected changes in waste site environments, and (3) understand emergent system attributes that cannot be evaluated with short-term experiments or computer models. Waste site covers will be part of dynamic environmental systems with attributes that transcend the traits of engineered components. This report discusses results of the previously unreported preliminary studies conducted in 1983 and 1984. These results indicate that analogs could play an important role in predicting the long-term behavior of engineered waste covers. Layered exposures of glacial-flood-deposited gravels mantled with silt or sand that resemble contemporary barrier designs were examined. Bergmounds, another anomaly left by cataclysmic glacial floods, were also examined as analogs of surface gravel.

  10. Sustainable global energy development: the case of coal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The report aims at developing an internationally consistent reply to the question whether and to what extent coal use could be economic and sustainable in meeting global energy demand to 2030 and beyond. It covers markets, trade and demand, mining and combustion technologies, restructuring and international policies, and perspectives. It considers both the contribution that coal could make to economic development as well as the need for coal to adapt to the exigencies of security of supply, local environmental protection and mitigation of climate change. The conclusion suggests that coal will continue to be an expanding, a cheap foundation for economic and social development. Backed by its vast and well-distributed resource base, coal will make a significant contribution to eradicating energy poverty and coal can be and will be increasingly clean, at a bearable cost in terms of technological sophistication and at little cost in terms of international technology transfer and RD & D in CO{sub 2} sequestration. For this to happen, even-handed energy and environmental policies are needed, not ideologies. Moreover, a more pro-active involvement of the coal and power industries is needed in 'globalizing' best technical and managerial practices and advocating coal's credentials.

  11. Long-Term Nuclear Industry Outlook - 2004

    Energy Technology Data Exchange (ETDEWEB)

    Reichmuth, Barbara A.; Wood, Thomas W.; Johnson, Wayne L.

    2004-09-30

    The nuclear industry has become increasingly efficient and global in nature, but may now be poised at a crossroads between graceful decline and profound growth as a viable provider of electrical energy. Predicted population and energy-demand growth, an increased interest in global climate change, the desire to reduce the international dependence on oil as an energy source, the potential for hydrogen co-generation using nuclear power reactors, and the improved performance in the nuclear power industry have raised the prospect of a “nuclear renaissance” in which nuclear power would play an increasingly more important role in both domestic and international energy market. This report provides an assessment of the role nuclear-generated power will plan in the global energy future and explores the impact of that role on export controls.

  12. Going Solar Yields Long-Term Economical, Educational Benefits

    Science.gov (United States)

    von Moos, Brian

    2009-01-01

    Going solar is not an easy decision, but a long-term investment with a potentially substantial up-front cost. While some schools have enough capital in reserve, can raise bond money, or can solicit sufficient donations, many schools rely on creative financial programs to make a solar energy system economically feasible. Thinking about going solar…

  13. Global low-carbon transition and China's response strategies

    Directory of Open Access Journals (Sweden)

    Jian-Kun He

    2016-12-01

    Full Text Available The Paris Agreement establishes a new mechanism for post-2020 global climate governance, and sets long-term goals for global response to climate change, which will accelerate worldwide low-carbon transformation of economic development pattern, promote the revolutionary reform of energy system, boost a fundamental change in the mode of social production and consumption, and further the civilization of human society from industrial civilization to eco-civilization. The urgency of global low-carbon transition will reshape the competition situation of world's economy, trade and technology. Taking the construction of eco-civilization as a guide, China explores green and low-carbon development paths, establishes ambitious intended nationally determined contribution (INDC targets and action plans, advances energy production and consumption revolution, and speeds up the transformation of economic development pattern. These strategies and actions not only confirm to the trend of the world low-carbon transition, but also meet the intrinsic requirements for easing the domestic resources and environment constraints and realizing sustainable development. They are multi-win-win strategies for promotion of economic development and environmental protection and mitigation of carbon emissions. China should take the global long-term emission reduction targets as a guide, and formulate medium and long-term low-carbon development strategy, build the core competitiveness of low-carbon advanced technology and development pattern, and take an in-depth part in global governance so as to reflect the responsibility of China as a great power in constructing a community of common destiny for all mankind and addressing global ecological crisis.

  14. Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data

    International Nuclear Information System (INIS)

    Celik, A.N.

    2003-01-01

    A general methodology is presented to estimate the monthly average daily energy output from photovoltaic energy systems. Energy output is estimated from synthetically generated solar radiation data. The synthetic solar radiation data are generated based on the cumulative frequency distribution of the daily clearness index, given as a function of the monthly clearness index. Two sets of synthetic solar irradiation data are generated: 3- and 4-day months. In the 3-day month, each month is represented by 3 days and in the 4-day month, by 4 days. The 3- and 4-day solar irradiation data are synthetically generated for each month and the corresponding energy outputs are calculated. A total of 8-year long measured hourly solar irradiation data, from five different locations in the world, is used to validate the new model. The monthly energy output values calculated from the synthetic solar irradiation data are compared to those calculated from the measured hour-by-hour data. It is shown that when the measured solar radiation data do not exist for a particular location or reduced data set is advantageous, the energy output from photovoltaic converters could be correctly calculated

  15. Intensity-Modulated Radiotherapy is Associated With Improved Global Quality of Life Among Long-term Survivors of Head-and-Neck Cancer

    International Nuclear Information System (INIS)

    Chen, Allen M.; Farwell, D. Gregory; Luu, Quang; Vazquez, Esther G.; Lau, Derick H.; Purdy, James A.

    2012-01-01

    Purpose: To compare the long-term quality of life among patients treated with and without intensity-modulated radiotherapy (IMRT) for head-and-neck cancer. Methods and Materials: University of Washington Quality of Life instrument scores were reviewed for 155 patients previously treated with radiation therapy for locally advanced head-and-neck cancer. All patients were disease free and had at least 2 years of follow-up. Eighty-four patients (54%) were treated with IMRT. The remaining 71 patients (46%) were treated with three-dimensional conformal radiotherapy (3D CRT) by use of initial opposed lateral fields matched to a low anterior neck field. Results: The mean global quality of life scores were 67.5 and 80.1 for the IMRT patients at 1 and 2 years, respectively, compared with 55.4 and 57.0 for the 3D CRT patients, respectively (p < 0.001). At 1 year after the completion of radiation therapy, the proportion of patients who rated their global quality of life as “very good” or “outstanding” was 51% and 41% among patients treated by IMRT and 3DCRT, respectively (p = 0.11). At 2 years, the corresponding percentages increased to 73% and 49%, respectively (p < 0.001). On multivariate analysis accounting for sex, age, radiation intent (definitive vs. postoperative), radiation dose, T stage, primary site, use of concurrent chemotherapy, and neck dissection, the use of IMRT was the only variable independently associated with improved quality of life (p = 0.01). Conclusion: The early quality of life improvements associated with IMRT not only are maintained but apparently become more magnified over time. These data provide powerful evidence attesting to the long-term benefits of IMRT for head-and-neck cancer.

  16. Long Term Fuel Sustainable Fission Energy Perspective Relevant for Combating Climate Change

    International Nuclear Information System (INIS)

    Knapp, V.; Matijevic, M.; Pevec, D.; Crnobrnja, B.; Lale, D.

    2016-01-01

    In recent research we outlined climate relevant and immediately available proven light water nuclear strategy with a potential to contribute essentially and timely to reduction of carbon dioxide emission to the year 2065. We consider in this paper what is the perspective of fission energy after that year should its contribution be needed. Singling out two technologies with long term perspective which need no or small amounts of uranium, fast breeders and molten salt thorium reactors, we consider their main technical and safety characteristics. In both of these technologies it is essential to have starter nuclides as neither U238 nor Th232 are fissile. We investigated whether plutonium from spent fuel of light water reactors generated to the year 2065 would be present in quantities sufficient to continue operation on the same or similar level in both technologies. However in operational safety, proliferation risks, waste production, in our judgement we must give preference to thorium technology, if it would be ready in second half of the century.(author).

  17. Long-term urethral catheterisation.

    Science.gov (United States)

    Turner, Bruce; Dickens, Nicola

    This article discusses long-term urethral catheterisation, focusing on the relevant anatomy and physiology, indications for the procedure, catheter selection and catheter care. It is important that nurses have a good working knowledge of long-term catheterisation as the need for this intervention will increase with the rise in chronic health conditions and the ageing population.

  18. Strategic Planning and the Long-term R&D Plan

    International Nuclear Information System (INIS)

    Cooley, J.

    2015-01-01

    The Department of Safeguards of the International Atomic Energy Agency implements a structured strategic planning process to ensure that safeguards will continue to be both effective and efficient in the future. This process provides the Department with a comprehensive and coherent planning framework for the short (2 years), medium (6 years) and long (12 years) term. The Department's suite of planning documents includes a long-term strategic plan and an associated long-term research and development plan as well as a biennial development and implementation support programme. The Department's Long-Term Strategic Plan 2012-2023 addresses the conceptual framework for safeguards implementation, legal authority, technical capabilities (expertise, equipment and infrastructure) and the human and financial resources necessary for Agency verification activities. As research and development (R&D) are essential to meet the safeguards needs of the future, the Department-s Long-Term R&D Plan 2012-2023 is designed to support the Long-Term Strategic Plan 2012-2023 by setting out the capabilities that the Department needs to achieve its strategic objectives, and key milestones towards achieving those capabilities for which Member State R&D support is needed. The Long-Term R&D Plan 2012-2023 addresses the Department's R&D requirements in areas such as safeguards concepts and approaches; detection of undeclared nuclear material and activities; safeguards equipment and communication; information technology, collection, analysis and security; analytical services; new mandates; and training. Long-term capabilities discussed in the presentation include deployed systems (e.g., equipment at facilities); analytical (e.g., sample analysis), operational (e.g., staff expertise and skills) and readiness (e.g., safeguarding new types of facilities) capabilities. To address near-term development objectives and support the implementation of its verification activities as well as to

  19. Long-term outcomes of young people who attempted suicide

    OpenAIRE

    Grisham, Jessica R; Williams, Alishia D

    2014-01-01

    IMPORTANCE Suicidal behavior has increased since the onset of the global recession, a trend that may have long-term health and social implications. OBJECTIVE To test whether suicide attempts among young people signal increased risk for later poor health and social functioning above and beyond a preexisting psychiatric disorder. DESIGN We followed up a cohort of young people and assessed multiple aspects of their health and social functioning as they approached midlife. Outcomes among individu...

  20. Replacing tedium with transformation: Why the US Department of Energy needs to change the way it conducts long-term R and D

    International Nuclear Information System (INIS)

    Sovacool, Benjamin K.

    2008-01-01

    To avoid promoting technologies that merely produce incremental change, the US Department of Energy needs to establish a new organization designed to focus on transformational R and D projects. From its inception in 1977, the US Department of Energy (DOE) has been responsible for maintaining the nation's nuclear stockpile, leading the country in terms of basic research, setting national energy goals, and managing thousands of individual programs. Despite these responsibilities, however, the DOE research and development (R and D) model does not appear to offer the nation an optimal strategy for assessing long-term energy challenges. American energy policy continues to face constraints related to an overly rigid management structure and loss of mission within the DOE, layers of stove-piping within and between the national laboratories, and inadequate public and private funding for energy R and D. To address these concerns, an independent organization dedicated to transformative, creative energy R and D is required

  1. Long-term carbon loss in fragmented Neotropical forests.

    Science.gov (United States)

    Pütz, Sandro; Groeneveld, Jürgen; Henle, Klaus; Knogge, Christoph; Martensen, Alexandre Camargo; Metz, Markus; Metzger, Jean Paul; Ribeiro, Milton Cezar; de Paula, Mateus Dantas; Huth, Andreas

    2014-10-07

    Tropical forests play an important role in the global carbon cycle, as they store a large amount of carbon (C). Tropical forest deforestation has been identified as a major source of CO2 emissions, though biomass loss due to fragmentation--the creation of additional forest edges--has been largely overlooked as an additional CO2 source. Here, through the combination of remote sensing and knowledge on ecological processes, we present long-term carbon loss estimates due to fragmentation of Neotropical forests: within 10 years the Brazilian Atlantic Forest has lost 69 (±14) Tg C, and the Amazon 599 (±120) Tg C due to fragmentation alone. For all tropical forests, we estimate emissions up to 0.2 Pg C y(-1) or 9 to 24% of the annual global C loss due to deforestation. In conclusion, tropical forest fragmentation increases carbon loss and should be accounted for when attempting to understand the role of vegetation in the global carbon balance.

  2. 2012 Global Energy Competitiveness Index

    International Nuclear Information System (INIS)

    Lorot, Pascal; Lauriano do Rego, Wilfrid

    2012-01-01

    The 2012 Global Energy Competitiveness Index, a survey jointly conducted by Institut Choiseul and KPMG, is the first of its kind. It ranks 146 countries, grouping them into 5 categories ranging from the best performers to under-performers. The first edition of this annual study ranks the countries surveyed not only by continent but also according to the quality of their energy mix, electricity access and availability levels and the compatibility of their energy policies with environmental challenges. The governing bodies of the countries in the panel (relevant ministries and regulatory authorities) can gain much from this decision-making support tool that fosters dialogue on energy-related issues. The targeted audience also includes industry professionals, NGOs, international organisations and other economic players such as banks, consulting firms and specialist commercial law firms commercial law firms. Europe is by far the best performing continent ahead of the best performing continent, ahead of the Americas and Americas and even further ahead of Asia/Oceania and Africa. Generally speaking, the Nordic countries are among the best performers: Norway, Canada, Iceland, Denmark, Sweden and Finland rank, in this order, in the global Top 10. Four EU countries are among the global Top 10 (Denmark, Sweden, Finland and France) and five others (the United Kingdom, Austria, Germany, Slovakia and Spain) are in the Top 20. Surprisingly, Colombia stood out as the fifth most competitive country in terms of energy. Its outstanding performance is due to a strong energy mix (ranked second worldwide) and an energy strategy compatible with today's key environmental challenges. The apparent domination of Northern-hemisphere countries needs to be considered in conjunction with the results achieved by the other Seeming domination of be considered in conjunction with the results achieved by the other countries with regard to their energy mix and the environmental compatibility of

  3. Long term effects of an energy efficiency advertising campaign

    Energy Technology Data Exchange (ETDEWEB)

    Wortmann, Klaus; Moehring-Hueser, Werner [Energiestiftung Schleswig-Holstein, Kiel (Germany)

    2003-07-01

    A professional marketing approach should support a transformation of the market towards more energy efficient decisions not only of consumers, but also of retailers and producers. The state-wide energy efficiency advertising campaign 'Aus. Wirklich aus?' (off. really off?) against pointless stand-by consumption took place in Schleswig-Holstein (Northern Germany) from November 2000 until June 2001 followed by reminder ads in autumn 2001 and spring 2002. Extraordinary efforts were undertaken to evaluate the effects of the campaign, because it served as a pilot project for an approach on the national level. Two representative samples of the population and specialist dealers for electrical equipment in two German states (one as 'control group') were interviewed by phone before the launch of the campaign, at the peak of the advertising pressure and one year after. The results are presented with special emphasis on sustainable effects with respect to energy awareness and interest of the consumers as well as on their intention to act and on specific actions like switching the TV (really) off. For most of these criteria long lasting effects could be observed. Also the retailers steadily increased their own (additional) activities to profit from the campaign. The results are discussed with respect to economical cost-benefit-arguments and in the light of psychological theories of information processing in order to describe the essential lessons learned for successful energy efficiency campaigns in the future.

  4. Long-term modelling of Carbon Capture and Storage, Nuclear Fusion, and large-scale District Heating

    DEFF Research Database (Denmark)

    Grohnheit, Poul Erik; Korsholm, Søren Bang; Lüthje, Mikael

    2011-01-01

    before 2050. The modelling tools developed by the International Energy Agency (IEA) Implementing Agreement ETSAP include both multi-regional global and long-term energy models till 2100, as well as national or regional models with shorter time horizons. Examples are the EFDA-TIMES model, focusing...... on nuclear fusion and the Pan European TIMES model, respectively. In the next decades CCS can be a driver for the development and expansion of large-scale district heating systems, which are currently widespread in Europe, Korea and China, and with large potentials in North America. If fusion will replace...... fossil fuel power plants with CCS in the second half of the century, the same infrastructure for heat distribution can be used which will support the penetration of both technologies. This paper will address the issue of infrastructure development and the use of CCS and fusion technologies using...

  5. Long-Term Evaluation of SSL Field Performance in Select Interior Projects

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wilkerson, Andrea M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-28

    This GATEWAY project evaluated four field installations to better understand the long-term performance of a number of LED products, which can hopefully stimulate improvements in designing, manufacturing, specifying, procuring, and installing LED products. Field studies provide the opportunity to discover and investigate issues that cannot be simulated or uncovered in a laboratory, but the installed performance over time of commercially available LED products has not been well documented. Improving long-term performance can provide both direct energy savings by reducing the need to over-light to account for light loss and indirect energy savings through better market penetration due to SSL’s competitive advantages over less-efficient light source technologies. The projects evaluated for this report illustrate that SSL use is often motivated by advantages other than energy savings, including maintenance savings, easier integration with control systems, and improved lighting quality.

  6. GENERALIZED MILANKOVITCH CYCLES AND LONG-TERM CLIMATIC HABITABILITY

    International Nuclear Information System (INIS)

    Spiegel, David S.; Dressing, Courtney D.; Raymond, Sean N.; Scharf, Caleb A.; Mitchell, Jonathan L.

    2010-01-01

    Although Earth's orbit is never far from circular, terrestrial planets around other stars might experience substantial changes in eccentricity. Eccentricity variations could lead to climate changes, including possible 'phase transitions' such as the snowball transition (or its opposite). There is evidence that Earth has gone through at least one globally frozen, 'snowball' state in the last billion years, which it is thought to have exited after several million years because global ice-cover shut off the carbonate-silicate cycle, thereby allowing greenhouse gases to build up to sufficient concentration to melt the ice. Due to the positive feedback caused by the high albedo of snow and ice, susceptibility to falling into snowball states might be a generic feature of water-rich planets with the capacity to host life. This paper has two main thrusts. First, we revisit one-dimensional energy balance climate models as tools for probing possible climates of exoplanets, investigate the dimensional scaling of such models, and introduce a simple algorithm to treat the melting of the ice layer on a globally frozen planet. We show that if a terrestrial planet undergoes Milankovitch-like oscillations of eccentricity that are of great enough magnitude, it could melt out of a snowball state. Second, we examine the kinds of variations of eccentricity that a terrestrial planet might experience due to the gravitational influence of a giant companion. We show that a giant planet on a sufficiently eccentric orbit can excite extreme eccentricity oscillations in the orbit of a habitable terrestrial planet. More generally, these two results demonstrate that the long-term habitability (and astronomical observables) of a terrestrial planet can depend on the detailed architecture of the planetary system in which it resides.

  7. Long-term surveillance plan for the Collins Ranch disposal site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1994-08-01

    This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Collins Ranch disposal site, Lakeview, Oregon, describes the surveillance activities for the disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States and details how long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  8. Interim long-term surveillance plan for the Cheney disposal site near, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This interim long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney Disposal Site in Mesa County near Grand Junction, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Cheney disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  9. The implications of future building scenarios for long-term building energy research and development

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, W.T.

    1986-12-01

    This report presents a discussion of alternative future scenarios of the building environment to the year 2010 and assesses the implications these scenarios present for long-term building energy R and D. The scenarios and energy R and D implications derived from them are intended to serve as the basis from which a strategic plan can be developed for the management of R and D programs conducted by the Office of Buildings and Community Systems, US Department of Energy. The scenarios and analysis presented here have relevance not only for government R and D programs; on the contrary, it is hoped that the results of this effort will be of interest and useful to researchers in both private and public sector organizations that deal with building energy R and D. Making R and D decisions today based on an analysis that attempts to delineate the nexus of events 25 years in the future are clearly decisions made in the face of uncertainty. Yet, the effective management of R and D programs requires a future-directed understanding of markets, technological developments, and environmental factors, as well as their interactions. The analysis presented in this report is designed to serve that need. Although the probability of any particular scenario actually occurring is uncertain, the scenarios to be presented are sufficiently robust to set bounds within which to examine the interaction of forces that will shape the future building environment.

  10. CO2 emissions from developing countries: Better understanding the role of energy in the long term

    International Nuclear Information System (INIS)

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO 2 ) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and Co 2 in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted for China, India, Indonesia and South Korea in Asia

  11. CO2 emissions from developing countries: Better understanding the role of energy in the long term

    International Nuclear Information System (INIS)

    Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO 2 ) and changes in the global climate. of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist, energy demand in developing nations will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO 2 in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. A combined study was carried out for the countries of the Gulf Cooperation Council (Bahrain, Kuwait, Oman, Qatar, Saudi Arabia and the United Arab Emirates)

  12. CO2 emissions from developing countries: Better understanding the role of Energy in the long term

    International Nuclear Information System (INIS)

    Ketoff, A.; Sathaye, J.; Goldman, N.

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO 2 ) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist energy demand in developing will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO 2 in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted fro Argentina, Brazil, Mexico and Venezuela in Latin America

  13. Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1997-08-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Burro Canyon disposal cell performs as designed and is cared for in a manner that protects the public health and safety and the environment. The program is based on site inspections to identify threats to disposal cell integrity. Before each disposal cell is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP

  14. Interim report on the long-term outlook of energy demands and supplies

    International Nuclear Information System (INIS)

    1982-01-01

    The supply/demand committee on Overall Energy Council has long deliberated on the outlook of energy demands and supplies, and finalized its report, assuming a yearly economic growth of about 5% in 1980s and utmost efforts by both the people and the government: the background and basic ideas to decide the outlook, the outlook of energy demands and supplies, and conclusions. The energy demand for fiscal 1990 is put at 590 million kl (crude oil equivalent) and for fiscal 2000 at 770 million kl with energy saving ratios 15.5% and 25%, respectively. The energy supply by nuclear power for fiscal 1990 is then put at 46,000 MW with 11.3% of the total. In the energy supply outlook for fiscal 1990, the aspects of the economy and stability as well as the quantity of respective energy sources are considered, overall to reduce the reliance on petroleum. (Mori, K.)

  15. Long-Term Surveillance and Maintenance Plan for the Gnome-Coach, New Mexico, Site

    Energy Technology Data Exchange (ETDEWEB)

    Kreie, Ken [USDOE Office of Legacy Management, Grand Junction, CO (United States); Findlay, Rick [Navarro Research and Engineering, Inc., Grand Junction, CO (United States)

    2016-06-08

    The U.S. Department of Energy (DOE) Office of Legacy Management (LM) prepared this Long-Term Surveillance and Maintenance Plan (LTSMP) for the Gnome-Coach, New Mexico, Site (the Gnome site). The Gnome site is approximately 25 miles east of Carlsbad in Eddy County, New Mexico (Figure 1). The site was the location of a 3-kiloton-yield underground nuclear test and radioisotope groundwater tracer test. The tests resulted in residual contamination and post-detonation features that require long-term oversight. Long-term responsibility for the site was transferred from the DOE National Nuclear Security Administration Nevada Site Office to LM on October 1, 2006. Responsibilities include surveillance, monitoring, and maintenance of institutional controls (ICs) as part of the long-term stewardship of the site. Long-term stewardship is designed to ensure protection of human health and the environment.

  16. Long-term associative learning predicts verbal short-term memory performance.

    Science.gov (United States)

    Jones, Gary; Macken, Bill

    2018-02-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term memory system separate from long-term knowledge. Using natural language corpora, we show experimentally and computationally that performance on three widely used measures of short-term memory (digit span, nonword repetition, and sentence recall) can be predicted from simple associative learning operating on the linguistic environment to which a typical child may have been exposed. The findings support the broad view that short-term verbal memory performance reflects the application of long-term language knowledge to the experimental setting.

  17. Long-term logistic analysis of FBR introduction strategy: avoiding both uranium and plutonium shortage

    International Nuclear Information System (INIS)

    Suzuki, T.

    1995-01-01

    Despite comfortable predictions on short to mid-term uranium resources, there is still a concern about long-term availability of competitive uranium resources. In order to achieve substantial uranium saving, early introduction of Fast Breeder Reactor (FBR) is desirable. But it is also known that rapid introduction of FBR could result in plutonium storage. Will there be enough plutonium on a global scale to sustain fast FBR growth? is there any other way to save uranium resource? This paper concludes that multi-option strategies to achieve flexible long-term strategy to avoid both uranium and plutonium storage are desirable. (authors)

  18. Long-Term Information Management (LTIM) of Safeguards Data at Geological Repositories

    International Nuclear Information System (INIS)

    Haddal, R.; Finch, R.; Baldwin, G.

    2016-01-01

    Full text: The International Atomic Energy Agency (IAEA) has noted that long-term information management (LTIM) of safeguards data at geological repositories will be a significant challenge in the future as information and records management systems evolve and permanent disposal of nuclear materials becomes a high-priority in many countries. Identifying approaches to how information on buried high-level nuclear waste will be managed, handled, organized, archived, read, interpreted, and secured for the long-term (1000 years after repository closure and beyond) will be key to safeguards at repositories). The purpose of this study is to explore various long-term information management systems and how they may or may not be adapted for geological repositories for high-level waste. The study will also examine what types of safeguards-related data should be included in such a system. The study will also consider hypotheses about future needs and analyze the pros and cons of very long-term information management. (author

  19. Measurement of global and local resonance terms

    CERN Document Server

    Tomás, R; Calaga, R; Fischer, W; Franchi, A; Rumolo, Giovanni

    2005-01-01

    Recently, resonance driving terms were successfully measured in the CERN SPS and the BNL RHIC from the Fourier spectrum of beam position monitor (BPM) data. Based on these measurements a new analysis has been derived to extract truly local observables from BPM data. These local observables are called local resonance terms since they share some similarities with the global resonance terms. In this paper we derive these local terms analytically and present experimental measurements of sextupolar global and local resonance terms in RHIC. Nondestructive measurements of these terms using ac dipoles are also presented.

  20. Global Energy Issues and Alternate Fueling

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    This viewgraph presentation describes world energy issues and alternate fueling effects on aircraft design. The contents include: 1) US Uses about 100 Quad/year (1 Q = 10(exp 15) Btu) World Energy Use: about 433 Q/yr; 2) US Renewable Energy about 6%; 3) Nuclear Could Grow: Has Legacy Problems; 4) Energy Sources Primarily NonRenewable Hydrocarbon; 5) Notes; 6) Alternate Fuels Effect Aircraft Design; 7) Conventional-Biomass Issue - Food or Fuel; 8) Alternate fuels must be environmentally benign; 9) World Carbon (CO2) Emissions Problem; 10) Jim Hansen s Global Warming Warnings; 11) Gas Hydrates (Clathrates), Solar & Biomass Locations; 12) Global Energy Sector Response; 13) Alternative Renewables; 14) Stratospheric Sulfur Injection Global Cooling Switch; 15) Potential Global Energy Sector Response; and 16) New Sealing and Fluid Flow Challenges.

  1. Modelling long term energy consumption of French residential sector - improving behavioral realism and simulating ambitious scenarios

    International Nuclear Information System (INIS)

    Allibe, Benoit

    2012-01-01

    This thesis aims to integrate components of an economic model of the behaviors of households in a technological model of French residential sector energy consumption dynamics and to analyze the consequences of this integration on the results of long-term residential energy consumption simulations (2030-2050). The results of this work highlight significant differences between the actual household space heating energy consumptions and those estimated by engineering models. These differences are largely due to the elasticity of thermal comfort demand to thermal comfort price. Our improved model makes it possible to conjointly integrate the concepts of price elasticity and rebound effect (the increase in energy service level following an improvement in energy performance of the equipment providing the service) in a daily behavior model. Regarding space heating consumption, the consequences of this behavioral adaptation - combined with some technical defects - are a significant reduction of the technical and behavioral energy saving potentials (while effective daily use of energy is generally lower than predicted by engineering models) at a national level. This implies that mid and long-term national energy policy targets (a 38% drop in primary energy consumption by 2020 and a reduction in greenhouse gas emissions by a factor of 4 by 2050 compared to the 1990 level) will be harder to reach than previously expected for the residential sector. These results also imply that a strong reduction in carbon emissions cannot be achieved solely through the diffusion of efficient technologies and energy conservation behavior but also requires to significantly lower the average carbon content of residential space heating energy through the generalized use of wood energy. The second issue addressed in this thesis is the influence of the resolution of a techno-economic model (i.e. its ability to represent the various values that a variable can have within the modeled system) on its

  2. Long Term Inactive Well Program requirements : interim directive ID 97-08

    International Nuclear Information System (INIS)

    1997-01-01

    The Alberta Energy and Utilities Board and the petroleum industry have agreed that industry must take proactive measures to reduce the number of long term inactive wells in Alberta. This interim directive outlines the requirements of the Long Term Inactive Well Program, and provides a schedule for industry to reduce the number of inactive wells. EUB estimates that there are currently 35,000 inactive wells in Alberta, 10,000 of which have been inactive for more than 10 consecutive years. These wells pose a financial risk to the Abandonment Fund which was established to help fund the abandonment of orphan wells. The Long Term Inactive Well Program was created based on the recommendations of a joint government/industry committee, and will operate for five years. 5 tabs

  3. Global supply of oil. challenges and uncertainties; El suministro global de petroleo. Retos e incertidumbres

    Energy Technology Data Exchange (ETDEWEB)

    Marzo, M.

    2011-07-01

    The National Petroleum Council warns us of a disturbing reality: the world is running out of fossil resources, but the continued increase in oil extraction from conventional sources has increasingly risks and these are a serious obstacle to ensure demand the medium term. also the International Energy Agency also warns of serious uncertainties and risks in the field of oil production to meet global demand in the medium and long term.

  4. Long-Term Improvement of Neurological Signs and Metabolic Dysfunction in a Mouse Model of Krabbe's Disease after Global Gene Therapy.

    Science.gov (United States)

    Marshall, Michael S; Issa, Yazan; Jakubauskas, Benas; Stoskute, Monika; Elackattu, Vince; Marshall, Jeffrey N; Bogue, Wil; Nguyen, Duc; Hauck, Zane; Rue, Emily; Karumuthil-Melethil, Subha; Zaric, Violeta; Bosland, Maarten; van Breemen, Richard B; Givogri, Maria I; Gray, Steven J; Crocker, Stephen J; Bongarzone, Ernesto R

    2018-03-07

    We report a global adeno-associated virus (AAV)9-based gene therapy protocol to deliver therapeutic galactosylceramidase (GALC), a lysosomal enzyme that is deficient in Krabbe's disease. When globally administered via intrathecal, intracranial, and intravenous injections to newborn mice affected with GALC deficiency (twitcher mice), this approach largely surpassed prior published benchmarks of survival and metabolic correction, showing long-term protection of demyelination, neuroinflammation, and motor function. Bone marrow transplantation, performed in this protocol without immunosuppressive preconditioning, added minimal benefits to the AAV9 gene therapy. Contrasting with other proposed pre-clinical therapies, these results demonstrate that achieving nearly complete correction of GALC's metabolic deficiencies across the entire nervous system via gene therapy can have a significant improvement to behavioral deficits, pathophysiological changes, and survival. These results are an important consideration for determining the safest and most effective manner for adapting gene therapy to treat this leukodystrophy in the clinic. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.

  5. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    Energy Technology Data Exchange (ETDEWEB)

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Tröger, Josephine [Department of Psychology, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Interdisciplinary Research Group on Environmental Issues, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Muñoz, Katherine [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Interdisciplinary Research Group on Environmental Issues, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Frör, Oliver [Institute for Environmental Sciences, Group of Environmental Economics, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany); Schaumann, Gabriele Ellen, E-mail: schaumann@uni-landau.de [Institute for Environmental Sciences, Group of Environmental and Soil Chemistry, University of Koblenz-Landau, Fortstraße 7, 76829 Landau (Germany)

    2016-04-15

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  6. Plastic mulching in agriculture. Trading short-term agronomic benefits for long-term soil degradation?

    International Nuclear Information System (INIS)

    Steinmetz, Zacharias; Wollmann, Claudia; Schaefer, Miriam; Buchmann, Christian; David, Jan; Tröger, Josephine; Muñoz, Katherine; Frör, Oliver; Schaumann, Gabriele Ellen

    2016-01-01

    Plastic mulching has become a globally applied agricultural practice for its instant economic benefits such as higher yields, earlier harvests, improved fruit quality and increased water-use efficiency. However, knowledge of the sustainability of plastic mulching remains vague in terms of both an environmental and agronomic perspective. This review critically discusses the current understanding of the environmental impact of plastic mulch use by linking knowledge of agricultural benefits and research on the life cycle of plastic mulches with direct and indirect implications for long-term soil quality and ecosystem services. Adverse effects may arise from plastic additives, enhanced pesticide runoff and plastic residues likely to fragment into microplastics but remaining chemically intact and accumulating in soil where they can successively sorb agrochemicals. The quantification of microplastics in soil remains challenging due to the lack of appropriate analytical techniques. The cost and effort of recovering and recycling used mulching films may offset the aforementioned benefits in the long term. However, comparative and long-term agronomic assessments have not yet been conducted. Furthermore, plastic mulches have the potential to alter soil quality by shifting the edaphic biocoenosis (e.g. towards mycotoxigenic fungi), accelerate C/N metabolism eventually depleting soil organic matter stocks, increase soil water repellency and favour the release of greenhouse gases. A substantial process understanding of the interactions between the soil microclimate, water supply and biological activity under plastic mulches is still lacking but required to estimate potential risks for long-term soil quality. Currently, farmers mostly base their decision to apply plastic mulches rather on expected short-term benefits than on the consideration of long-term consequences. Future interdisciplinary research should therefore gain a deeper understanding of the incentives for farmers

  7. Global energy context: future scenarios

    International Nuclear Information System (INIS)

    Beretta, Gian Paolo

    2006-01-01

    After a brief analysis of the history of global energy consumption, this paper discusses a plausible scenario of energy needs and related carbon emissions for the rest of the century. The global outlook and the probable evolution of several factors that impact on energy policy considerations - even on the local scale - demonstrate the great complexity and planetary dimension of the problems, as well as the almost certain sterility of out-of-context domestic energy-policy measures [it

  8. Long-Term Planetary Habitability and the Carbonate-Silicate Cycle.

    Science.gov (United States)

    Rushby, Andrew J; Johnson, Martin; Mills, Benjamin J W; Watson, Andrew J; Claire, Mark W

    2018-05-01

    The potential habitability of an exoplanet is traditionally assessed by determining whether its orbit falls within the circumstellar "habitable zone" of its star, defined as the distance at which water could be liquid on the surface of a planet (Kopparapu et al., 2013 ). Traditionally, these limits are determined by radiative-convective climate models, which are used to predict surface temperatures at user-specified levels of greenhouse gases. This approach ignores the vital question of the (bio)geochemical plausibility of the proposed chemical abundances. Carbon dioxide is the most important greenhouse gas in Earth's atmosphere in terms of regulating planetary temperature, with the long-term concentration controlled by the balance between volcanic outgassing and the sequestration of CO 2 via chemical weathering and sedimentation, as modulated by ocean chemistry, circulation, and biological (microbial) productivity. We developed a model that incorporates key aspects of Earth's short- and long-term biogeochemical carbon cycle to explore the potential changes in the CO 2 greenhouse due to variance in planet size and stellar insolation. We find that proposed changes in global topography, tectonics, and the hydrological cycle on larger planets result in proportionally greater surface temperatures for a given incident flux. For planets between 0.5 and 2 R ⊕ , the effect of these changes results in average global surface temperature deviations of up to 20 K, which suggests that these relationships must be considered in future studies of planetary habitability. Key Words: Planets-Atmospheres-Carbon dioxide-Biogeochemistry. Astrobiology 18, 469-480.

  9. Energy prices will play an important role in determining global land use in the twenty first century

    Science.gov (United States)

    Steinbuks, Jevgenijs; Hertel, Thomas W.

    2013-03-01

    Global land use research to date has focused on quantifying uncertainty effects of three major drivers affecting competition for land: the uncertainty in energy and climate policies affecting competition between food and biofuels, the uncertainty of climate impacts on agriculture and forestry, and the uncertainty in the underlying technological progress driving efficiency of food, bioenergy and timber production. The market uncertainty in fossil fuel prices has received relatively less attention in the global land use literature. Petroleum and natural gas prices affect both the competitiveness of biofuels and the cost of nitrogen fertilizers. High prices put significant pressure on global land supply and greenhouse gas emissions from terrestrial systems, while low prices can moderate demands for cropland. The goal of this letter is to assess and compare the effects of these core uncertainties on the optimal profile for global land use and land-based GHG emissions over the coming century. The model that we develop integrates distinct strands of agronomic, biophysical and economic literature into a single, intertemporally consistent, analytical framework, at global scale. Our analysis accounts for the value of land-based services in the production of food, first- and second-generation biofuels, timber, forest carbon and biodiversity. We find that long-term uncertainty in energy prices dominates the climate impacts and climate policy uncertainties emphasized in prior research on global land use.

  10. Energy prices will play an important role in determining global land use in the twenty first century

    International Nuclear Information System (INIS)

    Steinbuks, Jevgenijs; Hertel, Thomas W

    2013-01-01

    Global land use research to date has focused on quantifying uncertainty effects of three major drivers affecting competition for land: the uncertainty in energy and climate policies affecting competition between food and biofuels, the uncertainty of climate impacts on agriculture and forestry, and the uncertainty in the underlying technological progress driving efficiency of food, bioenergy and timber production. The market uncertainty in fossil fuel prices has received relatively less attention in the global land use literature. Petroleum and natural gas prices affect both the competitiveness of biofuels and the cost of nitrogen fertilizers. High prices put significant pressure on global land supply and greenhouse gas emissions from terrestrial systems, while low prices can moderate demands for cropland. The goal of this letter is to assess and compare the effects of these core uncertainties on the optimal profile for global land use and land-based GHG emissions over the coming century. The model that we develop integrates distinct strands of agronomic, biophysical and economic literature into a single, intertemporally consistent, analytical framework, at global scale. Our analysis accounts for the value of land-based services in the production of food, first- and second-generation biofuels, timber, forest carbon and biodiversity. We find that long-term uncertainty in energy prices dominates the climate impacts and climate policy uncertainties emphasized in prior research on global land use. (letter)

  11. Long-term exports and use of interconnections: Development plan 1993

    International Nuclear Information System (INIS)

    1992-01-01

    The orientations, objectives, and strategies proposed for long-term exports of electricity from Quebec are presented, as well as the use of interconnections between Hydro-Quebec and northeastern US utilities. A recent historical overview shows that after a period of exporting large amounts of surplus energy in the late 1980s, most export sales are of firm power and energy. Export commitments signed for 1993-2000 amount to total exports of 11-14 TWh per year with revenues generated to be at least $4 billion. Hydro-Quebec originally had an export strategy with a target of 3,500 MW of firm power and energy exports by the year 2000. An economic recession, lower demand for power in the USA, new planning policies at US utilities emphasizing maximum flexibility, and competition from other electricity providers have revised this estimate downward. Over the short and medium term, neighboring US utilities will experience surpluses in both capacity and energy, and additional requirements indicated by their demand forecasts only appear after the year 2000. The situation is similar for neighboring Canadian utilities. In the long term, Hydro-Quebec's objective is to meet 15-20% of new requirements on neighboring US systems. New agreements could represent 1,500 MW by the year 2004, or ca 8.5 TWh/y. Hydro-Quebec also wants to be recognized as an active partner in the market for short-term transactions and to maximize use of its generation and interconnection facilities. The utility will examine transactions such as guaranteeing reserve capacity, energy banking, wheeling service, and pooling of generating capacities in order to offer the products best suited to customer needs. 3 figs., 3 tabs

  12. Traveling-wave reactors: A truly sustainable and full-scale resource for global energy needs

    International Nuclear Information System (INIS)

    Ellis, T.; Petroski, R.; Hejzlar, P.; Zimmerman, G.; McAlees, D.; Whitmer, C.; Touran, N.; Hejzlar, J.; Weave, K.; Walter, J. C.; McWhirter, J.; Ahlfeld, C.; Burke, T.; Odedra, A.; Hyde, R.; Gilleland, J.; Ishikawa, Y.; Wood, L.; Myhrvold, N.; Gates Iii, W. H.

    2010-01-01

    Rising environmental and economic concerns have signaled a desire to reduce dependence on hydrocarbon fuels. These concerns have brought the world to an inflection point and decisions made today will dictate what the global energy landscape will look like for the next half century or more. An optimal energy technology for the future must meet stricter standards than in the past; in addition to being economically attractive, it now must also be environmentally benign, sustainable and scalable to global use. For stationary energy, only one existing resource comes close to fitting all of the societal requirements for an optimal energy source: nuclear energy. Its demonstrated economic performance, power density, and emissions-free benefits significantly elevate nuclear electricity generation above other energy sources. However, the current nuclear fuel cycle has some attributes that make it challenging to expand on a global scale. Traveling-wave reactor (TWR) technology, being developed by TerraPower, LLC, represents a potential solution to these limitations by offering a nuclear energy resource which is truly sustainable at full global scale for the indefinite future and is deployable in the near-term. TWRs are capable of offering a ∼40-fold gain in fuel utilization efficiency compared to conventional light-water reactors burning enriched fuel. Such high fuel efficiency, combined with an ability to use uranium recovered from river water or sea-water (which has been recently demonstrated to be technically and economically feasible) suggests that enough fuel is readily available for TWRs to generate electricity for 10 billion people at United States per capita levels for million-year time-scales. Interestingly, the Earth's rivers carry into the ocean a flux of uranium several times greater than that required to replace the implied rate-of-consumption, so that the Earth's slowly-eroding crust will provide a readily-accessible flow of uranium sufficient for all of

  13. Simulation analysis of the possibility of introducing massive renewable energy and nuclear fuel cycle in the scenario to halve global CO2 emissions by the year 2050

    International Nuclear Information System (INIS)

    Hosoya, Yoshifumi; Komiyama, Ryoichi; Fujii, Yasumasa

    2011-01-01

    There is growing attention to the regulation of greenhouse gas (GHG) emissions to mitigate the global warming. Hence, the target of 50% reduction of global GHG emissions by the year 2050 has been investigated in this paper. The authors have been revising the regionally disaggregated world energy model which is formulated as a large scale linear optimization model from the aspect of nuclear and photovoltaic power generation technologies. This paper explains the structure of the revised world energy model considering the intermittent characteristics of photovoltaic power generation derived from the changes in weather conditions. And also this paper shows the simulation results to halve global CO 2 emissions by the year 2050 and evaluates the long-term technological options such as nuclear fuel cycle and renewable energies. Finally the authors discuss the future step for extensive revision of the energy model. (author)

  14. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  15. The potential benefits of a new poliovirus vaccine for long-term poliovirus risk management.

    Science.gov (United States)

    Duintjer Tebbens, Radboud J; Thompson, Kimberly M

    2016-12-01

    To estimate the incremental net benefits (INBs) of a hypothetical ideal vaccine with all of the advantages and no disadvantages of existing oral and inactivated poliovirus vaccines compared with current vaccines available for future outbreak response. INB estimates based on expected costs and polio cases from an existing global model of long-term poliovirus risk management. Excluding the development costs, an ideal poliovirus vaccine could offer expected INBs of US$1.6 billion. The ideal vaccine yields small benefits in most realizations of long-term risks, but great benefits in low-probability-high-consequence realizations. New poliovirus vaccines may offer valuable insurance against long-term poliovirus risks and new vaccine development efforts should continue as the world gathers more evidence about polio endgame risks.

  16. Long-term surveillance plan for the Maybell, Colorado Disposal Site

    International Nuclear Information System (INIS)

    1997-09-01

    This long-term surveillance plan (LTSP) describes the U.S. Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE's determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR section 40.27(b) and 40 CFR section 192.03

  17. Proceedings of the 13th forum: Croatian Energy Day: Long-term planning and consumer supply safety in open market conditions

    International Nuclear Information System (INIS)

    Granic, G.; Jelavic, B.

    2004-01-01

    The process of opening up the energy market has been proceeding at an accelerating pace; legislative and institutional prerequisites have come into existence for a transparent and nondiscriminatory approach to energy systems (networks), and for an easy market access to suppliers by granting customers the right of supplier choice. National borders - once an obstacle to energy market development - are thus eliminated. Advantages of this sort of development strategy for energy markets include top-quality competition and market de-monopolization, which in turn, as a rule, imply a more favorable position for the users of energy system services, for energy buyers / purchasers, and for consumers. However, the coexistence of internal (national) and international competitions raises the issue of the framework and contents of long-term planning, as well as of the liability of states and government institutions for the adequacy, security, and stability of energy sources, and consequently for customer supply security

  18. Long-term preservation of bacon by high energy electrons

    International Nuclear Information System (INIS)

    Hannah, K.W.; Simic, M.G.

    1985-01-01

    Extra long-term storage of frozen, vacuum packed, cured bacon can be achieved by electronation, using 3 MeV electrons generated by an electron accelerator. A combination process consisting of low nitrite curing (40 ppm), smoking, vacuum packaging in Saran plastic, electronation (1 to 3 Mrad), and freezing (-10 C) allows storage for at least 2 1/2 years without any noticeable loss in quality, e.g. color, appearance, smell, or taste. This process also eliminates microbiological hazards associated with Salmonella and C. botulinum. Six Mrad tons/hour throughput of a 3 MeV 50 kw electron beam accelerator for standard sliced bacon packaging indicates a practical and economic commercial use for this combination process. (author)

  19. Comment 2 on workshop in economics - issues in benefit-cost analysis: Amplification channels and discounting long-term environmental damages

    International Nuclear Information System (INIS)

    Hanson, D.A.

    1992-01-01

    Many environmental problems have long-term effects. Acid rain has long-term effects on soils, forests, and exposed materials. Global climate change has even longer-term effects. This difference in timing - between the near-term cost of environmental protection and the long-term environmental effects - makes it difficult to conduct a cost-benefit analysis of any program designed to abate environmental damages. The rate at which to discount long-term environmental damages becomes a key question in comparisons of benefits and costs. This comment points out an important facet of the discounting issue. The discount rate for calculating the present value of future environmental benefits may be much lower than the rate of return on investment. Cost-benefit analysis is a framework in which to evaluate policies and decisions. Because global climate change is a complex problem, extensions of cost-benefit theory can be expected to add additional insights, particularly in the following areas: distinguishing distributional effects among nations, over time, and among generations; determining the rate of discount that is appropriate for long-term environmental damages and separating risk aspects from the rate of discount; and assessing amplification effects when policies involve large expenditures relative to the economy or when affected sectors are significant sectors of the economy

  20. Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1996-11-01

    This long-term surveillance plant (LTSP) describes the US Department of energy's (DOE) long-term care program for the Uranium Mill Tailings Remediation Action (UMTRA) Project's burro Canyon disposal cell in San Miguel County, Colorado. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. No ground water monitoring will be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low-yield from the upper-most aquifer

  1. Flexibility and reliability in long-term planning exercises dedicated to the electricity sector

    Energy Technology Data Exchange (ETDEWEB)

    Maizi, Nadia; Drouineau, Mathilde; Assoumou, Edi; Mazauric, Vincent

    2010-09-15

    Long-term planning models are useful to build plausible options for future energy systems and must consequently address the technological feasibility and associated cost of these options. This paper focuses on the electricity sector and on problems of flexibility and reliability in power systems in order to improve results provided by long-term planning exercises: flexibility needs are integrated as an additional criterion for new investment decisions and, reliability requirements are assessed through the level of electrical losses they induced and a related cost. These approaches are implemented in a long-term planning model and demonstrated through a study of the Reunion Island.

  2. Long term energy system analysis of Japan based on 'options for energy and environment' by the energy and environmental council

    International Nuclear Information System (INIS)

    Hagiwara, Naoto; Kurosawa, Atsushi

    2013-01-01

    Implications to Japanese energy system are discussed especially in terms of primary energy supply and power generation portfolio, using sensitivity analysis results by an optimization type energy model based on TIMES modeling framework. We updated energy service demand, efficiency in energy conversion and consumption, and power generation costs based on the recent energy policy document called 'Options for Energy and Environment'. The time horizon of the model is 2050. The sensitivity analysis results are presented for 'Three scenarios for 2030' including nuclear phase out scenarios with/without CO 2 emission constraint. The results are compared with 'Options for Energy and Environment'. (author)

  3. Long-term leaching of nutrients and contaminants from wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto; Hyks, J.; Astrup, Thomas Fruergaard

    2018-01-01

    With increasing amounts of woody biomass being combusted for energy purposes worldwide, more wood ash is being generated and needs management. As an alternative to landfilling, residues may be utilised for liming and fertilising purposes on forest soils. Comprehensive evaluations of long-term lea......With increasing amounts of woody biomass being combusted for energy purposes worldwide, more wood ash is being generated and needs management. As an alternative to landfilling, residues may be utilised for liming and fertilising purposes on forest soils. Comprehensive evaluations of long......-term leaching from these residues are needed in order to assess potential environmental impacts associated with their utilisation. Two Danish wood ash samples, one fly ash and one mixed ash (a combination of fly ash and bottom ash), were evaluated in long-term percolation column tests (up to L/S ∼2000 L....../kg), in order to quantify the release of major, minor and trace metal(loid)s. While columns of three different lengths were used, the leaching of individual elements could be described as a function of the L/S ratio – irrespective of the column length. At L/S 1000 L/kg, the cumulative releases of K, S, Na, Ca...

  4. Comprehensive evaluation of global energy interconnection development index

    Science.gov (United States)

    Liu, Lin; Zhang, Yi

    2018-04-01

    Under the background of building global energy interconnection and realizing green and low-carbon development, this article constructed the global energy interconnection development index system which based on the current situation of global energy interconnection development. Through using the entropy method for the weight analysis of global energy interconnection development index, and then using gray correlation method to analyze the selected countries, this article got the global energy interconnection development index ranking and level classification.

  5. Long-term surveillance plan for the Collins Ranch Disposal Site, Lakeview, Oregon

    International Nuclear Information System (INIS)

    1993-12-01

    This long-term surveillance plan (LTSP) for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lakeview (Collins Ranch) disposal cell, which will be referred to as the Collins Ranch disposal cell throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the US Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials. This LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and details how the long-term care of the disposal site will be carried out. It is based on the DOE's Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a)

  6. Nutrition in children with long-term health conditions

    OpenAIRE

    Westwood, A

    2015-01-01

    Long-term health conditions (LTHCs) in children may affect nutrition and growth by means of multiple mechanisms. Both undernutrition and overweight/obesity are risk factors. Direct effects of the condition that may cause undernutrition include increased resting energy expenditure, excess losses through malabsorption, difficulty ingesting food, and decreased appetite. Indirect effects of LTHCs may be mediated by learnt or adaptive behaviours, secondary anorexia, inappropriate diets, or conditi...

  7. Long-term stable surface modification of DLC coatings

    Directory of Open Access Journals (Sweden)

    Gotzmann Gaby

    2017-09-01

    Full Text Available The use of coatings based on diamond like carbon (DLC for medical applications was established during the last years. Main advantages of these coatings are its high hardness, good wear and friction behavior and its biocompatibility. Using low-energy electron-beam treatment, we addressed the surface modification of DLC coatings. The aim was to generate new biofunctional surface characteristics that are long-term stable.

  8. Long term deactivation test of high dust SCR catalysts by straw co-firing

    Energy Technology Data Exchange (ETDEWEB)

    Weigang Lin; Degn Jensen, A.; Bjerkvig, J.

    2009-12-15

    The consequences of carbon dioxide induced global warming cause major concern worldwide. The consumption of energy produced with fossil fuels is the major factor that contributes to the global warming. Biomass is a renewable energy resource and has a nature of CO{sub 2} neutrality. Co-combustion of biomass in existing coal fired power plants can maintain high efficiency and reduce the emission of CO{sub 2} at same time. However, one of the problems faced by co-firing is deactivation of the SCR catalysts. Understanding of the mechanisms of deactivation of the catalyst elements at co-firing conditions is crucial for long term runs of the power plants. Twenty six SCR catalyst elements were exposed at two units (SSV3 and SSV4) in the Studstrup Power Plant for a long period. Both units co-fire coal and straw with a typical fraction of 8-10% straw on an energy basis during co-firing. SSV4 unit operated in co-firing mode most of the time; SSV3 unit co-fired straw half of the operating time. The main objective of this PSO-project is to gain knowledge of a long term influence on catalyst activity when co-firing straw in coal-fired power plants, thus, to improve the basis for operating the SCR-plants for NO{sub x}-reduction. The exposure time of the applied catalyst elements (HTAS and BASF) varied from approximately 5000 to 19000 hours in the power plant by exchanging the element two times. The activity of all elements was measured before and after exposure in a bench scale test rig at the Department of Chemical and Biochemical Engineering, Technical University of Denmark. The results show that the activity, estimated by exclusion of channel clogging of the elements, decreases gradually with the total exposure time. It appears that the exposure time under co-firing condition has little effect on the deactivation of the catalyst elements and no sharp decrease of the activity was observed. The average deactivation rate of the catalyst elements is 1.6 %/1000 hours. SEM

  9. Analysis of high-frequency energy in long-term average spectra of singing, speech, and voiceless fricatives.

    Science.gov (United States)

    Monson, Brian B; Lotto, Andrew J; Story, Brad H

    2012-09-01

    The human singing and speech spectrum includes energy above 5 kHz. To begin an in-depth exploration of this high-frequency energy (HFE), a database of anechoic high-fidelity recordings of singers and talkers was created and analyzed. Third-octave band analysis from the long-term average spectra showed that production level (soft vs normal vs loud), production mode (singing vs speech), and phoneme (for voiceless fricatives) all significantly affected HFE characteristics. Specifically, increased production level caused an increase in absolute HFE level, but a decrease in relative HFE level. Singing exhibited higher levels of HFE than speech in the soft and normal conditions, but not in the loud condition. Third-octave band levels distinguished phoneme class of voiceless fricatives. Female HFE levels were significantly greater than male levels only above 11 kHz. This information is pertinent to various areas of acoustics, including vocal tract modeling, voice synthesis, augmentative hearing technology (hearing aids and cochlear implants), and training/therapy for singing and speech.

  10. Remaining authorized gas exports under long-term licences as of 1 November 1995

    International Nuclear Information System (INIS)

    1995-01-01

    A statistical base of information on natural gas exports authorized under long-term licences to markets in the U.S. as of November 1, 1995, was provided. The first part of the report focused on the total licensed exports to the U.S. while the second part provided a breakdown of the licensed export volumes by U.S. market regions. The National Energy Board Act empowers the National Energy Board to issue licences and orders for the export of natural gas from Canada. Licences are issued for long-term periods (over 2 years) and orders for short-term periods (2 years or less). Each individual export licence contains terms and conditions including the duration of the licence, the point of export where the gas may leave Canada, and the maximum allowable volumes that may be exported daily, annually, and throughout the term of the licence. 17 figs

  11. Reforming Long-Term Care Funding in Alberta.

    Science.gov (United States)

    Crump, R Trafford; Repin, Nadya; Sutherland, Jason M

    2015-01-01

    Like many provinces across Canada, Alberta is facing growing demand for long-term care. Issues with the mixed funding model used to pay long-term care providers had Alberta Health Services concerned that it was not efficiently meeting the demand for long-term care. Consequently, in 2010, Alberta Health Services introduced the patient/care-based funding (PCBF) model. PCBF is similar to activity-based funding in that it directly ties the complexity and care needs of long-term care residents to the payment received by long-term care providers. This review describes PCBF and discusses some of its strengths and weaknesses. In doing so, this review is intended to inform other provinces faced with similar long-term care challenges and contemplating their own funding reforms.

  12. Effect of long-term storage of LWR spent fuel on Pu-thermal fuel cycle

    International Nuclear Information System (INIS)

    Kurosawa, Masayoshi; Naito, Yoshitaka; Suyama, Kenya; Itahara, Kuniyuki; Suzuki, Katsuo; Hamada, Koji

    1998-01-01

    According to the Long-term Program for Research, Development and Utilization of Nuclear Energy (June, 1994) in Japan, the Rokkasho Reprocessing Plant will be operated shortly after the year 2000, and the planning of the construction of the second commercial plant will be decided around 2010. Also, it is described that spent fuel storage has a positive meaning as an energy resource for the future utilization of Pu. Considering the balance between the increase of spent fuels and the domestic reprocessing capacity in Japan, it can be expected that the long-term storage of UO 2 spent fuels will be required. Then, we studied the effect of long-term storage of spent fuels on Pu-thermal fuel cycle. The burnup calculation were performed on the typical Japanese PWR fuel, and the burnup and criticality calculations were carried out on the Pu-thermal cores with MOX fuel. Based on the results, we evaluate the influence of extending the spent fuel storage term on the criticality safety, shielding design of the reprocessing plant and the core life time of the MOX core, etc. As the result of this work on long-term storage of LWR spent fuels, it becomes clear that there are few demerits regarding the lifetime of a MOX reactor core, and that there are many merits regarding the safety aspects of the fuel cycle facilities. Furthermore, long-term storage is meaningful as energy storage for effective utilization of Pu to be improved by technological innovation in future, and it will allow for sufficient time for the important policymaking of nuclear fuel cycle establishment in Japan. (author)

  13. Long-term storage of Greater-Than-Class C Low-Level Waste

    International Nuclear Information System (INIS)

    Magleby, M.T.

    1990-01-01

    Under Federal law, the Department of Energy (DOE) is responsible for safe disposal of Greater-Than-Class C Low-Level Waste (GTCC LLW) generated by licenses of the Nuclear Regulatory commission (NRC) or Agreement States. Such waste must be disposed of in a facility licensed by the NRC. It is unlikely that licensed disposal of GTCC LLW will be available prior to the year 2010. Pending availability of disposal capacity, DOE is assessing the need for collective, long-term storage of GTCC LLW. Potential risks to public health and safety caused by long-term storage of GTCC LLW at the place of generation will be evaluated to determine if alternative facilities are warranted. If warranted, several options will be investigated to determine the preferred alternative for long-term storage. These options include modification of an existing DOE facility, development of a new DOE facility, or development of a facility by the private sector with or without DOE support. Reasonable costs for long-term storage would be borne by the waste generators. 5 refs., 1 fig

  14. The long term challenges of energy management: keeping all options open

    International Nuclear Information System (INIS)

    Moisan, F.

    2003-01-01

    Before the end of the 21. century, the global energy sector will need to face up to two challenges: climate warming due to greenhouse gas emissions and the increasing scarcity of traditional hydrocarbons. The likely scenarios expected by 2030 demonstrate that we are in the process of witnessing strong growth in the consumption of energy and in CO 2 emissions while at the same time climate experts warn us that we need to achieve a 75 % reduction of emissions in the industrialized nations by 2050. Several technological options may be envisaged in order to meet these challenges including a view generation nuclear power, renewable energy, the storage of carbon dioxide or managing energy consumption, and we need to keep all options open because none of these alone can solve all the problems. The time required for technologies to emerge following research and their penetration into the marketplace can often be several decades. The 2050 deadline is therefore not so at away and we need to stem and reverse the growth in demand from today onwards, something we should da without any misgivings when we consider the considerable uncertainties surrounding supply-side technologies. This profound transformation of our production and consumption methods also involves a change in our lifestyle and our behaviour: our efforts in the field of technological development must be accompanied by a commitment by all citizens to creating a more rational society where energy is concerned. (author)

  15. Current problems of the Bulgarian energy industry against the background of global short-term energy demand

    International Nuclear Information System (INIS)

    Batov, S.

    1999-01-01

    The energy demand during the next century due first of all to the expected growth of population necessitates more efficient technologies and huge investments. The production of nuclear energy requires higher safety as well as reduction of costs. A new form of partnership between the developed and developing countries is needed for transferring capital and technologies at special framework terms in order to avoid errors in the process of transition. The Energy Forum'99 highlights the current problems of Bulgarian energy branch and the projects for its future including better utilization of the existing energy resources, for development of new or renewable energy sources, not well utilized at present, and to harmonize the sector with better environmental protection. The most important problems discussed are: 1. Structure and restructuring strategy of the energy sector. Prices and tariffs. Privatization aspects. Construction of new replacement generating capacities; 2. Thermal power plants; 3. Nuclear power plants; 4. District heating and natural gas supply; 5. Efficient energy utilization; 6. Renewable energy sources; 7. Environmental protection and 8. Education

  16. Long-term surveillance plan for the Gunnison, Colorado, disposal site

    International Nuclear Information System (INIS)

    1996-05-01

    This long-term surveillance plan (LTSP) describes the US Department of Energy's (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE's determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP

  17. On the global economic potentials and marginal costs of non-renewable resources and the price of energy commodities

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2013-01-01

    A model is presented in this work for simulating endogenously the evolution of the marginal costs of production of energy carriers from non-renewable resources, their consumption, depletion pathways and timescales. Such marginal costs can be used to simulate the long term average price formation of energy commodities. Drawing on previous work where a global database of energy resource economic potentials was constructed, this work uses cost distributions of non-renewable resources in order to evaluate global flows of energy commodities. A mathematical framework is given to calculate endogenous flows of energy resources given an exogenous commodity price path. This framework can be used in reverse in order to calculate an endogenous marginal cost of production of energy carriers given an exogenous carrier demand. Using rigid price inelastic assumptions independent of the economy, these two approaches generate limiting scenarios that depict extreme use of natural resources. This is useful to characterise the current state and possible uses of remaining non-renewable resources such as fossil fuels and natural uranium. The theory is however designed for use within economic or technology models that allow technology substitutions. In this work, it is implemented in the global power sector model FTT:Power. Policy implications are given. - Highlights: • Theoretical model to forecast marginal costs of non-renewable resources. • Tracks the consumption and costs of non-renewable resources. • For use in economic or technology models

  18. Industrial Foundations as Long-Term Owners

    DEFF Research Database (Denmark)

    Thomsen, Steen; Poulsen, Thomas; Børsting, Christa Winther

    Short-termism has become a serious concern for corporate governance, and this has inspired a search for institutional arrangements to promote long-term decision-making. In this paper, we call attention to long-term ownership by industrial foundations, which is common in Northern Europe but little...... known in the rest of the world. We use a unique Danish data set to document that industrial foundations are long-term owners that practice long-term governance. We show that foundation ownership is highly stable compared to other ownership structures. Foundation-owned companies replace managers less...... frequently. They have conservative capital structures with low financial leverage. They score higher on an index of long-termism in finance, investment, and employment. They survive longer. Overall, our paper supports the hypothesis that corporate time horizons are influenced by ownership structures...

  19. Long-term associative learning predicts verbal short-term memory performance

    OpenAIRE

    Jones, Gary; Macken, Bill

    2017-01-01

    Studies using tests such as digit span and nonword repetition have implicated short-term memory across a range of developmental domains. Such tests ostensibly assess specialized processes for the short-term manipulation and maintenance of information that are often argued to enable long-term learning. However, there is considerable evidence for an influence of long-term linguistic learning on performance in short-term memory tasks that brings into question the role of a specialized short-term...

  20. CO sub 2 emissions from developing countries: Better understanding the role of Energy in the long term

    Energy Technology Data Exchange (ETDEWEB)

    Ketoff, A.; Sathaye, J.; Goldman, N. (eds.)

    1991-07-01

    Recent years have witnessed a growing recognition of the link between emissions of carbon dioxide (CO{sub 2}) and changes in the global climate. Of all anthropogenic activities, energy production and use generate the single largest portion of these greenhouse gases. Although developing countries currently account for a small share of global carbon emissions, their contribution is increasing rapidly. Due to the rapid expansion of energy demand in these nations, the developing world's share in global modern energy use rose from 16 to 27 percent between 1970 and 1990. If the growth rates observed over the past 20 years persist energy demand in developing will surpass that in the countries of the Organization for Economic Cooperation and Development (OECD) early in the 21st century. The study seeks to examine the forces that galvanize the growth of energy use and carbon emissions, to assess the likely future levels of energy and CO{sub 2} in selected developing nations and to identify opportunities for restraining this growth. The purpose of this report is to provide the quantitative information needed to develop effective policy options, not to identify the options themselves. These individual studies were conducted fro Argentina, Brazil, Mexico and Venezuela in Latin America.