WorldWideScience

Sample records for global geophysical fields

  1. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    Science.gov (United States)

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  2. Geophysical Field Theory

    International Nuclear Information System (INIS)

    Eloranta, E.

    2003-11-01

    The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)

  3. Monitoring Global Geophysical Fluids by Space Geodesy

    Science.gov (United States)

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  4. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  5. Geophysics

    CERN Document Server

    Bolt, Bruce

    1973-01-01

    Methods in Computational Physics, Volume 13: Geophysics is a 10-chapter text that focuses with the theoretical solid-earth geophysics. This volume specifically covers the general topics of terrestrial magnetism and electricity, the Earth's gravity field, tidal deformations, dynamics of global spin, spin processing, and convective models for the deep interior. This volume surveys first the construction of mathematical models, such as the representation of the geomagnetic field by assuming arrangements of multipole sources in the core and the fast computer evaluation of two- and three-dimensiona

  6. Global status of and prospects for protection of terrestrial geophysical diversity.

    Science.gov (United States)

    Sanderson, Eric W; Segan, Daniel B; Watson, James E M

    2015-06-01

    Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step. © 2015 Society for Conservation Biology.

  7. Field Geophysics at SAGE: Strategies for Effective Education

    Science.gov (United States)

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider

  8. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.

    2014-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen

  9. Rožňava ore field - geophysical works

    Directory of Open Access Journals (Sweden)

    Géczy Július

    1998-12-01

    Full Text Available The article prowides a review of geophysical works in the ore field Rožňava conducted up to date. Magnetometric and geoelectric methods and gravimetric measurements have been used. Geophysical works were focused to the solving regional problems whose contribution to the prospecting of vein deposits is not essential.

  10. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for

  11. Addressing the difficulty of changing fields in geophysics

    Science.gov (United States)

    Civilini, F.; Savage, M. K.

    2014-12-01

    Geophysics is a wonderfully diverse field of study, encompassing a variety of disciplines greatly different from one other. Even within the same discipline, various branches of study can have drastically different vocabulary and methodologies. The difficulty of breaking this "jargon" barrier is also an important reminder for scientists of how critical it is to clearly and concisely convey information. This presentation will focus on strategies that students can focus on to ease a transition between fields in geophysics. I believe that a student changing disciplines should proceed in the following steps: [1] Do a cursory literature review to find a review paper of the desired topic and work backwards through the details until a level of understanding or recognition is reached, [2] Obtain a clear physical understanding of the data and methods of the proposed study, and [3] Establish a support network through the research group or elsewhere which will recognize the areas in which the student is behind and offer remedies in a supportive and productive manner. These strategies are based on my own personal experience changing from music to geophysics in my undergrad and working on projects spanning various subdisciplines of geophysics during my Masters and PhD. It is worthwhile for research groups to spend the time to mentor students switching from other disciplines because those students will in time be able to observe the research in a different way than their peers, and easily adapt to changes of direction within the research.

  12. The University of Texas Institute for Geophysics' Marine Geology and Geophysics Field Course: A Hand-On Education Approach to Applied Geophysics

    Science.gov (United States)

    Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.

    2016-12-01

    The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  13. Use of Geodetic Surveys of Leveling Lines and Dry Tilt Arrays to Study Faults and Volcanoes in Undergraduate Field Geophysics Classes

    Science.gov (United States)

    Polet, J.; Alvarez, K.; Elizondo, K.

    2017-12-01

    In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.

  14. Increasing diversity in the geosciences through the AfricaArray geophysics field course

    Science.gov (United States)

    Vallejo, G.; Emry, E.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Guandique, J.; Falzone, C.; Webb, S. J.; Manzi, M.; Mngadi, S. B.; Stephens, K.; Chinamora, B.; Whitehead, R.; de Villiers, D. P.; Tshitlho, K.; Delhaye, R. P.; Smith, J. A.; Nyblade, A.

    2014-12-01

    For the past nine years, the AfricaArray diversity program, sponsored by industry, the National Science Foundation, and several partnering universities have supported outstanding U.S. STEM underrepresented minority undergraduates to gain field experience in near-surface geophysical techniques during an 8-week summer program at Penn State University and the University of Witwatersrand (Wits). The AfricaArray geophysics field school, which is run by Wits, has been teaching field-based geophysics to African students for over a decade. In the first 2-3 weeks of the program, the U.S. students are given basic instruction in near-surface geophysics, South African geology, and South African history and culture. The students then join the Wits AfricaArray geophysics field school - working alongside Wits students and students from several other African universities to map the shallow subsurface in prospective areas of South Africa for platinum mining. In addition to the primary goals of collecting and interpreting gravity, magnetic, resistivity, seismic refraction, seismic reflection, and EM data, students spend time mapping geologic units and gathering information on the physical properties of the rocks in the region (i.e. seismic velocity, density, and magnetic susceptibility). Subsurface targets include mafic dikes, faults, the water table, and overburden thickness. Upon returning to the U.S., students spend 2-3 weeks finalizing their project reports and presentations. The program has been effective at not only providing students with fundamental skills in applied geophysics, but also in fostering multicultural relationships, preparing students for graduate work in the geosciences, and attracting STEM students into the geosciences. Student presenters will discuss their experiences gained through the field school and give their impressions about how the program works towards the goal of increasing diversity in the geosciences in the U.S.

  15. EXPLORATION BY MEANS OF GEOPHYSICAL METHODS OF GEOTHERMAL FIELDS AND CASE STUDIES

    Directory of Open Access Journals (Sweden)

    Züheyr KAMACI

    1997-01-01

    Full Text Available Geothermal energy which is one of the reuseable energy resources, can save as much as 77 million barrels of petroleum equivalent annually when used in the production of electricity and heating-environment. Geophysical exploration methods plays in important role in the fields of geothermal exploration, development and observational studies. Thermal and geoelectrical methods are the most effective methods which shows the temperature variation anomalies and mechanical drilling places. But, when the other methods of gravity, magnetic, radiometric, well geophysics and well logs can be used in conjunction with seismic tomography, apart from the mentioned geophysical exploration method, better results could be obtained. From the above mentioned facts various case history reports are given from our country and worldwide to determine geothermal energy resources by using geophysical exploration technique application. From these results of studies a 55 °C hot water artessian aquifer is found in the Uşak-Banaz geothermal field by applying geoelectrical methods.

  16. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    Science.gov (United States)

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core

  17. Immersive, hands-on, team-based geophysical education at the University of Texas Marine Geology and Geophysics Field Course

    Science.gov (United States)

    Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.

    2013-12-01

    The University of Texas Institute for Geophysics (UTIG), part of the Jackson School of Geosciences, annually offers a unique and intensive three-week marine geology and geophysics field course during the spring/summer semester intersession. Now entering its seventh year, the course transitions students from a classroom environment through real-world, hands-on field acquisition, on to team-oriented data interpretation, culminating in a professional presentation before academic and industry employer representatives. The course is available to graduate students and select upper-division undergraduates, preparing them for direct entry into the geoscience workforce or for further academic study. Geophysical techniques used include high-resolution multichannel seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, data processing, and laboratory analysis of sediments. Industry-standard equipment, methods, software packages, and visualization techniques are used throughout the course, putting students ahead of many of their peers in this respect. The course begins with a 3-day classroom introduction to the field area geology, geophysical methods, and computing resources used. The class then travels to the Gulf Coast for a week of hands-on field and lab work aboard two research vessels: UTIG's 22-foot, aluminum hulled Lake Itasca; and NOAA's 82-foot high-speed catamaran R/V Manta. The smaller vessel handles primarily shallow, inshore targets using multibeam bathymetry, sidescan sonar, and grab sampling. The larger vessel is used both inshore and offshore for multichannel seismic, CHIRP profiling, multibeam bathymetry, gravity coring, and vibracoring. Field areas to date have included Galveston and Port Aransas, Texas, and Grand Isle, Louisiana, with further work in Grand Isle scheduled for 2014. In the field, students work in teams of three, participating in survey design, instrument set-up, field deployment

  18. Advances in geophysics

    CERN Document Server

    Sato, Haruo

    2013-01-01

    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 54th volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  19. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Science.gov (United States)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  20. geophysical and well corellation analysis of ogo field: a case study ...

    African Journals Online (AJOL)

    HP

    GEOPHYSICAL AND WELL CORELLATION ANALYSIS OF OGO FIELD: A CASE STUDY IN. NIGER DELTA BASIN ... have average porosity of 0.22, water saturation 0.43 and Hydrocarbon saturation of 0.57. ... chemical components. For the ...

  1. A Hands-on Approach to Teaching Geophysics through the University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course in the Gulf of Mexico.

    Science.gov (United States)

    Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.

    2017-12-01

    The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for

  2. Archaeomagnetic Dating in Europe Using a Global Geomagnetic Field Model

    Science.gov (United States)

    Lodge, A.; Suttie, N.; Holme, R.; Shaw, J.; Hill, M. J.; Linford, P.

    2009-12-01

    Using up-to-date archaeomagnetic data from Europe and CALS7K.2 as an apriori model, we produce a global geomagnetic field model to be used for archaeomagnetic dating in Europe. More details on the modelling process will be presented elsewhere (in session GP12, abstract: Geophysical insights from archaeomagnetic dating). Here we apply the global geomagnetic field model to a series of test cases from both recently published data and unpublished data to demonstrate its application to archaeomagnetic dating. We compare the results produced using our model with those from the spherical cap harmonic model, SCHA.DIF.3K (Pavón-Carrasco et al., 2009), the global geomagnetic field model, ARCH3K.1 (Korte et al., 2009) and those produced using the palaeosecular variation curves generated using Bayesian statistics (Lanos, 2004). We include examples which emphasise the importance of using three component data (declination, inclination and intensity) to produce an improved archaeomagnetic date. In addition to the careful selection of an appropriate model for archaeomagnetic dating, the choice of errors on the model curves is vital for providing archaeologists with an age range of possible dates. We discuss how best to constrain the errors on the model curves and alternative ways to the mathematical method of Lanos (2004) for producing an archaeomagnetic date for archaeologists.

  3. Multifractal characterizations of nonstationary and intermittency in geophysical fields: Observed, retrieved, or simulated

    International Nuclear Information System (INIS)

    Davis, A.; Wiscombe, W.; Cahalan, R.; Marshak, A.

    1994-01-01

    Geophysical data rarely show any smoothness at any scale, and this often makes comparison with theoretical model output difficult. However, highly fluctuating signals and fractual structures are typical of open dissipative systems with nonlinear dynamics, the focus of most geophysical research. High levels of variability are excited over a large range of scales by the combined actions of external forcing and internal instability. At very small scales we expect geophysical fields to be smooth, but these are rarely resolved with available instrumentation or simulation tools; nondifferentiable and even discontinuous models are therefore in order. We need methods of statistically analyzing geophysical data, whether measured in situ, remotely sensed or even generated by a computer model, that are adapted to these characteristics. An important preliminary task is to define statistically stationary features in generally nonstationary signals. We first discuss a simple criterion for stationarity in finite data streams that exhibit power law energy spectra and then, guided by developments in turbulence studies, we advocate the use of two ways of analyzing the scale dependence of statistical information: singular measures and qth order structure functions. In nonstationary situations, the approach based on singular measures seeks power law behavior in integrals over all possible scales of a nonnegative stationary field derived from the data, leading to a characterization of the intermittency in this field. In contrast, the approach based on structure functions uses the signal itself, seeking power laws for the statistical moments of absolute increments over arbitrarily large scales, leading to a characterization of the prevailing nonstationarity in both quantitative and qualitative terms. We explain graphically, step by step, both multifractal statistics which are largely complementary to each other. 45 refs., 13 figs., 2 tabs

  4. Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets

    Directory of Open Access Journals (Sweden)

    A. S. Dolgal

    2014-12-01

    Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.

  5. Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.

    1981-01-01

    The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is

  6. Geophysics-based method of locating a stationary earth object

    Science.gov (United States)

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  7. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    Science.gov (United States)

    Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  8. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    Science.gov (United States)

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction

  9. Model of geophysical fields representation in problems of complex correlation-extreme navigation

    Directory of Open Access Journals (Sweden)

    Volodymyr KHARCHENKO

    2015-09-01

    Full Text Available A model of the optimal representation of spatial data for the task of complex correlation-extreme navigation is developed based on the criterion of minimum deviation of the correlation functions of the original and the resulting fields. Calculations are presented for one-dimensional case using the approximation of the correlation function by Fourier series. It is shown that in the presence of different geophysical map data fields their representation is possible by single template with optimal sampling without distorting the form of the correlation functions.

  10. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    Directory of Open Access Journals (Sweden)

    R Dietmar Müller

    Full Text Available The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  11. The GPlates Portal: Cloud-based interactive 3D and 4D visualization of global geological and geophysical data and models in a browser

    Science.gov (United States)

    Müller, Dietmar; Qin, Xiaodong; Sandwell, David; Dutkiewicz, Adriana; Williams, Simon; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2017-04-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other, and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The portal has been visited over half a million times since its inception in October 2015, as tracked by google analytics, and the globes have been featured in numerous media articles around the world. This demonstrates the high demand for fast visualization of global spatial big data, both for the present-day as well as through geological time. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to

  12. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    Science.gov (United States)

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  13. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    Science.gov (United States)

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  14. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    Science.gov (United States)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high

  15. Comparison of global storm activity rate calculated from Schumann resonance background components to electric field intensity E0 Z

    Science.gov (United States)

    Nieckarz, Zenon; Kułak, Andrzej; Zięba, Stanisław; Kubicki, Marek; Michnowski, Stanisław; Barański, Piotr

    2009-02-01

    This work presents the results of a comparison between the global storm activity rate IRS and electric field intensity E0 Z. The permanent analysis of the IRS may become an important tool for testing Global Electric Circuit models. IRS is determined by a new method that uses the background component of the first 7 Schumann resonances (SR). The rate calculations are based on ELF observations carried out in 2005 and 2006 in the observatory station "Hylaty" of the Jagiellonian University in the Eastern Carpathians (Kułak, A., Zięba, S., Micek, S., Nieckarz, Z., 2003. Solar variations in extremely low frequency propagation parameters: I. A two-dimensional telegraph equation (TDTE) model of ELF propagation and fundamental parameters of Schumann resonances, J. Geophys. Res., 108, 1270, doi:10.1029/2002JA009304). Diurnal runs of the IRS rate were compared with diurnal runs of E0 Z amplitudes registered at the Earth's surface in the Geophysical Observatory of the Polish Academy of Sciences in Świder (Kubicki, M., 2005. Results of Atmospheric Electricity and Meteorological Observations, S. Kalinowski Geophysical Observatory at Świder 2004, Pub. Inst. Geophysics Polish Academy of Sciences, D-68 (383), Warszawa.). The days with the highest values of the correlation coefficient ( R) between amplitudes of both observed parameters characterizing atmosphere electric activity are shown. The seasonal changes of R, IRS and E0 Z are also presented.

  16. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    Science.gov (United States)

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  17. Global Earth Structure Recovery from State-of-the-art Models of the Earth's Gravity Field and Additional Geophysical Information

    NARCIS (Netherlands)

    Hamayun, H.

    2014-01-01

    Currently, a tremendous improvement is observed in the accuracy and spatial resolution of global Earth’s gravity field models. This improvement is achieved due to using various new data, including those from satellite gravimetry missions (CHAMP, GRACE, and GOCE); terrestrial and airborne gravity

  18. Young Geophysicists: `Know How' Tips to Nourish Them from Lectures and Seminars to Field Work and Conferences (Geology and Geophysics Department, Novosibirsk State University, GGD, NSU).

    Science.gov (United States)

    Rakhmenkulova, I. F.

    2016-12-01

    How to nourish young brilliant geophysicists? Here are the tips: We teach them as physicists (at the Department of Physics, together with students majoring in physics). Students have special facilities in field work, using most modern geophysical equipment. They can participate in real projects on applied geophysics during their studies. They attend special seminars and conferences for both young professionals and full-fledged scientists. Their English Language Program is focused on geophysical terminology. There are four specialties at Geology and Geophysics Department of Novosibirsk State University: Geophysics, Geochemistry, Geology, and Geochemistry of Oil and Gas. However, the curriculum for geophysicists is absolutely different from other specialties. Mathematics, physics and laboratory work are given at the Department of Physics (together with students majoring in physics). All the necessary geological subjects are also studied (including field work). During all period of their study the students work part time at many geophysical institutions. The equipment is both traditional and most modern, created at the Institute of Oil and Gas Geophysics. The students present the result of their field work and laboratory experiments in many seminars and conferences. For example, there is a traditional annual conference in Shira, Khakassia, for young professionals. Every year the Seminar in Geodynamics, Geophysics and Geomechanics is held in the Altay Mountains (Denisova Cave Camp). This Seminar was organized by the late Sergey Goldin, the Director of the Institute of Geophysics, the Head of the Chair of Geophysics, a Member of the Russian Academy of Sciences. In July 2016 this Seminar was devoted to 80's birth anniversary of Sergey Goldin. Several students of geophysics presented the results of their work there. Next year the seminar is supposed to be international. A special attention is given to the English course lasting for 5 years. The students learn general

  19. Solar Wind Monitor--A School Geophysics Project

    Science.gov (United States)

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  20. SQUID use for Geophysics: finding billions of dollars

    Science.gov (United States)

    Foley, Catherine

    2014-03-01

    Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.

  1. Geophysical Analysis of Young Monogenetic Volcanoes in the San Francisco Volcanic Field, Arizona

    Science.gov (United States)

    Rees, S.; Porter, R. C.; Riggs, N.

    2017-12-01

    The San Francisco Volcanic Field (SFVF), located in northern Arizona, USA, contains some of the youngest intracontinental volcanism within the United States and, given its recent eruptive history, presents an excellent opportunity to better understand how these systems behave. Geophysical techniques such as magnetics, paleomagnetics, and seismic refraction can be used to understand eruptive behavior and image shallow subsurface structures. As such, they present an opportunity to understand eruptive processes associated with the monogenetic volcanism that is common within the SFVF. These techniques are especially beneficial in areas where erosion has not exposed shallow eruptive features within the volcano. We focus on two volcanoes within the SFVF, Merriam Crater and Crater 120 for this work. These are thought to be some of the youngest volcanoes in the field and, as such, are well preserved. Aside from being young, they both exhibit interesting features such as multiple vents, apparent vent alignment, and lack of erosional features that are present at many of the other volcanoes in the SFVF, making them ideal for this work. Initial results show that shallow subsurface basaltic masses can be located using geophysical techniques. These masses are interpreted as dikes or lava flows that are covered by younger scoria. Propagating dikes drive eruptions at monogenetic volcanoes, which often appear in aligned clusters. Locating these features will further the understanding of how magma is transported and how eruptions may have progressed.

  2. ANNALS OF GEOPHYSICS: AD MAJORA

    Directory of Open Access Journals (Sweden)

    Fabio Florindo

    2014-03-01

    Full Text Available Annals of Geophysics is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica, which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, earth magnetism, and atmospheric studies. The journal was published regularly for a quarter of a century until 1982 when it merged with the French journal Annales de Géophysique to become Annales Geophysicae under the aegis of the European Geophysical Society. In 1981, this journal ceased publication of the section on solid earth geophysics, ending the legacy of Annali di Geofisica. In 1993, the Istituto Nazionale di Geofisica (ING, founder of the journal, decided to resume publication of its own journal under the same name, Annali di Geofisica. To ensure continuity, the first volume of the new series was assigned the volume number XXXVI (following the last issue published in 1982. In 2002, with volume XLV, the name of the journal was translated into English to become Annals of Geophysics and in consequence the journal impact factor counter was restarted. Starting in 2010, in order to improve its status and better serve the science community, Annals of Geophysics has instituted a number of editorial changes including full electronic open access, freely accessible online, the possibility to comment on and discuss papers online, and a board of editors representing Asia and the Americas as well as Europe. [...

  3. Sustainable urban development and geophysics

    Science.gov (United States)

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  4. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI

    Science.gov (United States)

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.

    2016-01-01

    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  5. Characterisation of the heterogeneity of karst using electrical geophysics - applications in SW China

    Science.gov (United States)

    Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.

    2017-12-01

    The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We

  6. Introduction to the JEEG Agricultural Geophysics Special Issue

    Science.gov (United States)

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  7. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    Science.gov (United States)

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  8. The DEBOT Model, a New Global Barotropic Ocean Tidal Model: Test Computations and an Application in Related Geophysical Disciplines

    Science.gov (United States)

    Einspigel, D.; Sachl, L.; Martinec, Z.

    2014-12-01

    We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.

  9. Streamlined Archaeo-geophysical Data Processing and Integration for DoD Field Use

    Science.gov (United States)

    2012-04-01

    6 Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing...Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing and integrating multiple geophysical datasets. Each color represents a... beginner , intermediate, and expert user. Most users agreed that the software is very effective for beginners because: (1) it provides a geophysics

  10. Innovative Ideas for Developing Geophysics Field Schools in Classes with Small Numbers: Experience Gained from the AfricaArray/Wits Geophysics International Field School

    Science.gov (United States)

    Webb, S. J.; Manzi, M. S.; Scheiber-Enslin, S. E.; Durrheim, R. J.; Nyblade, A.

    2016-12-01

    The geophysics program at Wits University has few students in its Honours program, making it difficult to run a fully-fledged field school. However, there is a dire need for field training both at Wits and throughout Africa. The solution is to expand the number of participants by taking additional students from Africa and the US. This has been sponsored by the Society of Exploration Geophysicists (SEG) and more recently UNESCO, and a variety of US NSF programs. More students make it efficient to acquire data using a variety of methods and provides for important networking and skills development. Expanding the number of participants means that more staff members are needed. In Africa, it is difficult to recruit corporate participants as volunteering for three weeks is simply too long to take off from work. Thus university academic staff must commit on an ongoing basis and this can lead to burnout. The timing of the field school is during prime research field time and the results are difficult to publish. The solution has been to use graduate students as instructors. This has turned out to be a valuable experience for graduate students; one or two graduate students are assigned to each method and they take on the responsibility of preparing lectures, equipment, software and computers. Thus the program has developed into a two tier training program, whereby Honours students participate as students with the objective of collecting data and writing a company style report and graduate students participate as instructors. Graduate students participate for one or two years and the payment is mitigated as they are required to work a number of hours for the department. This has led to the establishment of a vibrant network of young geophysicists throughout Africa and the US.

  11. Applied Geophysics Opportunities in the Petroleum Industry

    Science.gov (United States)

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.

    2012-12-01

    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  12. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    Science.gov (United States)

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  13. Mobile geophysical study of peat deposits in Fuhrberger Field, Germany

    Science.gov (United States)

    Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.

    2012-04-01

    In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  14. Reflections by a student and a faculty member on student-faculty collaborative geophysical field research

    Science.gov (United States)

    Bank, C.; Rotzien, J.

    2007-12-01

    More and more students and faculty engage in collaborative research. Field geophysics provides a fascinating venue, as it always contributes to interpersonal relations, usually involves off-campus work, and often allows us to meet new people and explore a different culture. Tackling an authentic research problem keeps a faculty member excited about her/his discipline, while allowing a student to engage in the process of science, follow a researcher's thoughts and contribute to a real project. The exchange of ideas and the generation of new knowledge is rewarding to the student as it facilitates her/his academic growth. Despite the obvious advantages of including students in field-based research, few students are allowed such an opportunity because of the institutional commitment in time and money that is necessary for success. Other challenges in field-based geophysical research include steep learning curves related to the use of equipment, unknown outcomes (data that is often difficult to interpret), and a true commitment to the project on the student's part. The faculty member on the other hand faces additional challenges because of the responsibility for students in the field, scheduling constraints, limited funding, and students' diverse academic goals. This presentation will be given by a faculty member and a student who have engaged in various authentic research projects. Projects ranged from afternoon lab exercises on campus (eg, microgravity survey over a tunnel on campus), course projects connected to field trips (eg, magnetic study and subsequent potential field analysis), summer research projects (eg, georadar survey of Deboullie Lake rock glacier), to year-long undergraduate thesis projects (eg, potential field studies at igneous centres of the Navajo Volcanic Field). We will present highlights of these projects, examine their pedagogical merits, and discuss the advantages and rewards we earned as well as the challenges we faced. Despite all challenges

  15. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Science.gov (United States)

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  16. Evaluation of using digital gravity field models for zoning map creation

    Science.gov (United States)

    Loginov, Dmitry

    2018-05-01

    At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.

  17. Geophysical and geochemical techniques for exploration of hydrocarbons and minerals

    International Nuclear Information System (INIS)

    Sittig, M.

    1980-01-01

    The detailed descriptive information in this book is based on 389 US patents that deal with geophysical and geochemical techniques useful for the exploration of hydrocarbons and minerals. Where it was necessary to round out the complete technological picture, a few paragraphs from cited government reports have been included. These techniques are used in prospecting for oil, coal, oil shale, tar sand and minerals. The patents are grouped under the following chapters: geochemical prospecting; geobiological prospecting; geophysical exploration; magnetic geophysical prospecting; gravitational geophysical prospecting; electrical geophysical prospecting; nuclear geophysical prospecting; seismic geophysical prospecting; and exploratory well drilling. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, industrially oriented review of modern methods of geophysical and geochemical exploration techniques

  18. Detection of concrete dam leakage using an integrated geophysical technique based on flow-field fitting method

    Science.gov (United States)

    Dai, Qianwei; Lin, Fangpeng; Wang, Xiaoping; Feng, Deshan; Bayless, Richard C.

    2017-05-01

    An integrated geophysical investigation was performed at S dam located at Dadu basin in China to assess the condition of the dam curtain. The key methodology of the integrated technique used was flow-field fitting method, which allowed identification of the hydraulic connections between the dam foundation and surface water sources (upstream and downstream), and location of the anomalous leakage outlets in the dam foundation. Limitations of the flow-field fitting method were complemented with resistivity logging to identify the internal erosion which had not yet developed into seepage pathways. The results of the flow-field fitting method and resistivity logging were consistent when compared with data provided by seismic tomography, borehole television, water injection test, and rock quality designation.

  19. Cyclic Investigation of Geophysical Studies in the Exploration and Discovery of Natural Resources in Our Country

    International Nuclear Information System (INIS)

    Gonulalan, A. U.

    2007-01-01

    Although the methods of exploration geophysics were first utilized after the discovery of an oil field in 1921, they have also applied in the old centuries. Likewise, the half of the total production in the United States of America is covered by new oil fields discovered by utilizing geophysical methods. The industry's energy necessity increases the interest to oil. The investments in the field of geophysics by the companies which makes large amount of money in order to discover new oil fields, widespread use of computers, the developments of space technology and world-wide nuclear competition even though its great danger for human beings have great share in the development of geophysics. Our country has 18 different types mines which has more than 10 billion $ potential. Geophysical engineers have great Kowledge and labor in the discovery of 1,795 trillion wealth from borax to building stone, and 60 billion $ oil and gas. On the other hand, as 1,5 billion investment in the field of geophysics is only 0.08 % of total investments, the increase of investments will add more contribution

  20. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    Science.gov (United States)

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  1. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    Science.gov (United States)

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  2. Multiscale geophysical imaging of the critical zone

    Science.gov (United States)

    Parsekian, Andy; Singha, Kamini; Minsley, Burke J.; Holbrook, W. Steven; Slater, Lee

    2015-01-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  3. Rapid Geophysical Surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques

  4. Geophysical monitoring in a hydrocarbon reservoir

    Science.gov (United States)

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  5. Integrated geophysical-geochemical methods for archaeological prospecting

    OpenAIRE

    Persson, Kjell

    2005-01-01

    A great number of field measurements with different methods and instruments were conducted in attempts to develop a method for an optimal combination of various geochemical and geophysical methods in archaeological prospecting. The research presented in this thesis focuses on a study of how different anthropogenic changes in the ground can be detected by geochemical and geophysical mapping and how the results can be presented. A six-year pilot project, Svealand in Vendel and Viking periods (S...

  6. Environmental geophysics at J-Field, Aberdeen Proving Ground, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Daudt, C.R.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1994-11-01

    Geophysical data collected at J-Field, Aberdeen Proving Ground, Maryland, were used in the characterization of the natural hydrogeologic framework of the J-Field area and in the identification of buried disturbances (trenches and other evidences of contamination). Seismic refraction and reflection data and electrical resistivity data have aided in the characterization of the leaky confining unit at the base of the surficial aquifer (designated Unit B of the Tertiary Talbot Formation). Excellent reflectors have been observed for both upper and lower surfaces of Unit B that correspond to stratigraphic units observed in boreholes and on gamma logs. Elevation maps of both surfaces and an isopach map of Unit B, created from reflection data at the toxic burning pits site, show a thickening of Unit B to the east. Abnormally low seismic compressional-wave velocities suggest that Unit B consists of gassy sediments whose gases are not being flushed by upward or downward moving groundwater. The presence of gases suggests that Unit B serves as an efficient aquitard that should not be penetrated by drilling or other activities. Electromagnetic, total-intensity magnetic, and ground-penetrating radar surveys have aided in delineating the limits of two buried trenches, the VX burning pit and the liquid smoke disposal pit, both located at the toxic burning pits site. The techniques have also aided in determining the extent of several other disturbed areas where soils and materials were pushed out of disposal pits during trenching activities. Surveys conducted from the Prototype Building west to the Gunpowder River did not reveal any buried trenches.

  7. Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential

    Science.gov (United States)

    Eberle, Detlef G.; Daudi, Elias X. F.; Muiuane, Elônio A.; Nyabeze, Peter; Pontavida, Alfredo M.

    2012-01-01

    The National Geology Directorate of Mozambique (DNG) and Maputo-based Eduardo-Mondlane University (UEM) entered a joint venture with the South African Council for Geoscience (CGS) to conduct a case study over the meso-Proterozoic Alto Ligonha pegmatite field in the Zambézia Province of northeastern Mozambique to support the local exploration and mining sectors. Rare-metal minerals, i.e. tantalum and niobium, as well as rare-earth minerals have been mined in the Alto Ligonha pegmatite field since decades, but due to the civil war (1977-1992) production nearly ceased. The Government now strives to promote mining in the region as contribution to poverty alleviation. This study was undertaken to facilitate the extraction of geological information from the high resolution airborne magnetic and radiometric data sets recently acquired through a World Bank funded survey and mapping project. The aim was to generate a value-added map from the airborne geophysical data that is easier to read and use by the exploration and mining industries than mere airborne geophysical grid data or maps. As a first step towards clustering, thorium (Th) and potassium (K) concentrations were determined from the airborne geophysical data as well as apparent magnetic susceptibility and first vertical magnetic gradient data. These four datasets were projected onto a 100 m spaced regular grid to assemble 850,000 four-element (multivariate) sample vectors over the study area. Classification of the sample vectors using crisp clustering based upon the Euclidian distance between sample and class centre provided a (pseudo-) geology map or value-added map, respectively, displaying the spatial distribution of six different classes in the study area. To learn the quality of sample allocation, the degree of membership of each sample vector was determined using a-posterior discriminant analysis. Geophysical ground truth control was essential to allocate geology/geophysical attributes to the six classes

  8. How Collecting and Freely Sharing Geophysical Data Broadly Benefits Society

    Science.gov (United States)

    Frassetto, A.; Woodward, R.; Detrick, R. S.

    2017-12-01

    Valuable but often unintended observations of environmental and human-related processes have resulted from open sharing of multidisciplinary geophysical observations collected over the past 33 years. These data, intended to fuel fundamental academic research, are part of the Incorporated Research Institutions for Seismology (IRIS), which is sponsored by the National Science Foundation and has provided a community science facility supporting earthquake science and related disciplines since 1984. These community facilities have included arrays of geophysical instruments operated for EarthScope, an NSF-sponsored science initiative designed to understand the architecture and evolution of the North American continent, as well as the Global Seismographic Network, Greenland Ice Sheet Monitoring Network, a repository of data collected around the world, and other community assets. All data resulting from this facility have been made openly available to support researchers across any field of study and this has expanded the impact of these data beyond disciplinary boundaries. This presentation highlights vivid examples of how basic research activities using open data, collected as part of a community facility, can inform our understanding of manmade earthquakes, geomagnetic hazards, climate change, and illicit testing of nuclear weapons.

  9. Methodological Developments in Geophysical Assimilation Modeling

    Science.gov (United States)

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to

  10. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor

    2010-01-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  11. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    KAUST Repository

    Jiang, Lijian

    2010-08-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  12. Activities and Plan of the Center for Geophysics (Beijing from WDC to WDS

    Directory of Open Access Journals (Sweden)

    Fenglin Peng

    2013-01-01

    Full Text Available In this report we introduce the development of the WDC for Geophysics, Beijing included our activities in the electronic Geophysical Year (eGY and in the transition period from WDC to WDS. We also present our future plans. We have engaged in the development of geophysical informatics and related data science. We began the data visualization of geomagnetic fields in the GIS system. Our database has been expanded from geomagnetic data to the data of solid geophysics, including geothermal data, gravity data, and the records of aurora sightings in ancient China. We also joined the study of the history of the development of geophysics in China organized by the Chinese Geophysical Society (CGS.

  13. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports

  14. Global gravity and the geodynamic model of the Earth

    International Nuclear Information System (INIS)

    Nedoma, J.

    1988-01-01

    Plate tectonic hypotheses require the formation of a new oceanic lithosphere at mid-oceanic ridges and imply the further modification and continued evolution towards the continental type of lithosphere in the regions of island arcs and orogenic belts. All these phenomena observed on the Earths's surface are results of all geodynamic processes passing through the Earth's interior. Since geodynamic processes change through the geological epochs, the gravity field also changes during the same geological periods. Thus, the paper is concerned with physical relationships between the global gravity field and the geodynamic processes as well as all geophysical fields affected by the geodynamic processes inside the Earth. The aim of this paper is to analyse the inner and outer gravity field of the Earth during the evolution of the Earth in the course of the geological epochs, and to build the generalized theory of the global gravity field of the Earth from the point of view of the global and local geodynamic processes taking place within the Earth's interior. (author)

  15. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Science.gov (United States)

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  16. Fundamentals of Geophysics

    Science.gov (United States)

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  17. Correlations, spectral composition and interaction character of seismic and atmospheric geophysical fields in the 1-4 hours period range

    International Nuclear Information System (INIS)

    Petrova, L.N.

    1995-01-01

    Results of analysis of synchronized observations of seismic oscillations ans near-surface atmosphere pressure variations are presented. Similar spectra structure and high levels of coherency coefficients point out the existence of correlational links between them. The conclusion on the necessity of the investigation of the links is made. H hypothesis on possible gravity mechanism of induceing the oscillations in the analyzed geophysical fields is proposed. 5 refs., 2 tabs

  18. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    International Nuclear Information System (INIS)

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have used support characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program was focused on support of experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Issue 1: Site Characterization; Issue 2: Castile Brine Reservoirs; Issue 3: Rustler /Dewey Lake Hydrogeology; Issue 4: Salado Hydrogeology; and Issue 5: Excavation Effects. The nature of geophysics program for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). An effect of being a support program is that as new project priorities arose the funding for the geophysics program was limited and withdrawn. An outcome is that much of the geophysics survey information resides in contractor reports since final interpretation reports were not funded

  19. Solar wind monitor—a school geophysics project

    Science.gov (United States)

    Robinson, Ian

    2018-05-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth’s field in real-time uploading data and graphs to a website every few minutes. Modular design encourages construction and testing by teams of students as well as expansion and refinement. The system has been tested running unattended for months at a time. Both the hardware design and software is published as open-source [1, 10].

  20. SIGKit: Software for Introductory Geophysics Toolkit

    Science.gov (United States)

    Kruse, S.; Bank, C. G.; Esmaeili, S.; Jazayeri, S.; Liu, S.; Stoikopoulos, N.

    2017-12-01

    The Software for Introductory Geophysics Toolkit (SIGKit) affords students the opportunity to create model data and perform simple processing of field data for various geophysical methods. SIGkit provides a graphical user interface built with the MATLAB programming language, but can run even without a MATLAB installation. At this time SIGkit allows students to pick first arrivals and match a two-layer model to seismic refraction data; grid total-field magnetic data, extract a profile, and compare this to a synthetic profile; and perform simple processing steps (subtraction of a mean trace, hyperbola fit) to ground-penetrating radar data. We also have preliminary tools for gravity, resistivity, and EM data representation and analysis. SIGkit is being built by students for students, and the intent of the toolkit is to provide an intuitive interface for simple data analysis and understanding of the methods, and act as an entrance to more sophisticated software. The toolkit has been used in introductory courses as well as field courses. First reactions from students are positive. Think-aloud observations of students using the toolkit have helped identify problems and helped shape it. We are planning to compare the learning outcomes of students who have used the toolkit in a field course to students in a previous course to test its effectiveness.

  1. Applied geophysics for civil engineering and mining engineering. 2. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Militzer, H.; Schoen, J.; Stoetzner, U.

    1986-01-01

    In the process of geological and geotechnical prospecting for the exploration and exploitation of deposits, as well as for engineering structures, the knowledge contributed by geophysics is of significance in order to ensure an objective assessment of geological and geotechnical conditions of a given site, and to promote economic efficiency in the field of civil engineering and mining. For this reason, engineering and mining geophysics has become an important special subject field. The present second edition of the textbook offers enhanced information about practical applications of available methods and measuring techniques, and about the information to be obtained by civil and mining engineers from the geophysical science. The material has been arranged with a view to practice, facilitating an overview over potential applications and efficiencies as well as limits of geophysical methods. The methods are also explained in terms of suitability for the various steps of civil engineering or mining geological activities and studies. A major extension of the first edition's material consists of the chapter on basic principles and aspects of well geophysics for shallow well drilling. (orig./HP) [de

  2. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  3. Learning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes

    Directory of Open Access Journals (Sweden)

    Gilda M. Currenti

    2017-05-01

    Full Text Available Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical, which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock. A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii the elastostatic equation for the deformation field and (iii the Poisson's equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of

  4. Geophysical borehole logging

    International Nuclear Information System (INIS)

    McCann, D.; Barton, K.J.; Hearn, K.

    1981-08-01

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  5. HMF-Geophysics - An Update

    Science.gov (United States)

    Crook, N.; Knight, R.; Robinson, D.

    2007-12-01

    There is growing recognition of the challenges we face, in many parts of the world, in finding and maintaining clean sources of water for human consumption and agricultural use, while balancing the needs of the natural world. Advancements in hydrologic sciences are needed in order to develop an improved understanding of the controls on the quantity, movement, and quality of water, thus enhancing our ability to better protect and manage our water resources. Geophysical methods can play a central role in these investigations. CUAHSI (Consortium of Universities for the Advancement of Hydrologic Sciences) is developing, with the support of the National Science Foundation, a Hydrologic Measurement Facility (HMF), which contains a Geophysics module, referred to as HMF-Geophysics. The Geophysics module will support and advance the use of geophysics for hydrologic applications. Currently in second year of a 3 year pilot study, the main aim of HMF-Geophysics is to develop the infrastructure necessary to provide geophysical techniques and the expertise to apply them correctly for the hydrological community. The current working model consists of a central HMF-Geophysics facility and a number of volunteer nodes. The latter consists of individuals at universities who have volunteered to be part of HMF-Geophysics by using their equipment, and/or software, and expertise, in research partnerships with hydrologists. In response to an inquiry the central facility takes on the evaluation of the potential of geophysics to the area of research/watershed. The central facility can then undertake a feasibility study to determine how/if geophysical methods could be of use, and to evaluate the "value-added" by geophysics to the science. Once it is clear that the geophysics can contribute in a significant way to addressing the science questions the central facility works with the hydrologist to set up the next step. Our assumption is that at this point, the hydrologist (perhaps with a

  6. Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia).

    Science.gov (United States)

    Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser

    2017-04-01

    The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic

  7. Geophysical Monitoring of Hydrological and Biogeochemical Transformations associated with Cr(VI) Bioremediation

    International Nuclear Information System (INIS)

    Hubbard, Susan; Williams, Kenneth H.; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Philip E.; Hazen, Terry C.

    2008-01-01

    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI)bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic datasets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical datasets, we then interpreted time-lapse seismic and radar tomographic datasets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring datasets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring dataset and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity

  8. Results of integrated geophysical measurements on a landslide endangered brown coal dump

    Energy Technology Data Exchange (ETDEWEB)

    Militzer, H; Lindner, H; Kaeppler, R

    1984-01-01

    The measurements revealed occurrence of geophysical anomalies across artificial soils with low content of cohesive material. The proven anomalies varied with time with regard to their magnitude and position. Possible relations between the temporal variations of the geophysical fields and a landslide on the boundary of the object are discussed.

  9. Rapid geophysical surveyor

    International Nuclear Information System (INIS)

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  10. geophysical and geochemical characterization of zango abattoir

    African Journals Online (AJOL)

    Dr A.B.Ahmed

    disposal of hazardous materials, fresh groundwater supplies ... in the groundwater flow system may change considerably the conductivity of the polluted zone; hence the Geo-electric and. Electromagnetic (EM) geophysical methods could effectively be ... this field strength and phase displacement around a fracture zone.

  11. Recent developments in high-resolution global altimetric gravity field modeling

    DEFF Research Database (Denmark)

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  12. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative perameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape

  13. Development of Geophysical Ideas and Institutions in Ottoman Empire

    Science.gov (United States)

    Ozcep, Ferhat; Ozcep, Tazegul

    2015-04-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  14. Moving Beyond IGY: An Electronic Geophysical Year (eGY) Concept

    Science.gov (United States)

    Baker, D. N.; Barton, C. E.; Rodger, A. S.; Thompson, B. J.; Fraser, B.; Papitashvili, V.

    2003-12-01

    During the International Geophysical Year (1957-1958), member countries established many new geophysical observatories pursuing the major IGY objectives - to collect geophysical data as widely as possible and to provide free access to these data for all scientists around the globe. Today, geophysics has attained a rather good understanding within traditional regions, i.e., the atmosphere, ionosphere, magnetosphere, and other such geospheres. At the same time, it has become clear that much of the new and important science is coming from the studies of interfaces and coupling between geospheres. Thus, if geophysical data are made `'transparently'' available to a much wider range of scientists and students than to those who do the observations, then new and exciting discoveries can be expected. An International Association of Geomagnetic and Aeronomy (IAGA) task force, recognizing that a key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories, proposes that for the 50th anniversary of IGY, the worldwide scientific community should endorse and promote an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the IGY in 2007-2008 and provide a forward impetus to geophysics in 21st century, similar to that provided by the IGY fifty years ago. The IAGA task force strongly advocates: (1) Securing permission and release of existing data; (2) Creating access to information; and (3) Conversion of relevant analog data to digital form. The eGY concept embraces all available and upcoming geophysical data (e.g., atmospheric, ionospheric, geomagnetic, gravity, etc.) through the establishment of a series of virtual geophysical observatories now being `'deployed'' in cyberspace. The eGY concept is modern, global, and timely; it is attractive, pragmatic, and affordable. The eGY is based on the existing and continually developing computing/networking technologies (e.g., XML, Semantic Web

  15. Conceptual Design of Geophysical Microsatellite

    Directory of Open Access Journals (Sweden)

    Matviyenko, S.A.

    2014-10-01

    Full Text Available The article covers the issue of Earth gravitational field (EGF parameters measurement from space. The radiophysical method of measurement of gravitational frequency shift of electromagnetic radiation using existent GNSS and its two variants are developed by the author. The designlayout drawing of geophysical microsatellite, which implements the radiophysical method of EGF measurement and provides Earth plasmasphere and magnetosphere monitoring, is offered.

  16. LiDAR, geophysical and field surveys at Ancient Epomanduodurum site and its surrounding country (Doubs, Eastern France)

    Science.gov (United States)

    Laplaige, Clement; Bossuet, Gilles; Thivet, Matthieu

    2010-05-01

    Integrated geophysical studies were carried out over several years, at Mandeure-Mathay (Franche-Comté Region, Eastern France) for the archaeological evaluation of ancient Epomanduodurum. The site is of major scientific interest to understand the territorial structure of earlier agglomerations in Eastern Gaul at the end of the Iron Age and during the Roman period. As regards its size, urban equipment, monuments and function, the ancient town is considered rating second behind the civitas capital of Sequani, Besançon-Vesontio. It is located in the Doubs valley, where the plain of Alsace opens into the marches of Burgundy, in a traffic zone between the Vosges and the Jura. This location allows transit between the Rhône valley and the Rhein plain, through the Saône and Doubs valleys. This geographical situation was a significant factor in the creation of the late Iron Age settlement, later to turn into a major Gallo-roman town. The whole site of the Ancient town includes urban centre and two artisan suburbs. The buried ruins stretch on more than 500 hectares outside and inside a meander of the Doubs River. From the beginning of the survey, in 2001, high resolution and non invasive geophysical methods (magnetic mapping and Automatic Restivity Profiling (ARP) were performed on large scale, both on the terrace and in the floodplain). Excavations associated to geophysical prospection allow to produce a general plan of the Gallo roman structures and to reconstruct the settlement evolution. While human occupation on open land is certified by a lot of indications, on the contrary, the forest-covered zones on table-land appear as less documented areas. The explanation is that some of the classic methods (such as aerial reconnaissance and field walking) are less efficient in the archaeological prospection of table-lands and hills, naturally marked by omnipresent forest. In our new research program (LIEPPEC and PCR Mandeure, 2008-2010), it appears necessary to better

  17. Integration of potential and quasipotential geophysical fields and GPR data for delineation of buried karst terranes in complex environments

    Science.gov (United States)

    Eppelbaum, L. V.; Alperovich, L. S.; Zheludev, V.; Ezersky, M.; Al-Zoubi, A.; Levi, E.

    2012-04-01

    Karst is found on particularly soluble rocks, especially limestone, marble, and dolomite (carbonate rocks), but is also developed on gypsum and rock salt. Subsurface carbonate rocks involved in karst groundwater circulation considerably extend the active karst realm, to perhaps 14% of the world's land area (Price, 2009). The phenomenon of the solution weathering of limestone is the most widely known in the world. Active sinkholes growth appears under different industrial constructions, roads, railways, bridges, airports, buildings, etc. Regions with arid and semi-arid climate occupy about 30% of the Earth's land. Subsurface in arid regions is characterized by high variability of physical properties both on lateral and vertical that complicates geophysical survey analysis. Therefore for localization and monitoring of karst terranes effective and reliable geophysical methodologies should be applied. Such advanced methods were developed in microgravity (Eppelbaum et al., 2008; Eppelbaum, 2011b), magnetic (Khesin et al., 1996; Eppelbaum et al., 2000, 2004; Eppelbaum, 2011a), induced polarization (Khesin et al., 1997; Eppelbaum and Khesin, 2002), VLF (Eppelbaum and Khesin, 1992; Eppelbaum and Mishne, 2012), near-surface temperature (Eppelbaum, 2009), self-potential (Khesin et al., 1996; Eppelbaum and Khesin, 2002), and resistivity (Eppelbaum, 1999, 2007a) surveys. Application of some of these methodologies in the western and eastern shores of the Dead Sea area (e.g., Eppelbaum et al., 2008; Ezersky et al., 2010; Al-Zoubi et al., 2011) and in other regions of the world (Eppelbaum, 2007a) has shown their effectiveness. The common procedures for ring structure identification against the noise background and probabilistic-deterministic methods for recognizing the desired targets in complex media are presented in Khesin and Eppelbaum (1997), Eppelbaum et al. (2003), and Eppelbaum (2007b). For integrated analysis of different geophysical fields (including GPR images) intended

  18. Preliminary evaluation of alterant geophysical tomography in welded tuff

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Daily, W.D.

    1985-01-01

    The ability of alterant geophysical tomography to delineate flow paths in a welded tuff rock mass has been preliminarily evaluated based on the results of a field experiment. Electromagnetic measurements were made before, during and after a water-based, dye tracer flowed through the rock mass. Alterant geophysical tomographs were generated and compared with independent evidence - borescope logs, neutron logs and dyed rock samples. Anomalies present in the tomograph match the location and orientation of fractures mapped with a borescope. The location of tracer-stained fractures coincides with the location of some image anomalies; other geophysical anomalies exist where tracer-stained fractures were not observed, perhaps due to poor core recovery. Additional drilling to locate stained flow paths and other experiments are planned so that the applicability of the technique can be further evaluated

  19. Groundwater geophysics. A tool for hydrology. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Kirsch, Reinhard (ed.) [Landesamt fuer Natur und Umwelt, Flintbek (Germany). Abt. Geologie/Boden

    2009-07-01

    directive is a relatively new field of application for geophysical techniques. Finally, the geophysical mapping of organic and inorganic contaminations of soil and groundwater is demonstrated. (orig.)

  20. Geophysics of Geothermal Areas: State of the Art and Future Development

    Science.gov (United States)

    Mabey, Don R.

    In May 1980 a workshop organized by the Advanced School of Geophysics of the Ettore Majorana Center for Scientific Culture was held in Erice, Italy. The purpose was to present the state of the art and future development of geophysics as related to exploration for geothermal resources and the environmental impact of the development of geothermal systems. The workshop was addressed to “younger researchers working in scientific institutions and in public or private agencies and who are particularly interested in these aspects of the energy problem.” Fourteen formal lectures were presented to the workshop. This volume contains papers based on 10 of these lectures with a preface, forward, and introduction by the editors. The ten papers are “Heat Transfer in Geothermal Areas,” “Interpretation of Conductive Heat Flow Anomalies,” “Deep Electromagnetic Soundings in Geothermal Exploration,” “A Computation Method for dc Geoelectric Fields,” “Measurement of Ground Deformation in Geothermal Areas,” “Active Seismic Methods in Geothermal Exploration,” “The Role of Geophysical Investigations in the Discovery of the Latera Geothermal Field,” “Geothermal Resources Exploration in the European Community: The Geophysical Case,” “Activity Performed by AGIP (ENI Group) in the Field of Geothermal Energy,” and “Geothermal Exploration in the Western United States.” Six of the authors are from Italy, and one each is from Iceland, the Netherlands, West Germany, and the United States. All of the papers are in English.

  1. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Science.gov (United States)

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  2. Geophysical methods in uranium mining

    International Nuclear Information System (INIS)

    Koehler, K.

    1989-01-01

    In uranium prospecting, exploration, milling, and mining there is an urgent need to have information on the concentration of uranium at all steps of handling uranium containing materials. To gain this information in an effective way modern geophysical methods have to be applied. Publications of the IAEA and NEA in this field are reviewed in order to characterize the state of the art of these methods. 55 refs

  3. Global Journal of Geological Sciences

    African Journals Online (AJOL)

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  4. The relationship of fractals in geophysics to 'the new science'

    International Nuclear Information System (INIS)

    Turcotte, Donald L.

    2004-01-01

    Many phenomena in geophysics satisfy fractal statistics, examples range from the frequency-area statistics of earthquakes to the time series of the earth's magnetic field. Solutions to classical differential equations cannot give this type of behavior. Several 'cellular automata' models have successfully reproduced the observed statistics. For example, the slider-block model for earthquakes. Stephen Wolfram's recent book A New Kind of Science sets forth a 'new science' based on cellular automata. This paper discusses the role of cellular automata in geophysics

  5. Notes on the history of geophysics in the Ottoman Empire

    Science.gov (United States)

    Ozcep, F.; Ozcep, T.

    2014-09-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  6. Field Evaluation of Two Geophysical Techniques for Real-Time Mapping of Smouldering Remediation (STAR)

    Science.gov (United States)

    Trento, L. M.; Tsourlos, P.; McMaster, M.; Liefl, D.; Sims, A.; Dominguez, J. L. G.; Vidumsky, J.; Gerhard, J.

    2016-12-01

    Self-sustaining Treatment for Active Remediation (STAR) technology destroys non-aqueous phase liquid (NAPL) in situ using principles of smouldering combustion. It involves propagating an exothermic (400-1000C) oxidation reaction outwards from an ignition well. A full-scale STAR system is currently being applied at an industrial site contaminated with coal tar below the water table in New Jersey, USA. STAR is typically tracked using multi-level thermocouples, which are discrete and sparse in space and time. This study evaluates two surface-based geophysical methods - Electrical Resistivity Tomography (ERT) and Self-Potential (SP) - for the ability to map the STAR reaction in real time at the New Jersey site. Both techniques involve placing electrode arrays on the surface and monitoring electrical signals over time (i.e., time-lapse). It is hypothesized that ERT should be able to monitor the resistive dry zone that precedes the reaction front and/or the growing NAPL-depleted zone. SP is expected to be able to detect the potential difference associated with thermal gradients generated by the reaction. Approximately 72 ERT electrodes in a "swiss cross" pattern plus 10 SP electrodes will be emplaced over single STAR treatment cell (six ignition wells). This setup will be employed to monitor both a deep (25 feet) and shallow (8 feet) STAR treatments. The geophysics will be complemented by in situ temperature measurements, continuous gas measurements, and pre- and post-treatment coring. The primary goal of this research is to evaluate the effectiveness of using ERT and SP for STAR under field conditions. The tests will be conducted in August 2016.

  7. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    Directory of Open Access Journals (Sweden)

    Alekseenko Victor

    2017-01-01

    Full Text Available Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  8. Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

    Science.gov (United States)

    Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara

    2016-02-01

    The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.

  9. Geophysical investigation programme of Northern Switzerland: Gravimetric measurements 81/82

    International Nuclear Information System (INIS)

    Klingele, E.; Schwendener, H.

    1984-10-01

    Within the frame of the geophysical investigations of the NAGRA in the northern part of Switzerland the Swiss Geophysical Commission has measured 4954 gravity stations. The gravity data were processed and presented as Bouguer-anomaly and residual anomaly maps. The densities used for the corrections were 2.40 and 2.67 g/cm 3 . The residual field showed a negative anomaly along an axis passing through Weiach and Villigen. This anomaly can be interpreted quantitatively in terms of depth of the crystalline basement. (author)

  10. Reservoir and civil engineering geophysics (CD-Rom); Geophysique de gisement et de genie civil (CD-Rom)

    Energy Technology Data Exchange (ETDEWEB)

    Mari, J.L.; Chapellier, D.

    1999-07-01

    This CD-Rom is a pedagogical tool developed from the book 'field and civil engineering geophysics' (Technip ed., 1998). It presents the geophysical methods (surface and well geophysical surveys, radar surveys and well logging) and their application in the study of oil fields and also in civil engineering. Several cartoons illustrate the principle of methods, their domain of use and their limitations. It covers the following topics: surface seismic surveys (waves propagation, equipments, reflexion and refraction seismic surveys, surface waves); well seismic surveys (operation, data processing, imaging); well logging (acoustic, nuclear,electrical and others, methods of interpretation); radar surveys (principle, surface, wells, possibilities and limitations). (J.S.)

  11. A geophysical potential field study to image the Makran subduction zone in SE of Iran

    Science.gov (United States)

    Abedi, Maysam; Bahroudi, Abbas

    2016-10-01

    The Makran subduction wedge as one of the largest subduction complexes has been forming due to the Arabian oceanic lithosphere subducting beneath the Lut and the Afghan rigid block microplates. To better visualize the subducting oceanic crust in this region, a geophysical model of magnetic susceptibility from an airborne magnetic survey (line spacing about 7.5 km) over the Makran zone located at southeast of Iran is created to image various structural units in Iran plate. The constructed geophysical model from the 3D inverse modeling of the airborne magnetic data indicates a thin subducting slab to the north of the Makran structural zone. It is demonstrated that the thickness of sedimentary units varies approximately at an interval of 7.5-11 km from north to south of this zone in the Iranian plate, meanwhile the curie depth is also estimated approximately basement, while such intensity reduces over the Makran. The directional derivatives of the magnetic field data have subtle changes in the Makran, but strongly increase in the Jazmurian by enhancing and separating different structural boundaries in this region. In addition, the density variations of the subsurface geological layers were determined by 3D inversion of the ground-based gravity data over the whole study area, where the constructed density model was in good agreement with the magnetic one. According to the outputs of the magnetic susceptibility and the density contrast, the Arabian plate subducts to the north under the Eurasia with a very low dip angle in the Makran structural zone.

  12. Improving Discoverability of Geophysical Data using Location Based Services

    Science.gov (United States)

    Morrison, D.; Barnes, R. J.; Potter, M.; Nylund, S. R.; Patrone, D.; Weiss, M.; Talaat, E. R.; Sarris, T. E.; Smith, D.

    2014-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. They will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  13. Geophysics field school: A team-based learning experience for students and faculty

    Science.gov (United States)

    Karchewski, B.; Innanen, K. A.; Lauer, R. M.; Pidlisecky, A.

    2016-12-01

    The core challenge facing a modern science educator is to deliver a curriculum that reaches broadly and deeply into the technical domain, while also helping students to develop fundamental scientific skills such as inquiry, critical thinking and technical communication. That is, our aim is for students to achieve significant learning at all levels summarized by Bloom's Taxonomy of Educational Objectives. It is not always clear how to achieve the full spectrum of goals, with much debate over which component is more important in a science education. Team-based and experiential learning are research-supported approaches that aim to reach across the spectrum by placing students in a setting where they solve practical problems in teams of peers. This learning mode modifies the role of the instructor to a guide or facilitator, and students take a leadership role in their own education. We present a case study of our team's implementation of team-based learning in a geophysics field school, an inherently experiential learning environment. The core philosophies behind our implementation are to present clearly defined learning outcomes, to recognize that students differ in their learning modalities and to strive to engage students through a range of evidence-based learning experiences. We discuss the techniques employed to create functional teams, the key learning activities involved in a typical day of field school and data demonstrating the learning activities that showed the strongest correlation to overall performance in the course. In the process, we also realized that our team-based approach to course design and implementation also enhanced our skillsets as educators, and our institution recently recognized our efforts with a team teaching award. Therefore, we conclude with some of our observations of best practices for team teaching in a field setting to initiate discussions with colleagues engaged in similar activities.

  14. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Science.gov (United States)

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  15. SIAM conference on inverse problems: Geophysical applications. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  16. Geophysical considerations of geothermics

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  17. Analyticity and the Global Information Field

    Directory of Open Access Journals (Sweden)

    Evgeni A. Solov'ev

    2015-03-01

    Full Text Available The relation between analyticity in mathematics and the concept of a global information field in physics is reviewed. Mathematics is complete in the complex plane only. In the complex plane, a very powerful tool appears—analyticity. According to this property, if an analytic function is known on the countable set of points having an accumulation point, then it is known everywhere. This mysterious property has profound consequences in quantum physics. Analyticity allows one to obtain asymptotic (approximate results in terms of some singular points in the complex plane which accumulate all necessary data on a given process. As an example, slow atomic collisions are presented, where the cross-sections of inelastic transitions are determined by branch-points of the adiabatic energy surface at a complex internuclear distance. Common aspects of the non-local nature of analyticity and a recently introduced interpretation of classical electrodynamics and quantum physics as theories of a global information field are discussed.

  18. A positioning and data logging system for surface geophysical surveys

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Blair, M.S.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) developed at ORNL is being adapted to work with two commercially available geophysical instruments: a magnetometer and an EM31 terrain conductivity meter. Geophysical surveys have proven an important preliminary step in investigating hazardous waste sites. Magnetometers and terrain conductivity meters are used to locate buried drums, trenches, conductive contaminant plumes and map regional changes in geology. About half the field time of a typical geophysical investigation is spent surveying the position of the grid points at which the measurements will be made. Additional time is lost and errors may be made recording instrument values in field notebooks and transcribing the data to a computer. Developed for gamma radiation surveys, the USRAD system keeps track of the surveyor's position automatically by triangulating on an ultrasonic transmitter carried in a backpack. The backpack also contains a radio transmitter that sends the instrument's reading coincident with the ultrasonic pulse. The surveyor's position and the instrument's reading are recorded by a portable computer which can plot the data to check the survey's progress. Electronic files are stored in a form compatible with AutoCAD to speed report writing. 7 refs., 3 figs

  19. Integrated application of the database for airborne geophysical survey achievement information

    International Nuclear Information System (INIS)

    Ji Zengxian; Zhang Junwei

    2006-01-01

    The paper briefly introduces the database of information for airborne geophysical survey achievements. This database was developed on the platform of Microsoft Windows System with the technical methods of Visual C++ 6.0 and MapGIS. It is an information management system concerning airborne geophysical surveying achievements with perfect functions in graphic display, graphic cutting and output, query of data, printing of documents and reports, maintenance of database, etc. All information of airborne geophysical survey achievements in nuclear industry from 1972 to 2003 was embedded in. Based on regional geological map and Meso-Cenozoic basin map, the detailed statistical information of each airborne survey area, each airborne radioactive anomalous point and high field point can be presented visually by combining geological or basin research result. The successful development of this system will provide a fairly good base and platform for management of archives and data of airborne geophysical survey achievements in nuclear industry. (authors)

  20. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Science.gov (United States)

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  1. Temporal associations of life with solar and geophysical activity

    Directory of Open Access Journals (Sweden)

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  2. Methodology of Detailed Geophysical Examination of the Areas of World Recognized Religious and Cultural Artifacts

    Science.gov (United States)

    Eppelbaum, Lev

    2010-05-01

    It is obvious that noninvasive geophysical methods are the main interpreting tools at the areas of world recognized religious and cultural artifacts. Usually in these areas any excavations, drilling and infrastructure activity are forbidden or very strongly limited. According to field experience and results of numerous modeling (Eppelbaum, 1999, 2000, 2009a, 2009b; Eppelbaum and Itkis, 2001, 2003; Eppelbaum et al., 2000, 2001a, 2001b, 2003a, 2006a, 2006b, 2007, 2010, Itkis et al., 2003; Neishtadt et al., 2006), a set of applied geophysical methods may include the following types of surveys: (1) magnetic, (3) GPR (ground penetration radar), (3) gravity, (4) electromagnetic VLF (very low frequency), (5) ER (electric resistivity), (6) SP (self-potential), (7) IP (induced polarization), (8) SE (seismoelectric), and (9) NST (near-surface temperature). As it was shown in (Eppelbaum, 2005), interpretation ambiguity may be sufficiently reduced not only by integrated analysis of several geophysical methods, but also by the way of multilevel observations of geophysical fields. Magnetic, gravity and VLF measurements may be performed at different levels over the earth's surface (0.1 - 3 m), ER, SP and SE observations may be obtained with different depth of electrodes grounding (0.1 - 1 m), and NST sensor may be located at a depth of 0.8 - 2.5 m. GPR method usually allows measuring electromagnetic fields at various frequencies (with corresponding changing of the investigation depth and other parameters). Influence of some typical noise factors to geophysical investigations at archaeological sites was investigated in (Eppelbaum and Khesin, 2001). In many cases various constructions and walls are in the nearest vicinity of the examined artifacts. These constructions can be also utilized for carrying out geophysical measurements (magnetic, gravity and VLF) at different levels. Application of the modern ROV (remote operated vehicles) with registration of magnetic and VLF fields at

  3. Improved geophysical excitation of length-of-day constrained by Earth orientation parameters and satellite gravimetry products

    Science.gov (United States)

    Yu, Nan; Li, Jiancheng; Ray, Jim; Chen, Wei

    2018-05-01

    At time scales shorter than about two years, non-tidal LOD variations are mainly excited by angular momentum exchanges between the atmospheric, oceanic, and continental hydrological fluid envelopes and the underlying solid Earth. But, neither agreement among different geophysical models for the fluid dynamics nor consistency with geodetic observations of LOD has reached satisfactory levels. This is mainly ascribed to significant discrepancies and uncertainties in the theories and assumptions adopted by different modeling groups, in their numerical methods, and in the accuracy and coverage of global input data fields. Based on careful comparisons with more accurate geodetic measurements and satellite gravimetry products (from satellite laser ranging, SLR), observed length-of day (LOD) and C20 geopotential time series can provide strong constraints to evaluate or form combined geophysical models. In this study, wavelet decomposition is used to extract several narrow-band components to compare in addition to considering the total signals. We then make refinements to the least difference combination (LDC) method proposed by Chen et al. (2013b) to form multi-model geophysical excitations. Two combination variants, called the weighted mean combination (WMC2 and WMC4), are also evaluated. All the multi-model methods attempt to extract the best-modeled frequency components from each geophysical model by relying on geodetic excitation and the C20 series as references. The comparative performances of the three combinations LDC, WMC2 and WMC4 and the original single models are determined. We find that (1) the Estimating the Circulation and Climate of the Ocean (ECCO) and Max-Planck-Institute for Meteorology Ocean Model (MPIOM) give a more reliable view of the ocean redistributions than the Ocean Model for Circulation and Tides (OMCT) used by European Centre for Medium-Range Weather Forecasts (ECMWF), especially for the annual component; (2) C20 series from SLR can provide a

  4. Globally linked vortex clusters in trapped wave fields

    International Nuclear Information System (INIS)

    Crasovan, Lucian-Cornel; Molina-Terriza, Gabriel; Torres, Juan P.; Torner, Lluis; Perez-Garcia, Victor M.; Mihalache, Dumitru

    2002-01-01

    We put forward the existence of a rich variety of fully stationary vortex structures, termed H clusters, made of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However, we show that the constituent vortices are globally linked, rather than products of independent vortices. Also, they always feature a monopolar global wave front and exist in nonlinear systems, such as the Bose-Einstein condensates. Clusters with multipolar global wave fronts are nonstationary or, at best, flipping

  5. From the international geophysical year to global change

    International Nuclear Information System (INIS)

    Fleagle, R.G.

    1992-01-01

    A series of major scientific programs carried out over the past 40 years has greatly increased understanding of our global environment and has led to the present concern over global change. Each program responded to a specific and urgent scientific need or opportunity. In each case, institutions and resources were created that provided the foundation for later programs. Increased scientific understanding has exposed threats to future welfare and has raised serious policy implications for governments. Institutions for responding to global policy issues need to be created or strengthened. Recommendations for better procedures and institutional structures are provided in this article. 39 refs

  6. Development of nuclear physics and its connections to borehole geophysics

    International Nuclear Information System (INIS)

    Loetzsch, W.

    1990-01-01

    Starting from the discovery of radioactivity, the development of nuclear physics and its close connections to geoscience, especially to borehole geophysics, are outlined. The discovery of a nuclear physical phenomenon is always followed by an examination for its applications in nuclear geophysics, which since about 1960 has developed into a special discipline of applied geophysics. As an example for this development in the GDR the application of neutron capture γ-ray spectroscopy for iron ore exploration is described. A table listing important present-day nuclear well logging techniques with detectable elements and their detection limits is presented. Examples of measurements with some of these logging techniques reveal their particularities and show their element-specific character and the nuclear physical mechanisms involved. Finally the state of art of nuclear well logging and prospects in this field are outlined. (author)

  7. Cyclic Investigation of Geophysical Studies in the Exploration and Discovery of Natural Resources in Our Country; Uelkemizdeki Dogal Kaynaklarin Aranmasi ve Bulunmasinda Jeofizik Calismalarin Doenemsel Incelenmesi

    Energy Technology Data Exchange (ETDEWEB)

    Gonulalan, A U [TPAO, Research Department, Ankara (Turkey)

    2007-07-01

    Although the methods of exploration geophysics were first utilized after the discovery of an oil field in 1921, they have also applied in the old centuries. Likewise, the half of the total production in the United States of America is covered by new oil fields discovered by utilizing geophysical methods. The industry's energy necessity increases the interest to oil. The investments in the field of geophysics by the companies which makes large amount of money in order to discover new oil fields, widespread use of computers, the developments of space technology and world-wide nuclear competition even though its great danger for human beings have great share in the development of geophysics. Our country has 18 different types mines which has more than 10 billion $ potential. Geophysical engineers have great Kowledge and labor in the discovery of 1,795 trillion wealth from borax to building stone, and 60 billion $ oil and gas. On the other hand, as 1,5 billion investment in the field of geophysics is only 0.08 % of total investments, the increase of investments will add more contribution.

  8. Applying geophysical surveys for studying subsurface geology of monogenetic volcanic fields: the example of La Garrotxa Volcanic Field (NE of Iberian Peninsula)

    Science.gov (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-05-01

    Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  9. Time-lapse electrical geophysical monitoring of amendment-based biostimulation

    Science.gov (United States)

    Johnson, Timothy C.; Versteeg, Roelof J.; Day-Lewis, Frederick D.; Major, William; Lane, John W.

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation.Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation.In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial

  10. The impact of geophysical weapons on endangering of environment for the purposes of war

    Directory of Open Access Journals (Sweden)

    Stajić Ljubomir

    2012-01-01

    Full Text Available The environment has considerably been damaged due to numerous destructive impacts of obsolete and dirty technologies, heavy and uncontrolled traffic, arms race, military actions, terrorist acts and other activities which are all seriously disturbing the existing balance of nature and endangering human life at the same time. There have been ominous warnings about the situation. Rapid increase in techniques of geophysical engineering and so-called geophysical weapons which their practical threats to the mere physical existence of the wild life and of human society has created a need for this exceptionally important field to be legally regulated and sanctioned by international standards. The aim of their pursuit and study is for the man to protect and improve the environment in order to save it as on integral and crucial part of human work, life and sheer existence. Over the history of human society and of scientific and technological development, implementation of learning in different fields of human activities have caused ground breaking discoveries but at the some time and aspiration to control natural processes and phenomena such as the weather, climate, earthquake, tsunami, drought, cloudiness, precipitation etc. Starting from the fact that protection of the environment is a most fundamental postulate in the best national interests of each country, a conclusion can be made that only a deep radical change in man's attitude towards natural world with its processes and with its laws can secure further development of mankind. In respect of that, understanding and adoption of the findings and the effects of so-called geophysical weapons that have been made in this field so far have must relevant part. Namely, results and findings of the research still have not provided answers to a great number of questions. This paper examines exceptionally complex interaction between changes in nature in terms of the climate, weather etc. deliberate influence on

  11. Practices to enable the geophysical research spectrum: from fundamentals to applications

    Science.gov (United States)

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique

  12. Geophysical data fusion for subsurface imaging. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  13. Geophysical data fusion for subsurface imaging. Final report

    International Nuclear Information System (INIS)

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites

  14. Arithmetic geometry over global function fields

    CERN Document Server

    Longhi, Ignazio; Trihan, Fabien

    2014-01-01

    This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009–2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the con...

  15. Archeomagnetic Intensity Spikes: Global or Regional Geomagnetic Field Features?

    Directory of Open Access Journals (Sweden)

    Monika Korte

    2018-03-01

    Full Text Available Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

  16. Spatial heterogeneities and variability of karst hydro-system : insights from geophysics

    Science.gov (United States)

    Champollion, C.; Fores, B.; Lesparre, N.; Frederic, N.

    2017-12-01

    Heterogeneous systems such as karsts or fractured hydro-systems are challenging for both scientist and groundwater resources management. Karsts heterogeneities prevent the comparison and moreover the combination of data representative of different scales: borehole water level can generally not be used directly to interpret spring flow dynamic for example. The spatial heterogeneity has also an impact on the temporal variability of groundwater transfer and storage. Karst hydro-systems have characteristic non linear relation between precipitation amount and discharge at the outlets with threshold effects and a large variability of groundwater transit times In the presentation, geophysical field experiments conducted in karst hydro-system in the south of France are used to investigate groundwater transfer and storage variability at a scale of a few hundred meters. We focus on the added value of both geophysical time-lapse gravity experiments and 2D ERT imaging of the subsurface heterogeneities. Both gravity and ERT results can only be interpreted with large ambiguity or some strong a priori: the relation between resistivity and water content is not unique; almost no information about the processes can be inferred from the groundwater stock variations. The present study demonstrate how the ERT and gravity field experiments can be interpreted together in a coherent scheme with less ambiguity. First the geological and hydro-meteorological context is presented. Then the ERT field experiment including the processing and the results are detailed in the section about geophysical imaging of the heterogeneities. The gravity double difference (S2D) time-lapse experiment is described in the section about geophysical monitoring of the temporal variability. The following discussion demonstrate the impact of both experiments on the interpretation in terms of processes and heterogeneities.

  17. Development and implementation of the software for visualization and analysis of data geophysical loggers

    Science.gov (United States)

    Gordeev, V. F.; Malyshkov, S. Yu.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.

    2017-11-01

    The general trend of modern ecological geophysics is changing priorities towards rapid assessment, management and prediction of ecological and engineering soil stability as well as developing brand new geophysical technologies. The article describes researches conducted by using multi-canal geophysical logger MGR-01 (developed by IMCES SB RAS), which allows to measure flux density of very low-frequency electromagnetic radiation. It is shown that natural pulsed electromagnetic fields of the earthen lithosphere can be a source of new information on Earth's crust and processes in it, including earthquakes. The device is intended for logging electromagnetic processes in Earth's crust, geophysical exploration, finding structural and lithological inhomogeneities, monitoring the geodynamic movement of Earth's crust, express assessment of seismic hazards. The data is gathered automatically from observation point network in Siberia

  18. On the stochastic structure of globally supersymmetric field theories

    International Nuclear Information System (INIS)

    Flume, R.; Lechtenfeld, O.

    1983-09-01

    We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)

  19. Sources of global climate data and visualization portals

    Science.gov (United States)

    Douglas, David C.

    2014-01-01

    Climate is integral to the geophysical foundation upon which ecosystems are structured. Knowledge about mechanistic linkages between the geophysical and biological environments is essential for understanding how global warming may reshape contemporary ecosystems and ecosystem services. Numerous global data sources spanning several decades are available that document key geophysical metrics such as temperature and precipitation, and metrics of primary biological production such as vegetation phenology and ocean phytoplankton. This paper provides an internet directory to portals for visualizing or servers for downloading many of the more commonly used global datasets, as well as a description of how to write simple computer code to efficiently retrieve these data. The data are broadly useful for quantifying relationships between climate, habitat availability, and lower-trophic-level habitat quality - especially in Arctic regions where strong seasonality is accompanied by intrinsically high year-to-year variability. If defensible linkages between the geophysical (climate) and the biological environment can be established, general circulation model (GCM) projections of future climate conditions can be used to infer future biological responses. Robustness of this approach is, however, complicated by the number of direct, indirect, or interacting linkages involved. For example, response of a predator species to climate change will be influenced by the responses of its prey and competitors, and so forth throughout a trophic web. The complexities of ecological systems warrant sensible and parsimonious approaches for assessing and establishing the role of natural climate variability in order to substantiate inferences about the potential effects of global warming.

  20. From Mathematical Monsters to Generalized Scale Invariance in Geophysics: Highlights of the Multifractal Saga

    Science.gov (United States)

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.

    2013-12-01

    Fractals and multifractals are very illustrative of the profound synergies between mathematics and geophysics. The book ';Fractal Geometry of Nature' (Mandelbrot, 1982) brilliantly demonstrated the genericity in geophysics of geometric forms like Cantor set, Peano curve and Koch snowflake, which were once considered as mathematical monsters. However, to tame the geophysical monsters (e.g. extreme weather, floods, earthquakes), it was required to go beyond geometry and a unique fractal dimension. The concept of multifractal was coined in the course of rather theoretical debates on intermittency in hydrodynamic turbulence, sometimes with direct links to atmospheric dynamics. The latter required a generalized notion of scale in order to deal both with scale symmetries and strong anisotropies (e.g. time vs. space, vertical vs. horizontal). It was thus possible to show that the consequences of intermittency are of first order, not just 'corrections' with respect to the classical non-intermittent modeling. This was in fact a radical paradigm shift for geophysics: the extreme variability of geophysical fields over wide ranges of scale, which had long been so often acknowledged and deplored, suddenly became handy. Recent illustrations are the possibility to track down in large date sets the Higgs boson of intermittence, i.e. a first order multifractal phase transition leading to self-organized criticality, and to simulate intermittent vector fields with the help of Lie cascades, based for instance on random Clifford algebra. It is rather significant that this revolution is no longer limited to fundamental and theoretical problems of geophysics, but now touches many applications including environmental management, in particular for urban management and resilience. These applications are particularly stimulating when taken in their full complexity.

  1. Developments in geophysical exploration methods

    CERN Document Server

    1982-01-01

    One of the themes in current geophysical development is the bringing together of the results of observations made on the surface and those made in the subsurface. Several benefits result from this association. The detailed geological knowledge obtained in the subsurface can be extrapolated for short distances with more confidence when the geologi­ cal detail has been related to well-integrated subsurface and surface geophysical data. This is of value when assessing the characteristics of a partially developed petroleum reservoir. Interpretation of geophysical data is generally improved by the experience of seeing the surface and subsurface geophysical expression of a known geological configuration. On the theoretical side, the understanding of the geophysical processes themselves is furthered by the study of the phenomena in depth. As an example, the study of the progress of seismic wave trains downwards and upwards within the earth has proved most instructive. This set of original papers deals with some of ...

  2. Results from the University of Calgary environmental geophysics test range

    Energy Technology Data Exchange (ETDEWEB)

    Duckworth, K; Lawton, D.C.; Juigalli, J; Parry, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The Spy Hill Research Farm, operated by the University of Calgary as a test range site where geophysical equipment and methods related to environmental monitoring can be operated under controlled conditions, was described. The site is used by students in the geophysics courses offered at the University, but it is also intended to be available to other users for equipment tests. The site is underlain by glacial gravels and clays which reach thicknesses in excess of 30 m. Surveys of the site have been completed with the following geophysical systems: Geonics EM-31 and EM-34; Apex Max-Min; Huntec Mk4 IP with Phoenix IP-T1 transmitter; Geometrics Proton Magnetometer; McPhar vertical field Fluxgate magnetometer; Androtex TDR6 IP with Phoenix IP-T1 transmitter; Geometrics 12 channel refraction seismic system; and Pulse Echo Ground Penetrating Radar. The site has proved to be well suited to serve as a test range. The addition of yet more features to the site is being planned.

  3. Chaos theory in geophysics: past, present and future

    International Nuclear Information System (INIS)

    Sivakumar, B.

    2004-01-01

    The past two decades of research on chaos theory in geophysics has brought about a significant shift in the way we view geophysical phenomena. Research on chaos theory in geophysics continues to grow at a much faster pace, with applications to a wide variety of geophysical phenomena and geophysical problems. In spite of our success in understanding geophysical phenomena also from a different (i.e. chaotic) perspective, there still seems to be lingering suspicions on the scope of chaos theory in geophysics. The goal of this paper is to present a comprehensive account of the achievements and status of chaos theory in geophysics, and to disseminate the hope and scope for the future. A systematic review of chaos theory in geophysics, covering a wide spectrum of geophysical phenomena studied (e.g. rainfall, river flow, sediment transport, temperature, pressure, tree ring series, etc.), is presented to narrate our past achievements not only in understanding and predicting geophysical phenomena but also in improving the chaos identification and prediction techniques. The present state of chaos research in geophysics (in terms of geophysical phenomena, problems, and chaos methods) and potential for future improvements (in terms of where, why and possibly how) are also highlighted. Our popular views of nature (i.e. stochastic and deterministic), and of geophysical phenomena in particular, are discussed, and the usefulness of chaos theory as a bridge between such views is also put forth

  4. A contemporary decennial global Landsat sample of changing agricultural field sizes

    Science.gov (United States)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by

  5. Analysis and interpretation of geophysical surveys in archaeological sites employing different integrated approach.

    Science.gov (United States)

    Piro, Salvatore; Papale, Enrico; Kucukdemirci, Melda; Zamuner, Daniela

    2017-04-01

    Non-destructive ground surface geophysical prospecting methods are frequently used for the investigation of archaeological sites, where a detailed physical and geometrical reconstructions of hidden volumes is required prior to any excavation work. All methods measure the variations of single physical parameters, therefore if these are used singularly, they could not permit a complete location and characterization of anomalous bodies. The probability of a successful result rapidly increases if a multhimethodological approach is adopted, according to the logic of objective complementarity of information and of global convergence toward a high quality multiparametric imaging of the buried structures. The representation of the static configuration of the bodies in the subsoil and of the space-time evolution of the interaction processes between targets and hosting materials have to be actually considered fundamental elements of primary knowledge in archaeological prospecting. The main effort in geophysical prospecting for archaeology is therefore the integration of different, absolutely non-invasive techniques, especially if managed in view of a ultra-high resolution three-dimensional (3D) tomographic representation mode. Following the above outlined approach, we have integrated geophysical methods which measure the variations of potential field (gradiometric methods) with active methods which measure the variations of physical properties due to the body's geometry and volume (GPR and ERT). In this work, the results obtained during the surveys of three archaeological sites, employing Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Fluxgate Differential Magnetic (FDM) to obtain precise and detailed maps of subsurface bodies, are presented and discussed. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity

  6. The magnetic universe geophysical and astrophysical dynamo theory

    CERN Document Server

    Rüdiger, Günther

    2004-01-01

    Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn

  7. Lunar Global Heat Flow: Predictions and Constraints

    Science.gov (United States)

    Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.

    2017-12-01

    The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.

  8. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    CERN Document Server

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  9. Time-Lapse Electrical Geophysical Monitoring of Amendment-Based Biostimulation.

    Science.gov (United States)

    Johnson, Timothy C; Versteeg, Roelof J; Day-Lewis, Frederick D; Major, William; Lane, John W

    2015-01-01

    Biostimulation is increasingly used to accelerate microbial remediation of recalcitrant groundwater contaminants. Effective application of biostimulation requires successful emplacement of amendment in the contaminant target zone. Verification of remediation performance requires postemplacement assessment and contaminant monitoring. Sampling-based approaches are expensive and provide low-density spatial and temporal information. Time-lapse electrical resistivity tomography (ERT) is an effective geophysical method for determining temporal changes in subsurface electrical conductivity. Because remedial amendments and biostimulation-related biogeochemical processes often change subsurface electrical conductivity, ERT can complement and enhance sampling-based approaches for assessing emplacement and monitoring biostimulation-based remediation. Field studies demonstrating the ability of time-lapse ERT to monitor amendment emplacement and behavior were performed during a biostimulation remediation effort conducted at the Department of Defense Reutilization and Marketing Office (DRMO) Yard, in Brandywine, Maryland, United States. Geochemical fluid sampling was used to calibrate a petrophysical relation in order to predict groundwater indicators of amendment distribution. The petrophysical relations were field validated by comparing predictions to sequestered fluid sample results, thus demonstrating the potential of electrical geophysics for quantitative assessment of amendment-related geochemical properties. Crosshole radar zero-offset profile and borehole geophysical logging were also performed to augment the data set and validate interpretation. In addition to delineating amendment transport in the first 10 months after emplacement, the time-lapse ERT results show later changes in bulk electrical properties interpreted as mineral precipitation. Results support the use of more cost-effective surface-based ERT in conjunction with limited field sampling to improve spatial

  10. Borehole geophysics in nuclear power plant siting

    International Nuclear Information System (INIS)

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative parameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape. Digital data are subsequently computer processed and plotted to scales that enhance the stratigraphic data being correlated. Retention of the data in analog format permits rapid review, whereas computer plotting allows playback and detailed examination of log sections and sequences that may be attenuated on hard copy because of the logarithmic nature of the response to the physical property being examined

  11. Alligator Rivers Analogue project. Geophysics, petrophysics and structure

    International Nuclear Information System (INIS)

    Emerson, D.W.; Mills, K.J.; Hallett, M.S.; Cao, L.Q.; Miyakawa, K.

    1992-01-01

    The geophysical and geological field work at Koongarra (including borehole core logging) showed that the site itself is a folded, faulted, variably fractured Precambrian psammitic and pelitic schist sequence with a quasi-horizontal weathered zone superimposed on the steeply dipping rock fabric. The site is flanked by a high resistivity younger sandstone unit to the northwest and by a magnetic amphibolite/ferricrete sequence to the far southeast. The data interpretations elicited the essential structural and broad lithological elements. Gravity, magnetic and electrical laboratory and field studies confirmed a broad folded fractured sequence of dipping layered host rocks weathered in their upper parts and trending in a southwest-northeast direction. Qualitatively interpreted anomalies indicated the trend of the main groundwater movement to the south where dolomites are thought to act as a sink. These drainage features have SP, resistivity and radiometric expression. The roles of the Kombolgie Sandstone as a source of water and the Koongarra Fault as a barrier or otherwise were not established owing to the lack of sufficient samples for testing and also on account of the difficulty of geophysical access over the site's rugged escarpment. 40 refs., 13 tabs., 69 figs

  12. An Exploration Geophysics Course With an Environmental Focus for an Urban Minority Institution

    Science.gov (United States)

    Kenyon, P. M.

    2004-12-01

    A hands-on exploration geophysics field course with an environmental focus has been developed with NSF support for use at the City College of New York in Manhattan. To maximize access for the students, no prerequisites beyond introductory earth science and physics are required. The course is taught for three hours on Saturday mornings. This has resulted in it attracting not only regular City College students, but also earth science teachers studying for alternate certification or Master's degrees. After a brief introduction to the nature of geophysics and to concepts in data processing, the course is taught in four three-week modules, one each on seismology, resistivity surveying, electromagnetic ground conductivity, and magnetic measurements. Each module contains one week of theory, a field experience, computer data analysis, and a final report. Field exercises are planned to emphasize teamwork and include realistic urban applications of the techniques. Student surveys done in conjunction with this course provide insights into the motivations and needs of the mostly minority students taking it. In general, these students come to the course already comfortable with teamwork and with working in the field. The questionnaires indicate that their greatest need is increased knowledge of the methods of geophysics and of the problems that can be attacked using it. Most of the students gave high ratings to the course, citing the fieldwork as the part that they most enjoyed. The results of these surveys will be presented, along with examples of the field exercises used. The computer analysis assignments written for this course will also be available.

  13. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    Science.gov (United States)

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  14. Geophysical images of basement rocks. Geophysical images in the Guianese basement. Airborne geophysical campaign in French Guiana - 1996

    International Nuclear Information System (INIS)

    Delor, C.; Perrin, J.; Truffert, C.; Asfirane, F.; Rossi, Ph.; Bonjoly, D.; Dubreuihl, J.; Chardon, D.

    1998-01-01

    The French Office for Geological and Mining Research (BRGM) has carried out a high sensitivity airborne geophysical survey of northern French Guiana during the second half of 1996. The aim was to realize a high resolution magnetic and gamma spectrometric mapping for future prospecting, land use and environment management. This paper describes in details the geophysical campaign, the material used, the navigation techniques, the processing of magnetic data, the gamma radiation sources used, the spectrometric calibrations and the geologic interpretation of the results. (J.S.)

  15. The Legacy of Benoit Mandelbrot in Geophysics

    Science.gov (United States)

    Turcotte, D. L.

    2001-12-01

    The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).

  16. Digital Underground (Shh. It's really Applied Geophysics!)

    Science.gov (United States)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  17. Geophysical Institute. Biennial report, 1993-1994

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  18. Geophysical Investigations at Hidden Dam, Raymond, California: Summary of Fieldwork and Data Analysis

    Science.gov (United States)

    Minsley, Burke J.; Burton, Bethany L.; Ikard, Scott; Powers, Michael H.

    2010-01-01

    Geophysical field investigations have been carried out at the Hidden Dam in Raymond, California for the purpose of better understanding the hydrogeology and seepage-related conditions at the site. Known seepage areas on the northwest right abutment area of the downstream side of the dam are documented by Cedergren. Subsequent to the 1980 seepage study, a drainage blanket with a subdrain system was installed to mitigate downstream seepage. Flow net analysis provided by Cedergren suggests that the primary seepage mechanism involves flow through the dam foundation due to normal reservoir pool elevations, which results in upflow that intersects the ground surface in several areas on the downstream side of the dam. In addition to the reservoir pool elevations and downstream surface topography, flow is also controlled by the existing foundation geology as well as the presence or absence of a horizontal drain within the downstream portion of the dam. The purpose of the current geophysical work is to (1) identify present-day seepage areas that may not be evident due to the effectiveness of the drainage blanket in redirecting seepage water, and (2) provide information about subsurface geologic structures that may control subsurface flow and seepage. These tasks are accomplished through the use of two complementary electrical geophysical methods, self-potentials (SP) and direct-current (DC) electrical resistivity, which have been commonly utilized in dam-seepage studies. SP is a passive method that is primarily sensitive to active subsurface groundwater flow and seepage, whereas DC resistivity is an active-source method that is sensitive to changes in subsurface lithology and groundwater saturation. The focus of this field campaign was on the downstream area on the right abutment, or northwest side of the dam, as this is the main area of interest regarding seepage. Two exploratory self-potential lines were also collected on the downstream left abutment of the dam to identify

  19. Global integrability of field theories. Proceedings

    International Nuclear Information System (INIS)

    Calmet, J.; Seiler, W.M.; Tucker, R.W.

    2006-01-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  20. Global integrability of field theories. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Calmet, J.; Seiler, W.M.; Tucker, R.W. (eds.)

    2006-07-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  1. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    Science.gov (United States)

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In

  2. Geophysical assessment of near-field ground motion and the implications for the design of nuclear installations

    International Nuclear Information System (INIS)

    Bernreuter, D.L.

    1977-01-01

    This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States

  3. A contemporary decennial global sample of changing agricultural field sizes

    Science.gov (United States)

    White, E.; Roy, D. P.

    2011-12-01

    In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.

  4. Predictive geophysics: geochemical simulations to geophysical targets

    Science.gov (United States)

    Chopping, R. G.; Cleverley, J.

    2017-12-01

    With an increasing focus on deep exploration for covered targets, new methods are required to target mineral systems under cover. Geophysical responses are driven by physical property contrasts; for example, density contrasts provide a gravity signal, acoustic impedance contrasts provide a seismic reflection signal. In turn, the physical properties for basement, crystalline rocks which host the vast majority of mineral systems are determined almost wholly by the mineralogy of the rocks in question. Mineral systems, through the transport of heat and reactive fluids, will serve to modify the physical properties of country rock as they chemically alter the hosting strata. To understand these changes, we have performed 2D reactive transport modelling that simulates the formation of Archean gold deposits of the Yilgarn Craton, Western Australia. From this, we derive a model of mineralogy that we can use to predict the density, magnetic susceptibility and seismic reflection changes associated with ore formation. It is then possible to predict the gravity, magnetic and seismic reflection responses associated with these deposits. Scenario mapping, such as testing the ability to resolve buried ore bodies or the geophysical survey spacing required to resolve the mineral system, can be performed to produce geophysical targets from these geochemical simulations. We find that there is a gravity response of around 9% of the unaltered response for deposits even buried by 1km of cover, and there is a magnetic spike associated with proximal alteration of the ore system. Finally, seismic reflection response is mostly characterised by additional reflections along faults that plumb the alteration system.

  5. ''Radon-emanometry'' applied to internal geophysics

    International Nuclear Information System (INIS)

    Seidel, J.L.

    1982-02-01

    An experimental set-up for in ground radon 222 measurements has been realised with solid state track detectors (cellulose nitrates CN85 and LR115). A preliminary study of radon activity variations has been conducted over various sites expecting using radon as one of forerunner geophysical parameters of volcanic eruptions and earthquakes predictions. The first data obtained in the field are presented: Etna (Sicily), Krafla (Iceland), Poas and Arenal (Costa Rica), Colima and Paricutin (Mexico) for active volcanoes, Ech Cheliff (Algeria) and Alsace (France) for sismotectonic areas [fr

  6. Geophysical constraints on geodynamical processes at convergent margins

    DEFF Research Database (Denmark)

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-01-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins......, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M>8.0) earthquakes and for generating intermediate and deep seismicity along...... to shallow mantle levels....

  7. The Global Approach to Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the

  8. Interactive and Approachable Web-Based Tools for Exploring Global Geophysical Data Records

    Science.gov (United States)

    Croteau, M. J.; Nerem, R. S.; Merrifield, M. A.; Thompson, P. R.; Loomis, B. D.; Wiese, D. N.; Zlotnicki, V.; Larson, J.; Talpe, M.; Hardy, R. A.

    2017-12-01

    Making global and regional data accessible and understandable for non-experts can be both challenging and hazardous. While data products are often developed with end users in mind, the ease of use of these data can vary greatly. Scientists must take care to provide detailed guides for how to use data products to ensure users are not incorrectly applying data to their problem. For example, terrestrial water storage data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is notoriously difficult for non-experts to access and correctly use. However, allowing these data to be easily accessible to scientists outside the GRACE community is desirable because this would allow that data to see much wider-spread use. We have developed a web-based interactive mapping and plotting tool that provides easy access to geophysical data. This work presents an intuitive method for making such data widely accessible to experts and non-experts alike, making the data approachable and ensuring proper use of the data. This tool has proven helpful to experts by providing fast and detailed access to the data. Simultaneously, the tool allows non-experts to gain familiarity with the information contained in the data and access to that information for both scientific studies and public use. In this presentation, we discuss the development of this tool and application to both GRACE and ocean altimetry satellite missions, and demonstrate the capabilities of the tool. Focusing on the data visualization aspects of the tool, we showcase our integrations of the Mapbox API and the D3.js data-driven web document framework. We then explore the potential of these tools in other web-based visualization projects, and how incorporation of such tools into science can improve the presentation of research results. We demonstrate how the development of an interactive and exploratory resource can enable further layers of exploratory and scientific discovery.

  9. Patent Documents as a Resource for Studies and Education in Geophysics - An Approach.

    Science.gov (United States)

    Wollny, K. G.

    2016-12-01

    Patents are a highly neglected source of information in geophysics, although they supply a wealth of technical and historically relevant data and might be an important asset for researchers and students. The technical drawings and descriptions in patent documents provide insight into the personal work of a researcher or a scientific group and give detailed technical background information, show interdisciplinary solutions for similar problems, help to learn about inventions too advanced for their time but maybe useful now, and to explore the historical background and timelines of inventions and their inventors. It will be shown how to get access to patent documents and how to use them for research and education purposes. Exemplary inventions by well-known geoscientists or scientists in related fields will be presented to illustrate the usefulness of patent documents. The data pool used is the International Patent Classification (IPC) class G01V that the United Nations' World Intellectual Property Organisation (WIPO) has set up mainly for inventions with key aspects in geophysics. This class contains approximately 235,000 patent documents (July 2016) for methods, apparatuses or scientific instruments developed during scientific projects or by geophysical companies. The patent documents can be accessed via patent databases. The most important patent databases are for free, search functionality is self-explanatory and the amount of information to be extracted is enormous. For example, more than 90 million multilingual patent documents are currently available online (July 2016) in DEPATIS database of the German Patent and Trade Mark Office or ESPACENET of the European Patent Office. To summarize, patent documents are a highly useful tool for educational and research purposes to strengthen students' and scientists' knowledge in a practically orientated geophysical field and to widen the horizon to adjacent technical areas. Last but not least, they also provide insight

  10. A review of nuclear geophysics

    International Nuclear Information System (INIS)

    Clayton, C.G.; Schweitzer, J.S.

    1992-01-01

    This paper summarizes the development of nuclear geophysics in scientific and technological content and in range from its beginnings early in this century to the present day. We note that the early work in nuclear geophysics was originally referred to under the umbrella of open-quotes isotope applicationsclose quotes and the origin of the term open-quotes nuclear geophysicsclose quotes (which is seen to clarify and to focus work in this area) is exposed in this paper. The current expansion of nuclear geophysics front its original concern with oil well logging is an important trend because much of the underlying science, technology, and instrumentation is common ground. A review of nuclear geophysics would be a barren document without reference to long-term and, in some cases, short-term commercial and economic as well as to technological considerations, since these factors are the principal motivation for further development

  11. Geophysical Tools, Challenges and Perspectives Related to Natural Hazards, Climate Change and Food Security

    Science.gov (United States)

    Fucugauchi, J. U.

    2013-05-01

    In the coming decades a changing climate and natural hazards will likely increase the vulnerability of agricultural and other food production infrastructures, posing increasing treats to industrialized and developing economies. While food security concerns affect us globally, the huge differences among countries in stocks, population size, poverty levels, economy, technologic development, transportation, health care systems and basic infrastructure will pose a much larger burden on populations in the developing and less developed world. In these economies, increase in the magnitude, duration and frequency of droughts, floods, hurricanes, rising sea levels, heat waves, thunderstorms, freezing events and other phenomena will pose severe costs on the population. For this presentation, we concentrate on a geophysical perspective of the problems, tools available, challenges and short and long-term perspectives. In many instances, a range of natural hazards are considered as unforeseen catastrophes, which suddenly affect without warning, resulting in major losses. Although the forecasting capacity in the different situations arising from climate change and natural hazards is still limited, there are a range of tools available to assess scenarios and forecast models for developing and implementing better mitigation strategies and prevention programs. Earth observation systems, geophysical instrumental networks, satellite observatories, improved understanding of phenomena, expanded global and regional databases, geographic information systems, higher capacity for computer modeling, numerical simulations, etc provide a scientific-technical framework for developing strategies. Hazard prevention and mitigation programs will result in high costs globally, however major costs and challenges concentrate on the less developed economies already affected by poverty, famines, health problems, social inequalities, poor infrastructure, low life expectancy, high population growth

  12. Crustal Magnetic Field Anomalies and Global Tectonics

    Science.gov (United States)

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  13. Geophysical borehole logging and optical imaging of the pilot hole ONK-PH2

    International Nuclear Information System (INIS)

    Lahti, M.; Heikkinen, E.

    2005-01-01

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of pilot hole ONK-PH2 in ONKALO tunnel at the Olkiluoto site in December 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all the surveys, integration of the data as well as interpretation of the acoustic and borehole radar data. The report describes the field operation, equipment, processing procedures, interpretation results and shows the obtained geophysical and image data. The data as well as the interpretation results are delivered digitally in WellCAD and Excel format. (orig.)

  14. Geophysical borehole logging and optical imaging of the pilot hole ONK-PH2

    Energy Technology Data Exchange (ETDEWEB)

    Lahti, M. [Suomen Malmi Oy, Espoo (Finland); Heikkinen, E. [JP-Fintact Oy, Vantaa (Finland)

    2005-01-15

    Suomen Malmi Oy conducted geophysical borehole logging and optical imaging surveys of pilot hole ONK-PH2 in ONKALO tunnel at the Olkiluoto site in December 2004. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The methods applied are magnetic susceptibility, natural gamma radiation, gamma-gamma density, single point resistance, Wenner-resistivity, borehole radar, full waveform sonic and optical imaging. The assignment included the field work of all the surveys, integration of the data as well as interpretation of the acoustic and borehole radar data. The report describes the field operation, equipment, processing procedures, interpretation results and shows the obtained geophysical and image data. The data as well as the interpretation results are delivered digitally in WellCAD and Excel format. (orig.)

  15. HVDC Ground Electrodes - a Source of Geophysical Data

    Science.gov (United States)

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  16. Karst aquifer characterization using geophysical remote sensing of dynamic recharge events

    Science.gov (United States)

    Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.

    2017-12-01

    Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and

  17. Global Knowledge Futures: Articulating the Emergence of a New Meta-level Field

    Directory of Open Access Journals (Sweden)

    Jennifer M. Gidley

    2013-06-01

    Full Text Available In this paper I articulate a new meta-level field of studies that I call global knowledge futures—a field through which other emerging transdisciplinary fields can be integrated to cohere knowledge at a higher level. I contrast this with the current dominant knowledge paradigm of the global knowledge economy with its fragmentation, commodification and instrumentalism based on neoliberal knowledge capitalism. I take a big-picture, macrohistorical lens to the new thinking and new knowledge patterns that are emerging within the evolution of consciousness discourse. I explore three discourses: postformal studies, integral studies and planetary studies—using a fourth discourse, futures studies, to provide a macro-temporal framing. By extending the meta-fields of postformal, integral and planetary studies into a prospective future dimension, I locate areas of development where these leading-edge discourses can be brought into closer dialogue with each other. In this meeting point of four boundary-spanning discourses I identify the new meta-level field of global knowledge futures, grounded in human thinking capacities, such as creativity, imagination, dialogue and collaboration.

  18. Archaeological Geophysics in Field Courses and Flipped-Classrooms: Lessons Learned from the Marine and Geological Science Programs at North Carolina State University

    Science.gov (United States)

    Bohnenstiehl, D. R.; Wall, J.; Sprinkle, D. P., II

    2016-12-01

    The Department of Marine, Earth and Atmospheric Sciences at North Carolina State University routinely uses archaeological geophysics as an inquiry based teaching tool in our capstone Coastal Processes and Geologic Field Camps. Examples of past projects include a search for civil war artifacts within the moat surrounding historic Fort Macon, near Beaufort North Carolina, and investigations of ancient adobe pueblos in northern New Mexico. These types of studies, being of modest spatial scale, provide students with an opportunity to image the subsurface using multiple techniques and integrate the results into a geographic information system for analysis and interpretation. In the spring of 2016, our semester-long Applied Geophysics course was built around a project to identify unmarked graves at the Oberlin African-American cemetery Raleigh, North Carolina. The classroom experience was flipped with required readings, video lectures and weekly graded quizzes accessible online. Class meeting time was entirely spent collecting or processing data. To facilitate hands on learning, the class was taught with two sections having only ten students each. The methods used included GPR, EMI, Magnetics, and DC Resistivity. Students responded positively to the opportunity to tackle a real-world problem as part of the class; however, many where frustrated by the expectation that they master theoretical aspects of the course using the online content. Compared to a class taught with a traditional lecture format, students clearly gained more knowledge regarding field procedures; however, their performance on a comprehensive final suggests a poorer understand of many fundamental concepts.

  19. Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages

    Science.gov (United States)

    Eppelbaum, L. V.

    2012-04-01

    testing different geophysical methods and methodologies in complicated environments. Airborne magnetic and gravity surveys covered all the Caucasus, regional seismic and magnetotelluric studies were used as reference profiles for deep structure investigation. Numerous effective applications of geophysical methods for searching ore, oil&gas deposits, building raw, fresh water localization, solving engineering, etc. was demonstrated. Seismological investigations (including different methods) were widely applied throughout the entire Caucasian region. Satellite geophysical examinations were successfully combined with other methods. Finally, destruction of the former Soviet Union in 1991 (beginning of the modern stage) caused a sharp common decreasing of the geophysical activity in this region. Only foreign oil-&gas companies (mainly American and England) demonstrated some industrial geophysical activity basically in the Caspian Sea. In the last few years the situation began to straighten out, especially in the field of seismology. This presentation is based of the author's experience (e.g., Eppelbaum, 1989, 1991, 2009; Eppelbaum et al., 1987; Eppelbaum and Finkelstein, 1998; Eppelbaum and Khesin, 1988, 1992, 2002, 2004, 2011, 2012; Eppelbaum and Mishne, 2011; Eppelbaum et al., 2003, 2004; Khesin et al., 1988, 1993a, 1993b, 1996, 1997; Khesin and Eppelbaum, 1986, 1994, 1997, 2007; Pilchin and Eppelbaum, 1997, 2011) and corresponding publications and reviews of other authors.

  20. Rapid estimation of aquifer salinity structure from oil and gas geophysical logs

    Science.gov (United States)

    Shimabukuro, D.; Stephens, M.; Ducart, A.; Skinner, S. M.

    2016-12-01

    We describe a workflow for creating aquifer salinity maps using Archie's equation for areas that have geophysical data from oil and gas wells. We apply this method in California, where geophysical logs are available in raster format from the Division of Oil, Gas, and Geothermal Resource (DOGGR) online archive. This method should be applicable to any region where geophysical logs are readily available. Much of the work is controlled by computer code, allowing salinity estimates for new areas to be rapidly generated. For a region of interest, the DOGGR online database is scraped for wells that were logged with multi-tool suites, such as the Platform Express or Triple Combination Logging Tools. Then, well construction metadata, such as measured depth, spud date, and well orientation, is attached. The resultant local database allows a weighted criteria selection of wells that are most likely to have the shallow resistivity, deep resistivity, and density porosity measurements necessary to calculate salinity over the longest depth interval. The algorithm can be adjusted for geophysical log availability for older well fields and density of sampling. Once priority wells are identified, a student researcher team uses Neuralog software to digitize the raster geophysical logs. Total dissolved solid (TDS) concentration is then calculated in clean, wet sand intervals using the resistivity-porosity method, a modified form of Archie's equation. These sand intervals are automatically selected using a combination of spontaneous potential and the difference in shallow resistivity and deep resistivity measurements. Gamma ray logs are not used because arkosic sands common in California make it difficult to distinguish sand and shale. Computer calculation allows easy adjustment of Archie's parameters. The result is a semi-continuous TDS profile for the wells of interest. These profiles are combined and contoured using standard 3-d visualization software to yield preliminary salinity

  1. A virtual radiation belt observatory: Looking forward to the electronic geophysical year

    Science.gov (United States)

    Baker, D. N.; Green, J. C.; Kroehl, H. W.; Kihn, E.; Virbo Team

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We are developing the concept of a Virtual Radiation Belt Observatory (ViRBO) that will bring together near-earth particle and field measurements acquired by NASA, NOAA, DoD, DOE, and other spacecraft. We discuss plans to aggregate these measurements into a readily accessible database along with analysis, visualization, and display tools that will make radiation belt information available and useful both to the scientific community and to the user community. We envision that data from the various agencies along with models being developed under the auspices of the National Science Foundation Center for Integrated Space Weather Modeling (CISM) will help us to provide an excellent `climatology' of the radiation belts over the past several decades. In particular, we would plan to use these data to drive physical models of the radiation belts to form a gridded database which would characterize particle and field properties on solar-cycle (11-year) time scales. ViRBO will also provide up-to-date specification of conditions for event analysis and anomaly resolution. We are even examining the possibilities for near-realtime acquisition of

  2. Archaeological Geophysics in Israel: Past, Present and Future

    Science.gov (United States)

    Eppelbaum, L. V.

    2009-04-01

    et al., 1999; Reeder et al., 2004; Reinhardt et al., 2006; Reich et al., 2003; Ron et al., 2003; Segal et al., 2003; Sternberg and Lass, 2007; Sternberg et al., 1999; Verri et al., 2004; Weiner et al., 1993; Weinstein-Evron et al., 1991, 2003; Weiss et al., 2007; Witten et al., 1994), and (3) future [2010 -]. The past stage with several archaeoseismic reviews and very limited application of geophysical methods was replaced by the present stage with the violent employment of numerous geophysical techniques (first of all, high-precise magnetic survey and GPR). It is supposed that the future stage will be characterized by extensive development of multidiscipline physical-archaeological databases (Eppelbaum et al., 2009b), utilization of supercomputers for 4D monitoring and ancient sites reconstruction (Foster et al., 2001; Pelfer et al., 2004) as well as wide application of geophysical surveys using remote operated vehicles at low altitudes (Eppelbaum, 2008a). REFERENCES Batey, R.A., 1987. Subsurface Interface Radar at Sepphoris, Israel 1985. Journal of Field Archaeology, 14 (1), 1-8. Bauman, P., Parker, D., Coren, A., Freund, R., and Reeder, P., 2005. Archaeological Reconnaissance at Tel Yavne, Israel: 2-D Electrical Imaging and Low Altitude Aerial Photography. CSEG Recorder, No. 6, 28-33. Ben-Dor, E., Portugali, J., Kochavi, M., Shimoni, M., and Vinitzky, L., 1999. Airborne thermal video radiometry and excavation planning at Tel Leviah, Golan Heights, Israel. Journal of Field Archaeology, 26 (2), 117-127. Ben-Menahem, A., 1979. Earthquake catalogue for the Middle East (92 B.C. - 1980 A.D.). Bollettino di Geofisica Teorica ed Applicata, 21 (84), 245-310. Ben-Yosef, E., Tauxe, L., Ronb, H., Agnon, A., Avner, U., Najjar, M., and Levy, T.E., 2008. A new approach for geomagnetic archaeointensity research: insights on ancient metallurgy in the Southern Levant. Journal of Archaeological Science, 25, 2863-2879. Berkovitch, A.L., Eppelbaum, L.V., and Basson, U., 2000

  3. Spherical Process Models for Global Spatial Statistics

    KAUST Repository

    Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G.

    2017-01-01

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture

  4. A fractured rock geophysical toolbox method selection tool

    Science.gov (United States)

    Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.

    2016-01-01

    Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.

  5. Informing groundwater models with near-surface geophysical data

    DEFF Research Database (Denmark)

    Herckenrath, Daan

    Over the past decade geophysical methods have gained an increased popularity due to their ability to map hydrologic properties. Such data sets can provide valuable information to improve hydrologic models. Instead of using the measured geophysical and hydrologic data simultaneously in one inversion...... approach, many of the previous studies apply a Sequential Hydrogeophysical Inversion (SHI) in which inverted geophysical models provide information for hydrologic models. In order to fully exploit the information contained in geophysical datasets for hydrological purposes, a coupled hydrogeophysical...... inversion was introduced (CHI), in which a hydrologic model is part of the geophysical inversion. Current CHI-research has been focussing on the translation of simulated state variables of hydrologic models to geophysical model parameters. We refer to this methodology as CHI-S (State). In this thesis a new...

  6. Global Journal of Geological Sciences: Editorial Policies

    African Journals Online (AJOL)

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  7. The Global Approach to Quantum Field Theory

    International Nuclear Information System (INIS)

    Folacci, Antoine; Jensen, Bruce

    2003-01-01

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field

  8. Cosmological models in globally geodesic coordinates. II. Near-field approximation

    International Nuclear Information System (INIS)

    Liu Hongya

    1987-01-01

    A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system

  9. Proceedings of a workshop on geophysical and related geoscientific research at Chalk River, Ontario

    International Nuclear Information System (INIS)

    Thomas, M.D.; Dixon, D.F.

    1989-10-01

    A large part of the Canadian Nuclear Fuel Waste Management Program is geoscience research and development aimed at obtaining information to quantify the transport of radionuclides through the geosphere and at determining the geotechnical properties required for disposal vault design. The geosphere at potential disposal sites is characterized in part by the use of remote sensing (geophysical) methods. In 1977 public concern about the disposal of radioactive waste resulted in field work being restricted to the site of Chalk River Nuclear Laboratories, which was used to develop, evaluate and compare various techniques in order to optimize the methods for obtaining geoscience information. Methods tested at Chalk River are to be applied at other research sites. Most investigations have been carried out around Maskinonge Lake, using about thirty boreholes sink into bedrock. The boreholes provide subsurface geological information that can be used as a reference to compare the responses of various geophysical methods and equipment. Regional studies, including airborne geophysical surveys, have also been conducted. The 25 papers presented at this workshop provide comprehensive documentation of the most significant results of geophysical studies. The workshop also provided an evaluation of geophysical techniques and their utility to the Nuclear Fuel Waste Management Program

  10. SIGKit: a New Data-based Software for Learning Introductory Geophysics

    Science.gov (United States)

    Zhang, Y.; Kruse, S.; George, O.; Esmaeili, S.; Papadimitrios, K. S.; Bank, C. G.; Cadmus, A.; Kenneally, N.; Patton, K.; Brusher, J.

    2016-12-01

    Students of diverse academic backgrounds take introductory geophysics courses to learn the theory of a variety of measurement and analysis methods with the expectation to be able to apply their basic knowledge to real data. Ideally, such data is collected in field courses and also used in lecture-based courses because they provide a critical context for better learning and understanding of geophysical methods. Each method requires a separate software package for the data processing steps, and the complexity and variety of professional software makes the path through data processing to data interpretation a strenuous learning process for students and a challenging teaching task for instructors. SIGKit (Student Investigation of Geophysics Toolkit) being developed as a collaboration between the University of South Florida, the University of Toronto, and MathWorks intends to address these shortcomings by showing the most essential processing steps and allowing students to visualize the underlying physics of the various methods. It is based on MATLAB software and offered as an easy-to-use graphical user interface and packaged so it can run as an executable in the classroom and the field even on computers without MATLAB licenses. An evaluation of the software based on student feedback from focus-group interviews and think-aloud observations helps drive its development and refinement. The toolkit provides a logical gateway into the more sophisticated and costly software students will encounter later in their training and careers by combining essential visualization, modeling, processing, and analysis steps for seismic, GPR, magnetics, gravity, resistivity, and electromagnetic data.

  11. Sustainable Geophysical Observatory Networks

    Science.gov (United States)

    Willemann, R. J.; Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Nyblade, A.; Sandvol, E.

    2007-05-01

    Geophysical networks are defined not only by their technical specifications, but also by the characteristics and needs of the communities that use them. Growing populations supported by more elaborate urban infrastructure with its fine-grained socio-economic interdependencies and relying on global and regional connections for sustainability make new demands for natural hazard risk management. Taking advantage of advances in the underlying science to provide society with accurate risk assessments often requires higher fidelity measurements, entirely new types of observations, and an evolutionary sense of data products and information management. Engineering a high-tech system to address stakeholder needs is difficult, and designing for unpredictable developments requires an emphasis on adaptation. Thus, it is essential to promote formation of organizations or communities that can support evolution of a technological system, imagine new uses, and develop the societal relationships that sustain operations and provide capital for improvement. The owners must have a deep understanding of why the system works in particular ways and how to manage data products for the benefits of stakeholders. To be effective, community promotion must be sustained over a longer period of time than required to build a network and should be aimed at integrating the community into worldwide partnerships. Practices that can promote community formation if they are sustained include repeated training and scientific exchange workshops, extended visits by experts and staff at all levels to and from countries where networks are installed, mechanisms that make timely upgrades realistically possible, and routine exchange and wide dissemination of data in all directions. The combination of international research and educational collaborations, supported by open data exchange, with regionalized and specific assessments of local stakeholder needs and concerns, provides a sustainable model for

  12. Statistics-Based Compression of Global Wind Fields

    KAUST Repository

    Jeong, Jaehong

    2017-02-07

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth\\'s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  13. Statistics-Based Compression of Global Wind Fields

    KAUST Repository

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2017-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth's orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  14. Natural gas in 1942: Petroleum in 1942: Gravimetric and magnetic geophysical surveys in the gas fields of southwestern Ontario, 1941 and 1942. Annual publication

    Energy Technology Data Exchange (ETDEWEB)

    Crozier, A R; Brant, A A

    1946-12-31

    Part V of this annual report consists of three separate reports: Natural gas; petroleum; and gravimetric and magnetic geophysical surveys in the gas fields of southwestern Ontario. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; and gas wells and their production. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations. The final report discusses causes of anomalies; a discussion of the gravitational results and a discussion of the magnetic results.

  15. Geophysical contracting: Coping with the economic realities of the 1990s

    International Nuclear Information System (INIS)

    Schneider, L.I. Jr.

    1993-01-01

    During the 1990s, the geophysical contracting industry faces a variety of global operational and administrative challenges made more complicated by a sustained climate of low crude oil and natural gas prices. Economic survival and future growth of individual contractors depends on their ability to maintain optimum operating efficiencies, contain overhead and provide state-of-the-art technology, all while demonstrating the highest level of workplace safety and environmental protection. Coupled with these requirements, the successful contractors must possess considerable market open-quotes savvyclose quotes in adapting to the unique operating conditions that each governmental or geographic location contains (i.e., laws, regulations, customs and permitting restrictions). Clearly today's geophysical contractors bear little resemblance to those of the past and, without question, the future cannot help but bring about greater change. Only those companies with the commitment, management control and flexibility to meet these challenges will be able to capitalize on the business opportunities that lie ahead

  16. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  17. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    International Nuclear Information System (INIS)

    Oliver, H.W.; Hardin, E.L.; Nelson, P.H.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs

  18. Earth magnetism a guided tour through magnetic fields

    CERN Document Server

    Campbell, Wallace H

    2001-01-01

    An introductory guide to global magnetic field properties, Earth Magnetism addresses, in non-technical prose, many of the frequently asked questions about Earth''s magnetic field. Magnetism surrounds and penetrates our Earth in ways basic science courses can rarely address. It affects navigation, communication, and even the growth of crystals. As we observe and experience an 11-year solar maximum, we may witness spectacular satellite-destroying solar storms as they interact with our magnetic field. Written by an acknowledged expert in the field, this book will enrich courses in earth science, atmospheric science, geology, meteorology, geomagnetism, and geophysics. Contains nearly 200 original illustrations and eight pages of full-color plates.* Largely mathematics-free and with a wide breadth of material suitable for general readers* Integrates material from geomagnetism, paleomagnetism, and solar-terrestrial space physics.* Features nearly 200 original illustrations and 4 pages of colour plates

  19. Geophysical survey at archaeological sites in northeastern Syria

    OpenAIRE

    Mateiciucová, Inna; Milo, Peter; Tencer, Tomáš; Vlach, Marek

    2011-01-01

    From August 25 to September 4, 2008, geophysical surveys were carried out at the Neolithic, Chalcolithic, Bronze and Iron Age tell- and non-tell settlements in the Khabur region in Northeastern Syria (Syrian-Polish-Czech expedition) (Fig. 1). Four sites were prospected: Tell Arbid Abyad, Tell Arbid (West-hill), Khirbet Shane, Khirbet Bezi. The Scintrex Navmag SM-5 – Caesium Magnetometer was used for the measurement of the vertical gradient of the local magnetic field. The measurement resoluti...

  20. Advancing Venus Geophysics with the NF4 VOX Gravity Investigation.

    Science.gov (United States)

    Iess, L.; Mazarico, E.; Andrews-Hanna, J. C.; De Marchi, F.; Di Achille, G.; Di Benedetto, M.; Smrekar, S. E.

    2017-12-01

    The Venus Origins Explorer is a JPL-led New Frontiers 4 mission proposal to Venus to answer critical questions about the origin and evolution of Venus. Venus stands out among other planets as Earth's twin planet, and is a natural target to better understand our own planet's place, in our own Solar System but also among the ever-increasing number of exoplanetary systems. The VOX radio science investigation will make use of an innovative Ka-band transponder provided by the Italian Space Agency (ASI) to map the global gravity field of Venus to much finer resolution and accuracy than the current knowledge, based on the NASA Magellan mission. We will present the results of comprehensive simulations performed with the NASA GSFC orbit determination and geodetic parameter estimation software `GEODYN', based on a realistic mission scenario, tracking schedule, and high-fidelity Doppler tracking noise model. We will show how the achieved resolution and accuracy help fulfill the geophysical goals of the VOX mission, in particular through the mapping of subsurface crustal density or thickness variations that will inform the composition and origin of the tesserae and help ascertain the heat loss and importance of tectonism and subduction.

  1. A Bayesian trans-dimensional approach for the fusion of multiple geophysical datasets

    Science.gov (United States)

    JafarGandomi, Arash; Binley, Andrew

    2013-09-01

    We propose a Bayesian fusion approach to integrate multiple geophysical datasets with different coverage and sensitivity. The fusion strategy is based on the capability of various geophysical methods to provide enough resolution to identify either subsurface material parameters or subsurface structure, or both. We focus on electrical resistivity as the target material parameter and electrical resistivity tomography (ERT), electromagnetic induction (EMI), and ground penetrating radar (GPR) as the set of geophysical methods. However, extending the approach to different sets of geophysical parameters and methods is straightforward. Different geophysical datasets are entered into a trans-dimensional Markov chain Monte Carlo (McMC) search-based joint inversion algorithm. The trans-dimensional property of the McMC algorithm allows dynamic parameterisation of the model space, which in turn helps to avoid bias of the post-inversion results towards a particular model. Given that we are attempting to develop an approach that has practical potential, we discretize the subsurface into an array of one-dimensional earth-models. Accordingly, the ERT data that are collected by using two-dimensional acquisition geometry are re-casted to a set of equivalent vertical electric soundings. Different data are inverted either individually or jointly to estimate one-dimensional subsurface models at discrete locations. We use Shannon's information measure to quantify the information obtained from the inversion of different combinations of geophysical datasets. Information from multiple methods is brought together via introducing joint likelihood function and/or constraining the prior information. A Bayesian maximum entropy approach is used for spatial fusion of spatially dispersed estimated one-dimensional models and mapping of the target parameter. We illustrate the approach with a synthetic dataset and then apply it to a field dataset. We show that the proposed fusion strategy is

  2. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    Science.gov (United States)

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the

  3. On global and regional spectral evaluation of global geopotential models

    International Nuclear Information System (INIS)

    Ustun, A; Abbak, R A

    2010-01-01

    Spectral evaluation of global geopotential models (GGMs) is necessary to recognize the behaviour of gravity signal and its error recorded in spherical harmonic coefficients and associated standard deviations. Results put forward in this wise explain the whole contribution of gravity data in different kinds that represent various sections of the gravity spectrum. This method is more informative than accuracy assessment methods, which use external data such as GPS-levelling. Comparative spectral evaluation for more than one model can be performed both in global and local sense using many spectral tools. The number of GGMs has grown with the increasing number of data collected by the dedicated satellite gravity missions, CHAMP, GRACE and GOCE. This fact makes it necessary to measure the differences between models and to monitor the improvements in the gravity field recovery. In this paper, some of the satellite-only and combined models are examined in different scales, globally and regionally, in order to observe the advances in the modelling of GGMs and their strengths at various expansion degrees for geodetic and geophysical applications. The validation of the published errors of model coefficients is a part of this evaluation. All spectral tools explicitly reveal the superiority of the GRACE-based models when compared against the models that comprise the conventional satellite tracking data. The disagreement between models is large in local/regional areas if data sets are different, as seen from the example of the Turkish territory

  4. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  5. Geophysical Investigation of the 618-10 and 618-11 Burial Grounds, 300-FF-2 Operable Unit

    International Nuclear Information System (INIS)

    Bergstrom, K.A.; Bolin, D.J.; Mitchell, T.H.

    1997-09-01

    This document summarizes the results of geophysical investigations conducted at two radioactive solid waste burial grounds, 618-10 and 618-11. The burial grounds are located approximately 4.5 miles and 7 miles north of the 300 Area, respectively. These sites are within the 300-FF-2 Operable Unit, where geophysical techniques are being used to characterize the distribution of solid waste in the subsurface as part of the Limited Field Investigations for this operable unit

  6. 36 CFR 902.59 - Geological and geophysical information.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  7. ETOPO1 1 Arc-Minute Global Relief Model

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In August 2008, the National Geophysical Data Center (NGDC), an office of the National Oceanic and Atmospheric Administration (NOAA), developed the ETOPO1 Global...

  8. Nuclear geophysics in space and atmospheric reserch at INPE/BRAZIl

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.; Pereira, E.B.; Marinho, E.V.A.; Sircilli Neto, F.

    1986-05-01

    During the last years, INPE's research in Nuclear Geophysics has developed in fields of interest to the Institute, the scientific community and the society in general. In the space research field it may be considered as a contribution to the history of meteorite falls in our planet or possible collision with big meteorites which may have been the cause of important effects such as biological extinction and extraterrestrial matter gathering. In the atmospheric research field, spatial and temporal variations of radon measurements in the lower atmosphere allow correlations from micrometeorology to worlwide scale through mesoscale, in the interpretation of phenomena which deal with the dynamics of air masses. (Author) [pt

  9. 25 CFR 211.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  10. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    International Nuclear Information System (INIS)

    Schaa, R; Gross, L; Du Plessis, J

    2016-01-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts. (paper)

  11. PDE-based geophysical modelling using finite elements: examples from 3D resistivity and 2D magnetotellurics

    Science.gov (United States)

    Schaa, R.; Gross, L.; du Plessis, J.

    2016-04-01

    We present a general finite-element solver, escript, tailored to solve geophysical forward and inverse modeling problems in terms of partial differential equations (PDEs) with suitable boundary conditions. Escript’s abstract interface allows geoscientists to focus on solving the actual problem without being experts in numerical modeling. General-purpose finite element solvers have found wide use especially in engineering fields and find increasing application in the geophysical disciplines as these offer a single interface to tackle different geophysical problems. These solvers are useful for data interpretation and for research, but can also be a useful tool in educational settings. This paper serves as an introduction into PDE-based modeling with escript where we demonstrate in detail how escript is used to solve two different forward modeling problems from applied geophysics (3D DC resistivity and 2D magnetotellurics). Based on these two different cases, other geophysical modeling work can easily be realized. The escript package is implemented as a Python library and allows the solution of coupled, linear or non-linear, time-dependent PDEs. Parallel execution for both shared and distributed memory architectures is supported and can be used without modifications to the scripts.

  12. Global Health as a Field of Power Relations: A Response to Recent Commentaries

    Science.gov (United States)

    Shiffman, Jeremy

    2015-01-01

    Actors working in global health often portray it as an enterprise grounded in principled concerns, advanced by individuals and organizations who draw on scientific evidence to pursue health equity. This portrait is incomplete. It is also a field of power relations—a social arena in which actors claim and draw on expertise and moral authority to gain influence and pursue career, organizational and national interests. A clear understanding of how power operates in this field is necessary to ensure that it is used productively to serve the aims of health equity and improved population health. Responding to commentaries on an editorial published in this journal, I offer 3 ideas toward this end: (1) be skeptical of the global health rationality project—the effort to rescue the field from the alleged indignities of politics through the application of scientific methods; (2) analyze global health as a field of power relations, a concept developed by sociologist Pierre Bourdieu; and (3) elevate the place of input legitimacy—inclusive deliberation, fair process and transparency—to address legitimacy and knowledge deficits in this field. PMID:26188819

  13. Particle Swarm Optimization algorithms for geophysical inversion, practical hints

    Science.gov (United States)

    Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.

    2008-12-01

    PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.

  14. 25 CFR 212.56 - Geological and geophysical permits.

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  15. MODELING THE SUN’S SMALL-SCALE GLOBAL PHOTOSPHERIC MAGNETIC FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, K. A. [Division of Computing and Mathematics, Abertay University, Kydd Building, Dundee, Bell Street, DD1 1HG, Scotland (United Kingdom); Mackay, D. H., E-mail: k.meyer@abertay.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, Scotland (United Kingdom)

    2016-10-20

    We present a new model for the Sun’s global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small-scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2.5 R {sub ⊙}, around 10–100 times less than that determined for typical Helioseismic and Magnetic Imager synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is currently observed, and hence a much higher cosmic ray flux at Earth.

  16. Introduction to the geophysical methods applicable to coal

    CSIR Research Space (South Africa)

    Fourie, S

    2015-01-01

    Full Text Available 2, it is the differences in the magnetic susceptibility of rocks that are exploited by the magnetic method. Units and terminology The internationally accepted unit for the magnetic field strength or intensity is the Tesla (named after Nikola Tesla..., the famous Serbian-American engineer and inventor). The Tesla is too large a unit for practical purposes and the nanotesla (nT, one billionth of a Tesla) is used in geophysical magnetic exploration. The name gamma (γ) was previously used instead...

  17. New geological and tectonic map of Paleoproterozoic basement in western Burkina Faso: integrated interpretation of airborne geophysical and field data

    Science.gov (United States)

    Metelka, Vaclav; Baratoux, Lenka; Jessell, Mark; Naba, Seta

    2010-05-01

    The recent acquisition of regional scale airborne datasets over most of the West African craton sparked off a number of studies concentrating on their litho-tectonic interpretation. In such polydeformed terrains, where outcrop is very sparse or virtually nonexistent due to the presence of thick lateritic cover, geophysics and specifically geomagnetic surveying provide a wealth of information that facilitates the deciphering of regional litho-structural hierarchies. A revised geological and tectonic map of the Houndé and Boromo greenstone belts was derived by interpretation of aeromagnetic and gamma-ray spectrometric data constrained by field observations where available. Medium resolution geophysical data gridded at 250 meters acquired during the SYSMIN project served as a basis for the interpretation. This dataset was integrated with the SRTM digital elevation model and over 600 field observations. Furthermore, the BRGM/BUMIGEB SYSMIN project outcrops database (Castaing et al., 2003) as well as older outcrop maps, maintained by BUMIGEB, were used. Locally, outcrop maps and high resolution geophysics provided by mining companies (Orezone, SEMAFO, Volta Resources, Wega Mining) were employed. 2-D geophysical inversion modeling in GM-sys software using the ground gravity and airborne magnetic data was applied to three selected E-W profiles. Principal component analysis (PCA) of magnetic and radiometric data was a powerful tool for distinguishing different lithological units, in particular tholeiitic suites of basalts and gabbros and various volcano-sedimentary units. Some of the granite pluton limits can be traced as well using the PCA; however thick lateritic cover substantially hinders precise mapping. Magnetic data used on its own gave better results not only for granite limits but also for determining internal structures such as shear zones and concentric compositional zoning. Several major N-S to NNE-SSW oriented shear zones, representing most probably deep

  18. Environmental and regulatory considerations when planning a geophysical program

    International Nuclear Information System (INIS)

    Down-Cicoria, C.

    1999-01-01

    Public concerns regarding the environmental impact of geophysical programs have resulted in more pressure on the federal and provincial governments to regulate and protect unique ecosites. In the past decade, about 1 million kilometres of seismic have been shot by the petroleum industry in Alberta alone, representing about 70,000 hectares of land base. This paper reviewed how a preliminary assessment of any geophysical project should consider the effects of all projects on the terrain, climate, vegetation, soils, fisheries, wildlife, aquatic ecosystems, heritage resources, and timber dispositions. Geo-administrative boundaries, field assessments, environmental assessments and mitigation measures such as low impact line cutting methods, timing methods, and heli-portable operations must also be considered. Special considerations when planning a three-dimensional program were highlighted. Certain equipment suitable as mitigation measures such as mulchers, hydro-axes, enviro-drills, biodegradable lathes, tracked/low PSI equipment, and doglegs were also reviewed. 15 refs., 2 tabs., 18 figs

  19. Systemic Approach to Elevation Data Acquisition for Geophysical Survey Alignments in Hilly Terrains Using UAVs

    Science.gov (United States)

    Ismail, M. A. M.; Kumar, N. S.; Abidin, M. H. Z.; Madun, A.

    2018-04-01

    This study is about systematic approach to photogrammetric survey that is applicable in the extraction of elevation data for geophysical surveys in hilly terrains using Unmanned Aerial Vehicles (UAVs). The outcome will be to acquire high-quality geophysical data from areas where elevations vary by locating the best survey lines. The study area is located at the proposed construction site for the development of a water reservoir and related infrastructure in Kampus Pauh Putra, Universiti Malaysia Perlis. Seismic refraction surveys were carried out for the modelling of the subsurface for detailed site investigations. Study were carried out to identify the accuracy of the digital elevation model (DEM) produced from an UAV. At 100 m altitude (flying height), over 135 overlapping images were acquired using a DJI Phantom 3 quadcopter. All acquired images were processed for automatic 3D photo-reconstruction using Agisoft PhotoScan digital photogrammetric software, which was applied to all photogrammetric stages. The products generated included a 3D model, dense point cloud, mesh surface, digital orthophoto, and DEM. In validating the accuracy of the produced DEM, the coordinates of the selected ground control point (GCP) of the survey line in the imaging area were extracted from the generated DEM with the aid of Global Mapper software. These coordinates were compared with the GCPs obtained using a real-time kinematic global positioning system. The maximum percentage of difference between GCP’s and photogrammetry survey is 13.3 %. UAVs are suitable for acquiring elevation data for geophysical surveys which can save time and cost.

  20. Unleashing Geophysics Data with Modern Formats and Services

    Science.gov (United States)

    Ip, Alex; Brodie, Ross C.; Druken, Kelsey; Bastrakova, Irina; Evans, Ben; Kemp, Carina; Richardson, Murray; Trenham, Claire; Wang, Jingbo; Wyborn, Lesley

    2016-04-01

    Geoscience Australia (GA) is the national steward of large volumes of geophysical data extending over the entire Australasian region and spanning many decades. The volume and variety of data which must be managed, coupled with the increasing need to support machine-to-machine data access, mean that the old "click-and-ship" model delivering data as downloadable files for local analysis is rapidly becoming unviable - a "big data" problem not unique to geophysics. The Australian Government, through the Research Data Services (RDS) Project, recently funded the Australian National Computational Infrastructure (NCI) to organize a wide range of Earth Systems data from diverse collections including geoscience, geophysics, environment, climate, weather, and water resources onto a single High Performance Data (HPD) Node. This platform, which now contains over 10 petabytes of data, is called the National Environmental Research Data Interoperability Platform (NERDIP), and is designed to facilitate broad user access, maximise reuse, and enable integration. GA has contributed several hundred terabytes of geophysical data to the NERDIP. Historically, geophysical datasets have been stored in a range of formats, with metadata of varying quality and accessibility, and without standardised vocabularies. This has made it extremely difficult to aggregate original data from multiple surveys (particularly un-gridded geophysics point/line data) into standard formats suited to High Performance Computing (HPC) environments. To address this, it was decided to use the NERDIP-preferred Hierarchical Data Format (HDF) 5, which is a proven, standard, open, self-describing and high-performance format supported by extensive software tools, libraries and data services. The Network Common Data Form (NetCDF) 4 API facilitates the use of data in HDF5, whilst the NetCDF Climate & Forecasting conventions (NetCDF-CF) further constrain NetCDF4/HDF5 data so as to provide greater inherent interoperability

  1. Description of geophysical data in the SKB database GEOTAB

    International Nuclear Information System (INIS)

    Sehlstedt, S.

    1988-02-01

    For the storage of different types of data collected by SKB a database called Geotab has been created. The following data are stored in the database: Background data, geological data, geophysical data, hydrogeological data, hydrochemical data. This report describes the data flow for different types of geophysical measurements. The descriptions start with measurements and end with the storage of data in Geotab. Each process and the resulting data volume is presented separately. The geophysical measurements have been divided into the following subjects: Geophysical ground surface measurements, profile measurements; geophysical ground surface measurements, grid net measurements; geophysical borehole logging; petrophysical measurements. Each group of measurements is described in an individual chapter. In each chapter several measuring techniques are described and each method has a data table and a flyleaf table in Geotab. (orig.)

  2. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    Science.gov (United States)

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  3. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    Science.gov (United States)

    Mewes, Benjamin; Hilbich, Christin; Delaloye, Reynald; Hauck, Christian

    2017-12-01

    Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity). Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.

  4. Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes

    Directory of Open Access Journals (Sweden)

    B. Mewes

    2017-12-01

    Full Text Available Geophysical methods are often used to characterize and monitor the subsurface composition of permafrost. The resolution capacity of standard methods, i.e. electrical resistivity tomography and refraction seismic tomography, depends not only on static parameters such as measurement geometry, but also on the temporal variability in the contrast of the geophysical target variables (electrical resistivity and P-wave velocity. Our study analyses the resolution capacity of electrical resistivity tomography and refraction seismic tomography for typical processes in the context of permafrost degradation using synthetic and field data sets of mountain permafrost terrain. In addition, we tested the resolution capacity of a petrophysically based quantitative combination of both methods, the so-called 4-phase model, and through this analysed the expected changes in water and ice content upon permafrost thaw. The results from the synthetic data experiments suggest a higher sensitivity regarding an increase in water content compared to a decrease in ice content. A potentially larger uncertainty originates from the individual geophysical methods than from the combined evaluation with the 4-phase model. In the latter, a loss of ground ice can be detected quite reliably, whereas artefacts occur in the case of increased horizontal or vertical water flow. Analysis of field data from a well-investigated rock glacier in the Swiss Alps successfully visualized the seasonal ice loss in summer and the complex spatially variable ice, water and air content changes in an interannual comparison.

  5. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  6. Bayesian Markov chain Monte Carlo Inversion of Time-Lapse Geophysical Data To Characterize the Vadose Zone

    DEFF Research Database (Denmark)

    Scholer, Marie; Irving, James; Zibar, Majken Caroline Looms

    Geophysical methods have the potential to provide valuable information on hydrological properties in the unsaturated zone. In particular, time-lapse geophysical data, when coupled with a hydrological model and inverted stochastically, may allow for the effective estimation of subsurface hydraulic...... parameters and their corresponding uncertainties. In this study, we use a Bayesian Markov-chain-Monte-Carlo (MCMC) inversion approach to investigate how much information regarding vadose zone hydraulic properties can be retrieved from time-lapse crosshole GPR data collected at the Arrenaes field site...

  7. Geophysical Insights from Archaeomagnetic Dating

    Science.gov (United States)

    Holme, R.; Lodge, A.; Suttie, N.; Shaw, J.; Hill, M. J.; Linford, P.

    2009-12-01

    We report on work which has been undertaken towards developing an improved methodology for archaeomagnetic dating of archaeological samples through the use of a dedicated field model. In this talk, we focus on the more general (non-archaeological) implications of our results. Our work has focused on Europe, taking advantage of the better spatial and temporal coverage of available samples. Nevertheless, we model the field globally, using an a priori model (such as, for example, CALS7K) to constrain the field away from the regions of available data. This is advantageous over the use of a local field modelling methodology, as it allows us to examine the physical consequences of structure in our model (for example, in terms of the spectra of the field and secular variation at the core-mantle boundary), and to control possible edge effects in the model, which in a local model might produce an unphysical solution. By focusing on one particular region, we produce models that may not be optimal in terms of global structure, but allow us to investigate the data content in the region where it may provide the most information on core-field evolution. In parallel, we have been expanding the archaeointensity record for Great Britain, towards producing an archaeointensity curve for the UK which could ultimately be used for dating of unoriented samples (such as pot sherds). This new record, combined with other recently acquired high-quality intensity data, allows us to consider the evolution of global geomagnetic field strength in parallel with a good model of directional measurements; from 1590, the GUFM model is appropriate. Recent attempts to determine global intensity variation have used all available data (some of uncertain quality) to quantify variations in field strength. By instead focusing on a more limited dataset of known quality, we are able to examine intensity trends in greater detail. We present evidence that the intensity of the field was higher prior to 1840 than

  8. Calibration and Confirmation in Geophysical Models

    Science.gov (United States)

    Werndl, Charlotte

    2016-04-01

    For policy decisions the best geophysical models are needed. To evaluate geophysical models, it is essential that the best available methods for confirmation are used. A hotly debated issue on confirmation in climate science (as well as in philosophy) is the requirement of use-novelty (i.e. that data can only confirm models if they have not already been used before. This talk investigates the issue of use-novelty and double-counting for geophysical models. We will see that the conclusions depend on the framework of confirmation and that it is not clear that use-novelty is a valid requirement and that double-counting is illegitimate.

  9. Fundamentals of Geophysics

    Science.gov (United States)

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  10. Global Health as a Field of Power Relations: A Response to Recent Commentaries.

    Science.gov (United States)

    Shiffman, Jeremy

    2015-05-22

    Actors working in global health often portray it as an enterprise grounded in principled concerns, advanced by individuals and organizations who draw on scientific evidence to pursue health equity. This portrait is incomplete. It is also a field of power relations-a social arena in which actors claim and draw on expertise and moral authority to gain influence and pursue career, organizational and national interests. A clear understanding of how power operates in this field is necessary to ensure that it is used productively to serve the aims of health equity and improved population health. Responding to commentaries on an editorial published in this journal, I offer 3 ideas toward this end: (1) be skeptical of the global health rationality project-the effort to rescue the field from the alleged indignities of politics through the application of scientific methods; (2) analyze global health as a field of power relations, a concept developed by sociologist Pierre Bourdieu; and (3) elevate the place of input legitimacy-inclusive deliberation, fair process and transparency-to address legitimacy and knowledge deficits in this field. © 2015 by Kerman University of Medical Sciences.

  11. Geophysical studies of ilmenite and monazite placers in Itaparica island - Bahia State

    International Nuclear Information System (INIS)

    Cerqueira Neto, J.X.

    1976-01-01

    A ground scintillometric survey along the southern shores of the island of Itaparica, Bahia, Brazil, discovered numerous anomalies. Detailed geophysical and sedimentological studies proved that the major anomaly is due to an ilmenite placer deposit. A comparison of the field geophysical measurements (ground scintillometry, magnetics and induced polarization) with the laboratory samples suggests the following: i) Ground scintillometry is suitable for locating and delineating such placer deposits. ii) Induced polarization is useful to investigate the deposit at depth. iii) Magnetic surveys were not particularly useful in spite of the high ilmenite concentration, thus they do not appear to be a helpful survey tool in this case. A more extensive prospecting program in the Brazilian coastal areas particularly in the State of Bahia are also proposed. (author)

  12. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    CERN Document Server

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  13. Bringing 3D Printing to Geophysical Science Education

    Science.gov (United States)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  14. Deep Interior: The first comprehensive geophysical investigation of an asteroid

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Klaasen, K.; McFadden, L.; Ostro, S.; Safaeinili, A.; Scheeres, D.; Sunshine, J.; Yeomans, D.

    Near-Earth Objects (NEOs) come closer to Earth than any other celestial body, and their compositions are represented on Earth by thousands of well-studied meteorites. Yet we understand neither their origin, evolution, nor their geophysical behavior. These secrets are locked up in their unexplored interiors. Goal 1 of the NASA Strategic Plan emphasizes the requirement to catalogue and understand NEOs down to 1 km diameter. Goal 4 urges us to understand natural processes at work in the low gravity environment. Goal 5 expresses the need to explore the solar system and to learn how planets originated and evolved. In response to the NASA Strategic Plan we are proposing a NASA Discovery mission whose primary science objective is to greatly advance the realization of these Goals by conducting the first investigation of the global geophysics of an asteroid. Radio reflection data from 5 km orbit about a 1 km NEO will provide a tomographic 3D image of electromagnetic properties. Mechanical properties will be examined in the simplest possible way, using explosions to initiate seismic cratering events and to expose diverse interior units for spectroscopic analysis. Deep Interior is the lowest-risk, lowest cost path towards attaining the required characterization of NEOs. It breaks new ground for future missions to asteroids and comets and facilitates the design of reliable NEO technologies. Our science goals are as follows, and the techniques (radio science, imaging, IR spectroscopy, active surface science) will be described at this meeting: Asteroid Interiors. Radio, gravity, and seismology experiments give a complete first picture of an asteroid's deep interior, resolving inclusions, voids and unit boundaries at ˜ 30 m scales, and determining global and regional mechanical properties. Surface Geophysics. Blast experiments explore the structure and mechanics of the upper meters, demonstrate microgravity cratering, trigger natural geomorphic events, and expose subsurface

  15. Marine geophysical data management and presentation system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.

    ) of the National Institute of Oceanography, Goa, India. GPDMPS is designed for the computerized storage retrieval and presentation of marine geophysical data and information. For the systematic management of geophysical data and information, GPDMPS is subdivided...

  16. EAST93: Geophysical traverse from the Transantarctic Mountains to the Wilkes Basin, East Antarctica

    Science.gov (United States)

    ten Brink, Uri S.; Bannister, Stephen

    1995-01-01

    The East Antarctic Seismic Traverse (EAST93) was a geophysical traverse designed to image the bedrock under the East Antarctic ice cap. The traverse started 10 km west of the Taylor Dome drill site and 25 km west of the exposed bedrock of the Transantarctic Mountains at Lashly Mt. and ended 323 km west of the drill site over the Wilkes subglacial basin (Fig. 1). The traverse was located subparallel to latitude 78° S starting 30-50 km north of the Victoria Land Traverse (1958-1959). It was carried out jointly by the U.S. Geological Survey and Stanford University, U.S.A., together with the Institute of Geological and Nuclear Sciences, and Victoria University, New Zealand, during December 1993 and January 1994. The geophysical traverse included 236 km of multichannel seismic reflection data at 150 m shot intervals, 312.5 km of gravity data collected at intervals of 2.1 km, 312.5 km of magnetic data (total field intensity) collected at average intervals of 0.5 km, and 205 km of ground penetrating radar at intervals of 77 m. Relative locations and elevations of the entire traverse were measured at intervals of 150 m by traditional surveying methods, and tied to three absolute locations measured by the Global Positioning System (GPS). EAST93 is the first large-scale geophysical traverse on the polar plateau to our knowledge since the early 1960s. As such, the experiment presented several logistical challenges: (1) how to collect regional seismic profiles during the short Antarctic summer; (2) how to keep the scientific instruments running with minimal protection in harsh conditions; and (3) how to combine daily moves of camp with full days of work. The scientific and logistical aspects of the project proceeded, in general, according to plan despite the harsh conditions and our lack of previous experience on the polar plateau. Two unanticipated problems affected the progress of the work: the strong wind which slowed seismic acquisition, and the break-down of one of the

  17. The Geysers-Clear Lake geothermal area, California - an updated geophysical perspective of heat sources

    Science.gov (United States)

    Stanley, W.D.; Blakely, R.J.

    1995-01-01

    The Geysers-Clear Lake geothermal area encompasses a large dry-steam production area in The Geysers field and a documented high-temperature, high-pressure, water-dominated system in the area largely south of Clear Lake, which has not been developed. An updated view is presented of the geological/geophysical complexities of the crust in this region in order to address key unanswered questions about the heat source and tectonics. Forward modeling, multidimensional inversions, and ideal body analysis of the gravity data, new electromagnetic sounding models, and arguments made from other geophysical data sets suggest that many of the geophysical anomalies have significant contributions from rock property and physical state variations in the upper 7 km and not from "magma' at greater depths. Regional tectonic and magmatic processes are analyzed to develop an updated scenario for pluton emplacement that differs substantially from earlier interpretations. In addition, a rationale is outlined for future exploration for geothermal resources in The Geysers-Clear Lake area. -from Authors

  18. A state-space Bayesian framework for estimating biogeochemical transformations using time-lapse geophysical data

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.; Hubbard, S.; Williams, K.; Pride, S.; Li, L.; Steefel, C.; Slater, L.

    2009-04-15

    We develop a state-space Bayesian framework to combine time-lapse geophysical data with other types of information for quantitative estimation of biogeochemical parameters during bioremediation. We consider characteristics of end-products of biogeochemical transformations as state vectors, which evolve under constraints of local environments through evolution equations, and consider time-lapse geophysical data as available observations, which could be linked to the state vectors through petrophysical models. We estimate the state vectors and their associated unknown parameters over time using Markov chain Monte Carlo sampling methods. To demonstrate the use of the state-space approach, we apply it to complex resistivity data collected during laboratory column biostimulation experiments that were poised to precipitate iron and zinc sulfides during sulfate reduction. We develop a petrophysical model based on sphere-shaped cells to link the sulfide precipitate properties to the time-lapse geophysical attributes and estimate volume fraction of the sulfide precipitates, fraction of the dispersed, sulfide-encrusted cells, mean radius of the aggregated clusters, and permeability over the course of the experiments. Results of the case study suggest that the developed state-space approach permits the use of geophysical datasets for providing quantitative estimates of end-product characteristics and hydrological feedbacks associated with biogeochemical transformations. Although tested here on laboratory column experiment datasets, the developed framework provides the foundation needed for quantitative field-scale estimation of biogeochemical parameters over space and time using direct, but often sparse wellbore data with indirect, but more spatially extensive geophysical datasets.

  19. Definition of global dispersion coefficients

    International Nuclear Information System (INIS)

    Naff, R.L.

    1983-10-01

    For estimation of a global longitudinal dispersivity at the Gorleben site, data available primarily consist of suites of geophysical logs from wells penetrating the Quaternary aquifer. A length scale for the principle aquifer at Gorleben is to be found. Samples are to be taken separately to estimate the variance in hydraulic conductivity (Taylor Analysis, Fickian dispersion process). (DG)

  20. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  1. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    Science.gov (United States)

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    , EGU2014-2424, Vienna, Austria, 1-5. Eppelbaum, L.V. and Katz, Y.I., 2014b. First Maps of Mesozoic and Cenozoic Structural-Sedimentation Floors of the Easternmost Mediterranean and their Relationship with the Deep Geophysical-Geological Zonation. Proceed. of the 19th Intern. Congress of Sedimentologists, Geneva, Switzerland, 1-3. Eppelbaum, L.V. and Katz, Yu.I., 2015a. Newly Developed Paleomagnetic Map of the Easternmost Mediterranean Unmasks Geodynamic History of this Region. Central European Jour. of Geosciences, 6, No. 4 (in Press). Eppelbaum, L.V. and Katz, Yu.I., 2015b. Application of Integrated Geological-Geophysical Analysis for Development of Paleomagnetic Maps of the Easternmost Mediterranean. In: (Eppelbaum L., Ed.), New Developments in Paleomagnetism Research, Nova Publisher, NY (in Press). Eppelbaum, L.V. and Khesin, B.E., 2004. Advanced 3-D modelling of gravity field unmasks reserves of a pyrite-polymetallic deposit: A case study from the Greater Caucasus. First Break, 22, No. 11, 53-56. Eppelbaum, L.V., Nikolaev, A.V. and Katz, Y.I., 2014. Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the eastern Mediterranean. Doklady Earth Sciences (Springer), 457, No. 6, 710-714. Haase, J.S., Park, C.H., Nowack, R.L. and Hill, J.R., 2010. Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A. Environmental and Engineering Geoscience, 16, No. 4, 369-388. Hough, S.E., Borcherdt, R. D., Friberg, P. A., Busby, R., Field, E. and Jacob, K. N., 1990. The role of sediment-induced amplification in the collapse of the Nimitz freeway. Nature, 344, 853-855. Khesin, B.E. Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publ., Ser.: Advanced Appr. in Geophysics, Dordrecht - London - Boston. Klokočník, J., Kostelecký, J., Eppelbaum, L. and Bezděk, A., 2014. Gravity Disturbances, the Marussi Tensor, Invariants and

  2. Geophysical Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  3. Multivariate time series clustering on geophysical data recorded at Mt. Etna from 1996 to 2003

    Science.gov (United States)

    Di Salvo, Roberto; Montalto, Placido; Nunnari, Giuseppe; Neri, Marco; Puglisi, Giuseppe

    2013-02-01

    Time series clustering is an important task in data analysis issues in order to extract implicit, previously unknown, and potentially useful information from a large collection of data. Finding useful similar trends in multivariate time series represents a challenge in several areas including geophysics environment research. While traditional time series analysis methods deal only with univariate time series, multivariate time series analysis is a more suitable approach in the field of research where different kinds of data are available. Moreover, the conventional time series clustering techniques do not provide desired results for geophysical datasets due to the huge amount of data whose sampling rate is different according to the nature of signal. In this paper, a novel approach concerning geophysical multivariate time series clustering is proposed using dynamic time series segmentation and Self Organizing Maps techniques. This method allows finding coupling among trends of different geophysical data recorded from monitoring networks at Mt. Etna spanning from 1996 to 2003, when the transition from summit eruptions to flank eruptions occurred. This information can be used to carry out a more careful evaluation of the state of volcano and to define potential hazard assessment at Mt. Etna.

  4. Joint inversion of geophysical data for site characterization and restoration monitoring. 1998 annual progress report

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Roberts, J.J.; Wildenschild, D.

    1998-01-01

    'The purpose of this project is to develop a computer code for joint inversion of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of underground imaging, since interpretation of data collected at a contaminated site would become much less subjective. Potential users include DOE scientists and engineers responsible for characterizing contaminated sites and monitoring remediation of contaminated sites. In this three-year project, the authors use a multi-phase approach consisting of theoretical and numerical code development, laboratory investigations, testing on available laboratory and borehole geophysics data sets, and a controlled field experiment, to develop practical tools for joint electrical and seismic data interpretation. This report summarizes work after about 1.7 years of a 3-year project. Progress on laboratory measurements is described first, followed by progress on developing algorithms for the inversion code to relate geophysical data to porosity and saturation.'

  5. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    Science.gov (United States)

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  6. Radiation Geophysics - Putting theory into practice

    International Nuclear Information System (INIS)

    2014-01-01

    Gamma spectroscopy (SGA) is used in geo-physics to get information on the spatial distribution of K, U and Th. SGA is used on board of aircraft for geological survey, prospecting and contamination detection. On a typical SGA spectrum we get peaks corresponding to Bi 214 (609, 1120 and 1760 keV); Tl 208 (908 and 2615 keV) and K 40 (1460 keV). SGA gives information only on the top layer of the soil, the interpretation of the data requires information on the nature of the soil and on the relationship between surface elements and the underneath rock layers. Unlike a camera lens, a gamma-ray spectrometer does not have a fixed field of view: a highly radioactive point source may be detected even when it is outside the field of view. The gamma flux decreases exponentially with distance from the source. SGA can be combined with magnetic or electromagnetic measurements to get more accurate results. (A.C.)

  7. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    CERN Document Server

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  8. Geochemical and geophysical monitoring activities in Campo de Calatrava Volcanic Field (Spain)

    Science.gov (United States)

    Luengo-Oroz, Natividad; Villasante-Marcos, Víctor; López-Díaz, Rubén; Calvo, Marta; Albert, Helena; Domínguez Cerdeña, Itahiza

    2017-04-01

    The Campo de Calatrava Volcanic Field (CCVF) or Spanish Central Volcanic Zone is located in central continental Spain (Ciudad Real province) and covers about 5000 km2. It includes around 240 eruptive centers, mainly monogenetic basaltic cones but also explosive maar structures. According to K-Ar geochronology, its main activity phase occurred during Pliocene and Pleistocene epochs (between 5 and 1.7 Ma) and involved alkaline to ultraalkaline magmas, although an older ultrapotassic phase is dated around 8.7-6.4 Ma. However, some recent works have proposed Holocene ages for some of the volcanic products, opening the possibility of considering the CCVF "active" according to international standards. Responding to this situation, the Instituto Geográfico Nacional (IGN) has initiated geochemical and geophysical monitoring activities in the CCVF. Here, we describe these ongoing efforts and we report results about groundwater geochemistry at several natural highly-gaseous springs in the area (hervideros), as well as soil temperature, CO2 diffuse flux from the soil and electrical self-potential data mapped on a small degassing structure called La Sima. In order to analyze microseismicity or any seismic anomaly in the CCVF, a seismic station has also been installed close to this degassing structure. Physicochemical parameters (temperature, pH, Eh and electric conductivity) were measured in situ in four springs and samples were taken in order to analyze major ions and trace elements. Total composition of dissolved gases and helium isotopic ratios were also determined. To complete soil temperature, self-potential and gas prospections performed in La Sima, soil gases were sampled at the bottom of the structure at a depth of 20 cm. Analysis of the total gas composition found 957400 ppm of CO2. Low values of O2 and N2 were also detected (5600 and 24800 ppm respectively).

  9. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Science.gov (United States)

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  10. Developing a complex independent component analysis technique to extract non-stationary patterns from geophysical time-series

    Science.gov (United States)

    Forootan, Ehsan; Kusche, Jürgen

    2016-04-01

    Geodetic/geophysical observations, such as the time series of global terrestrial water storage change or sea level and temperature change, represent samples of physical processes and therefore contain information about complex physical interactionswith many inherent time scales. Extracting relevant information from these samples, for example quantifying the seasonality of a physical process or its variability due to large-scale ocean-atmosphere interactions, is not possible by rendering simple time series approaches. In the last decades, decomposition techniques have found increasing interest for extracting patterns from geophysical observations. Traditionally, principal component analysis (PCA) and more recently independent component analysis (ICA) are common techniques to extract statistical orthogonal (uncorrelated) and independent modes that represent the maximum variance of observations, respectively. PCA and ICA can be classified as stationary signal decomposition techniques since they are based on decomposing the auto-covariance matrix or diagonalizing higher (than two)-order statistical tensors from centered time series. However, the stationary assumption is obviously not justifiable for many geophysical and climate variables even after removing cyclic components e.g., the seasonal cycles. In this paper, we present a new decomposition method, the complex independent component analysis (CICA, Forootan, PhD-2014), which can be applied to extract to non-stationary (changing in space and time) patterns from geophysical time series. Here, CICA is derived as an extension of real-valued ICA (Forootan and Kusche, JoG-2012), where we (i) define a new complex data set using a Hilbert transformation. The complex time series contain the observed values in their real part, and the temporal rate of variability in their imaginary part. (ii) An ICA algorithm based on diagonalization of fourth-order cumulants is then applied to decompose the new complex data set in (i

  11. A New Social Contract for Geophysics

    Science.gov (United States)

    Malone, T. F.

    2002-12-01

    The Golden Age for geophysical research that followed the IGY set the stage for a new era of interaction among science, technology, and society. World population and the average economic productivity of individuals have both continued to grow exponentially during the past 50 years with the result that by the 1980s the demands of the human economy on the finite renewable resources of planet Earth were approximately equal to the natural regenerative capacities of planetary ecosystems. These demands are now "overshooting" those regenerative powers by about 20 per cent (1). The result could be a collapse in the life-supporting capacity of global ecosystems during coming decades, with tragic implications for civilized society. Novel modes of collaboration among all disciplines and all sectors of society are urgently needed to transform a potential catastrophe into the attractive vision that is now within reach as a result of rapidly expanding human knowledge, emerging technologies for sharing that knowledge (2), and the set of ethical principles for sustainable development contained in the Earth Charter (3). This prospect challenges geophysicists and scholars in all disciplines to forge a new and broadly based contract with society (4). 1. Wackernagel M. et al. 2002. "Tracking the ecological overshoot of the human economy." Proc. Natl. Acad. Sci. USA, Vol. 99, Issue 14, 9266-9271, July 9. 2. Malone T. and Yohe G. 2002. "Knowledge partnerships for a sustainable, equitable, and stable society." J. of Knowledge Management, Vol. 6, No. 4, October (in press). 3. www.earthcharter.org 4. Malone T. 1997. "Building on the legacies of the Intenational Geophysical Year." Transactions, AGU, Vol.78, No. 15, pp. 185-191.

  12. Artificial intelligence and dynamic systems for geophysical applications

    CERN Document Server

    Gvishiani, Alexei

    2002-01-01

    The book presents new clustering schemes, dynamical systems and pattern recognition algorithms in geophysical, geodynamical and natural hazard applications. The original mathematical technique is based on both classical and fuzzy sets models. Geophysical and natural hazard applications are mostly original. However, the artificial intelligence technique described in the book can be applied far beyond the limits of Earth science applications. The book is intended for research scientists, tutors, graduate students, scientists in geophysics and engineers

  13. Radioactivity and geophysics

    International Nuclear Information System (INIS)

    Radvanyi, P.

    1992-01-01

    The paper recalls a few steps of the introduction of radioactivity in geophysics and astrophysics: contribution of radioelements to energy balance of the Earth, age of the Earth based on radioactive disintegration and the discovery of cosmic radiations

  14. Review of geophysical characterization methods used at the Hanford Site

    International Nuclear Information System (INIS)

    GV Last; DG Horton

    2000-01-01

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ''all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts

  15. Globally and locally supersymmetric effective theories for light fields

    International Nuclear Information System (INIS)

    Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.

  16. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    International Nuclear Information System (INIS)

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  17. Palaeomagnetism principles and applications in geology, geophysics and archaeology

    CERN Document Server

    Tarling, D H

    1983-01-01

    Palaeomagnetism and archaeomagnetism are fascinating specialized studies because they are applicable to such a wide range of problems in geology, archaeology and geophysics. They can also be undertaken cheaply, when compared with most other geophysical techniques, and, at first sight, simply. In fact, real comprehension of the magnetic processes that have occurred in rocks and other types of material over several thousands or many millions of years is still extremely difficult to assess and measure. On this basis, this book cannot explain all such features, nor can it attempt to cover all the actual and potential applications of the method. All that can be attempted is to give an impression of the ways in which such techniques can be used in a wide variety of fields, and how these techniques are usually applied. The magnetization of rocks is, in fact, one of the earliest of the true sciences, but we are still not in a position to answer many of the problems posed. Consequently some of the examples given of ap...

  18. Geophysical data fusion for subsurface imaging

    International Nuclear Information System (INIS)

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ''data fusion,'' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site

  19. Mapping the earth's magnetic and gravity fields from space Current status and future prospects

    Science.gov (United States)

    Settle, M.; Taranik, J. V.

    1983-01-01

    The principal magnetic fields encountered by earth orbiting spacecraft include the main (core) field, external fields produced by electrical currents within the ionosphere and magnetosphere, and the crustal (anomaly) field generated by variations in the magnetization of the outermost portions of the earth. The first orbital field measurements which proved to be of use for global studies of crustal magnetization were obtained by a series of three satellites launched and operated from 1965 to 1971. Each of the satellites, known as a Polar Orbiting Geophysical Observatory (POGO), carried a rubidium vapor magnetometer. Attention is also given to Magsat launched in 1979, the scalar anomaly field derived from the Magsat measurements, satellite tracking studies in connection with gravity field surveys, radar altimetry, the belt of positive free air gravity anomalies situated along the edge of the Pacific Ocean basin, future technological capabilities, and information concerning data availability.

  20. Location of Buried Mineshafts and Adits Using Reconnaissance Geophysical Methods

    Science.gov (United States)

    Culshaw, Martin; Donnelly, Laurance; McCann, David

    Britain has a long history of mining activity, which stretches back some 3000 years to the excavation of flint in East Anglia. The legacy of this long period of activity is the presence of many buried mineshafts and adits, whose location is often unknown precisely and in many cases not even recorded in historical mining records. As has been shown by Donnelly et al (2003) the discovery of a mineshaft in an area of housing development can have a profound effect on property values in its vicinity. Hence, urgent action must be taken to establish at the site investigation stage of a development to determine whether any mineshafts are present at the site so that remedial action can be taken before construction commences. A study of historical information and the drilling may well enable the developer to locate any suspected mineshafts and adits on his site. However, the use of geophysical reconnaissance methods across the whole site may well provide sufficient information to simplify the drilling programme and reduce its cost to a minimum. In this paper a number of rapid reconnaissance geophysical methods are described and evaluated in terms of their success in the location of buried mineshafts and adits. It has shown that a combination of ground conductivity and magnetic surveys provides a most effective approach on open sites in greenfield and brownfield areas. Ground penetrating radar and micro-gravity surveys have proved to be a valuable approach in urban areas where the use of many geophysical methods is prevented by the presence of various types of cultural noise. On a regional scale the infrared thermography method is being increasingly used but care must be taken to overcome certain environmental difficulties. The practical use of all these geophysical methods in the field is illustrated by a number of appropriate case histories.

  1. Mapping the global football field: a sociological model of transnational forces within the world game.

    Science.gov (United States)

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  2. Globalization and Health: developing the journal to advance the field.

    Science.gov (United States)

    Martin, Greg; MacLachlan, Malcolm; Labonté, Ronald; Larkan, Fiona; Vallières, Frédérique; Bergin, Niamh

    2016-03-09

    Founded in 2005, Globalization and Health was the first open access global health journal. The journal has since expanded the field, and its influence, with the number of downloaded papers rising 17-fold, to over 4 million. Its ground-breaking papers, leading authors -including a Nobel Prize winner- and an impact factor of 2.25 place it among the top global health journals in the world. To mark the ten years since the journal's founding, we, members of the current editorial board, undertook a review of the journal's progress over the last decade. Through the application of an inductive thematic analysis, we systematically identified themes of research published in the journal from 2005 to 2014. We identify key areas the journal has promoted and consider these in the context of an existing framework, identify current gaps in global health research and highlight areas we, as a journal, would like to see strengthened.

  3. Noninvasive characterization of the Trecate (Italy) crude-oil contaminated site: links between contamination and geophysical signals.

    Science.gov (United States)

    Cassiani, Giorgio; Binley, Andrew; Kemna, Andreas; Wehrer, Markus; Orozco, Adrian Flores; Deiana, Rita; Boaga, Jacopo; Rossi, Matteo; Dietrich, Peter; Werban, Ulrike; Zschornack, Ludwig; Godio, Alberto; JafarGandomi, Arash; Deidda, Gian Piero

    2014-01-01

    The characterization of contaminated sites can benefit from the supplementation of direct investigations with a set of less invasive and more extensive measurements. A combination of geophysical methods and direct push techniques for contaminated land characterization has been proposed within the EU FP7 project ModelPROBE and the affiliated project SoilCAM. In this paper, we present results of the investigations conducted at the Trecate field site (NW Italy), which was affected in 1994 by crude oil contamination. The less invasive investigations include ground-penetrating radar (GPR), electrical resistivity tomography (ERT), and electromagnetic induction (EMI) surveys, together with direct push sampling and soil electrical conductivity (EC) logs. Many of the geophysical measurements were conducted in time-lapse mode in order to separate static and dynamic signals, the latter being linked to strong seasonal changes in water table elevations. The main challenge was to extract significant geophysical signals linked to contamination from the mix of geological and hydrological signals present at the site. The most significant aspects of this characterization are: (a) the geometrical link between the distribution of contamination and the site's heterogeneity, with particular regard to the presence of less permeable layers, as evidenced by the extensive surface geophysical measurements; and (b) the link between contamination and specific geophysical signals, particularly evident from cross-hole measurements. The extensive work conducted at the Trecate site shows how a combination of direct (e.g., chemical) and indirect (e.g., geophysical) investigations can lead to a comprehensive and solid understanding of a contaminated site's mechanisms.

  4. Geophysical Methods for Investigating Ground-Water Recharge

    Science.gov (United States)

    Ferre, Ty P.A.; Binley, Andrew M.; Blasch, Kyle W.; Callegary, James B.; Crawford, Steven M.; Fink, James B.; Flint, Alan L.; Flint, Lorraine E.; Hoffmann, John P.; Izbicki, John A.; Levitt, Marc T.; Pool, Donald R.; Scanlon, Bridget R.

    2007-01-01

    While numerical modeling has revolutionized our understanding of basin-scale hydrologic processes, such models rely almost exclusively on traditional measurements?rainfall, streamflow, and water-table elevations?for calibration and testing. Model calibration provides initial estimates of ground-water recharge. Calibrated models are important yet crude tools for addressing questions about the spatial and temporal distribution of recharge. An inverse approach to recharge estimation is taken of necessity, due to inherent difficulties in making direct measurements of flow across the water table. Difficulties arise because recharging fluxes are typically small, even in humid regions, and because the location of the water table changes with time. Deep water tables in arid and semiarid regions make recharge monitoring especially difficult. Nevertheless, recharge monitoring must advance in order to improve assessments of ground-water recharge. Improved characterization of basin-scale recharge is critical for informed water-resources management. Difficulties in directly measuring recharge have prompted many efforts to develop indirect methods. The mass-balance approach of estimating recharge as the residual of generally much larger terms has persisted despite the use of increasing complex and finely gridded large-scale hydrologic models. Geophysical data pertaining to recharge rates, timing, and patterns have the potential to substantially improve modeling efforts by providing information on boundary conditions, by constraining model inputs, by testing simplifying assumptions, and by identifying the spatial and temporal resolutions needed to predict recharge to a specified tolerance in space and in time. Moreover, under certain conditions, geophysical measurements can yield direct estimates of recharge rates or changes in water storage, largely eliminating the need for indirect measures of recharge. This appendix presents an overview of physically based, geophysical methods

  5. Global analysis of cloud field coverage and radiative properties, using morphological methods and MODIS observations

    Directory of Open Access Journals (Sweden)

    R. Z. Bar-Or

    2011-01-01

    Full Text Available The recently recognized continuous transition zone between detectable clouds and cloud-free atmosphere ("the twilight zone" is affected by undetectable clouds and humidified aerosol. In this study, we suggest to distinguish cloud fields (including the detectable clouds and the surrounding twilight zone from cloud-free areas, which are not affected by clouds. For this classification, a robust and simple-to-implement cloud field masking algorithm which uses only the spatial distribution of clouds, is presented in detail. A global analysis, estimating Earth's cloud field coverage (50° S–50° N for 28 July 2008, using the Moderate Resolution Imaging Spectroradiometer (MODIS data, finds that while the declared cloud fraction is 51%, the global cloud field coverage reaches 88%. The results reveal the low likelihood for finding a cloud-free pixel and suggest that this likelihood may decrease as the pixel size becomes larger. A global latitudinal analysis of cloud fields finds that unlike oceans, which are more uniformly covered by cloud fields, land areas located under the subsidence zones of the Hadley cell (the desert belts, contain proper areas for investigating cloud-free atmosphere as there is 40–80% probability to detect clear sky over them. Usually these golden-pixels, with higher likelihood to be free of clouds, are over deserts. Independent global statistical analysis, using MODIS aerosol and cloud products, reveals a sharp exponential decay of the global mean aerosol optical depth (AOD as a function of the distance from the nearest detectable cloud, both above ocean and land. Similar statistical analysis finds an exponential growth of mean aerosol fine-mode fraction (FMF over oceans when the distance from the nearest cloud increases. A 30 km scale break clearly appears in several analyses here, suggesting this is a typical natural scale of cloud fields. This work shows different microphysical and optical properties of cloud fields

  6. Review of geophysical characterization methods used at the Hanford Site

    Energy Technology Data Exchange (ETDEWEB)

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  7. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  8. GEOPHYSICAL PROPERTIES OF SOILS

    KAUST Repository

    Santamarina, Carlos

    2016-12-01

    Low energy perturbations used in geophysical methods provide insightful information about constant-fabric soil properties and their spatial variability. There are causal links between soil type, index properties, elastic wave velocity, electromagnetic wave parameters and thermal properties. Soil type relates to the stress-dependent S-wave velocity, thermal and electrical conductivity and permittivity. The small strain stiffness reflects the state of stress, the extent of diagenetic cementation and/or freezing. Pore fluid chemistry, fluid phase and changes in either fluid chemistry or phase manifest through electromagnetic measurements. The volumetric water content measured with electromagnetic techniques is the best predictor of porosity if the water saturation is 100%. Changes in water saturation alter the P-wave velocity when Srà100%, the S-wave velocity at intermediate saturations, and the thermal conductivity when the saturation is low Srà0%. Finally, tabulated values suffice to estimate heat capacity and latent heat for engineering design, however thermal conductivity requires measurements under proper field conditions.

  9. Globally conformal invariant gauge field theory with rational correlation functions

    CERN Document Server

    Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.

    2003-01-01

    Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.

  10. Report of the Cerro Chato ultrabasic geophysical studies

    International Nuclear Information System (INIS)

    Cicalese, H.; Mari, C.; Lema, F.; Valverde, C.; Haut, R.

    1987-01-01

    This report refers to the obtained results of geophysical practiced during the year 1985 in the area of the ultrabasic of Cerro Chato, located in the area called Puntas del Malbajar in Durazno province. The aim was rehearsed an answer of an ultrabasic behaviour of the geophysical prospecting methods.They were carried out studies in magnetometry, induced polarization, electromagnetism and resistivity measurements in electric vertical sound. As well conclusions as recommendations express that applied geophysical methods allow to make ultrabasic charts or maps.

  11. Application of nuclear-geophysical methods to reserves estimation

    International Nuclear Information System (INIS)

    Bessonova, T.B.; Karpenko, I.A.

    1980-01-01

    On the basis of the analysis of reports dealing with calculations of mineral reserves considered are shortcomings in using nuclear-geophysical methods and in assessment of the reliability of geophysical sampling. For increasing efficiency of nuclear-geophysical investigations while prospecting ore deposits, it is advisable to introduce them widely instead of traditional geological sampling methods. For this purpose it is necessary to increase sensitivity and accuracy of radioactivity logging methods, to provide determination of certain elements in ores by these methods

  12. Lacunarity of geophysical well logs in the Cantarell oil field, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Arizabalo, Ruben Dario [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Oleschko, Klavdia [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Juriquilla, Queretaro (Mexico); Korvin, Gabor [King Fahd University, Dhahran (Saudi Arabia); Lozada, Manuel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Castrejon, Ricardo [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Ronquillo, Gerardo [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2006-04-15

    Lacunarity and fractal variations in geophysical well logs are associated with stratigraphic and petrophysical properties of the naturally fractured Cantarell field in the Gulf of Mexico. Neutron porosity (NPHI), density (RHOB, DRHO, PEF), resistivity (LLD, LLS, MSFL), natural radioactivity (GR, CGR, URAN, POTA, THOR) and caliper (CALI) logs are studied. The resistivity logs yielded remarkably high lacunarity values, especially in the hydrocarbon source- and reservoir rocks. Lacunarity {delta} was found to depend on the resolution and radial depth of penetration of the logging method. It systematically increased in the following order: {delta}(RHOB) < {delta}(CALI) < {delta}(PEF) < {delta}(URAN) < {delta}(GR) < {delta}(NPHI) < {delta}(POTA) < {delta}(CGR) < {delta}(THOR) < {delta}(MSFL) < {delta}(DRHO) < {delta}(LLS) < {delta}(LLD). [Spanish] En este trabajo fueron analizadas las variaciones fractales y de lagunaridad de los registros geofisicos de pozo, con el fin de asociarlos con las propiedades estratigraficas y petrofisicas del yacimiento naturalmente fracturado de Cantarell, en el Golfo de Mexico. Los registros considerados fueron: porosidad neutron (NPHI), densidad (RHOB, DRHO, PEF), resistividad (LLD, LLS, MSFL), radiactividad natural (GR, CGR, URAN, POTA, THOR) y caliper (CALI). Los registros de resistividad produjeron valores de lagunaridad notablemente altos, especialmente en las rocas generadoras y almacenadoras, a diferencia de los demas registros, cuya homogeneidad de traza implico una baja lagunaridad. Los resultados indican que la lagunaridad observada depende de la resolucion y profundidad radial de penetracion del metodo geofisico estudiado y aumenta sistematicamente en el siguiente orden: {delta}(RHOB) < {delta}(CALI) < {delta}(PEF) < {delta}(URAN) < {delta}(GR) < {delta}(NPHI) < {delta}(POTA) < {delta}(CGR) < {delta}(THOR) < {delta}(MSFL) < {delta}(DRHO) < {delta}(LLS) < {delta}(LLD).

  13. Application of surface geophysics to ground-water investigations

    Science.gov (United States)

    Zohdy, Adel A.R.; Eaton, Gordon P.; Mabey, Don R.

    1974-01-01

    This manual reviews the standard methods of surface geophysics applicable to ground-water investigations. It covers electrical methods, seismic and gravity methods, and magnetic methods. The general physical principles underlying each method and its capabilities and limitations are described. Possibilities for non-uniqueness of interpretation of geophysical results are noted. Examples of actual use of the methods are given to illustrate applications and interpretation in selected geohydrologic environments. The objective of the manual is to provide the hydrogeologist with a sufficient understanding of the capabilities, imitations, and relative cost of geophysical methods to make sound decisions as to when to use of these methods is desirable. The manual also provides enough information for the hydrogeologist to work with a geophysicist in designing geophysical surveys that differentiate significant hydrogeologic changes.

  14. Geophysical background and as-built target characteristics

    International Nuclear Information System (INIS)

    Allen, J.W.

    1994-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas in Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ''very easy to detect'' to ''challenging to the most advanced systems.'' Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets

  15. Looking Forward to the electronic Geophysical Year

    Science.gov (United States)

    Kamide, Y.; Baker, D. N.; Thompson, B.; Barton, C.; Kihn, E.

    2004-12-01

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We discuss plans to aggregate measurements into a readily accessible database along with analysis, visualization, and display tools that will make information available and useful to the scientific community, to the user community, and to the general public. We are examining the possibilities for near-realtime acquisition of data and utilization of forecast tools in order to provide users with advanced space weather capabilities. This program will provide powerful tools for education and public outreach concerning the connected Sun-Earth System.

  16. Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times

    Science.gov (United States)

    Finster, Felix; Strohmaier, Alexander

    2015-08-01

    We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.

  17. Robust spatialization of soil water content at the scale of an agricultural field using geophysical and geostatistical methods

    Science.gov (United States)

    Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi

    2017-04-01

    Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization

  18. Limit sets and global dynamic for 2-D divergence-free vector fields

    International Nuclear Information System (INIS)

    Marzougui, H.

    2004-08-01

    T. Ma and S. Wang studied the global structure of regular divergence-free vector fields on compact surfaces with or without boundary. This paper extends their study to the general case of divergence-free vector fields (regular or not) on closed surfaces and gives as a consequence a simple proof of their results. (author)

  19. Tearing relaxation and the globalization of transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Steinhauer, Loren; Barnes, D. C.

    2009-01-01

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  20. A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

    International Nuclear Information System (INIS)

    Jiang Chaowei; Feng Xueshang; Xiang Changqing

    2012-01-01

    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

  1. Mixed global anomalies and boundary conformal field theories

    OpenAIRE

    Numasawa, Tokiro; Yamaguchi, Satoshi

    2017-01-01

    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...

  2. Local Lunar Gravity Field Analysis over the South Pole-aitken Basin from SELENE Farside Tracking Data

    Science.gov (United States)

    Goossens, Sander Johannes; Ishihara, Yoshiaki; Matsumoto, Koji; Sasaki, Sho

    2012-01-01

    We present a method with which we determined the local lunar gravity field model over the South Pole-Aitken (SPA) basin on the farside of the Moon by estimating adjustments to a global lunar gravity field model using SELENE tracking data. Our adjustments are expressed in localized functions concentrated over the SPA region in a spherical cap with a radius of 45deg centered at (191.1 deg E, 53.2 deg S), and the resolution is equivalent to a 150th degree and order spherical harmonics expansion. The new solution over SPA was used in several applications of geophysical analysis. It shows an increased correlation with high-resolution lunar topography in the frequency band l = 40-70, and admittance values are slightly different and more leveled when compared to other, global gravity field models using the same data. The adjustments expressed in free-air anomalies and differences in Bouguer anomalies between the local solution and the a priori global solution correlate with topographic surface features. The Moho structure beneath the SPA basin is slightly modified in our solution, most notably at the southern rim of the Apollo basin and around the Zeeman crater

  3. Quantitative Analysis of Piezoelectric and Seismoelectric Anomalies in Subsurface Geophysics

    Science.gov (United States)

    Eppelbaum, Lev

    2017-04-01

    , apatite-nepheline, essentially sphalerite, and ore-quartz deposits of gold, tin, tungsten, molybdenum, zinc, crystal, and other raw materials. This method also enables differentiation of rocks such as bauxites, kimberlites, etc., from the host rocks, by their electrokinetic properties. Classification of some rocks, ores, and minerals by their piezoactivity is given in Table 1. These objects (targets) transform wave elastic oscillations into electromagnetic ones. It should be taken into account that anomalous bodies may be detected not only by positive, but also by negative anomalies, if low-piezoactive body occurs in the higher piezoactive medium. The piezoelectric method is an example of successful application of piezoelectric and seismo-electrokinetic phenomena in exploration and environmental geophysics and designed for delineation of targets differing from the host media by piezoelectric properties (Neishtadt et al., 2006, Neishtadt and Eppelbaum, 2012). This method is employed in surface, downhole, and underground modes. Recent testing of piezeoelectric effects of archaeological samples composed from fired clay have shown values of 2.0 - 3.0 ṡ 10-14 C/N. However, absence of reliable procedures for solving the direct and inverse problems of piezoelectric anomalies (PEA), drastically hampers further progression of the method. Therefore, it was suggested to adapt the tomography procedure, widely used in the seismic prospecting, to the PEA modeling. Diffraction of seismic waves has been computed for models of circular cylinder, thin inclined bed and thick bed (Alperovich et al., 1997). As a result, spatial-time distribution of the electromagnetic field caused by the seismic wave has been found. The computations have shown that effectiveness and reliability of PEA analysis may be critically enhanced by considering total electro- and magnetograms as differentiated from the conventional approaches. Distribution of the electromagnetic field obtained by solving the direct

  4. Modelling of the Global Geopotential Energy & Stress Field

    DEFF Research Database (Denmark)

    Schiffer, Christian; Nielsen, S.B.

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through...... the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....

  5. Comparing plume characteristics inferred from cross-borehole geophysical data

    DEFF Research Database (Denmark)

    Haarder, Eline Bojsen; Binley, Andrew; Zibar, Majken Caroline Looms

    2012-01-01

    significantly influences results of the moment analysis. We compare results of three cross-borehole geophysical approaches for imaging tracer migration arising from a point injection of water in the unsaturated zone: three-dimensional electrical resistivity tomography (ERT), two-dimensional ground......-penetrating radar (GPR) tomography and quasi-three-dimensional GPR tomography. In the studied field experiment, a tracer was injected for a period of 5 d and was monitored both during injection and for 5 d during the subsequent redistribution. The three methods show similar characteristics of the plume development...

  6. Using global magnetospheric models for simulation and interpretation of Swarm external field measurements

    DEFF Research Database (Denmark)

    Moretto, T.; Vennerstrøm, Susanne; Olsen, Nils

    2006-01-01

    simulated external contributions relevant for internal field modeling. These have proven very valuable for the design and planning of the up-coming multi-satellite Swarm mission. In addition, a real event simulation was carried out for a moderately active time interval when observations from the Orsted...... it consistently underestimates the dayside region 2 currents and overestimates the horizontal ionospheric closure currents in the dayside polar cap. Furthermore, with this example we illustrate the great benefit of utilizing the global model for the interpretation of Swarm external field observations and......, likewise, the potential of using Swarm measurements to test and improve the global model....

  7. National Geophysical Data Center Tsunami Data Archive

    Science.gov (United States)

    Stroker, K. J.; Dunbar, P. K.; Brocko, R.

    2008-12-01

    NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology long-term tsunami data archive provides data and derived products essential for tsunami hazard assessment, forecast and warning, inundation modeling, preparedness, mitigation, education, and research. As a result of NOAA's efforts to strengthen its tsunami activities, the long-term tsunami data archive has grown from less than 5 gigabyte in 2004 to more than 2 terabytes in 2008. The types of data archived for tsunami research and operation activities have also expanded in fulfillment of the P.L. 109-424. The archive now consists of: global historical tsunami, significant earthquake and significant volcanic eruptions database; global tsunami deposits and proxies database; reference database; damage photos; coastal water-level data (i.e. digital tide gauge data and marigrams on microfiche); bottom pressure recorder (BPR) data as collected by Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys. The tsunami data archive comes from a wide variety of data providers and sources. These include the NOAA Tsunami Warning Centers, NOAA National Data Buoy Center, NOAA National Ocean Service, IOC/NOAA International Tsunami Information Center, NOAA Pacific Marine Environmental Laboratory, U.S. Geological Survey, tsunami catalogs, reconnaissance reports, journal articles, newspaper articles, internet web pages, and email. NGDC has been active in the management of some of these data for more than 50 years while other data management efforts are more recent. These data are openly available, either directly on-line or by contacting NGDC. All of the NGDC tsunami and related databases are stored in a relational database management system. These data are accessible over the Web as tables, reports, and interactive maps. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes

  8. Geophysical investigations in Jordan

    Science.gov (United States)

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  9. Geo-Seas - a pan-European infrastructure for the management of marine geological and geophysical data.

    Science.gov (United States)

    Glaves, Helen; Graham, Colin

    2010-05-01

    countries. This makes the direct use of primary data in an integrated way very difficult and also hampers use of the data sets in a harmonised way to produce multidisciplinary data products and services. To ensure interoperability with other marine environmental data types Geo-Seas ISO19115 metadata, OGC and GeoSciML standards will be used as the basis for the metadata profiles for the geological and geophysical data. This will be largely achieved by modifying the SeaDataNet metadata standard profile (Common Data Index or CDI), which is itself based upon the ISO19115 standard, to accommodate the requirements of the Geo-Seas project. The overall objective of Geo-Seas project is to build and deploy a unified marine geoscientific data infrastructure within Europe which will in effect provide a data grid for the sharing of marine geological and geophysical data. This will result in a major improvement in the locating, accessing and delivery of federated marine geological and geophysical data and data products from national geological surveys and research institutes across Europe. There is an emphasis on interoperability both with other disciplines as well as with other key framework projects including the European Marine Observation and Data Network (EMODNet) and One Geology - Europe. In addition, a key objective of the Geo-Seas project is to underpin European directives such as INSPIRE as well as recent framework programmes on both the global and European scale, for example Global Earth Observation System of Systems (GEOSS) and Global Monitoring for Environment and Security (GMES), all of which are intended to encourage the exchange of data and information. Geo-Seas consortium partners: NERC-BGS (United Kingdom), NERC-BODC (United Kingdom), NERC-NOCS (United Kingdom), MARIS (Netherlands), IFREMER (France), BRGM (France), TNO (Netherlands), BSH (Germany), IGME (Spain), INETI (Portugal), IGME (Greece), GSI (Ireland), BGR (Germany), OGS (Italy), GEUS (Denmark), NGU (Norway), PGI

  10. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  11. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  12. Responsibilities, opportunities and challenges in geophysical exploration

    International Nuclear Information System (INIS)

    Rytle, R.J.

    1982-01-01

    Geophysical exploration for engineering purposes is conducted to decrease the risk in encountering site uncertainties in construction of underground facilities. Current responsibilities, opportunities and challenges for those with geophysical expertise are defined. These include: replacing the squiggly line format, developing verification sites for method evaluations, applying knowledge engineering and assuming responsibility for crucial national problems involving rock mechanics expertise

  13. A global warming forum: Scientific, economic, and legal overview

    International Nuclear Information System (INIS)

    Geyer, R.A.

    1993-01-01

    A Global Warming Forum covers in detail five general subject areas aimed at providing first, the scientific background and technical information available on global warming and second, a study and evaluation of the role of economic, legal, and political considerations in global warming. The five general topic areas discussed are the following: (1) The role of geophysical and geoengineering methods to solve problems related to global climatic change; (2) the role of oceanographic and geochemical methods to provide evidence for global climatic change; (3) the global assessment of greenhouse gas production including the need for additional information; (4) natural resource management needed to provide long-term global energy and agricultural uses; (5) legal, policy, and educational considerations required to properly evaluate global warming proposals

  14. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    International Nuclear Information System (INIS)

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs

  15. Organizational Legitimacy in the Global Education Policy Field: Learning from UNESCO and the Global Monitoring Report

    Science.gov (United States)

    Edwards, D. Brent, Jr.; Okitsu, Taeko; da Costa, Romina; Kitamura, Yuto

    2018-01-01

    In the field of global education policy, it is common for scholars to reflect on the progress made toward internationally agreed-upon agendas, such as Education for All (EFA). However, scant research has turned the gaze back on the major multilateral institutions that commit to taking the lead in meeting these agendas in order to ask, what…

  16. Neglected knowledge in geophysics: Patents - how to find them, how to use them and how to apply for them

    Science.gov (United States)

    Wollny, K. G.

    2013-12-01

    their time, but maybe useful now, and to explore the historical background and/or timelines of inventions. Patent documents can help to avoid pitfalls and mistakes other experts might already have experienced and documented in describing the state of the art or the inspiration for their invention. It will be shown how to get access to these databases, how to use them to solve scientific problems and how to leverage search results to improve expertise, work experience or facilitate personal patent application. Patent documents resemble journal articles a lot - they contain an abstract, a description regarding the state of the art, the applicant's motivation to overcome a deficit, technical figures and claims to protect the invention. This structure is used globally for all patent documents. Besides the technical facts, they include the name of the inventor, the company applying for the patent, patent validity information and potential 'family members', which cover the same invention but often in other languages than the original patent document. To summarize, patent documents are a highly useful tool to strengthen one's knowledge in a practically orientated geophysical field and to widen the horizon to adjacent technical areas.

  17. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Science.gov (United States)

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  18. Perspectives on global nursing leadership: international experiences from the field.

    Science.gov (United States)

    Buckner, E B; Anderson, D J; Garzon, N; Hafsteinsdóttir, T B; Lai, C K Y; Roshan, R

    2014-12-01

    Nursing leaders from six countries engaged in a year-long discussion on global leadership development. The purpose of these dialogues was to strengthen individual and collective capacity as nursing leaders in a global society. Field experiences in practice and education were shared. Perspectives on global leadership can strengthen nurses' contributions to practice, workplace and policy issues worldwide. Transformational leadership empowers nurses' increasing confidence. Mentoring is needed to stimulate leadership development but this is lacking in many settings where nurses practice, teach and influence policy. Organizations with global mission provide opportunity for nurses' professional growth in leadership through international dialogues. Dialogues among participants were held monthly by conference calls or videoconferences. Example stories from each participant illustrated nursing leadership in action. From these exemplars, concepts were chosen to create a framework. Emerging perspectives and leadership themes represented all contexts of practice, education, research and policy. The cultural context of each country was reflected in the examples. Themes emerged that crossed global regions and countries. Themes were creativity, change, collaboration, community, context and courage. Relationships initially formed in professional organizations can be extended to intentionally facilitate global nursing leadership development. Exemplars from the dialogues demonstrated nursing leadership in health policy development within each cultural context. Recommendations are given for infrastructure development in organizations to enhance future collaborations. © 2014 International Council of Nurses.

  19. High-Level Location Based Search Services That Improve Discoverability of Geophysical Data in the Virtual ITM Observatory

    Science.gov (United States)

    Schaefer, R. K.; Morrison, D.; Potter, M.; Barnes, R. J.; Nylund, S. R.; Patrone, D.; Aiello, J.; Talaat, E. R.; Sarris, T.

    2015-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. These services will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  20. Global effects in quaternionic quantum field theory

    International Nuclear Information System (INIS)

    Brumby, S.P.; Joshi, G.C.

    1997-01-01

    A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,

  1. Brief overview of geophysical probing technology

    International Nuclear Information System (INIS)

    Ramirez, A.L.; Lytle, R.J.

    1982-01-01

    An evaluation of high-resolution geophysical techniques which can be used to characterize a nulcear waste disposal site is being conducted by the Lawrence Livermore National Laboratory (LLNL) at the request of the US Nuclear Regulatory Commisson (NRC). LLNL is involved in research work aimed at evaluating the current capabilities and limitations of geophysical methods used for site selection. This report provides a brief overview of the capabilities and limitations associated with this technology and explains how our work addresses some of the present limitations. We are examining both seismic and electromagnetic techniques to obtain high-resolution information. We are also assessing the usefulness of geotomography in mapping fracture zones remotely. Finally, we are collecting core samples from a site in an effort to assess the capability of correlating such geophysical data with parameters of interest such as fracture continuity, orientation, and fracture density

  2. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Science.gov (United States)

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  3. A GOCE-only global gravity field model by the space-wise approach

    DEFF Research Database (Denmark)

    Migliaccio, Frederica; Reguzzoni, Mirko; Gatti, Andrea

    2011-01-01

    The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... degrees; the second is an internally computed GOCE-only prior model to be used in place of the official quick-look model, thus removing the dependency on EIGEN5C especially in the polar gaps. Once the procedure to obtain a GOCE-only solution has been outlined, a new global gravity field model has been...

  4. Geology and development of oil fields in Western Siberia

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    The anthology is dedicated to the geology, geophysics, hydrodynamics, and development of oil fields in Western Siberia. The articles on geological, industrial-geophysical and theoretical mathematical studies make recommendations and suggest measures to improve procedures for calculating oil reserves, to increase development efficiency and raise oil output.

  5. Canonical Models of Geophysical and Astrophysical Flows: Turbulent Convection Experiments in Liquid Metals

    Directory of Open Access Journals (Sweden)

    Adolfo Ribeiro

    2015-03-01

    Full Text Available Planets and stars are often capable of generating their own magnetic fields. This occurs through dynamo processes occurring via turbulent convective stirring of their respective molten metal-rich cores and plasma-based convection zones. Present-day numerical models of planetary and stellar dynamo action are not carried out using fluids properties that mimic the essential properties of liquid metals and plasmas (e.g., using fluids with thermal Prandtl numbers Pr < 1 and magnetic Prandtl numbers Pm ≪ 1. Metal dynamo simulations should become possible, though, within the next decade. In order then to understand the turbulent convection phenomena occurring in geophysical or astrophysical fluids and next-generation numerical models thereof, we present here canonical, end-member examples of thermally-driven convection in liquid gallium, first with no magnetic field or rotation present, then with the inclusion of a background magnetic field and then in a rotating system (without an imposed magnetic field. In doing so, we demonstrate the essential behaviors of convecting liquid metals that are necessary for building, as well as benchmarking, accurate, robust models of magnetohydrodynamic processes in Pm ≪  Pr < 1 geophysical and astrophysical systems. Our study results also show strong agreement between laboratory and numerical experiments, demonstrating that high resolution numerical simulations can be made capable of modeling the liquid metal convective turbulence needed in accurate next-generation dynamo models.

  6. Global crustal movement and tectonic plate boundary deformation constrained by the ITRF2008

    Directory of Open Access Journals (Sweden)

    Zhu Ze

    2012-08-01

    Full Text Available On the basis of the newly released International Terrestrial Reference Frame(ITRF2008 by the International Earth Rotation Service (IERS, a new global plate model ITRF2008 plate for the major plates is established. This ITRF2008-derived model is analyzed in comparison with NNR-NUVEL1A model, which is mainly based on geological and geophysical data. The Eurasia and Pacific plates display obvious differences in terms of the velocity fields derived from the two plate motion models. Plate acceleration is also introduced to characterize the differences of the two velocity fields which obtained from ITRF2008 -plate and NNR-NUVEL1A models for major individual plates. The results show that the Africa, South America and Eurasia plates are undergoing acceleration, while the North America and Australia plates are in the state of deceleration motion.

  7. Modeling the UT effect in global distribution of ionospheric electric fields

    DEFF Research Database (Denmark)

    Lukianova, R.; Christiansen, Freddy

    2008-01-01

    A new approach for modeling the global distribution of ionospheric electric potentials utilizing high-precision maps of field-aligned currents (FACs) derived from measurements by the Orsted and Magsat satellites as input to a comprehensive numerical scheme is presented. We simulate the universal ...

  8. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    Science.gov (United States)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  9. FY 2000 Annual Report for EMSP Project No.70108 - Effects of Fluid Distribution on Measured Geophysical Properties for Partially Saturated, Shallow Subsurface Conditions

    International Nuclear Information System (INIS)

    Berge, P.A.; Bonner, B.P.; Roberts, J.J.; Wildenschild, D.; Aracne-Ruddle, C.M.; Berryman, J.G.; Bertete-Aguirre, H.; Boro, C.O.; Carlberg, E.D.

    2000-01-01

    Our goal is to improve geophysical imaging of the vadose zone. We will achieve this goal by providing new methods to improve interpretation of field data. The purpose of this EMSP project is to develop relationships between laboratory measured geophysical properties and porosity, saturation, and fluid distribution, for partially saturated soils. Algorithms for relationships between soil composition, saturation, and geophysical measurements will provide new methods to interpret geophysical field data collected in the vadose zone at sites such as Hanford, WA. This report summarizes work after 10 months of a 3-year project. We have modified a laboratory ultrasonics apparatus developed in a previous EMSP project (No.55411) so that we can make velocity measurements for partially-saturated samples rather than fully-saturated or dry samples. We are testing the measurement apparatus using standard laboratory sand samples such as Ottawa sand samples. Preliminary results indicate that we can measure both compressional and shear velocities in these sand samples. We have received Hanford soil samples (sands from split-spoon cores from an uncontaminated site) and expect to make ultrasonic measurements on them also. We have used the LLNL x-ray facility to perform x-ray computed tomography (XCT) imaging for several partially-saturated Ottawa sand and Lincoln sand samples, and have also used the DOE Advance Photon Source at Argonne National Laboratory to make higher-resolution images of some sand samples. Preliminary results indicate that we can image amount and distribution of fluids in homogeneous sand samples. Continuing work from the previous EMSP project, we are testing a new data analysis method for seismic data that is expected to improve interpretation of seismic data from the vadose zone by showing how partial saturation affects seismic parameters. Our results suggest that the planned approach for this research is appropriate, that microstructure is an important factor

  10. Global gravity field from recent satellites (DTU15) - Arctic improvements

    DEFF Research Database (Denmark)

    Andersen, O. B.; Knudsen, P.; Kenyon, S.

    2017-01-01

    Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...

  11. A ''model'' geophysics program

    International Nuclear Information System (INIS)

    Nyquist, J.E.

    1994-01-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy's Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994

  12. Modeling geophysical complexity: a case for geometric determinism

    Directory of Open Access Journals (Sweden)

    C. E. Puente

    2007-01-01

    Full Text Available It has been customary in the last few decades to employ stochastic models to represent complex data sets encountered in geophysics, particularly in hydrology. This article reviews a deterministic geometric procedure to data modeling, one that represents whole data sets as derived distributions of simple multifractal measures via fractal functions. It is shown how such a procedure may lead to faithful holistic representations of existing geophysical data sets that, while complementing existing representations via stochastic methods, may also provide a compact language for geophysical complexity. The implications of these ideas, both scientific and philosophical, are stressed.

  13. Geophysics comes of age in oil sands development

    Energy Technology Data Exchange (ETDEWEB)

    Bauman, P. [WorleyParsons Komex, Calgary, AB (Canada); Birch, R.; Parker, D.; Andrews, B. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2008-07-01

    This paper discussed geophysical techniques developed for oil sands exploration and production applications in Alberta's oil sands region. Geophysical methods are playing an important role in mine planning, tailings containment, water supply, and land reclamation activities. Geophysics techniques are used to estimate the volume of muskeg that needs to be stripped and stored for future reclamation activities as well as to site muskeg piles and delineate the thickness of clay Clearwater formations overlying Cretaceous oil-bearing sands. 2-D electrical resistivity mapping is used to map river-connected deep bedrock Pleistocene paleovalleys in the region. Geophysical studies are also used to investigate the interiors of dikes and berms as well as to monitor salt migration within tailings piles. Sonic and density logs are used to create synthetic seismograms for mapping the Devonian surface in the region. The new applications included the calculation of bitumen saturation from surface sands and shales; muskeg thickness mapping; and non-intrusive monitoring of leachate plumes. Geophysical techniques included 2-D electrical resistivity imaging; transient electromagnetic (EM) technologies; ground penetrating radar; and high-resolution seismic reflections. Polarization, surface nuclear magnetic resonance and push-probe sensing techniques were also discussed. Techniques were discussed in relation to Alberta's Athabasca oil sands deposits. 4 refs.

  14. The application actualities and prospects of geophysical methods to uranium prospecting

    International Nuclear Information System (INIS)

    Liu Qingcheng

    2010-01-01

    Basic principles of geophysical methods to uranium prospect are briefly introduced, and the effects as well as problems in using those methods are analysed respectively. Combining with the increasing demand of uranium resources for Chinese nuclear power development and the higher requirements of geophysical techniques, the developing directions and the thoughts of geophysical techniques in uranium prospecting were proposed. A new pattern with producing, teaching and researching together is brought forward to develop advancing uranium prospecting key technologies and to break through technological bottlenecks depending on independent innovation. Integrated geophysical methods for prospecting uranium deposits are suggested. The method includes geophysical techniques as follows: gravity, magnetic, seismic, radioactive, remote sensing, and geochemical method in some proving grounds. Based on the experimental research, new uranium deposits prospecting models with efficient integrated geophysical methods can be established. (authors)

  15. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Science.gov (United States)

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  16. Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula)

    Science.gov (United States)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-11-01

    We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.

  17. An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field

    Science.gov (United States)

    Booterbaugh, A. P.; Lachhab, A.

    2011-12-01

    In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench

  18. Basic elements of nuclear geophysics

    International Nuclear Information System (INIS)

    Nordemann, D.J.R.; Pereira, E.B.

    1984-01-01

    Nuclear Geophysics applies the nuclear radiation detection methodology to the geosciences, specially to study the dynamical processes of the lithosphere, the hydrosphere and the atmosphere as well as some aspects of planetology and astrophysics. Here the main methods are described: alpha-ray and gamma-ray spectrometry, the interaction of alpha and gamma radiation with matter and the detectors used (grid chambers, surface barrier silicon detector for alpha radiation; and sodium iodide thallium activated phosphors, hyperpure and lithium drifted germanium semiconductor detectors for gamma radiation). The principal applications of Nuclear Geophysics are given as examples to ilustrate the use of the methods described. (AUthor) [pt

  19. The geology and geophysics of the Oslo rift

    Science.gov (United States)

    Ruder, M. E.

    1981-01-01

    The regional geology and geophysical characteristics of the Oslo graben are reviewed. The graben is part of a Permian age failed continental rift. Alkali olivine, tholefitic, and monzonitic intrusives as well as basaltic lavas outline the extent of the graben. Geophysical evidence indicates that rifting activity covered a much greater area in Skagerrak Sea as well as the Paleozoic time, possibly including the northern Skagerrak Sea as well as the Oslo graben itself. Much of the surficial geologic characteristics in the southern part of the rift have since been eroded or covered by sedimentation. Geophysical data reveal a gravity maximum along the strike of the Oslo graben, local emplacements of magnetic material throughout the Skagerrak and the graben, and a slight mantle upward beneath the rift zone. Petrologic and geophysical maps which depict regional structure are included in the text. An extensive bibliography of pertinent literature published in English between 1960 and 1980 is also provided.

  20. Geophysical characterisation of the groundwater-surface water interface

    Science.gov (United States)

    McLachlan, P. J.; Chambers, J. E.; Uhlemann, S. S.; Binley, A.

    2017-11-01

    Interactions between groundwater (GW) and surface water (SW) have important implications for water quantity, water quality, and ecological health. The subsurface region proximal to SW bodies, the GW-SW interface, is crucial as it actively regulates the transfer of nutrients, contaminants, and water between GW systems and SW environments. However, geological, hydrological, and biogeochemical heterogeneity in the GW-SW interface makes it difficult to characterise with direct observations. Over the past two decades geophysics has been increasingly used to characterise spatial and temporal variability throughout the GW-SW interface. Geophysics is a powerful tool in evaluating structural heterogeneity, revealing zones of GW discharge, and monitoring hydrological processes. Geophysics should be used alongside traditional hydrological and biogeochemical methods to provide additional information about the subsurface. Further integration of commonly used geophysical techniques, and adoption of emerging techniques, has the potential to improve understanding of the properties and processes of the GW-SW interface, and ultimately the implications for water quality and environmental health.

  1. Site characterization and validation - geophysical single hole logging

    International Nuclear Information System (INIS)

    Andersson, Per

    1989-05-01

    A total of 15 boreholes have been drilled for preliminary characterization of a previously unexplored site at the 360 and 385 m level in the Stripa mine. To adequately described the rock mass in the vicinity of these boreholes, a comprehensive program utilizing a large number of geophysical borehole methods has been carried out in 10 of these boreholes. The specific geophysical character of the rock mass and the major deformed units distinguished in the vicinity of the boreholes are recognized, and in certain cases also correlated between the boreholes. A general conclusion based on the geophysical logging results, made in this report, is that the preliminary predictions made in stage 2, of the site characterization and validation project (Olsson et.al, 1988), are adequate. The results from the geophysical logging can support the four predicted fracture/ fracture zones GHa, GHb, GA and GB whereas the predicted zones GC and GI are hard to confirm from the logging results. (author)

  2. Fusion of Geophysical Images in the Study of Archaeological Sites

    Science.gov (United States)

    Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.

    2011-12-01

    This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image

  3. Geophysical investigations in the Syyry area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Kurimo, M.

    1992-12-01

    Investigations were carried out at the Syyry site at Sievi using geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  4. Geophysical investigations in the Olkiluoto area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Paananen, M.

    1992-12-01

    Investigations were carried out at the Olkiluoto site at Eurajoki using geological, geophysical, geohydrological and geochemical methods in 1987-1992 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  5. Geophysical investigations in the Kivetty area, Finland

    International Nuclear Information System (INIS)

    Heikkinen, E.; Paananen, M.; Oehberg, A.; Front, K.; Okko, O.; Pitkaenen, P.

    1992-09-01

    Investigations were carried out at Kivetty site in Konginkangas, in central Finland, by geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. Airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  6. Geophysical excitation of LOD/UT1 estimated from the output of the global circulation models of the atmosphere - ERA-40 reanalysis and of the ocean - OMCT

    Science.gov (United States)

    Korbacz, A.; Brzeziński, A.; Thomas, M.

    2008-04-01

    We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.

  7. Analysis of shallow continuous electromagnetic measurements on archaeological sites in southern Austria and comparison with other geophysical methods

    Science.gov (United States)

    Niesner, Erich

    2010-05-01

    Aim of this investigation was outlining the potential of continuous electromagnetic measurements by the comparison of the electromagnetic results with other different geophysical methods at known archaeological sites in Carinthia (Southern Austria). In general a very high resolution is necessary to outline the foundations of roman buildings covered by a sedimentary layer of at least half a meter thickness. The electromagnetic prospecting method had been applied within an archaeologically important region, the archaeological remnants of the first roman provincial capital at the Magdalensberg and at the site of the later location of the capital, at Virunum. With the establishment and consolidation of the Roman Empire the Romans needed more settlement space for the fast growing town and also the demands for defence were less - therefore the Romans transferred the provincial capital down to the "Zollfeld" valley northeast of Klagenfurt. Additional to the electromagnetic investigations, geoelectric, magnetic and susceptibility mapping, spontaneous potential surveys, multielectrode tomography (Niesner, Scholger, Leonhardt 2009) and ground penetrating radar (Morawetz 2006) have been employed jointly during the last years. Also visual and infrared aerial pictures had been available from those areas. The work had been done within a collaborative project between the Geophysical Institute of the University of Leoben and the Landesmuseum Kärnten. The fieldwork and part of the interpretation had been done by students of the University of Leoben within summer field camps. Within these surveys various portions of the archaeological sites had been mapped, providing valuable information of this ancient settlement. One of the most important achievements of the past years of close integration work by the archaeological and the geophysical team was the detailed outlining of an early Christian church, dated by the archaeologists to the early time of the Christians (Dolenz, Niesner

  8. Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole

    International Nuclear Information System (INIS)

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole

  9. Globally and locally supersymmetric effective theories for light fields

    CERN Document Server

    Brizi, Leonardo; Scrucca, Claudio A

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...

  10. Gas hydrate on the northern Cascadia margin: regional geophysics and structural framework

    OpenAIRE

    Riedel, Michael; Willoughby, E. C.; Chen, M. A.; He, T.; Novosel, I.; Schwalenberg, K.; Hyndman, R. D.; Spence, G. D.; Chapman, N. R.; Edwards, R. N.

    2006-01-01

    Integrated Ocean Drilling Program Expedition 311 is based on ex- tensive site survey data and historic research at the northern Cas- cadia margin since 1985. This research includes various regional geophysical surveys using a broad spectrum of seismic tech- niques, coring and logging by the Ocean Drilling Program Leg 146, heat flow measurements, shallow piston coring, and bottom video observations across a cold-vent field, as well as novel con- trolled-source electromagne...

  11. Geophysical characterization from Itu intrusive suite

    International Nuclear Information System (INIS)

    Pascholati, M.E.

    1989-01-01

    The integrated use of geophysical, geological, geochemical, petrographical and remote sensing data resulted in a substantial increase in the knowledge of the Itu Intrusive Suite. The main geophysical method was gamma-ray spectrometry together with fluorimetry and autoradiography. Three methods were used for calculation of laboratory gamma-ray spectrometry data. For U, the regression method was the best one. For K and Th, equations system and absolute calibration presented the best results. Surface gamma-ray spectrometry allowed comparison with laboratory data and permitted important contribution to the study of environmental radiation. (author)

  12. An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

    DEFF Research Database (Denmark)

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    2014-01-01

    We present a new technique for modelling the global lithospheric magnetic field at Earth's surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010 when...... are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid. The corresponding source values are estimated using an iteratively reweighted least squares algorithm...... in the CHAOS-4 and MF7 models using more conventional spherical harmonic based approaches. Advantages of the equivalent source method include its local nature, allowing e.g. for regional grid refinement, and the ease of transforming to spherical harmonics when needed. Future applications will make use of Swarm...

  13. Application of non-intrusive geophysical techniques at the Mixed Waste Landfill, Technical Area 3, Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Peace, J.L.; Goering, T.J.

    1996-03-01

    The Environmental Restoration Project at Sandia National Laboratories, New Mexico is tasked with assessment and remediation of the Mixed Waste Landfill in Technical Area 3. The Mixed Waste Landfill is an inactive radioactive and mixed waste disposal site. The landfill contains disposal pits and trenches of questionable location and dimension. Non-intrusive geophysical techniques were utilized to provide an effective means of determining the location and dimension of suspected waste disposal trenches before Resource Conservation and Recovery Act intrusive assessment activities were initiated. Geophysical instruments selected for this investigation included a Geonics EM-31 ground conductivity meter, the new Geonics EM-61 high precision, time-domain metal detector, and a Geometrics 856 total field magnetometer. The results of these non-intrusive geophysical techniques were evaluated to enhance the efficiency and cost-effectiveness of future waste-site investigations at Environmental Restoration Project sites

  14. A portable marine geophysical data access and management system

    Digital Repository Service at National Institute of Oceanography (India)

    Kunte, P.D.; Narvekar, P.

    Geophysical Oracle Database Management System (GPODMS) that is residing on UNIX True 64 Compaq Alpha server. GPODMS is a stable Oracle database system for longterm storage and systematic management of geophysical data and information of various disciplines...

  15. Melting empires? Climate change and politics in Antarctica since the International Geophysical Year.

    Science.gov (United States)

    Howkins, Adrian

    2011-01-01

    This article examines the relationship between climate change and politics in Antarctica since the International Geophysical Year of 1957-8, paying particular attention to the work of the British Antarctic Survey. Research conducted in Antarctica has played an important role in the understanding of climate change on a global scale. In turn, fears about the consequences of global climate change have radically changed perceptions of Antarctica and profoundly shaped scientific research agendas: a continent that until fifty years ago was perceived largely as an inhospitable wilderness has come to be seen as a dangerously vulnerable environment. This radical shift in perception contrasts with a fundamental continuity in the political power structures of the continent. This article argues that the severity of the threat of climate change has reinforced the privileged political position of the "insider" nations within the Antarctic Treaty System.

  16. Data Mining for Efficient and Accurate Large Scale Retrieval of Geophysical Parameters

    Science.gov (United States)

    Obradovic, Z.; Vucetic, S.; Peng, K.; Han, B.

    2004-12-01

    Our effort is devoted to developing data mining technology for improving efficiency and accuracy of the geophysical parameter retrievals by learning a mapping from observation attributes to the corresponding parameters within the framework of classification and regression. We will describe a method for efficient learning of neural network-based classification and regression models from high-volume data streams. The proposed procedure automatically learns a series of neural networks of different complexities on smaller data stream chunks and then properly combines them into an ensemble predictor through averaging. Based on the idea of progressive sampling the proposed approach starts with a very simple network trained on a very small chunk and then gradually increases the model complexity and the chunk size until the learning performance no longer improves. Our empirical study on aerosol retrievals from data obtained with the MISR instrument mounted at Terra satellite suggests that the proposed method is successful in learning complex concepts from large data streams with near-optimal computational effort. We will also report on a method that complements deterministic retrievals by constructing accurate predictive algorithms and applying them on appropriately selected subsets of observed data. The method is based on developing more accurate predictors aimed to catch global and local properties synthesized in a region. The procedure starts by learning the global properties of data sampled over the entire space, and continues by constructing specialized models on selected localized regions. The global and local models are integrated through an automated procedure that determines the optimal trade-off between the two components with the objective of minimizing the overall mean square errors over a specific region. Our experimental results on MISR data showed that the combined model can increase the retrieval accuracy significantly. The preliminary results on various

  17. Global correlation imaging of magnetic total field gradients

    International Nuclear Information System (INIS)

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2012-01-01

    Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)

  18. 3D geophysical inversion for contact surfaces

    Science.gov (United States)

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    geophysical models can be specified using the same parameterization: they are, in essence, the same Earth model. We solve for the locations of the nodes through a Particle Swarm Optimization strategy and follow this with a more rigorous stochastic sampling to provide likelihood information. Such global optimization methods introduce high computational costs; to provide computationally feasible inversion methods, we reduce the dimensionality of the problem by parameterizing the nodes in a coarse representation of the geological wireframe model and we use splines (2D) or surface subdivision (3D) to refine further. This also provides a simple and effective way to regularize the inverse problem.

  19. Global changes in intensity of the Earth's magnetic field during the past 800kyr

    NARCIS (Netherlands)

    Guyodo, Yohan; Valet, Jean-Pierre

    1999-01-01

    Recent advances in palaeomagnetic and dating techniques have led to increasingly precise records of the relative intensity of the Earth’s past magnetic field at numerous field sites. The compilation and analysis of these records can provide important constraints on changes in global magnetic

  20. Geophysical investigations at ORNL solid waste storage area 3

    International Nuclear Information System (INIS)

    Rothschild, E.R.; Switek, J.; Llopis, J.L.; Farmer, C.D.

    1985-07-01

    Geophysical investigations at ORNL solid waste storage area 3 have been carried out. The investigations included very-low-frequency-electromagnetic resistivity (VLF-EM), electrical resistivity, and seismic refraction surveys. The surveys resulted in the measurement of basic geophysical rock properties, as well as information on the depth of weathering and the configuration of the bedrock surface beneath the study area. Survey results also indicate that a number of geophysical anomalies occur in the shallow subsurface at the site. In particular, a linear feature running across the geologic strike in the western half of the waste disposal facility has been identified. This feature may conduct water in the subsurface. The geophysical investigations are part of an ongoing effort to characterize the site's hydrogeology, and the data presented will be valuable in directing future drilling and investigations at the site. 10 refs., 6 figs

  1. Parts-based geophysical inversion with application to water flooding interface detection and geological facies detection

    Science.gov (United States)

    Zhang, Junwei

    I built parts-based and manifold based mathematical learning model for the geophysical inverse problem and I applied this approach to two problems. One is related to the detection of the oil-water encroachment front during the water flooding of an oil reservoir. In this application, I propose a new 4D inversion approach based on the Gauss-Newton approach to invert time-lapse cross-well resistance data. The goal of this study is to image the position of the oil-water encroachment front in a heterogeneous clayey sand reservoir. This approach is based on explicitly connecting the change of resistivity to the petrophysical properties controlling the position of the front (porosity and permeability) and to the saturation of the water phase through a petrophysical resistivity model accounting for bulk and surface conductivity contributions and saturation. The distributions of the permeability and porosity are also inverted using the time-lapse resistivity data in order to better reconstruct the position of the oil water encroachment front. In our synthetic test case, we get a better position of the front with the by-products of porosity and permeability inferences near the flow trajectory and close to the wells. The numerical simulations show that the position of the front is recovered well but the distribution of the recovered porosity and permeability is only fair. A comparison with a commercial code based on a classical Gauss-Newton approach with no information provided by the two-phase flow model fails to recover the position of the front. The new approach could be also used for the time-lapse monitoring of various processes in both geothermal fields and oil and gas reservoirs using a combination of geophysical methods. A paper has been published in Geophysical Journal International on this topic and I am the first author of this paper. The second application is related to the detection of geological facies boundaries and their deforation to satisfy to geophysica

  2. Geophysical Responses of Hydrocarbon-impacted Zones at the Various Contamination Conditions

    Science.gov (United States)

    Kim, C.; Ko, K.; Son, J.; Kim, J.

    2008-12-01

    One controlled experiment and two field surveys were conducted to investigate the geoelectrical responses of hydrocarbon-contaminated zones, so called smeared zone, on the geophysical data at the hydrocarbon- contaminated sites with various conditions. One controlled physical model experiment with GPR using fresh gasoline and two different 3-D electrical resistivity investigations at the aged sites. One field site (former military facilities for arms maintenance) was mainly contaminated with lubricating oils and the other (former gas station) was contaminated with gasoline and diesel, respectively. The results from the physical model experiment show that GPR signals were enhanced when LNAPL was present as a residual saturation in the water-saturated system due to less attenuation of the electromagnetic energy through the soil medium of the hydrocarbon-impacted zone (no biodegradation), compared to when the medium was saturated with only water (no hydrocarbon impaction). In the former gas station site, 3-D resistivity results demonstrate that the highly contaminated zones were imaged with low resistivity anomalies since the biodegradation of petroleum hydrocarbons has been undergone for many years, causing the drastic increase in the TDS at the hydrocarbon-impacted zones. Finally, 3-D resistivity data obtained from the former military maintenance site show that the hydrocarbon-contaminated zones show high resistivity anomalies since the hydrocarbons such as lubricating oils at the contaminated soils were not greatly influenced by microbial degradation and has relatively well kept their original physical properties of high electrical resistivity. The results of the study illustrated that the hydrocarbon-impacted zones under various contamination conditions yielded various geophysical responses which include (1) enhanced GPR amplitudes at the fresh LNAPL (Gasoline to middle distillates) spill sites, (2) low electrical resistivity anomalies due to biodegradation at the

  3. Geophysical imaging of near-surface structure using electromagnetic and seismic waves

    Science.gov (United States)

    Chen, Yongping

    This thesis includes three different studies of geophysical imaging: (1) inference of plume moments from tomograms with cross-hole radar; (2) simulated annealing inversion for near-surface shear-wave velocity structure with microtremor measurements; and (3) time-lapse GPR imaging of water movement in the vadose zone. Although these studies involve different geophysical approaches, they are linked by a common theme---using geophysical imaging to understand hydrologic phenomena or subsurface structure. My first study in this thesis is concerned with the identification of plume moments from geophysical tomograms. Previously geophysical imaging has been applied to characterize contaminant plume migration in groundwater, and to determine plume mass, extent, velocity, and shape. Although tomograms have been used for quantitative inference of plume moments, the reliability of these inferred moments is poorly understood. In general, tomograms represent blurry and blunted images of subsurface properties, as a consequence of limited data acquisition geometry, measurement error, and the effects of regularization. In this thesis, I investigated the effect of tomographic resolution on the inference of plume moments from tomograms. I presented a new approach to quantify the resolution of inferred moments, drawing on concepts from conventional geophysical image appraisal, and also image reconstruction from orthogonal moments. This new approach is demonstrated by synthetic examples in radar tomography. My results indicated that moments calculated from tomograms are subject to substantial error and bias. For example, for many practical survey geometries, crosshole radar tomography (1) is incapable of resolving the lateral center of mass, and (2) severely underpredicts total mass. The degree of bias and error varies spatially over the tomogram, in a complicated manner, as a result of spatially variable resolution. These findings have important implications for the quantitative use

  4. uranium and thorium exploration by geophysical methods

    International Nuclear Information System (INIS)

    Yueksel, F.A.; Kanli, A.I.

    1997-01-01

    Radioactivity is often measured from the ground in mineral exploration. If large areas have to be investigated, it is often unsuitable to carry out the measurements with ground-bound expeditions. A geophysical method of gamma-ray spectrometry is generally applied for uranium exploration. Exploration of uranium surveys were stopped after the year of 1990 in Turkey. Therefore the real potential of uranium in Turkey have to be investigated by using the geophysical techniques

  5. The emergency of concept global health: perspectives for the field of public health

    Directory of Open Access Journals (Sweden)

    João Roberto Cavalcante Sampaio

    2016-12-01

    Full Text Available In recent years, we have witnessed the emergence of new terms in the academic and political debate of public health, such as ‘’global health’’, ‘’global public goods’’, ‘’global health governance’’, ‘’global public health’’, ‘’health diplomacy’’, 'international cooperation’’. In this study, we aimed to analyze the historical development of the concept of ‘global health’, as well as the prospects of this new concept in the research and public health practice. A comprehensive literature review was performed in Pubmed, Scielo, Scopus, and BVS. We also analyzed documents obtained from the websites of international health organizations. 514 publications were retrieved and 36 were selected for this study. In general, the concept of "global health" refers to health as a transnational phenomenon linked to globalization, which has as main challenge to think public health beyond international relations between countries. International health organizations are particularly important in the development of the concept of "global health" and its new application prospects in the field of public health are health diplomacy, international cooperation and global health governance.

  6. Global assessment of surfing conditions: seasonal, interannual and long-term variability

    Science.gov (United States)

    Espejo, A.; Losada, I.; Mendez, F.

    2012-12-01

    International surfing destinations owe a great debt to specific combinations of wind-wave, thermal conditions and local bathymetry. As surf quality depends on a vast number of geophysical variables, a multivariable standardized index on the basis of expert judgment is proposed to analyze surf resource in a worldwide domain. Data needed is obtained by combining several datasets (reanalyses): 60-year satellite-calibrated spectral wave hindcast (GOW, WaveWatchIII), wind fields from NCEP/NCAR, global sea surface temperature from ERSST.v3b, and global tides from TPXO7.1. A summary of the global surf resource is presented, which highlights the high degree of variability in surfable events. According to general atmospheric circulation, results show that west facing low to middle latitude coasts are more suitable for surfing, especially those in Southern Hemisphere. Month to month analysis reveals strong seasonal changes in the occurrence of surfable events, enhancing those in North Atlantic or North Pacific. Interannual variability is investigated by comparing occurrence values with global and regional climate patterns showing a great influence at both, global and regional scales. Analysis of long term trends shows an increase in the probability of surfable events over the west facing coasts on the planet (i.e. + 30 hours/year in California). The resulting maps provide useful information for surfers and surf related stakeholders, coastal planning, education, and basic research.; Figure 1. Global distribution of medium quality (a) and high quality surf conditions probability (b).

  7. Correlations between the geomagnetic field variations, the fluctuations of the earth`s rotation and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Greiner-Mai, H; Jochmann, H

    1995-03-01

    The amplitude spectra of global geophysical phenomena were investigated to motivate research of physical connections between them. The suggested causality was derived from comparison of the spectra, and from cross correlation functions. The following global parameters were discussed: For the earth rotation by the variations of the length of day, for the geomagnetic variation by the global field intensity, changes of the dipole axis and the westward drift, and for climate change by the atmospheric excitation function derived from air pressure variations, and temperature variations. The model of atmospheric excitation, which can be proved most exactly for the annual variations of length of day, is responsible for the 11 and 22 years periods, too. It failed for longer periods, e.g. partially for the 30 years periods and completely for the 60 to 80 years periods, which were also discovered in the mean temperature and geomagnetic field variations. Therefore, it was suggested that longer periods in climate change and in the variations of the earth`s rotation are caused independently by the same process in the earth core, provided that a physical influence of the geomagnetic field on climate will be accepted in future. The investigation was completed by comparison with the spectra of some local temperature variations in Europe. (orig.)

  8. Site characterization at the Rabbit Valley Geophysical Performance Evaluation Range

    International Nuclear Information System (INIS)

    Koppenjan, S.; Martinez, M.

    1994-01-01

    The United States Department of Energy (US DOE) is developing a Geophysical Performance Evaluation Range (GPER) at Rabbit Valley located 30 miles west of Grand Junction, Colorado. The purpose of the range is to provide a test area for geophysical instruments and survey procedures. Assessment of equipment accuracy and resolution is accomplished through the use of static and dynamic physical models. These models include targets with fixed configurations and targets that can be re-configured to simulate specific specifications. Initial testing (1991) combined with the current tests at the Rabbit Valley GPER will establish baseline data and will provide performance criteria for the development of geophysical technologies and techniques. The US DOE's Special Technologies Laboratory (STL) staff has conducted a Ground Penetrating Radar (GPR) survey of the site with its stepped FM-CW GPR. Additionally, STL contracted several other geophysical tests. These include an airborne GPR survey incorporating a ''chirped'' FM-CW GPR system and a magnetic survey with a surfaced-towed magnetometer array unit Ground-based and aerial video and still frame pictures were also acquired. STL compiled and analyzed all of the geophysical maps and created a site characterization database. This paper discusses the results of the multi-sensor geophysical studies performed at Rabbit Valley and the future plans for the site

  9. Comparison study of selected geophysical and geotechnical parameters

    DEFF Research Database (Denmark)

    Nissen, Randi Warncke; Poulsen, Søren Erbs

    Successful foundation of constructions relies on accurate characterization of the geotechnical properties of the subsurface. By implementing data from geophysical surveys, the placement of geotechnical drillings can be significantly improved, potentially reducing the number of required drillings....... This case study is mainly to compare geophysical investigations (MEP/IP) with existing PACES data and information from geotechnical drillings....

  10. Testing how geophysics can reduce the uncertainty of groundwater model predictions

    DEFF Research Database (Denmark)

    Christensen, Nikolaj Kruse; Christensen, Steen; Ferre, Ty

    2014-01-01

    Geophysical data are increasingly used to construct groundwater models. Such data are collected at lower cost and much higher density than the traditionally used geological, hydraulic, and hydrological data. The geophysical data are often inverted independently and used together with geological......, respectively. There is also complete flexibility in the choice of relationships between hydraulic and geophysical properties. Noise can be added to the synthetic hydrologic and geophysical datasets and these exhaustive data sets can be down sampled to represent realistic data sets of varying measurement...... with and covered by layered glaciofluvial and glacial deposits. The hydrological data consist of 35 hydraulic head measurements and one river discharge measurement, while the geophysical data consist of 77 TEM soundings. The data are inverted sequentially and jointly. Through this example, we highlight the value...

  11. Description of geophysical data in the SKB database GEOTAB. Version 2

    International Nuclear Information System (INIS)

    Sehlstedt, S.

    1991-01-01

    For the storage of different types of data collected by SKB a database called GEOTAB has been created. The following data is stored in the database: Background data, geological data, geophysical data, hydrogeological and meteorological data, hydrochemical data, and tracer tests. This report describes the data flow for different types of geophysical measurement. The descriptions start with measurement and end with the storage of data in GEOTAB. Each process and the resulting data volume is presented separately. The geophysical measurements have been divided into the following subjects: Geophysical ground surface measurements, geophysical borehole logging, and petrophysical measurements. Each group of measurements is described in an individual chapter. In each chapter several measuring techniques are described and each method has a data table and a flyleaf table in GEOTAB. (author)

  12. Particle-laden flow from geophysical to Kolmogorov scales

    CERN Document Server

    Clercx, Herman; Uijttewaal, Wim

    2007-01-01

    The dispersion of particles in a flow is of central importance in various geophysical and environmental problems. The spreading of aerosols and soot in the air, the growth and dispersion of plankton blooms in seas and oceans, or the transport of sediment in rivers, estuaries and coastal regions are striking examples. These problems are characterized by strong nonlinear coupling between several dynamical mechanisms. As a result, processes on widely different length and time scales are simultaneously of importance. The multiscale nature of this challenging field motivated the EUROMECH colloquium on particle-laden flow that was held at the University of Twente in 2006. This book contains a selection of the papers that were presented.

  13. Technical Note: Calibration and validation of geophysical observation models

    NARCIS (Netherlands)

    Salama, M.S.; van der Velde, R.; van der Woerd, H.J.; Kromkamp, J.C.; Philippart, C.J.M.; Joseph, A.T.; O'Neill, P.E.; Lang, R.H.; Gish, T.; Werdell, P.J.; Su, Z.

    2012-01-01

    We present a method to calibrate and validate observational models that interrelate remotely sensed energy fluxes to geophysical variables of land and water surfaces. Coincident sets of remote sensing observation of visible and microwave radiations and geophysical data are assembled and subdivided

  14. MLS/Aura Level 2 Diagnostics, Geophysical Parameter Grid V004

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2DGG is the EOS Aura Microwave Limb Sounder (MLS) product containing geophysical diagnostic quantities pertaining directly to the standard geophysical data...

  15. Geophysical Exploration Technologies for the Deep Lithosphere Research: An Education Materials for High School Students

    Science.gov (United States)

    Xu, H.; Xu, C.; Luo, S.; Chen, H.; Qin, R.

    2012-12-01

    The science of Geophysics applies the principles of physics to study of the earth. Geophysical exploration technologies include the earthquake seismology, the seismic reflection and refraction methods, the gravity method, the magnetic method and the magnetotelluric method, which are used to measure the interior material distribution, their structure and the tectonics in the lithosphere of the earth. Part of the research project in SinoProbe-02-06 is to develop suitable education materials for carton movies targeting the high school students and public. The carton movies include five parts. The first part includes the structures of the earth's interior and variation in their physical properties that include density, p-wave, s-wave and so on, which are the fundamentals of the geophysical exploration technologies. The second part includes the seismology that uses the propagation of elastic waves through the earth to study the structure and the material distribution of the earth interior. It can be divided into earthquake seismology and artifice seismics commonly using reflection and refraction. The third part includes the magnetic method. Earth's magnetic field (also known as the geomagnetic field)extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun. The aim of magnetic survey is to investigate subsurface geology on the basis of anomalies in the Earth's magnetic field resulting from the magnetic properties of the underlying rocks. The magnetic method in the lithosphere attempts to use magnetic disturbance to analyse the regional geological structure and the magnetic boundaries of the crust. The fourth part includes the gravity method. A gravity anomaly results from the inhomogeneous distribution of density of the Earth. Usually gravity anomalies contain superposed anomalies from several sources. The long wave length anomalies due to deep density contrasts are called regional anomalies. They are

  16. Investigations of radial electric field and global circulation layer in limiter tokamaks

    International Nuclear Information System (INIS)

    Zagorski, R.; Gerhauser, H.; Lehnen, M.; Loarer, T.

    2002-01-01

    An updated version of the 2D multifluid code TECXY is used to study the radial electric field structure and the appearance of a global circulation layer (GCL) inside the separatrix of the limiter tokamaks TEXTOR-94 and Tore-Supra-CIEL. The dependence of the driving forces on device geometry, limiter position, magnetic field orientation, impurity content and other parameters is investigated. The centrifugal force in the vicinity of the limiter head always determines the direction of the poloidal velocity in the GCL. There is good agreement with experimentally measured profiles of the poloidal velocity at the TEXTOR low field side. (orig.)

  17. Joint inversion of geophysical data for site characterization and restoration monitoring. FY97 annual progress report for EMSP

    International Nuclear Information System (INIS)

    Berge, P.A.; Berryman, J.G.; Bonner, B.P.; Roberts, J.J.; Wildenschild

    1997-01-01

    'The purpose of this project is to develop a computer code for joint in-version of seismic and electrical data, to improve underground imaging for site characterization and remediation monitoring. The computer code developed in this project will invert geophysical data to obtain direct estimates of porosity and saturation underground, rather than inverting for seismic velocity and electrical resistivity or other geophysical properties. This is intended to be a significant improvement in the state-of-the-art of under-ground imaging, since interpretation of data collected at a contaminated site would become much less subjective. The schedule of this project is as follows: In the first year, investigators perform laboratory measurements of elastic and electrical properties of sand-clay mixtures containing various fluids. Investigators also develop methods of relating measurable geophysical properties to porosity and saturation by using rock physics theories, geostatistical, and empirical techniques together with available laboratory measurements. In the second year, investigators finish any necessary laboratory measurements and apply the methods developed in the first year to invert available borehole log data to predict measured properties of cores and sediments from a borehole. Investigators refine the inversion code in the third year and carry out a field experiment to collect seismic and electrical data. Investigators then use the inversion code to invert the field data to produce estimates of porosity and saturation in the field area where the data were collected. This report describes progress made in the first year of this three-year project.'

  18. Imaging normal faults in alluvial fans using geophysical techniques: Field example from the coast of Gulf of Aqaba, Saudi Arabia

    KAUST Repository

    Hanafy, Sherif M.; Jonsson, Sigurjon; Klinger, Yann

    2014-01-01

    In this work we use geophysical methods to locate and characterize active faults in alluvial sediments. Since only subtle material and velocity contrasts are expected across the faults, we used seismic refraction tomography and 2D resistivity

  19. Improved extraction of hydrologic information from geophysical data through coupled hydrogeophysical inversion

    Energy Technology Data Exchange (ETDEWEB)

    Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.

    2009-11-01

    There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.

  20. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.

  1. 3D modelling of the electromagnetic response of geophysical targets using the FDTD method

    Energy Technology Data Exchange (ETDEWEB)

    Debroux, P.S. [Univ. of Arizona, Tucson, AZ (United States). Mining and Geological Engineering Dept.

    1996-05-01

    A publicly available and maintained electromagnetic finite-difference time domain (FDTD) code has been applied to the forward modelling of the response of 1D, 2D and 3D geophysical targets to a vertical magnetic dipole excitation. The FDTD method is used to analyze target responses in the 1 MHz to 100 MHz range, where either conduction or displacement currents may have the controlling role. The response of the geophysical target to the excitation is presented as changes in the magnetic field ellipticity. The results of the FDTD code compare favorably with previously published integral equation solutions of the response of 1D targets, and FDTD models calculated with different finite-difference cell sizes are compared to find the effect of model discretization on the solution. The discretization errors, calculated as absolute error in ellipticity, are presented for the different ground geometry models considered, and are, for the most part, below 10% of the integral equation solutions. Finally, the FDTD code is used to calculate the magnetic ellipticity response of a 2D survey and a 3D sounding of complicated geophysical targets. The response of these 2D and 3D targets are too complicated to be verified with integral equation solutions, but show the proper low- and high-frequency responses.

  2. Geophysical study of the Clear Lake region, California

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, R.H.

    1975-01-01

    Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

  3. Geophysical methods in protected environments. Electrical resistivity tomography

    International Nuclear Information System (INIS)

    Rubio Sánchez-Aguililla, F.M.; Ramiro-Camacho, A.; Ibarra Torre, P.

    2017-01-01

    There is a strong interest in protecting the environment with the aim of its long term preservation. Sometimes the heritage value of these natural areas is related to their biodiversity as there are restricted ecosystems that depend directly on them. In other cases there a singular geological record might exist, essential for the understanding of certain processes affecting the planet, such as volcanic events or glacial periods. To achieve the protection and conservation of these areas it is necessary to generate knowledge about the distribution of geological materials and groundwater masses, to study the parameters that dominate the behaviour of these systems and then define those elements that require special protection or attention. In these protected environments, research methods with a minimal environmental impact should be used. Therefore, indirect methods, such as geophysical techniques, are reliable and complementary tools with a minimum environmental impact and are therefore useful for research these unique areas. The IGME has conducted several geophysical surveys in different protected environments in Spain with the aim of achieving a better understanding, and thus facilitate their preservation and exploitation in a sustainable manner. In this paper we present a review of some case studies where geophysical methods have been used. In all the cases electrical resistivity tomography has been the axis of the geophysical research and stands out due to its great effectiveness. The main objective of this communication is to divulgate and increase awareness of the important role that these geophysical methods can play in the sustainable study of these unique places. [es

  4. Design and Construction of Equipment for Applying the Geophysical Prospecting Method Electric Tomography

    Directory of Open Access Journals (Sweden)

    Fabio Héctor Giraldo Sánchez

    2013-06-01

    Full Text Available Outlines the procedure for the design and construction of electric equipment for geophysical prospecting through electrical tomography method. The team is of average power, ensuring exploration depths quite suitable for applications and commercial and geotechnical studies. The device is essentially a DC voltage source of 500 volts that is able to provide a maximum current of 1 amp. It also contains a small charge current source of electrical currents counteract naturally found in the subsoil and are manifested as a difference in the surface potential. A general explanation of the geophysical method in question, helps to understand the basic principles of operation of the equipment and functions to be fulfilled. After building the team, we conducted a field data acquisition, in area near the town of Gachancipa Cundinamarca. The data from this equipment are processed with specialized software. The images obtained with the software presents the distributions of subsurface resistivity can be associated with the possible structures and geology of the study area.

  5. Arsenic Groundwater Contamination in Bengal: a Coupled Geochemical and Geophysical Study

    Science.gov (United States)

    Charlet, L.; Ansari, A. A.; Dietrich, M.; Latscha, A.; LeBeux, A.; Chatterjee, D.; Mallik, S. B.

    2001-05-01

    Arsenic contamination in drinking water is a problem of great concern in Ganges delta region, and could be one of the largest natural calamity in the world. In the present study, a contamination plume located in the Lalpur area (Chakdaha Block, Nadia District, West Bengal, India) was studied. A coupled geochemical and geophysical approach was employed to understand the mechanism of arsenic mobilisation from the sediments to groundwater, as a first step towards a global explanation of the phenomenon for other contaminated areas in the Ganges delta. The groundwater As concentration, in the 10 km x 10 km studied area, ranges from 10 to 500 ppb. In situ chemical speciation of arsenic was carried out and various geochemical parameters were measured in representative contaminated wells to interpret the mobilization mechanism in terms of redox kinetics. Through geophysical investigations, subsurface lithology, sediment depositional and geomorphological characteristics were determined and correlated with the arsenic contamination processes. From a geomorphological viewpoint, the contaminated area is located in an abandoned paleochannel of the Hooghly river, interpreted as the active site of deposition of fine sediments which were preserved as clay pockets at certain depths. These clay pockets are rich in organic matter, which may be the driving force for redox potential change and thus, may have driven the mobilisation of arsenic in groundwater. The clay pockets rich in organic matter presumably represent the major reservoir where arsenic is sitting and getting released due to redox mechanism. They are sampled at present. A piezometric depression cone characterized by a radial groundwater flow is located underneath the highly populated Lalpur area. The arsenic plume appears to migrate from the Hooghly river towards the cone of depression following the water flowpath, and this shall be verified in forthcoming field campaigns. As (III) constitutes 42 % of the total As

  6. Development of web-GIS system for analysis of georeferenced geophysical data

    Science.gov (United States)

    Okladnikov, I.; Gordov, E. P.; Titov, A. G.; Bogomolov, V. Y.; Genina, E.; Martynova, Y.; Shulgina, T. M.

    2012-12-01

    Reanalysis, ECMWF ERA-40 Reanalysis, ECMWF ERA Interim Reanalysis, MRI/JMA APHRODITE's Water Resources Project Reanalysis, DWD Global Precipitation Climatology Centre's data, GMAO Modern Era-Retrospective analysis for Research and Applications, meteorological observational data for the territory of the former USSR for the 20th century, results of modeling by global and regional climatological models, and others. The system is already involved into a scientific research process. Particularly, recently the system was successfully used for analysis of Siberia climate changes and its impact in the region. The Web-GIS information-computational system for geophysical data analysis provides specialists involved into multidisciplinary research projects with reliable and practical instruments for complex analysis of climate and ecosystems changes on global and regional scales. Using it even unskilled user without specific knowledge can perform computational processing and visualization of large meteorological, climatological and satellite monitoring datasets through unified web-interface in a common graphical web-browser. This work is partially supported by the Ministry of education and science of the Russian Federation (contract #07.514.114044), projects IV.31.1.5, IV.31.2.7, RFBR grants #10-07-00547a, #11-05-01190a, and integrated project SB RAS #131.

  7. East Chestnut Ridge hydrogeologic characterization: A geophysical study of two karst features

    International Nuclear Information System (INIS)

    1991-01-01

    Permitting and site selection activities for the proposed East Chestnut Ridge landfill, located on the Oak Ridge Reservation, have required additional hydrogeologic studies of two karst features. Geophysical testing methods were utilized for investigating these karst features. The objectives of the geophysical testing was to determine the feasibility of geophysical techniques for locating subsurface karst features and to determine if subsurface anomalies exist at the proposed landfill site. Two karst features, one lacking surface expression (sinkhole) but with a known solution cavity at depth (from previous hydrologic studies), and the other with surface expression were tested with surface geophysical methods. Four geophysical profiles, two crossing and centered over each karst feature were collected using both gravimetric and electrical resistivity techniques

  8. Advances in Airborne and Ground Geophysical Methods for Uranium Exploration

    International Nuclear Information System (INIS)

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. According to current estimates, after 2050 available resources and cumulative uranium demand are expected to be balanced. Recent annual uranium production constitutes 65-75% of annual nuclear energy uranium requirements worldwide. With typical timeframes of between 15 and 40 years from the commencement of uranium exploration activities until uranium production, together with increasingly favourable uranium prices, many countries have seen a rise in uranium exploration activities since 2005. This experience and assessment of global energy needs support continued uranium exploration

  9. South-Tibetan partially molten batholiths: geophysical characterization and petrological assessment of their origin

    Science.gov (United States)

    Hetényi, G.; Pistone, M.; Nabelek, P. I.; Baumgartner, L. P.

    2017-12-01

    Zones of partial melt in the middle crust of Lhasa Block, Southern Tibet, have been geophysically observed as seismically reflective "bright spots" in the past 20 years. These batholiths bear important relevance for geodynamics as they serve as the principal observation at depth supporting channel-flow models in the Himalaya-Tibet orogen. Here we assess the spatial abundance of and partial melt volume fraction within these crustal batholiths, and establish lower and upper estimate bounds using a joint geophysical-petrological approach.Geophysical imaging constrains the abundance of partial melt zones to 5.6 km3 per surface-km2 on average (minimum: 3.1 km3/km2, maximum: 7.6 km3/km2 over the mapped area). Physical properties detected by field geophysics and interpreted by laboratory measurements constrain the amount of partial melt to be between 5 and 26 percent.We evaluate the compatibility of these estimates with petrological modeling based on geotherms, crustal bulk rock compositions and water contents consistent with the Lhasa Block. These simulations determine: (a) the physico-chemical conditions of melt generation at the base of the Tibetan crust and its transport and emplacement in the middle crust; (b) the melt percentage produced at the source, transported and emplaced to form the observed "bright spots". Two main mechanisms are considered: (1) melting induced by fluids produced during mineral dehydration reactions in the underthrusting Indian lower crust; (2) dehydration-melting reactions caused by heating within the Tibetan crust. We find that both mechanisms demonstrate first-order match in explaining the formation of the partially molten "bright spots". Thermal modelling shows that the Lhasa Block batholiths have only small amounts of melt and only for geologically short times (features of the geodynamic evolution. Their transience excludes both long-distance and long-lasting channel flow transport in Tibet.

  10. How new developments in the use of geophysical data have changed the exploration landscape

    International Nuclear Information System (INIS)

    Weir, R.M.

    1999-01-01

    The use of remote sensing and geophysical data by the petroleum and natural gas industry to reduce the risk related to exploration was discussed. Seismic data is used to map the subsurface of the earth. The types of geophysical data currently available include seismic reflection data, magnetic surveys, resistivity/IP surveys, gravity, ground penetrating radar, magnetotelluric and satellite imaging. This paper focused mainly on seismic reflection data because it is more commonly available than all other types of data combined. Seismic data consists of three components - field tapes, the survey data, and the observer notes, which are used by the geophysicist for interpretation. The four general categories of seismic data are: (1) two dimensional, (2) swath data, (3) three dimensional, and (4) vertical seismic profile. This paper reviewed the use of well log data, data storage, pitfalls in agreements, and present and future technology developments. 6 figs

  11. Geophysical survey of two rural sites in Mallorca (Balearic Islands, Spain): Unveiling Roman villae

    Science.gov (United States)

    Mas Florit, Catalina; Cau Ontiveros, Miguel Ángel; Goossens, Lise; Meyer, Cornelius; Sala, Roger; Ortiz, Helena

    2018-03-01

    Two rural sites on the island of Mallorca (Balearic Islands, Spain) have been investigated with geophysical methods. A previous archaeological field survey provided surface ceramics that allowed for a first classification of the sites as possible Roman rural settlements, possibly villae. The objective of the investigation was to work towards the identification of architectural remains to better understand the true nature of the sites. Using the 7-probe fluxgate gradiometer array LEA MAX, magnetic measurements were executed on a large area on each site. GPR measurements were subsequently carried out to examine selected areas of interest in detail by means of the IDS GPR system based on the Fast-Wave module. The investigated areas demonstrated excellent surface conditions with a negligible number of sources of disturbance, permitting a detailed interpretation of the geophysical data. The results helped to reveal the presence of architectural remains beneath the soil at both sites.

  12. Overview of Effective Geophysical Methods Used in the Study of ...

    African Journals Online (AJOL)

    Abstract. The Application of various Geophysical Techniques for the assessment of the extent of ... ineffective Geophysical Method may not give true picture of the overall level of pollution in the .... stations shut down or maintenance which halt ...

  13. The teaching of geophysics in Latin America: An updated assessment

    Science.gov (United States)

    Valencio, Daniel A.; Schneider, Otto

    The situation of geophysics in developing countries has been the subject of discussions and analysis by diverse international organizations. It was also discussed in some articles in Eos [e.g., Lomnitz, 1982; Urrutia Fucugauchi, 1982; Bolt, 1982]. We have been requested to contribute a current evaluation of the problem, with particular reference to geophysical education in Latin America.In the following report on specialized training of geophysicists in Latin American countries, we consider the “exact earth sciences” in the broader sense, i.e., the mathematical and physical (and, to a certain extent, chemical) aspects of the planet earth as a whole, including its fluid portions, as opposed to the more restricted concept of just solid earth geophysics. In other words, our inquiry follows the scope of both AGU and the International Union of Geodesy and Geophysics (IUGG), so geodesy, although not explicitly covered, will still be mentioned occasionally. We will also consider the applied branches, especially exploration geophysics, since these areas furnish powerful motivation for fostering our sciences, both in the governmental circles of developing countries and among the young people looking for a promising professional future.

  14. Relationships between the Birkeland currents, ionospheric currents, and electric fields

    International Nuclear Information System (INIS)

    Bleuler, E.; Li, C.H.; Nisbet, J.S.

    1982-01-01

    Calculations are made of the currents and electric fields in the ionosphere by using a global model of the electron densities including conjugate coupling along field lines. Incoherent scatter and rocket measurements of high-latitude electron densities have been used to derive realistic variations of the polar conductivities as a function of magnetic activity. The Birkeland currents have been specified in terms of three indices, the total current into and out of the hemisphere, the ratio of the magnitudes of the currents in the AM and PM sectors, R/sub ap/ , and R 12 , the ratio of the magnitudes of the currents in region 1 and 2. The relationship between these parameters of the Birkeland current systems and the auroral electrojet indices AE, AL, and AU is examined as well as the polar cap potential and the electric field at lower latitudes. The cusp currents have been modeled in relation to the interplanetary magnetic field and calculations are given of their effect on electric field and current patterns. One aim of this study is to produce a mathematical model of the currents, electric fields and energy inputs produced by field aligned currents that is consistent with, and specifiable in terms of, measured geophysical indices

  15. Mobile geophysics for searching and exploration of Domanic hydrocarbon deposits

    Science.gov (United States)

    Borovsky, M. Ya; Uspensky, B. V.; Valeeva, S. E.; Borisov, A. S.

    2018-05-01

    There are noted features of shale hydrocarbons occurrence. It is shown the role of geophysical prospecting in the geological prospecting process for non-traditional sources of hydrocarbon. There are considered the possibilities of non-seismic methods for forecasting, prospecting, exploration and preparation of Domanikovian hydrocarbons accumulations for exploration. It is emphasized the need for geophysical studies of tectonic disturbances. Modern aerogeophysical instrumentation and methodological support allows to combine high-precision magneto-prospecting with gravimetric and gamma spectrometry. This combination of geophysical methods contributes to the diagnosis of active and latent faults.

  16. Geophysical Methods for Monitoring Temperature Changes in Shallow Low Enthalpy Geothermal Systems

    Directory of Open Access Journals (Sweden)

    Thomas Hermans

    2014-08-01

    Full Text Available Low enthalpy geothermal systems exploited with ground source heat pumps or groundwater heat pumps present many advantages within the context of sustainable energy use. Designing, monitoring and controlling such systems requires the measurement of spatially distributed temperature fields and the knowledge of the parameters governing groundwater flow (permeability and specific storage and heat transport (thermal conductivity and volumetric thermal capacity. Such data are often scarce or not available. In recent years, the ability of electrical resistivity tomography (ERT, self-potential method (SP and distributed temperature sensing (DTS to monitor spatially and temporally temperature changes in the subsurface has been investigated. We review the recent advances in using these three methods for this type of shallow applications. A special focus is made regarding the petrophysical relationships and on underlying assumptions generally needed for a quantitative interpretation of these geophysical data. We show that those geophysical methods are mature to be used within the context of temperature monitoring and that a combination of them may be the best choice regarding control and validation issues.

  17. Geophysical methods for evaluation of plutonic rocks

    International Nuclear Information System (INIS)

    Gibb, R.A.; Scott, J.S.

    1986-04-01

    Geophysical methods are systematically described according to the physical principle and operational mode of each method, the type of information produced, limitations of a technical and/or economic nature, and the applicability of the method to rock-mass evaluation at Research Areas of the Nuclear Fuel Waste Management Program. The geophysical methods fall into three categories: (1) airborne and other reconnaissance surveys, (2) detailed or surface (ground) surveys, and (3) borehole or subsurface surveys. The possible roles of each method in the site-screening and site-evaluation processes of disposal vault site selection are summarized

  18. Geophysical experiments at Mariano Lake uranium orebody

    International Nuclear Information System (INIS)

    Thompson, D.T.

    1980-01-01

    Several geophysical experiments were performed over the Mariano Lake orebody before mining. Surface self-potential methods, surface-to-hole induced-polarization methods, and reflection-seismic methods were used. These geophysical techniques provided data which relate to the conceptual model of this orebody. Currents generated in the productive formation by oxidation-reduction reactions do not generate measurable potential anomalies at the surface. Surface-to-hole induced-polarization measurements apparently can detect an oxidation-reduction front in the vicinity of an exploration borehole. Reflection-seismic techniques can provide information concening the paleostructure of the area

  19. Clean enough for industry? An airborne geophysical case study

    International Nuclear Information System (INIS)

    Nyquist, J.E.; Beard, L.P.

    1996-01-01

    Data from two airborne geophysical surveys of the Department of Energy's Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ''sensitive hydrologic setting.'' We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization

  20. Geophysical mapping of complex glaciogenic large-scale structures

    DEFF Research Database (Denmark)

    Høyer, Anne-Sophie

    2013-01-01

    This thesis presents the main results of a four year PhD study concerning the use of geophysical data in geological mapping. The study is related to the Geocenter project, “KOMPLEKS”, which focuses on the mapping of complex, large-scale geological structures. The study area is approximately 100 km2...... data types and co-interpret them in order to improve our geological understanding. However, in order to perform this successfully, methodological considerations are necessary. For instance, a structure indicated by a reflection in the seismic data is not always apparent in the resistivity data...... information) can be collected. The geophysical data are used together with geological analyses from boreholes and pits to interpret the geological history of the hill-island. The geophysical data reveal that the glaciotectonic structures truncate at the surface. The directions of the structures were mapped...

  1. Integrating geological and geophysical data to improve probabilistic hazard forecasting of Arabian Shield volcanism

    Science.gov (United States)

    Runge, Melody G.; Bebbington, Mark S.; Cronin, Shane J.; Lindsay, Jan M.; Moufti, Mohammed R.

    2016-02-01

    During probabilistic volcanic hazard analysis of volcanic fields, a greater variety of spatial data on crustal features should help improve forecasts of future vent locations. Without further examination, however, geophysical estimations of crustal or other features may be non-informative. Here, we present a new, robust, non-parametric method to quantitatively determine the existence of any relationship between natural phenomena (e.g., volcanic eruptions) and a variety of geophysical data. This provides a new validation tool for incorporating a range of potentially hazard-diagnostic observable data into recurrence rate estimates and hazard analyses. Through this study it is shown that the location of Cenozoic volcanic fields across the Arabian Shield appear to be related to locations of major and minor faults, at higher elevations, and regions where gravity anomaly values were between - 125 mGal and 0 mGal. These findings support earlier hypotheses that the western shield uplift was related to Cenozoic volcanism. At the harrat (volcanic field)-scale, higher vent density regions are related to both elevation and gravity anomaly values. A by-product of this work is the collection of existing data on the volcanism across Saudi Arabia, with all vent locations provided herein, as well as updated maps for Harrats Kura, Khaybar, Ithnayn, Kishb, and Rahat. This work also highlights the potential dangers of assuming relationships between observed data and the occurrence of a natural phenomenon without quantitative assessment or proper consideration of the effects of data resolution.

  2. 3D geological to geophysical modelling and seismic wave propagation simulation: a case study from the Lalor Lake VMS (Volcanogenic Massive Sulphides) mining camp

    Science.gov (United States)

    Miah, Khalid; Bellefleur, Gilles

    2014-05-01

    The global demand for base metals, uranium and precious metals has been pushing mineral explorations at greater depth. Seismic techniques and surveys have become essential in finding and extracting mineral rich ore bodies, especially for deep VMS mining camps. Geophysical parameters collected from borehole logs and laboratory measurements of core samples provide preliminary information about the nature and type of subsurface lithologic units. Alteration halos formed during the hydrothermal alteration process contain ore bodies, which are of primary interests among geologists and mining industries. It is known that the alteration halos are easier to detect than the ore bodies itself. Many 3D geological models are merely projection of 2D surface geology based on outcrop inspections and geochemical analysis of a small number of core samples collected from the area. Since a large scale 3D multicomponent seismic survey can be prohibitively expensive, performance analysis of such geological models can be helpful in reducing exploration costs. In this abstract, we discussed challenges and constraints encountered in geophysical modelling of ore bodies and surrounding geologic structures from the available coarse 3D geological models of the Lalor Lake mining camp, located in northern Manitoba, Canada. Ore bodies in the Lalor lake VMS camp are rich in gold, zinc, lead and copper, and have an approximate weight of 27 Mt. For better understanding of physical parameters of these known ore bodies and potentially unknown ones at greater depth, we constructed a fine resolution 3D seismic model with dimensions: 2000 m (width), 2000 m (height), and 1500 m (vertical depth). Seismic properties (P-wave, S-wave velocities, and density) were assigned based on a previous rock properties study of the same mining camp. 3D finite-difference elastic wave propagation simulation was performed in the model using appropriate parameters. The generated synthetic 3D seismic data was then compared to

  3. Geophysical Exploration. New site exploration method

    Energy Technology Data Exchange (ETDEWEB)

    Imai, Tsuneo; Otomo, Hideo; Sakayama, Toshihiko

    1988-07-25

    Geophysical exploration is used for geologic survey to serve purposes in civil engineering. New methods are being developed inside and outside Japan and are used to serve various purposes. This paper discusses recently developed techniques based on the measurement of seismic waves and electric potential. It also explains seismic tomography, radar tomography, and resistivity tomography which are included in the category of geotomography. At present, effort is being made to apply geophysical exploration technology to problems which were considered to be unsuitable for conventional exploration techniques. When such effort proceeds successfully, it is necessary to develop technology for presenting results quickly and exploration equipment which can work in various conditions. (10 figs, 15 refs)

  4. Bringing the field into the classroom: an innovative methodology in global health teaching

    OpenAIRE

    Dr. M H Bryant, MBBS; J Wolff, MD

    2015-01-01

    Background: The practice of global health is difficult to teach from a US-based classroom. Students benefit from experiencing how theory becomes practice in the chaotic environments of under-resourced health programmes in developing countries. We could not take our students to the field during weekly course work, so we designed a course to bring the field to the students. We created innovative partnerships with locally based organisations that implement programmes in developing countries. Eac...

  5. Some case studies of geophysical exploration of archaeological sites in Yugoslavia

    Science.gov (United States)

    Komatina, Snezana; Timotijevic, Zoran

    1999-03-01

    One of the youngest branches of environmental geophysics application is the preservation of national heritage. Numerous digital techniques developed for exploration directed to urban planning can also be applied to investigations of historic buildings. In identifying near-surface layers containing objects of previous civilizations, various sophisticated geophysical methods are used. In the paper, application of geophysics in quantification of possible problems necessary to be carried out in order to get an archaeological map of some locality is discussed [Komatina, S., 1996]. Sophisticated geophysical methods in the preservation of national heritage. Proc. of Int. Conf. Architecture and Urbanism at the turn of the Millenium, Beograd, pp. 39-44. Finally, several examples of archaeogeophysical exploration at Divostin, Bedem and Kalenic monastery localities (Serbia, Yugoslavia) are presented.

  6. Entanglement growth after a global quench in free scalar field theory

    Energy Technology Data Exchange (ETDEWEB)

    Cotler, Jordan S. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Mezei, Márk [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 (United States); Mueller, Mark T. [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-11-28

    We compute the entanglement and Rényi entropy growth after a global quench in various dimensions in free scalar field theory. We study two types of quenches: a boundary state quench and a global mass quench. Both of these quenches are investigated for a strip geometry in 1, 2, and 3 spatial dimensions, and for a spherical geometry in 2 and 3 spatial dimensions. We compare the numerical results for massless free scalars in these geometries with the predictions of the analytical quasiparticle model based on EPR pairs, and find excellent agreement in the limit of large region sizes. At subleading order in the region size, we observe an anomalous logarithmic growth of entanglement coming from the zero mode of the scalar.

  7. Evidence for a critical Earth: the New Geophysics

    Science.gov (United States)

    Crampin, Stuart; Gao, Yuan

    2015-04-01

    Phenomena that are critical-systems verging on criticality with 'butterfly wings' sensitivity are common - the weather, climate change; stellar radiation; the New York Stock Exchange; population explosions; population collapses; the life cycle of fruit-flies; and many more. It must be expected that the Earth, an archetypal complex heterogeneous interactive phenomena, is a critical-system, hence there is a New Geophysics imposing fundamentally new properties on conventional sub-critical geophysics. We shall show that, despite shear waves and shear-wave splitting (SWS) being observationally neglected, azimuthally-varying stress-aligned SWS is nearly universally observed throughout the Earth's crust and uppermost ~400km of the mantle. Caused by stress-aligned fluid-saturated microcracks (intergranular films of hydrolysed melt in the mantle), the microcracks are so closely-spaced that they verge on failure in fracturing and earthquakes. Phenomena that verge on failure in this way are critical-systems which impose a range of fundamental-new properties on conventional sub-critical geophysics including: self-similarity; monitorability; calculability; predictability; controllability; universality; and butterfly wings' sensitivity. We shall show how these phenomena have been consistently observed along millions of source-to-receiver ray paths confirming the New Geophysics. New Geophysics helps to explain many otherwise inexplicable observations including a number of geophysical conundrums such as the Gutenberg-Richter relationship which is used to describe the behaviour of conventional classic geophysics despite being massively non-linear. The great advantage of the critical Earth is that, unlike other critical-systems, the progress towards criticality can be monitored at almost any point within the deep interior of the material, by analysing observations of seismic SWS. This gives an unrivalled understanding of the detailed behaviour of a particular critical-system. This

  8. Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Fiandaca, G.; Auken, Esben

    2013-01-01

    hydrogeophysical inversion approaches to inform a field-scale groundwater model with time domain electromagnetic (TDEM) and electrical resistivity tomography (ERT) data. In a sequential hydrogeophysical inversion (SHI) a groundwater model is calibrated with geophysical data by coupling groundwater model parameters...... with the inverted geophysical models. We subsequently compare the SHI with a joint hydrogeophysical inversion (JHI). In the JHI, a geophysical model is simultaneously inverted with a groundwater model by coupling the groundwater and geophysical parameters to explicitly account for an established petrophysical...

  9. Sequential and joint hydrogeophysical inversion using a field-scale groundwater model with ERT and TDEM data

    DEFF Research Database (Denmark)

    Herckenrath, Daan; Fiandaca, G.; Auken, Esben

    2013-01-01

    with the inverted geophysical models. We subsequently compare the SHI with a joint hydrogeophysical inversion (JHI). In the JHI, a geophysical model is simultaneously inverted with a groundwater model by coupling the groundwater and geophysical parameters to explicitly account for an established petrophysical...... hydrogeophysical inversion approaches to inform a field-scale groundwater model with time domain electromagnetic (TDEM) and electrical resistivity tomography (ERT) data. In a sequential hydrogeophysical inversion (SHI) a groundwater model is calibrated with geophysical data by coupling groundwater model parameters...

  10. Two-step web-mining approach to study geology/geophysics-related open-source software projects

    Science.gov (United States)

    Behrends, Knut; Conze, Ronald

    2013-04-01

    Geology/geophysics is a highly interdisciplinary science, overlapping with, for instance, physics, biology and chemistry. In today's software-intensive work environments, geoscientists often encounter new open-source software from scientific fields that are only remotely related to the own field of expertise. We show how web-mining techniques can help to carry out systematic discovery and evaluation of such software. In a first step, we downloaded ~500 abstracts (each consisting of ~1 kb UTF-8 text) from agu-fm12.abstractcentral.com. This web site hosts the abstracts of all publications presented at AGU Fall Meeting 2012, the world's largest annual geology/geophysics conference. All abstracts belonged to the category "Earth and Space Science Informatics", an interdisciplinary label cross-cutting many disciplines such as "deep biosphere", "atmospheric research", and "mineral physics". Each publication was represented by a highly structured record with ~20 short data attributes, the largest authorship-record being the unstructured "abstract" field. We processed texts of the abstracts with the statistics software "R" to calculate a corpus and a term-document matrix. Using R package "tm", we applied text-mining techniques to filter data and develop hypotheses about software-development activities happening in various geology/geophysics fields. Analyzing the term-document matrix with basic techniques (e.g., word frequencies, co-occurences, weighting) as well as more complex methods (clustering, classification) several key pieces of information were extracted. For example, text-mining can be used to identify scientists who are also developers of open-source scientific software, and the names of their programming projects and codes can also be identified. In a second step, based on the intermediate results found by processing the conference-abstracts, any new hypotheses can be tested in another webmining subproject: by merging the dataset with open data from github

  11. Helicopter-borne magnetic, electromagnetic and radiometric geophysical survey in Kviteseid area, Lenvik, Troms

    International Nuclear Information System (INIS)

    Baranwal, Vikas C.; Rodionov, Alexei; Ofstad, Frode

    2012-01-01

    In cooperation with the geologist for Buskerud, Telemark and Vestfold, the NGU conducted an airborne geophysical survey in Kviteseid area in May 2012. This report describes and documents the acquisition, processing and visualization of recorded datasets. The geophysical survey results reported herein are 3514 line km. The optically pumped cesium magnetometer and 1024 channels RSX-5 spectrometer was used for data acquisition. The survey was flown with 100 m line spacing, line direction of 130 degrees - 210 degrees and average speed of 98 km/h. A smaller area was also flown at 100 m line spacing 50 m away from larger flight lines so that smaller area could be covered with 50 m line spacing. The average terrain clearance of the helicopter was 65 m. Collected data were processed in NGU using Geosoft Oasis Montaj software. Raw total magnetic field data were corrected for diurnal variation and also for International Geomagnetic Reference Field (IGRF). Finally, some along-line noises were removed using standard micro-leveling algorithm. Radiometric data were processed using standard procedures recommended by International Atomic Energy Association (IAEA). Final processed data were gridded with the cell size of 25 m and 12 m for 100 m and 50 m line spacing, respectively. They are presented as a shaded relief maps at the scale of 1:20 000 and 1:10 000, respectively.(Author)

  12. Geophysical Investigation of Upper Mantle Anomalies of the Australian-Antarctic Ridge

    Science.gov (United States)

    Park, S. H.; Choi, H.; Kim, S. S.; Lin, J.

    2017-12-01

    Australian-Antarctic Ridge (AAR) is situated between the Pacific-Antarctic Ridge (PAR) and Southeast Indian Ridge (SEIR), extending eastward from the Australian-Antarctic Discordance (AAD). Much of the AAR has been remained uncharted until 2011 because of its remoteness and harsh weather conditions. Since 2011, four multidisciplinary expeditions initiated by the Korea Polar Research Institute (KOPRI) have surveyed the little-explored eastern ends of the AAR and investigated the tectonics, geochemistry, and hydrothermal activity of this intermediate spreading system. Recent isotope studies using the new basalt samples from the AAR have led to the new hypothesis of the Southern Ocean mantle domain (SOM), which may have originated from the super-plume activity associated with the Gondwana break-up. In this study, we characterize the geophysics of the Southern Ocean mantle using the newly acquired shipboard bathymetry and available geophysical datasets. First, we computed residual mantle Bouguer gravity anomalies (RMBA), gravity-derived crustal thickness, and residual topography along the AAR in order to obtain a geological proxy for regional variations in magma supply. The results of these analyses revealed that the southern flank of the AAR is associated with shallower seafloor, more negative RMBA, thicker crust, and/or less dense mantle in comparison to the conjugate northern flank. Furthermore, this north-south asymmetry becomes more prominent toward the central ridge segments of the AAR. Interestingly, the along-axis depths of the entire AAR are significantly shallower than the neighboring ridge systems and the global ridges of intermediate spreading rates. Such shallow depths are also correlated with regional negative geoid anomalies. Furthermore, recent mantle tomography models consistently showed that the upper mantle (< 250 km) below the AAR has low S-wave velocities, suggesting that it may be hotter than the nearby ridges. Such regional-scale anomalies of the

  13. Towards a geophysical decision-support system for monitoring and managing unstable slopes

    Science.gov (United States)

    Chambers, J. E.; Meldrum, P.; Wilkinson, P. B.; Uhlemann, S.; Swift, R. T.; Inauen, C.; Gunn, D.; Kuras, O.; Whiteley, J.; Kendall, J. M.

    2017-12-01

    Conventional approaches for condition monitoring, such as walk over surveys, remote sensing or intrusive sampling, are often inadequate for predicting instabilities in natural and engineered slopes. Surface observations cannot detect the subsurface precursors to failure events; instead they can only identify failure once it has begun. On the other hand, intrusive investigations using boreholes only sample a very small volume of ground and hence small scale deterioration process in heterogeneous ground conditions can easily be missed. It is increasingly being recognised that geophysical techniques can complement conventional approaches by providing spatial subsurface information. Here we describe the development and testing of a new geophysical slope monitoring system. It is built around low-cost electrical resistivity tomography instrumentation, combined with integrated geotechnical logging capability, and coupled with data telemetry. An automated data processing and analysis workflow is being developed to streamline information delivery. The development of this approach has provided the basis of a decision-support tool for monitoring and managing unstable slopes. The hardware component of the system has been operational at a number of field sites associated with a range of natural and engineered slopes for up to two years. We report on the monitoring results from these sites, discuss the practicalities of installing and maintaining long-term geophysical monitoring infrastructure, and consider the requirements of a fully automated data processing and analysis workflow. We propose that the result of this development work is a practical decision-support tool that can provide near-real-time information relating to the internal condition of problematic slopes.

  14. Inverse problems of geophysics

    International Nuclear Information System (INIS)

    Yanovskaya, T.B.

    2003-07-01

    This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given

  15. Use of improved hydrologic testing and borehole geophysical logging methods for aquifer characterization

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Hall, S.H.; Vermeul, V.R.

    1996-01-01

    Depth-discrete aquifer information was obtained using recently developed adaptations and improvements to conventional characterization techniques. These improvements included running neutron porosity and bulk density geophysical logging tools through a cased hole, performing an enhanced point-dilution tracer test for monitoring tracer concentration as a function of time and depth, and using pressure derivatives for diagnostic and quantitative analysis of constant rate discharge test data. Data results from the use of these techniques were used to develop a conceptual model of a heterogeneous aquifer. Depth-discrete aquifer information was required to effectively design field-scale deployment and monitoring of an in situ bioremediation technology. The bioremediation study site is located on the US Department of Energy's Hanford site. The study is being conducted by the Pacific Northwest National Laboratory to demonstrate in situ bioremediation of carbon tetrachloride (CCl 4 ). Geophysical logging and point-dilution tracer test results provided the relative distribution of porosity and horizontal hydraulic conductivity, respectively, with depth and correlated well. Hydraulic pumping tests were conducted to estimate mean values for transmissivity and effective hydraulic conductivity. Tracer test and geophysical logging results indicated that ground water flow was predominant in the upper approximate 10 feet of the aquifer investigated. These results were used to delineate a more representative interval thickness for estimating effective hydraulic conductivity. Hydraulic conductivity, calculated using this representative interval, was estimated to be 73 ft/d, approximately three times higher than that calculated using the full length of the screened test interval

  16. Muon tomography of the Soufrière of Guadeloupe (Lesser Antilles): Comparison with other geophysical imaging methods and assessment of volcanic risks

    Science.gov (United States)

    Gibert, D.; Lesparre, N.; Marteau, J.; Taisne, B.; Nicollin, F.; Coutant, O.

    2011-12-01

    Density tomography of rock with muons of cosmic origin measures the attenuation of the flux of particles crossing the object of interest to derive its opacity, i.e. the quantity of matter encountered by the particles along their trajectories. Recent progress in micro-electronics and particle detectors make field measurement possible and muon density tomography is gaining a growing interest (e.g. Tanaka et al., 2010; Gibert et al., 2010). We have constructed field telescopes based on the detectors of the OPERA experiment devoted to study neutrino oscillation (Lesparre et al., 2011a). Each telescope may be equipped with a variable number of detection matrices with 256 pixels. The spatial resolution is adaptable and is typically of about 20 meters (Lesparre et al., 2010). The telescopes are portable autonomous devices able to operate in harsh field conditions encountered on tropical volcanoes. The total power consumption is less than 40W, and an Ethernet link allows data downloading and remote control of the electronic devices and on-board computers. Larger high-resolution telescopes are under construction. The instruments have been successfully tested on the Etna and Soufrière of Guadeloupe volcanoes were a telescope is operating continuously since Summer 2010. Muon radiographies of the Soufrière lava dome reveal its very heterogeneous density structure produced by an intense hydrothermal circulation of acid fluids which alters its mechanical integrity leading to a high risk level of destabilisation. Small-size features are visible on the images and provide precious informations on the structure of the upper hydrothermal systems. Joined interpretation with other geophysical data available on the Soufrière - seismic tomography, electrical resistivity tomography, gravity data - is presented and discussed. Density muon tomography of the internal structure of volcanoes like the Soufrière brings important informations for the hazard evaluation an is particularly

  17. Geophysical subsurface imaging and interface identification.

    Energy Technology Data Exchange (ETDEWEB)

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in

  18. Common interests bind AGU and geophysical groups around the globe

    Science.gov (United States)

    McEntee, Christine

    2012-02-01

    In continuation of our work to strengthen alliances with key organizations in the Earth and space science community, AGU president Michael McPhaden, president-elect Carol Finn, and I held a series of meetings with leaders from other science societies during the 2011 Fall Meeting. Over the course of 2 days we met with leaders from the Geophysical Society of America, European Geosciences Union, Japan Geosciences Union, Ethiopian Geophysical Union, Asia Oceania Geosciences Society, Chinese Geophysical Society, and Asociación Latinoamericana de Geofísica Espacial. This gave us a valued opportunity to discuss the common interests and challenges we all face and to learn from each other's experience. The meetings allowed AGU to strengthen existing cooperative agreements and reach new levels of understanding between us and other societies. Additionally, we met with representatives from the Korean Ocean Research and Development Institute to discuss their intention to establish a geophysical union modeled after AGU.

  19. Geophysical and solar activity indices

    Science.gov (United States)

    Bossy, L.; Lemaire, J.

    1984-04-01

    A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.

  20. Field theories on supermanifolds: general formalism, local supersymmetry, and the limit of global supersymmetry

    International Nuclear Information System (INIS)

    Bruzzo, V.

    1986-01-01

    This paper reports briefly on recent investigations concerning the formulation of field theories on supermanifolds. The usual formulations are unsatisfactory from a mathematical viewpoint, hence, this report. A variational theory for fields on a supermanifold is described where the action is a map between Banach spaces. The relationship between the field theory on the supermanifold and a suitably constructed field theory on space-time is also discussed. On-shell local supersymmetry are examined and the limit of global (rigid) supersymmetry is considered. A specific example is given which shows that the limit reproduces the known results

  1. Global fate of POPs: Current and future research directions

    International Nuclear Information System (INIS)

    Lohmann, Rainer; Breivik, Knut; Dachs, Jordi; Muir, Derek

    2007-01-01

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks

  2. Global temperature stability by rule induction: An interdisciplinary bridge

    International Nuclear Information System (INIS)

    Gunn, J.D.; Grzymala-Busse, J.W.

    1994-01-01

    Rules incorporating influences on global temperature, an estimate of radiation balance, were induced from astronomical, geophysical, and anthropogenic variables. During periods of intermediate global temperatures (generally like the present century), the influences assume canceling roles; influences cancel the effects of extreme states potentially imposed by other influences because they are, in aggregate, most likely to be assuming opposite values. This imparts an overall stability to the global temperature. To achieve cold or hot global temperature, influences assume reinforcing roles. CO 2 is an active influence on global temperature. By virtue of its constancy in the atmosphere, it can be expected to sponsor frequent hot years in combination with the other influences as they cycle through their periods. If measures were implemented to maintain warm or cool global temperatures, it could retain the status quo of present global agricultural regions. They are probably more productive than hot world regions would be because of narrow storm tracks

  3. The Undergraduate Field-Research Experience in Global Health: Study Abroad, Service Learning, Professional Training or "None of the Above"?

    Science.gov (United States)

    Stewart, Kearsley A.

    2013-01-01

    Interest in short-term international placements in global health training for U.S.-based medical students is growing; the trend is mirrored for global health undergraduate students. Best practices in field-based global health training can increase success for medical students, but we lack a critical framework for the undergraduate global health…

  4. Global surface wind and flux fields from model assimilation of Seasat data

    Science.gov (United States)

    Atlas, R.; Busalacchi, A. J.; Kalnay, E.; Bloom, S.; Ghil, M.

    1986-01-01

    Procedures for dealiasing Seasat data and developing global surface wind and latent and sensible heat flux fields are discussed. Seasat data from September 20, 1978 was dealiased using the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system. The wind data obtained with the objective GLA forecast model are compared to the data subjectively dealiased by Peteherych et al. (1984) and Hoffman (1982, 1984). The GLA procedure is also verified using simulated Seasat data. The areas of high and low heat fluxes and cyclonic and anticyclonic wind stresses detected in the generated fields are analyzed and compared to climatological fields. It is observed that there is good correlation between the time-averaged analyses of wind stress obtained subjectively and objectively, and the monthly mean wind stress and latent fluxes agree with climatological fields and atmospheric and oceanic features.

  5. Geophysical constraints for terrane boundaries in southern Mongolia

    Science.gov (United States)

    Guy, Alexandra; Schulmann, Karel; Munschy, Marc; Miehe, Jean-Marc; Edel, Jean-Bernard; Lexa, Ondrej; Fairhead, Derek

    2014-05-01

    The Central Asian Orogenic Belt (CAOB) is a typical accretionary orogen divided into numerous lithostratigraphic terranes corresponding to magmatic arcs, back arcs, continental basement blocks, accretionary wedges and metamorphic blocks. These terranes should be in theory characterized by contrasting magnetic and gravity signatures thanks to their different petrophysical properties. To test this hypothesis, the stratigraphically defined terranes in southern Mongolia were compared with potential field data to constrain their boundaries and extent. The existence of terranes in southern Mongolia cannot be attested by the uniform geophysical fabrics due to the lack of systematic correspondence between the high/low amplitude and high/low frequency geophysical domains and major terranes. Processed magnetic and gravity grids show that both gravity and magnetic lineaments are E-W trending in the west and correlate with direction of some geological units. In the east, both magnetic and gravity lineaments are disrupted by NE-SW trending heterogeneities resulting in complete blurring of the geophysical pattern. Correlation of magnetic signal with geological map shows that the magnetic highs coincide with late Carboniferous-early Permian volcanic and plutonic belts. The matched-filtering shows good continuity of signal to the depth located along the boundaries of these high magnetic anomalies which may imply presence of deeply rooted tectono-magmatic zones. The axes of high density bodies in the western and central part of the studied CAOB are characterized by periodic alternations of NW-SE trending high frequency and high amplitude gravity anomalies corresponding to late Permian to Triassic cleavage fronts up to 20 km wide. The matched-filtering analysis shows that the largest deformation zones are deeply rooted down to 20 km depth. Such a gravity signal is explained by the verticalization of high density mantle and lower crustal rocks due to localized vertical shearing

  6. THE RELATIONSHIP BETWEEN THE SEPTEMBER 2017 MARS GLOBAL AURORA EVENT AND CRUSTAL MAGNETIC FIELDS

    Science.gov (United States)

    Nasr, Camella-Rosa; Schneider, Nick; Connour, Kyle; Jain, Sonal; Deighan, Justin; Jakosky, Bruce; MAVEN/IUVS Team

    2018-01-01

    In September 2017, the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft observed global aurora on Mars caused by a surprisingly strong solar energetic particle event. Widespread “diffuse aurora” have previously been detected on Mars through more limited observations (Schneider et al., Science 350, (2015); DOI: 10.1126/science.aad0313), but recent observations established complete coverage of the observable portion of Mars’ nightside. The aurora was global due to Mars’s lack of a global magnetic field, which allowed energetic electrons from the Sun to directly precipitate into the atmosphere. On September 11th, IUVS detected aurora more than 25 times brighter than any prior IUVS observation, with high SNR detections of aurora at the limb and against the disk of the planet. Fainter auroral emission was seen around the nightside limb over 13 orbits spanning nearly 3 days.On September 14th, during the declining phase of the event, faint linear features and patches were detected by the spacecraft, which were higher than the noise floor, with a similar spatial distribution to “discrete aurora” patches observed on Mars by the SPICAM instrument on the Mars Express spacecraft (Bertaux et al., Nature 435, doi :10.1038/nature03603). Discrete aurora occur near areas of the crust affected by the magnetism left over from Mars’ once-strong dipole field. Emission is limited to regions of the crustal magnetic field where the field lines are likely to be open to solar wind interactions. Those regions are concentrated in Mars’ southern hemisphere centered on 180 degrees east longitude.We studied the localized emissions on 14 September to determine whether there might be a connection between the observed diffuse aurora event and discrete auroral processes. First, we investigated the localized emissions to confirm that the observed signal was consistent with expected auroral spectra. Second, their locations were projected on a map of the crustal magnetic

  7. Global electric-field determination in the Earth's outer magnetosphere using charged particles. Progress Report No. 1, 1991

    International Nuclear Information System (INIS)

    Eastman, T.; Sheldon, R.; Hamilton, D.; Mcilwain, C.

    1992-03-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental (for a zeroeth order magnetohydrodynamic (MHD) equilibrium) measurement was made infrequently and with poor spatial coverage: the global electric field. This oversight is in part due to the difficulty of measuring a plasma electric field, and in part due to the difficulty of measuring a plasma electric field, and in part due to the neglect of theorists. However, there is renewed interest in the convection electric field, since it has been realized that it is vital for understanding many aspects of the magnetosphere: the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere-ionosphere coupling, ring current and radiation belt transport, substorm injections, acceleration mechanisms, etc. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models), and we are left with an overly simplistic theoretical field, the Volland-Stern electric field mode. Again, single point measurements of the plasma pause were used to infer the appropriate amplitudes of the model, parameterized by Kp (Maynard and Chen, JGR 1975). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 15 years. However, the data sets being taken today require a great deal more accuracy than can be provided by the Volland-Stern model. Nor has the variability of the electric field shielding been properly addressed, although effects of penetrating magnetospheric electric fields has been seen in mid- and low-latitude ionospheric data sets. The growing interests in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections

  8. The International Gravity Field Service (IGFS): Present Day Activities And Future Plans

    Science.gov (United States)

    Barzaghi, R.; Vergos, G. S.

    2016-12-01

    IGFS is a unified "umbrella" IAG service that coordinates the servicing of the geodetic and geophysical community with gravity field related data, software and information. The combined data of the IGFS entities will include global geopotential models, terrestrial, airborne, satellite and marine gravity observations, Earth tide data, GPS/levelling data, digital models of terrain and bathymetry, as well as ocean gravity field and geoid from satellite altimetry. The IGFS structure is based on the Gravity Services, the "operating arms" of IGFS. These Services related to IGFS are: BGI (Bureau Gravimetrique International), Toulouse, France ISG (International Service for the Geoid), Politecnico di Milano, Milano, Italy IGETS (International Geodynamics and Earth Tides Service), EOST, Strasbourg, France ICGEM (International Center for Global Earth Models), GFZ, Potsdam, Germany IDEMS (International Digital Elevation Model Service), ESRI, Redlands, CA, USA The Central Bureau, hosted at the Aristotle Thessaloniki University, is in charge for all the interactions among the services and the other IAG bodies, particularly GGOS. In this respect, connections with the GGOS Bureaus of Products and Standards and of Networks and Observations have been recently strengthened in order to align the Gravity services to the GGOS standards. IGFS is also strongly involved in the most relevant projects related to the gravity field such as the establishment of the new Global Absolute Gravity Reference System and of the International Height Reference System. These projects, along with the organization of Geoid Schools devoted to methods for gravity and geoid estimate, will play a central role in the IGFS future actions in the framework of GGOS.

  9. Geophysical logging for groundwater investigations in Southern Thailand

    Directory of Open Access Journals (Sweden)

    Phongpiyah Klinmanee

    2012-09-01

    Full Text Available In Thailand the Department of Groundwater Resources is drilling to find vital aquifers. Sometimes groundwater formations cannot be identified clearly during drilling; therefore, geophysical logging was applied after drilling and before casing.The tool used here is measuring nine parameters in one run, natural gamma ray, spontaneous potential, single point resistance, normal resistivity (AM 8’’, 16’’, 32’’, and 64’’, mud temperature and resistivity. Cutting was used to support the geophysical interpretations. In many cases the groundwater bearing zones could be clearly identified. The combination of andthe possibility choosing from nine parameters measured provided the necessary data base to identify groundwater bearingzones in different environments. It has been demonstrated that in different wells different tools are favorable than others.Based on the conclusions of this study geophysical logging in groundwater exploration is recommended as a normalstandard technique that should be applied in every new well drilled.

  10. Geophysical examinations of deposits and old sites

    International Nuclear Information System (INIS)

    1991-01-01

    Geomagnetic total field measurements by proton magnetometers with memories form the systematic exploration of suspected surfaces of old sites and old sites of an important, flexible and reasonably priced geophysical process. From experience, there are two important main applications. These are firstly the detailed work on location problems jointly with and supplementing multi-temporal evaluations of the air picture and secondly to locate iron in deposits. The particular advantage of geo-magnetics is that even in the most difficult measurement conditions, with the aid of the suitable analytical method evaluation, clear results and practically usable information can be obtained. In comparison with this, other high resolution methods of measurement, such as electromagnetic charting, for example (problem of integral anomaly pictures which cannot be evaluated) and geo-radar (loam covering, trickled water saturation) are limited to a considerably narrower measurement and evaluation spectrum in practical applications. (orig.) [de

  11. Geophysical Factor Resolving of Rainfall Mechanism for Super Typhoons by Using Multiple Spatiotemporal Components Analysis

    Science.gov (United States)

    Huang, Chien-Lin; Hsu, Nien-Sheng

    2016-04-01

    This study develops a novel methodology to resolve the geophysical cause of typhoon-induced rainfall considering diverse dynamic co-evolution at multiple spatiotemporal components. The multi-order hidden patterns of complex hydrological process in chaos are detected to understand the fundamental laws of rainfall mechanism. The discovered spatiotemporal features are utilized to develop a state-of-the-art descriptive statistical model for mechanism validation, modeling and further prediction during typhoons. The time series of hourly typhoon precipitation from different types of moving track, atmospheric field and landforms are respectively precede the signal analytical process to qualify each type of rainfall cause and to quantify the corresponding affected degree based on the measured geophysical atmospheric-hydrological variables. This study applies the developed methodology in Taiwan Island which is constituted by complex diverse landform formation. The identified driving-causes include: (1) cloud height to ground surface; (2) co-movement effect induced by typhoon wind field with monsoon; (3) stem capacity; (4) interaction between typhoon rain band and terrain; (5) structural intensity variance of typhoon; and (6) integrated cloudy density of rain band. Results show that: (1) for the central maximum wind speed exceeding 51 m/sec, Causes (1) and (3) are the primary ones to generate rainfall; (2) for the typhoon moving toward the direction of 155° to 175°, Cause (2) is the primary one; (3) for the direction of 90° to 155°, Cause (4) is the primary one; (4) for the typhoon passing through mountain chain which above 3500 m, Cause (5) is the primary one; and (5) for the moving speed lower than 18 km/hr, Cause (6) is the primary one. Besides, the multiple geophysical component-based precipitation modeling can achieve 81% of average accuracy and 0.732 of average correlation coefficient (CC) within average 46 hours of duration, that improve their predictability.

  12. Statistical mechanics of two-dimensional and geophysical flows

    International Nuclear Information System (INIS)

    Bouchet, Freddy; Venaille, Antoine

    2012-01-01

    The theoretical study of the self-organization of two-dimensional and geophysical turbulent flows is addressed based on statistical mechanics methods. This review is a self-contained presentation of classical and recent works on this subject; from the statistical mechanics basis of the theory up to applications to Jupiter’s troposphere and ocean vortices and jets. Emphasize has been placed on examples with available analytical treatment in order to favor better understanding of the physics and dynamics. After a brief presentation of the 2D Euler and quasi-geostrophic equations, the specificity of two-dimensional and geophysical turbulence is emphasized. The equilibrium microcanonical measure is built from the Liouville theorem. Important statistical mechanics concepts (large deviations and mean field approach) and thermodynamic concepts (ensemble inequivalence and negative heat capacity) are briefly explained and described. On this theoretical basis, we predict the output of the long time evolution of complex turbulent flows as statistical equilibria. This is applied to make quantitative models of two-dimensional turbulence, the Great Red Spot and other Jovian vortices, ocean jets like the Gulf-Stream, and ocean vortices. A detailed comparison between these statistical equilibria and real flow observations is provided. We also present recent results for non-equilibrium situations, for the studies of either the relaxation towards equilibrium or non-equilibrium steady states. In this last case, forces and dissipation are in a statistical balance; fluxes of conserved quantity characterize the system and microcanonical or other equilibrium measures no longer describe the system.

  13. Joint inversion of geophysical and hydrological data for improved subsurface characterization

    International Nuclear Information System (INIS)

    Kowalsky, Michael B.; Chen, Jinsong; Hubbard, Susan S.

    2006-01-01

    Understanding fluid distribution and movement in the subsurface is critical for a variety of subsurface applications, such as remediation of environmental contaminants, sequestration of nuclear waste and CO2, intrusion of saline water into fresh water aquifers, and the production of oil and gas. It is well recognized that characterizing the properties that control fluids in the subsurface with the accuracy and spatial coverage needed to parameterize flow and transport models is challenging using conventional borehole data alone. Integration of conventional borehole data with more spatially extensive geophysical data (obtained from the surface, between boreholes, and from surface to boreholes) shows promise for providing quantitative information about subsurface properties and processes. Typically, estimation of subsurface properties involves a two-step procedure in which geophysical data are first inverted and then integrated with direct measurements and petrophysical relationship information to estimate hydrological parameters. However, errors inherent to geophysical data acquisition and inversion approaches and errors associated with petrophysical relationships can decrease the value of geophysical data in the estimation procedure. In this paper, we illustrate using two examples how joint inversion approaches, or simultaneous inversion of geophysical and hydrological data, offer great potential for overcoming some of these limitations

  14. Corestriction principle for non-Abelian cohomology of reductive group schemes over Dedekind rings of integers of local and global fields

    International Nuclear Information System (INIS)

    Nguyen Quoc Thang

    2006-12-01

    We prove some new results on Corestriction principle for non-abelian cohomology of group schemes over the rings of integers of local and global fields. Some connections with Grothendieck - Serre's conjecture are indicated, and applications to the study of class groups of algebraic groups over global fields are given. (author)

  15. Cosmic global strings

    International Nuclear Information System (INIS)

    Sikivie, P.

    1991-01-01

    The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)

  16. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    Science.gov (United States)

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  17. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 500m SIN Grid V051

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra MODIS Vegetation Continuous Fields (VCF) product is a sub-pixel-level representation of surface vegetation cover estimates globally. Designed to...

  18. TTP AL921102: An integrated geophysics program for non-intrusive characterization of mixed-waste landfill sites

    International Nuclear Information System (INIS)

    Hasbrouck, J.C.

    1992-11-01

    Chem-Nuclear Geotech, Inc. (Geotech), operating contractor for the US Department of Energy Grand Junction Projects Office, is conducting the Integrated Geophysics Program for Non-Intrusive Characterization of Mixed-Waste Landfill Sites (Technical Task Plan [TTP] AL921102). The TTP is part of the Mixed-Waste Landfill Integrated Demonstration (MWLID). The objective of this task was to demonstrate that an integrated program of surface geophysics can be used to effectively and nonintrusively characterize n-mixed-waste landfill sites. To accomplish this objective, integrated field demonstrations were conducted over two previously identified areas of interest (designated Areas A and B) within the MWLID test site at the Chemical Waste Landfill (CWL), Technical Area 3, at the Sandia National Laboratories, Albuquerque, New Mexico (Figures 1 and 2). Area A was centered roughly around the Chromic Acid and Organics Pits in the southeast-central portion of the landfill and Area B was centered around the ''60's Pits'' area in the northeast-central portion of the landfill. Pit locations were known in Area A and suspected in Area B. This progress report describes the geophysical surveys conducted by Geotech and presents preliminary displays and analyses. Volume 2 of this report contains the raw data for all the surveys conducted by Geotech for this TTP

  19. Geomagnetic field, global pattern

    OpenAIRE

    Macmillan, Susan

    2011-01-01

    The geomagnetic field is generated in the fluid outer core region of the Earth by electrical currents flowing in the slowly moving molten iron. In addition to sources in the Earth’s core, the geomagnetic field observable on the Earth’s surface has sources in the crust and in the ionosphere and magnetosphere. The signal from the core dominates, accounting for over 95% of the field at the Earth’s surface. The geomagnetic field varies on a range of scales, both temporal and spatial; the...

  20. Geophysical interpretation using integral equations

    CERN Document Server

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  1. Detecting Buried Archaeological Remains by the Use of Geophysical Data Processing with 'Diffusion Maps' Methodology

    Science.gov (United States)

    Eppelbaum, Lev

    2015-04-01

    ) (e.g., Eppelbaum et al., 2010; Eppelbaum, 2011) of the targets under study for the concrete area (region) are developed. These PAM are composed on the basis of the known archaeological and geological data, results of previous archaeogeophysical investigations and 3D modeling of geophysical data. It should be underlined that the PAMs must differ (by depth, size, shape and physical properties of AT as well as peculiarities of the host archaeological-geological media). The PAMs must include also noise components of different orders (corresponding to the archaeogeophysical conditions of the area under study). The same models are computed and without the AT. Introducing complex PAMs (for example, situated in the vicinity of electric power lines, some objects of infrastructure, etc. (Eppelbaum et al., 2001)) will reflect some real class of AT occurring in such unfavorable for geophysical searching conditions. Anomalous effects from such complex PAMs will significantly disturb the geophysical anomalies from AT and impede the wavelet methodology employment. At the same time, the 'self-learning' procedure laid in this methodology will help further to recognize the AT even in the cases of unfavorable S/N ratio. Modern developments in the wavelet theory and data mining are utilized for the analysis of the integrated data. Wavelet approach is applied for derivation of enhanced (e.g., coherence portraits) and combined images of geophysical fields. The modern methodologies based on the matching pursuit with wavelet packet dictionaries enables to extract desired signals even from strongly noised data (Averbuch et al., 2014). Researchers usually met the problem of extraction of essential features from available data contaminated by a random noise and by a non-relevant background (Averbuch et al., 2014). If the essential structure of a signal consists of several sine waves then we may represent it via trigonometric basis (Fourier analysis). In this case one can compare the signal

  2. MFGA-IDT2 workshop: Astrophysical and geophysical fluid mechanics: the impact of data on turbulence theories

    Science.gov (United States)

    Schertzer, D.; Falgarone, E.

    1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics) of Centre National de la Recherche Scientifique (CNRS, (French) National Center for Scientific Research). This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica), September, 1993), as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994). In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics. It had an

  3. MFGA-IDT2 workshop: Astrophysical and geophysical fluid mechanics: the impact of data on turbulence theories

    Directory of Open Access Journals (Sweden)

    D. Schertzer

    1996-01-01

    Full Text Available 1 Facts about the Workshop This workshop was convened on November 13-15 1995 by E. Falgarone and D. Schertzer within the framework of the Groupe de Recherche Mecanique des Fluides Geophysiques et Astrophysiques (GdR MFGA, Research Group of Geophysical and Astrophysical Fluid Mechanics of Centre National de la Recherche Scientifique (CNRS, (French National Center for Scientific Research. This Research Group is chaired by A. Babiano and the meeting was held at Ecole Normale Superieure, Paris, by courtesy of its Director E. Guyon. More than sixty attendees participated to this workshop, they came from a large number of institutions and countries from Europe, Canada and USA. There were twenty-five oral presentations as well as a dozen posters. A copy of the corresponding book of abstracts can be requested to the conveners. The theme of this meeting is somewhat related to the series of Nonlinear Variability in Geophysics conferences (NVAG1, Montreal, Aug. 1986; NVAG2, Paris, June 1988; NVAG3, Cargese (Corsica, September, 1993, as well as seven consecutive annual sessions at EGS general assemblies and two consecutive spring AGU meeting sessions devoted to similar topics. One may note that NVAG3 was a joint American Geophysical Union Chapman and European Geophysical Society Richardson Memorial conference, the first topical conference jointly sponsored by the two organizations. The corresponding proceedings were published in a special NPG issue (Nonlinear Processes in Geophysics 1, 2/3, 1994. In comparison with these previous meetings, MFGA-IDT2 is at the same time specialized to fluid turbulence and its intermittency, and an extension to the fields of astrophysics. Let us add that Nonlinear Processes in Geophysics was readily chosen as the appropriate journal for publication of these proceedings since this journal was founded in order to develop interdisciplinary fundamental research and corresponding innovative nonlinear methodologies in Geophysics

  4. Archaeological Feedback as a Research Methodology in Near-Surface Geophysics

    Science.gov (United States)

    Maillol, J.; Ortega-Ramírez, J.; Berard, B.

    2005-05-01

    A unique characteristic of archaeological geophysics is to present the researchers in applied geophysics with the opportunity to verify their interpretation of geophysical data through the direct observation of often extremely detailed excavations. This is usually known as archaeological feedback. Archaeological materials have been slowly buried over periods ranging from several hundreds to several thousands of years, undergoing natural sedimentary and soil-forming processes. Once excavated, archaeological features therefore constitute more realistic test subjects than the targets artifically buried in common geophysical test sites. We are presenting the outcome of several such verification tests aimed at clarifying issues in geometry and spatial resolution of ground penetrating radar (GPR) images. On the site of a Roman villa in SE Portugal 500 Mhz GPR images are shown to depict very accurately the position and geometry of partially excavated remains. In the Maya city of Palenque, Mexico, 900 Mhz data allows the depth of tombs and natural cavities to be determined with cm accuracy. The predicted lateral extent of the cavities is more difficult to match with the reality due to the cluttering caused by high frequency. In the rainforest of Western Africa, 500 MHz GPR was used to prospect for stone tool sites. When very careful positioning and high density data sampling is achieved, stones can be accurately located and retrieved at depths exceeding 1 m with maximum positioning errors of 12cm horizontally and 2 cm vertically. In more difficult data collection conditions however, errors in positioning are shown to actually largely exceed the predictions based on quantitative theoretical resolution considerations. Geophysics has long been recognized as a powerful tool for prospecting and characterizing archaeological sites. Reciprocally, these results show that archaeology is an unparalleled test environment for the assesment and development of high resolution

  5. Object-Oriented Programming When Developing Software in Geology and Geophysics

    Science.gov (United States)

    Ahmadulin, R. K.; Bakanovskaya, L. N.

    2017-01-01

    The paper reviews the role of object-oriented programming when developing software in geology and geophysics. Main stages have been identified at which it is worthwhile to apply principles of object-oriented programming when developing software in geology and geophysics. The research was based on a number of problems solved in Geology and Petroleum Production Institute. Distinctive features of these problems are given and areas of application of the object-oriented approach are identified. Developing applications in the sphere of geology and geophysics has shown that the process of creating such products is simplified due to the use of object-oriented programming, firstly when designing structures for data storage and graphical user interfaces.

  6. Helicopter-borne magnetic, electromagnetic and radiometric geophysical survey at Vanna, Karlsoey

    International Nuclear Information System (INIS)

    Rodionov, Alexei; Ofstad, Frode

    2012-01-01

    NGU conducted an airborne geophysical survey in Vanna area in June 2011 as a part of MINN project. This report describes and documents the acquisition, processing and visualization of recorded datasets. The geophysical survey results reported herein are 1336 line km. The modified Geotech Ltd. Hummingbird frequency domain system supplemented by optically pumped cesium magnetometer and 1024 channels RSX-5 spectrometer was used for data acquisition. The survey was flown with 200 m line spacing, line direction of 27 degrees NW and average speed 106 km/h. The average terrain clearance of the bird was 59 m. Collected data were processed in NGU using Geosoft Oasis Montaj software. Raw total magnetic field data were corrected for diurnal variation and levelled using standard micro levelling algorithm. EM data were filtered and levelled using both -automated and manual levelling procedure. Apparent resistivity was calculated from in-phase and quadrature data for four frequencies separately using a homogeneous half space model. Apparent resistivity dataset was filtered and levelled. Radiometric data were processed using standard procedures recommended by International Atomic Energy Association. All data were gridded with the cell size of 50 m and presented as a shaded relief maps at the scale of 1:50 000. (Author)

  7. Helicopter-borne magnetic, electromagnetic and radiometric geophysical survey at Vanna, Karlsoey

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Alexei; Ofstad, Frode

    2012-07-01

    NGU conducted an airborne geophysical survey in Vanna area in June 2011 as a part of MINN project. This report describes and documents the acquisition, processing and visualization of recorded datasets. The geophysical survey results reported herein are 1336 line km. The modified Geotech Ltd. Hummingbird frequency domain system supplemented by optically pumped cesium magnetometer and 1024 channels RSX-5 spectrometer was used for data acquisition. The survey was flown with 200 m line spacing, line direction of 27 degrees NW and average speed 106 km/h. The average terrain clearance of the bird was 59 m. Collected data were processed in NGU using Geosoft Oasis Montaj software. Raw total magnetic field data were corrected for diurnal variation and levelled using standard micro levelling algorithm. EM data were filtered and levelled using both -automated and manual levelling procedure. Apparent resistivity was calculated from in-phase and quadrature data for four frequencies separately using a homogeneous half space model. Apparent resistivity dataset was filtered and levelled. Radiometric data were processed using standard procedures recommended by International Atomic Energy Association. All data were gridded with the cell size of 50 m and presented as a shaded relief maps at the scale of 1:50 000. (Author)

  8. Geological and geophysical investigations at Sierra del Medio massif - Argentine

    International Nuclear Information System (INIS)

    Perucca, J.C.; Llambias, E.; Puigdomenech, H.H.; Cebrelli, E.; Castro, C.E.; Grassi, I.; Salinas, L.I.

    1987-01-01

    Geological investigations were performed at Sierra del Medio (Chubut Province), a mountainous massif of about 25 km by 8 km of migmatic origin, which emerges from a depressed tectonic trench or graben called Pampa de Gastre. The most ancient rocks belong to biotitic and anphibolic schist that passed almost entirely to tonalitoid migmatites with a second process producing granitic rocks. Boreholes were drilled on the basis of conclusions from Landsat satellites imagery and aerial photographic sets, folowed by field work on geological, petrographic, geophysical and hydrogeological features at surface, structural interpretation supported by geostatistical computations. Two sets of boreholes were drilled to investigate subsurface rock behaviour al 300 m depth and 800 m depth respectively, beginning at peripheral places and ending at the central part or selected site. Basic purposes of boreholes were to define structural and petrographic features of the rock massif by a good comprehension of master joints and faulting distribution with its belts of alteration mylonitization or brecciation, mechanical properties of samples, chemical composition and varitions, petrographic facies and mineralogy. Boreholes provided data to investigate joints, faults and dikes as general discontinuities for hydraulic research like permeability or effective hydraulic conductivity, and their geostatistical modelling. Boreholes are also being prepared for geophysical logging from which logthermal ones have already been completed. (Author) [es

  9. Application of the geophysical and geochemical methods to the research for uranium

    International Nuclear Information System (INIS)

    Gangloff, A.M.; Collin, C.R.; Grimbert, A.; Sanselme, H.

    1958-01-01

    Since 1954, at the Commissariat a l'energie atomique, geophysics and geochemistry have been added to routine geological surveying and radiometric observations. Geophysical prospecting reveals the tectonic structures linked with French uranium deposits and gives an idea of favorable zones. Geochemistry adds to the geophysical indirect methods further details on the distribution of uranium traces in the soils. This method is direct and specific. Uranium assay in waters and alluvial deposits find its use in preliminary exploration. (author) [fr

  10. Joint inversion of geophysical data using petrophysical clustering and facies deformation wth the level set technique

    Science.gov (United States)

    Revil, A.

    2015-12-01

    Geological expertise and petrophysical relationships can be brought together to provide prior information while inverting multiple geophysical datasets. The merging of such information can result in more realistic solution in the distribution of the model parameters, reducing ipse facto the non-uniqueness of the inverse problem. We consider two level of heterogeneities: facies, described by facies boundaries and heteroegenities inside each facies determined by a correlogram. In this presentation, we pose the geophysical inverse problem in terms of Gaussian random fields with mean functions controlled by petrophysical relationships and covariance functions controlled by a prior geological cross-section, including the definition of spatial boundaries for the geological facies. The petrophysical relationship problem is formulated as a regression problem upon each facies. The inversion of the geophysical data is performed in a Bayesian framework. We demonstrate the usefulness of this strategy using a first synthetic case for which we perform a joint inversion of gravity and galvanometric resistivity data with the stations located at the ground surface. The joint inversion is used to recover the density and resistivity distributions of the subsurface. In a second step, we consider the possibility that the facies boundaries are deformable and their shapes are inverted as well. We use the level set approach to perform such deformation preserving prior topological properties of the facies throughout the inversion. With the help of prior facies petrophysical relationships and topological characteristic of each facies, we make posterior inference about multiple geophysical tomograms based on their corresponding geophysical data misfits. The method is applied to a second synthetic case showing that we can recover the heterogeneities inside the facies, the mean values for the petrophysical properties, and, to some extent, the facies boundaries using the 2D joint inversion of

  11. On the global distribution of hydrothermal vent fields: One decade later

    Science.gov (United States)

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (explored tend to be at high latitudes, such as the ultra-slow to slow spreading Arctic MORs (e.g., Kolbeinsey and Mohns Ridges), the ultra-slow American-Antarctic Ridge, and the intermediate spreading Pacific-Antarctic Ridge. Although a greater percentage of the ~11,000 km of BASCs has been surveyed for hydrothermal activity, the discoveries at BASCs in the past decade were mainly at segments with intermediate to fast spreading rates. Using the same equation for F_s vs. u_s, we predicted 71 vent fields remaining to

  12. Survey of geophysical techniques for site characterization in basalt, salt and tuff

    International Nuclear Information System (INIS)

    Jones, G.M.; Blackey, M.E.; Rice, J.E.; Murphy, V.J.; Levine, E.N.; Fisk, P.S.; Bromery, R.W.

    1987-07-01

    Geophysical techniques may help determine the nature and extent of faulting in the target areas, along with structural information that would be relevant to questions concerning the future integrity of a high-level-waste repository. Chapters focus on particular geophysical applications to four rock types - basalt, bedded salt, domal salt and tuff - characteristic of the sites originally proposed for site characterization. No one geophysical method can adequately characterize the geological structure beneath any site. The seismic reflection method, which is generally considered to be the most incisive of the geophysical techniques, has to date provided only marginal information on structure at the depth of the proposed repository at the Hanford, Washington, site, and no useful results at all at the Yucca Mountain, Nevada, site. This result is partially due to geological complexity beneath these sites, but may also be partially attributed to the use of inappropriate acquisition and processing parameters. To adequately characterize a site using geophysics, modifications will have to be made to standard techniques to emphasize structural details at the depths of interest. 137 refs., 43 figs., 4 tabs

  13. Critical zone architecture and processes: a geophysical perspective

    Science.gov (United States)

    Holbrook, W. S.

    2016-12-01

    The "critical zone (CZ)," Earth's near-surface layer that reaches from treetop to bedrock, sustains terrestrial life by storing water and producing nutrients. Despite is central importance, however, the CZ remains poorly understood, due in part to the complexity of interacting biogeochemical and physical processes that take place there, and in part due to the difficulty of measuring CZ properties and processes at depth. Major outstanding questions include: What is the architecture of the CZ? How does that architecture vary across scales and across gradients in climate, lithology, topography, biology and regional states of stress? What processes control the architecture of the CZ? At what depth does weathering initiate, and what controls the rates at which it proceeds? Based on recent geophysical campaigns at seven Critical Zone Observatory (CZO) sites and several other locations, a geophysical perspective on CZ architecture and processes is emerging. CZ architecture can be usefully divided into four layers, each of which has distinct geophysical properties: soil, saprolite, weathered bedrock and protolith. The distribution of those layers across landscapes varies depending on protolith composition and internal structure, topography, climate (P/T) and the regional state of stress. Combined observations from deep CZ drilling, geophysics and geochemistry demonstrate that chemical weathering initiates deep in the CZ, in concert with mechanical weathering (fracturing), as chemical weathering appears concentrated along fractures in borehole walls. At the Calhoun CZO, the plagioclase weathering front occurs at nearly 40 m depth, at the base of a 25-m-thick layer of weathered bedrock. The principal boundary in porosity, however, occurs at the saprolite/weathered bedrock boundary: porosity decreases over an order of magnitude, from 50% to 5% over an 8-m-thick zone at the base of saprolite. Porosity in weathered bedrock is between 2-5%. Future progress will depend on (1

  14. Inverse problems basics, theory and applications in geophysics

    CERN Document Server

    Richter, Mathias

    2016-01-01

    The overall goal of the book is to provide access to the regularized solution of inverse problems relevant in geophysics without requiring more mathematical knowledge than is taught in undergraduate math courses for scientists and engineers. From abstract analysis only the concept of functions as vectors is needed. Function spaces are introduced informally in the course of the text, when needed. Additionally, a more detailed, but still condensed introduction is given in Appendix B. A second goal is to elaborate the single steps to be taken when solving an inverse problem: discretization, regularization and practical solution of the regularized optimization problem. These steps are shown in detail for model problems from the fields of inverse gravimetry and seismic tomography. The intended audience is mathematicians, physicists and engineers having a good working knowledge of linear algebra and analysis at the upper undergraduate level.

  15. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    International Nuclear Information System (INIS)

    1995-02-01

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C

  16. Data and records management plan for the White Wing Scrap Yard (Waste Area Grouping 11) geophysical survey at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1994-04-01

    A geophysical survey is being conducted across the Waste Area Grouping (WAG) 11 site to locate buried nonindigenous materials. The survey team will collect data manually in field logbooks and on field forms using two types of instrumentation. This Data and Records Management Plan will describe the process necessary to record and track the geophysical data in a manner that will comply with the data quality objectives (DQOs) described in the WAG 11 Geophysical Survey Work Plan and with Environmental Restoration (ER) regulations concerning project records. This plan provides guidance on handling documentation within CDM Federal Programs Corporation (CDM Federal) and by the survey team in the field. An initial (Phase 1) survey will be performed in established areas (referred to as known target areas) using both 10-ft and 20-ft grid spacing. The results of the Phase 1 survey will be evaluated to determine the appropriate grid spacing to be used for the subsequent survey phase. The second phase (Phase 2) will then cover the remainder of the WAG 11 area using the grid spacing determined in Phase 1. The objective of the Phase 2 survey will be to estimate the horizontal and vertical extent of nonindigenous materials in the subsurface that are man-made, ferrous, highly resistive, and/or possess conductivity above background, based on the survey grid established in Phase 1

  17. Institute of Geophysics and Planetary Physics at Lawrence Livermore National Laboratory: 1986 annual report

    International Nuclear Information System (INIS)

    Max, C.E.

    1987-01-01

    The purpose of the Institute of Geophysics and Planetary Physics (IGPP) at LLNL is to enrich the opportunities of University of California campus researchers by making available to them some of the Laboratory's unique facilities and expertise, and to broaden the scientific horizon of LLNL researchers by encouraging collaborative or interdisciplinary work with other UC scientists. The IGPP continues to emphasize three fields of research - geoscience, astrophysics, and high-pressure physics - each administered by a corresponding IGPP Research Center. Each Research Center coordinates the mini-grant work in its field, and also works with the appropriate LLNL programs and departments, which frequently can provide supplementary funding and facilities for IGPP projects. 62 refs., 18 figs., 2 tabs

  18. Globalization of authorship in the marketing discipline: Does it help or hinder the field?

    NARCIS (Netherlands)

    S. Stremersch (Stefan); P.C. Verhoef (Peter)

    2005-01-01

    textabstractMarketing scholars have reflected upon the marketing discipline's internal evolution before. However, no prior study has assessed the globalization of authorship in our discipline, let alone assessed its consequences for the field. This paper addresses the following two questions: (1) Is

  19. Globalization of authorship in the marketing discipline : Does it help or hinder the field?

    NARCIS (Netherlands)

    Stremersch, S; Verhoef, PC

    2005-01-01

    Marketing scholars have reflected upon the marketing discipline's internal evolution before. However, no prior study has assessed the globalization of authorship in our discipline, let alone assessed its consequences for the field. This paper addresses the following two questions: (1) Is there

  20. The Leicester AATSR Global Analyser (LAGA) - Giving Young Students the Opportunity to Examine Space Observations of Global Climate-Related Processes

    Science.gov (United States)

    Llewellyn-Jones, David; Good, Simon; Corlett, Gary

    A pc-based analysis package has been developed, for the dual purposes of, firstly, providing ‘quick-look' capability to research workers inspecting long time-series of global satellite datasets of Sea-surface Temperature (SST); and, secondly, providing an introduction for students, either undergraduates, or advanced high-school students to the characteristics of commonly used analysis techniques for large geophysical data-sets from satellites. Students can also gain insight into the behaviour of some basic climate-related large-scale or global processes. The package gives students immediate access to up to 16 years of continuous global SST data, mainly from the Advanced Along-Track Scanning Radiometer, currently flying on ESA's Envisat satellite. The data are available and are presented in the form of monthly averages and spatial averaged to half-degree or one-sixth degree longitude-latitude grids. There are simple button-operated facilities for defining and calculating box-averages; producing time-series of such averages; defining and displaying transects and their evolution over time; and the examination anomalous behaviour by displaying the difference between observed values and values derived from climatological means. By using these facilities a student rapidly gains familiarity with such processes as annual variability, the El Nĩo effect, as well as major current systems n such as the Gulf Stream and other climatically important phenomena. In fact, the student is given immediate insights into the basic methods of examining geophysical data in a research context, without needing to acquire special analysis skills are go trough lengthy data retrieval and preparation procedures which are more generally required, as precursors to serious investigation, in the research laboratory. This software package, called the Leicester AAATSR Global Analyser (LAGA), is written in a well-known and widely used analysis language and the package can be run by using software

  1. Global patterns of materials use. A socioeconomic and geophysical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Steinberger, Julia K.; Krausmann, Fridolin; Eisenmenger, Nina [Institute of Social Ecology Vienna, IFF, University of Klagenfurt, Schottenfeldgasse 29, A-1070 Wien (Austria)

    2010-03-15

    Human use of materials is a major driver of global environmental change. The links between materials use and economic development are central to the challenge of decoupling of materials use and economic growth (dematerialization). This article presents a new global material flow dataset compiled for the year 2000, covering 175 countries, including both extraction and trade flows, and comprising four major material categories: biomass, construction minerals, fossil energy carriers and ores/industrial minerals. First, we quantify the variability and distributional inequality (Gini coefficients) in international material consumption. We then measure the influence of the drivers population, GDP, land area and climate. This analysis yields international income elasticities of material use. Finally, we examine the coupling between material flows, and between income and material productivity, measured in economic production per tonne material consumed. Material productivity is strongly coupled to income, and may thus not be suitable as an international indicator of environmental progress - a finding which we relate to the economic inelasticity of material consumption. The results demonstrate striking differences between the material groups. Biomass is the most equitably distributed resource, economically the most inelastic, and is not correlated to any of the mineral materials. The three mineral material groups are closely coupled to each other and economic activity, indicating that the challenge of dematerializing industrial economies may require fundamental structural transformation. Our analysis provides a first systematic investigation of international differences in material use and their drivers, and thus serves as the basis for more detailed future work. (author)

  2. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations...

  3. A local-to-global singularity theorem for quantum field theory on curved space-time

    International Nuclear Information System (INIS)

    Radzikowski, M.J.; York Univ.

    1996-01-01

    We prove that if a reference two-point distribution of positive type on a time orientable curved space-time (CST) satisfies a certain condition on its wave front set (the ''class P M,g condition'') and if any other two-point distribution (i) is of positive type, (ii) has the same antisymmetric part as the reference modulo smooth function and (iii) has the same local singularity structure, then it has the same global singularity structure. In the proof we use a smoothing, positivity-preserving pseudo-differential operator the support of whose symbol is restricted to a certain conic region which depends on the wave front set of the reference state. This local-to-global theorem, together with results published elsewhere, leads to a verification of a conjecture by Kay that for quasi-free states of the Klein-Gordon quantum field on a globally hyperbolic CST, the local Hadamard condition implies the global Hadamard condition. A counterexample to the local-to-global theorem on a strip in Minkowski space is given when the class P M,g condition is not assumed. (orig.)

  4. Institute of Geophysics, Planetary Physics, and Signatures

    Data.gov (United States)

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  5. Ground geophysical study of the Buckeye mine tailings, Boulder watershed, Montana

    Science.gov (United States)

    McDougal, Robert R.; Smith, Bruce D.

    2000-01-01

    The Buckeye mine site is located in the Boulder River watershed along Basin Creek, in northern Jefferson County, Montana. This project is part of the Boulder River watershed Abandoned Mine Lands Initiative, and is a collaborative effort between the U.S. Geological Survey and Bureau of Land Management in the U.S. Department of the Interior, and the U.S. Forest Service in the U.S. Department of Agriculture. The site includes a large flotation milltailing deposit, which extends to the stream and meadows below the mine. These tailings contain elevated levels of metals, such as silver, cadmium, copper, lead, and zinc. Metal-rich fluvial tailings containing these metals, are possible sources of ground and surface water contamination. Geophysical methods were used to characterize the sediments at the Buckeye mine site. Ground geophysical surveys, including electromagnetics, DC resistivity, and total field magnetic methods, were used to delineate anomalies that probably correlate with subsurface metal contamination. Subsurface conductivity was mapped using EM-31 and EM-34 terrain conductivity measuring systems. The conductivity maps represent variation of concentration of dissolved solids in the subsurface from a few meters, to an approximate depth of 30 meters. Conductive sulfides several centimeters thick were encountered in a shallow trench, dug in an area of very high conductivity, at a depth of approximately 1 to1.5 meters. Laboratory measurements of samples of the sulfide layers show the conductivity is on the order of 1000 millisiemens. DC resistivity soundings were used to quantify subsurface conductivity variations and to estimate the depth to bedrock. Total field magnetic measurements were used to identify magnetic metals in the subsurface. The EM surveys identified several areas of relatively high conductivity and detected a conductive plume extending to the southwest, toward the stream. This plume correlates well with the potentiometric surface and direction of

  6. The deflection angle of a gravitational source with a global monopole in the strong field limit

    International Nuclear Information System (INIS)

    Cheng Hongbo; Man Jingyun

    2011-01-01

    We investigate the gravitational lensing effect in the strong field background around the Schwarzschild black hole with extremely small mass and solid deficit angle subject to the global monopole by means of the strong field limit issue. We obtain the angular position and magnification of the relativistic images and show that they relate to the global monopole parameter η. We discuss that with the increase of the parameter η, the minimum impact parameter u m and angular separation s increase and the relative magnification r decreases. We also find that s grows extremely as the increasing parameter η becomes large enough. The deflection angle will become larger when the parameter η grows. The effect from the solid deficit angle is the dependence of angular position, angular separation, relative magnification and deflection angle on the parameter η, which may offer a way to characterize some possible distinct signatures of the Schwarzschild black hole with a solid deficit angle associated with the global monopole.

  7. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations obtained from...

  8. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Azwin, I. N., E-mail: nurazwinismail@yahoo.com; Rosli, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J. [Geophysics Section, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang (Malaysia); Mokhtar, S. [Centre for Global Archaeological Research Malaysia, 11800 USM, Penang (Malaysia)

    2015-03-30

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100 m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100 m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  9. Airborne Geophysical/Geological Mineral Inventory CIP Program

    National Research Council Canada - National Science Library

    1999-01-01

    The Airborne-Geophysical/Geological Mineral Inventory project is a special multi-year investment to expand the knowledge base of Alaska's mineral resources and catalyze private-sector mineral development...

  10. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  11. Exploring the oceans- The geophysical way

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.

    The evolution of the eastern continental margin of India (ECMI), the Bengal Fan and the Central Indian Basin (CIB) is a consequence of the breakup of India from the eastern Gondwanaland in Late Jurassic to Early Cretaceous. Recent marine geophysical...

  12. Global fate of POPs: Current and future research directions

    Energy Technology Data Exchange (ETDEWEB)

    Lohmann, Rainer [Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197 (United States)], E-mail: lohmann@gso.uri.edu; Breivik, Knut [Norwegian Institute for Air Research, PO Box 100, NO-2027 Kjeller (Norway); University of Oslo, Department of Chemistry, PO Box 1033, NO-0315 Oslo (Norway); Dachs, Jordi [Department of Environmental Chemistry, Institute of Chemical and Environmental Research (IIQAB-CSIC), Jordi Girona 18-26, Barcelona 08034 (Spain); Muir, Derek [Aquatic Ecosystem Protection Research Division, Environment Canada, 867 Lakeshore Road, Burlington, ON L7R4A6 (Canada)

    2007-11-15

    For legacy and emerging persistent organic pollutants (POPs), surprisingly little is still known in quantitative terms about their global sources and emissions. Atmospheric transport has been identified as the key global dispersal mechanism for most legacy POPs. In contrast, transport by ocean currents may prove to be the main transport route for many polar, emerging POPs. This is linked to the POPs' intrinsic physico-chemical properties, as exemplified by the different fate of hexachlorocyclohexanes in the Arctic. Similarly, our current understanding of POPs' global transport and fate remains sketchy. The importance of organic carbon and global temperature differences have been accepted as key drivers of POPs' global distribution. However, future research will need to understand the various biogeochemical and geophysical cycles under anthropogenic pressures to be able to understand and predict the global fate of POPs accurately. - Future studies into the global fate of POPs will need to pay more attention to the various biogeochemical and anthropogenic cycles to better understand emissions, transport and sinks.

  13. GeomarCD project; an educational CD-Rom about marine geophysics

    Science.gov (United States)

    Diaz, J.; Rubio, E.; Gómez, M.; Gallart, J.

    2009-04-01

    This project aims to introduce the main aspects of marine geophysics experiments to the high school students. We have chosen to present the information in the form an interactive game in which, taking care of the scientific objectives and the technological and logistic resources, the player must found the best strategy to make one of the 3 research projects proposed. Along the game, the player is introduced to the main aspects of the plate tectonics theory and the crustal structure as well as to the main methodologies available (seismics, potencial fields, cores). Rather than being based in theoretical aspects, largely covered by other outreach projects, this work focuses in how a realistic problem can be solved through a field experiment. The game takes place in the researcher's desk and in an oceanographic vessel as the BIO Hesperides and includes the choice of the research project, the design and development of the field work and the interpretation of the results. At the end, the player must complete a questionnaire to elaborate the final report. The correct choice of the appropriate methodologies and its interpretation is necessary to succeed. CD copies in Spanish are freely available upon request.

  14. Geophysical survey aimed at selecting the radioactive waste repository site (Czech republic

    Directory of Open Access Journals (Sweden)

    Dušan Dostál

    2007-01-01

    Full Text Available G IMPULS Praha has been executing a set of geophysical measurements for the Radioactive Waste Repository Authority of the Czech Republic from 2001 (the work continues to be carried out. The measurements are aimed at studying the behaviour of the rock massif, focusing on the Excavation Damaged or Disturbed Zone (EDZ and on selecting an appropriate area for the radioactive material repository site. The geophysical studies use a complex of methods as follows: Airborne geophysical measurement (regional studies, Seismic measurement (detailed studies, G.P.R. (detailed studies, Resistivity tomography (detailed studies, Geoelectric measurement and magnetic survey (stray earth currents. The paper informs about first results and conclusions. The airborne work was executed as a part of the complex study of „GEOBARIERA“ the group and the geophysical measurements of EDZ were executed in co-operation with the Czech Geological Survey.

  15. The Expanding Marketplace for Applied Geophysics

    Science.gov (United States)

    Carlson, N.; Sirles, P.

    2012-12-01

    While the image of geophysics for the proverbial "layman" often seems limited to volcanoes and earthquakes, and to the geoscientist this image enlarges to include oil or minerals exploration and whole earth studies, there has been a steady increase in the application of geophysics into the realm of "daily life", such as real estate deals, highway infrastructure, and flood protection. This expansion of applications can be attributed to the improved economics from advances in equipment and interpretation. Traditional geophysical methods that at one time often only fit within the budgets of oil, gas, and minerals exploration programs can now be economically applied to much smaller scale needs like contaminant mapping, landfill delineation, and levee investigations. A real-world, economic example of this expanding marketplace is our company, which began very small and was aimed almost exclusively at the minerals exploration market. Most of our growth has been in the last 10 years, when we have expanded to five offices and a staff with almost 40 geoscientist degrees (21 in geophysics); much of this growth has been in the non-oil, non-minerals arenas. While much of our work still includes minerals exploration, other projects this year include wind-farm foundation studies, cavity detection above underground nuclear tests, landfill studies, acid mine drainage problems, and leaks in evaporation ponds. A methodology example of this expanding market is the induced polarization (IP) survey, once primarily used for minerals exploration, particularly large porphyry copper deposits, but now efficient enough to also use in environmental studies. The IP method has been particularly useful in delineating and characterizing old, poorly documented landfills, and recent research suggests it may also be useful in monitoring the accelerated biodegradation processes used in some cases to rehabilitate the sites. Compared to temperature monitoring systems, IP may be more useful in providing

  16. Fifth national outdoor action conference on aquifer restoration, ground water monitoring, and geophysical methods

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book presents papers on technology in ground water sampling, monitoring, and remediation and geophysical techniques. The section on monitoring and remediation covers monitoring case studies, monitoring waste disposal sites, petroleum recovery, techniques in aquifer remediation, mathematical analysis of remedial techniques, vacuum extraction, bioremediation, and monitoring techniques. The section on sampling covers measurement variability, microbial sampling, vadose zone sampling, sampling with hydraulic probes, unusual sampling problems and equipment, and data management. A section on geophysics covers geophysics and site characterization, and geophysics and mining. The focus is on hazardous organic compounds. Individual articles are abstracted separately

  17. Tabletop Models for Electrical and Electromagnetic Geophysics.

    Science.gov (United States)

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  18. The Nirex Sellafield site investigation: the role of geophysical interpretation

    International Nuclear Information System (INIS)

    Muir Wood, R.; Woo, G.; MacMillan, G.

    1992-01-01

    This report reviews the methods by which geophysical data are interpreted, and used to characterize the 3-D geology of a site for potential storage of radioactive waste. The report focuses on the NIREX site investigation at Sellafield, for which geophysical observations provide a significant component of the structural geological understanding. In outlining the basic technical principles of seismic data processing and interpretation, and borehole logging, an attempt has been made to identify errors, uncertainties, and the implicit use of expert judgement. To enhance the reliability of a radiological probabilistic risk assessment, recommendations are proposed for independent use of the primary NIREX geophysical site investigation data in characterizing the site geology. These recommendations include quantitative procedures for undertaking an uncertainty audit using a combination of statistical analysis and expert judgement. (author)

  19. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    Science.gov (United States)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  20. Evaluation of some Geophysical and Physicochemical ...

    African Journals Online (AJOL)

    PROF HORSFALL

    2018-04-18

    Apr 18, 2018 ... spill point parallel to the pipeline right of way. A research work carried ... of soils has been known to affect soil physio-chemical properties, which in .... The results of the geophysical analysis from the study area are presented ...

  1. 36 CFR 1256.62 - Geological and geophysical information relating to wells.

    Science.gov (United States)

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical... MATERIALS General Restrictions § 1256.62 Geological and geophysical information relating to wells. (a) In accordance with 5 U.S.C. 552(b)(9), NARA may withhold information in records that relates to geological and...

  2. Towards combined global monthly gravity field solutions

    Science.gov (United States)

    Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean

    2014-05-01

    Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing

  3. Research on countermeasures to global environment change in the field of urban planning

    Energy Technology Data Exchange (ETDEWEB)

    Kawanaka, Takashi [Building Research Inst., Tsukuba-shi, Ibaraki (Japan)

    1993-12-31

    There are a lot of research themes in the field of urban planning and related fields as mitigation of global environment change. Main theme is reduction method of CO{sub 2} gas emission as a countermeasure against global warming. Some groups research on estimation of CO{sub 2} emission caused by construction activities both in building engineering and civil engineering and also on evaluation of countermeasures. They investigate reduction of CO{sub 2} emission by fossil fuel combustion and by building materials (cement, steel and so on) production process. But we cannot use data fitted to a spatial scale of urban planning. Many researches are focused on nation wide analysis. We, BRI, make a study of {open_quotes}Research on CO{sub 2} Emission in Urban Development and the Control Technologies{close_quotes} as will be seen later at 2. (2). There are two ways of research to reduce CO{sub 2} emission caused by daily activities to urban planning field. One is research on positive utilizing of natural environment in urban areas without depending to energy consuming artificial facilities. There is a research on mitigation of heat island phenomenon for instance. The other ways are research on improvement of energy consumption effect and on reusing of wasted energy In energy consuming type urban space for instance. There s a research on promoting District Heating and Cooling (DHC) and cogeneration.

  4. Simpevarp site investigation. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03

    International Nuclear Information System (INIS)

    Nilsson, Per; Gustafsson, Christer

    2003-04-01

    The objective of the surveys is to both receive information of the borehole itself, and from the rock mass around the borehole. Bore hole radar was used to investigate the nature and the structure of the rock mass located around the boreholes, and BIPS for geological surveying and fracture mapping and orientation. Geophysical logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. This field report describes the equipment used as well the measurement procedures. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and identified reflectors in each borehole are listed in tables. Geophysical logging data is presented in graphs as a function of depth

  5. Simpevarp site investigation. Geophysical, radar and BIPS logging in borehole KSH01A, HSH01, HSH02 and HSH03

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Per; Gustafsson, Christer [RAYCON, Malaa (Sweden)

    2003-04-01

    The objective of the surveys is to both receive information of the borehole itself, and from the rock mass around the borehole. Bore hole radar was used to investigate the nature and the structure of the rock mass located around the boreholes, and BIPS for geological surveying and fracture mapping and orientation. Geophysical logging was used to measure changes in physical properties in the borehole fluid and the bedrock surrounding the boreholes. This field report describes the equipment used as well the measurement procedures. For the BIPS survey, the result is presented as images. Radar data is presented in radargrams and identified reflectors in each borehole are listed in tables. Geophysical logging data is presented in graphs as a function of depth.

  6. Efficiency Evaluation of Handling of Geologic-Geophysical Information by Means of Computer Systems

    Science.gov (United States)

    Nuriyahmetova, S. M.; Demyanova, O. V.; Zabirova, L. M.; Gataullin, I. I.; Fathutdinova, O. A.; Kaptelinina, E. A.

    2018-05-01

    Development of oil and gas resources, considering difficult geological, geographical and economic conditions, requires considerable finance costs; therefore their careful reasons, application of the most perspective directions and modern technologies from the point of view of cost efficiency of planned activities are necessary. For ensuring high precision of regional and local forecasts and modeling of reservoirs of fields of hydrocarbonic raw materials, it is necessary to analyze huge arrays of the distributed information which is constantly changing spatial. The solution of this task requires application of modern remote methods of a research of the perspective oil-and-gas territories, complex use of materials remote, nondestructive the environment of geologic-geophysical and space methods of sounding of Earth and the most perfect technologies of their handling. In the article, the authors considered experience of handling of geologic-geophysical information by means of computer systems by the Russian and foreign companies. Conclusions that the multidimensional analysis of geologicgeophysical information space, effective planning and monitoring of exploration works requires broad use of geoinformation technologies as one of the most perspective directions in achievement of high profitability of an oil and gas industry are drawn.

  7. Coulombic faulting from the grain scale to the geophysical scale: lessons from ice

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, Jerome [Laboratoire de Glaciologie et Geophysique de l' Environnement, CNRS, 54 rue Moliere, BP 96, 38402 St Martin d' Heres Cedex (France); Schulson, Erland M, E-mail: weiss@lgge.obs.ujf-grenoble.f, E-mail: Erland.M.Schulson@Dartmouth.ED [Thayer School of Engineering, Dartmouth College, Hanover, NH, 03755 (United States)

    2009-11-07

    Coulombic faulting, a concept formulated more than two centuries ago, still remains pertinent in describing the brittle compressive failure of various materials, including rocks and ice. Many questions remain, however, about the physical processes underlying this macroscopic phenomenology. This paper reviews the progress made in these directions during the past few years through the study of ice and its mechanical behaviour in both the laboratory and the field. Fault triggering is associated with the formation of specific features called comb-cracks and involves frictional sliding at the micro(grain)-scale. Similar mechanisms are observed at geophysical scales within the sea ice cover. This scale-independent physics is expressed by the same Coulombic phenomenology from laboratory to geophysical scales, with a very similar internal friction coefficient ({mu} {approx} 0.8). On the other hand, the cohesion strongly decreases with increasing spatial scale, reflecting the role of stress concentrators on fault initiation. Strong similarities also exist between ice and other brittle materials such as rocks and minerals and between faulting of the sea ice cover and Earth's crust, arguing for the ubiquitous nature of the underlying physics.

  8. Geophysical and atmospheric evolution of habitable planets.

    Science.gov (United States)

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  9. Geophysical contribution for Folha Patos (PI, Brazil)

    International Nuclear Information System (INIS)

    Rodrigues, J.C.; Mota, A.C.; Metelo, M.J.; Vasconcelos, R.M. de

    1990-01-01

    As a part of PLGB (Brazilian Geologic reconnaissance program), executed in 1986-1989 period by Companhia de Pesquisa de Recursos Minerais - CPRM to the Departamento Nacional da Producao Mineral - DNPM, geophysical studies were carried out in the Patos Quadrangle (SB. 24-Y-C-V). Gravimetric, magnetometric and scintillometric methods were performed over selected profiles, and the interpretation of aerial gamma-spectrometric maps (total, potassium, uranium and thorium channels) were integrated with geologic data. Computer programs Magpoly and Gravpoly were utilized in modelling geophysical surface data. Results of theses studies were auxiliary to the geological mapping of that area, specially in localizing lithological contacts and differentiations, tectonic structures, and revealed the structural compartimentation among crustal segments with distinct metamorphic grades. (author)

  10. An assessment of global meteorological droughts based on HAPPI experiments

    Science.gov (United States)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie

    2017-04-01

    Droughts caused water shortages could lead to serious consequences on the socioeconomic and environmental well-being. In the context of changing climate, droughts monitoring, attributions and impact assessments have been performed using observations (e.g., Sun et al., 2012; Zhang et al., 2016) and climate model projections (e.g., Liu et al., 2016, 2017); with expectation that such scientific knowledge would feed into long-term adaptation and mitigation plans to tackle potentially unfavorable future drought impacts in a warming world. Inspired by the 2015 Paris Agreement, the HAPPI (Half a degree Additional warming, Projections, Prognosis and Impacts) experiments were set up to better inform international policymakers about the socioeconomic and environmental impacts under less severe global warming conditions. This study aims to understand the potential shift in meteorological droughts from the past into the future on a global scale. Based on the HAPPI data, we evaluate the change in drought related indices (i.e., PET/P, PDSI) from the past to the future scenarios (1.5 and 2 degrees Celsius warming). Here we present some early results (MIROC5 as demonstration) on identified hotspots and discuss the differences in severity of droughts between these warming worlds and associated consequences. References: Liu W, and Sun F, 2017. Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models, Journal of Hydrometeorology, doi: 10.1175/JHM-D-16-0204.1 Liu W, and Sun F, 2016. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research-Atmosphere 121, 8329-8349 Zhang J, Sun F, Xu J, Chen Y, Sang Y, -F, and Liu C, 2016. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophysical Research Letters 43, 206-213 Sun F, Roderick M, Farquhar G, 2012. Changes in the variability of global land precipitation

  11. Influence of megapolis on the physical field variations

    Science.gov (United States)

    Riabova, Svetlana; Loktev, Dmitry; Spivak, Alexander

    2016-04-01

    The research of geophysical fields in the conditions of megapolis attracts particular interest not only in terms of their influence on the operation of precision equipment and technological processes associated with nanotechnology, but also it is perhaps the most important in terms of the formation of a special human and other biological objects' habitat. Indeed, the megapolis causes significant changes in regime of the physical fields both directly and indirectly. Negative factors of megapolis associated with elevated vibrations of soil as a result of traffic, acoustic load in the construction of infrastructure and transport communications, etc. are complemented by another negative factor, which until quite recently wasn't known much. It is a variation of physical fields (primarily electric and magnetic) induced by anthropogenic activities. As a result of the evolution a man has adapted to the natural regime of physical fields. Therefore, any, even the short-term changes of physical fields in the environment, their deviations from the natural rate can have a significant influence on human health including changes in the psycho-emotional state. In the present work we have evaluated the influence of the megapolis (in our case, Moscow) on the nature and regime of microseismic, electric and acoustic field in the surface atmosphere. We have analyzed data obtained as a result of continuous simultaneous registration of physical fields and meteorological parameters at the Center for geophysical monitoring of Moscow of Institute of Geosphere Dynamics of Russian Academy of Sciences. For determination of the characteristics of physical fields in the megapolis obtained data were compared with the results of the registration carried out at the Geophysical Observatory "Mikhnevo" of IDG RAS (located 85 km south from Moscow). The work is shown that the influence of the megapolis appears to increase the amplitude of physical fields, change of their spectral composition

  12. M2, S2, K1 models of the global ocean tide

    Science.gov (United States)

    Parke, M. E.; Hendershott, M. C.

    1979-01-01

    Ocean tidal signals appear in many geophysical measurements. Geophysicists need realistic tidal models to aid in interpretation of their data. Because of the closeness to resonance of dissipationless ocean tides, it is difficult for numerical models to correctly represent the actual open ocean tide. As an approximate solution to this problem, test functions derived by solving Laplace's Tidal Equations with ocean loading and self gravitation are used as a basis for least squares dynamic interpolation of coastal and island tidal data for the constituents M2, S2, and Kl. The resulting representations of the global tide are stable over at least a ?5% variation in the mean depth of the model basin, and they conserve mass. Maps of the geocentric tide, the induced free space potential, the induced vertical component of the solid earth tide, and the induced vertical component of the gravitational field for each contituent are presented.

  13. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, J.|info:eu-repo/dai/nl/371572037; Boxem, T.; Pluymaekers, Maarten; Bruhn, David; Manzella, Adelle; Calcagno, Philippe; Beekman, F.|info:eu-repo/dai/nl/123556856; Cloetingh, S.|info:eu-repo/dai/nl/069161836; van Wees, J.-D.

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  14. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; Wees, J.D. van

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  15. Determination of key parameters of vector multifractal vector fields

    Science.gov (United States)

    Schertzer, D. J. M.; Tchiguirinskaia, I.

    2017-12-01

    For too long time, multifractal analyses and simulations have been restricted to scalar-valued fields (Schertzer and Tchiguirinskaia, 2017a,b). For instance, the wind velocity multifractality has been mostly analysed in terms of scalar structure functions and with the scalar energy flux. This restriction has had the unfortunate consequences that multifractals were applicable to their full extent in geophysics, whereas it has inspired them. Indeed a key question in geophysics is the complexity of the interactions between various fields or they components. Nevertheless, sophisticated methods have been developed to determine the key parameters of scalar valued fields. In this communication, we first present the vector extensions of the universal multifractal analysis techniques to multifractals whose generator belong to a Levy-Clifford algebra (Schertzer and Tchiguirinskaia, 2015). We point out further extensions noting the increased complexity. For instance, the (scalar) index of multifractality becomes a matrice. Schertzer, D. and Tchiguirinskaia, I. (2015) `Multifractal vector fields and stochastic Clifford algebra', Chaos: An Interdisciplinary Journal of Nonlinear Science, 25(12), p. 123127. doi: 10.1063/1.4937364. Schertzer, D. and Tchiguirinskaia, I. (2017) `An Introduction to Multifractals and Scale Symmetry Groups', in Ghanbarian, B. and Hunt, A. (eds) Fractals: Concepts and Applications in Geosciences. CRC Press, p. (in press). Schertzer, D. and Tchiguirinskaia, I. (2017b) `Pandora Box of Multifractals: Barely Open ?', in Tsonis, A. A. (ed.) 30 Years of Nonlinear Dynamics in Geophysics. Berlin: Springer, p. (in press).

  16. Geophysical borehole logging of the boreholes KR37, KR37B and KR38, at Olkiluoto 2005

    International Nuclear Information System (INIS)

    Majapuro, J.

    2006-03-01

    Suomen Malmi Oy conducted geophysical borehole logging of the boreholes KR37, KR37b and KR38 at the Olkiluoto site in Eurajoki during September and October 2005. The survey is a part of Posiva Oy's detailed investigation program for the final disposal of spent nuclear fuel. The assignment included the field work and processing of the acoustic data. The report describes the field operation, equipment as well as processing procedures and shows the obtained results and their quality in the appendices. The raw and processed data are delivered digitally in WellCAD and Excel format. (orig.)

  17. Engineering-geophysical criteria for evaluating the development stages of landslides in loess rocks

    Energy Technology Data Exchange (ETDEWEB)

    Abdullayev, S K

    1981-01-01

    As a result of conducting geophysical observations on landslide slopes formed by loess rocks, with their artifical moistening, quantitiative engineering-geophysical criteria were obtained which characterize the basic stages of landslide development. The studies were conducted by surface methods of electrical resistance and seismometry conducted directly in the massif. According to the indicators of moisture content, state of comminution, compactness calculated with the help of geophysical parameters, the stage of preparation and movement of landslides are characterized.

  18. Helicopter-borne magnetic, electromagnetic and radiometric geophysical survey in Mauken, Maalselv, Troms

    International Nuclear Information System (INIS)

    Rodionov, Alexei; Koziel, Janusz; Lynum, Rolf

    2012-01-01

    NGU conducted an airborne geophysical survey in Mauken area in June 2011 as a part of MINN project. This report describes and documents the acquisition, processing and visualization of recorded datasets. The geophysical survey results reported herein are 3680 line km. The modified Geotech Ltd. Hummingbird frequency domain system supplemented by optically pumped cesium magnetometer and 1024 channels RSX-5 spectrometer was used for data acquisition. The survey was flown with 200 m line spacing, line direction of 33 degrees NE and average speed 88km/h. The average terrain clearance of the bird was 45m. Collected data were processed in NGU using Geosoft Oasis Montaj software. Raw total magnetic field data were corrected for diurnal variation and levelled using standard micro levelling algorithm. EM data were filtered and levelled using both -automated and manual levelling procedure. Apparent resistivity was calculated from in-phase and quadrature data for each of the five frequencies separately using a homogeneous half space model. Apparent resistivity dataset was filtered and levelled. Radiometric data were processed using standard procedures recommended by International Atomic Energy Association. All data were gridded with the cell size of 50 m and presented as a shaded relief maps at the scale of 1:50 000. (Author)

  19. Helicopter-borne magnetic, electromagnetic and radiometric geophysical survey in Mauken, Maalselv, Troms

    Energy Technology Data Exchange (ETDEWEB)

    Rodionov, Alexei; Koziel, Janusz; Lynum, Rolf

    2012-07-01

    NGU conducted an airborne geophysical survey in Mauken area in June 2011 as a part of MINN project. This report describes and documents the acquisition, processing and visualization of recorded datasets. The geophysical survey results reported herein are 3680 line km. The modified Geotech Ltd. Hummingbird frequency domain system supplemented by optically pumped cesium magnetometer and 1024 channels RSX-5 spectrometer was used for data acquisition. The survey was flown with 200 m line spacing, line direction of 33 degrees NE and average speed 88km/h. The average terrain clearance of the bird was 45m. Collected data were processed in NGU using Geosoft Oasis Montaj software. Raw total magnetic field data were corrected for diurnal variation and levelled using standard micro levelling algorithm. EM data were filtered and levelled using both -automated and manual levelling procedure. Apparent resistivity was calculated from in-phase and quadrature data for each of the five frequencies separately using a homogeneous half space model. Apparent resistivity dataset was filtered and levelled. Radiometric data were processed using standard procedures recommended by International Atomic Energy Association. All data were gridded with the cell size of 50 m and presented as a shaded relief maps at the scale of 1:50 000. (Author)

  20. Geophysical investigations in the 100 Areas: Fiscal year 1991 through December 1993

    Science.gov (United States)

    Mitchell, T. H.

    1994-09-01

    The geophysical investigations identified in this document were conducted by the Westinghouse Hanford Company (WHC) Surface Geophysics Team, Geophysics Group, between October, 1991 and December, 1993. The investigations supported 100-Area activities for the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensations and Liability Act of 1980 (CERCLA). The primary intent of this document is to provide a general map location and the associated document number for investigations that have been conducted as of December, 1993. The results of the individual investigations are not included here. The results of all of these investigations have been previously reported individually in WHC supporting documents. The investigations conducted during Fiscal Year (FY) 1992 are summarized in a single WHC document, WHC-SD-EN-TI-204, Rev. O. A brief summary of some of the successful applications of geophysics in the 100-Areas is included.

  1. Geophysical applications for oil sand mine tailings management

    Energy Technology Data Exchange (ETDEWEB)

    Parker, D.; Bauman, P. [WorleyParsons, Calgary, AB (Canada)

    2009-07-01

    Geophysical techniques are applied throughout a mine's life cycle to facilitate siting, constructing and monitoring of tailings dumps and ponds. This presentation described 3 case studies from the Athabasca region in northeast Alberta that demonstrated some of the concerns associated with oil sand mine tailings, and the information that geophysical surveys can provide. The objectives of these studies were to determine the lateral and depth extents of elevated conductivities of soil and groundwater that have high salt concentration from the tailings sand pore fluid. Due to high chloride concentrations within the tailings material, salt within the root zone may affect vegetation. A terrain conductivity survey was designed to map the lateral extents of salinity impact, while an electrical resistivity tomography (ERT) survey was used to delineate the tailings sand leachate at depth. The proper management of oil sand tailings facilities is vital to the life cycle of a mine. It was concluded that geophysical techniques can be instrumental in managing several engineering and environmental challenges, from Pleistocene channel mapping, to tailings pond settling characteristics, to reclaiming tailings sands. 1 ref., 7 figs.

  2. Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis

    Directory of Open Access Journals (Sweden)

    Michela Giustiniani

    2010-12-01

    Full Text Available A gas hydrate reservoir, identified by the presence of the bottom simulating reflector, is located offshore of the Antarctic Peninsula. The analysis of geophysical dataset acquired during three geophysical cruises allowed us to characterize this reservoir. 2D velocity fields were obtained by using the output of the pre-stack depth migration iteratively. Gas hydrate amount was estimated by seismic velocity, using the modified Biot-Geerstma-Smit theory. The total volume of gas hydrate estimated, in an area of about 600 km2, is in a range of 16 × 109–20 × 109 m3. Assuming that 1 m3 of gas hydrate corresponds to 140 m3 of free gas in standard conditions, the reservoir could contain a total volume that ranges from 1.68 to 2.8 × 1012 m3 of free gas. The interpretation of the pre-stack depth migrated sections and the high resolution morpho-bathymetry image allowed us to define a structural model of the area. Two main fault systems, characterized by left transtensive and compressive movement, are recognized, which interact with a minor transtensive fault system. The regional geothermal gradient (about 37.5 °C/km, increasing close to a mud volcano likely due to fluid-upwelling, was estimated through the depth of the bottom simulating reflector by seismic data.

  3. Combining Geological and Geophysical Data in Volcanic Hazard Estimation for Dominica, Lesser Antilles

    Science.gov (United States)

    George, O.; Latchman, J. L.; Connor, C.; Malservisi, R.; Connor, L.

    2014-12-01

    Risk posed by volcanic eruptions are generally quantified in a few ways; in the short term geophysical data such as seismic activity or ground deformation are used to assess the state of volcanic unrest while statistical approaches such as spatial density estimates are used for long term hazard assessment. Spatial density estimates have been used in a number of monogenetic volcanic fields for hazard map generation and utilize the age, location and volumes of previous eruptions to calculate the probability of a new event occurring at a given location within this field. In a previously unpublished study, spatial density estimates of the Lesser Antilles volcanic arc showed the island of Dominica to have the highest likelihood of future vent formation. In this current study, this technique was used in combination with relocated seismic events occurring beneath Dominica within the last ~ 20 years as well as InSAR images of ground deformation to generate a hazard map which not only takes into consideration the past events but also the current state of unrest. Here, geophysical data serve as a weighting factor in the estimates with those centers showing more vigorous activity receiving stronger favorability in the assessment for future activity. In addition to this weighting, the bandwidth utilized in the 2D-radially symmetric kernel density function was optimized using the SAMSE method so as to find the value which best minimizes the error in the estimate. The end results of this study are dynamic volcanic hazards maps which will be readily updatable as changes in volcanic unrest occurs within the system.

  4. Improvement of the prediction of fluid pressure from the results of techno-geophysical studies under complex geological conditions

    Energy Technology Data Exchange (ETDEWEB)

    Aleksandrov, B.L.; Esipko, O.A.; Dakhkilgov, T.D.

    1981-12-01

    Results of statistical processing of the data of prediction of pore pressures in the course of well sinking, according to the material of oil field and geophysical investigations in different areas, are presented. Likewise, the errors of pressure prediction, their causes, geological models of series with anomalously high formation pressure, and methods for prediction of pore and formation pressures under different geological conditions are considered. 12 refs.

  5. Global gravitational anomalies

    International Nuclear Information System (INIS)

    Witten, E.

    1985-01-01

    A general formula for global gauge and gravitational anomalies is derived. It is used to show that the anomaly free supergravity and superstring theories in ten dimensions are all free of global anomalies that might have ruined their consistency. However, it is shown that global anomalies lead to some restrictions on allowed compactifications of these theories. For example, in the case of O(32) superstring theory, it is shown that a global anomaly related to π 7 (O(32)) leads to a Dirac-like quantization condition for the field strength of the antisymmetric tensor field. Related to global anomalies is the question of the number of fermion zero modes in an instanton field. It is argued that the relevant gravitational instantons are exotic spheres. It is shown that the number of fermion zero modes in an instanton field is always even in ten dimensional supergravity. (orig.)

  6. Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis

    Science.gov (United States)

    2014-09-01

    ER-200717) Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data Collection, Processing and Analysis...N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Optimized Enhanced Bioremediation Through 4D Geophysical Monitoring and Autonomous Data...8 2.1.2 The Geophysical Signatures of Bioremediation ......................................... 8 2.2 PRIOR

  7. Geothermal energy in deep aquifers : A global assessment of the resource base for direct heat utilization

    NARCIS (Netherlands)

    Limberger, Jon; Boxem, Thijs; Pluymaekers, Maarten; Bruhn, D.F.; Manzella, Adele; Calcagno, Philippe; Beekman, Fred; Cloetingh, S.A.P.L.; van Wees, Jan Diederik

    2018-01-01

    In this paper we present results of a global resource assessment for geothermal energy within deep aquifers for direct heat utilization. Greenhouse heating, spatial heating, and spatial cooling are considered in this assessment. We derive subsurface temperatures from geophysical data and apply a

  8. Airborne geophysics in Australia: the government contribution

    International Nuclear Information System (INIS)

    Denham, D.

    1997-01-01

    Airborne geophysical data sets provide important cost-effective information for resource exploration and land management. Improved techniques, developed recently, now enable high-resolution aeromagnetic and gamma-ray surveys to be used extensively by the resource industries to improve the cost effectiveness of exploration and by governments to encourage resource development and sustainable management of natural resources. Although airborne geophysical techniques have been used extensively and are now used almost routinely by mineral explorers, it is only in the last few years that governments have been involved as major players in the acquisition of data. The exploration industry pioneered the imaging of high-resolution airborne geophysical data sets in the early 1980s and, at the same time, the Northern Territory Government started a modest program of flying the Northern Territory, at 500 m flight-line spacing, to attract mineral exploration. After the start of the National Geoscience Mapping Accord in 1990, the then BMR and its State/Territory counterparts used the new high-resolution data as an essential ingredient to underpin mapping programs. These new data sets proved so valuable that, starting in 1992/93, the annual expenditure by the Commonwealth and States/Northern Territory increased from roughly $2 million per year to a massive $10 million per year. These investments by governments, although unlikely to be permanently sustainable, have been made to encourage and expand exploration activity by providing new high-quality data sets in industry at very low cost. There are now approximately 11 million line-km of airborne geophysical data available in databases held by the Commonwealth, States and Northern Territory. The results so far have seen a significant increase in exploration activity in States that have embarked on this course (e.g. South Australia and Victoria), and the information provided from these surveys is proving crucial to understanding the

  9. Solar Geophysical Data (SGD) Reports (1955-2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Solar-Geophysical Data (SGD) reports were a comprehensive compilation of many different kinds of observational data of the sun's activity and its effects on the...

  10. The role of the geophysical template and environmental regimes in controlling stream-living trout populations

    Science.gov (United States)

    Penaluna, Brooke E.; Railsback, Steve F.; Dunham, Jason B.; Johnson, S.; Bilby, Richard E.; Skaugset, Arne E.

    2015-01-01

    The importance of multiple processes and instream factors to aquatic biota has been explored extensively, but questions remain about how local spatiotemporal variability of aquatic biota is tied to environmental regimes and the geophysical template of streams. We used an individual-based trout model to explore the relative role of the geophysical template versus environmental regimes on biomass of trout (Oncorhynchus clarkii clarkii). We parameterized the model with observed data from each of the four headwater streams (their local geophysical template and environmental regime) and then ran 12 simulations where we replaced environmental regimes (stream temperature, flow, turbidity) of a given stream with values from each neighboring stream while keeping the geophysical template fixed. We also performed single-parameter sensitivity analyses on the model results from each of the four streams. Although our modeled findings show that trout biomass is most responsive to changes in the geophysical template of streams, they also reveal that biomass is restricted by available habitat during seasonal low flow, which is a product of both the stream’s geophysical template and flow regime. Our modeled results suggest that differences in the geophysical template among streams render trout more or less sensitive to environmental change, emphasizing the importance of local fish–habitat relationships in streams.

  11. Development of instrumentation in nuclear geophysics and their use in Morro do Ferro

    International Nuclear Information System (INIS)

    Hiodo, F.Y.

    1989-01-01

    The development of nuclear detection and stabilization circuits was described. Furthermore, gamma and alpha spectrometry methodologies were developed for field and laboratory measurements. By the use of techniques from other geophysical instruments as fluxgate and optical pumping magnetometers, it was possible to develop stabilization and linearization circuits for gamma ray spectrometers composed by scintillation crystals and multichannel analyzers. The developed system presents excellent thermal and temporal stability, leading to a high reproducibility of the measurements. Teflon PTFE electrets based ionization chambers were constructed for monitoring the alpha particles from soil emanated radon, from the uranium and thorium radioactive series. (author)

  12. Geophysical studies of the Crump Geyser known geothermal resource area, Oregon, in 1975

    Science.gov (United States)

    Plouff, Donald

    2006-01-01

    sediment thickness was estimated at 820 meters. A three-dimensional gravity model would have yielded a greater thickness. Audiomagnotelluric measurements were not made as far south as the location of the gravity low, as determined in the field, due to a lack of communication at that time. A boat was borrowed to collect gravity measurements along the edge of Crump Lake, but the attempt was curtailed by harsh, snowy weather on May 21, 1975, which shortly followed days of hot temperature. Most of the geophysical data and illustrations in Appendix 1 have been published (Gregory and Martinez, 1975; Plouff, 1975; and Plouff and Conradi, 1975), and Donald Plouff (1986) discussed a gravity interpretation of Warner Valley at the Fall 1986 American Geophysical Union meeting in San Francisco. Further interpretation of possible subsurface geologic sources of geophysical anomalies was not discussed in Appendix 1. For example, how were apparent resistivity lows (Appendix 1, figs. 3-6) centered near Crump Geyser affected by a well and other manmade electrically conductive or magnetic objects? What is the geologic significance of the 15-milligal eastward decrease across Warner Valley? The explanation that the two-dimensional gravity model (Appendix 1, fig. 14) was based on an inverse iterative method suggested by Bott (1960) was not included. Inasmuch as there was no local subsurface rock density distribution information to further constrain the gravity model, the three-dimensional methodology suggested by Plouff (1976) was not attempted. Inasmuch as the associated publication by Plouff (1975), which released the gravity data, is difficult to obtain and not in digital format, that report is reproduced in Appendix 2. Two figures of the publication are appended to the back of the text. A later formula for the theoretical value of gravity for the given latitudes at sea level (International Association of Geodesy, 1971) should be used to re-compute gravity anomalies. To merge t

  13. The lithospheric structure beneath Ireland and surrounding areas from integrated geophysical-petrological modelling of magnetic and other geophysical data

    Science.gov (United States)

    Baykiev, E.; Guerri, M.; Fullea, J.

    2017-12-01

    The availability of unprecedented resolution aeromagnetic data in Ireland (Tellus project, http://www.tellus.ie/) in conjunction with new satellite magnetic data (e.g., ESÁs Swarm mission) has opened the possibility of detailed modelling of the Irish subsurface magnetic structure. A detailed knowledge of the magnetic characteristics (susceptibility, magnetite content) of the crust is relevant for a number of purposes, including geological mapping and mineral and geothermal energy prospection. In this work we model the magnetic structure of Ireland and surrounding areas using primarily aeromagnetic and satellite observations but also other geophysical data sets. To this aim we use a geophysical-petrological modelling tool (LitMod) in which key properties of rocks (i.e., density, electrical conductivity and seismic velocities) that can be inferred from geophysical data (gravity, seismic, EM) are self consistently determined based on the thermochemical conditions (using the software Perple_X). In contrast to the mantle, where thermodynamic equilibrium is prevalent, in the crust metastable conditions are dominant, i.e. rock properties may not be representative of the current, in situ, temperature and pressure conditions. Instead, the rock properties inferred from geophysical data may be reflecting the mineralogy stable at rock formation conditions. In addition, temperature plays a major role in the distribution of the long wavelength crustal magnetic anomalies. Magnetite retains its magnetic properties below its Curie temperature (585 ºC) and the depth of Curie's isotherm provides an estimate of the thickness of the magnetic crust. Hence, a precise knowledge of the crustal geotherm is required to consistently model crustal magnetic anomalies. In this work LitMod has been modified to account for metastable crustal lithology, to predict susceptibility in the areas below Curie's temperature, and to compute magnetic anomalies based on a magnetic tesseroid approach. The

  14. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    Science.gov (United States)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  15. Integrated study of geophysical and biological anomalies before earthquakes (seismic and non-seismic), in Austria and Indonesia

    Science.gov (United States)

    Straka, Wolfgang; Assef, Rizkita; Faber, Robert; Ferasyi, Reza

    2015-04-01

    of different geological and seismological character (Sabang and Simeulue, Sumatra, and Buleleng, Bali). Field studies, at the moment, are focused on Nias Island, Sumatra, Indonesia, and the Mur-Mürz-Transform Fault (Semmering area) in Austria. Next year it is planned to extend activities to Yogyakarta Province, Java, Indonesia. Geophysical factors selected for analysis include weather (the usual parameters), high-frequency magnetic variations, air ionization, soil gas emissions, and seismic and acoustic vibrations. Long-term measurements are needed to look for behavioral correlates of geophysical variations in general, in order to define "normal", before conclusive evidence can be presented in regard to "abnormal" precursory earthquake phenomena in particular.

  16. Sneaky Submarine Landslides, and how to Quantify them: A Case Study from the Mississippi River Delta Front Contrasting Geophysical and Machine Learning Techniques

    Science.gov (United States)

    Obelcz, J.; Xu, K.; Bentley, S. J.; Wood, W. T.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.

    2017-12-01

    The highly publicized subsidence and decline of the Mississippi River Delta Front's (MRDF) subaerial section has recently precipitated studies of the subaqueous MRDF to assess whether it too is subsiding and regressing landward. These studies have largely focused on the area offshore the most active current distributary of the Mississippi River, Southwest Pass, during a decade (post-Hurricane Rita 2005-2014) of relatively quiescent Gulf of Mexico hurricane activity. Utilizing repeat swath bathymetric surveys, it was determined that submarine landslides not associated with major (category ≥ 3) passage are important drivers of downslope sediment transport on the MRDF. Volumetrically, sediment flux downslope without major hurricane influence is approximately half that during a given hurricane-influenced year (5.5 x 105 and 1.1 x 106 m3, respectively). This finding is notable and warrants comparison with other settings to assess the global impact on the source-to-sink budget of small but frequent landslides, but the resource-intensive repeat geophysical surveys required make it a prohibitive option at the margin and global scale. One option to quantify small-scale submarine slope failures while reducing required data acquisition is to utilize machine learning algorithms (MLAs) to intelligently estimate the occurrence and magnitude of submarine landslides based on correlated physical and geological parameters. Here, the MRDF volumetric changes described above are parsed into training and validation data, and physical and geological parameters associated with slope failure (such as porosity, steep slopes, high rates of sedimentation, and presence of gas in pore water) known from prior coring and seafloor mapping expeditions serve as potential predictive variables. The resulting submarine landslide spatial distribution and magnitude maps output by the MLAs are compared to those obtained through geophysical surveys, providing a proof of concept that machine learning can

  17. GEO activities towards improved Geophysical monitoring. A key input to Disaster Risk Reduction.

    Science.gov (United States)

    Achache, J.; Rum, G.

    2007-05-01

    GEO has been established in 2005 with the main objective to put in place a Global, Coordinated, Comprehensive and Sustained System of Observing Systems (GEOSS) to serve 9 Social Benefit Areas, among which Disaster Risk Reduction. The paper will first set up the reference GEO framework, through a brief description of GEOSS key features, architectural functions and capacity building, and then will recall the value of the Geophysical observations, coming both from in situ and remote (satellite) systems, and, even more important, of their integration. GEO activities related to Geophysical monitoring and the use of related observation to foster social benefits in the Disaster Risk Reduction area will then be shortly described, together with the on-going key actions, including specific examples on key scientific/technical and data sharing aspects associated to GEOSS implementation. Special attention will be devoted on how Capacity Building strategy and activities are addressed through GEOSS development, building on infrastructure and programs under consolidation within GEO framework, such as the GEOSS Information collection and dissemination systems under development (GEONETCast, GEO Web Portal, GEO Clearinghouse) and the UN programs such as SPIDER (SPace based Information for Disaster management and Emergency Response) and UNOSAT. The paper will provide recommendations on the way forward for the implementation of Disaster Risk Management provisions as an integral part of sustainable development, also with the objective of creating within GEO a supporting framework to UNDP and World Bank activities on Risk Identification and Assessment.

  18. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global Cloud-Permiting Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chidong [Univ. of Miami, Coral Gables, FL (United States)

    2016-08-14

    Motivated by the success of the AMIE/DYNAMO field campaign, which collected unprecedented observations of cloud and precipitation from the tropical Indian Ocean in Octber 2011 – March 2012, this project explored how such observations can be applied to assist the development of global cloud-permitting models through evaluating and correcting model biases in cloud statistics. The main accomplishment of this project were made in four categories: generating observational products for model evaluation, using AMIE/DYNAMO observations to validate global model simulations, using AMIE/DYNAMO observations in numerical studies of cloud-permitting models, and providing leadership in the field. Results from this project provide valuable information for building a seamless bridge between DOE ASR program’s component on process level understanding of cloud processes in the tropics and RGCM focus on global variability and regional extremes. In particular, experience gained from this project would be directly applicable to evaluation and improvements of ACME, especially as it transitions to a non-hydrostatic variable resolution model.

  19. rights reserved Geophysical Identification of Hydrothermally Altered

    African Journals Online (AJOL)

    ADOWIE PERE

    Geophysical Identification of Hydrothermally Altered Structures That Favour .... aircraft. Total line kilometers of 36,500 were covered in the survey. Magnetic ... tie lines occur at about 2000 metres interval in the ... visual inspection of the map.

  20. Smartphones - the Geophysics Lab in Your Students' Pocket

    Science.gov (United States)

    Salaree, A.; Stein, S.; Saloor, N.; Elling, R. P.

    2017-12-01

    Many interesting topics are hard to demonstrate in geophysics classes without costly equipment and logistic hassles. For instance, the speed of P-waves in the Earth's crust is usually calculated using printed seismic sections from published studies, giving students little insight into the recording process. This is mainly due to the complex, costly, and weather-dependent logistics of conducting seismic reflection experiments using arrays of - either purchased or borrowed - expensive seismometers and recording units. Smartphones, which students own and are (perhaps unduly) comfortable with, have many otherwise expensive instruments as built-in sensors. These instruments are nifty tools that make labs easier, faster, and more fun. We use smartphones in several labs in an introductory geophysics class. In one, students use their phones to measure the latitude and longitude of a point on campus. Combining the data shows a nice spread of positions illustrating the precision of measurements, spatial trends in the scatter, and even differences between Android and iPhone data. Hence concepts about data that are often presented with ideal theoretical examples emerge from the students' measurements. Another uses the phones' accelerometers and available software to measure the speed of P-waves using a linear array of smartphones/seismometers along a table, similar to the procedure used in reflection seismology. In a third, students used their smartphones in an elevator to measure the acceleration of gravity in a moving reference frame, and thus explore key concepts that arise in many geophysical applications. These three applications illustrate the potential for using smartphones in a wide variety of geophysics teaching, much as their value is being increasingly recognized in other educational applications. Here are some links to an instructions document and a video from the seismic experiment: Instructions: http://www.earth.northwestern.edu/ amir/202/smartphone