WorldWideScience

Sample records for global geophysical fields

  1. An Integral, Multidisciplinary and Global Geophysical Field Experience for Undergraduates

    Vázquez, O.; Carrillo, D. J.; Pérez-Campos, X.

    2007-05-01

    The udergraduate program of Geophysical Engineering at the School of Engineering, of the Univesidad Nacional Autónoma de México (UNAM), went through an update process that concluded in 2006. As part of the program, the student takes three geophysical prospecting courses (gravity and magnetics, electric, electromagnetics, and seismic methods). The older program required a three-week field experience for each course in order to gradute. The new program considers only one extended field experience. This work stresses the importance of international academic exchange, where undergraduate students could participate, such as the Summer of Applied Geophysical Experience (SAGE), and interaction with research programs, such as the MesoAmerican Subduction Experiment (MASE). Also, we propose a scheeme for this activity based on those examples; both of them have in common real geophysical problems, from which students could benefit. Our proposal covers academic and logistic aspects to be taken into account, enhancing the relevance of interaction between other academic institutions, industry, and UNAM, in order to obtain a broader view of geophysics.

  2. Geophysical Field Theory

    Eloranta, E.

    2003-11-01

    The geophysical field theory includes the basic principles of electromagnetism, continuum mechanics, and potential theory upon which the computational modelling of geophysical phenomena is based on. Vector analysis is the main mathematical tool in the field analyses. Electrostatics, stationary electric current, magnetostatics, and electrodynamics form a central part of electromagnetism in geophysical field theory. Potential theory concerns especially gravity, but also electrostatics and magnetostatics. Solid state mechanics and fluid mechanics are central parts in continuum mechanics. Also the theories of elastic waves and rock mechanics belong to geophysical solid state mechanics. The theories of geohydrology and mass transport form one central field theory in geophysical fluid mechanics. Also heat transfer is included in continuum mechanics. (orig.)

  3. Monitoring Global Geophysical Fluids by Space Geodesy

    Chao, Benjamin F.; Dehant, V.; Gross, R. S.; Ray, R. D.; Salstein, D. A.; Watkins, M.

    1999-01-01

    Since its establishment on 1/1/1998 by the International Earth Rotation Service, the Coordinating Center for Monitoring Global Geophysical Fluids (MGGF) and its seven Special Bureaus have engaged in an effort to support and facilitate the understanding of the geophysical fluids in global geodynamics research. Mass transports in the atmosphere-hydrosphere-solid Earth-core system (the "global geophysical fluids") will cause the following geodynamic effects on a broad time scale: (1) variations in the solid Earth's rotation (in length-of-day and polar motion/nutation) via the conservation of angular momentum and effected by torques at the fluid-solid Earth interface; (2) changes in the global gravitational field according to Newton's gravitational law; and (3) motion in the center of mass of the solid Earth relative to that of the whole Earth ("geocenter") via the conservation of linear momentum. These minute signals have become observable by space geodetic techniques, primarily VLBI, SLR, GPS, and DORIS, with ever increasing precision/accuracy and temporal/spatial resolution. Each of the seven Special Bureaus within MGGF is responsible for calculations related to a specific Earth component or aspect -- Atmosphere, Ocean, Hydrology, Ocean Tides, Mantle, Core, and Gravity/Geocenter. Angular momenta and torques, gravitational coefficients, and geocenter shift will be computed for geophysical fluids based on global observational data, and from state-of-the-art models, some of which assimilate such data. The computed quantities, algorithm and data formats are standardized. The results are archived and made available to the scientific research community. This paper reports the status of the MGGF activities and current results.

  4. Geophysics

    Bolt, Bruce

    1973-01-01

    Methods in Computational Physics, Volume 13: Geophysics is a 10-chapter text that focuses with the theoretical solid-earth geophysics. This volume specifically covers the general topics of terrestrial magnetism and electricity, the Earth's gravity field, tidal deformations, dynamics of global spin, spin processing, and convective models for the deep interior. This volume surveys first the construction of mathematical models, such as the representation of the geomagnetic field by assuming arrangements of multipole sources in the core and the fast computer evaluation of two- and three-dimensiona

  5. Global Earth Structure Recovery from State-of-the-art Models of the Earth's Gravity Field and Additional Geophysical Information

    Hamayun, H.

    2014-01-01

    Currently, a tremendous improvement is observed in the accuracy and spatial resolution of global Earth’s gravity field models. This improvement is achieved due to using various new data, including those from satellite gravimetry missions (CHAMP, GRACE, and GOCE); terrestrial and airborne gravity

  6. Space Geodesy Monitoring Mass Transport in Global Geophysical Fluids

    Chao, Benjamin F.

    2004-01-01

    Mass transports occurring in the atmosphere-hydrosphere-cryosphere-solid Earth-core system (the 'global geophysical fluids') are important geophysical phenomena. They occur on all temporal and spatial scales. Examples include air mass and ocean circulations, oceanic and solid tides, hydrological water and idsnow redistribution, mantle processes such as post-glacial rebound, earthquakes and tectonic motions, and core geodynamo activities. The temporal history and spatial pattern of such mass transport are often not amenable to direct observations. Space geodesy techniques, however, have proven to be an effective tool in monitorihg certain direct consequences of the mass transport, including Earth's rotation variations, gravitational field variations, and the geocenter motion. Considerable advances have been made in recent years in observing and understanding of these geodynamic effects. This paper will use several prominent examples to illustrate the triumphs in research over the past years under a 'Moore's law' in space geodesy. New space missions and projects promise to further advance our knowledge about the global mass transports. The latter contributes to our understanding of the geophysical processes that produce and regulate the mass transports, as well as of the solid Earth's response to such changes in terms of Earth's mechanical properties.

  7. Rožňava ore field - geophysical works

    Géczy Július

    1998-12-01

    Full Text Available The article prowides a review of geophysical works in the ore field Rožňava conducted up to date. Magnetometric and geoelectric methods and gravimetric measurements have been used. Geophysical works were focused to the solving regional problems whose contribution to the prospecting of vein deposits is not essential.

  8. Field Geophysics at SAGE: Strategies for Effective Education

    Braile, L. W.; Baldridge, W. S.; Jiracek, G. R.; Biehler, S.; Ferguson, J. F.; Pellerin, L.; McPhee, D. K.; Bedrosian, P. A.; Snelson, C. M.; Hasterok, D. P.

    2011-12-01

    SAGE (Summer of Applied Geophysical Experience) is a unique program of education and research in geophysical field methods for undergraduate and graduate students from any university and for professionals. The core program is held for 4 weeks each summer in New Mexico and for an additional week in the following academic year in San Diego for U.S. undergraduates supported by the NSF Research Experience for Undergraduates (REU) program. Since SAGE was initiated in 1983, 730 students have participated in the program. NSF REU funding for SAGE began in 1990 and 319 REU students have completed SAGE through 2011. The primary objectives of SAGE are to teach the major geophysical exploration methods (seismic, gravity, magnetics, electromagnetics); apply these methods to the solution of specific problems (environmental, archaeological, hydrologic, geologic structure and stratigraphy); gain experience in processing, modeling and interpretation of geophysical data; and integrate the geophysical models and interpretations with geology. Additional objectives of SAGE include conducting research on the Rio Grande rift of northern New Mexico, and providing information on geophysics careers and professional development experiences to SAGE participants. Successful education, field and research strategies that we have implemented over the years include: 1. learn by doing; 2. mix lecture/discussion, field work, data processing and analysis, modeling and interpretation, and presentation of results; 3. a two-tier team approach - method/technique oriented teams and interpretation/integration teams (where each team includes persons representing different methods), provides focus, in-depth study, opportunity for innovation, and promotes teamwork and a multi-disciplinary approach; 4. emphasis on presentations/reports - each team (and all team members) make presentation, each student completes a written report; 5. experiment design discussion - students help design field program and consider

  9. Marine Geology and Geophysics Field Course Offered by The University of Texas Institute for Geophysics

    Duncan, D.; Davis, M. B.; Allison, M. A.; Gulick, S. P.; Goff, J. A.; Saustrup, S.

    2012-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers an intensive three-week marine geology and geophysics field course during the spring-summer intersession. Now in year six, the course provides hands-on instruction and training for graduate and upper-level undergraduate students in data acquisition, processing, interpretation, and visualization. Techniques covered include high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples (e.g., core description, grain size analysis, x-radiography, etc.). Students participate in an initial period of classroom instruction designed to communicate geological context of the field area (which changes each year) along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas and Galveston, Texas, and Grand Isle, Louisiana, have provided ideal locations for students to investigate coastal and sedimentary processes of the Gulf Coast and continental shelf through application of geophysical techniques. In the field, students rotate between two research vessels: one vessel, the 22' aluminum-hulled R/V Lake Itasca, owned and operated by UTIG, is used principally for multibeam bathymetry, sidescan sonar, and sediment sampling; the other, NOAA's R/V Manta or the R/V Acadiana, operated by the Louisiana Universities Marine Consortium, and is used primarily for high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, gravity coring, and vibrocoring. While at sea, students assist with survey design, learn instrumentation set up, acquisition parameters, data quality control, and safe instrument deployment and retrieval. In teams of three, students work in onshore field labs preparing sediment samples for

  10. The University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course

    Duncan, D.; Davis, M. B.; Goff, J. A.; Gulick, S. P. S.; McIntosh, K. D.; Saustrup, S., Sr.

    2014-12-01

    The University of Texas Institute for Geophysics, part of the Jackson School of Geosciences, annually offers a three-week marine geology and geophysics field course during the spring-summer intersession. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, several types of sediment coring, grab sampling, and the sedimentology of resulting seabed samples. Students participate in an initial three days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work. Our field sites at Port Aransas, and Galveston, TX, and Grand Isle, LA, provide ideal locations for students to investigate coastal processes of the Gulf Coast and continental shelf through application of geophysical techniques in an exploratory mode. At sea, students assist with survey design and instrumentation set up while learning about acquisition parameters, data quality control, trouble-shooting, and safe instrument deployment and retrieval. In teams of four, students work in onshore field labs preparing sediment samples for particle size analysis and data processing. During the course's final week, teams return to the classroom where they integrate, interpret, and visualize data in a final project using industry-standard software such as Echos, Landmark, Caris, and Fledermaus. The course concludes with a series of final presentations and discussions in which students examine geologic history and/or sedimentary processes represented by the Gulf Coast continental shelf with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen

  11. Addressing the difficulty of changing fields in geophysics

    Civilini, F.; Savage, M. K.

    2014-12-01

    Geophysics is a wonderfully diverse field of study, encompassing a variety of disciplines greatly different from one other. Even within the same discipline, various branches of study can have drastically different vocabulary and methodologies. The difficulty of breaking this "jargon" barrier is also an important reminder for scientists of how critical it is to clearly and concisely convey information. This presentation will focus on strategies that students can focus on to ease a transition between fields in geophysics. I believe that a student changing disciplines should proceed in the following steps: [1] Do a cursory literature review to find a review paper of the desired topic and work backwards through the details until a level of understanding or recognition is reached, [2] Obtain a clear physical understanding of the data and methods of the proposed study, and [3] Establish a support network through the research group or elsewhere which will recognize the areas in which the student is behind and offer remedies in a supportive and productive manner. These strategies are based on my own personal experience changing from music to geophysics in my undergrad and working on projects spanning various subdisciplines of geophysics during my Masters and PhD. It is worthwhile for research groups to spend the time to mentor students switching from other disciplines because those students will in time be able to observe the research in a different way than their peers, and easily adapt to changes of direction within the research.

  12. Modeling of Geological Objects and Geophysical Fields Using Haar Wavelets

    A. S. Dolgal

    2014-12-01

    Full Text Available This article is a presentation of application of the fast wavelet transform with basic Haar functions for modeling the structural surfaces and geophysical fields, characterized by fractal features. The multiscale representation of experimental data allows reducing significantly a cost of the processing of large volume data and improving the interpretation quality. This paper presents the algorithms for sectionally prismatic approximation of geological objects, for preliminary estimation of the number of equivalent sources for the analytical approximation of fields, and for determination of the rock magnetization in the upper part of the geological section.

  13. Global status of and prospects for protection of terrestrial geophysical diversity.

    Sanderson, Eric W; Segan, Daniel B; Watson, James E M

    2015-06-01

    Conservation of representative facets of geophysical diversity may help conserve biological diversity as the climate changes. We conducted a global classification of terrestrial geophysical diversity and analyzed how land protection varies across geophysical diversity types. Geophysical diversity was classified in terms of soil type, elevation, and biogeographic realm and then compared to the global distribution of protected areas in 2012. We found that 300 (45%) of 672 broad geophysical diversity types currently meet the Convention on Biological Diversity's Aichi Target 11 of 17% terrestrial areal protection, which suggested that efforts to implement geophysical diversity conservation have a substantive basis on which to build. However, current protected areas were heavily biased toward high elevation and low fertility soils. We assessed 3 scenarios of protected area expansion and found that protection focused on threatened species, if fully implemented, would also protect an additional 29% of geophysical diversity types, ecoregional-focused protection would protect an additional 24%, and a combined scenario would protect an additional 42%. Future efforts need to specifically target low-elevation sites with productive soils for protection and manage for connectivity among geophysical diversity types. These efforts may be hampered by the sheer number of geophysical diversity facets that the world contains, which makes clear target setting and prioritization an important next step. © 2015 Society for Conservation Biology.

  14. Mobile geophysical study of peat deposits in Fuhrberger Field, Germany

    Wunderlich, T.; Petersen, H.; Hagrey, S. A. al; Rabbel, W.

    2012-04-01

    In the water protection area of Fuhrberger Field, north of Hanover, geophysical techniques were applied to study the stakeholder problem of the source detection for nitrate accumulations in the ground water. We used our mobile multisensor platform to conduct measurements using Ground Penetrating Radar (GPR, 200 MHz antenna) and Electromagnetic Induction (EMI, EM31). This aims to study the subsurface occurrences of peat deposits (surplus of organic carbon) supposed to be a source of nitrate emissions due to the aeration and the drawdown of groundwater levels (e.g. by pumping, drainage etc.). Resulting EMI and GPR signals show high data quality. Measured apparent electrical conductivity shows very low values (energy and EMI apparent electrical conductivities are plotted on aerial photographs and compared to each other's and with vegetation intensity. We could separate areas characterized by low reflection energy and high conductivity, and vice versa. Briefly, organic rich sediments such as peats are assumed to have a relative high conductivity and thus low GPR reflectivity. Some areas of local conductivity increase correspond to a deep reflection interface (as seen in the radargrams), which even vanishes due to the high attenuation caused by the high conductivity. This implies that the upper layer is more conductive than the lower layer. Several local areas with these characteristics are found at the study sites. We recommend shallow drillings at representative points to deliver the necessary confirmation with ground truth information. Acknowledgments: iSOIL (Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping) is a Collaborative Project (Grant Agreement number 211386) co-funded by the Research DG of the European Commission within the RTD activities of the FP7 Thematic Priority Environment.

  15. Environmental geophysics at J-Field, Aberdeen Proving Ground, Maryland

    Daudt, C.R.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1994-11-01

    Geophysical data collected at J-Field, Aberdeen Proving Ground, Maryland, were used in the characterization of the natural hydrogeologic framework of the J-Field area and in the identification of buried disturbances (trenches and other evidences of contamination). Seismic refraction and reflection data and electrical resistivity data have aided in the characterization of the leaky confining unit at the base of the surficial aquifer (designated Unit B of the Tertiary Talbot Formation). Excellent reflectors have been observed for both upper and lower surfaces of Unit B that correspond to stratigraphic units observed in boreholes and on gamma logs. Elevation maps of both surfaces and an isopach map of Unit B, created from reflection data at the toxic burning pits site, show a thickening of Unit B to the east. Abnormally low seismic compressional-wave velocities suggest that Unit B consists of gassy sediments whose gases are not being flushed by upward or downward moving groundwater. The presence of gases suggests that Unit B serves as an efficient aquitard that should not be penetrated by drilling or other activities. Electromagnetic, total-intensity magnetic, and ground-penetrating radar surveys have aided in delineating the limits of two buried trenches, the VX burning pit and the liquid smoke disposal pit, both located at the toxic burning pits site. The techniques have also aided in determining the extent of several other disturbed areas where soils and materials were pushed out of disposal pits during trenching activities. Surveys conducted from the Prototype Building west to the Gunpowder River did not reveal any buried trenches.

  16. The University of Texas Institute for Geophysics' Marine Geology and Geophysics Field Course: A Hand-On Education Approach to Applied Geophysics

    Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez, R.; Duncan, D.; Saustrup, S.

    2016-12-01

    The University of Texas Institute for Geophysics, Jackson School of Geosciences, offers a 3-week marine geology and geophysics field course. The course provides hands-on instruction and training for graduate and upper-level undergraduate students in high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, and sediment sampling and analysis. Students first participate in 3 days of classroom instruction designed to communicate geological context of the field area along with theoretical and technical background on each field method. The class then travels to the Gulf Coast for a week of at-sea field work at locations that provide an opportunity to investigate coastal and continental shelf processes. Teams of students rotate between UTIG's 26' R/V Scott Petty and NOAA's 82' R/V Manta. They assist with survey design, instrumentation set up, and learn about acquisition, quality control, and safe instrument deployment. Teams also process data and analyze samples in onshore field labs. During the final week teams integrate, interpret, and visualize data in a final project using industry-standard software. The course concludes with team presentations on their interpretations with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and high instructor/student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course (to our knowledge) remains the only one of its kind, satisfies field experience requirements for some degree programs, and provides an alternative to land-based field courses. Alumni note the course's applicability to energy, environmental, and geotechnical industries as well as coastal restoration/management fields.

  17. From the international geophysical year to global change

    Fleagle, R.G.

    1992-01-01

    A series of major scientific programs carried out over the past 40 years has greatly increased understanding of our global environment and has led to the present concern over global change. Each program responded to a specific and urgent scientific need or opportunity. In each case, institutions and resources were created that provided the foundation for later programs. Increased scientific understanding has exposed threats to future welfare and has raised serious policy implications for governments. Institutions for responding to global policy issues need to be created or strengthened. Recommendations for better procedures and institutional structures are provided in this article. 39 refs

  18. Geomagnetic field, global pattern

    Macmillan, Susan

    2011-01-01

    The geomagnetic field is generated in the fluid outer core region of the Earth by electrical currents flowing in the slowly moving molten iron. In addition to sources in the Earth’s core, the geomagnetic field observable on the Earth’s surface has sources in the crust and in the ionosphere and magnetosphere. The signal from the core dominates, accounting for over 95% of the field at the Earth’s surface. The geomagnetic field varies on a range of scales, both temporal and spatial; the...

  19. AfricaArray International Geophysics Field School: Applications of Near Surface Geophysics to challenges encountered in mine planning

    Webb, S. J.; Jones, M. Q.; Durrheim, R. J.; Nyblade, A.; Snyman, Q.

    2012-12-01

    Hard rock exploration and mining presents many opportunities for the effective use of near surface geophysics. For over 10 years the AfricaArray international geophysics field school has been hosted at a variety of mines in South Africa. While the main objective of the field school is practical training for the next generation of geophysicists, being hosted at a mine has allowed us to investigate applications of near surface geophysics in the early stages of mine planning and development as geophysics is often cheaper and faster than drilling. Several applications include: detailed delineation of dykes and stringer dykes, physical property measurements on drill core for modeling and marker horizons, determination of overburden thickness, locations of water and faults. Dolerite dykes are usually magnetic and are associated with loss of ground (i.e. where the dyke replaces the ore and thus reduces the amount of ore available) and safety/stability concerns. Thus the accurate mapping of dykes and narrow stringers that are associated with them are crucial to the safe planning of a mine. We have acquired several case studies where ground magnetic surveys have greatly improved on the resolution and detail of airborne magnetic surveys in regions of complicated dyke swarms. In many cases, thin stringer dykes of less than 5 cm have been detected. Physical property measurements of these dykes can be used to distinguish between different ages of dykes. It is important to accurately determine overburden thickness when planning an open pit mine as this directly affects the cost of development. Depending on the nature of the overburden, both refraction seismic and or DC resistivity can provide continuous profiling in the area of interest that fills in gaps between boreholes. DC resistivity is also effective for determining water associated with dykes and structures that may affect mine planning. The field school mainly addresses the training of a variety of students. The core

  20. geophysical and well corellation analysis of ogo field: a case study ...

    HP

    GEOPHYSICAL AND WELL CORELLATION ANALYSIS OF OGO FIELD: A CASE STUDY IN. NIGER DELTA BASIN ... have average porosity of 0.22, water saturation 0.43 and Hydrocarbon saturation of 0.57. ... chemical components. For the ...

  1. Global patterns of materials use. A socioeconomic and geophysical analysis

    Steinberger, Julia K.; Krausmann, Fridolin; Eisenmenger, Nina [Institute of Social Ecology Vienna, IFF, University of Klagenfurt, Schottenfeldgasse 29, A-1070 Wien (Austria)

    2010-03-15

    Human use of materials is a major driver of global environmental change. The links between materials use and economic development are central to the challenge of decoupling of materials use and economic growth (dematerialization). This article presents a new global material flow dataset compiled for the year 2000, covering 175 countries, including both extraction and trade flows, and comprising four major material categories: biomass, construction minerals, fossil energy carriers and ores/industrial minerals. First, we quantify the variability and distributional inequality (Gini coefficients) in international material consumption. We then measure the influence of the drivers population, GDP, land area and climate. This analysis yields international income elasticities of material use. Finally, we examine the coupling between material flows, and between income and material productivity, measured in economic production per tonne material consumed. Material productivity is strongly coupled to income, and may thus not be suitable as an international indicator of environmental progress - a finding which we relate to the economic inelasticity of material consumption. The results demonstrate striking differences between the material groups. Biomass is the most equitably distributed resource, economically the most inelastic, and is not correlated to any of the mineral materials. The three mineral material groups are closely coupled to each other and economic activity, indicating that the challenge of dematerializing industrial economies may require fundamental structural transformation. Our analysis provides a first systematic investigation of international differences in material use and their drivers, and thus serves as the basis for more detailed future work. (author)

  2. EXPLORATION BY MEANS OF GEOPHYSICAL METHODS OF GEOTHERMAL FIELDS AND CASE STUDIES

    Züheyr KAMACI

    1997-01-01

    Full Text Available Geothermal energy which is one of the reuseable energy resources, can save as much as 77 million barrels of petroleum equivalent annually when used in the production of electricity and heating-environment. Geophysical exploration methods plays in important role in the fields of geothermal exploration, development and observational studies. Thermal and geoelectrical methods are the most effective methods which shows the temperature variation anomalies and mechanical drilling places. But, when the other methods of gravity, magnetic, radiometric, well geophysics and well logs can be used in conjunction with seismic tomography, apart from the mentioned geophysical exploration method, better results could be obtained. From the above mentioned facts various case history reports are given from our country and worldwide to determine geothermal energy resources by using geophysical exploration technique application. From these results of studies a 55 °C hot water artessian aquifer is found in the Uşak-Banaz geothermal field by applying geoelectrical methods.

  3. A Hands-on Approach to Teaching Geophysics through the University of Texas Institute for Geophysics Marine Geology and Geophysics Field Course in the Gulf of Mexico.

    Duncan, D.; Davis, M. B.; Goff, J.; Gulick, S. P. S.; Fernandez-Vasquez, R. A.; Saustrup, S.

    2017-12-01

    The three week field course is offered to graduate and upper-level undergraduate students as hands-on instruction and training for marine geology and geophysics applications. Instructors provide theoretical and technical background of high-resolution seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, and the sedimentology of resulting seabed samples in the initial phase of the course. The class then travels to the Gulf Coast for a week of at-sea field work. Over the last 10 years, field sites at Freeport, Port Aransas, and Galveston, TX, and Grand Isle, LA, have provided ideal locations for students to explore and investigate coastal and continental shelf processes through the application of geophysical techniques. Students with various backgrounds work in teams of four and rotate between two marine vessels: the R/V Scott Petty, a 26' vessel owned and operated by UTIG, and the R/V Manta, an 82' vessel owned and operated by NOAA. They assist with survey design, instrumentation setup and breakdown, data acquisition, trouble-shooting, data quality control, and safe instrumentation deployment and recovery. Teams also process data and sediment samples in an onshore field lab. During the final week, students visualize, integrate and interpret data for a final project using industry software. The course concludes with final presentations and discussions wherein students examine Gulf Coast geological history and sedimentary processes with academic and industry supporters. Students report a greater understanding of marine geology and geophysics through the course's intensive, hands-on, team approach and low instructor to student ratio (sixteen students, three faculty, and three teaching assistants). Post-class, students may incorporate course data in senior honors or graduate thesis and are encouraged to publish and present results at national meetings. This course satisfies field experience requirements for

  4. Immersive, hands-on, team-based geophysical education at the University of Texas Marine Geology and Geophysics Field Course

    Saustrup, S.; Gulick, S. P.; Goff, J. A.; Davis, M. B.; Duncan, D.; Reece, R.

    2013-12-01

    The University of Texas Institute for Geophysics (UTIG), part of the Jackson School of Geosciences, annually offers a unique and intensive three-week marine geology and geophysics field course during the spring/summer semester intersession. Now entering its seventh year, the course transitions students from a classroom environment through real-world, hands-on field acquisition, on to team-oriented data interpretation, culminating in a professional presentation before academic and industry employer representatives. The course is available to graduate students and select upper-division undergraduates, preparing them for direct entry into the geoscience workforce or for further academic study. Geophysical techniques used include high-resolution multichannel seismic reflection, CHIRP sub-bottom profiling, multibeam bathymetry, sidescan sonar, sediment coring, grab sampling, data processing, and laboratory analysis of sediments. Industry-standard equipment, methods, software packages, and visualization techniques are used throughout the course, putting students ahead of many of their peers in this respect. The course begins with a 3-day classroom introduction to the field area geology, geophysical methods, and computing resources used. The class then travels to the Gulf Coast for a week of hands-on field and lab work aboard two research vessels: UTIG's 22-foot, aluminum hulled Lake Itasca; and NOAA's 82-foot high-speed catamaran R/V Manta. The smaller vessel handles primarily shallow, inshore targets using multibeam bathymetry, sidescan sonar, and grab sampling. The larger vessel is used both inshore and offshore for multichannel seismic, CHIRP profiling, multibeam bathymetry, gravity coring, and vibracoring. Field areas to date have included Galveston and Port Aransas, Texas, and Grand Isle, Louisiana, with further work in Grand Isle scheduled for 2014. In the field, students work in teams of three, participating in survey design, instrument set-up, field deployment

  5. Increasing diversity in the geosciences through the AfricaArray geophysics field course

    Vallejo, G.; Emry, E.; Galindo, B. L.; Carranza, V.; Gomez, C. D.; Ortiz, K.; Castro, J. G.; Guandique, J.; Falzone, C.; Webb, S. J.; Manzi, M.; Mngadi, S. B.; Stephens, K.; Chinamora, B.; Whitehead, R.; de Villiers, D. P.; Tshitlho, K.; Delhaye, R. P.; Smith, J. A.; Nyblade, A.

    2014-12-01

    For the past nine years, the AfricaArray diversity program, sponsored by industry, the National Science Foundation, and several partnering universities have supported outstanding U.S. STEM underrepresented minority undergraduates to gain field experience in near-surface geophysical techniques during an 8-week summer program at Penn State University and the University of Witwatersrand (Wits). The AfricaArray geophysics field school, which is run by Wits, has been teaching field-based geophysics to African students for over a decade. In the first 2-3 weeks of the program, the U.S. students are given basic instruction in near-surface geophysics, South African geology, and South African history and culture. The students then join the Wits AfricaArray geophysics field school - working alongside Wits students and students from several other African universities to map the shallow subsurface in prospective areas of South Africa for platinum mining. In addition to the primary goals of collecting and interpreting gravity, magnetic, resistivity, seismic refraction, seismic reflection, and EM data, students spend time mapping geologic units and gathering information on the physical properties of the rocks in the region (i.e. seismic velocity, density, and magnetic susceptibility). Subsurface targets include mafic dikes, faults, the water table, and overburden thickness. Upon returning to the U.S., students spend 2-3 weeks finalizing their project reports and presentations. The program has been effective at not only providing students with fundamental skills in applied geophysics, but also in fostering multicultural relationships, preparing students for graduate work in the geosciences, and attracting STEM students into the geosciences. Student presenters will discuss their experiences gained through the field school and give their impressions about how the program works towards the goal of increasing diversity in the geosciences in the U.S.

  6. Geophysical Global Modeling for Extreme Crop Production Using Photosynthesis Models Coupled to Ocean SST Dipoles

    Kaneko, D.

    2016-12-01

    Climate change appears to have manifested itself along with abnormal meteorological disasters. Instability caused by drought and flood disasters is producing poor harvests because of poor photosynthesis and pollination. Fluctuations of extreme phenomena are increasing rapidly because amplitudes of change are much greater than average trends. A fundamental cause of these phenomena derives from increased stored energy inside ocean waters. Geophysical and biochemical modeling of crop production can elucidate complex mechanisms under seasonal climate anomalies. The models have progressed through their combination with global climate reanalysis, environmental satellite data, and harvest data on the ground. This study examined adaptation of crop production to advancing abnormal phenomena related to global climate change. Global environmental surface conditions, i.e., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. Basic streams of the concepts of modeling rely upon continental energy flow and carbon circulation among crop vegetation, land surface atmosphere combining energy advection from ocean surface anomalies. Global environmental surface conditions, e.g., vegetation, surface air temperature, and sea surface temperature observed by satellites, enable global modeling of crop production and monitoring. The method of validating the modeling relies upon carbon partitioning in biomass and grains through carbon flow by photosynthesis using carbon dioxide unit in photosynthesis. Results of computations done for this study show global distributions of actual evaporation, stomata opening, and photosynthesis, presenting mechanisms related to advection effects from SST anomalies in the Pacific, Atlantic, and Indian oceans on global and continental croplands. For North America, climate effects appear clearly in severe atmospheric phenomena, which have caused drought and forest fires

  7. Exploration of geomagnetic field anomaly with balloon for geophysical research

    Jia, Wen-Kui

    The use of a balloon to explore the geomagnetic field anomaly in the area east of Beijing is demonstrated. The present results are compared with those of aerial surveys. Descriptions are given of the fluxgate magnetometer, the sensor's attitude control and measurement, and data transmission and processing. At an altitude of about 30 km, a positive anomaly of the vertical component of about 100 nanoteslas was measured. The results suggest that, for this particular area, the shallow layer of a small-scale geological structure differs from the deep layer of a large-scale geological structure.

  8. Geophysical exploration at Takigami geothermal field in Oita Prefecture, Japan

    Aoki, M. (Idemitsu Geothermal Co., Ltd., Tokyo (Japan))

    1988-11-10

    Remote sensing study, gravity and magneto-telluric (MT) surveys in Takigami geothermal field were carried out. A great number of E-W lineaments are easily recognized with LANDSAT and so on. These E-W lineaments might be distinguished into two groups. One group might be considered to be made simply related to N-S tensional stress, the other has circular feature enclosing mountainous body. The center part of the volcano seems to be depressed relatively. These lineaments are thought to be associated with the volcanic activity which created these volcanos, in addition to the regional tensional stress. The gravitational slope is steep and inclines to the west (-35m gal minimum), the easternmost part is almost on the gravitational high. Takigami area is positioned on the gravitational slope, probably related to the large-scale tectonic depression. There are many geothermal active manifestations. The correlation between MT data and real logging data was excellent beyond expectation. In Takigami area, surface layer is resistive and shows 30-500{Omega}-m. Intermediate layer is extremely conductive one with 1-10{Omega}-m. Bottom layer is relatively resistive and is within 30-500{Omega}-m. Intermediate layer is shallow and thin in the eastern part. On the other hand, this layer is deep and thick in the western part. This shape of structure is a common feature with gravitational structure. According to the X-ray diffraction study of hydrothermal alteration, surface layer is unaltered, but intermediate and bottom layer suffer hydrothermal alteration.

  9. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    Müller, R Dietmar; Qin, Xiaodong; Sandwell, David T; Dutkiewicz, Adriana; Williams, Simon E; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2016-01-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  10. The GPlates Portal: Cloud-Based Interactive 3D Visualization of Global Geophysical and Geological Data in a Web Browser.

    R Dietmar Müller

    Full Text Available The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to stimulate teaching and learning and novel avenues of inquiry.

  11. Multifractal characterizations of nonstationary and intermittency in geophysical fields: Observed, retrieved, or simulated

    Davis, A.; Wiscombe, W.; Cahalan, R.; Marshak, A.

    1994-01-01

    Geophysical data rarely show any smoothness at any scale, and this often makes comparison with theoretical model output difficult. However, highly fluctuating signals and fractual structures are typical of open dissipative systems with nonlinear dynamics, the focus of most geophysical research. High levels of variability are excited over a large range of scales by the combined actions of external forcing and internal instability. At very small scales we expect geophysical fields to be smooth, but these are rarely resolved with available instrumentation or simulation tools; nondifferentiable and even discontinuous models are therefore in order. We need methods of statistically analyzing geophysical data, whether measured in situ, remotely sensed or even generated by a computer model, that are adapted to these characteristics. An important preliminary task is to define statistically stationary features in generally nonstationary signals. We first discuss a simple criterion for stationarity in finite data streams that exhibit power law energy spectra and then, guided by developments in turbulence studies, we advocate the use of two ways of analyzing the scale dependence of statistical information: singular measures and qth order structure functions. In nonstationary situations, the approach based on singular measures seeks power law behavior in integrals over all possible scales of a nonnegative stationary field derived from the data, leading to a characterization of the intermittency in this field. In contrast, the approach based on structure functions uses the signal itself, seeking power laws for the statistical moments of absolute increments over arbitrarily large scales, leading to a characterization of the prevailing nonstationarity in both quantitative and qualitative terms. We explain graphically, step by step, both multifractal statistics which are largely complementary to each other. 45 refs., 13 figs., 2 tabs

  12. Model of geophysical fields representation in problems of complex correlation-extreme navigation

    Volodymyr KHARCHENKO

    2015-09-01

    Full Text Available A model of the optimal representation of spatial data for the task of complex correlation-extreme navigation is developed based on the criterion of minimum deviation of the correlation functions of the original and the resulting fields. Calculations are presented for one-dimensional case using the approximation of the correlation function by Fourier series. It is shown that in the presence of different geophysical map data fields their representation is possible by single template with optimal sampling without distorting the form of the correlation functions.

  13. The DEBOT Model, a New Global Barotropic Ocean Tidal Model: Test Computations and an Application in Related Geophysical Disciplines

    Einspigel, D.; Sachl, L.; Martinec, Z.

    2014-12-01

    We present the DEBOT model, which is a new global barotropic ocean model. The DEBOT model is primarily designed for modelling of ocean flow generated by the tidal attraction of the Moon and the Sun, however it can be used for other ocean applications where the barotropic model is sufficient, for instance, a tsunami wave propagation. The model has been thoroughly tested by several different methods: 1) synthetic example which involves a tsunami-like wave propagation of an initial Gaussian depression and testing of the conservation of integral invariants, 2) a benchmark study with another barotropic model, the LSGbt model, has been performed and 3) results of realistic simulations have been compared with data from tide gauge measurements around the world. The test computations prove the validity of the numerical code and demonstrate the ability of the DEBOT model to simulate the realistic ocean tides. The DEBOT model will be principaly applied in related geophysical disciplines, for instance, in an investigation of an influence of the ocean tides on the geomagnetic field or the Earth's rotation. A module for modelling of the secondary poloidal magnetic field generated by an ocean flow is already implemented in the DEBOT model and preliminary results will be presented. The future aim is to assimilate magnetic data provided by the Swarm satellite mission into the ocean flow model.

  14. Geophysics, Remote Sensing, and the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Integrated Field Exercise 2014

    Sussman, A. J.; Macleod, G.; Labak, P.; Malich, G.; Rowlands, A. P.; Craven, J.; Sweeney, J. J.; Chiappini, M.; Tuckwell, G.; Sankey, P.

    2015-12-01

    The Integrated Field Exercise of 2014 (IFE14) was an event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of an on-site inspection (OSI) within the CTBT verification regime. During an OSI, up to 40 international inspectors will search an area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of a real OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams (which executed the scenario in which the exercise was played) and those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test and integrate Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, suites of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, in addition to other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection using other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials, and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of the goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  15. Use of Geodetic Surveys of Leveling Lines and Dry Tilt Arrays to Study Faults and Volcanoes in Undergraduate Field Geophysics Classes

    Polet, J.; Alvarez, K.; Elizondo, K.

    2017-12-01

    In the early 1980's and 1990's numerous leveling lines and dry tilt arrays were installed throughout Central and Southern California by United States Geological Survey scientists and other researchers (e.g. Sylvester, 1985). These lines or triangular arrays of geodetic monuments commonly straddle faults or have been installed close to volcanic areas, where significant motion is expected over relatively short time periods. Over the past year, we have incorporated geodetic surveys of these arrays as part of our field exercises in undergraduate and graduate level classes on topics such as shallow subsurface geophysics and field geophysics. In some cases, the monuments themselves first had to be located based on only limited information, testing students' Brunton use and map reading skills. Monuments were then surveyed using total stations and global navigation satellite system (GNSS) receivers, using a variety of experimental procedures. The surveys were documented with tables, photos, maps and graphs in field reports, as well as in wiki pages created by student groups for a geophysics field class this June. The measurements were processed by the students and compared with similar data from surveys conducted soon after installation of the arrays, to analyze the deformation that occurred over the last few decades. The different geodetic techniques were also compared and an error analysis was conducted. The analysis and processing of these data challenged and enhanced students' quantitative literacy and technology skills. The final geodetic measurements are being incorporated into several senior and MSc thesis projects. Further surveys are planned for additional classes, in topics that could include seismology, geodesy, volcanology and global geophysics. We are also considering additional technologies, such as structure from motion (SfM) photogrammetry.

  16. Geophysical constraints on geodynamic processes at convergent margins: A global perspective

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-04-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins on the crustal and upper mantle structure, seismicity, and geometry of subducting slab. We present global maps of free-air and Bouguer gravity anomalies, heat flow, seismicity, seismic Vs anomalies in the upper mantle, and plate convergence rate, as well as 20 profiles across different convergent margins. A global analysis of these data for three types of convergent margins, formed by ocean-ocean, ocean-continent, and continent-continent collisions, allows us to recognize the following patterns. (1) Plate convergence rate depends on the type of convergent margins and it is significantly larger when, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M N 8.0) earthquakes and for generating intermediate and deep seismicity along the convergent margins. When oceanic slabs subduct beneath a continent, a gap in the seismogenic zone exists at depths between ca. 250 km and 500 km. Given that the seismogenic zone terminates at ca. 200 km depth in case of continent-continent collision, we propose oceanic origin of subducting slabs beneath the Zagros, the Pamir, and the Vrancea zone. (3) Dip angle of the subducting slab in continent-ocean collision does not correlate neither with the age of subducting oceanic slab, nor with the convergence rate. For ocean-ocean subduction, clear trends are recognized: steeply dipping slabs are characteristic of young subducting plates and of oceanic plates with high convergence rate, with slab rotation towards a near-vertical dip angle at depths below ca. 500 km at very high

  17. Innovative Ideas for Developing Geophysics Field Schools in Classes with Small Numbers: Experience Gained from the AfricaArray/Wits Geophysics International Field School

    Webb, S. J.; Manzi, M. S.; Scheiber-Enslin, S. E.; Durrheim, R. J.; Nyblade, A.

    2016-12-01

    The geophysics program at Wits University has few students in its Honours program, making it difficult to run a fully-fledged field school. However, there is a dire need for field training both at Wits and throughout Africa. The solution is to expand the number of participants by taking additional students from Africa and the US. This has been sponsored by the Society of Exploration Geophysicists (SEG) and more recently UNESCO, and a variety of US NSF programs. More students make it efficient to acquire data using a variety of methods and provides for important networking and skills development. Expanding the number of participants means that more staff members are needed. In Africa, it is difficult to recruit corporate participants as volunteering for three weeks is simply too long to take off from work. Thus university academic staff must commit on an ongoing basis and this can lead to burnout. The timing of the field school is during prime research field time and the results are difficult to publish. The solution has been to use graduate students as instructors. This has turned out to be a valuable experience for graduate students; one or two graduate students are assigned to each method and they take on the responsibility of preparing lectures, equipment, software and computers. Thus the program has developed into a two tier training program, whereby Honours students participate as students with the objective of collecting data and writing a company style report and graduate students participate as instructors. Graduate students participate for one or two years and the payment is mitigated as they are required to work a number of hours for the department. This has led to the establishment of a vibrant network of young geophysicists throughout Africa and the US.

  18. Modeling and Simulation of the Gonghe geothermal field (Qinghai, China) Constrained by Geophysical

    Zeng, Z.; Wang, K.; Zhao, X.; Huai, N.; He, R.

    2017-12-01

    The Gonghe geothermal field in Qinghai is important because of its variety of geothermal resource types. Now, the Gonghe geothermal field has been a demonstration area of geothermal development and utilization in China. It has been the topic of numerous geophysical investigations conducted to determine the depth to and the nature of the heat source, and to image the channel of heat flow. This work focuses on the causes of geothermal fields used numerical simulation method constrained by geophysical data. At first, by analyzing and inverting an magnetotelluric (MT) measurements profile across this area we obtain the deep resistivity distribution. Using the gravity anomaly inversion constrained by the resistivity profile, the density of the basins and the underlying rocks can be calculated. Combined with the measured parameters of rock thermal conductivity, the 2D geothermal conceptual model of Gonghe area is constructed. Then, the unstructured finite element method is used to simulate the heat conduction equation and the geothermal field. Results of this model were calibrated with temperature data for the observation well. A good match was achieved between the measured values and the model's predicted values. At last, geothermal gradient and heat flow distribution of this model are calculated(fig.1.). According to the results of geophysical exploration, there is a low resistance and low density region (d5) below the geothermal field. We recognize that this anomaly is generated by tectonic motion, and this tectonic movement creates a mantle-derived heat upstream channel. So that the anomalous basement heat flow values are higher than in other regions. The model's predicted values simulated using that boundary condition has a good match with the measured values. The simulated heat flow values show that the mantle-derived heat flow migrates through the boundary of the low-resistance low-density anomaly area to the Gonghe geothermal field, with only a small fraction

  19. Archaeomagnetic Dating in Europe Using a Global Geomagnetic Field Model

    Lodge, A.; Suttie, N.; Holme, R.; Shaw, J.; Hill, M. J.; Linford, P.

    2009-12-01

    Using up-to-date archaeomagnetic data from Europe and CALS7K.2 as an apriori model, we produce a global geomagnetic field model to be used for archaeomagnetic dating in Europe. More details on the modelling process will be presented elsewhere (in session GP12, abstract: Geophysical insights from archaeomagnetic dating). Here we apply the global geomagnetic field model to a series of test cases from both recently published data and unpublished data to demonstrate its application to archaeomagnetic dating. We compare the results produced using our model with those from the spherical cap harmonic model, SCHA.DIF.3K (Pavón-Carrasco et al., 2009), the global geomagnetic field model, ARCH3K.1 (Korte et al., 2009) and those produced using the palaeosecular variation curves generated using Bayesian statistics (Lanos, 2004). We include examples which emphasise the importance of using three component data (declination, inclination and intensity) to produce an improved archaeomagnetic date. In addition to the careful selection of an appropriate model for archaeomagnetic dating, the choice of errors on the model curves is vital for providing archaeologists with an age range of possible dates. We discuss how best to constrain the errors on the model curves and alternative ways to the mathematical method of Lanos (2004) for producing an archaeomagnetic date for archaeologists.

  20. Geophysical Analysis of Young Monogenetic Volcanoes in the San Francisco Volcanic Field, Arizona

    Rees, S.; Porter, R. C.; Riggs, N.

    2017-12-01

    The San Francisco Volcanic Field (SFVF), located in northern Arizona, USA, contains some of the youngest intracontinental volcanism within the United States and, given its recent eruptive history, presents an excellent opportunity to better understand how these systems behave. Geophysical techniques such as magnetics, paleomagnetics, and seismic refraction can be used to understand eruptive behavior and image shallow subsurface structures. As such, they present an opportunity to understand eruptive processes associated with the monogenetic volcanism that is common within the SFVF. These techniques are especially beneficial in areas where erosion has not exposed shallow eruptive features within the volcano. We focus on two volcanoes within the SFVF, Merriam Crater and Crater 120 for this work. These are thought to be some of the youngest volcanoes in the field and, as such, are well preserved. Aside from being young, they both exhibit interesting features such as multiple vents, apparent vent alignment, and lack of erosional features that are present at many of the other volcanoes in the SFVF, making them ideal for this work. Initial results show that shallow subsurface basaltic masses can be located using geophysical techniques. These masses are interpreted as dikes or lava flows that are covered by younger scoria. Propagating dikes drive eruptions at monogenetic volcanoes, which often appear in aligned clusters. Locating these features will further the understanding of how magma is transported and how eruptions may have progressed.

  1. Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California

    Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.

    1981-01-01

    The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is

  2. Global Geopotential Energy & Stress Field

    Schiffer, Christian; Nielsen, S.B.

    of the oceanic lithosphere. An entire modelling of the shallow Geopotential Energy is hereby approached, not taking into account possible deeper signals but all lithospheric signals for the subsequent stress calculation. Therefore a global lithospheric density model is necessary to calculate the corresponding...... response to Geopotential Energy and the Geoid. A linearized inverse method fits a lithospheric reference model to reproduce measured data sets, such as topography and surface heat flow, while assuming isostasy and solving the steady state heat equation. A FEM code solves the equations of equilibrium...

  3. Interactive and Approachable Web-Based Tools for Exploring Global Geophysical Data Records

    Croteau, M. J.; Nerem, R. S.; Merrifield, M. A.; Thompson, P. R.; Loomis, B. D.; Wiese, D. N.; Zlotnicki, V.; Larson, J.; Talpe, M.; Hardy, R. A.

    2017-12-01

    Making global and regional data accessible and understandable for non-experts can be both challenging and hazardous. While data products are often developed with end users in mind, the ease of use of these data can vary greatly. Scientists must take care to provide detailed guides for how to use data products to ensure users are not incorrectly applying data to their problem. For example, terrestrial water storage data from the Gravity Recovery and Climate Experiment (GRACE) satellite mission is notoriously difficult for non-experts to access and correctly use. However, allowing these data to be easily accessible to scientists outside the GRACE community is desirable because this would allow that data to see much wider-spread use. We have developed a web-based interactive mapping and plotting tool that provides easy access to geophysical data. This work presents an intuitive method for making such data widely accessible to experts and non-experts alike, making the data approachable and ensuring proper use of the data. This tool has proven helpful to experts by providing fast and detailed access to the data. Simultaneously, the tool allows non-experts to gain familiarity with the information contained in the data and access to that information for both scientific studies and public use. In this presentation, we discuss the development of this tool and application to both GRACE and ocean altimetry satellite missions, and demonstrate the capabilities of the tool. Focusing on the data visualization aspects of the tool, we showcase our integrations of the Mapbox API and the D3.js data-driven web document framework. We then explore the potential of these tools in other web-based visualization projects, and how incorporation of such tools into science can improve the presentation of research results. We demonstrate how the development of an interactive and exploratory resource can enable further layers of exploratory and scientific discovery.

  4. A geophysical potential field study to image the Makran subduction zone in SE of Iran

    Abedi, Maysam; Bahroudi, Abbas

    2016-10-01

    The Makran subduction wedge as one of the largest subduction complexes has been forming due to the Arabian oceanic lithosphere subducting beneath the Lut and the Afghan rigid block microplates. To better visualize the subducting oceanic crust in this region, a geophysical model of magnetic susceptibility from an airborne magnetic survey (line spacing about 7.5 km) over the Makran zone located at southeast of Iran is created to image various structural units in Iran plate. The constructed geophysical model from the 3D inverse modeling of the airborne magnetic data indicates a thin subducting slab to the north of the Makran structural zone. It is demonstrated that the thickness of sedimentary units varies approximately at an interval of 7.5-11 km from north to south of this zone in the Iranian plate, meanwhile the curie depth is also estimated approximately basement, while such intensity reduces over the Makran. The directional derivatives of the magnetic field data have subtle changes in the Makran, but strongly increase in the Jazmurian by enhancing and separating different structural boundaries in this region. In addition, the density variations of the subsurface geological layers were determined by 3D inversion of the ground-based gravity data over the whole study area, where the constructed density model was in good agreement with the magnetic one. According to the outputs of the magnetic susceptibility and the density contrast, the Arabian plate subducts to the north under the Eurasia with a very low dip angle in the Makran structural zone.

  5. Reflections by a student and a faculty member on student-faculty collaborative geophysical field research

    Bank, C.; Rotzien, J.

    2007-12-01

    More and more students and faculty engage in collaborative research. Field geophysics provides a fascinating venue, as it always contributes to interpersonal relations, usually involves off-campus work, and often allows us to meet new people and explore a different culture. Tackling an authentic research problem keeps a faculty member excited about her/his discipline, while allowing a student to engage in the process of science, follow a researcher's thoughts and contribute to a real project. The exchange of ideas and the generation of new knowledge is rewarding to the student as it facilitates her/his academic growth. Despite the obvious advantages of including students in field-based research, few students are allowed such an opportunity because of the institutional commitment in time and money that is necessary for success. Other challenges in field-based geophysical research include steep learning curves related to the use of equipment, unknown outcomes (data that is often difficult to interpret), and a true commitment to the project on the student's part. The faculty member on the other hand faces additional challenges because of the responsibility for students in the field, scheduling constraints, limited funding, and students' diverse academic goals. This presentation will be given by a faculty member and a student who have engaged in various authentic research projects. Projects ranged from afternoon lab exercises on campus (eg, microgravity survey over a tunnel on campus), course projects connected to field trips (eg, magnetic study and subsequent potential field analysis), summer research projects (eg, georadar survey of Deboullie Lake rock glacier), to year-long undergraduate thesis projects (eg, potential field studies at igneous centres of the Navajo Volcanic Field). We will present highlights of these projects, examine their pedagogical merits, and discuss the advantages and rewards we earned as well as the challenges we faced. Despite all challenges

  6. Field Evaluation of Two Geophysical Techniques for Real-Time Mapping of Smouldering Remediation (STAR)

    Trento, L. M.; Tsourlos, P.; McMaster, M.; Liefl, D.; Sims, A.; Dominguez, J. L. G.; Vidumsky, J.; Gerhard, J.

    2016-12-01

    Self-sustaining Treatment for Active Remediation (STAR) technology destroys non-aqueous phase liquid (NAPL) in situ using principles of smouldering combustion. It involves propagating an exothermic (400-1000C) oxidation reaction outwards from an ignition well. A full-scale STAR system is currently being applied at an industrial site contaminated with coal tar below the water table in New Jersey, USA. STAR is typically tracked using multi-level thermocouples, which are discrete and sparse in space and time. This study evaluates two surface-based geophysical methods - Electrical Resistivity Tomography (ERT) and Self-Potential (SP) - for the ability to map the STAR reaction in real time at the New Jersey site. Both techniques involve placing electrode arrays on the surface and monitoring electrical signals over time (i.e., time-lapse). It is hypothesized that ERT should be able to monitor the resistive dry zone that precedes the reaction front and/or the growing NAPL-depleted zone. SP is expected to be able to detect the potential difference associated with thermal gradients generated by the reaction. Approximately 72 ERT electrodes in a "swiss cross" pattern plus 10 SP electrodes will be emplaced over single STAR treatment cell (six ignition wells). This setup will be employed to monitor both a deep (25 feet) and shallow (8 feet) STAR treatments. The geophysics will be complemented by in situ temperature measurements, continuous gas measurements, and pre- and post-treatment coring. The primary goal of this research is to evaluate the effectiveness of using ERT and SP for STAR under field conditions. The tests will be conducted in August 2016.

  7. Streamlined Archaeo-geophysical Data Processing and Integration for DoD Field Use

    2012-04-01

    6 Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing...Figure 2-3. Flowchart illustrating the old, ad-hoc approach of processing and integrating multiple geophysical datasets. Each color represents a... beginner , intermediate, and expert user. Most users agreed that the software is very effective for beginners because: (1) it provides a geophysics

  8. The GPlates Portal: Cloud-based interactive 3D and 4D visualization of global geological and geophysical data and models in a browser

    Müller, Dietmar; Qin, Xiaodong; Sandwell, David; Dutkiewicz, Adriana; Williams, Simon; Flament, Nicolas; Maus, Stefan; Seton, Maria

    2017-04-01

    The pace of scientific discovery is being transformed by the availability of 'big data' and open access, open source software tools. These innovations open up new avenues for how scientists communicate and share data and ideas with each other, and with the general public. Here, we describe our efforts to bring to life our studies of the Earth system, both at present day and through deep geological time. The GPlates Portal (portal.gplates.org) is a gateway to a series of virtual globes based on the Cesium Javascript library. The portal allows fast interactive visualization of global geophysical and geological data sets, draped over digital terrain models. The globes use WebGL for hardware-accelerated graphics and are cross-platform and cross-browser compatible with complete camera control. The globes include a visualization of a high-resolution global digital elevation model and the vertical gradient of the global gravity field, highlighting small-scale seafloor fabric such as abyssal hills, fracture zones and seamounts in unprecedented detail. The portal also features globes portraying seafloor geology and a global data set of marine magnetic anomaly identifications. The portal is specifically designed to visualize models of the Earth through geological time. These space-time globes include tectonic reconstructions of the Earth's gravity and magnetic fields, and several models of long-wavelength surface dynamic topography through time, including the interactive plotting of vertical motion histories at selected locations. The portal has been visited over half a million times since its inception in October 2015, as tracked by google analytics, and the globes have been featured in numerous media articles around the world. This demonstrates the high demand for fast visualization of global spatial big data, both for the present-day as well as through geological time. The globes put the on-the-fly visualization of massive data sets at the fingertips of end-users to

  9. Geophysical expression of caldera related volcanism, structures and mineralization in the McDermitt volcanic field

    Rytuba, J. J.; Blakely, R. J.; Moring, B.; Miller, R.

    2013-12-01

    The High Rock, Lake Owyhee, and McDermitt volcanic fields, consisting of regionally extensive ash flow tuffs and associated calderas, developed in NW Nevada and SE Oregon following eruption of the ca. 16.7 Ma Steens flood basalt. The first ash flow, the Tuff of Oregon Canyon, erupted from the McDermitt volcanic field at 16.5Ma. It is chemically zoned from peralkaline rhyolite to dacite with trace element ratios that distinguish it from other ash flow tuffs. The source caldera, based on tuff distribution, thickness, and size of lithic fragments, is in the area in which the McDermitt caldera (16.3 Ma) subsequently formed. Gravity and magnetic anomalies are associated with some but not all of the calderas. The White Horse caldera (15.6 Ma), the youngest caldera in the McDermitt volcanic field has the best geophysical expression, with both aeromagnetic and gravity lows coinciding with the caldera. Detailed aeromagnetic and gravity surveys of the McDermitt caldera, combined with geology and radiometric surveys, provides insight into the complexities of caldera collapse, resurgence, post collapse volcanism, and hydrothermal mineralization. The McDermitt caldera is among the most mineralized calderas in the world, whereas other calderas in these three Mid Miocene volcanic fields do not contain important hydrothermal ore deposits, despite having similar age and chemistry. The McDermitt caldera is host to Hg, U, and Li deposits and potentially significant resources of Ga, Sb, and REE. The geophysical data indicate that post-caldera collapse intrusions were important in formation of the hydrothermal systems. An aeromagnetic low along the E caldera margin reflects an intrusion at a depth of 2 km associated with the near-surface McDermitt-hot-spring-type Hg-Sb deposit, and the deeper level, high-sulfidation Ga-REE occurrence. The Li deposits on the W side of the caldera are associated with a series of low amplitude, small diameter aeromagnetic anomalies that form a continuous

  10. Geophysics field school: A team-based learning experience for students and faculty

    Karchewski, B.; Innanen, K. A.; Lauer, R. M.; Pidlisecky, A.

    2016-12-01

    The core challenge facing a modern science educator is to deliver a curriculum that reaches broadly and deeply into the technical domain, while also helping students to develop fundamental scientific skills such as inquiry, critical thinking and technical communication. That is, our aim is for students to achieve significant learning at all levels summarized by Bloom's Taxonomy of Educational Objectives. It is not always clear how to achieve the full spectrum of goals, with much debate over which component is more important in a science education. Team-based and experiential learning are research-supported approaches that aim to reach across the spectrum by placing students in a setting where they solve practical problems in teams of peers. This learning mode modifies the role of the instructor to a guide or facilitator, and students take a leadership role in their own education. We present a case study of our team's implementation of team-based learning in a geophysics field school, an inherently experiential learning environment. The core philosophies behind our implementation are to present clearly defined learning outcomes, to recognize that students differ in their learning modalities and to strive to engage students through a range of evidence-based learning experiences. We discuss the techniques employed to create functional teams, the key learning activities involved in a typical day of field school and data demonstrating the learning activities that showed the strongest correlation to overall performance in the course. In the process, we also realized that our team-based approach to course design and implementation also enhanced our skillsets as educators, and our institution recently recognized our efforts with a team teaching award. Therefore, we conclude with some of our observations of best practices for team teaching in a field setting to initiate discussions with colleagues engaged in similar activities.

  11. Geophysical exploration on the subsurface geology of La Garrotxa monogenetic volcanic field (NE Iberian Peninsula)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-11-01

    We applied self-potential (SP) and electrical resistivity tomography (ERT) to the exploration of the uppermost part of the substrate geology and shallow structure of La Garrotxa monogenetic volcanic field, part of the European Neogene-Quaternary volcanic province. The aim of the study was to improve knowledge of the shallowest part of the feeding system of these monogenetic volcanoes and of its relationship with the subsurface geology. This study complements previous geophysical studies carried out at a less detailed scale and aimed at identifying deeper structures, and together will constitute the basis to establish volcanic susceptibility in La Garrotxa. SP study complemented previous smaller-scale studies and targeted key areas where ERT could be conducted. The main new results include the generation of resistivity models identifying dykes and faults associated with several monogenetic cones. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These structures coincide with the deeper ones identified in previous studies, and show that previous Alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Moreover, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area are controlled by shallow stratigraphical, structural and hydrogeological differences underneath these monogenetic volcanoes.

  12. Arithmetic geometry over global function fields

    Longhi, Ignazio; Trihan, Fabien

    2014-01-01

    This volume collects the texts of five courses given in the Arithmetic Geometry Research Programme 2009–2010 at the CRM Barcelona. All of them deal with characteristic p global fields; the common theme around which they are centered is the arithmetic of L-functions (and other special functions), investigated in various aspects. Three courses examine some of the most important recent ideas in the positive characteristic theory discovered by Goss (a field in tumultuous development, which is seeing a number of spectacular advances): they cover respectively crystals over function fields (with a number of applications to L-functions of t-motives), gamma and zeta functions in characteristic p, and the binomial theorem. The other two are focused on topics closer to the classical theory of abelian varieties over number fields: they give respectively a thorough introduction to the arithmetic of Jacobians over function fields (including the current status of the BSD conjecture and its geometric analogues, and the con...

  13. Integrated geophysical imaging of the Aluto-Langano geothermal field (Ethiopia).

    Rizzello, Daniele; Armadillo, Egidio; Verdoya, Massimo; Pasqua, Claudio; Kebede, Solomon; Mengiste, Andarge; Hailegiorgis, Getenesh; Abera, Fitsum; Mengesha, Kebede; Meqbel, Naser

    2017-04-01

    The Aluto-Langano geothermal system is located in the central part of the Main Ethiopian Rift, one of the world's most tectonically active areas, where continental rifting has been occurring since several Ma and has yielded widespread volcanism and enhanced geothermal gradient. The geothermal system is associated to the Mt Aluto Volcanic Complex, located along the eastern margin of the rift and related to the Wonji Fault Belt, constituted by Quaternary NNE-SSW en-echelon faults. These structures are younger than the NE-SW border faults of the central Main Ethiopian Rift and were originated by a stress field oblique to the rift direction. This peculiar tectonism yielded local intense rock fracturing that may favour the development of geothermal reservoirs. In this paper, we present the results of an integrated geophysical survey carried out in 2015 over an area of about 200 km2 covering the Mt Aluto Volcanic Complex. The geophysical campaign included 162 coincident magnetotelluric and time domain electromagnetic soundings, and 207 gravity stations, partially located in the sedimentary plain surrounding the volcanic complex. Three-dimensional inversion of the full MT static-corrected tensor and geomagnetic tipper was performed in the 338-0.001 Hz band. Gravity data processing comprised digital enhancement of the residual Bouguer anomaly and 2D-3D inverse modelling. The geophysical results were compared to direct observations of stratigraphy, rock alteration and temperature available from the several deep wells drilled in the area. The magnetotelluric results imaged a low-resistivity layer which appears well correlated with the mixed alteration layer found in the wells and can be interpreted as a low-temperature clay cap. The clay-cap bottom depth is well corresponds to a change of thermal gradient. The clay cap is discontinuous, and in the central area of the volcanic complex is characterised by a dome-shape structure likely related to isotherm rising. The propilitic

  14. Advances in geophysics

    Sato, Haruo

    2013-01-01

    The critically acclaimed serialized review journal for over 50 years, Advances in Geophysics is a highly respected publication in the field of geophysics. Since 1952, each volume has been eagerly awaited, frequently consulted, and praised by researchers and reviewers alike. Now in its 54th volume, it contains much material still relevant today--truly an essential publication for researchers in all fields of geophysics.Key features: * Contributions from leading authorities * Informs and updates on all the latest developments in the field

  15. An Integration of Geophysical Methods to Explore Buried Structures on the Bench and in the Field

    Booterbaugh, A. P.; Lachhab, A.

    2011-12-01

    In the following study, an integration of geophysical methods and devices were implemented on the bench and in the field to accurately identify buried structures. Electrical resistivity and ground penetrating radar methods, including both a fabricated electrical resistivity apparatus and an electrical resistivity device were all used in this study. The primary goal of the study was to test the accuracy and reliability of the apparatus which costs a fraction of the price of a commercially sold resistivity instrument. The apparatus consists of four electrodes, two multimeters, a 12-volt battery, a DC to AC inverter and wires. Using this apparatus, an electrical current, is injected into earth material through the outer electrodes and the potential voltage is measured across the inner electrodes using a multimeter. The recorded potential and the intensity of the current can then be used to calculate the apparent resistivity of a given material. In this study the Wenner array, which consists of four equally spaced electrodes, was used due to its higher accuracy and greater resolution when investigating lateral variations of resistivity in shallow depths. In addition, the apparatus was used with an electrical resistivity device and a ground penetrating radar unit to explore the buried building foundation of Gustavus Adolphus Hall located on Susquehanna University Campus, Selinsgrove, PA. The apparatus successfully produced consistent results on the bench level revealing the location of small bricks buried under a soil material. In the summer of 2010, seventeen electrical resistivity transects were conducted on the Gustavus Adolphus site where and revealed remnants of the foundation. In the summer of 2011, a ground penetrating radar survey and an electrical resistivity tomography survey were conducted to further explore the site. Together these methods identified the location of the foundation and proved that the apparatus was a reliable tool for regular use on the bench

  16. Analyticity and the Global Information Field

    Evgeni A. Solov'ev

    2015-03-01

    Full Text Available The relation between analyticity in mathematics and the concept of a global information field in physics is reviewed. Mathematics is complete in the complex plane only. In the complex plane, a very powerful tool appears—analyticity. According to this property, if an analytic function is known on the countable set of points having an accumulation point, then it is known everywhere. This mysterious property has profound consequences in quantum physics. Analyticity allows one to obtain asymptotic (approximate results in terms of some singular points in the complex plane which accumulate all necessary data on a given process. As an example, slow atomic collisions are presented, where the cross-sections of inelastic transitions are determined by branch-points of the adiabatic energy surface at a complex internuclear distance. Common aspects of the non-local nature of analyticity and a recently introduced interpretation of classical electrodynamics and quantum physics as theories of a global information field are discussed.

  17. Correlations, spectral composition and interaction character of seismic and atmospheric geophysical fields in the 1-4 hours period range

    Petrova, L.N.

    1995-01-01

    Results of analysis of synchronized observations of seismic oscillations ans near-surface atmosphere pressure variations are presented. Similar spectra structure and high levels of coherency coefficients point out the existence of correlational links between them. The conclusion on the necessity of the investigation of the links is made. H hypothesis on possible gravity mechanism of induceing the oscillations in the analyzed geophysical fields is proposed. 5 refs., 2 tabs

  18. Geochemical and geophysical monitoring activities in Campo de Calatrava Volcanic Field (Spain)

    Luengo-Oroz, Natividad; Villasante-Marcos, Víctor; López-Díaz, Rubén; Calvo, Marta; Albert, Helena; Domínguez Cerdeña, Itahiza

    2017-04-01

    The Campo de Calatrava Volcanic Field (CCVF) or Spanish Central Volcanic Zone is located in central continental Spain (Ciudad Real province) and covers about 5000 km2. It includes around 240 eruptive centers, mainly monogenetic basaltic cones but also explosive maar structures. According to K-Ar geochronology, its main activity phase occurred during Pliocene and Pleistocene epochs (between 5 and 1.7 Ma) and involved alkaline to ultraalkaline magmas, although an older ultrapotassic phase is dated around 8.7-6.4 Ma. However, some recent works have proposed Holocene ages for some of the volcanic products, opening the possibility of considering the CCVF "active" according to international standards. Responding to this situation, the Instituto Geográfico Nacional (IGN) has initiated geochemical and geophysical monitoring activities in the CCVF. Here, we describe these ongoing efforts and we report results about groundwater geochemistry at several natural highly-gaseous springs in the area (hervideros), as well as soil temperature, CO2 diffuse flux from the soil and electrical self-potential data mapped on a small degassing structure called La Sima. In order to analyze microseismicity or any seismic anomaly in the CCVF, a seismic station has also been installed close to this degassing structure. Physicochemical parameters (temperature, pH, Eh and electric conductivity) were measured in situ in four springs and samples were taken in order to analyze major ions and trace elements. Total composition of dissolved gases and helium isotopic ratios were also determined. To complete soil temperature, self-potential and gas prospections performed in La Sima, soil gases were sampled at the bottom of the structure at a depth of 20 cm. Analysis of the total gas composition found 957400 ppm of CO2. Low values of O2 and N2 were also detected (5600 and 24800 ppm respectively).

  19. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  20. Lacunarity of geophysical well logs in the Cantarell oil field, Gulf of Mexico

    Arizabalo, Ruben Dario [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Oleschko, Klavdia [Centro de Geociencias, Universidad Nacional Autonoma de Mexico, Juriquilla, Queretaro (Mexico); Korvin, Gabor [King Fahd University, Dhahran (Saudi Arabia); Lozada, Manuel [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Castrejon, Ricardo [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico); Ronquillo, Gerardo [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico)

    2006-04-15

    Lacunarity and fractal variations in geophysical well logs are associated with stratigraphic and petrophysical properties of the naturally fractured Cantarell field in the Gulf of Mexico. Neutron porosity (NPHI), density (RHOB, DRHO, PEF), resistivity (LLD, LLS, MSFL), natural radioactivity (GR, CGR, URAN, POTA, THOR) and caliper (CALI) logs are studied. The resistivity logs yielded remarkably high lacunarity values, especially in the hydrocarbon source- and reservoir rocks. Lacunarity {delta} was found to depend on the resolution and radial depth of penetration of the logging method. It systematically increased in the following order: {delta}(RHOB) < {delta}(CALI) < {delta}(PEF) < {delta}(URAN) < {delta}(GR) < {delta}(NPHI) < {delta}(POTA) < {delta}(CGR) < {delta}(THOR) < {delta}(MSFL) < {delta}(DRHO) < {delta}(LLS) < {delta}(LLD). [Spanish] En este trabajo fueron analizadas las variaciones fractales y de lagunaridad de los registros geofisicos de pozo, con el fin de asociarlos con las propiedades estratigraficas y petrofisicas del yacimiento naturalmente fracturado de Cantarell, en el Golfo de Mexico. Los registros considerados fueron: porosidad neutron (NPHI), densidad (RHOB, DRHO, PEF), resistividad (LLD, LLS, MSFL), radiactividad natural (GR, CGR, URAN, POTA, THOR) y caliper (CALI). Los registros de resistividad produjeron valores de lagunaridad notablemente altos, especialmente en las rocas generadoras y almacenadoras, a diferencia de los demas registros, cuya homogeneidad de traza implico una baja lagunaridad. Los resultados indican que la lagunaridad observada depende de la resolucion y profundidad radial de penetracion del metodo geofisico estudiado y aumenta sistematicamente en el siguiente orden: {delta}(RHOB) < {delta}(CALI) < {delta}(PEF) < {delta}(URAN) < {delta}(GR) < {delta}(NPHI) < {delta}(POTA) < {delta}(CGR) < {delta}(THOR) < {delta}(MSFL) < {delta}(DRHO) < {delta}(LLS) < {delta}(LLD).

  1. The Global Approach to Quantum Field Theory

    Folacci, Antoine; Jensen, Bruce

    2003-01-01

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi i defined on a given spacetime M, the set of all varphi i (x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the formalism of quantum field

  2. Global effects in quaternionic quantum field theory

    Brumby, S.P.; Joshi, G.C.

    1997-01-01

    A local quaternionic gauge structure is introduced onto space-time. It is a theory of vector bosons and dimensionless scalar fields, which recalls semi-classical treatments of gravity. After transforming to the 'i' gauge, it was found that the quaternionic symmetry takes the form of an exotic SU (2) gauge theory in the standard complex framework, with global phenomena appearing in the form of cosmic strings. Coupling this quaternionic sector to the Standard Model sector has only been achieved at the level of an effective theory, which is constrained by the quaternionic origin of the bosons to be of a nonrenormalisable form. 14 refs.,

  3. Use of Geophysical and Remote Sensing Techniques During the Comprehensive Test Ban Treaty Organization's Integrated Field Exercise 2014

    Labak, Peter; Sussman, Aviva; Rowlands, Aled; Chiappini, Massimo; Malich, Gregor; MacLeod, Gordon; Sankey, Peter; Sweeney, Jerry; Tuckwell, George

    2016-04-01

    The Integrated Field Exercise of 2014 (IFE14) was a field event held in the Hashemite Kingdom of Jordan (with concurrent activities in Austria) that tested the operational and technical capabilities of a Comprehensive Test Ban Treaty's (CTBT) on-site inspection (OSI). During an OSI, up to 40 inspectors search a 1000km2 inspection area for evidence of a nuclear explosion. Over 250 experts from ~50 countries were involved in IFE14 (the largest simulation of an OSI to date) and worked from a number of different directions, such as the Exercise Management and Control Teams to execute the scenario in which the exercise was played, to those participants performing as members of the Inspection Team (IT). One of the main objectives of IFE14 was to test Treaty allowed inspection techniques, including a number of geophysical and remote sensing methods. In order to develop a scenario in which the simulated exercise could be carried out, a number of physical features in the IFE14 inspection area were designed and engineered by the Scenario Task Force Group (STF) that the IT could detect by applying the geophysical and remote sensing inspection technologies, as well as other techniques allowed by the CTBT. For example, in preparation for IFE14, the STF modeled a seismic triggering event that was provided to the IT to prompt them to detect and localize aftershocks in the vicinity of a possible explosion. Similarly, the STF planted shallow targets such as borehole casings and pipes for detection by other geophysical methods. In addition, airborne technologies, which included multi-spectral imaging, were deployed such that the IT could identify freshly exposed surfaces, imported materials and other areas that had been subject to modification. This presentation will introduce the CTBT and OSI, explain the IFE14 in terms of goals specific to geophysical and remote sensing methods, and show how both the preparation for and execution of IFE14 meet those goals.

  4. The Global Approach to Quantum Field Theory

    Folacci, Antoine; Jensen, Bruce [Faculte des Sciences, Universite de Corse (France); Department of Mathematics, University of Southampton (United Kingdom)

    2003-12-12

    Thanks to its impressive success in the second half of the 20th century, both in high-energy physics and in critical phenomena, quantum field theory has enjoyed an abundant literature. We therefore greet yet another book on this subject with caution: what can a monograph on quantum field theory bring now that is new, either conceptually or pedagogically? But when it is written by a physicist such as Bryce DeWitt, who has made his own contribution to the collection of field theory books with The Global Approach to Quantum Field Theory, all suspicion is naturally abandoned. DeWitt has made a formidable contribution to various areas of physics: general relativity, the interpretation of quantum mechanics, and most of all the quantization of non-Abelian gauge theories and quantum gravity. In addition, his pedagogical publications, especially the Les Houches schools of 1963 and 1983, have had a great impact on quantum field theory. We must begin by alerting the potential readers of this book that it cannot be compared to any other book in the field. This uniqueness applies to both the scientific content and the way the ideas are presented. For DeWitt, a central concept of field theory is that of 'space of histories'. For a field varphi{sup i} defined on a given spacetime M, the set of all varphi{sup i}(x) for all x in all charts of M defines its history. It is the space Phi of all possible histories (dynamically allowed or not) of the fields defined on M which is called the 'pace of histories' by DeWitt. If only bosonic fields are considered, the space of histories is an infinite-dimensional manifold and if fermionic fields are also present, it must be viewed as an infinite-dimensional supermanifold. The fields can then be regarded as coordinates on these structures, and the geometrical notions of differentiation, metric, connections, measure, as well as the geodesics which can be defined on it, are of fundamental importance in the development of the

  5. Crustal Magnetic Field Anomalies and Global Tectonics

    Storetvedt, Karsten

    2014-05-01

    A wide variety of evidence suggests that the ruling isochron (geomagnetic polarity versus age) hypothesis of marine magnetic lineations has no merit - undermining therefore one of the central tenets of plate tectonics. Instead, variable induction by the ambient geomagnetic field is likely to be the principal agent for mega-scale crustal magnetic features - in both oceanic and continental settings. This revitalizes the fault-controlled susceptibility-contrast model of marine magnetic lineations, originally proposed in the late 1960s. Thus, the marine magnetic 'striping' may be ascribed to tectonic shearing and related, but variable, disintegration of the original iron-oxide mineralogy, having developed primarily along one of the two pan-global sets of orthogonal fractures and faults. In this way, fault zones (having the more advanced mineral alteration) would be characterized by relatively low susceptibility, while more moderately affected crustal sections (located between principal fault zones) would be likely to have less altered oxide mineralogy and therefore higher magnetic susceptibility. On this basis, induction by the present geomagnetic field is likely to produce oscillating magnetic field anomalies with axis along the principal shear grain. The modus operandi of the alternative magneto-tectonic interpretation is inertia-driven wrenching of the global Alpine age palaeo-lithosphere - triggered by changes in Earth's rotation. Increasing sub-crustal loss to the upper mantle during the Upper Mesozoic had left the ensuing Alpine Earth in a tectonically unstable state. Thus, sub-crustal eclogitization and associated gravity-driven delamination to the upper mantle led to a certain degree of planetary acceleration which in turn gave rise to latitude-dependent, westward inertial wrenching of the global palaeo-lithosphere. During this process, 1) the thin and mechanically fragile oceanic crust were deformed into a new type of broad fold belts, and 2) the continents

  6. Global integrability of field theories. Proceedings

    Calmet, J.; Seiler, W.M.; Tucker, R.W.

    2006-01-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  7. Global integrability of field theories. Proceedings

    Calmet, J.; Seiler, W.M.; Tucker, R.W. (eds.)

    2006-07-01

    The GIFT 2006 workshop covers topics related to the Global Integration of Field Theories. These topics span several domains of science including Mathematics, Physics and Computer Science. It is indeed an interdisciplinary event and this feature is well illustrated by the diversity of papers presented at the workshop. Physics is our main target. A simple approach would be to state that we investigate systems of partial differential equations since it is widely believed that they provide a fair description of our world. The questions whether this world is Einsteinian or not, is described by String Theory or not are not however on our agenda. At this stage we have defined what we mean with field theories. To assess what global integrability means we surf on the two other domains of our interest. Mathematics delivers the main methodologies and tools to achieve our goal. It is a trivial remark to say that there exists several approaches to investigate the concept of integrability. Only selected ones are to be found in these proceedings. We do not try to define precisely what global integrability means. Instead, we only suggest two tracks. The first one is by analogy with the design of algorithms, in Computer Algebra or Computer Science, to solve systems of differential equations. The case of ODEs is rather well understood since a constructive methodology exists. Although many experts claim that numerous results do exist to solve systems of PDEs, no constructive decision method exists. This is our first track. The second track follows directly since the real world is described by systems of PDEs, which are mainly non-linear ones. To be able to decide in such a case of the existence of solutions would increase immediately the scope of new technologies applicable to indus trial problems. It is this latter remark that led to the European NEST project with the same name. The GIFT project aims at making progresses in the investigation of field theories through the use of very

  8. Integration of potential and quasipotential geophysical fields and GPR data for delineation of buried karst terranes in complex environments

    Eppelbaum, L. V.; Alperovich, L. S.; Zheludev, V.; Ezersky, M.; Al-Zoubi, A.; Levi, E.

    2012-04-01

    Karst is found on particularly soluble rocks, especially limestone, marble, and dolomite (carbonate rocks), but is also developed on gypsum and rock salt. Subsurface carbonate rocks involved in karst groundwater circulation considerably extend the active karst realm, to perhaps 14% of the world's land area (Price, 2009). The phenomenon of the solution weathering of limestone is the most widely known in the world. Active sinkholes growth appears under different industrial constructions, roads, railways, bridges, airports, buildings, etc. Regions with arid and semi-arid climate occupy about 30% of the Earth's land. Subsurface in arid regions is characterized by high variability of physical properties both on lateral and vertical that complicates geophysical survey analysis. Therefore for localization and monitoring of karst terranes effective and reliable geophysical methodologies should be applied. Such advanced methods were developed in microgravity (Eppelbaum et al., 2008; Eppelbaum, 2011b), magnetic (Khesin et al., 1996; Eppelbaum et al., 2000, 2004; Eppelbaum, 2011a), induced polarization (Khesin et al., 1997; Eppelbaum and Khesin, 2002), VLF (Eppelbaum and Khesin, 1992; Eppelbaum and Mishne, 2012), near-surface temperature (Eppelbaum, 2009), self-potential (Khesin et al., 1996; Eppelbaum and Khesin, 2002), and resistivity (Eppelbaum, 1999, 2007a) surveys. Application of some of these methodologies in the western and eastern shores of the Dead Sea area (e.g., Eppelbaum et al., 2008; Ezersky et al., 2010; Al-Zoubi et al., 2011) and in other regions of the world (Eppelbaum, 2007a) has shown their effectiveness. The common procedures for ring structure identification against the noise background and probabilistic-deterministic methods for recognizing the desired targets in complex media are presented in Khesin and Eppelbaum (1997), Eppelbaum et al. (2003), and Eppelbaum (2007b). For integrated analysis of different geophysical fields (including GPR images) intended

  9. Towards combined global monthly gravity field solutions

    Jaeggi, Adrian; Meyer, Ulrich; Beutler, Gerhard; Weigelt, Matthias; van Dam, Tonie; Mayer-Gürr, Torsten; Flury, Jakob; Flechtner, Frank; Dahle, Christoph; Lemoine, Jean-Michel; Bruinsma, Sean

    2014-05-01

    Currently, official GRACE Science Data System (SDS) monthly gravity field solutions are generated independently by the Centre for Space Research (CSR) and the German Research Centre for Geosciences (GFZ). Additional GRACE SDS monthly fields are provided by the Jet Propulsion Laboratory (JPL) for validation and outside the SDS by a number of other institutions worldwide. Although the adopted background models and processing standards have been harmonized more and more by the various processing centers during the past years, notable differences still exist and the users are more or less left alone with a decision which model to choose for their individual applications. This procedure seriously limits the accessibility of these valuable data. Combinations are well established in the area of other space geodetic techniques, such as the Global Navigation Satellite Systems (GNSS), Satellite Laser Ranging (SLR), and Very Long Baseline Interferometry (VLBI). Regularly comparing and combining space-geodetic products has tremendously increased the usefulness of the products in a wide range of disciplines and scientific applications. Therefore, we propose in a first step to mutually compare the large variety of available monthly GRACE gravity field solutions, e.g., by assessing the signal content over selected regions, by estimating the noise over the oceans, and by performing significance tests. We make the attempt to assign different solution characteristics to different processing strategies in order to identify subsets of solutions, which are based on similar processing strategies. Using these subsets we will in a second step explore ways to generate combined solutions, e.g., based on a weighted average of the individual solutions using empirical weights derived from pair-wise comparisons. We will also assess the quality of such a combined solution and discuss the potential benefits for the GRACE and GRACE-FO user community, but also address minimum processing

  10. Detection of concrete dam leakage using an integrated geophysical technique based on flow-field fitting method

    Dai, Qianwei; Lin, Fangpeng; Wang, Xiaoping; Feng, Deshan; Bayless, Richard C.

    2017-05-01

    An integrated geophysical investigation was performed at S dam located at Dadu basin in China to assess the condition of the dam curtain. The key methodology of the integrated technique used was flow-field fitting method, which allowed identification of the hydraulic connections between the dam foundation and surface water sources (upstream and downstream), and location of the anomalous leakage outlets in the dam foundation. Limitations of the flow-field fitting method were complemented with resistivity logging to identify the internal erosion which had not yet developed into seepage pathways. The results of the flow-field fitting method and resistivity logging were consistent when compared with data provided by seismic tomography, borehole television, water injection test, and rock quality designation.

  11. The Global Approach to Quantum Field Theory

    Fulling, S A [Texas A and M University (United States)

    2006-05-21

    temperature, black holes, and Euclideanization. Chapter 30, on black holes and Hawking radiation, will be very familiar to readers of DeWitt's influential review article. Chapter 28, on anomalies, makes a careful distinction (missing from many treatments) between 'critical' anomalies, which render equations of motion inconsistent in the (would-be) quantum theory, and harmless anomalies that merely invalidate predictions that would classically follow from certain symmetries. Examples of critical anomalies are the chiral anomaly of a spinor field coupled to a non-Abelian gauge field and the anomaly in the conservation law of the stress tensor of certain pathological theories. DeWitt's chapter calculates the trace and chiral anomalies in detail. The last two chapters of part VII treat the most important particular quantum field theories. Chapter 34 develops many of the textbook predictions of quantum eletrodynamics from DeWitt's starting point. Chapter 35 covers Yang-Mills fields and quantum gravity. The discussion of gravity is surprisingly brief, in view of DeWitt's lifelong preoccupation with that subject. He rejects renormalizable fourth-order modifications of four-dimensional gravity because he could not stomach unfriendly ghosts (states of negative norm or unboundedly negative energy) nor the technical difficulties of integrating such theories into the functional-integral formalism. Finally, there is part VIII, entitled 'Examples. Simple Exercises in the Use of the Global Formalism'. It consists of 25 short chapters numbered separately from those of the main text. The preface recommends reading these and the main text in parallel. Most valuable in my opinion is a string of successively more complicated fermionic models. Hidden in an appendix is a crucial motivational paragraph: Super Hilbert spaces are generalizations of ordinary Hilbert spaces, designed so as to enable one to consider quantum systems with supernumber

  12. The Global Approach to Quantum Field Theory

    Fulling, S A

    2006-01-01

    Euclideanization. Chapter 30, on black holes and Hawking radiation, will be very familiar to readers of DeWitt's influential review article. Chapter 28, on anomalies, makes a careful distinction (missing from many treatments) between 'critical' anomalies, which render equations of motion inconsistent in the (would-be) quantum theory, and harmless anomalies that merely invalidate predictions that would classically follow from certain symmetries. Examples of critical anomalies are the chiral anomaly of a spinor field coupled to a non-Abelian gauge field and the anomaly in the conservation law of the stress tensor of certain pathological theories. DeWitt's chapter calculates the trace and chiral anomalies in detail. The last two chapters of part VII treat the most important particular quantum field theories. Chapter 34 develops many of the textbook predictions of quantum eletrodynamics from DeWitt's starting point. Chapter 35 covers Yang-Mills fields and quantum gravity. The discussion of gravity is surprisingly brief, in view of DeWitt's lifelong preoccupation with that subject. He rejects renormalizable fourth-order modifications of four-dimensional gravity because he could not stomach unfriendly ghosts (states of negative norm or unboundedly negative energy) nor the technical difficulties of integrating such theories into the functional-integral formalism. Finally, there is part VIII, entitled 'Examples. Simple Exercises in the Use of the Global Formalism'. It consists of 25 short chapters numbered separately from those of the main text. The preface recommends reading these and the main text in parallel. Most valuable in my opinion is a string of successively more complicated fermionic models. Hidden in an appendix is a crucial motivational paragraph: Super Hilbert spaces are generalizations of ordinary Hilbert spaces, designed so as to enable one to consider quantum systems with supernumber-valued parameters (e.g., a-type external sources) which, themselves, are introduced in

  13. Young Geophysicists: `Know How' Tips to Nourish Them from Lectures and Seminars to Field Work and Conferences (Geology and Geophysics Department, Novosibirsk State University, GGD, NSU).

    Rakhmenkulova, I. F.

    2016-12-01

    How to nourish young brilliant geophysicists? Here are the tips: We teach them as physicists (at the Department of Physics, together with students majoring in physics). Students have special facilities in field work, using most modern geophysical equipment. They can participate in real projects on applied geophysics during their studies. They attend special seminars and conferences for both young professionals and full-fledged scientists. Their English Language Program is focused on geophysical terminology. There are four specialties at Geology and Geophysics Department of Novosibirsk State University: Geophysics, Geochemistry, Geology, and Geochemistry of Oil and Gas. However, the curriculum for geophysicists is absolutely different from other specialties. Mathematics, physics and laboratory work are given at the Department of Physics (together with students majoring in physics). All the necessary geological subjects are also studied (including field work). During all period of their study the students work part time at many geophysical institutions. The equipment is both traditional and most modern, created at the Institute of Oil and Gas Geophysics. The students present the result of their field work and laboratory experiments in many seminars and conferences. For example, there is a traditional annual conference in Shira, Khakassia, for young professionals. Every year the Seminar in Geodynamics, Geophysics and Geomechanics is held in the Altay Mountains (Denisova Cave Camp). This Seminar was organized by the late Sergey Goldin, the Director of the Institute of Geophysics, the Head of the Chair of Geophysics, a Member of the Russian Academy of Sciences. In July 2016 this Seminar was devoted to 80's birth anniversary of Sergey Goldin. Several students of geophysics presented the results of their work there. Next year the seminar is supposed to be international. A special attention is given to the English course lasting for 5 years. The students learn general

  14. Identification and Simulation of Subsurface Soil patterns using hidden Markov random fields and remote sensing and geophysical EMI data sets

    Wang, Hui; Wellmann, Florian; Verweij, Elizabeth; von Hebel, Christian; van der Kruk, Jan

    2017-04-01

    Lateral and vertical spatial heterogeneity of subsurface properties such as soil texture and structure influences the available water and resource supply for crop growth. High-resolution mapping of subsurface structures using non-invasive geo-referenced geophysical measurements, like electromagnetic induction (EMI), enables a characterization of 3D soil structures, which have shown correlations to remote sensing information of the crop states. The benefit of EMI is that it can return 3D subsurface information, however the spatial dimensions are limited due to the labor intensive measurement procedure. Although active and passive sensors mounted on air- or space-borne platforms return 2D images, they have much larger spatial dimensions. Combining both approaches provides us with a potential pathway to extend the detailed 3D geophysical information to a larger area by using remote sensing information. In this study, we aim at extracting and providing insights into the spatial and statistical correlation of the geophysical and remote sensing observations of the soil/vegetation continuum system. To this end, two key points need to be addressed: 1) how to detect and recognize the geometric patterns (i.e., spatial heterogeneity) from multiple data sets, and 2) how to quantitatively describe the statistical correlation between remote sensing information and geophysical measurements. In the current study, the spatial domain is restricted to shallow depths up to 3 meters, and the geostatistical database contains normalized difference vegetation index (NDVI) derived from RapidEye satellite images and apparent electrical conductivities (ECa) measured from multi-receiver EMI sensors for nine depths of exploration ranging from 0-2.7 m. The integrated data sets are mapped into both the physical space (i.e. the spatial domain) and feature space (i.e. a two-dimensional space framed by the NDVI and the ECa data). Hidden Markov Random Fields (HMRF) are employed to model the

  15. Geophysical Images of the Shallow Hydrothermal Degassing at Solfatara (Phlegrean Fields, Italy)

    Byrdina, S.; Vandemeulebrouck, J.; Cardellini, C.; Chiodini, G.; Legaz, A.; Camerlynck, C.; Lebourg, T.

    2014-12-01

    We present the results of an electric resistivity tomography (ERT) survey, combined with mappings of diffuse carbon dioxide flux, ground temperature and self-potential (SP) at Solfatara, the most active crater of Phlegrean Fields. Solfatara is characterized by an intense carbon dioxide degassing, fumarole activity, and ground deformation. This ensemble of methods is applied to image the hydrothermal system of Solfatara, to understand the geometry of the fluid circulation, and to define the extension of the hydrothermal plume at a high enough resolution for a quantitative modeling. ERT inversion results show Solfatara as a globally conductive structure, with resistivity in the range 1-200 Ohmm. Broad negative anomaly of self-potential in the inner part of Solfatara with a minimum in the area of Bocca Grande suggests a significant downward flow of condensing liquid water. Comparison between spatial variations of resistivity and gas flux indicates that resistivity changes at depth are related to gas saturation and fluid temperature. These variations delineate two plume structures: a liquid-dominated conductive plume below Fangaia mud-pool and a gas-dominated plume below Bocca Grande fumarole. The geometry of the Fangaia liquid-saturated plume is also imaged by a high resolution 3-D resistivity model. In order to estimate the permeability, we propose a 2-D axis-symmetric numerical model coupling Richards's equation for fluid flow in conditions of partial saturation with the resistivity calculation as function of saturation only. Alternatively, we apply the Dupuit equation to estimate the permeability of the shallow layer. Using these two approaches, we obtain the permeability of the shallow layer below Fangaia which ranges between (2 - 4) 10-14 m 2.

  16. Modeling of the Earth's gravity field using the New Global Earth Model (NEWGEM)

    Kim, Yeong E.; Braswell, W. Danny

    1989-01-01

    Traditionally, the global gravity field was described by representations based on the spherical harmonics (SH) expansion of the geopotential. The SH expansion coefficients were determined by fitting the Earth's gravity data as measured by many different methods including the use of artificial satellites. As gravity data have accumulated with increasingly better accuracies, more of the higher order SH expansion coefficients were determined. The SH representation is useful for describing the gravity field exterior to the Earth but is theoretically invalid on the Earth's surface and in the Earth's interior. A new global Earth model (NEWGEM) (KIM, 1987 and 1988a) was recently proposed to provide a unified description of the Earth's gravity field inside, on, and outside the Earth's surface using the Earth's mass density profile as deduced from seismic studies, elevation and bathymetric information, and local and global gravity data. Using NEWGEM, it is possible to determine the constraints on the mass distribution of the Earth imposed by gravity, topography, and seismic data. NEWGEM is useful in investigating a variety of geophysical phenomena. It is currently being utilized to develop a geophysical interpretation of Kaula's rule. The zeroth order NEWGEM is being used to numerically integrate spherical harmonic expansion coefficients and simultaneously determine the contribution of each layer in the model to a given coefficient. The numerically determined SH expansion coefficients are also being used to test the validity of SH expansions at the surface of the Earth by comparing the resulting SH expansion gravity model with exact calculations of the gravity at the Earth's surface.

  17. Nuclear geophysical methods for exploration of wells in fields of solid mineral deposits

    Fel'dman, I.I.; Blyumentsev, A.M.; Karnikolo, V.F.; Zheltikov, A.N.

    1974-01-01

    Chromite and sulphur deposits have been used to illustrate the necessity and desirabilty of applying a combination of nuclear-geophysics logging methods and correlations between individual rock and ore components for localization and evaluation of ore bodies in borehole sections. On chromite deposits the combination includes neutron-capture spectrometric gamma-logging, epithermal neutron-neutron logging, selective gamma-gamma logging and gamma-gamma density logging. Neutron-capture spectrometric gamma-logging ensures an unambiguous localization of ores in borehole sections; epithermal neutron-neutron logging enables ores to be separated by the degree of dissemination; selective gamma-gamma logging is used to determine the content of Cr 2 O 3 and gamma-gamma density logging determines the volume weight. In addition a close correlation between Cr 2 O 3 and SiO 2 contents allows the silica content to be estimated. Application of a three-channel apparatus of the RSK-3 type ensures that all the measurements are made in two descent-ascension operations. The implementation of the combination described has ensured transition to drilling with a reduced selection of core samples. On sulphur deposits of carbonate type the combination includes epithermal neutron-neutron logging, gamma-gamma density logging and neutron-capture spectrometric gamma-logging

  18. LiDAR, geophysical and field surveys at Ancient Epomanduodurum site and its surrounding country (Doubs, Eastern France)

    Laplaige, Clement; Bossuet, Gilles; Thivet, Matthieu

    2010-05-01

    Integrated geophysical studies were carried out over several years, at Mandeure-Mathay (Franche-Comté Region, Eastern France) for the archaeological evaluation of ancient Epomanduodurum. The site is of major scientific interest to understand the territorial structure of earlier agglomerations in Eastern Gaul at the end of the Iron Age and during the Roman period. As regards its size, urban equipment, monuments and function, the ancient town is considered rating second behind the civitas capital of Sequani, Besançon-Vesontio. It is located in the Doubs valley, where the plain of Alsace opens into the marches of Burgundy, in a traffic zone between the Vosges and the Jura. This location allows transit between the Rhône valley and the Rhein plain, through the Saône and Doubs valleys. This geographical situation was a significant factor in the creation of the late Iron Age settlement, later to turn into a major Gallo-roman town. The whole site of the Ancient town includes urban centre and two artisan suburbs. The buried ruins stretch on more than 500 hectares outside and inside a meander of the Doubs River. From the beginning of the survey, in 2001, high resolution and non invasive geophysical methods (magnetic mapping and Automatic Restivity Profiling (ARP) were performed on large scale, both on the terrace and in the floodplain). Excavations associated to geophysical prospection allow to produce a general plan of the Gallo roman structures and to reconstruct the settlement evolution. While human occupation on open land is certified by a lot of indications, on the contrary, the forest-covered zones on table-land appear as less documented areas. The explanation is that some of the classic methods (such as aerial reconnaissance and field walking) are less efficient in the archaeological prospection of table-lands and hills, naturally marked by omnipresent forest. In our new research program (LIEPPEC and PCR Mandeure, 2008-2010), it appears necessary to better

  19. Robust spatialization of soil water content at the scale of an agricultural field using geophysical and geostatistical methods

    Henine, Hocine; Tournebize, Julien; Laurent, Gourdol; Christophe, Hissler; Cournede, Paul-Henry; Clement, Remi

    2017-04-01

    Research on the Critical Zone (CZ) is a prerequisite for undertaking issues related to ecosystemic services that human societies rely on (nutrient cycles, water supply and quality). However, while the upper part of CZ (vegetation, soil, surface water) is readily accessible, knowledge of the subsurface remains limited, due to the point-scale character of conventional direct observations. While the potential for geophysical methods to overcome this limitation is recognized, the translation of the geophysical information into physical properties or states of interest remains a challenge (e.g. the translation of soil electrical resistivity into soil water content). In this study, we propose a geostatistical framework using the Bayesian Maximum Entropy (BME) approach to assimilate geophysical and point-scale data. We especially focus on the prediction of the spatial distribution of soil water content using (1) TDR point-scale measurements of soil water content, which are considered as accurate data, and (2) soil water content data derived from electrical resistivity measurements, which are uncertain data but spatially dense. We used a synthetic dataset obtained with a vertical 2D domain to evaluate the performance of this geostatistical approach. Spatio-temporal simulations of soil water content were carried out using Hydrus-software for different scenarios: homogeneous or heterogeneous hydraulic conductivity distribution, and continuous or punctual infiltration pattern. From the simulations of soil water content, conceptual soil resistivity models were built using a forward modeling approach and point sampling of water content values, vertically ranged, were done. These two datasets are similar to field measurements of soil electrical resistivity (using electrical resistivity tomography, ERT) and soil water content (using TDR probes) obtained at the Boissy-le-Chatel site, in Orgeval catchment (East of Paris, France). We then integrated them into a specialization

  20. New geological and tectonic map of Paleoproterozoic basement in western Burkina Faso: integrated interpretation of airborne geophysical and field data

    Metelka, Vaclav; Baratoux, Lenka; Jessell, Mark; Naba, Seta

    2010-05-01

    The recent acquisition of regional scale airborne datasets over most of the West African craton sparked off a number of studies concentrating on their litho-tectonic interpretation. In such polydeformed terrains, where outcrop is very sparse or virtually nonexistent due to the presence of thick lateritic cover, geophysics and specifically geomagnetic surveying provide a wealth of information that facilitates the deciphering of regional litho-structural hierarchies. A revised geological and tectonic map of the Houndé and Boromo greenstone belts was derived by interpretation of aeromagnetic and gamma-ray spectrometric data constrained by field observations where available. Medium resolution geophysical data gridded at 250 meters acquired during the SYSMIN project served as a basis for the interpretation. This dataset was integrated with the SRTM digital elevation model and over 600 field observations. Furthermore, the BRGM/BUMIGEB SYSMIN project outcrops database (Castaing et al., 2003) as well as older outcrop maps, maintained by BUMIGEB, were used. Locally, outcrop maps and high resolution geophysics provided by mining companies (Orezone, SEMAFO, Volta Resources, Wega Mining) were employed. 2-D geophysical inversion modeling in GM-sys software using the ground gravity and airborne magnetic data was applied to three selected E-W profiles. Principal component analysis (PCA) of magnetic and radiometric data was a powerful tool for distinguishing different lithological units, in particular tholeiitic suites of basalts and gabbros and various volcano-sedimentary units. Some of the granite pluton limits can be traced as well using the PCA; however thick lateritic cover substantially hinders precise mapping. Magnetic data used on its own gave better results not only for granite limits but also for determining internal structures such as shear zones and concentric compositional zoning. Several major N-S to NNE-SSW oriented shear zones, representing most probably deep

  1. Standardized UXO Technology Demonstration Site Open Field Scoring Record Number 668 (NAEVA Geophysics, Inc.)

    Overbay, Larry; Robitaille, George

    2005-01-01

    ...) utilizing they PG Standardized UXO Technology Demonstration Site Open Field. Scoring Records have been coordinate by Larry Overbay and the Standardized UXO Technology Demonstration Site Scoring Committee...

  2. Global field experiments for potato simulations

    Raymundo, Rubí; Asseng, Senthold; Prasad, Rishi

    2018-01-01

    A large field potato experimental dataset has been assembled for simulation modeling. The data are from temperate, subtropical, and tropical regions across the world and include 87 experiments with 204 treatments. Treatments include nitrogen fertilizer, irrigation, atmospheric CO2 levels, tempera......A large field potato experimental dataset has been assembled for simulation modeling. The data are from temperate, subtropical, and tropical regions across the world and include 87 experiments with 204 treatments. Treatments include nitrogen fertilizer, irrigation, atmospheric CO2 levels...

  3. On the stochastic structure of globally supersymmetric field theories

    Flume, R.; Lechtenfeld, O.

    1983-09-01

    We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)

  4. Global field experiments for potato simulations

    Raymundo, Rubi; Asseng, Senthold; Prasad, Rishi; Kleinwechter, Ulrich; Condori, Bruno; Bowen, Walter; Wolf, Joost; Olesen, Jørgen E.; Dong, Qiaoxue; Zotarelli, Lincoln; Gastelo, Manuel; Alva, Ashok; Travasso, Maria; Arora, Vijay

    2018-01-01

    A large field potato experimental data set has been assembled for simulation modeling. The data are from temperate, subtropical, and tropical regions across the world and include 87 experiments with 204 treatments. Treatments include nitrogen fertilizer, irrigation, atmospheric CO2 levels,

  5. Mapping Neogene and Quaternary sedimentary deposits in northeastern Brazil by integrating geophysics, remote sensing and geological field data

    Andrades-Filho, Clódis de Oliveira; Rossetti, Dilce de Fátima; Bezerra, Francisco Hilario Rego; Medeiros, Walter Eugênio; Valeriano, Márcio de Morisson; Cremon, Édipo Henrique; Oliveira, Roberto Gusmão de

    2014-12-01

    Neogene and late Quaternary sedimentary deposits corresponding respectively to the Barreiras Formation and Post-Barreiras Sediments are abundant along the Brazilian coast. Such deposits are valuable for reconstructing sea level fluctuations and recording tectonic reactivation along the passive margin of South America. Despite this relevance, much effort remains to be invested in discriminating these units in their various areas of occurrence. The main objective of this work is to develop and test a new methodology for semi-automated mapping of Neogene and late Quaternary sedimentary deposits in northeastern Brazil integrating geophysical and remote sensing data. The central onshore Paraíba Basin was selected due to the recent availability of a detailed map based on the integration of surface and subsurface geological data. We used airborne gamma-ray spectrometry (i.e., potassium-K and thorium-Th concentration) and morphometric data (i.e., relief-dissection, slope and elevation) extracted from the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM). The procedures included: (a) data integration using geographic information systems (GIS); (b) exploratory statistical analyses, including the definition of parameters and thresholds for class discrimination for a set of sample plots; and (c) development and application of a decision-tree classification. Data validation was based on: (i) statistical analysis of geochemical and airborne gamma-ray spectrometry data consisting of K and Th concentrations; and (ii) map validation with the support of a confusion matrix, overall accuracy, as well as quantity disagreement and allocation disagreement for accuracy assessment based on field points. The concentration of K successfully separated the sedimentary units of the basin from Precambrian basement rocks. The relief-dissection morphometric variable allowed the discrimination between the Barreiras Formation and the Post-Barreiras Sediments. In

  6. Comparison of global storm activity rate calculated from Schumann resonance background components to electric field intensity E0 Z

    Nieckarz, Zenon; Kułak, Andrzej; Zięba, Stanisław; Kubicki, Marek; Michnowski, Stanisław; Barański, Piotr

    2009-02-01

    This work presents the results of a comparison between the global storm activity rate IRS and electric field intensity E0 Z. The permanent analysis of the IRS may become an important tool for testing Global Electric Circuit models. IRS is determined by a new method that uses the background component of the first 7 Schumann resonances (SR). The rate calculations are based on ELF observations carried out in 2005 and 2006 in the observatory station "Hylaty" of the Jagiellonian University in the Eastern Carpathians (Kułak, A., Zięba, S., Micek, S., Nieckarz, Z., 2003. Solar variations in extremely low frequency propagation parameters: I. A two-dimensional telegraph equation (TDTE) model of ELF propagation and fundamental parameters of Schumann resonances, J. Geophys. Res., 108, 1270, doi:10.1029/2002JA009304). Diurnal runs of the IRS rate were compared with diurnal runs of E0 Z amplitudes registered at the Earth's surface in the Geophysical Observatory of the Polish Academy of Sciences in Świder (Kubicki, M., 2005. Results of Atmospheric Electricity and Meteorological Observations, S. Kalinowski Geophysical Observatory at Świder 2004, Pub. Inst. Geophysics Polish Academy of Sciences, D-68 (383), Warszawa.). The days with the highest values of the correlation coefficient ( R) between amplitudes of both observed parameters characterizing atmosphere electric activity are shown. The seasonal changes of R, IRS and E0 Z are also presented.

  7. Globally linked vortex clusters in trapped wave fields

    Crasovan, Lucian-Cornel; Molina-Terriza, Gabriel; Torres, Juan P.; Torner, Lluis; Perez-Garcia, Victor M.; Mihalache, Dumitru

    2002-01-01

    We put forward the existence of a rich variety of fully stationary vortex structures, termed H clusters, made of an increasing number of vortices nested in paraxial wave fields confined by trapping potentials. However, we show that the constituent vortices are globally linked, rather than products of independent vortices. Also, they always feature a monopolar global wave front and exist in nonlinear systems, such as the Bose-Einstein condensates. Clusters with multipolar global wave fronts are nonstationary or, at best, flipping

  8. Archaeological Geophysics for DoD Field Use: A Guide for New and Novice Users

    2009-01-01

    magnetometers are commonly used in archaeology: proton precession, optically pumped, and fluxgate . Proton precession magnetometers were the first to... Fluxgate magnetometers use a metal rod around which a coil of copper wire is wound (Clark 1996). An external magnetic field, such as the Earth’s...means that fluxgate sensors are direction sensitive, and much more so than precession magnetometers . They are usually configured to measure the

  9. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  10. Global integrability of cosmological scalar fields

    Maciejewski, Andrzej J.; Przybylska, Maria; Stachowiak, Tomasz; Szydłowski, Marek

    2008-11-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain.

  11. Global integrability of cosmological scalar fields

    Maciejewski, Andrzej J; Przybylska, Maria; Stachowiak, Tomasz; Szydlowski, Marek

    2008-01-01

    We investigate the Liouvillian integrability of Hamiltonian systems describing a universe filled with a scalar field (possibly complex). The tool used is the differential Galois group approach, as introduced by Morales-Ruiz and Ramis. The main result is that the generic systems with minimal coupling are non-integrable, although there still exist some values of parameters for which integrability remains undecided; the conformally coupled systems are only integrable in four known cases. We also draw a connection with the chaos present in such cosmological models, and the issues of the integrability restricted to the real domain

  12. Geophysical assessment of near-field ground motion and the implications for the design of nuclear installations

    Bernreuter, D.L.

    1977-01-01

    This paper gives an in-depth discussion on the various methodologies currently available to predict the near-field ground motion from an earthquake. The limitations of the various methods are discussed in some detail in light of recently available data. It is shown that, (at least for California earthquakes) for an earthquake with a given magnitude a wide variation in the peak ground motion can occur. The change in the spectral content of the ground motion is given as a function of earthquake magnitude and peak ground acceleration. It is shown that the large g values associated with small earthquakes are relatively unimportant in the design provided the structures have a modest amount of ductility. Data recently obtained from the Friuli earthquake are also examined. Although not all the geophysical data are currently available, the provisional conclusion is reached that the relation between the strong ground motion from this earthquake and its source parameters is the same as for the western United States

  13. [The gravity field of the Earth: geophysical factor of gerontology (The Vorobeichikov effect)].

    Shapovalov, S N

    2016-01-01

    The results of investigations of the growth in vitro of Escherichia coli M-17, obtained in the processing of V. M. Vorobeichikov observational data during the movement of the scientific expedition ship «Akademik Fedorov» from St. Petersburg to Antarctica and back, in the period from 13.11.2002 on 26.05.2003 (48th Russian Antarctic expedition). The findings based on the growth in vitro of Escherichia coli from changes in geographical location on a planetary scale, that doesn't eliminate the dependence of other species of microorganisms from the spatial position in the gravity field of the Earth. It is established that the duration of the lag phase of Escherichia coli in the Equatorial zone close to its duration in the high-latitude zone and Antarctic, however, the duration of the lag phase at the equator and the Antarctic corresponds to the time of the lag phase at the time of the Central phase of the lunar Eclipse. The conclusion about high sensitivity in vitro of Escherichia coli to the field of gravity of the Earth, and to syzigium events.

  14. Integrated geophysical investigations in the Hisar geothermal field, Demirci, western Turkey

    OEzuerlan, Guelcin [Istanbul Technical University, Maslak, Istanbul (Turkey). Faculty of Mines, Geophysical Engineering Department; Sahin, M. Huedavendigar [Department of Geophysics, General Directorate of Mineral Research and Exploration (MTA), Ankara (Turkey)

    2006-04-15

    The shallow, low-temperature geothermal field of Hisar, in western Turkey, was studied by means of vertical electrical sounding (VES), Wenner, self-potential (SP) and very low-frequency electromagnetic (VLF-EM) profiling surveys. The VES survey, conducted along the valley in an E-W direction, provided lithological and structural information that is in good agreement with the well data, and suggests that the field is characterized by low-resistivity values (=30Om). Because the resistivity structure in a N-S direction could not be investigated due to the rough topography towards the north, SP, Wenner and VLF-EM measurements were made to identify and characterize a possible hot-fluid carrying fault/fracture zone that forms one of the boundaries of the valley. There is a good correlation between the results of the SP, VLF-EM and Wenner surveys, which confirm the existence of the NE-SW striking fault zone that had been inferred from geologic information. Tensional fractures that developed perpendicular to the fault zone were also identified. Consistent with the results of the SP and Wenner profilings, the two-dimensional model derived from VLF-EM data and a Karous-Hjelt current density pseudo-section detected the conductive fault zones bearing the geothermal fluids. (author)

  15. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  16. Imaging normal faults in alluvial fans using geophysical techniques: Field example from the coast of Gulf of Aqaba, Saudi Arabia

    Hanafy, Sherif M.; Jonsson, Sigurjon; Klinger, Yann

    2014-01-01

    In this work we use geophysical methods to locate and characterize active faults in alluvial sediments. Since only subtle material and velocity contrasts are expected across the faults, we used seismic refraction tomography and 2D resistivity

  17. Structural Controls on Groundwater Flow in Basement Terrains: Geophysical, Remote Sensing, and Field Investigations in Sinai

    Mohamed, Lamees

    2015-07-09

    An integrated [very low frequency (VLF) electromagnetic, magnetic, remote sensing, field, and geographic information system (GIS)] study was conducted over the basement complex in southern Sinai (Feiran watershed) for a better understanding of the structural controls on the groundwater flow. The increase in satellite-based radar backscattering values following a large precipitation event (34 mm on 17–18 January 2010) was used to identify water-bearing features, here interpreted as preferred pathways for surface water infiltration. Findings include: (1) spatial analysis in a GIS environment revealed that the distribution of the water-bearing features (conductive features) corresponds to that of fractures, faults, shear zones, dike swarms, and wadi networks; (2) using VLF (43 profiles), magnetic (7 profiles) techniques, and field observations, the majority (85 %) of the investigated conductive features were determined to be preferred pathways for groundwater flow; (3) northwest–southeast- to north–south-trending conductive features that intersect the groundwater flow (southeast to northwest) at low angles capture groundwater flow, whereas northeast–southwest to east–west features that intersect the flow at high angles impound groundwater upstream and could provide potential productive well locations; and (4) similar findings are observed in central Sinai: east–west-trending dextral shear zones (Themed and Sinai Hinge Belt) impede south to north groundwater flow as evidenced by the significant drop in hydraulic head (from 467 to 248 m above mean sea level) across shear zones and by reorientation of regional flow (south–north to southwest–northeast). The adopted integrated methodologies could be readily applied to similar highly fractured basement arid terrains elsewhere. © 2015 Springer Science+Business Media Dordrecht

  18. Potential Geophysical Field Transformations and Combined 3D Modelling for Estimation the Seismic Site Effects on Example of Israel

    Eppelbaum, Lev; Meirova, Tatiana

    2015-04-01

    , EGU2014-2424, Vienna, Austria, 1-5. Eppelbaum, L.V. and Katz, Y.I., 2014b. First Maps of Mesozoic and Cenozoic Structural-Sedimentation Floors of the Easternmost Mediterranean and their Relationship with the Deep Geophysical-Geological Zonation. Proceed. of the 19th Intern. Congress of Sedimentologists, Geneva, Switzerland, 1-3. Eppelbaum, L.V. and Katz, Yu.I., 2015a. Newly Developed Paleomagnetic Map of the Easternmost Mediterranean Unmasks Geodynamic History of this Region. Central European Jour. of Geosciences, 6, No. 4 (in Press). Eppelbaum, L.V. and Katz, Yu.I., 2015b. Application of Integrated Geological-Geophysical Analysis for Development of Paleomagnetic Maps of the Easternmost Mediterranean. In: (Eppelbaum L., Ed.), New Developments in Paleomagnetism Research, Nova Publisher, NY (in Press). Eppelbaum, L.V. and Khesin, B.E., 2004. Advanced 3-D modelling of gravity field unmasks reserves of a pyrite-polymetallic deposit: A case study from the Greater Caucasus. First Break, 22, No. 11, 53-56. Eppelbaum, L.V., Nikolaev, A.V. and Katz, Y.I., 2014. Space location of the Kiama paleomagnetic hyperzone of inverse polarity in the crust of the eastern Mediterranean. Doklady Earth Sciences (Springer), 457, No. 6, 710-714. Haase, J.S., Park, C.H., Nowack, R.L. and Hill, J.R., 2010. Probabilistic seismic hazard estimates incorporating site effects - An example from Indiana, U.S.A. Environmental and Engineering Geoscience, 16, No. 4, 369-388. Hough, S.E., Borcherdt, R. D., Friberg, P. A., Busby, R., Field, E. and Jacob, K. N., 1990. The role of sediment-induced amplification in the collapse of the Nimitz freeway. Nature, 344, 853-855. Khesin, B.E. Alexeyev, V.V. and Eppelbaum, L.V., 1996. Interpretation of Geophysical Fields in Complicated Environments. Kluwer Academic Publ., Ser.: Advanced Appr. in Geophysics, Dordrecht - London - Boston. Klokočník, J., Kostelecký, J., Eppelbaum, L. and Bezděk, A., 2014. Gravity Disturbances, the Marussi Tensor, Invariants and

  19. On the Inversion for Mass (Re)Distribution from Global (Time-Variable) Gravity Field

    Chao, Benjamin F.

    2004-01-01

    The well-known non-uniqueness of the gravitational inverse problem states the following: The external gravity field, even if completely and exactly known, cannot Uniquely determine the density distribution of the body that produces the gravity field. This is an intrinsic property of a field that obeys the Laplace equation, as already treated in mathematical as well as geophysical literature. In this paper we provide conceptual insight by examining the problem in terms of spherical harmonic expansion of the global gravity field. By comparing the multipoles and the moments of the density function, we show that in 3-S the degree of knowledge deficiency in trying to inversely recover the density distribution from external gravity field is (n+l)(n+2)/2 - (2n+l) = n(n-1)/2 for each harmonic degree n. On the other hand, on a 2-D spherical shell we show via a simple relationship that the inverse solution of the surface density distribution is unique. The latter applies quite readily in the inversion of time-variable gravity signals (such as those observed by the GRACE space mission) where the sources over a wide range of the scales largely come from the Earth's Surface.

  20. Global and site specific multimedia (field) studies

    Cutshall, N.H.; Guerin, M.R.

    1987-01-01

    Experience with radioactive fallout, with organic contaminants and with heavy metals has amply demonstrated that cross-media transfers are common and that understanding the transport, cycling, and fate of these contaminants requires a multimedia approach. Nonetheless, pollutants with similar physical and chemical attributes may follow markedly different pathways. The frequency of exceptions to predictions based on simplistic models is also sufficient to show that direct investigation of environmental contamination is essential to confirm validity of models used for conceptualizing a problem or for control. Modeling based on multimedia premises and regulatory controls that encompass multimedia considerations are challenged by a dilemma, however. First, the development of multimedia models or regulatory frameworks represents simplification and generalization. This is true for several reasons: (1) inadequate understanding of physical and environmental factors which control specific cross-media transfer; (2) the absence of specific data on certain multimedia pollutant concentrations; (3) even the most powerful computers do not have sufficient speed and capacity to deal with the known complexities of natural systems. On the other hand, for contaminants such as mercury, it may be necessary to include great detail; the overall distribution in the environment may be less important than the rate of some minor process. With sufficient experience and good judgment of what can be ignored, the simplifications and generalizations can be made. For the present, and for the foreseeable future, however, they absolutely must be accompanied by thorough field validation and monitoring

  1. Applying geophysical surveys for studying subsurface geology of monogenetic volcanic fields: the example of La Garrotxa Volcanic Field (NE of Iberian Peninsula)

    Bolós, Xavier; Barde-Cabusson, Stéphanie; Pedrazzi, Dario; Martí, Joan; Casas, Albert; Lovera, Raúl; Nadal-Sala, Daniel

    2014-05-01

    Improving knowledge of the shallowest part of the feeding system of monogenetic volcanoes and the relationship with the subsurface geology is an important task. We applied high-precision geophysical techniques that are self-potential and electrical resistivity tomography, for the exploration of the uppermost part of the substrate of La Garrotxa Volcanic Field, which is part of the European Cenozoic Rift System. Previous geophysical studies carried out in the same area at a less detailed scale were aimed at identifying deeper structures, and together constitute the basis to establish volcanic susceptibility in La Garrotxa. Self-potential study allowed identifying key areas where electrical resistivity tomography could be conducted. Dykes and faults associated with several monogenetic cones were identified through the generation of resistivity models. The combined results confirm that shallow tectonics controlling the distribution of the foci of eruptive activity in this volcanic zone mainly correspond to NNW-SSE and accessorily by NNE-SSW Neogene extensional fissures and faults and concretely show the associated magmatic intrusions. These studies show that previous alpine tectonic structures played no apparent role in controlling the loci of this volcanism. Furthermore, the results obtained show that the changes in eruption dynamics occurring at different vents located at relatively short distances in this volcanic area can be controlled by shallow stratigraphical, structural, and hydrogeological features underneath these monogenetic volcanoes. This study was partially funded by the Beca Ciutat d'Olot en Ciències Naturals and the European Commission (FT7 Theme: ENV.2011.1.3.3-1; Grant 282759: "VUELCO").

  2. Crisp clustering of airborne geophysical data from the Alto Ligonha pegmatite field, northeastern Mozambique, to predict zones of increased rare earth element potential

    Eberle, Detlef G.; Daudi, Elias X. F.; Muiuane, Elônio A.; Nyabeze, Peter; Pontavida, Alfredo M.

    2012-01-01

    The National Geology Directorate of Mozambique (DNG) and Maputo-based Eduardo-Mondlane University (UEM) entered a joint venture with the South African Council for Geoscience (CGS) to conduct a case study over the meso-Proterozoic Alto Ligonha pegmatite field in the Zambézia Province of northeastern Mozambique to support the local exploration and mining sectors. Rare-metal minerals, i.e. tantalum and niobium, as well as rare-earth minerals have been mined in the Alto Ligonha pegmatite field since decades, but due to the civil war (1977-1992) production nearly ceased. The Government now strives to promote mining in the region as contribution to poverty alleviation. This study was undertaken to facilitate the extraction of geological information from the high resolution airborne magnetic and radiometric data sets recently acquired through a World Bank funded survey and mapping project. The aim was to generate a value-added map from the airborne geophysical data that is easier to read and use by the exploration and mining industries than mere airborne geophysical grid data or maps. As a first step towards clustering, thorium (Th) and potassium (K) concentrations were determined from the airborne geophysical data as well as apparent magnetic susceptibility and first vertical magnetic gradient data. These four datasets were projected onto a 100 m spaced regular grid to assemble 850,000 four-element (multivariate) sample vectors over the study area. Classification of the sample vectors using crisp clustering based upon the Euclidian distance between sample and class centre provided a (pseudo-) geology map or value-added map, respectively, displaying the spatial distribution of six different classes in the study area. To learn the quality of sample allocation, the degree of membership of each sample vector was determined using a-posterior discriminant analysis. Geophysical ground truth control was essential to allocate geology/geophysical attributes to the six classes

  3. Globalization and Health: developing the journal to advance the field.

    Martin, Greg; MacLachlan, Malcolm; Labonté, Ronald; Larkan, Fiona; Vallières, Frédérique; Bergin, Niamh

    2016-03-09

    Founded in 2005, Globalization and Health was the first open access global health journal. The journal has since expanded the field, and its influence, with the number of downloaded papers rising 17-fold, to over 4 million. Its ground-breaking papers, leading authors -including a Nobel Prize winner- and an impact factor of 2.25 place it among the top global health journals in the world. To mark the ten years since the journal's founding, we, members of the current editorial board, undertook a review of the journal's progress over the last decade. Through the application of an inductive thematic analysis, we systematically identified themes of research published in the journal from 2005 to 2014. We identify key areas the journal has promoted and consider these in the context of an existing framework, identify current gaps in global health research and highlight areas we, as a journal, would like to see strengthened.

  4. Globally conformal invariant gauge field theory with rational correlation functions

    Nikolov, N M; Todorov, I T; CERN. Geneva; Todorov, Ivan T.

    2003-01-01

    Operator product expansions (OPE) for the product of a scalar field with its conjugate are presented as infinite sums of bilocal fields $V_{\\kappa} (x_1, x_2)$ of dimension $(\\kappa, \\kappa)$. For a {\\it globally conformal invariant} (GCI) theory we write down the OPE of $V_{\\kappa}$ into a series of {\\it twist} (dimension minus rank) $2\\kappa$ symmetric traceless tensor fields with coefficients computed from the (rational) 4-point function of the scalar field. We argue that the theory of a GCI hermitian scalar field ${\\cal L} (x)$ of dimension 4 in $D = 4$ Minkowski space such that the 3-point functions of a pair of ${\\cal L}$'s and a scalar field of dimension 2 or 4 vanish can be interpreted as the theory of local observables of a conformally invariant fixed point in a gauge theory with Lagrangian density ${\\cal L} (x)$.

  5. Fluid circulation and structural system of Cerritos Colorados geothermal field in La Primavera volcanic caldera (Mexico) inferred from geophysical surveys

    Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.

    2017-12-01

    Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to

  6. A contemporary decennial global sample of changing agricultural field sizes

    White, E.; Roy, D. P.

    2011-12-01

    In the last several hundred years agriculture has caused significant human induced Land Cover Land Use Change (LCLUC) with dramatic cropland expansion and a marked increase in agricultural productivity. The size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLUC. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, diffusion of disease pathogens and pests, and loss or degradation in buffers to nutrient, herbicide and pesticide flows. In this study, globally distributed locations with significant contemporary field size change were selected guided by a global map of agricultural yield and literature review and were selected to be representative of different driving forces of field size change (associated with technological innovation, socio-economic conditions, government policy, historic patterns of land cover land use, and environmental setting). Seasonal Landsat data acquired on a decadal basis (for 1980, 1990, 2000 and 2010) were used to extract field boundaries and the temporal changes in field size quantified and their causes discussed.

  7. Archeomagnetic Intensity Spikes: Global or Regional Geomagnetic Field Features?

    Monika Korte

    2018-03-01

    Full Text Available Variations of the geomagnetic field prior to direct observations are inferred from archeo- and paleomagnetic experiments. Seemingly unusual variations not seen in the present-day and historical field are of particular interest to constrain the full range of core dynamics. Recently, archeomagnetic intensity spikes, characterized by very high field values that appear to be associated with rapid secular variation rates, have been reported from several parts of the world. They were first noted in data from the Levant at around 900 BCE. A recent re-assessment of previous and new Levantine data, involving a rigorous quality assessment, interprets the observations as an extreme local geomagnetic high with at least two intensity spikes between the 11th and 8th centuries BCE. Subsequent reports of similar features from Asia, the Canary Islands and Texas raise the question of whether such features might be common occurrences, or whether they might even be part of a global magnetic field feature. Here we use spherical harmonic modeling to test two hypotheses: firstly, whether the Levantine and other potential spikes might be associated with higher dipole field intensity than shown by existing global field models around 1,000 BCE, and secondly, whether the observations from different parts of the world are compatible with a westward drifting intense flux patch. Our results suggest that the spikes originate from intense flux patches growing and decaying mostly in situ, combined with stronger and more variable dipole moment than shown by previous global field models. Axial dipole variations no more than 60% higher than observed in the present field, probably within the range of normal geodynamo behavior, seem sufficient to explain the observations.

  8. Geophysical excitation of LOD/UT1 estimated from the output of the global circulation models of the atmosphere - ERA-40 reanalysis and of the ocean - OMCT

    Korbacz, A.; Brzeziński, A.; Thomas, M.

    2008-04-01

    We use new estimates of the global atmospheric and oceanic angular momenta (AAM, OAM) to study the influence on LOD/UT1. The AAM series was calculated from the output fields of the atmospheric general circulation model ERA-40 reanalysis. The OAM series is an outcome of global ocean model OMCT simulation driven by global fields of the atmospheric parameters from the ERA- 40 reanalysis. The excitation data cover the period between 1963 and 2001. Our calculations concern atmospheric and oceanic effects in LOD/UT1 over the periods between 20 days and decades. Results are compared to those derived from the alternative AAM/OAM data sets.

  9. Perspectives on global nursing leadership: international experiences from the field.

    Buckner, E B; Anderson, D J; Garzon, N; Hafsteinsdóttir, T B; Lai, C K Y; Roshan, R

    2014-12-01

    Nursing leaders from six countries engaged in a year-long discussion on global leadership development. The purpose of these dialogues was to strengthen individual and collective capacity as nursing leaders in a global society. Field experiences in practice and education were shared. Perspectives on global leadership can strengthen nurses' contributions to practice, workplace and policy issues worldwide. Transformational leadership empowers nurses' increasing confidence. Mentoring is needed to stimulate leadership development but this is lacking in many settings where nurses practice, teach and influence policy. Organizations with global mission provide opportunity for nurses' professional growth in leadership through international dialogues. Dialogues among participants were held monthly by conference calls or videoconferences. Example stories from each participant illustrated nursing leadership in action. From these exemplars, concepts were chosen to create a framework. Emerging perspectives and leadership themes represented all contexts of practice, education, research and policy. The cultural context of each country was reflected in the examples. Themes emerged that crossed global regions and countries. Themes were creativity, change, collaboration, community, context and courage. Relationships initially formed in professional organizations can be extended to intentionally facilitate global nursing leadership development. Exemplars from the dialogues demonstrated nursing leadership in health policy development within each cultural context. Recommendations are given for infrastructure development in organizations to enhance future collaborations. © 2014 International Council of Nurses.

  10. Assessment of the Global and Regional Land Hydrosphere and Its Impact on the Balance of the Geophysical Excitation Function of Polar Motion

    Wińska, Małgorzata; Nastula, Jolanta; Kołaczek, Barbara

    2016-02-01

    The impact of continental hydrological loading from land water, snow and ice on polar motion excitation, calculated as hydrological angular momentum (HAM), is difficult to estimate, and not as much is known about it as about atmospheric angular momentum (AAM) and oceanic angular momentum (OAM). In this paper, regional hydrological excitations to polar motion are investigated using monthly terrestrial water storage data derived from the Gravity Recovery and Climate Experiment (GRACE) mission and from the five models of land hydrology. The results show that the areas where the variance shows large variability are similar for the different models of land hydrology and for the GRACE data. Areas which have a small amplitude on the maps make an important contribution to the global hydrological excitation function of polar motion. The comparison of geodetic residuals and global hydrological excitation functions of polar motion shows that none of the hydrological excitation has enough energy to significantly improve the agreement between the observed geodetic excitation and geophysical ones.

  11. Organizational Legitimacy in the Global Education Policy Field: Learning from UNESCO and the Global Monitoring Report

    Edwards, D. Brent, Jr.; Okitsu, Taeko; da Costa, Romina; Kitamura, Yuto

    2018-01-01

    In the field of global education policy, it is common for scholars to reflect on the progress made toward internationally agreed-upon agendas, such as Education for All (EFA). However, scant research has turned the gaze back on the major multilateral institutions that commit to taking the lead in meeting these agendas in order to ask, what…

  12. Between Stalinism and Infrastructural Globalism. The International Geophysical Year (1957-8) in Czechoslovakia, Poland and the German Democratic Republic

    Olšáková, Doubravka

    -, č. 115 (2017), s. 97-122 ISSN 0001-6829 Institutional support: RVO:68378114 Keywords : Eastern Europe * cold war science * infrastructural globalism Subject RIV: AB - History OBOR OECD: History (history of science and technology to be 6.3, history of specific sciences to be under the respective headings)

  13. Natural gas in 1942: Petroleum in 1942: Gravimetric and magnetic geophysical surveys in the gas fields of southwestern Ontario, 1941 and 1942. Annual publication

    Crozier, A R; Brant, A A

    1946-12-31

    Part V of this annual report consists of three separate reports: Natural gas; petroleum; and gravimetric and magnetic geophysical surveys in the gas fields of southwestern Ontario. The natural gas report discusses production and distribution; changes and improvements; consumption and rates; and gas wells and their production. The petroleum report presents information on production and drilling by township; expansion; and petroleum importation and refining operations. The final report discusses causes of anomalies; a discussion of the gravitational results and a discussion of the magnetic results.

  14. Global gravity field from recent satellites (DTU15) - Arctic improvements

    Andersen, O. B.; Knudsen, P.; Kenyon, S.

    2017-01-01

    Global marine gravity field modelling using satellite altimetry is currently undergoing huge improvement with the completion of the Jason-1 end-of-life geodetic mission, but particularly with the continuing Cryosat-2 mission. These new satellites provide three times as many geodetic mission...... altimetric sea surface height observations as ever before. The impact of these new geodetic mission data is a dramatic improvement of particularly the shorter wavelength of the gravity field (10-20 km) which is now being mapped at significantly higher accuracy. The quality of the altimetric gravity field...... is in many places surpassing the quality of gravity fields derived using non-commercial marine gravity observations. Cryosat-2 provides for the first time altimetry throughout the Arctic Ocean up to 88°N. Here, the huge improvement in marine gravity mapping is shown through comparison with high quality...

  15. Mixed global anomalies and boundary conformal field theories

    Numasawa, Tokiro; Yamaguchi, Satoshi

    2017-01-01

    We consider the relation of mixed global gauge gravitational anomalies and boundary conformal field theory in WZW models for simple Lie groups. The discrete symmetries of consideration are the centers of the simple Lie groups. These mixed anomalies prevent to gauge them i.e, take the orbifold by the center. The absence of anomalies impose conditions on the levels of WZW models. Next, we study the conformal boundary conditions for the original theories. We consider the existence of a conformal...

  16. Globally and locally supersymmetric effective theories for light fields

    Brizi, Leonardo; Scrucca, Claudio A

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...

  17. Archaeological Geophysics in Field Courses and Flipped-Classrooms: Lessons Learned from the Marine and Geological Science Programs at North Carolina State University

    Bohnenstiehl, D. R.; Wall, J.; Sprinkle, D. P., II

    2016-12-01

    The Department of Marine, Earth and Atmospheric Sciences at North Carolina State University routinely uses archaeological geophysics as an inquiry based teaching tool in our capstone Coastal Processes and Geologic Field Camps. Examples of past projects include a search for civil war artifacts within the moat surrounding historic Fort Macon, near Beaufort North Carolina, and investigations of ancient adobe pueblos in northern New Mexico. These types of studies, being of modest spatial scale, provide students with an opportunity to image the subsurface using multiple techniques and integrate the results into a geographic information system for analysis and interpretation. In the spring of 2016, our semester-long Applied Geophysics course was built around a project to identify unmarked graves at the Oberlin African-American cemetery Raleigh, North Carolina. The classroom experience was flipped with required readings, video lectures and weekly graded quizzes accessible online. Class meeting time was entirely spent collecting or processing data. To facilitate hands on learning, the class was taught with two sections having only ten students each. The methods used included GPR, EMI, Magnetics, and DC Resistivity. Students responded positively to the opportunity to tackle a real-world problem as part of the class; however, many where frustrated by the expectation that they master theoretical aspects of the course using the online content. Compared to a class taught with a traditional lecture format, students clearly gained more knowledge regarding field procedures; however, their performance on a comprehensive final suggests a poorer understand of many fundamental concepts.

  18. Globally and locally supersymmetric effective theories for light fields

    Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.

  19. Modelling of the Global Geopotential Energy & Stress Field

    Schiffer, Christian; Nielsen, S.B.

    Lateral density and topography variations yield in and important contribution to the lithospheric stress field. The leading quantity is the Geopotential Energy, the integrated lithostatic pressure in a rock column. The horizontal gradient of this quantity is related to horizontal stresses through...... the Equations of equilibrium of stresses. The Geopotential Energy furthermore can be linearly related to the Geoid under assumption of local isostasy. Satellite Geoid measurements contain, however, also non-isostatic deeper mantle responses of long wavelength. Unfortunately, high-pass filtering of the Geoid...... flow in the presence of local isostasy and a steady state geotherm. Subsequently we use a FEM code to solve the Equations of equilibrium of stresses for a three dimensional elastic shell. The modelled results are shown and compared with the global stress field and other publications....

  20. Imaging normal faults in alluvial fans using geophysical techniques: Field example from the coast of Gulf of Aqaba, Saudi Arabia

    Hanafy, Sherif M.

    2014-08-05

    In this work we use geophysical methods to locate and characterize active faults in alluvial sediments. Since only subtle material and velocity contrasts are expected across the faults, we used seismic refraction tomography and 2D resistivity imaging to locate the fault. One seismic profile and one 2D resistivity profile are collected at an alluvial fan on the Gulf of Aqaba coast in Saudi Arabia. The collected data are inverted to generate the traveltime tomogram and the electric resistivity tomogram (ERT). A low velocity anomaly is shown on the traveltime tomogram indicates the colluvial wedge associated with the fault. The location of the fault is shown on the ERT as a vertical high resistivity anomaly.

  1. ANNALS OF GEOPHYSICS: AD MAJORA

    Fabio Florindo

    2014-03-01

    Full Text Available Annals of Geophysics is a bimonthly international journal, which publishes scientific papers in the field of geophysics sensu lato. It derives from Annali di Geofisica, which commenced publication in January 1948 as a quarterly periodical devoted to general geophysics, seismology, earth magnetism, and atmospheric studies. The journal was published regularly for a quarter of a century until 1982 when it merged with the French journal Annales de Géophysique to become Annales Geophysicae under the aegis of the European Geophysical Society. In 1981, this journal ceased publication of the section on solid earth geophysics, ending the legacy of Annali di Geofisica. In 1993, the Istituto Nazionale di Geofisica (ING, founder of the journal, decided to resume publication of its own journal under the same name, Annali di Geofisica. To ensure continuity, the first volume of the new series was assigned the volume number XXXVI (following the last issue published in 1982. In 2002, with volume XLV, the name of the journal was translated into English to become Annals of Geophysics and in consequence the journal impact factor counter was restarted. Starting in 2010, in order to improve its status and better serve the science community, Annals of Geophysics has instituted a number of editorial changes including full electronic open access, freely accessible online, the possibility to comment on and discuss papers online, and a board of editors representing Asia and the Americas as well as Europe. [...

  2. Statistics-Based Compression of Global Wind Fields

    Jeong, Jaehong

    2017-02-07

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth\\'s orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  3. Statistics-Based Compression of Global Wind Fields

    Jeong, Jaehong; Castruccio, Stefano; Crippa, Paola; Genton, Marc G.

    2017-01-01

    Wind has the potential to make a significant contribution to future energy resources. Locating the sources of this renewable energy on a global scale is however extremely challenging, given the difficulty to store very large data sets generated by modern computer models. We propose a statistical model that aims at reproducing the data-generating mechanism of an ensemble of runs via a Stochastic Generator (SG) of global annual wind data. We introduce an evolutionary spectrum approach with spatially varying parameters based on large-scale geographical descriptors such as altitude to better account for different regimes across the Earth's orography. We consider a multi-step conditional likelihood approach to estimate the parameters that explicitly accounts for nonstationary features while also balancing memory storage and distributed computation. We apply the proposed model to more than 18 million points of yearly global wind speed. The proposed SG requires orders of magnitude less storage for generating surrogate ensemble members from wind than does creating additional wind fields from the climate model, even if an effective lossy data compression algorithm is applied to the simulation output.

  4. Geophysics-based method of locating a stationary earth object

    Daily, Michael R [Albuquerque, NM; Rohde, Steven B [Corrales, NM; Novak, James L [Albuquerque, NM

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  5. Petroleum geophysics

    2010-07-01

    The book is compiled from a series of e-learning modules. GeoCLASS is an e-learning system with contents from petroleum geophysics. It is the result of collaboration between professors at the University of Bergen and the University of Oslo, and its material has been used as curriculum in master program courses at these universities for several years. Using a unique feature to GeoCLASS, these advanced scientific topics are presented on multiple levels. The introductions open the door to this vast pool of knowledge, accessible even for high school students. Enter the door, and you enter the modules. Various levels of content are presented, and the more advanced levels can be shielded from the regular user, and only accessed by those with particular interest. The chapters in the book are: Elastic waves; Survey planning; Seismic acquisition; Basic seismic signal theory and processing; Seismic imaging; Seismic attributes; Rock physics; Reservoir monitoring. (AG)

  6. Global correlation imaging of magnetic total field gradients

    Guo, Lianghui; Meng, Xiaohong; Shi, Lei

    2012-01-01

    Firstly we introduce the correlation imaging approach for the x-, y- and z-gradients of a magnetic total field anomaly for deriving the distribution of equivalent magnetic sources of the subsurface. In this approach, the subsurface space is divided into a regular grid, and then a correlation coefficient function is computed at each grid node, based on the cross-correlation between the x-gradient (or y-gradient or z-gradient) of the observed magnetic total field anomaly and the x-gradient (or y-gradient or z-gradient) of the theoretical magnetic total field anomaly due to a magnetic dipole. The resultant correlation coefficient is used to describe the probability of a magnetic dipole occurring at the node. We then define a global correlation coefficient function for comprehensively delineating the probability of an occurrence of a magnetic dipole, which takes, at each node, the maximum positive value of the corresponding correlation coefficient function of the three gradients. We finally test the approach both on synthetic data and real data from a metallic deposit area in the middle-lower reaches of the Yangtze River, China. (paper)

  7. Rapid Geophysical Surveyor

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of US Department of Energy waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sites where historical records are inaccurate and survey benchmarks have changed because of refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho National Engineering Laboratory (INEL) during the summer of 1992. The RGS was funded by the Buried Waste Integrated Demonstration program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex at the INEL in September 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 in. along survey lines spaced 1-ft apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 worker-days using conventional ground survey techniques

  8. Globalization

    Andru?cã Maria Carmen

    2013-01-01

    The field of globalization has highlighted an interdependence implied by a more harmonious understanding determined by the daily interaction between nations through the inducement of peace and the management of streamlining and the effectiveness of the global economy. For the functioning of the globalization, the developing countries that can be helped by the developed ones must be involved. The international community can contribute to the institution of the development environment of the gl...

  9. Geophysical considerations of geothermics

    Hayakawa, M

    1967-01-01

    The development and utilization of geothermal energy is described from the standpoint of geophysics. The internal temperature of the Earth and the history and composition of magmas are described. Methods of exploration such as gravity, magnetic, thermal and electrical surveys are discussed, as are geochemical and infrared photogrammetric techniques. Examples are provided of how these techniques have been used in Italy and at the Matsukawa geothermal field in Japan. Drilling considerations such as muds, casings and cementing materials are discussed. Solutions are proposed for problems of environmental pollution and plant expansion.

  10. Sustainable urban development and geophysics

    Liu, Lanbo; Chan, L. S.

    2007-09-01

    The new millennium has seen a fresh wave of world economic development especially in the Asian-Pacific region. This has contributed to further rapid urban expansion, creating shortages of energy and resources, degradation of the environment, and changes to climatic patterns. Large-scale, new urbanization is mostly seen in developing countries but urban sprawl is also a major social problem for developed nations. Urbanization has been accelerating at a tremendous rate. According to data collected by the United Nations [1], 50 years ago less than 30% of the world population lived in cities. Now, more than 50% are living in urban settings which occupy only about 1% of the Earth's surface. During the period from 1950 to 1995, the number of cities with a population higher than one million increased from 83 to 325. By 2025 it is estimated that more than 60% of 8.3 billion people (the projected world population [1]) will be city dwellers. Urbanization and urban sprawl can affect our living quality both positively and negatively. In recent years geophysics has found significant and new applications in highly urbanized settings. Such applications are conducive to the understanding of the changes and impacts on the physical environment and play a role in developing sustainable urban infrastructure systems. We would like to refer to this field of study as 'urban geophysics'. Urban geophysics is not simply the application of geophysical exploration in the cities. Urbanization has brought about major changes to the geophysical fields of cities, including those associated with electricity, magnetism, electromagnetism and heat. An example is the increased use of electromagnetic waves in wireless communication, transportation, office automation, and computer equipment. How such an increased intensity of electromagnetic radiation affects the behaviour of charged particles in the atmosphere, the equilibrium of ecological systems, or human health, are new research frontiers to be

  11. Near-Surface Geophysical Mapping of the Hydrological Response to an Intense Rainfall Event at the Field Scale

    Martínez, G.; Vanderlinden, K.; Giraldez, J. V.; Espejo, A. J.; Muriel, J. L.

    2009-12-01

    Soil moisture plays an important role in a wide variety of biogeochemical fluxes in the soil-plant-atmosphere system and governs the (eco)hydrological response of a catchment to an external forcing such as rainfall. Near-surface electromagnetic induction (EMI) sensors that measure the soil apparent electrical conductivity (ECa) provide a fast and non-invasive means for characterizing this response at the field or catchment scale through high-resolution time-lapse mapping. Here we show how ECa maps, obtained before and after an intense rainfall event of 125 mm h-1, elucidate differences in soil moisture patterns and hydrologic response of an experimental field as a consequence of differed soil management. The dryland field (Vertisol) was located in SW Spain and cropped with a typical wheat-sunflower-legume rotation. Both, near-surface and subsurface ECa (ECas and ECad, respectively), were measured using the EM38-DD EMI sensor in a mobile configuration. Raw ECa measurements and Mean Relative Differences (MRD) provided information on soil moisture patterns while time-lapse maps were used to evaluate the hydrologic response of the field. ECa maps of the field, measured before and after the rainfall event showed similar patterns. The field depressions where most of water and sediments accumulated had the highest ECa and MRD values. The SE-oriented soil, which was deeper and more exposed to sun and wind, showed the lowest ECa and MRD. The largest differences raised in the central part of the field where a high ECa and MRD area appeared after the rainfall event as a consequence of the smaller soil depth and a possible subsurface flux concentration. Time-lapse maps of both ECa and MRD were also similar. The direct drill plots showed higher increments of ECa and MRD as a result of the smaller runoff production. Time-lapse ECa increments showed a bimodal distribution differentiating clearly the direct drill from the conventional and minimum tillage plots. However this kind

  12. Conceptual Design of Geophysical Microsatellite

    Matviyenko, S.A.

    2014-10-01

    Full Text Available The article covers the issue of Earth gravitational field (EGF parameters measurement from space. The radiophysical method of measurement of gravitational frequency shift of electromagnetic radiation using existent GNSS and its two variants are developed by the author. The designlayout drawing of geophysical microsatellite, which implements the radiophysical method of EGF measurement and provides Earth plasmasphere and magnetosphere monitoring, is offered.

  13. Rapid geophysical surveyor

    Roybal, L.G.; Carpenter, G.S.; Josten, N.E.

    1993-01-01

    The Rapid Geophysical Surveyor (RGS) is a system designed to rapidly and economically collect closely-spaced geophysical data used for characterization of Department of Energy (DOE) waste sites. Geophysical surveys of waste sites are an important first step in the remediation and closure of these sites; especially older sties where historical records are inaccurate and survey benchmarks have changed due to refinements in coordinate controls and datum changes. Closely-spaced data are required to adequately differentiate pits, trenches, and soil vault rows whose edges may be only a few feet from each other. A prototype vehicle designed to collect magnetic field data was built at the Idaho national Engineering Laboratory (INEL) during the summer of 1992. The RGS was one of several projects funded by the Buried Waste Integrated Demonstration (BWID) program. This vehicle was demonstrated at the Subsurface Disposal Area (SDA) within the Radioactive Waste Management Complex (RWMC) on the INEL in September of 1992. Magnetic data were collected over two areas in the SDA, with a total survey area of about 1.7 acres. Data were collected at a nominal density of 2 1/2 inches along survey lines spaced 1 foot apart. Over 350,000 data points were collected over a 6 day period corresponding to about 185 man-days using conventional ground survey techniques. This report documents the design and demonstration of the RGS concept including the presentation of magnetic data collected at the SDA. The surveys were able to show pit and trench boundaries and determine details of their spatial orientation never before achieved

  14. GeoGirls: A Geology and Geophysics Field Camp for Middle School Girls at Mount St. Helens

    Samson, C.; Allstadt, K.; Melander, S.; Groskopf, A.; Driedger, C. L.; Westby, E.

    2015-12-01

    The August 2015 GeoGirls program was a project designed to inspire girls to gain an appreciation and enthusiasm for Earth sciences using Mount St. Helens as an outdoor volcanic laboratory. Occupations in the field of science and engineering tend to be held by more males than females. One way to address this is to introduce girls to possible opportunities within the geosciences and encourage them to learn more about the dynamic environment in which they live. In 2015, the GeoGirls program sought to accomplish this goal through organizing a five day-long field camp for twenty middle school-aged girls, along with four high school-aged mentors and two local teachers. This group explored Mount St. Helens guided by female scientists from the USGS Cascade Volcano Observatory (CVO), the Mount St. Helens Institute (MSHI), UNAVCO, Boise State, Georgia Tech, University of Washington and Oregon State University. To introduce participants to techniques used by volcanologists, the girls participated in hands-on experiments and research projects focusing on seismology, GPS, terrestrial lidar, photogrammetry, water and tephra. Participants also learned to collect samples, analyze data and use microscopes. Through this experience, participants acquired strategies for conducting research by developing hypotheses, making observations, thinking critically and sharing their findings with others. The success of the GeoGirls program was evaluated by participant and parent survey questionnaires, which allowed assessment of overall enthusiasm and interest in pursuing careers in the geosciences. The program was free to participants and was run jointly by MSHI and CVO and funded by NSF, the American Association of University Women, the Association for Women Geoscientists, the Association of Environmental & Engineering Geologists and private donors. The program will run again in the summer of 2016.

  15. Integrated geophysical studies on the area east of Abu Gharadig basin, southern Cairo, Egypt, using potential field data

    El-Awady, Mohammed Mohamed; El-Badrawy, Hussein Tawfek; Abuo El-Ela, Amin Mohamed; Solimaan, Mohamed Refaat; Alrefaee, Hamed Abdelhamid; Elbowab, Mostafa

    2016-12-01

    Potential field data of the area east of Abu Gharadig basin were used to delineate the tectonic framework of probable economic interest and for future development plans for the area. To achieve this goal, the RTP and Bouguer gravity maps of the study area were subjected to several filtering and processing techniques. The regional magnetic map shows NE-SW high regional magnetic trends at the northwestern and southeastern parts as well as low magnetic trends at the central part reflecting thick non-magnetized sediments and/or deep highly magnetized basement rocks. Similarly, the regional gravity map shows NE-SW diagonal high and low gravity trends across the entire area of study as well as a distinct increase of gravity values toward the northwest corner reflecting thickening of sedimentary cover and/or deepening of denser basement rock at the central part. The residual maps reveal many anomalies of shallow sources with different polarities, amplitudes and extensions in the form of alternating high and low gravity and magnetic indicating that the basement rocks are dissected by faults forming uplifted and downthrown blocks. Edge detection techniques outlined effectively the boarders and extensions of the structural highs and lows through showing gravity and magnetic maxima over the edges of these tectonic features. Moreover, the River Nile course is controlled by shallow normal faults affecting the recent Nile sediments and is clearly shown by edge detection maps of gravity data. Euler deconvolution of magnetic and gravity data reveals clustering of solution along fault trends or causative bodies centers. The Euler depth estimate to the basement surface shows a good correlation with the depth determined by the power spectrum method where its value ranges around 4 km. The interpreted basement tectonic map of the study area is dominated by ENE-WSW Syrian Arc, NW-SE Gulf of Suez and Red Sea, NE-SW Aqaba, E-W Mediterranean and N-S East Africa tectonic trends. The older

  16. Geophysical and geochemical techniques for exploration of hydrocarbons and minerals

    Sittig, M.

    1980-01-01

    The detailed descriptive information in this book is based on 389 US patents that deal with geophysical and geochemical techniques useful for the exploration of hydrocarbons and minerals. Where it was necessary to round out the complete technological picture, a few paragraphs from cited government reports have been included. These techniques are used in prospecting for oil, coal, oil shale, tar sand and minerals. The patents are grouped under the following chapters: geochemical prospecting; geobiological prospecting; geophysical exploration; magnetic geophysical prospecting; gravitational geophysical prospecting; electrical geophysical prospecting; nuclear geophysical prospecting; seismic geophysical prospecting; and exploratory well drilling. This book serves a double purpose in that it supplies detailed technical information and can be used as a guide to the US patent literature in this field. By indicating all the information that is significant, and eliminating legal jargon and juristic phraseology, this book presents an advanced, industrially oriented review of modern methods of geophysical and geochemical exploration techniques

  17. EXPLORING AN EMERGING FIELD: THE IMPLICATIONS OF GLOBAL SOCIAL ENTREPRENEURSHIP

    Hyuk KIM

    2014-06-01

    Full Text Available This paper aims to advance the empirical understanding of global social entrepreneurship. Specifically, this paper aims to provide a new social entrepreneurship model, particularly on a global scale, introducing and examining two distinctive cases: Ashoka and Bangladesh Rural Advancement Committee (BRAC. The ‘hybrid value chain’ suggested by Ashoka demonstrates that how business organizations and citizen-sector organizations can help each other in developing partnerships for various markets and communities in the world, addressing a variety of social needs. Presenting the ‘holistic approach to development,’ BRAC has been transferring its sustainable model, based on insights from Bangladesh but adapted to the local contexts of the countries, to several countries by creating prospects for the most disadvantaged people to overcome extreme poverty. This paper contributes to the current literature by highlighting how entrepreneurial efforts can create opportunities and launch ventures to satisfy social needs, balancing economic and social imperatives, on a global scale.

  18. The gravitational field of a charged global monopole

    Min-Qiang Lu [East China Univ. of Science and Tecnology, Shangai (China). School of Fundamental Education]|[East China Inst. for Theoretical Physics, Shangai (China)

    1998-10-01

    A charged global monopole formed as a consequence of the spontaneous breakdown of a global symmetry should have a mass that grows linearly with the distance off its core where the gravitational effect of this configuration is equivalent to that of the deficit solid angle in the metric and the relatively tiny mass at the origin. In this paper it is shown that this small effective mass depends on the charge in that there exists a negative mass when the charge number Q is less than a critical value Q{sub c}r and that there appears a positive one when Q>Q{sub c}r.

  19. Recent developments in high-resolution global altimetric gravity field modeling

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P. A .M.

    2010-01-01

    older gravity fields show accuracy improvement of the order of 20-40% due to a combination of retracking, enhanced processing, and the use of the new EGM2008 geoid model. In coastal and polar regions, accuracy improved in many places by 40-50% (or more) compared with older global marine gravity fields.......In recent years, dedicated effort has been made to improve high-resolution global marine gravity fields. One new global field is the Danish National Space Center (DNSC) 1-minute grid called DNSC08GRA, released in 2008. DNSC08GRA was derived from double-retracked satellite altimetry, mainly from...... the ERS-1 geodetic mission data, augmented with new retracked GEOSAT data which have significantly enhanced the range and hence the gravity field accuracy. DNSC08GRA is the first high-resolution global gravity field to cover the entire Arctic Ocean all the way to the North Pole. Comparisons with other...

  20. Field Simulation of Global Change: Transplanting Northern Bog Mesocosms Southward

    Breeuwer, A.J.G.; Heijmans, M.M.P.D.; Robroek, B.J.M.; Berendse, F.

    2010-01-01

    A large proportion of northern peatlands consists of Sphagnum-dominated ombrotrophic bogs. In these bogs, peat mosses (Sphagnum) and vascular plants occur in an apparent stable equilibrium, thereby sustaining the carbon sink function of the bog ecosystem. How global warming and increased nitrogen

  1. Global operator expansions in conformally invariant relativistic quantum field theory

    Schoer, B.; Swieca, J.A.; Voelkel, A.H.

    1974-01-01

    A global conformal operator expansions in the Minkowski region in several models and their formulation in the general theory is presented. Whereas the vacuum expansions are termwise manisfestly conformal invariant, the expansions away from the vacuum do not share this property

  2. Sustainable Geophysical Observatory Networks

    Willemann, R. J.; Lerner-Lam, A.; Aster, R.; Beck, S.; Ekstrom, G.; Nyblade, A.; Sandvol, E.

    2007-05-01

    Geophysical networks are defined not only by their technical specifications, but also by the characteristics and needs of the communities that use them. Growing populations supported by more elaborate urban infrastructure with its fine-grained socio-economic interdependencies and relying on global and regional connections for sustainability make new demands for natural hazard risk management. Taking advantage of advances in the underlying science to provide society with accurate risk assessments often requires higher fidelity measurements, entirely new types of observations, and an evolutionary sense of data products and information management. Engineering a high-tech system to address stakeholder needs is difficult, and designing for unpredictable developments requires an emphasis on adaptation. Thus, it is essential to promote formation of organizations or communities that can support evolution of a technological system, imagine new uses, and develop the societal relationships that sustain operations and provide capital for improvement. The owners must have a deep understanding of why the system works in particular ways and how to manage data products for the benefits of stakeholders. To be effective, community promotion must be sustained over a longer period of time than required to build a network and should be aimed at integrating the community into worldwide partnerships. Practices that can promote community formation if they are sustained include repeated training and scientific exchange workshops, extended visits by experts and staff at all levels to and from countries where networks are installed, mechanisms that make timely upgrades realistically possible, and routine exchange and wide dissemination of data in all directions. The combination of international research and educational collaborations, supported by open data exchange, with regionalized and specific assessments of local stakeholder needs and concerns, provides a sustainable model for

  3. Field Testing of Geophysical Techniques.

    1981-11-01

    influence drainage and groundwater movement in the surrounding area. Presumably, the direction of groundwater movement is to the north and out of the...applicable. Specifically, these additional techniques are: e Audio magneto- telluric (AMT) resistivity * Electromagnetics a Ground-probing radar Both

  4. Global properties of ohmically heated reversed-field pinches

    Gerwin, R.A.

    The simultaneous requirements of power balance and pressure balance have been considered. The treatment generalizes the Pease-Braginskii pinch current limit by including toroidal magnetic field, anomalous resistivity, nonradiative losses, and time-dependent fields. The rise of the temperature to a state of power balance proves to be amenable to a very simple and unified description. Finally, the practical parameter windows implied by the joint action of power balance and pressure balance are displayed

  5. Geophysical methods in uranium mining

    Koehler, K.

    1989-01-01

    In uranium prospecting, exploration, milling, and mining there is an urgent need to have information on the concentration of uranium at all steps of handling uranium containing materials. To gain this information in an effective way modern geophysical methods have to be applied. Publications of the IAEA and NEA in this field are reviewed in order to characterize the state of the art of these methods. 55 refs

  6. Brandt matrices and theta series over global function fields

    Chuang, Chih-Yun; Wei, Fu-Tsun; Yu, Jing

    2015-01-01

    The aim of this article is to give a complete account of the Eichler-Brandt theory over function fields and the basis problem for Drinfeld type automorphic forms. Given arbitrary function field k together with a fixed place \\infty, the authors construct a family of theta series from the norm forms of "definite" quaternion algebras, and establish an explicit Hecke-module homomorphism from the Picard group of an associated definite Shimura curve to a space of Drinfeld type automorphic forms. The "compatibility" of these homomorphisms with different square-free levels is also examined. These Heck

  7. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 500m SIN Grid V051

    National Aeronautics and Space Administration — The Terra MODIS Vegetation Continuous Fields (VCF) product is a sub-pixel-level representation of surface vegetation cover estimates globally. Designed to...

  8. Combined equations for estimating global solar radiation: Projection of radiation field over Japan under global warming conditions by statistical downscaling

    Iizumi, T.; Nishimori, M.; Yokozawa, M.

    2008-01-01

    For this study, we developed a new statistical model to estimate the daily accumulated global solar radiation on the earth's surface and used the model to generate a high-resolution climate change scenario of the radiation field in Japan. The statistical model mainly relies on precipitable water vapor calculated from air temperature and relative humidity on the surface to estimate seasonal changes in global solar radiation. On the other hand, to estimate daily radiation fluctuations, the model uses either a diurnal temperature range or relative humidity. The diurnal temperature range, calculated from the daily maximum and minimum temperatures, and relative humidity is a general output of most climate models, and pertinent observation data are comparatively easy to access. The statistical model performed well when estimating the monthly mean value, daily fluctuation statistics, and regional differences in the radiation field in Japan. To project the change in the radiation field for the years 2081 to 2100, we applied the statistical model to the climate change scenario of a high-resolution Regional Climate Model with a 20-km mesh size (RCM20) developed at the Meteorological Research Institute based on the Special Report for Emission Scenario (SRES)-A2. The projected change shows the following tendency: global solar radiation will increase in the warm season and decrease in the cool season in many areas of Japan, indicating that global warming may cause changes in the radiation field in Japan. The generated climate change scenario for the radiation field is linked to long-term and short-term changes in air temperature and relative humidity obtained from the RCM20 and, consequently, is expected to complement the RCM20 datasets for an impact assessment study in the agricultural sector

  9. A ''model'' geophysics program

    Nyquist, J.E.

    1994-01-01

    In 1993, I tested a radio-controlled airplane designed by Jim Walker of Brigham Young University for low-elevation aerial photography. Model-air photography retains most of the advantages of standard aerial photography --- the photographs can be used to detect lineaments, to map roads and buildings, and to construct stereo pairs to measure topography --- and it is far less expensive. Proven applications on the Oak Ridge Reservation include: updating older aerial records to document new construction; using repeated overflights of the same area to capture seasonal changes in vegetation and the effects of major storms; and detecting waste trench boundaries from the color and character of the overlying grass. Aerial photography is only one of many possible applications of radio-controlled aircraft. Currently, I am funded by the Department of Energy's Office of Technology Development to review the state of the art in microavionics, both military and civilian, to determine ways this emerging technology can be used for environmental site characterization. Being particularly interested in geophysical applications, I am also collaborating with electrical engineers at Oak Ridge National Laboratory to design a model plane that will carry a 3-component flux-gate magnetometer and a global positioning system, which I hope to test in the spring of 1994

  10. Fundamentals of Geophysics

    Lowrie, William

    1997-10-01

    This unique textbook presents a comprehensive overview of the fundamental principles of geophysics. Unlike most geophysics textbooks, it combines both the applied and theoretical aspects to the subject. The author explains complex geophysical concepts using abundant diagrams, a simplified mathematical treatment, and easy-to-follow equations. After placing the Earth in the context of the solar system, he describes each major branch of geophysics: gravitation, seismology, dating, thermal and electrical properties, geomagnetism, paleomagnetism and geodynamics. Each chapter begins with a summary of the basic physical principles, and a brief account of each topic's historical evolution. The book will satisfy the needs of intermediate-level earth science students from a variety of backgrounds, while at the same time preparing geophysics majors for continued study at a higher level.

  11. Applied Geophysics Opportunities in the Petroleum Industry

    Olgaard, D. L.; Tikku, A.; Roberts, J. C.; Martinez, A.

    2012-12-01

    Meeting the increasing global demand for energy over the next several decades presents daunting challenges to engineers and scientists, including geoscientists of all disciplines. Many opportunities exist for geophysicists to find and produce oil and gas in a safe, environmentally responsible and affordable manner. Successful oil and gas exploration involves a 'Plates to Pores' approach that integrates multi-scale data from satellites, marine and land seismic and non-seismic field surveys, lab experiments, and even electron microscopy. The petroleum industry is at the forefront of using high performance computing to develop innovative methods to process and analyze large volumes of seismic data and perform realistic numerical modeling, such as finite element fluid flow and rock deformation simulations. Challenging and rewarding jobs in exploration, production and research exist for students with BS/BA, MS and PhD degrees. Geophysics students interested in careers in the petroleum industry should have a broad foundation in science, math and fundamental geosciences at the BS/BA level, as well as mastery of the scientific method, usually gained through thesis work at MS and PhD levels. Field geology or geophysics experience is also valuable. Other personal attributes typical for geoscientists to be successful in industry include a passion for solving complex geoscience problems, the flexibility to work on a variety of assignments throughout a career and skills such as teamwork, communication, integration and leadership. In this presentation we will give examples of research, exploration and production opportunities for geophysicists in petroleum companies and compare and contrast careers in academia vs. industry.

  12. Exploration of Global Health Careers Across the Medical Fields.

    Barthélemy, Ernest; Mallol, Vanessa; Hannaford, Alisse; Pean, Christian; Kutua, Rehema; de Haydu, Christopher; Anandaraja, Natasha; Asgary, Ramin; Elahi, Ebrahim; Hexom, Braden; Landrigan, Philip; Shirazian, Taraneh; Katz, Craig

    Despite expansion of interest among American medical students in global health (GH), academic medical centers face multiple obstacles to the development of structured GH curricula and career guidance. To meet these demands we sought to provide a systematic analysis of the accounts of GH experts. We developed a collaborative, interview-based, qualitative analysis of GH experiences across six career-related themes that are relevant to medical students interested in GH: justification, medical education, economics, research prospects, law and ethics, and work-life balance. Seven GH faculty members were interviewed for 30-90 minutes using sample questions as guidelines. We applied a grounded theory approach to analyze the interview transcripts to discover an emerging theory pertinent to GH trainees. Regarding justification, 4 respondents defined GH as work with the underserved irrespective of geographic location; 5 respondents found sustainability imperative; and all respondents believe GH creates better physicians. Respondents identified many physician competencies developed through GH medical education, with 5 respondents agreeing that work with underserved populations has transformative potential. Concerning economics, 3 respondents acknowledged GH's popularity among trainees, resulting in increased training opportunities, and 2 respondents emphasized an associated deficiency in program quality. All respondents described career models across specialties. Four respondents noted funding challenges when discussing research prospects. Within the theme of laws and ethics, 4 respondents perceived inadequate accountability, and 6 respondents identified ways to create accountability. Finally, 6 respondents recognized family demands can compromise one's GH career and thus work-life balance. Despite diverse perspectives on the meaning and sustainability of GH work, this analysis provides a nascent framework that may inform curricular development for GH trainees. Suggestions

  13. Core Angular Momentum and the IERS Sub-Centers Activity for Monitoring Global Geophysical Fluids. Part 1; Core Angular Momentum and Earth Rotation

    Song, Xia-Dong; Chao, Benjamin (Technical Monitor)

    1999-01-01

    The part of the grant was to use recordings of seismic waves travelling through the earth's core (PKP waves) to study the inner core rotation and constraints on possible density anomalies in the fluid core. The shapes and relative arrival times of such waves associated with a common source were used to reduce the uncertainties in source location and excitation and the effect of unknown mantle structure. The major effort of the project is to assemble historical seismograms with long observing base lines. We have found original paper records of SSI earthquakes at COL between 1951 and 1966 in a warehouse of the U.S. Geological Survey office in Golden, Colorado, extending the previous measurements at COL by Song and Richards [1996] further back 15 years. Also in Alaska, the University of Alaska, Fairbanks Geophysical Institute (UAFGI) has been operating the Alaskan Seismic Network with over 100 stations since the late 1960s. Virtually complete archives of seismograms are still available at UAFGI. Unfortunately, most of the archives are in microchip form (develocorders), for which the use of waveforms is impossible. Paper seismograms (helicorders) are available for a limited number of stations, and digital recordings of analog signals started around 1989. Of the paper records obtained, stations at Gilmore Dome (GLM, very close to COL), Yukon (FYU), McKinley (MCK), and Sheep Creek Mountain (SCM) have the most complete continuous recordings.

  14. Introduction to the JEEG Agricultural Geophysics Special Issue

    Allred, Barry J.; Smith, Bruce D.

    2010-01-01

    Near-surface geophysical methods have become increasingly important tools in applied agricultural practices and studies. The great advantage of geophysical methods is their potential rapidity, low cost, and spatial continuity when compared to more traditional methods of assessing agricultural land, such as sample collection and laboratory analysis. Agricultural geophysics investigations commonly focus on obtaining information within the soil profile, which generally does not extend much beyond 2 meters beneath the ground surface. Although the depth of interest oftentimes is rather shallow, the area covered by an agricultural geophysics survey can vary widely in scale, from experimental plots (10 s to 100 s of square meters), to farm fields (10 s to 100 s of hectares), up to the size of watersheds (10 s to 100 s of square kilometers). To date, three predominant methods—resistivity, electromagnetic induction (EMI), and ground-penetrating radar (GPR)—have been used to obtain surface-based geophysical measurements within agricultural settings. However, a recent conference on agricultural geophysics (Bouyoucos Conference on Agricultural Geophysics, September 8–10, 2009, Albuquerque, New Mexico; www.ag-geophysics.org) illustrated that other geophysical methods are being applied or developed. These include airborne electromagnetic induction, magnetometry, seismic, and self-potential methods. Agricultural geophysical studies are also being linked to ground water studies that utilize deeper penetrating geophysical methods than normally used.

  15. Limit sets and global dynamic for 2-D divergence-free vector fields

    Marzougui, H.

    2004-08-01

    T. Ma and S. Wang studied the global structure of regular divergence-free vector fields on compact surfaces with or without boundary. This paper extends their study to the general case of divergence-free vector fields (regular or not) on closed surfaces and gives as a consequence a simple proof of their results. (author)

  16. Global changes in intensity of the Earth's magnetic field during the past 800kyr

    Guyodo, Yohan; Valet, Jean-Pierre

    1999-01-01

    Recent advances in palaeomagnetic and dating techniques have led to increasingly precise records of the relative intensity of the Earth’s past magnetic field at numerous field sites. The compilation and analysis of these records can provide important constraints on changes in global magnetic

  17. Trapped-Ion Quantum Logic with Global Radiation Fields.

    Weidt, S; Randall, J; Webster, S C; Lake, K; Webb, A E; Cohen, I; Navickas, T; Lekitsch, B; Retzker, A; Hensinger, W K

    2016-11-25

    Trapped ions are a promising tool for building a large-scale quantum computer. However, the number of required radiation fields for the realization of quantum gates in any proposed ion-based architecture scales with the number of ions within the quantum computer, posing a major obstacle when imagining a device with millions of ions. Here, we present a fundamentally different approach for trapped-ion quantum computing where this detrimental scaling vanishes. The method is based on individually controlled voltages applied to each logic gate location to facilitate the actual gate operation analogous to a traditional transistor architecture within a classical computer processor. To demonstrate the key principle of this approach we implement a versatile quantum gate method based on long-wavelength radiation and use this method to generate a maximally entangled state of two quantum engineered clock qubits with fidelity 0.985(12). This quantum gate also constitutes a simple-to-implement tool for quantum metrology, sensing, and simulation.

  18. Cosmological models in globally geodesic coordinates. II. Near-field approximation

    Liu Hongya

    1987-01-01

    A near-field approximation dealing with the cosmological field near a typical freely falling observer is developed within the framework established in the preceding paper [J. Math. Phys. 28, xxxx(1987)]. It is found that for the matter-dominated era the standard cosmological model of general relativity contains the Newtonian cosmological model, proposed by Zel'dovich, as its near-field approximation in the observer's globally geodesic coordinate system

  19. GEOPHYSICAL PROPERTIES OF SOILS

    Santamarina, Carlos

    2016-12-01

    Low energy perturbations used in geophysical methods provide insightful information about constant-fabric soil properties and their spatial variability. There are causal links between soil type, index properties, elastic wave velocity, electromagnetic wave parameters and thermal properties. Soil type relates to the stress-dependent S-wave velocity, thermal and electrical conductivity and permittivity. The small strain stiffness reflects the state of stress, the extent of diagenetic cementation and/or freezing. Pore fluid chemistry, fluid phase and changes in either fluid chemistry or phase manifest through electromagnetic measurements. The volumetric water content measured with electromagnetic techniques is the best predictor of porosity if the water saturation is 100%. Changes in water saturation alter the P-wave velocity when Srà100%, the S-wave velocity at intermediate saturations, and the thermal conductivity when the saturation is low Srà0%. Finally, tabulated values suffice to estimate heat capacity and latent heat for engineering design, however thermal conductivity requires measurements under proper field conditions.

  20. SQUID use for Geophysics: finding billions of dollars

    Foley, Catherine

    2014-03-01

    Soon after their discovery, Jim Zimmerman saw the potential of using Superconducting Quantum Interference Devices, SQUIDs, for the study of Geophysics and undertook experiments to understand the magnetic phenomena of the Earth. However his early experiments were not successful. Nevertheless up to the early 1980's, some research effort in the use of SQUIDs for geophysics continued and many ideas of how you could use SQUIDs evolved. Their use was not adopted by the mining industry at that time for a range of reasons. The discovery of high temperature superconductors started a reinvigoration in the interest to use SQUIDs for mineral exploration. Several groups around the world worked with mining companies to develop both liquid helium and nitrogen cooled systems. The realisation of the achievable sensitivity that contributed to successful mineral discoveries and delineation led to real financial returns for miners. By the mid 2000's, SQUID systems for geophysics were finally being offered for sale by several start-up companies. This talk will tell the story of SQUID use in geophysics. It will start with the early work of the SQUID pioneers including that of Jim Zimmerman and John Clarke and will also cover the development since the early 1990's up to today of a number of magnetometers and gradiometers that have been successfully commercialised and used to create significant impact in the global resources industry. The talk will also cover some of the critical technical challenges that had to be overcome to succeed. It will focus mostly on magnetically unshielded systems used in the field although some laboratory-based systems will be discussed.

  1. First Use of Synoptic Vector Magnetograms for Global Nonlinear, Force-Free Coronal Magnetic Field Models

    Tadesse, T.; Wiegelmann, T.; Gosain, S.; MacNeice, P.; Pevtsov, A. A.

    2014-01-01

    Context. The magnetic field permeating the solar atmosphere is generally thought to provide the energy for much of the activity seen in the solar corona, such as flares, coronal mass ejections (CMEs), etc. To overcome the unavailability of coronal magnetic field measurements, photospheric magnetic field vector data can be used to reconstruct the coronal field. Currently, there are several modelling techniques being used to calculate three-dimensional field lines into the solar atmosphere. Aims. For the first time, synoptic maps of a photospheric-vector magnetic field synthesized from the vector spectromagnetograph (VSM) on Synoptic Optical Long-term Investigations of the Sun (SOLIS) are used to model the coronal magnetic field and estimate free magnetic energy in the global scale. The free energy (i.e., the energy in excess of the potential field energy) is one of the main indicators used in space weather forecasts to predict the eruptivity of active regions. Methods. We solve the nonlinear force-free field equations using an optimization principle in spherical geometry. The resulting threedimensional magnetic fields are used to estimate the magnetic free energy content E(sub free) = E(sub nlfff) - E(sub pot), which is the difference of the magnetic energies between the nonpotential field and the potential field in the global solar corona. For comparison, we overlay the extrapolated magnetic field lines with the extreme ultraviolet (EUV) observations by the atmospheric imaging assembly (AIA) on board the Solar Dynamics Observatory (SDO). Results. For a single Carrington rotation 2121, we find that the global nonlinear force-free field (NLFFF) magnetic energy density is 10.3% higher than the potential one. Most of this free energy is located in active regions.

  2. Global analysis of cloud field coverage and radiative properties, using morphological methods and MODIS observations

    R. Z. Bar-Or

    2011-01-01

    Full Text Available The recently recognized continuous transition zone between detectable clouds and cloud-free atmosphere ("the twilight zone" is affected by undetectable clouds and humidified aerosol. In this study, we suggest to distinguish cloud fields (including the detectable clouds and the surrounding twilight zone from cloud-free areas, which are not affected by clouds. For this classification, a robust and simple-to-implement cloud field masking algorithm which uses only the spatial distribution of clouds, is presented in detail. A global analysis, estimating Earth's cloud field coverage (50° S–50° N for 28 July 2008, using the Moderate Resolution Imaging Spectroradiometer (MODIS data, finds that while the declared cloud fraction is 51%, the global cloud field coverage reaches 88%. The results reveal the low likelihood for finding a cloud-free pixel and suggest that this likelihood may decrease as the pixel size becomes larger. A global latitudinal analysis of cloud fields finds that unlike oceans, which are more uniformly covered by cloud fields, land areas located under the subsidence zones of the Hadley cell (the desert belts, contain proper areas for investigating cloud-free atmosphere as there is 40–80% probability to detect clear sky over them. Usually these golden-pixels, with higher likelihood to be free of clouds, are over deserts. Independent global statistical analysis, using MODIS aerosol and cloud products, reveals a sharp exponential decay of the global mean aerosol optical depth (AOD as a function of the distance from the nearest detectable cloud, both above ocean and land. Similar statistical analysis finds an exponential growth of mean aerosol fine-mode fraction (FMF over oceans when the distance from the nearest cloud increases. A 30 km scale break clearly appears in several analyses here, suggesting this is a typical natural scale of cloud fields. This work shows different microphysical and optical properties of cloud fields

  3. Radioactivity and geophysics

    Radvanyi, P.

    1992-01-01

    The paper recalls a few steps of the introduction of radioactivity in geophysics and astrophysics: contribution of radioelements to energy balance of the Earth, age of the Earth based on radioactive disintegration and the discovery of cosmic radiations

  4. Geophysical Research Facility

    Federal Laboratory Consortium — The Geophysical Research Facility (GRF) is a 60 ft long × 22 ft wide × 7 ft deep concrete basin at CRREL for fresh or saltwater investigations and can be temperature...

  5. SAGE (Summer of Applied Geophysical Experience): Learning Geophysics by Doing Geophysics

    Jiracek, G. R.; Baldridge, W. S.; Biehler, S.; Braile, L. W.; Ferguson, J. F.; Gilpin, B. E.; Pellerin, L.

    2005-12-01

    SAGE, a field-based educational program in applied geophysical methods has been an REU site for 16 years and completed its 23rd year of operation in July 2005. SAGE teaches the major geophysical exploration methods (including seismics, gravity, magnetics, and electromagnetics) and applies them to the solution of specific local and regional geologic problems. These include delineating buried hazardous material; mapping archaeological sites; and studying the structure, tectonics, and water resources of the Rio Grande rift in New Mexico. Nearly 600 graduates, undergraduates, and professionals have attended SAGE since 1983. Since 1990 REU students have numbered 219 coming from dozens of different campuses. There have been 124 underrepresented REU students including 100 women, 14 Hispanics, 7 Native Americans, and 3 African Americans. Tracking of former REU students has revealed that 81% have gone on to graduate school. Keys to the success of SAGE are hands-on immersion in geophysics for one month and a partnership between academia, industry, and a federal laboratory. Successful approaches at SAGE include: 1) application of the latest equipment by all students; 2) continued updating of equipment, computers, and software by organizing universities and industry affiliates; 3) close ties with industry who provide supplemental instruction, furnish new equipment and software, and alert students to the current industry trends and job opportunities; 4) two-team, student data analysis structure that simultaneously addresses specific geophysical techniques and their integration; and 5) oral and written reports patterned after professional meetings and journals. An eight member, 'blue ribbon' advisory panel from academia, industry, and the federal government has been set up to maintain the vitality of SAGE by addressing such issues as funding, new faculty, organization, and vision. SAGE is open to students from any university (or organization) with backgrounds including

  6. Geophysical borehole logging

    McCann, D.; Barton, K.J.; Hearn, K.

    1981-08-01

    Most of the available literature on geophysical borehole logging refers to studies carried out in sedimentary rocks. It is only in recent years that any great interest has been shown in geophysical logging in boreholes in metamorphic and igneous rocks following the development of research programmes associated with geothermal energy and nuclear waste disposal. This report is concerned with the programme of geophysical logging carried out on the three deep boreholes at Altnabreac, Caithness, to examine the effectiveness of these methods in crystalline rock. Of particular importance is the assessment of the performance of the various geophysical sondes run in the boreholes in relation to the rock mass properties. The geophysical data can be used to provide additional in-situ information on the geological, hydrogeological and engineering properties of the rock mass. Fracturing and weathering in the rock mass have a considerable effect on both the design parameters for an engineering structure and the flow of water through the rock mass; hence, the relation between the geophysical properties and the degree of fracturing and weathering is examined in some detail. (author)

  7. The emergency of concept global health: perspectives for the field of public health

    João Roberto Cavalcante Sampaio

    2016-12-01

    Full Text Available In recent years, we have witnessed the emergence of new terms in the academic and political debate of public health, such as ‘’global health’’, ‘’global public goods’’, ‘’global health governance’’, ‘’global public health’’, ‘’health diplomacy’’, 'international cooperation’’. In this study, we aimed to analyze the historical development of the concept of ‘global health’, as well as the prospects of this new concept in the research and public health practice. A comprehensive literature review was performed in Pubmed, Scielo, Scopus, and BVS. We also analyzed documents obtained from the websites of international health organizations. 514 publications were retrieved and 36 were selected for this study. In general, the concept of "global health" refers to health as a transnational phenomenon linked to globalization, which has as main challenge to think public health beyond international relations between countries. International health organizations are particularly important in the development of the concept of "global health" and its new application prospects in the field of public health are health diplomacy, international cooperation and global health governance.

  8. Multiscale geophysical imaging of the critical zone

    Parsekian, Andy; Singha, Kamini; Minsley, Burke J.; Holbrook, W. Steven; Slater, Lee

    2015-01-01

    Details of Earth's shallow subsurface—a key component of the critical zone (CZ)—are largely obscured because making direct observations with sufficient density to capture natural characteristic spatial variability in physical properties is difficult. Yet this inaccessible region of the CZ is fundamental to processes that support ecosystems, society, and the environment. Geophysical methods provide a means for remotely examining CZ form and function over length scales that span centimeters to kilometers. Here we present a review highlighting the application of geophysical methods to CZ science research questions. In particular, we consider the application of geophysical methods to map the geometry of structural features such as regolith thickness, lithological boundaries, permafrost extent, snow thickness, or shallow root zones. Combined with knowledge of structure, we discuss how geophysical observations are used to understand CZ processes. Fluxes between snow, surface water, and groundwater affect weathering, groundwater resources, and chemical and nutrient exports to rivers. The exchange of gas between soil and the atmosphere have been studied using geophysical methods in wetland areas. Indirect geophysical methods are a natural and necessary complement to direct observations obtained by drilling or field mapping. Direct measurements should be used to calibrate geophysical estimates, which can then be used to extrapolate interpretations over larger areas or to monitor changing processes over time. Advances in geophysical instrumentation and computational approaches for integrating different types of data have great potential to fill gaps in our understanding of the shallow subsurface portion of the CZ and should be integrated where possible in future CZ research.

  9. Using global magnetospheric models for simulation and interpretation of Swarm external field measurements

    Moretto, T.; Vennerstrøm, Susanne; Olsen, Nils

    2006-01-01

    simulated external contributions relevant for internal field modeling. These have proven very valuable for the design and planning of the up-coming multi-satellite Swarm mission. In addition, a real event simulation was carried out for a moderately active time interval when observations from the Orsted...... it consistently underestimates the dayside region 2 currents and overestimates the horizontal ionospheric closure currents in the dayside polar cap. Furthermore, with this example we illustrate the great benefit of utilizing the global model for the interpretation of Swarm external field observations and......, likewise, the potential of using Swarm measurements to test and improve the global model....

  10. The Undergraduate Field-Research Experience in Global Health: Study Abroad, Service Learning, Professional Training or "None of the Above"?

    Stewart, Kearsley A.

    2013-01-01

    Interest in short-term international placements in global health training for U.S.-based medical students is growing; the trend is mirrored for global health undergraduate students. Best practices in field-based global health training can increase success for medical students, but we lack a critical framework for the undergraduate global health…

  11. Optimizing Global Coronal Magnetic Field Models Using Image-Based Constraints

    Jones-Mecholsky, Shaela I.; Davila, Joseph M.; Uritskiy, Vadim

    2016-01-01

    The coronal magnetic field directly or indirectly affects a majority of the phenomena studied in the heliosphere. It provides energy for coronal heating, controls the release of coronal mass ejections, and drives heliospheric and magnetospheric activity, yet the coronal magnetic field itself has proven difficult to measure. This difficulty has prompted a decades-long effort to develop accurate, timely, models of the field, an effort that continues today. We have developed a method for improving global coronal magnetic field models by incorporating the type of morphological constraints that could be derived from coronal images. Here we report promising initial tests of this approach on two theoretical problems, and discuss opportunities for application.

  12. Field theories on supermanifolds: general formalism, local supersymmetry, and the limit of global supersymmetry

    Bruzzo, V.

    1986-01-01

    This paper reports briefly on recent investigations concerning the formulation of field theories on supermanifolds. The usual formulations are unsatisfactory from a mathematical viewpoint, hence, this report. A variational theory for fields on a supermanifold is described where the action is a map between Banach spaces. The relationship between the field theory on the supermanifold and a suitably constructed field theory on space-time is also discussed. On-shell local supersymmetry are examined and the limit of global (rigid) supersymmetry is considered. A specific example is given which shows that the limit reproduces the known results

  13. A contemporary decennial global Landsat sample of changing agricultural field sizes

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by

  14. Bringing the field into the classroom: an innovative methodology in global health teaching

    Dr. M H Bryant, MBBS; J Wolff, MD

    2015-01-01

    Background: The practice of global health is difficult to teach from a US-based classroom. Students benefit from experiencing how theory becomes practice in the chaotic environments of under-resourced health programmes in developing countries. We could not take our students to the field during weekly course work, so we designed a course to bring the field to the students. We created innovative partnerships with locally based organisations that implement programmes in developing countries. Eac...

  15. Solar Wind Monitor--A School Geophysics Project

    Robinson, Ian

    2018-01-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth's field in…

  16. Predictive geophysics: geochemical simulations to geophysical targets

    Chopping, R. G.; Cleverley, J.

    2017-12-01

    With an increasing focus on deep exploration for covered targets, new methods are required to target mineral systems under cover. Geophysical responses are driven by physical property contrasts; for example, density contrasts provide a gravity signal, acoustic impedance contrasts provide a seismic reflection signal. In turn, the physical properties for basement, crystalline rocks which host the vast majority of mineral systems are determined almost wholly by the mineralogy of the rocks in question. Mineral systems, through the transport of heat and reactive fluids, will serve to modify the physical properties of country rock as they chemically alter the hosting strata. To understand these changes, we have performed 2D reactive transport modelling that simulates the formation of Archean gold deposits of the Yilgarn Craton, Western Australia. From this, we derive a model of mineralogy that we can use to predict the density, magnetic susceptibility and seismic reflection changes associated with ore formation. It is then possible to predict the gravity, magnetic and seismic reflection responses associated with these deposits. Scenario mapping, such as testing the ability to resolve buried ore bodies or the geophysical survey spacing required to resolve the mineral system, can be performed to produce geophysical targets from these geochemical simulations. We find that there is a gravity response of around 9% of the unaltered response for deposits even buried by 1km of cover, and there is a magnetic spike associated with proximal alteration of the ore system. Finally, seismic reflection response is mostly characterised by additional reflections along faults that plumb the alteration system.

  17. Mapping the global football field: a sociological model of transnational forces within the world game.

    Giulianotti, Richard; Robertson, Roland

    2012-06-01

    This paper provides a sociological model of the key transnational political and economic forces that are shaping the 'global football field'. The model draws upon, and significantly extends, the theory of the 'global field' developed previously by Robertson. The model features four quadrants, each of which contains a dominant operating principle, an 'elemental reference point', and an 'elemental theme'. The quadrants contain, first, neo-liberalism, associated with the individual and elite football clubs; second, neo-mercantilism, associated with nation-states and national football systems; third, international relations, associated with international governing bodies; and fourth, global civil society, associated with diverse institutions that pursue human development and/or social justice. We examine some of the interactions and tensions between the major institutional and ideological forces across the four quadrants. We conclude by examining how the weakest quadrant, featuring global civil society, may gain greater prominence within football. In broad terms, we argue that our four-fold model may be utilized to map and to examine other substantive research fields with reference to globalization. © London School of Economics and Political Science 2012.

  18. The deflection angle of a gravitational source with a global monopole in the strong field limit

    Cheng Hongbo; Man Jingyun

    2011-01-01

    We investigate the gravitational lensing effect in the strong field background around the Schwarzschild black hole with extremely small mass and solid deficit angle subject to the global monopole by means of the strong field limit issue. We obtain the angular position and magnification of the relativistic images and show that they relate to the global monopole parameter η. We discuss that with the increase of the parameter η, the minimum impact parameter u m and angular separation s increase and the relative magnification r decreases. We also find that s grows extremely as the increasing parameter η becomes large enough. The deflection angle will become larger when the parameter η grows. The effect from the solid deficit angle is the dependence of angular position, angular separation, relative magnification and deflection angle on the parameter η, which may offer a way to characterize some possible distinct signatures of the Schwarzschild black hole with a solid deficit angle associated with the global monopole.

  19. Modeling the UT effect in global distribution of ionospheric electric fields

    Lukianova, R.; Christiansen, Freddy

    2008-01-01

    A new approach for modeling the global distribution of ionospheric electric potentials utilizing high-precision maps of field-aligned currents (FACs) derived from measurements by the Orsted and Magsat satellites as input to a comprehensive numerical scheme is presented. We simulate the universal ...

  20. Globalization of authorship in the marketing discipline: Does it help or hinder the field?

    S. Stremersch (Stefan); P.C. Verhoef (Peter)

    2005-01-01

    textabstractMarketing scholars have reflected upon the marketing discipline's internal evolution before. However, no prior study has assessed the globalization of authorship in our discipline, let alone assessed its consequences for the field. This paper addresses the following two questions: (1) Is

  1. Globalization of authorship in the marketing discipline : Does it help or hinder the field?

    Stremersch, S; Verhoef, PC

    2005-01-01

    Marketing scholars have reflected upon the marketing discipline's internal evolution before. However, no prior study has assessed the globalization of authorship in our discipline, let alone assessed its consequences for the field. This paper addresses the following two questions: (1) Is there

  2. The Bolivarian University of Venezuela: A Radical Alternative in the Global Field of Higher Education?

    Ivancheva, Mariya

    2013-01-01

    This article discusses paradoxes in the emergent global field of higher education as reflected in an alternative model of the university--the Bolivarian University of Venezuela (UBV) and the related higher education policy, Mision Sucre. With its credo in the applied social sciences, its commitment to popular pedagogy and its dependence on…

  3. Implications of seismic reflection and potential field geophysical data on the structural framework of the Yucca Mountain--Crater Flat region, Nevada

    Brocher, T.M.; Langenheim, V.E.; Hunter, W.C.

    1998-01-01

    Seismic reflection and gravity profiles collected across Yucca Mountain, Nevada, together with geologic data, provide evidence against proposed active detachment faults at shallow depth along the pre-Tertiary-Tertiary contact beneath this potential repository for high-level nuclear waste. The new geophysical data show that the inferred pre-Tertiary-Tertiary contact is offset by moderate-to-high-angle faults beneath Crater Flat and Yucca Mountain, and thus this shallow surface cannot represent an active detachment surface. The reflection lines reveal that the Amargosa Desert rift zone is an asymmetric half-graben having a maximum depth of about 4 km and a width of about 25 km. The east-dipping Bare Mountain fault that bounds this graben to the west can be traced by seismic reflection data to a depth of at least 3.5 km and possibly as deep as 6 km, with a constant dip of 64 degree ± 5 degree. Along the profile the transition from east- to west-dipping faults occurs at or just west of the Solitario Canyon fault, which bounds the western side of Yucca Mountain. The interaction at depth of these east- and west-dipping faults, having up to hundreds of meters offset, is not imaged by the seismic reflection profile. Understanding potential seismic hazards at Yucca Mountain requires knowledge of the subsurface geometry of the faults near Yucca Mountain, since earthquakes generally nucleate and release the greatest amount of their seismic energy at depth. The geophysical data indicate that many fault planes near the potential nuclear waste facility dip toward Yucca Mountain, including the Bare Mountain range-front fault and several west-dipping faults east of Yucca Mountain. Thus, earthquake ruptures along these faults would lie closer to Yucca Mountain than is often estimated from their surface locations and could therefore be more damaging

  4. Investigations of radial electric field and global circulation layer in limiter tokamaks

    Zagorski, R.; Gerhauser, H.; Lehnen, M.; Loarer, T.

    2002-01-01

    An updated version of the 2D multifluid code TECXY is used to study the radial electric field structure and the appearance of a global circulation layer (GCL) inside the separatrix of the limiter tokamaks TEXTOR-94 and Tore-Supra-CIEL. The dependence of the driving forces on device geometry, limiter position, magnetic field orientation, impurity content and other parameters is investigated. The centrifugal force in the vicinity of the limiter head always determines the direction of the poloidal velocity in the GCL. There is good agreement with experimentally measured profiles of the poloidal velocity at the TEXTOR low field side. (orig.)

  5. Global Knowledge Futures: Articulating the Emergence of a New Meta-level Field

    Jennifer M. Gidley

    2013-06-01

    Full Text Available In this paper I articulate a new meta-level field of studies that I call global knowledge futures—a field through which other emerging transdisciplinary fields can be integrated to cohere knowledge at a higher level. I contrast this with the current dominant knowledge paradigm of the global knowledge economy with its fragmentation, commodification and instrumentalism based on neoliberal knowledge capitalism. I take a big-picture, macrohistorical lens to the new thinking and new knowledge patterns that are emerging within the evolution of consciousness discourse. I explore three discourses: postformal studies, integral studies and planetary studies—using a fourth discourse, futures studies, to provide a macro-temporal framing. By extending the meta-fields of postformal, integral and planetary studies into a prospective future dimension, I locate areas of development where these leading-edge discourses can be brought into closer dialogue with each other. In this meeting point of four boundary-spanning discourses I identify the new meta-level field of global knowledge futures, grounded in human thinking capacities, such as creativity, imagination, dialogue and collaboration.

  6. Global Health as a Field of Power Relations: A Response to Recent Commentaries.

    Shiffman, Jeremy

    2015-05-22

    Actors working in global health often portray it as an enterprise grounded in principled concerns, advanced by individuals and organizations who draw on scientific evidence to pursue health equity. This portrait is incomplete. It is also a field of power relations-a social arena in which actors claim and draw on expertise and moral authority to gain influence and pursue career, organizational and national interests. A clear understanding of how power operates in this field is necessary to ensure that it is used productively to serve the aims of health equity and improved population health. Responding to commentaries on an editorial published in this journal, I offer 3 ideas toward this end: (1) be skeptical of the global health rationality project-the effort to rescue the field from the alleged indignities of politics through the application of scientific methods; (2) analyze global health as a field of power relations, a concept developed by sociologist Pierre Bourdieu; and (3) elevate the place of input legitimacy-inclusive deliberation, fair process and transparency-to address legitimacy and knowledge deficits in this field. © 2015 by Kerman University of Medical Sciences.

  7. Global Health as a Field of Power Relations: A Response to Recent Commentaries

    Shiffman, Jeremy

    2015-01-01

    Actors working in global health often portray it as an enterprise grounded in principled concerns, advanced by individuals and organizations who draw on scientific evidence to pursue health equity. This portrait is incomplete. It is also a field of power relations—a social arena in which actors claim and draw on expertise and moral authority to gain influence and pursue career, organizational and national interests. A clear understanding of how power operates in this field is necessary to ensure that it is used productively to serve the aims of health equity and improved population health. Responding to commentaries on an editorial published in this journal, I offer 3 ideas toward this end: (1) be skeptical of the global health rationality project—the effort to rescue the field from the alleged indignities of politics through the application of scientific methods; (2) analyze global health as a field of power relations, a concept developed by sociologist Pierre Bourdieu; and (3) elevate the place of input legitimacy—inclusive deliberation, fair process and transparency—to address legitimacy and knowledge deficits in this field. PMID:26188819

  8. Methodological Developments in Geophysical Assimilation Modeling

    Christakos, George

    2005-06-01

    This work presents recent methodological developments in geophysical assimilation research. We revisit the meaning of the term "solution" of a mathematical model representing a geophysical system, and we examine its operational formulations. We argue that an assimilation solution based on epistemic cognition (which assumes that the model describes incomplete knowledge about nature and focuses on conceptual mechanisms of scientific thinking) could lead to more realistic representations of the geophysical situation than a conventional ontologic assimilation solution (which assumes that the model describes nature as is and focuses on form manipulations). Conceptually, the two approaches are fundamentally different. Unlike the reasoning structure of conventional assimilation modeling that is based mainly on ad hoc technical schemes, the epistemic cognition approach is based on teleologic criteria and stochastic adaptation principles. In this way some key ideas are introduced that could open new areas of geophysical assimilation to detailed understanding in an integrated manner. A knowledge synthesis framework can provide the rational means for assimilating a variety of knowledge bases (general and site specific) that are relevant to the geophysical system of interest. Epistemic cognition-based assimilation techniques can produce a realistic representation of the geophysical system, provide a rigorous assessment of the uncertainty sources, and generate informative predictions across space-time. The mathematics of epistemic assimilation involves a powerful and versatile spatiotemporal random field theory that imposes no restriction on the shape of the probability distributions or the form of the predictors (non-Gaussian distributions, multiple-point statistics, and nonlinear models are automatically incorporated) and accounts rigorously for the uncertainty features of the geophysical system. In the epistemic cognition context the assimilation concept may be used to

  9. A GOCE-only global gravity field model by the space-wise approach

    Migliaccio, Frederica; Reguzzoni, Mirko; Gatti, Andrea

    2011-01-01

    The global gravity field model computed by the spacewise approach is one of three official solutions delivered by ESA from the analysis of the GOCE data. The model consists of a set of spherical harmonic coefficients and the corresponding error covariance matrix. The main idea behind this approach...... the orbit to reduce the noise variance and correlation before gridding the data. In the first release of the space-wise approach, based on a period of about two months, some prior information coming from existing gravity field models entered into the solution especially at low degrees and low orders...... degrees; the second is an internally computed GOCE-only prior model to be used in place of the official quick-look model, thus removing the dependency on EIGEN5C especially in the polar gaps. Once the procedure to obtain a GOCE-only solution has been outlined, a new global gravity field model has been...

  10. geophysical and geochemical characterization of zango abattoir

    Dr A.B.Ahmed

    disposal of hazardous materials, fresh groundwater supplies ... in the groundwater flow system may change considerably the conductivity of the polluted zone; hence the Geo-electric and. Electromagnetic (EM) geophysical methods could effectively be ... this field strength and phase displacement around a fracture zone.

  11. Prospect of Continuous VLBI Measurement of Earth Rotation in Monitoring Geophysical Fluids

    Chao, Benjamin F.; Ma, Chopo; Clark, Thomas

    1998-01-01

    Large-scale mass transports in the geophysical fluids of the Earth system excite Earth's rotational variations in both length-of-day and polar motion. The excitation process is via the conservation of angular momentum. Therefore Earth rotation observations contain information about the integrated angular momentum (consisting of both the mass term and the motion term) of the geophysical fluids, which include atmosphere, hydrosphere, mantle, and the outer and inner cores. Such global information is often important and otherwise unattainable depending on the nature of the mass transport, its magnitude and time scale. The last few years have seen great advances in VLBI measurement of Earth rotation in precision and temporal resolution. These advances have opened new. areas in geophysical fluid studies, such as oceanic tidal angular momentum, atmospheric tides, Earth librations, and rapid atmospheric angular momentum fluctuations. Precision of 10 microseconds in UTI and 200 microarcseconds in polar motion can now be achieved on hourly basis. Building upon this heritage, the multi-network geodetic VLBI project, Continuous Observation of the Rotation of the Earth (CORE), promises to further these studies and to make possible studies on elusive but tell-tale geophysical processes such as oscillatory modes in the core and in the atmosphere. Currently the early phase of CORE is underway. Within a few years into the new mellinnium, the upcoming space gravity missions (such as GRACE) will measure the temporal variations in Earth's gravitational field, thus providing complementary information to that from Earth rotation study for a better understanding of global geophysical fluid processes.

  12. An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    2014-01-01

    We present a new technique for modelling the global lithospheric magnetic field at Earth's surface based on the estimation of equivalent potential field sources. As a demonstration we show an application to magnetic field measurements made by the CHAMP satellite during the period 2009-2010 when...... are also employed to minimize the influence of the ionospheric field. The model for the remaining lithospheric magnetic field consists of magnetic point sources (monopoles) arranged in an icosahedron grid. The corresponding source values are estimated using an iteratively reweighted least squares algorithm...... in the CHAOS-4 and MF7 models using more conventional spherical harmonic based approaches. Advantages of the equivalent source method include its local nature, allowing e.g. for regional grid refinement, and the ease of transforming to spherical harmonics when needed. Future applications will make use of Swarm...

  13. Tearing relaxation and the globalization of transport in field-reversed configurations

    Steinhauer, Loren; Barnes, D. C.

    2009-01-01

    Tearing instability of field-reversed configurations (FRC) is investigated using the method of neighboring equilibria. It is shown that the conducting wall position in experiment lies very close to the location needed for tearing stability. This strongly suggests that vigorous but benign tearing modes, acting globally, are the engine of continual self-organization in FRCs, i.e., tearing relaxation. It also explains the ''profile consistency'' and anomalous loss rate of magnetic flux. In effect, tearing globalizes the effect of edge-driven transport.

  14. Inverse problems of geophysics

    Yanovskaya, T.B.

    2003-07-01

    This report gives an overview and the mathematical formulation of geophysical inverse problems. General principles of statistical estimation are explained. The maximum likelihood and least square fit methods, the Backus-Gilbert method and general approaches for solving inverse problems are discussed. General formulations of linearized inverse problems, singular value decomposition and properties of pseudo-inverse solutions are given

  15. A NEW CODE FOR NONLINEAR FORCE-FREE FIELD EXTRAPOLATION OF THE GLOBAL CORONA

    Jiang Chaowei; Feng Xueshang; Xiang Changqing

    2012-01-01

    Reliable measurements of the solar magnetic field are still restricted to the photosphere, and our present knowledge of the three-dimensional coronal magnetic field is largely based on extrapolations from photospheric magnetograms using physical models, e.g., the nonlinear force-free field (NLFFF) model that is usually adopted. Most of the currently available NLFFF codes have been developed with computational volume such as a Cartesian box or a spherical wedge, while a global full-sphere extrapolation is still under development. A high-performance global extrapolation code is in particular urgently needed considering that the Solar Dynamics Observatory can provide a full-disk magnetogram with resolution up to 4096 × 4096. In this work, we present a new parallelized code for global NLFFF extrapolation with the photosphere magnetogram as input. The method is based on the magnetohydrodynamics relaxation approach, the CESE-MHD numerical scheme, and a Yin-Yang spherical grid that is used to overcome the polar problems of the standard spherical grid. The code is validated by two full-sphere force-free solutions from Low and Lou's semi-analytic force-free field model. The code shows high accuracy and fast convergence, and can be ready for future practical application if combined with an adaptive mesh refinement technique.

  16. Underground Coal-Fires in Xinjiang, China: A Continued Effort in Applying Geophysics to Solve a Local Problem and to Mitigate a Global Hazard

    Wuttke, M. W.; Halisch, M.; Tanner, D. C.; Cai, Z. Y.; Zeng, Q.; Wang, C.

    2012-04-01

    Spontaneous uncontrolled coal seam fires are a well known phenomenon that causes severe environmental problems and severe impact on natural coal reserves. Coal fires are a worldwide phenomenon, but in particular in Xinjiang, that covers 17.3 % of Chinas area and hosts approx 42 % of its coal resources. In Xinjiang since more than 50 years a rigorous strategy for fire fighting on local and regional scale is persued. The Xinjiang Coalfield Fire Fighting Bureau (FFB) has developed technologies and methods to deal with any known fire. Many fires have been extinguished already, but the problem is still there if not even growing. This problem is not only a problem for China due to the loss of valuable energy resources, but it is also a worldwide threat because of the generation of substantial amounts of greenhouse gases. Through the FFB, China is struggling to overcome this, but the activities could be much enhanced by the continuation of the already successful conjoint operations. The last ten years have seen two successful cooperative projects between China and Germany on the field of coal-fire fighting, namely the German Technical Cooperation Project on Coal Fire in Xinjiang and the Sino-German Coal Fire Research Initiative funded by the corresponding ministeries of both countries. A persistent task in the fire fighting is the identification and supervision of areas with higher risks for the ignition of coal fires, the exploration of already ignited fire zones to extinguish the fires and the monitoring of extinguished fires to detect as early as possible process that may foster re-ignition. This can be achieved by modeling both the structures and the processes that are involved. This has also been a promising part of the past cooperation projects, yet to be transformed into a standard application of fire fighting procedures. In this contribution we describe the plans for a new conjoint project between China and Germany where on the basis of field investigations and

  17. MODELING THE SUN’S SMALL-SCALE GLOBAL PHOTOSPHERIC MAGNETIC FIELD

    Meyer, K. A. [Division of Computing and Mathematics, Abertay University, Kydd Building, Dundee, Bell Street, DD1 1HG, Scotland (United Kingdom); Mackay, D. H., E-mail: k.meyer@abertay.ac.uk [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, KY16 9SS, Scotland (United Kingdom)

    2016-10-20

    We present a new model for the Sun’s global photospheric magnetic field during a deep minimum of activity, in which no active regions emerge. The emergence and subsequent evolution of small-scale magnetic features across the full solar surface is simulated, subject to the influence of a global supergranular flow pattern. Visually, the resulting simulated magnetograms reproduce the typical structure and scale observed in quiet Sun magnetograms. Quantitatively, the simulation quickly reaches a steady state, resulting in a mean field and flux distribution that are in good agreement with those determined from observations. A potential coronal magnetic field is extrapolated from the simulated full Sun magnetograms to consider the implications of such a quiet photospheric magnetic field on the corona and inner heliosphere. The bulk of the coronal magnetic field closes very low down, in short connections between small-scale features in the simulated magnetic network. Just 0.1% of the photospheric magnetic flux is found to be open at 2.5 R {sub ⊙}, around 10–100 times less than that determined for typical Helioseismic and Magnetic Imager synoptic map observations. If such conditions were to exist on the Sun, this would lead to a significantly weaker interplanetary magnetic field than is currently observed, and hence a much higher cosmic ray flux at Earth.

  18. Geophysical observations and prediction of geophysical fields for users

    Bochníček, Josef; Laštovička, Jan; Schenk, Vladimír; Boška, Josef; Burešová, Dalia; Hejda, Pavel; Horáček, Josef; Kottnauer, Pavel; Križan, Peter; Nejedlá, Jaroslava; Růžek, Bohuslav; Schenková, Zdeňka; Šauli, Petra; Zedník, Jan

    -, č. 14 (2005), s. 51-59 ISSN 1214-9691 R&D Projects: GA AV ČR IBS3012007 Institutional research plan: CEZ:AV0Z30120515 Keywords : geomagnetism * ionosphere * seismology Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  19. Stability Results, Almost Global Generalized Beltrami Fields and Applications to Vortex Structures in the Euler Equations

    Enciso, Alberto; Poyato, David; Soler, Juan

    2018-05-01

    Strong Beltrami fields, that is, vector fields in three dimensions whose curl is the product of the field itself by a constant factor, have long played a key role in fluid mechanics and magnetohydrodynamics. In particular, they are the kind of stationary solutions of the Euler equations where one has been able to show the existence of vortex structures (vortex tubes and vortex lines) of arbitrarily complicated topology. On the contrary, there are very few results about the existence of generalized Beltrami fields, that is, divergence-free fields whose curl is the field times a non-constant function. In fact, generalized Beltrami fields (which are also stationary solutions to the Euler equations) have been recently shown to be rare, in the sense that for "most" proportionality factors there are no nontrivial Beltrami fields of high enough regularity (e.g., of class {C^{6,α}}), not even locally. Our objective in this work is to show that, nevertheless, there are "many" Beltrami fields with non-constant factor, even realizing arbitrarily complicated vortex structures. This fact is relevant in the study of turbulent configurations. The core results are an "almost global" stability theorem for strong Beltrami fields, which ensures that a global strong Beltrami field with suitable decay at infinity can be perturbed to get "many" Beltrami fields with non-constant factor of arbitrarily high regularity and defined in the exterior of an arbitrarily small ball, and a "local" stability theorem for generalized Beltrami fields, which is an analogous perturbative result which is valid for any kind of Beltrami field (not just with a constant factor) but only applies to small enough domains. The proof relies on an iterative scheme of Grad-Rubin type. For this purpose, we study the Neumann problem for the inhomogeneous Beltrami equation in exterior domains via a boundary integral equation method and we obtain Hölder estimates, a sharp decay at infinity and some compactness

  20. Globalization

    Tulio Rosembuj

    2006-12-01

    Full Text Available There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  1. Globalization

    Tulio Rosembuj

    2006-01-01

    There is no singular globalization, nor is the result of an individual agent. We could start by saying that global action has different angles and subjects who perform it are different, as well as its objectives. The global is an invisible invasion of materials and immediate effects.

  2. Null Geodesics and Strong Field Gravitational Lensing of Black Hole with Global Monopole

    Iftikhar, Sehrish; Sharif, M.

    2015-01-01

    We study two interesting features of a black hole with an ordinary as well as phantom global monopole. Firstly, we investigate null geodesics which imply unstable orbital motion of particles for both cases. Secondly, we evaluate deflection angle in strong field regime. We then find Einstein rings, magnifications, and observables of the relativistic images for supermassive black hole at the center of galaxy NGC4486B. We also examine time delays for different galaxies and present our results numerically. It is found that the deflection angle for ordinary/phantom global monopole is greater/smaller than that of Schwarzschild black hole. In strong field limit, the remaining properties of these black holes are quite different from the Schwarzschild black hole

  3. Global surface wind and flux fields from model assimilation of Seasat data

    Atlas, R.; Busalacchi, A. J.; Kalnay, E.; Bloom, S.; Ghil, M.

    1986-01-01

    Procedures for dealiasing Seasat data and developing global surface wind and latent and sensible heat flux fields are discussed. Seasat data from September 20, 1978 was dealiased using the Goddard Laboratory for Atmospheres (GLA) analysis/forecast system. The wind data obtained with the objective GLA forecast model are compared to the data subjectively dealiased by Peteherych et al. (1984) and Hoffman (1982, 1984). The GLA procedure is also verified using simulated Seasat data. The areas of high and low heat fluxes and cyclonic and anticyclonic wind stresses detected in the generated fields are analyzed and compared to climatological fields. It is observed that there is good correlation between the time-averaged analyses of wind stress obtained subjectively and objectively, and the monthly mean wind stress and latent fluxes agree with climatological fields and atmospheric and oceanic features.

  4. Gupta-Bleuler Quantization of the Maxwell Field in Globally Hyperbolic Space-Times

    Finster, Felix; Strohmaier, Alexander

    2015-08-01

    We give a complete framework for the Gupta-Bleuler quantization of the free electromagnetic field on globally hyperbolic space-times. We describe one-particle structures that give rise to states satisfying the microlocal spectrum condition. The field algebras in the so-called Gupta-Bleuler representations satisfy the time-slice axiom, and the corresponding vacuum states satisfy the microlocal spectrum condition. We also give an explicit construction of ground states on ultrastatic space-times. Unlike previous constructions, our method does not require a spectral gap or the absence of zero modes. The only requirement, the absence of zero-resonance states, is shown to be stable under compact perturbations of topology and metric. Usual deformation arguments based on the time-slice axiom then lead to a construction of Gupta-Bleuler representations on a large class of globally hyperbolic space-times. As usual, the field algebra is represented on an indefinite inner product space, in which the physical states form a positive semi-definite subspace. Gauge transformations are incorporated in such a way that the field can be coupled perturbatively to a Dirac field. Our approach does not require any topological restrictions on the underlying space-time.

  5. A local-to-global singularity theorem for quantum field theory on curved space-time

    Radzikowski, M.J.; York Univ.

    1996-01-01

    We prove that if a reference two-point distribution of positive type on a time orientable curved space-time (CST) satisfies a certain condition on its wave front set (the ''class P M,g condition'') and if any other two-point distribution (i) is of positive type, (ii) has the same antisymmetric part as the reference modulo smooth function and (iii) has the same local singularity structure, then it has the same global singularity structure. In the proof we use a smoothing, positivity-preserving pseudo-differential operator the support of whose symbol is restricted to a certain conic region which depends on the wave front set of the reference state. This local-to-global theorem, together with results published elsewhere, leads to a verification of a conjecture by Kay that for quasi-free states of the Klein-Gordon quantum field on a globally hyperbolic CST, the local Hadamard condition implies the global Hadamard condition. A counterexample to the local-to-global theorem on a strip in Minkowski space is given when the class P M,g condition is not assumed. (orig.)

  6. Fundamentals of Geophysics

    Frohlich, Cliff

    Choosing an intermediate-level geophysics text is always problematic: What should we teach students after they have had introductory courses in geology, math, and physics, but little else? Fundamentals of Geophysics is aimed specifically at these intermediate-level students, and the author's stated approach is to construct a text “using abundant diagrams, a simplified mathematical treatment, and equations in which the student can follow each derivation step-by-step.” Moreover, for Lowrie, the Earth is round, not flat—the “fundamentals of geophysics” here are the essential properties of our Earth the planet, rather than useful techniques for finding oil and minerals. Thus this book is comparable in both level and approach to C. M. R. Fowler's The Solid Earth (Cambridge University Press, 1990).

  7. Geophysical investigations in Jordan

    Kovach, R.L.; Andreasen, G.E.; Gettings, M.E.; El-Kaysi, K.

    1990-01-01

    A number of geophysical investigations have been undertaken in the Hashemite Kingdom of Jordan to provide data for understanding the tectonic framework, the pattern of seismicity, earthquake hazards and geothermal resources of the country. Both the historical seismic record and the observed recent seismicity point to the dominance of the Dead Sea Rift as the main locus of seismic activity but significant branching trends and gaps in the seismicity pattern are also seen. A wide variety of focal plane solutions are observed emphasizing the complex pattern of fault activity in the vicinity of the rift zone. Geophysical investigations directed towards the geothermal assessment of the prominent thermal springs of Zerga Ma'in and Zara are not supportive of the presence of a crustal magmatic source. ?? 1990.

  8. How Collecting and Freely Sharing Geophysical Data Broadly Benefits Society

    Frassetto, A.; Woodward, R.; Detrick, R. S.

    2017-12-01

    Valuable but often unintended observations of environmental and human-related processes have resulted from open sharing of multidisciplinary geophysical observations collected over the past 33 years. These data, intended to fuel fundamental academic research, are part of the Incorporated Research Institutions for Seismology (IRIS), which is sponsored by the National Science Foundation and has provided a community science facility supporting earthquake science and related disciplines since 1984. These community facilities have included arrays of geophysical instruments operated for EarthScope, an NSF-sponsored science initiative designed to understand the architecture and evolution of the North American continent, as well as the Global Seismographic Network, Greenland Ice Sheet Monitoring Network, a repository of data collected around the world, and other community assets. All data resulting from this facility have been made openly available to support researchers across any field of study and this has expanded the impact of these data beyond disciplinary boundaries. This presentation highlights vivid examples of how basic research activities using open data, collected as part of a community facility, can inform our understanding of manmade earthquakes, geomagnetic hazards, climate change, and illicit testing of nuclear weapons.

  9. The Pathology of Audience Phantasm in Iran in the Fields of Media, Globalization and Post Global Village Age

    Mahdi Mohsenianrad

    2008-11-01

    Full Text Available This article studies the evolution of role phantasm of “men in front of media”. They have been called in a historical order as audience, receiver, user and recently communicatee. The author argues that the changing perception of “man in front of media” from a passive Being to an active being is the result of some developments the most important of which is globalization. The most prominent characteristics of communitee is its independence in “selection based on communicative needs”. Along with the developments in the future decades in the field of ICT, the ability of communicatee for selection will be reinforced and it will become a selector communicatee. This article argues that because of the delay in developing countries in entering the age of Gutenberg galaxy and Marconi galaxy, message senders in these countries have an audience –oriented view. As a result, they have not yet become communicatee. This article concludes that audience phantasm in some developing countries may be harmful for meeting the need of communicatees by local media and make the productions of foreign media more attractive for local communicatees leading to undesirable change in their cultural traits.

  10. Cancer Care and Control as a Human Right: Recognizing Global Oncology as an Academic Field.

    Eniu, Alexandru E; Martei, Yehoda M; Trimble, Edward L; Shulman, Lawrence N

    2017-01-01

    The global burden of cancer incidence and mortality is on the rise. There are major differences in cancer fatality rates due to profound disparities in the burden and resource allocation for cancer care and control in developed compared with developing countries. The right to cancer care and control should be a human right accessible to all patients with cancer, regardless of geographic or economic region, to avoid unnecessary deaths and suffering from cancer. National cancer planning should include an integrated approach that incorporates a continuum of education, prevention, cancer diagnostics, treatment, survivorship, and palliative care. Global oncology as an academic field should offer the knowledge and skills needed to efficiently assess situations and work on solutions, in close partnership. We need medical oncologists, surgical oncologists, pediatric oncologists, gynecologic oncologists, radiologists, and pathologists trained to think about well-tailored resource-stratified solutions to cancer care in the developing world. Moreover, the multidisciplinary fundamental team approach needed to treat most neoplastic diseases requires coordinated investment in several areas. Current innovative approaches have relied on partnerships between academic institutions in developed countries and local governments and ministries of health in developing countries to provide the expertise needed to implement effective cancer control programs. Global oncology is a viable and necessary field that needs to be emphasized because of its critical role in proposing not only solutions in developing countries, but also solutions that can be applied to similar challenges of access to cancer care and control faced by underserved populations in developed countries.

  11. Global Lunar Gravity Field Determination Using Historical and Recent Tracking Data in Preparation for SELENE

    Goossens, S.; Matsumoto, K.; Namiki, N.; Hanada, H.; Iwata, T.; Tsuruta, S.; Kawano, N.; Sasaki, S.

    2006-12-01

    In the near future, a number of satellite missions are planned to be launched to the Moon. These missions include initiatives by China, India, the USA, as well as the Japanese SELENE mission. These missions will gather a wealth of lunar data which will improve the knowledge of the Moon. One of the main topics to be addressed will be the lunar gravity field. Especially SELENE will contribute to improving the knowledge of the gravity field, by applying 4-way Doppler tracking between the main satellite and a relay satellite, and by applying a separate differential VLBI experiment. These will improve the determination of the global gravity field, especially over the far side and at the lower degrees (mostly for degrees lower than 30), as is shown by extensive simulations of the SELENE mission. This work focuses on the determination of the global lunar gravity field from all available tracking data to this date. In preparation for the SELENE mission, analysis using Lunar Prospector tracking data, as well as Clementine data and historical data from the Apollo and Lunar Orbiter projects is being conducted at NAOJ. Some SMART-1 tracking data are also included. The goal is to combine the good-quality data from the existing lunar missions up to this date with the tracking data from SELENE in order to derive a new lunar gravity field model. The focus therefore currently lies on processing the available data and extracting lunar gravity field information from them. It is shown that the historical tracking data contribute especially to the lower degrees of the global lunar gravity field model. Due to the large gap in tracking data coverage over the far side for the historical data, the higher degrees are almost fully determined by the a priori information in the form of a Kaula rule. The combination with SELENE data is thus expected to improve the estimate for the lower degrees even further, including coverage of the far side. Since historical tracking data are from orbits with

  12. Entanglement growth after a global quench in free scalar field theory

    Cotler, Jordan S. [Stanford Institute for Theoretical Physics, Department of Physics, Stanford University, Stanford, CA 94305 (United States); Hertzberg, Mark P. [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Mezei, Márk [Princeton Center for Theoretical Science, Princeton University, Princeton, NJ 08544 (United States); Mueller, Mark T. [Center for Theoretical Physics, Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2016-11-28

    We compute the entanglement and Rényi entropy growth after a global quench in various dimensions in free scalar field theory. We study two types of quenches: a boundary state quench and a global mass quench. Both of these quenches are investigated for a strip geometry in 1, 2, and 3 spatial dimensions, and for a spherical geometry in 2 and 3 spatial dimensions. We compare the numerical results for massless free scalars in these geometries with the predictions of the analytical quasiparticle model based on EPR pairs, and find excellent agreement in the limit of large region sizes. At subleading order in the region size, we observe an anomalous logarithmic growth of entanglement coming from the zero mode of the scalar.

  13. Geophysical monitoring in a hydrocarbon reservoir

    Caffagni, Enrico; Bokelmann, Goetz

    2016-04-01

    Extraction of hydrocarbons from reservoirs demands ever-increasing technological effort, and there is need for geophysical monitoring to better understand phenomena occurring within the reservoir. Significant deformation processes happen when man-made stimulation is performed, in combination with effects deriving from the existing natural conditions such as stress regime in situ or pre-existing fracturing. Keeping track of such changes in the reservoir is important, on one hand for improving recovery of hydrocarbons, and on the other hand to assure a safe and proper mode of operation. Monitoring becomes particularly important when hydraulic-fracturing (HF) is used, especially in the form of the much-discussed "fracking". HF is a sophisticated technique that is widely applied in low-porosity geological formations to enhance the production of natural hydrocarbons. In principle, similar HF techniques have been applied in Europe for a long time in conventional reservoirs, and they will probably be intensified in the near future; this suggests an increasing demand in technological development, also for updating and adapting the existing monitoring techniques in applied geophysics. We review currently available geophysical techniques for reservoir monitoring, which appear in the different fields of analysis in reservoirs. First, the properties of the hydrocarbon reservoir are identified; here we consider geophysical monitoring exclusively. The second step is to define the quantities that can be monitored, associated to the properties. We then describe the geophysical monitoring techniques including the oldest ones, namely those in practical usage from 40-50 years ago, and the most recent developments in technology, within distinct groups, according to the application field of analysis in reservoir. This work is performed as part of the FracRisk consortium (www.fracrisk.eu); this project, funded by the Horizon2020 research programme, aims at helping minimize the

  14. Research on countermeasures to global environment change in the field of urban planning

    Kawanaka, Takashi [Building Research Inst., Tsukuba-shi, Ibaraki (Japan)

    1993-12-31

    There are a lot of research themes in the field of urban planning and related fields as mitigation of global environment change. Main theme is reduction method of CO{sub 2} gas emission as a countermeasure against global warming. Some groups research on estimation of CO{sub 2} emission caused by construction activities both in building engineering and civil engineering and also on evaluation of countermeasures. They investigate reduction of CO{sub 2} emission by fossil fuel combustion and by building materials (cement, steel and so on) production process. But we cannot use data fitted to a spatial scale of urban planning. Many researches are focused on nation wide analysis. We, BRI, make a study of {open_quotes}Research on CO{sub 2} Emission in Urban Development and the Control Technologies{close_quotes} as will be seen later at 2. (2). There are two ways of research to reduce CO{sub 2} emission caused by daily activities to urban planning field. One is research on positive utilizing of natural environment in urban areas without depending to energy consuming artificial facilities. There is a research on mitigation of heat island phenomenon for instance. The other ways are research on improvement of energy consumption effect and on reusing of wasted energy In energy consuming type urban space for instance. There s a research on promoting District Heating and Cooling (DHC) and cogeneration.

  15. Comprehensive simulation study on local and global development of auroral arcs and field-aligned potentials

    Watanabe, Tomohiko; Oya, Hiroshi; Watanabe, Kunihiko; Sato, Tetsuya.

    1992-10-01

    Extensive three-dimensional computer simulations of the magnetosphere-ionosphere (M-I) coupling are performed to study self-excitation of auroral arcs with special emphasis on 1) nonlinear evolution of the feedback instability in the M-I coupling system, 2) controlling mechanisms of the auroral arc structure, 3) formation of a field-aligned electric potential structure in association with the development of the feedback instability, and 4) effects of the parallel potential generation on auroral arc development. It is reconfirmed that the feedback instability produces a longitudinally elongated, latitudinally striated structure where the upward field-aligned current and the ionospheric density are locally enhanced. The following important new features are revealed. 1) The global distribution of the striation structure is primarily governed by the magnetospheric convection pattern and the ionospheric density distribution. 2) There appears a significant dawn-dusk asymmetry in the auroral arc formation, even though the apparent geometrical relationship is symmetric. 3) The recombination effect plays a significant role in the global, as well as local, development of the auroral arc structure. The nonlinearity of recombination, in conjunction with the closure of an arc-associated local field-aligned current system, acts to destroy an old arc and creates a new arc in a different but adjacent position. 4) A V-shaped field aligned potential structure is created in association with an auroral arc. Rapid increase in the electron density and the local upward field-aligned current of an arc arises as a result of enhanced ionization by precipitating electrons accelerated by the parallel potential. 5) A drastic oscillatory behavior of appearance and disappearance of auroral arcs is obtained when the ionization effect is strong. The period is primarily given by the Alfven bounce time. (J.P.N.)

  16. THE RELATIONSHIP BETWEEN THE SEPTEMBER 2017 MARS GLOBAL AURORA EVENT AND CRUSTAL MAGNETIC FIELDS

    Nasr, Camella-Rosa; Schneider, Nick; Connour, Kyle; Jain, Sonal; Deighan, Justin; Jakosky, Bruce; MAVEN/IUVS Team

    2018-01-01

    In September 2017, the Imaging UltraViolet Spectrograph (IUVS) on the MAVEN spacecraft observed global aurora on Mars caused by a surprisingly strong solar energetic particle event. Widespread “diffuse aurora” have previously been detected on Mars through more limited observations (Schneider et al., Science 350, (2015); DOI: 10.1126/science.aad0313), but recent observations established complete coverage of the observable portion of Mars’ nightside. The aurora was global due to Mars’s lack of a global magnetic field, which allowed energetic electrons from the Sun to directly precipitate into the atmosphere. On September 11th, IUVS detected aurora more than 25 times brighter than any prior IUVS observation, with high SNR detections of aurora at the limb and against the disk of the planet. Fainter auroral emission was seen around the nightside limb over 13 orbits spanning nearly 3 days.On September 14th, during the declining phase of the event, faint linear features and patches were detected by the spacecraft, which were higher than the noise floor, with a similar spatial distribution to “discrete aurora” patches observed on Mars by the SPICAM instrument on the Mars Express spacecraft (Bertaux et al., Nature 435, doi :10.1038/nature03603). Discrete aurora occur near areas of the crust affected by the magnetism left over from Mars’ once-strong dipole field. Emission is limited to regions of the crustal magnetic field where the field lines are likely to be open to solar wind interactions. Those regions are concentrated in Mars’ southern hemisphere centered on 180 degrees east longitude.We studied the localized emissions on 14 September to determine whether there might be a connection between the observed diffuse aurora event and discrete auroral processes. First, we investigated the localized emissions to confirm that the observed signal was consistent with expected auroral spectra. Second, their locations were projected on a map of the crustal magnetic

  17. Estimating a planetary magnetic field with time-dependent global MHD simulations using an adjoint approach

    C. Nabert

    2017-05-01

    Full Text Available The interaction of the solar wind with a planetary magnetic field causes electrical currents that modify the magnetic field distribution around the planet. We present an approach to estimating the planetary magnetic field from in situ spacecraft data using a magnetohydrodynamic (MHD simulation approach. The method is developed with respect to the upcoming BepiColombo mission to planet Mercury aimed at determining the planet's magnetic field and its interior electrical conductivity distribution. In contrast to the widely used empirical models, global MHD simulations allow the calculation of the strongly time-dependent interaction process of the solar wind with the planet. As a first approach, we use a simple MHD simulation code that includes time-dependent solar wind and magnetic field parameters. The planetary parameters are estimated by minimizing the misfit of spacecraft data and simulation results with a gradient-based optimization. As the calculation of gradients with respect to many parameters is usually very time-consuming, we investigate the application of an adjoint MHD model. This adjoint MHD model is generated by an automatic differentiation tool to compute the gradients efficiently. The computational cost for determining the gradient with an adjoint approach is nearly independent of the number of parameters. Our method is validated by application to THEMIS (Time History of Events and Macroscale Interactions during Substorms magnetosheath data to estimate Earth's dipole moment.

  18. On the global distribution of hydrothermal vent fields: One decade later

    Beaulieu, S. E.; Baker, E. T.; German, C. R.

    2012-12-01

    Since the last global compilation one decade ago, the known number of active submarine hydrothermal vent fields has almost doubled. At the end of 2009, a total of 518 active vent fields was catalogued, with about half (245) visually confirmed and others (273) inferred active at the seafloor. About half (52%) of these vent fields are at mid-ocean ridges (MORs), 25% at volcanic arcs, 21% at back-arc spreading centers (BASCs), and 2% at intra-plate volcanoes and other settings. One third are in high seas, and the nations with the most known active vent fields within EEZs are Tonga, USA, Japan, and New Zealand. The increase in known vent fields reflects a number of factors, including increased national and commercial interests in seafloor hydrothermal deposits as mineral resources. Here, we have comprehensively documented the percentage of strike length at MORs and BASCs that has been systematically explored for hydrothermal activity. As of the end of 2009, almost 30% of the ~60,000 km of MORs had been surveyed at least with spaced vertical profiles to detect hydrothermal plumes. A majority of the vents discovered at MORs in the past decade occurred at segments with vs. weighted-average full spreading rate (u_s), we predicted 676 vent fields remaining to be discovered at MORs. Even accounting for the lower F_s at slower spreading rates, almost half of the vents that are predicted remaining to be discovered at MORs are at ultra-slow to slow spreading rates (explored tend to be at high latitudes, such as the ultra-slow to slow spreading Arctic MORs (e.g., Kolbeinsey and Mohns Ridges), the ultra-slow American-Antarctic Ridge, and the intermediate spreading Pacific-Antarctic Ridge. Although a greater percentage of the ~11,000 km of BASCs has been surveyed for hydrothermal activity, the discoveries at BASCs in the past decade were mainly at segments with intermediate to fast spreading rates. Using the same equation for F_s vs. u_s, we predicted 71 vent fields remaining to

  19. HMF-Geophysics - An Update

    Crook, N.; Knight, R.; Robinson, D.

    2007-12-01

    There is growing recognition of the challenges we face, in many parts of the world, in finding and maintaining clean sources of water for human consumption and agricultural use, while balancing the needs of the natural world. Advancements in hydrologic sciences are needed in order to develop an improved understanding of the controls on the quantity, movement, and quality of water, thus enhancing our ability to better protect and manage our water resources. Geophysical methods can play a central role in these investigations. CUAHSI (Consortium of Universities for the Advancement of Hydrologic Sciences) is developing, with the support of the National Science Foundation, a Hydrologic Measurement Facility (HMF), which contains a Geophysics module, referred to as HMF-Geophysics. The Geophysics module will support and advance the use of geophysics for hydrologic applications. Currently in second year of a 3 year pilot study, the main aim of HMF-Geophysics is to develop the infrastructure necessary to provide geophysical techniques and the expertise to apply them correctly for the hydrological community. The current working model consists of a central HMF-Geophysics facility and a number of volunteer nodes. The latter consists of individuals at universities who have volunteered to be part of HMF-Geophysics by using their equipment, and/or software, and expertise, in research partnerships with hydrologists. In response to an inquiry the central facility takes on the evaluation of the potential of geophysics to the area of research/watershed. The central facility can then undertake a feasibility study to determine how/if geophysical methods could be of use, and to evaluate the "value-added" by geophysics to the science. Once it is clear that the geophysics can contribute in a significant way to addressing the science questions the central facility works with the hydrologist to set up the next step. Our assumption is that at this point, the hydrologist (perhaps with a

  20. Global Mapping of Near-Earth Magnetic Fields Measured by KITSAT-1 and KITSAT-2

    Yoo-Surn Pyo

    1994-06-01

    Full Text Available The magnetic field measurements from the KitSat-1 and KitSat-2 were tested by comparing with the IGRF model. The magnetic data have been collected by a three-axis fluxgate magnetometer on each satellite at an altitude of 1,325km and 820km, respectively. To avoid highly variable magnetic disturbances at the polar region, the field map has been drawn within the limits of 50 degrees in latitude. Each data is averaged over the square of 5x5 degrees in both latitude and longitude. In these results, the relatively quiet periods were selected and the sampling rate was 30 seconds. It is shown that the results from these measurements are consistent with the IGRF map over the global surface map.

  1. Integral relations in complex space and the global analytic and monodromic structure of Green's functions in quantum field theory

    Bros, J.

    1980-01-01

    In this lecture, we present some of the ideas of a global consistent approach to the analytic and monodromic structure of Green's functions and scattering amplitudes of elementary particles on the basis of general quantum field theory. (orig.)

  2. On Corestriction Principle in non-abelian Galois cohomology over local and global fields. II: Characteristic p > 0

    Nguyen Quoc Thang

    2004-08-01

    We show the validity of te Corestriction Principle for non-abelian cohomology of connected reductive groups over local ad global fields of characteristic p > 0 , by extending some results by Kneser and Douai. (author)

  3. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    National Aeronautics and Space Administration — This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations obtained from...

  4. A Global Database of Field-observed Leaf Area Index in Woody Plant Species, 1932-2011

    National Aeronautics and Space Administration — ABSTRACT: This data set provides global leaf area index (LAI) values for woody species. The data are a compilation of field-observed data from 1,216 locations...

  5. Geophysical fluid dynamics

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  6. Geophysical fluid dynamics

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  7. Integrated geophysical-geochemical methods for archaeological prospecting

    Persson, Kjell

    2005-01-01

    A great number of field measurements with different methods and instruments were conducted in attempts to develop a method for an optimal combination of various geochemical and geophysical methods in archaeological prospecting. The research presented in this thesis focuses on a study of how different anthropogenic changes in the ground can be detected by geochemical and geophysical mapping and how the results can be presented. A six-year pilot project, Svealand in Vendel and Viking periods (S...

  8. Perturbative S-matrix for massive scalar fields in global de Sitter space

    Marolf, Donald; Srednicki, Mark; Morrison, Ian A

    2013-01-01

    We construct a perturbative S-matrix for interacting massive scalar fields in global de Sitter space. Our S-matrix is formulated in terms of asymptotic particle states in the far past and future, taking appropriate care for light fields whose wavefunctions decay only very slowly near the de Sitter conformal boundaries. An alternative formulation expresses this S-matrix in terms of residues of poles in analytically-continued Euclidean correlators (computed in perturbation theory), making it clear that the standard Minkowski-space result is obtained in the flat-space limit. Our S-matrix transforms properly under CPT, is invariant under the de Sitter isometries and perturbative field redefinitions, and is unitary. This unitarity implies a de Sitter version of the optical theorem. We explicitly verify these properties to second order in the coupling for a general cubic interaction, including both tree- and loop-level contributions. Contrary to other statements in the literature, we find that a particle of any positive mass may decay at tree level to any number of particles, each of arbitrary positive masses. In particular, even very light fields (in the complementary series of de Sitter representations) are not protected from tree-level decays. (paper)

  9. Geophysical Signitures From Hydrocarbon Contaminated Aquifers

    Abbas, M.; Jardani, A.

    2015-12-01

    The task of delineating the contamination plumes as well as studying their impact on the soil and groundwater biogeochemical properties is needed to support the remediation efforts and plans. Geophysical methods including electrical resistivity tomography (ERT), induced polarization (IP), ground penetrating radar (GPR), and self-potential (SP) have been previously used to characterize contaminant plumes and investigate their impact on soil and groundwater properties (Atekwana et al., 2002, 2004; Benson et al., 1997; Campbell et al., 1996; Cassidy et al., 2001; Revil et al., 2003; Werkema et al., 2000). Our objective was to: estimate the hydrocarbon contamination extent in a contaminated site in northern France, and to adverse the effects of the oil spill on the groundwater properties. We aim to find a good combination of non-intrusive and low cost methods which we can use to follow the bio-remediation process, which is planned to proceed next year. We used four geophysical methods including electrical resistivity tomography, IP, GPR, and SP. The geophysical data was compared to geochemical ones obtained from 30 boreholes installed in the site during the geophysical surveys. Our results have shown: low electrical resistivity values; high chargeability values; negative SP anomalies; and attenuated GPR reflections coincident with groundwater contamination. Laboratory and field geochemical measurements have demonstrated increased groundwater electrical conductivity and increased microbial activity associated with hydrocarbon contamination of groundwater. Our study results support the conductive model suggested by studies such as Sauck (2000) and Atekwana et al., (2004), who suggest that biological alterations of hydrocarbon contamination can substantially modify the chemical and physical properties of the subsurface, producing a dramatic shift in the geo-electrical signature from resistive to conductive. The next stage of the research will include time lapse borehole

  10. Globalization

    Plum, Maja

    Globalization is often referred to as external to education - a state of affair facing the modern curriculum with numerous challenges. In this paper it is examined as internal to curriculum; analysed as a problematization in a Foucaultian sense. That is, as a complex of attentions, worries, ways...... of reasoning, producing curricular variables. The analysis is made through an example of early childhood curriculum in Danish Pre-school, and the way the curricular variable of the pre-school child comes into being through globalization as a problematization, carried forth by the comparative practices of PISA...

  11. Globalization

    F. Gerard Adams

    2008-01-01

    The rapid globalization of the world economy is causing fundamental changes in patterns of trade and finance. Some economists have argued that globalization has arrived and that the world is “flat†. While the geographic scope of markets has increased, the author argues that new patterns of trade and finance are a result of the discrepancies between “old†countries and “new†. As the differences are gradually wiped out, particularly if knowledge and technology spread worldwide, the t...

  12. An application of neural network in geophysical prospecting. Electrical resistivity at Las Virgenes geothermal field, Baja California Sur, Mexico; Una aplicacion de las redes neuronales a la prospeccion geofisica. Resistividad electrica en las Tres Virgenes, Baja California Sur, Mexico

    Palma Guzman, Sergio Hugo [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2000-12-01

    The technology of the neural network is presented with geophysical focus in the Las Virgenes geothermal field, Baja California Sur, Mexico. The results obtained when extrapolating the associative data of the prospecting magnetoteluria and Vertical Electric Sounding, on the area of the geothermal wells to the rest of the area, allows to classify zones of interest for the geothermal exploitation. Also, the use of these associative parameters with the information of the stabilized temperature of the wells, they allow to predict temperatures for the rest of the area. [Spanish] Se presenta una aplicacion de la tecnologia de las redes neuronales con enfoque geofisico en el campo geotermico de Las Virgenes, Baja California Sur, Mexico. Los resultados obtenidos al extrapolar los datos asociativos de las prospecciones geoelectricas de magnetoteluria y sondeos electricos verticales, en la zona de los pozos geotermicos al resto del area, permiten clasificar zonas de interes para la explotacion geotermica. Tambien, la utilizacion de estos parametros asociativos con la informacion de la temperatura estabilizada de los pozos, permiten predecir temperaturas para la misma area.

  13. DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS

    Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François; Charbonneau, Paul [Département de Physique, Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada)

    2016-08-01

    The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field produced by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.

  14. Developments in geophysical exploration methods

    1982-01-01

    One of the themes in current geophysical development is the bringing together of the results of observations made on the surface and those made in the subsurface. Several benefits result from this association. The detailed geological knowledge obtained in the subsurface can be extrapolated for short distances with more confidence when the geologi­ cal detail has been related to well-integrated subsurface and surface geophysical data. This is of value when assessing the characteristics of a partially developed petroleum reservoir. Interpretation of geophysical data is generally improved by the experience of seeing the surface and subsurface geophysical expression of a known geological configuration. On the theoretical side, the understanding of the geophysical processes themselves is furthered by the study of the phenomena in depth. As an example, the study of the progress of seismic wave trains downwards and upwards within the earth has proved most instructive. This set of original papers deals with some of ...

  15. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    Hedayati, R.; Mirzaali, M. J.; Vergani, L.; Zadpoor, A. A.

    2018-03-01

    Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of "action-at-a-distance" metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular) materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson's ratios as a way of making "action-at-a-distance" metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable) robotics and exosuits.

  16. Action-at-a-distance metamaterials: Distributed local actuation through far-field global forces

    R. Hedayati

    2018-03-01

    Full Text Available Mechanical metamaterials are a sub-category of designer materials where the geometry of the material at the small-scale is rationally designed to give rise to unusual properties and functionalities. Here, we propose the concept of “action-at-a-distance” metamaterials where a specific pattern of local deformation is programmed into the fabric of (cellular materials. The desired pattern of local actuation could then be achieved simply through the application of one single global and far-field force. We proposed graded designs of auxetic and conventional unit cells with changing Poisson’s ratios as a way of making “action-at-a-distance” metamaterials. We explored five types of graded designs including linear, two types of radial gradients, checkered, and striped. Specimens were fabricated with indirect additive manufacturing and tested under compression, tension, and shear. Full-field strain maps measured with digital image correlation confirmed different patterns of local actuation under similar far-field strains. These materials have potential applications in soft (wearable robotics and exosuits.

  17. The Chandra Deep Field South as a test case for Global Multi Conjugate Adaptive Optics

    Portaluri, E.; Viotto, V.; Ragazzoni, R.; Gullieuszik, M.; Bergomi, M.; Greggio, D.; Biondi, F.; Dima, M.; Magrin, D.; Farinato, J.

    2017-04-01

    The era of the next generation of giant telescopes requires not only the advent of new technologies but also the development of novel methods, in order to exploit fully the extraordinary potential they are built for. Global Multi Conjugate Adaptive Optics (GMCAO) pursues this approach, with the goal of achieving good performance over a field of view of a few arcmin and an increase in sky coverage. In this article, we show the gain offered by this technique to an astrophysical application, such as the photometric survey strategy applied to the Chandra Deep Field South as a case study. We simulated a close-to-real observation of a 500 × 500 arcsec2 extragalactic deep field with a 40-m class telescope that implements GMCAO. We analysed mock K-band images of 6000 high-redshift (up to z = 2.75) galaxies therein as if they were real to recover the initial input parameters. We attained 94.5 per cent completeness for source detection with SEXTRACTOR. We also measured the morphological parameters of all the sources with the two-dimensional fitting tools GALFIT. The agreement we found between recovered and intrinsic parameters demonstrates GMCAO as a reliable approach to assist extremely large telescope (ELT) observations of extragalactic interest.

  18. Serious games for Geophysics

    Lombardo, Valerio; Rubbia, Giuliana

    2015-04-01

    Childhood stage is indispensable in the education of human beings and especially critical to arise scientific interest in children. We discuss the participatory design of a didactic videogame, i.e. a "serious" game to teach geophysics and Earth sciences to high and low-school students. Geophysics is the application of the laws and techniques of physics to uncover knowledge about the earth's dynamic processes and subsurface structure. It explores phenomena such as earthquakes, volcanoes, tsunamis to improve our understanding of the earth's physical processes and our ability to predict reoccurrences. Effective mitigation of risks from catastrophic geologic hazards requires knowledge and understanding of local geology and geologic processes. Scientific outreach can be defined as discourse activity, whose main objective is to communicate some knowledge previously produced in scientific contexts to a non-expert massive audience. One of the difficulties science educators need to overcome is to explain specific concepts from a given discipline in a language simple and understandable for their audience. Digital games today play a large role in young people's lives. Games are directly connected to the life of today's adolescents. Therefore, digital games should be included and broached as a subject in the classroom. The ardor and enthusiasm that digital games evoke in teenagers has indeed brought many researchers, school leaders and teachers to the question "how video games" can be used to engage young people and support their learning inside the classroom. Additionally, studies have shown that digital games can enhance various skills such as the ability to concentrate, stamina, tactical aptness, anticipatory thinking, orientation in virtual spaces, and deductive reasoning. Thus, videogames become an effective didactic mechanism and should have a place in the classroom. The project aims to explore the potentials of entertainment technologies in educational processes

  19. Assessment of multiple geophysical techniques for the characterization of municipal waste deposit sites

    Gaël, Dumont; Tanguy, Robert; Nicolas, Marck; Frédéric, Nguyen

    2017-10-01

    In this study, we tested the ability of geophysical methods to characterize a large technical landfill installed in a former sand quarry. The geophysical surveys specifically aimed at delimitating the deposit site horizontal extension, at estimating its thickness and at characterizing the waste material composition (the moisture content in the present case). The site delimitation was conducted with electromagnetic (in-phase and out-of-phase) and magnetic (vertical gradient and total field) methods that clearly showed the transition between the waste deposit and the host formation. Regarding waste deposit thickness evaluation, electrical resistivity tomography appeared inefficient on this particularly thick deposit site. Thus, we propose a combination of horizontal to vertical noise spectral ratio (HVNSR) and multichannel analysis of the surface waves (MASW), which successfully determined the approximate waste deposit thickness in our test landfill. However, ERT appeared to be an appropriate tool to characterize the moisture content of the waste, which is of prior information for the organic waste biodegradation process. The global multi-scale and multi-method geophysical survey offers precious information for site rehabilitation studies, water content mitigation processes for enhanced biodegradation or landfill mining operation planning.

  20. New evidence for "far-field" Holocene sea level oscillations and links to global climate records

    Leonard, N. D.; Welsh, K. J.; Clark, T. R.; Feng, Y.-x.; Pandolfi, J. M.; Zhao, J.-x.

    2018-04-01

    Rising sea level in the coming century is of significant concern, yet predicting relative sea level change in response to eustatic sea level variability is complex. Potential analogues are provided by the recent geological past but, until recently, many sea level reconstructions have been limited to millennial scale interpretations due to age uncertainties and paucity in proxy derived records. Here we present a sea level history for the tectonically stable "far-field" Great Barrier Reef, Australia, derived from 94 high precision uranium-thorium dates of sub-fossil coral microatolls. Our results provide evidence for at least two periods of relative sea level instability during the Holocene. These sea level oscillations are broadly synchronous with Indo-Pacific negative sea surface temperature anomalies, rapid global cooling events and glacial advances. We propose that the pace and magnitude of these oscillations are suggestive of eustatic/thermosteric processes operating in conjunction with regional climatic controls.

  1. Complexity transitions in global algorithms for sparse linear systems over finite fields

    Braunstein, A.; Leone, M.; Ricci-Tersenghi, F.; Zecchina, R.

    2002-09-01

    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to the changes in the performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary for the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.

  2. Complexity transitions in global algorithms for sparse linear systems over finite fields

    Braunstein, A.; Leone, M.; Ricci-Tersenghi, F. . Federico.Ricci@roma1.infn.it; Zecchina, R.

    2002-01-01

    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to the changes in the performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary for the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem. (author)

  3. An exploration into the home field, global advantage and liability of unfamiliarness hypotheses in multinational banking

    Fadzlan Sufian

    2011-09-01

    Full Text Available This paper seeks to expand the efficiency paradigm of the eclectic theory in multinational banking within the context of a developing country banking sector. We employ the Data Envelopment Analysis (DEA method to examine the efficiency of multinational banks operating in the Malaysian banking sector from 1995 to 2007. We then employ the panel regression analysis to examine the impact of origins on bank efficiency. We find foreign banks from North America to be the most efficient banking group, providing support to the ‘limited form’ of the global advantage hypothesis. On the other hand, we do not find evidence on both the liability of unfamiliarness and home field advantage hypotheses.

  4. Comparison between the boundary layer and global resistivity methods for tearing modes in reversed field configurations

    Santiago, M.A.M.

    1987-01-01

    A review of the problem of growth rate calculations for tearing modes in field reversed Θ-pinches is presented. Its shown that in the several experimental data, the methods used for analysing the plasma with a global finite resistivity has a better quantitative agreement than the boundary layer analysis. A comparative study taking into account the m = 1 resistive kindmode and the m = 2 mode, which is more dangerous for the survey of rotational instabilities of the plasma column is done. It can see that the imaginary component of the eigenfrequency, which determinates the growth rate, has a good agreement with the experimental data and the real component is different from the rotational frequency as it has been measured in some experiments. (author) [pt

  5. Spatial and Global Sensory Suppression Mapping Encompassing the Central 10° Field in Anisometropic Amblyopia.

    Li, Jingjing; Li, Jinrong; Chen, Zidong; Liu, Jing; Yuan, Junpeng; Cai, Xiaoxiao; Deng, Daming; Yu, Minbin

    2017-01-01

    We investigate the efficacy of a novel dichoptic mapping paradigm in evaluating visual function of anisometropic amblyopes. Using standard clinical measures of visual function (visual acuity, stereo acuity, Bagolini lenses, and neutral density filters) and a novel quantitative mapping technique, 26 patients with anisometropic amblyopia (mean age = 19.15 ± 4.42 years) were assessed. Two additional psychophysical interocular suppression measurements were tested with dichoptic global motion coherence and binocular phase combination tasks. Luminance reduction was achieved by placing neutral density filters in front of the normal eye. Our study revealed that suppression changes across the central 10° visual field by mean luminance modulation in amblyopes as well as normal controls. Using simulation and an elimination of interocular suppression, we identified a novel method to effectively reflect the distribution of suppression in anisometropic amblyopia. Additionally, the new quantitative mapping technique was in good agreement with conventional clinical measures, such as interocular acuity difference (P suppression with dichoptic mapping paradigm and the results of the other two psychophysical methods (suppression mapping versus binocular phase combination, P suppression mapping versus global motion coherence, P = 0.005). The dichoptic suppression mapping technique is an effective method to represent impaired visual function in patients with anisometropic amblyopia. It offers a potential in "micro-"antisuppression mapping tests and therapies for amblyopia.

  6. Expanding Geophysical and Geochemical Investigation of Causes of Extraordinary Unrest at the Laguna del Maule (Rhyolitic) Volcanic Field, Southern Andes, Chile

    Singer, B. S.

    2014-12-01

    The Laguna del Maule Volcanic Field, Chile, includes an unusually large and recent concentration of silicic eruptions. Since 2007 the crust here has been inflating at an astonishing rate of 25 cm/yr. Findings thus far lead to the hypothesis that the silicic vents have tapped an extensive layer of crystal-poor, rhyolitic melt that began to form atop a magmatic mush zone that was established by ~20 ka with a renewed phase of rhyolite eruptions during the Holocene. Modeling of surface deformation, magnetotelluric data, and gravity changes suggest that magma is currently intruding at a depth of ~5 km. Swarms of volcano-tectonic and long period earthquakes, mostly of M San Juan-Argentina, Nanyang Technological University-Singapore, SERNAGEOMIN, OVDAS, USGS, and SEGEMAR-Argentina. Team members will be introduced in this presentation. Our approach includes augmenting the OVDAS array of 6 permanent seisic stations with 40 additional instruments to conduct tomographic, receiver function and ambient noise studies. We continue to collect 4-D gravity data from 37 stations. Surface deformation is monitored via cGPS at 5 permanent receivers and InSAR data. A magnetotelluric survey across the Andes at 36o S is planned. Geochemical studies include mineral zoning and U-Th disequilibrium of zircons to constrain the timing of magma intrusion and mixing events prior to the current unrest. The overall aim is to integrate these observations and to construct numerical models of system dynamics. We are developing communications protocols and a web site to facilitate sharing of findings among the team members and with the public.

  7. Potential and flux field landscape theory. I. Global stability and dynamics of spatially dependent non-equilibrium systems.

    Wu, Wei; Wang, Jin

    2013-09-28

    We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is

  8. Effects of screenhouse cultivation and organic materials incorporation on global warming potential in rice fields.

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Xiong, Ruiheng; Hang, Yuhao

    2017-03-01

    Global rice production will be increasingly challenged by providing healthy food for a growing population at minimal environmental cost. In this study, a 2-year field experiment was conducted to investigate the effects of a novel rice cultivation mode (screenhouse cultivation, SHC) and organic material (OM) incorporation (wheat straw and wheat straw-based biogas residue) on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and rice yields. In addition, the environmental factors and soil properties were also determined. Relative to the traditional open-field cultivation (OFC), SHC decreased the CH 4 and N 2 O emissions by 6.58-18.73 and 2.51-21.35%, respectively, and the global warming potential (GWP) was reduced by 6.49-18.65%. This trend was mainly because of lower soil temperature and higher soil redox potential in SHC. Although the rice grain yield for SHC were reduced by 2.51-4.98% compared to the OFC, the CH 4 emissions and GWP per unit of grain yield (yield-scaled CH 4 emissions and GWP) under SHC were declined. Compared to use of inorganic fertilizer only (IN), combining inorganic fertilizer with wheat straw (WS) or wheat straw-based biogas residue (BR) improved rice grain yield by 2.12-4.10 and 4.68-5.89%, respectively. However, OM incorporation enhanced CH 4 emissions and GWP, leading to higher yield-scaled CH 4 emissions and GWP in WS treatment. Due to rice yield that is relatively high, there was no obvious effect of BR treatment on them. These findings suggest that apparent environmental benefit can be realized by applying SHC and fermenting straw aerobically before its incorporation.

  9. Global analysis of the temperature and flow fields in samples heated in multizone resistance furnaces

    Pérez-Grande, I.; Rivas, D.; de Pablo, V.

    The temperature field in samples heated in multizone resistance furnaces will be analyzed, using a global model where the temperature fields in the sample, the furnace and the insulation are coupled; the input thermal data is the electric power supplied to the heaters. The radiation heat exchange between the sample and the furnace is formulated analytically, taking into account specular reflections at the sample; for the solid sample the reflectance is both diffuse and specular, and for the melt it is mostly specular. This behavior is modeled through the exchange view factors, which depend on whether the sample is solid or liquid, and, therefore, they are not known a priori. The effect of this specular behavior in the temperature field will be analyzed, by comparing with the case of diffuse samples. A parameter of great importance is the thermal conductivity of the insulation material; it will be shown that the temperature field depends strongly on it. A careful characterization of the insulation is therefore necessary, here it will be done with the aid of experimental results, which will also serve to validate the model. The heating process in the floating-zone technique in microgravity conditions will be simulated; parameters like the Marangoni number or the temperature gradient at the melt-crystal interface will be estimated. Application to the case of compound samples (graphite-silicon-graphite) will be made; the temperature distribution in the silicon part will be studied, especially the temperature difference between the two graphite rods that hold the silicon, since it drives the thermocapillary flow in the melt. This flow will be studied, after coupling the previous model with the convective effects. The possibility of suppresing this flow by the controlled vibration of the graphite rods will be also analyzed. Numerical results show that the thermocapillary flow can indeed be counterbalanced quite effectively.

  10. PREFACE: Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI

    Rosandi, Y.; Urbassek, H. M.; Yamanaka, H.

    2016-01-01

    This issue of IOP Conference Series: Earth and Environmental Science contains selected papers presented at the Padjadjaran Earth Dialogues: International Symposium on Geophysical Issues, PEDISGI. The meeting was held from June 8 to 10, 2015, at the Bale-Sawala of Universitas Padjadjaran in Jatinangor, Indonesia. The PEDISGI is a symposium to accommodate communication between researchers, in particular geophysicists and related scientists, and to enable sharing of knowledge and research findings concerning local and global geophysical issues. The symposium was attended by 126 participants and 64 contributors from Indonesian universities and the neighbouring countries in four categories, viz. Theoretical and Computational Geophysics, Environmental Geophysics, Geophysical Explorations, and Geophysical Instrumentations and Methods. The symposium was accompanied by a dialog, discussing a chosen topic regarding environmental and geological problems of relevance for the Indonesian archipelago and the surrounding regions. For this first event the topic was ''The formation of Bandung-Basin between myths and facts: Exemplary cultural, geological and geophysical study on the evolution of the earth surface'', presented by invited speakers and local experts. This activity was aimed at extending our knowledge on this particular subject, which may have global impact. This topic was augmented by theoretical background lectures on the earth's surface formation, presented by the invited speakers of the symposium. The meeting would not have been successful without the assistance of the local organizing committee. We want to specially thank Irwan A. Dharmawan for managing the programme, Anggie Susilawati and Mia U. Hasanah for the conference administration, and Dini Fitriani for financial management. We also thank the National Geographic Indonesia for its support via the Business to Business Collaboration Program. The conference photograph can be viewed in the PDF.

  11. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports

  12. Global pictures of the ozone field from high altitudes from DE-I

    Keating, G. M.; Frank, L.; Craven, J.; Shapiro, M.; Young, D.; Bhartia, P.

    1982-01-01

    Detailed synoptic views of the column ozone field can be obtained by the Spin-Scan Ozone Imager (SOI) (Keating et al., 1981) aboard the Dynamics Explorer I satellite. The eccentric polar orbit with an apogee altitude of 23,000 km allows high resolution global-scale images to be obtained within 12 minutes, and allows regions to be viewed for long periods of time. At perigee, a pixel size of nadir measurements of 3 km is possible, and measurements are determined using the backscattered ultraviolet technique. A wavelength measurement of 317.5 nm is used as there are limitations in filter locations and it allows comparison with Nimbus 7 SBUV/TOMS data. Consideration of the reflectivities of this data aids in checking the SOI data reduction algorithm. SOI data show short-term (less than one day) variations in the observed ozone field, and a negative correlation (greater than 0.9) between ozone and tropopause heights. It is expected, due to this correlation, that SOI data will aid in understanding the time evolution of dynamics near the tropopause.

  13. Linear least-squares method for global luminescent oil film skin friction field analysis

    Lee, Taekjin; Nonomura, Taku; Asai, Keisuke; Liu, Tianshu

    2018-06-01

    A data analysis method based on the linear least-squares (LLS) method was developed for the extraction of high-resolution skin friction fields from global luminescent oil film (GLOF) visualization images of a surface in an aerodynamic flow. In this method, the oil film thickness distribution and its spatiotemporal development are measured by detecting the luminescence intensity of the thin oil film. From the resulting set of GLOF images, the thin oil film equation is solved to obtain an ensemble-averaged (steady) skin friction field as an inverse problem. In this paper, the formulation of a discrete linear system of equations for the LLS method is described, and an error analysis is given to identify the main error sources and the relevant parameters. Simulations were conducted to evaluate the accuracy of the LLS method and the effects of the image patterns, image noise, and sample numbers on the results in comparison with the previous snapshot-solution-averaging (SSA) method. An experimental case is shown to enable the comparison of the results obtained using conventional oil flow visualization and those obtained using both the LLS and SSA methods. The overall results show that the LLS method is more reliable than the SSA method and the LLS method can yield a more detailed skin friction topology in an objective way.

  14. Characterisation of the heterogeneity of karst using electrical geophysics - applications in SW China

    Binley, A. M.; Cheng, Q.; Tao, M.; Chen, X.

    2017-12-01

    The southwest China karst region is one of the largest globally continuous karst areas. The great (structural, hydrological and geochemical) complexity of karstic environments and their rapidly evolving nature make them extremely vulnerable to natural and anthropogenic processes/activities. Characterising the location and properties of structures within the karst critical zone, and understanding how the landform is evolving is essential for the mitigation and adaption to locally- and globally-driven changes. Because of the specific nature of karst geology and geomorphology in the humid tropics and subtropics, spatial heterogeneity is high, evidenced by specific landforms features. Such heterogeneity leads to a high dynamic variability of hydrological processes in space and time, along with a complex exchange of surface water and groundwater. Investigating karst hydrogeological features is extremely challenging because of the three-dimensional nature of the system. Observations from boreholes can vary significantly over several metres, making conventional aquifer investigative methods limited. Geophysical methods have emerged as potentially powerful tools for hydrogeological investigations. Geophysical surveys can help to obtain more insight into the complex conduit networks and depth of weathering, both of which can provide quantitative information about the hydrological and hydrochemical dynamics of the system, in addition to providing a better understanding of how critical zone structures have been established and how the landscape is evolving. We present here results from recent geophysical field campaigns in SW China. We illustrate the effectiveness of electrical methods for mapping soil infil in epikarst and report results from field-based investigations along hillslope and valley transects. Our results reveal distinct zones of relatively high electrical conductivity to depths of tens of metres, which we attribute to localised increased fracture density. We

  15. Advancing integrative “one-health” approaches to global health through multidisciplinary, faculty-led global health field courses

    Prof. C Olsen, DVM

    2015-03-01

    Funding: The GHI is supported through a combination of university, grants, and philanthropic funding; these field courses do not have specific, separate funding. Students self-fund participation in the courses.

  16. Borehole geophysics in nuclear power plant siting

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative perameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape

  17. Borehole geophysics in nuclear power plant siting

    Crosby, J.W.; Scott, J.D.

    1979-01-01

    Miniaturized borehole geophysical equipment designed for use in ground-water investigations can be adapted to investigations of nuclear power plant sites. This equipment has proved to be of value in preliminary and comprehensive studies of interior basins where thick sequences of Quaternary clastic sediment, occasionally with associated volcanic rocks, pose problems of stratigraphic correlation. The unconsolidated nature of the deposits generally requires that exploratory holes be cased, which ordinarily restricts the borehole geophysical studies to the radiation functions--natural gamma, gamma-gamma, neutron-gamma, and neutron-epithermal neutron logs. Although a single log response may be dominant in a given area, correlations derive from consideration of all log responses as a composite group. Because major correlations usually are based upon subtle differences in the physical properties of the penetrated sediment, high-resolution logging procedures are employed with some sacrifice of the quantitative parameters important to petroleum technology. All geophysical field data are recorded as hard copy and as digital information on punched paper tape. Digital data are subsequently computer processed and plotted to scales that enhance the stratigraphic data being correlated. Retention of the data in analog format permits rapid review, whereas computer plotting allows playback and detailed examination of log sections and sequences that may be attenuated on hard copy because of the logarithmic nature of the response to the physical property being examined

  18. Global (and Local) Analyticity for Second Order Operators Constructed from Rigid Vector Fields on Products of Tori

    Tartakoff, David S.

    1994-01-01

    We prove global analytic hypoellipticity on a product of tori for partial differential operators which are constructed as rigid (variable coefficient) quadratic polynomials in real vector fields satisfying the H\\"ormander condition and where $P$ satisfies a `maximal' estimate. We also prove an analyticity result that is local in some variables and global in others for operators whose prototype is $$ P= \\left({\\partial \\over {\\partial x_1}}\\right)^2 + \\left({\\partial \\over {\\partial x_2}}\\righ...

  19. Karoo airborne geophysical survey

    Cole, D.J.; Stettler, E.H.

    1984-01-01

    Thirty four uranium anomalies were selected for ground follow-up from the analogue spectrometer records of Block 4 of the Karoo Airborne Geophysical Survey. The anomalies were plotted on 1:50 000 scale topographic maps and to 1:250 000 scale maps which are included in this report. The anomaly co-ordinates are tabulated together with the farms on which they occur. Results of the ground follow-up of the aerial anomalies are described. Twenty two anomalies are related to uranium mineralisation of which seventeen occur over baked mudstone adjacent to a dolerite intrusion. Five are located over fluvial channel sandstone of the Beaufort Group and subsurface mineralised sandstone may be present. The other twelve anomalies are spurious. Of the anomalies located over baked mudstone, fifteen emanate from ferruginous mudstone of the Whitehill Formation west of longitude 21 degrees 15 minutes. One of the two remaining anomalies over baked mudstone occurs over the Prince Albert Formation and the other anomaly is over baked mudstone and calcareous nodules of the Beaufort Group. The general low uranium values (less than 355 ppm eU3O8) render the occurrences uneconomic

  20. Jesuit Geophysical Observatories

    Udias, Agustin; Stauder, William

    Jesuits have had ah interest in observing and explaining geophysical phenomena since this religious order, the Society of Jesus, was founded by Ignatius of Loyola in 1540. Three principal factors contributed to this interest: their educational work in colleges and universities, their missionary endeavors to remote lands where they observed interesting and often as yet undocumented natural phenomena, and a network of communication that brought research of other Jesuits readily to their awareness.One of the first and most important Jesuit colleges was the Roman College (today the Gregorian University) founded in 1551 in Rome, which served as a model for many other universities throughout the world. By 1572, Christopher Clavius (1537-1612), professor of mathematics at the Roman College, had already initiated an important tradition of Jesuit research by emphasizing applied mathematics and insisting on the need of serious study of mathematics in the program of studies in the humanities. In 1547 he directed a publication of Euclid's work with commentaries, and published several treatises on mathematics, including Arithmetica Practica [1585], Gnomonicae [1581], and Geometrica Practica [1606]. Clavius was also a Copernican and supported his friend Galileo when he announced the discovery of the satellites of Jupiter.

  1. A review of nuclear geophysics

    Clayton, C.G.; Schweitzer, J.S.

    1992-01-01

    This paper summarizes the development of nuclear geophysics in scientific and technological content and in range from its beginnings early in this century to the present day. We note that the early work in nuclear geophysics was originally referred to under the umbrella of open-quotes isotope applicationsclose quotes and the origin of the term open-quotes nuclear geophysicsclose quotes (which is seen to clarify and to focus work in this area) is exposed in this paper. The current expansion of nuclear geophysics front its original concern with oil well logging is an important trend because much of the underlying science, technology, and instrumentation is common ground. A review of nuclear geophysics would be a barren document without reference to long-term and, in some cases, short-term commercial and economic as well as to technological considerations, since these factors are the principal motivation for further development

  2. Temporal associations of life with solar and geophysical activity

    T. K. Breus

    Full Text Available In biology, circadian rhythms with a period of one cycle in 20–28 h are known to be ubiquitous and partly endogenous. Rhythms with a frequency lower than one cycle per day are called 'infradian rhythms'. Among them are components with one cycle in about 3.5, 7, 14 and 28 days, the multiseptans, which, like the circadians, must be regarded as a general characteristic of life: they characterize unicells as well as much more differentiated organisms. We hypothesize that heliogeophysical factors other than the solar visible light, held responsible for the evolution of circadian periodicity, underlie the infradian rhythms of biosystems. The periodicities in the solar wind and variations in the interplanetary magnetic field (IMF which are associated with the solar rotation are very similar in length to the biological periodicities. We investigate the temporal relations of variations in solar activity and in biological systems to test associations between events in the IMF, in geomagnetic disturbance, in myocardial infarction and in physiology. By cross-spectral analysis, we also find relations at certain frequencies between changes in human physiology on the one hand, and (1 the vertical component of the induction vector of the IMF, Bz, and (2 a global index of geomagnetic disturbance, Kp, on the other hand. We wish to stimulate interest in these periodicities of both biological systems and geophysical endpoints among physicists and biologists alike, so that problems relevant to clinicians and other biologists, including evolutionists, are eventually solved by their cooperation with the geophysical community.

  3. The Legacy of Benoit Mandelbrot in Geophysics

    Turcotte, D. L.

    2001-12-01

    The concept of fractals (fractional dimension) was introduced by Benoit Mandelbrot in his famous 1967 Science paper. The initial application was to the length of the coastline of Britain. A milestone in the appreciation of the fractal concept by geophysicists was the Union session of the AGU on fractals led off by Benoit in 1986. Although fractals have found important applications in almost every branch of the physical, biological, and social sciences, fractals have been particularly useful in geophysics. Drainage networks are fractal. The frequency-magnitude distribution of earthquakes is fractal. The scale invariance of landscapes and many other geological processes is due to the applicability of power-law (fractal) distributions. Clouds are often fractal. Porosity distributions are fractal. In an almost independent line of research, Benoit in collaboration with James Wallace and others developed the concept of self-affine fractals. The original applications were primarily to time series in hydrology and built on the foundation laid by Henry Hurst. Fractional Gaussian noises and fractional Brownian motions are ubiquitous in geophysics. These are expressed in terms of the power-law relation between the power-spectral density S and frequency f, S ~ f{ β }, examples are β = 0 (white noise), β = 1 (1/f noise), β = 2 (Brownian motion). Of particular importance in geophysics are fractional noises with β = 0.5, these are stationary but have long-range persistent and have a Hurst exponent H = 0.7. Examples include river flows, tree rings, sunspots, varves, etc. Two of Benoit Mandelbrot's major contributions in geophysics as in other fields are: (1) an appreciation of the importance of fat-tail, power-law (fractal) distributions and (2) an appreciation of the importance of self-similar long-range persistence in both stationary time series (noises) and nonstationary time series (walks).

  4. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    Alfano, Marco; Lubineau, Gilles; Paulino, Glá ucio Hermogenes

    2015-01-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  5. Global sensitivity analysis in the identification of cohesive models using full-field kinematic data

    Alfano, Marco

    2015-03-01

    Failure of adhesive bonded structures often occurs concurrent with the formation of a non-negligible fracture process zone in front of a macroscopic crack. For this reason, the analysis of damage and fracture is effectively carried out using the cohesive zone model (CZM). The crucial aspect of the CZM approach is the precise determination of the traction-separation relation. Yet it is usually determined empirically, by using calibration procedures combining experimental data, such as load-displacement or crack length data, with finite element simulation of fracture. Thanks to the recent progress in image processing, and the availability of low-cost CCD cameras, it is nowadays relatively easy to access surface displacements across the fracture process zone using for instance Digital Image Correlation (DIC). The rich information provided by correlation techniques prompted the development of versatile inverse parameter identification procedures combining finite element (FE) simulations and full field kinematic data. The focus of the present paper is to assess the effectiveness of these methods in the identification of cohesive zone models. In particular, the analysis is developed in the framework of the variance based global sensitivity analysis. The sensitivity of kinematic data to the sought cohesive properties is explored through the computation of the so-called Sobol sensitivity indexes. The results show that the global sensitivity analysis can help to ascertain the most influential cohesive parameters which need to be incorporated in the identification process. In addition, it is shown that suitable displacement sampling in time and space can lead to optimized measurements for identification purposes.

  6. Geophysical Insights from Archaeomagnetic Dating

    Holme, R.; Lodge, A.; Suttie, N.; Shaw, J.; Hill, M. J.; Linford, P.

    2009-12-01

    We report on work which has been undertaken towards developing an improved methodology for archaeomagnetic dating of archaeological samples through the use of a dedicated field model. In this talk, we focus on the more general (non-archaeological) implications of our results. Our work has focused on Europe, taking advantage of the better spatial and temporal coverage of available samples. Nevertheless, we model the field globally, using an a priori model (such as, for example, CALS7K) to constrain the field away from the regions of available data. This is advantageous over the use of a local field modelling methodology, as it allows us to examine the physical consequences of structure in our model (for example, in terms of the spectra of the field and secular variation at the core-mantle boundary), and to control possible edge effects in the model, which in a local model might produce an unphysical solution. By focusing on one particular region, we produce models that may not be optimal in terms of global structure, but allow us to investigate the data content in the region where it may provide the most information on core-field evolution. In parallel, we have been expanding the archaeointensity record for Great Britain, towards producing an archaeointensity curve for the UK which could ultimately be used for dating of unoriented samples (such as pot sherds). This new record, combined with other recently acquired high-quality intensity data, allows us to consider the evolution of global geomagnetic field strength in parallel with a good model of directional measurements; from 1590, the GUFM model is appropriate. Recent attempts to determine global intensity variation have used all available data (some of uncertain quality) to quantify variations in field strength. By instead focusing on a more limited dataset of known quality, we are able to examine intensity trends in greater detail. We present evidence that the intensity of the field was higher prior to 1840 than

  7. Notes on the history of geophysics in the Ottoman Empire

    Ozcep, F.; Ozcep, T.

    2014-09-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  8. Development of Geophysical Ideas and Institutions in Ottoman Empire

    Ozcep, Ferhat; Ozcep, Tazegul

    2015-04-01

    In Anatolia, the history of geophysical sciences may go back to antiquity (600 BC), namely the period when Thales lived in Magnesia (Asia Minor). In the modern sense, geophysics started with geomagnetic works in the 1600s. The period between 1600 and 1800 includes the measurement of magnetic declination, inclination and magnetic field strength. Before these years, there is a little information, such as how to use a compass, in the Kitab-i Bahriye (the Book of Navigation) of Piri Reis, who is one of the most important mariners of the Ottoman Empire. However, this may not mean that magnetic declination was generally understood. The first scientific book relating to geophysics is the book Fuyuzat-i Miknatissiye that was translated by Ibrahim Müteferrika and printed in 1731. The subject of this book is earth's magnetism. There is also information concerning geophysics in the book Cihannuma (Universal Geography) that was written by Katip Celebi and in the book Marifetname written by Ibrahim Hakki Erzurumlu, but these books are only partly geophysical books. In Istanbul the year 1868 is one of the most important for geophysical sciences because an observatory called Rasathane-i Amire was installed in the Pera region of this city. At this observatory the first systematic geophysical observations such as meteorological, seismological and even gravimetrical were made. There have been meteorological records in Anatolia since 1839. These are records of atmospheric temperature, pressure and humidity. In the Ottoman Empire, the science of geophysics is considered as one of the natural sciences along with astronomy, mineralogy, geology, etc., and these sciences are included as a part of physics and chemistry.

  9. Groundwater geophysics. A tool for hydrology. 2. ed.

    Kirsch, Reinhard (ed.) [Landesamt fuer Natur und Umwelt, Flintbek (Germany). Abt. Geologie/Boden

    2009-07-01

    directive is a relatively new field of application for geophysical techniques. Finally, the geophysical mapping of organic and inorganic contaminations of soil and groundwater is demonstrated. (orig.)

  10. SIGKit: Software for Introductory Geophysics Toolkit

    Kruse, S.; Bank, C. G.; Esmaeili, S.; Jazayeri, S.; Liu, S.; Stoikopoulos, N.

    2017-12-01

    The Software for Introductory Geophysics Toolkit (SIGKit) affords students the opportunity to create model data and perform simple processing of field data for various geophysical methods. SIGkit provides a graphical user interface built with the MATLAB programming language, but can run even without a MATLAB installation. At this time SIGkit allows students to pick first arrivals and match a two-layer model to seismic refraction data; grid total-field magnetic data, extract a profile, and compare this to a synthetic profile; and perform simple processing steps (subtraction of a mean trace, hyperbola fit) to ground-penetrating radar data. We also have preliminary tools for gravity, resistivity, and EM data representation and analysis. SIGkit is being built by students for students, and the intent of the toolkit is to provide an intuitive interface for simple data analysis and understanding of the methods, and act as an entrance to more sophisticated software. The toolkit has been used in introductory courses as well as field courses. First reactions from students are positive. Think-aloud observations of students using the toolkit have helped identify problems and helped shape it. We are planning to compare the learning outcomes of students who have used the toolkit in a field course to students in a previous course to test its effectiveness.

  11. Global electric-field determination in the Earth's outer magnetosphere using charged particles. Progress Report No. 1, 1991

    Eastman, T.; Sheldon, R.; Hamilton, D.; Mcilwain, C.

    1992-03-01

    Although many properties of the Earth's magnetosphere have been measured and quantified in the past 30 years since it was discovered, one fundamental (for a zeroeth order magnetohydrodynamic (MHD) equilibrium) measurement was made infrequently and with poor spatial coverage: the global electric field. This oversight is in part due to the difficulty of measuring a plasma electric field, and in part due to the difficulty of measuring a plasma electric field, and in part due to the neglect of theorists. However, there is renewed interest in the convection electric field, since it has been realized that it is vital for understanding many aspects of the magnetosphere: the global MHD equilibrium, reconnection rates, Region 2 Birkeland currents, magnetosphere-ionosphere coupling, ring current and radiation belt transport, substorm injections, acceleration mechanisms, etc. Unfortunately the standard experimental methods have not been able to synthesize a global field (excepting the pioneering work of McIlwain's geostationary models), and we are left with an overly simplistic theoretical field, the Volland-Stern electric field mode. Again, single point measurements of the plasma pause were used to infer the appropriate amplitudes of the model, parameterized by Kp (Maynard and Chen, JGR 1975). Although this result was never intended to be the definitive electric field model, it has gone nearly unchanged for 15 years. However, the data sets being taken today require a great deal more accuracy than can be provided by the Volland-Stern model. Nor has the variability of the electric field shielding been properly addressed, although effects of penetrating magnetospheric electric fields has been seen in mid- and low-latitude ionospheric data sets. The growing interests in substorm dynamics also requires a much better assessment of the electric fields responsible for particle injections

  12. DELIVERABLE 1.3.1 GEOPHYSICAL WELL LOG/CORE DESCRIPTIONS, CHEROKEE AND BUG FIELDS, SAN JUAN COUNTY, UTAH, AND LITTLE UTE AND SLEEPING UTE FIELDS, MONTEZUMA COUNTY, COLORADO

    Chidsey, Thomas C. Jr.; Eby, David E.; Wray, Laura L.

    2003-01-01

    Over 400 million barrels (64 million m 3 ) of oil have been produced from the shallow-shelf carbonate reservoirs in the Pennsylvanian (Desmoinesian) Paradox Formation in the Paradox Basin, Utah and Colorado. With the exception of the giant Greater Aneth field, the other 100 plus oil fields in the basin typically contain 2 to 10 million barrels (0.3-1.6 million m 3 ) of original oil in place. Most of these fields are characterized by high initial production rates followed by a very short productive life (primary), and hence premature abandonment. Only 15 to 25 percent of the original oil in place is recoverable during primary production from conventional vertical wells. An extensive and successful horizontal drilling program has been conducted in the giant Greater Aneth field. However, to date, only two horizontal wells have been drilled in small Ismay and Desert Creek fields. The results from these wells were disappointing due to poor understanding of the carbonate facies and diagenetic fabrics that create reservoir heterogeneity. These small fields, and similar fields in the basin, are at high risk of premature abandonment. At least 200 million barrels (31.8 million m 3 ) of oil will be left behind in these small fields because current development practices leave compartments of the heterogeneous reservoirs undrained. Through proper geological evaluation of the reservoirs, production may be increased by 20 to 50 percent through the drilling of low-cost single or multilateral horizontal legs from existing vertical development wells. In addition, horizontal drilling from existing wells minimizes surface disturbances and costs for field development, particularly in the environmentally sensitive areas of southeastern Utah and southwestern Colorado

  13. Uniform decrease of alpha-global field power induced by intermittent photic stimulation of healthy subjects

    Rau R.

    2002-01-01

    Full Text Available Nineteen-channel EEGs were recorded from the scalp surface of 30 healthy subjects (16 males and 14 females, mean age: 34 years, SD: 11.7 years at rest and under trains of intermittent photic stimulation (IPS at rates of 5, 10 and 20 Hz. Digitalized data were submitted to spectral analysis with fast fourier transformation providing the basis for the computation of global field power (GFP. For quantification, GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data obtained under IPS. All subjects showed a photic driving effect at each rate of stimulation. GFP data were normally distributed, whereas ratios from photic driving effect data showed no uniform behavior due to high interindividual variability. Suppression of alpha-power after IPS with 10 Hz was observed in about 70% of the volunteers. In contrast, ratios of alpha-power were unequivocal in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP with 20-Hz IPS by alpha-GFP at rest (R = alpha-GFP IPS/alpha-GFPrest thus resulted in ratios lower than 1. We conclude that ratios from GFP data with 20-Hz IPS may provide a suitable paradigm for further investigations.

  14. ''Radon-emanometry'' applied to internal geophysics

    Seidel, J.L.

    1982-02-01

    An experimental set-up for in ground radon 222 measurements has been realised with solid state track detectors (cellulose nitrates CN85 and LR115). A preliminary study of radon activity variations has been conducted over various sites expecting using radon as one of forerunner geophysical parameters of volcanic eruptions and earthquakes predictions. The first data obtained in the field are presented: Etna (Sicily), Krafla (Iceland), Poas and Arenal (Costa Rica), Colima and Paricutin (Mexico) for active volcanoes, Ech Cheliff (Algeria) and Alsace (France) for sismotectonic areas [fr

  15. Activities and Plan of the Center for Geophysics (Beijing from WDC to WDS

    Fenglin Peng

    2013-01-01

    Full Text Available In this report we introduce the development of the WDC for Geophysics, Beijing included our activities in the electronic Geophysical Year (eGY and in the transition period from WDC to WDS. We also present our future plans. We have engaged in the development of geophysical informatics and related data science. We began the data visualization of geomagnetic fields in the GIS system. Our database has been expanded from geomagnetic data to the data of solid geophysics, including geothermal data, gravity data, and the records of aurora sightings in ancient China. We also joined the study of the history of the development of geophysics in China organized by the Chinese Geophysical Society (CGS.

  16. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  17. Field evaluation of personal digital assistant enabled by global positioning system : impact on quality of activity and diary data

    Bellemans, T.; Kochan, B.; Janssens, D.; Wets, G.; Timmermans, H.J.P.; Stopher, P.

    2016-01-01

    Tom Bellemans, Bruno Kochan, Davy Janssens, Geert Wets and Harry Timmermans (2008), ‘Field Evaluation of Personal Digital Assistant Enabled by Global Positioning System: Impact on Quality of Activity and Diary Data’, Transportation Research Record: Journal of the Transportation Research Board, No.

  18. A Response to: Global Security, Religion and Education Development--A Crisis for the Field of Comparative and International Education?

    Ozanne, Bill

    2011-01-01

    This paper presents the author's response to "Global security, religion and education development: a crisis for the field of comparative and international education?" Prof. Lynn Davies's introduction to the Forum is interesting and provocative, and the author advances his response in the spirit of dialogue by looking at Davies's arguments, the…

  19. Results of integrated geophysical measurements on a landslide endangered brown coal dump

    Militzer, H; Lindner, H; Kaeppler, R

    1984-01-01

    The measurements revealed occurrence of geophysical anomalies across artificial soils with low content of cohesive material. The proven anomalies varied with time with regard to their magnitude and position. Possible relations between the temporal variations of the geophysical fields and a landslide on the boundary of the object are discussed.

  20. Scientific output quality of 40 globally top-ranked medical researchers in the field of osteoporosis.

    Pluskiewicz, W; Drozdzowska, B; Adamczyk, P; Noga, K

    2018-03-26

    The study presents the research output of 40 globally top-ranked authors, publishing in the field of osteoporosis. Their h-index is compared with the Scientific Quality Index (SQI), a novel indicator. Using SQI, 92.5% of the authors changed their initial positions in the general ranking. SQI partially depends on bibliometric measures different from those influencing h-index and may be considered as an assessment tool, reflecting more objective, qualitative, rather than quantitative, features of individual scientific output. The study approaches the research output of 40 globally top-ranked authors in the field of osteoporosis. The assessed authors were identified in the Scopus database, using the key word "osteoporosis" and the h-index data, collected during the last decade (2008-2017). The data, concerning the scientific output, expressed by the h-index, were compared with a novel indicator of scientific quality-called the Scientific Quality Index (SQI). SQI is calculated according to the following formula: Parameter No. 1 + Parameter No. 2, where: Parameter No. 1 (the percent of papers cited ≥ 10 times) the number of papers cited ≥ 10 times (excluding self-citations and citations of all co-authors) is divided by the number of all the published papers (including the papers with no citation) × 100%, Parameter No. 2 (the mean number of citations per paper) the total number of citations (excluding self-citations and citations of all co-authors) divided by the number of all published papers (including papers with no citation). The following research output values were obtained: the citation index, 2483.6 ± 1348.7; the total number of papers, 75.1 ± 23.2; the total number of cited papers, 69.3 ± 22.0; the number of papers cited, at least, 10 times, 45.4 ± 17.2; the percent of papers cited, at least, 10 times, 59.9 ± 10.0; and the mean citations per paper, 32.8 ± 15.0. The mean value of Hirsch index was 24.2 ± 6.2 and SQI

  1. Basic elements of nuclear geophysics

    Nordemann, D.J.R.; Pereira, E.B.

    1984-01-01

    Nuclear Geophysics applies the nuclear radiation detection methodology to the geosciences, specially to study the dynamical processes of the lithosphere, the hydrosphere and the atmosphere as well as some aspects of planetology and astrophysics. Here the main methods are described: alpha-ray and gamma-ray spectrometry, the interaction of alpha and gamma radiation with matter and the detectors used (grid chambers, surface barrier silicon detector for alpha radiation; and sodium iodide thallium activated phosphors, hyperpure and lithium drifted germanium semiconductor detectors for gamma radiation). The principal applications of Nuclear Geophysics are given as examples to ilustrate the use of the methods described. (AUthor) [pt

  2. Priorities in the field of international cooperation with the aim of solving global environmental problems

    Kondrat' ev, K.YA.

    1993-08-01

    Considerations on priorities are presented in connection with the broad development of bilateral and multilateral international cooperation to solve global environmental problems. Emphasis is placed on the problem of global climate change, on optimizing the global climate observation system, and on substantiating the (1) inadequacy of the 'greenhouse' stereotype of global climate warming which has long predominated in Russian cooperation programs, and (2) the need to realize real climatic prorities (the role of biosphere dynamics, the interaction of atmosphere and ocean, cloud cover and radiation, the colloidal nature of the atmosphere, etc.). The thermal balance of the earth and the dynamics of the biosphere are considered as the key problems of global ecodynamics. Particular attention is given to socio-economic aspects of ecology. 62 refs.

  3. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  4. Analysis and interpretation of geophysical surveys in archaeological sites employing different integrated approach.

    Piro, Salvatore; Papale, Enrico; Kucukdemirci, Melda; Zamuner, Daniela

    2017-04-01

    Non-destructive ground surface geophysical prospecting methods are frequently used for the investigation of archaeological sites, where a detailed physical and geometrical reconstructions of hidden volumes is required prior to any excavation work. All methods measure the variations of single physical parameters, therefore if these are used singularly, they could not permit a complete location and characterization of anomalous bodies. The probability of a successful result rapidly increases if a multhimethodological approach is adopted, according to the logic of objective complementarity of information and of global convergence toward a high quality multiparametric imaging of the buried structures. The representation of the static configuration of the bodies in the subsoil and of the space-time evolution of the interaction processes between targets and hosting materials have to be actually considered fundamental elements of primary knowledge in archaeological prospecting. The main effort in geophysical prospecting for archaeology is therefore the integration of different, absolutely non-invasive techniques, especially if managed in view of a ultra-high resolution three-dimensional (3D) tomographic representation mode. Following the above outlined approach, we have integrated geophysical methods which measure the variations of potential field (gradiometric methods) with active methods which measure the variations of physical properties due to the body's geometry and volume (GPR and ERT). In this work, the results obtained during the surveys of three archaeological sites, employing Ground Penetrating Radar (GPR), Electrical Resistivity Tomography (ERT) and Fluxgate Differential Magnetic (FDM) to obtain precise and detailed maps of subsurface bodies, are presented and discussed. The first site, situated in a suburban area between Itri and Fondi, in the Aurunci Natural Regional Park (Central Italy), is characterized by the presence of remains of past human activity

  5. The relationship of fractals in geophysics to 'the new science'

    Turcotte, Donald L.

    2004-01-01

    Many phenomena in geophysics satisfy fractal statistics, examples range from the frequency-area statistics of earthquakes to the time series of the earth's magnetic field. Solutions to classical differential equations cannot give this type of behavior. Several 'cellular automata' models have successfully reproduced the observed statistics. For example, the slider-block model for earthquakes. Stephen Wolfram's recent book A New Kind of Science sets forth a 'new science' based on cellular automata. This paper discusses the role of cellular automata in geophysics

  6. Solar wind monitor—a school geophysics project

    Robinson, Ian

    2018-05-01

    Described is an established geophysics project to construct a solar wind monitor based on a nT resolution fluxgate magnetometer. Low-cost and appropriate from school to university level it incorporates elements of astrophysics, geophysics, electronics, programming, computer networking and signal processing. The system monitors the earth’s field in real-time uploading data and graphs to a website every few minutes. Modular design encourages construction and testing by teams of students as well as expansion and refinement. The system has been tested running unattended for months at a time. Both the hardware design and software is published as open-source [1, 10].

  7. Marine geophysical data management and presentation system

    Kunte, P.D.

    ) of the National Institute of Oceanography, Goa, India. GPDMPS is designed for the computerized storage retrieval and presentation of marine geophysical data and information. For the systematic management of geophysical data and information, GPDMPS is subdivided...

  8. Particle Swarm Optimization algorithms for geophysical inversion, practical hints

    Garcia Gonzalo, E.; Fernandez Martinez, J.; Fernandez Alvarez, J.; Kuzma, H.; Menendez Perez, C.

    2008-12-01

    PSO is a stochastic optimization technique that has been successfully used in many different engineering fields. PSO algorithm can be physically interpreted as a stochastic damped mass-spring system (Fernandez Martinez and Garcia Gonzalo 2008). Based on this analogy we present a whole family of PSO algorithms and their respective first order and second order stability regions. Their performance is also checked using synthetic functions (Rosenbrock and Griewank) showing a degree of ill-posedness similar to that found in many geophysical inverse problems. Finally, we present the application of these algorithms to the analysis of a Vertical Electrical Sounding inverse problem associated to a seawater intrusion in a coastal aquifer in South Spain. We analyze the role of PSO parameters (inertia, local and global accelerations and discretization step), both in convergence curves and in the a posteriori sampling of the depth of an intrusion. Comparison is made with binary genetic algorithms and simulated annealing. As result of this analysis, practical hints are given to select the correct algorithm and to tune the corresponding PSO parameters. Fernandez Martinez, J.L., Garcia Gonzalo, E., 2008a. The generalized PSO: a new door to PSO evolution. Journal of Artificial Evolution and Applications. DOI:10.1155/2008/861275.

  9. Advancing Venus Geophysics with the NF4 VOX Gravity Investigation.

    Iess, L.; Mazarico, E.; Andrews-Hanna, J. C.; De Marchi, F.; Di Achille, G.; Di Benedetto, M.; Smrekar, S. E.

    2017-12-01

    The Venus Origins Explorer is a JPL-led New Frontiers 4 mission proposal to Venus to answer critical questions about the origin and evolution of Venus. Venus stands out among other planets as Earth's twin planet, and is a natural target to better understand our own planet's place, in our own Solar System but also among the ever-increasing number of exoplanetary systems. The VOX radio science investigation will make use of an innovative Ka-band transponder provided by the Italian Space Agency (ASI) to map the global gravity field of Venus to much finer resolution and accuracy than the current knowledge, based on the NASA Magellan mission. We will present the results of comprehensive simulations performed with the NASA GSFC orbit determination and geodetic parameter estimation software `GEODYN', based on a realistic mission scenario, tracking schedule, and high-fidelity Doppler tracking noise model. We will show how the achieved resolution and accuracy help fulfill the geophysical goals of the VOX mission, in particular through the mapping of subsurface crustal density or thickness variations that will inform the composition and origin of the tesserae and help ascertain the heat loss and importance of tectonism and subduction.

  10. Preliminary evaluation of alterant geophysical tomography in welded tuff

    Ramirez, A.L.; Daily, W.D.

    1985-01-01

    The ability of alterant geophysical tomography to delineate flow paths in a welded tuff rock mass has been preliminarily evaluated based on the results of a field experiment. Electromagnetic measurements were made before, during and after a water-based, dye tracer flowed through the rock mass. Alterant geophysical tomographs were generated and compared with independent evidence - borescope logs, neutron logs and dyed rock samples. Anomalies present in the tomograph match the location and orientation of fractures mapped with a borescope. The location of tracer-stained fractures coincides with the location of some image anomalies; other geophysical anomalies exist where tracer-stained fractures were not observed, perhaps due to poor core recovery. Additional drilling to locate stained flow paths and other experiments are planned so that the applicability of the technique can be further evaluated

  11. Development of nuclear physics and its connections to borehole geophysics

    Loetzsch, W.

    1990-01-01

    Starting from the discovery of radioactivity, the development of nuclear physics and its close connections to geoscience, especially to borehole geophysics, are outlined. The discovery of a nuclear physical phenomenon is always followed by an examination for its applications in nuclear geophysics, which since about 1960 has developed into a special discipline of applied geophysics. As an example for this development in the GDR the application of neutron capture γ-ray spectroscopy for iron ore exploration is described. A table listing important present-day nuclear well logging techniques with detectable elements and their detection limits is presented. Examples of measurements with some of these logging techniques reveal their particularities and show their element-specific character and the nuclear physical mechanisms involved. Finally the state of art of nuclear well logging and prospects in this field are outlined. (author)

  12. Earth Systems Field Work: Service Learning at Local and Global Scales

    Moore, A.; Derry, L. A.

    2016-12-01

    The Earth & Environmental Systems (EES) Field Program engages students in hands-on exploration along the boundaries of the living earth, solid earth, ocean, and atmosphere. Based on Hawaíi Island, the semester-length program integrates scientific study with environmental stewardship and service learning. Each year EES students contribute 3000 hours of service to their host community. Throughout the semester students engage in different service activities. Most courses includes a service component - for example - study of the role of invasive species in native ecosystems includes an invasive species removal project. Each student completes a 4-week service internship with a local school, NGO, state or federal agency. Finally, the student group works to offset the carbon footprint of the program in collaboration with local conservation projects. This effort sequesters CO2 emissions while at the same time contributing to reforestation of degraded native ecosystems. Students learn that expertise is not confined to "the academy," and that wisdom and inspiration can be found in unexpected venues. Much of the service learning in the EES Program occurs in collaboration with local partners. Service internships require students to identify a partner and to design a tractable project. Students work daily with their sponsor and make a formal presentation of their project at the end of the internship period. This includes speaking to a non-technical community gathering as well as to a scientific audience. For many students the opportunity to work on a real problem, of interest in the real world, is a highlight of the semester. Beyond working in support of local community groups, the EES Prograḿs C-neutral project engages students with work in service to the global commons. Here the outcome is not measurable within the time frame of a semester, yet the intangible result makes the experience even more powerful. Students take responsibility for an important issue that is not

  13. Unified Geophysical Cloud Platform (UGCP) for Seismic Monitoring and other Geophysical Applications.

    Synytsky, R.; Starovoit, Y. O.; Henadiy, S.; Lobzakov, V.; Kolesnikov, L.

    2016-12-01

    We present Unified Geophysical Cloud Platform (UGCP) or UniGeoCloud as an innovative approach for geophysical data processing in the Cloud environment with the ability to run any type of data processing software in isolated environment within the single Cloud platform. We've developed a simple and quick method of several open-source widely known software seismic packages (SeisComp3, Earthworm, Geotool, MSNoise) installation which does not require knowledge of system administration, configuration, OS compatibility issues etc. and other often annoying details preventing time wasting for system configuration work. Installation process is simplified as "mouse click" on selected software package from the Cloud market place. The main objective of the developed capability was the software tools conception with which users are able to design and install quickly their own highly reliable and highly available virtual IT-infrastructure for the organization of seismic (and in future other geophysical) data processing for either research or monitoring purposes. These tools provide access to any seismic station data available in open IP configuration from the different networks affiliated with different Institutions and Organizations. It allows also setting up your own network as you desire by selecting either regionally deployed stations or the worldwide global network based on stations selection form the global map. The processing software and products and research results could be easily monitored from everywhere using variety of user's devices form desk top computers to IT gadgets. Currents efforts of the development team are directed to achieve Scalability, Reliability and Sustainability (SRS) of proposed solutions allowing any user to run their applications with the confidence of no data loss and no failure of the monitoring or research software components. The system is suitable for quick rollout of NDC-in-Box software package developed for State Signatories and aimed for

  14. BROADBAND DIGITAL GEOPHYSICAL TELEMETRY SYSTEM.

    Seeley, Robert L.; Daniels, Jeffrey J.

    1984-01-01

    A system has been developed to simultaneously sample and transmit digital data from five remote geophysical data receiver stations to a control station that processes, displays, and stores the data. A microprocessor in each remote station receives commands from the control station over a single telemetry channel.

  15. Geophysical Institute. Biennial report, 1993-1994

    NONE

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  16. Uniqueness of Gibbs states and global Markov property for Euclidean fields

    Albeverio, S.; Hoeegh-Krohn, R.

    1981-01-01

    The authors briefly discuss the proof of the uniqueness of solutions of the DLR equations (uniqueness of Gibbs states) in the class of regular generalized random fields (in the sense of having second moments bounded by those of some Euclidean field), for the Euclidean fields with trigonometric interaction. (Auth.)

  17. Corestriction principle for non-Abelian cohomology of reductive group schemes over Dedekind rings of integers of local and global fields

    Nguyen Quoc Thang

    2006-12-01

    We prove some new results on Corestriction principle for non-abelian cohomology of group schemes over the rings of integers of local and global fields. Some connections with Grothendieck - Serre's conjecture are indicated, and applications to the study of class groups of algebraic groups over global fields are given. (author)

  18. The role of zonally asymmetric heating in the vertical and temporal structure of the global scale flow fields during FGGE SOP-1. [First Global Atmospheric Research Program Global Experiment (FGGE); Special Observing Period (SOP)

    Paegle, J.; Kalnay-Rivas, E.; Baker, W. E.

    1981-01-01

    By examining the vertical structure of the low order spherical harmonics of the divergence and vorticity fields, the relative contribution of tropical and monsoonal circulations upon the global wind fields was estimated. This indicates that the overall flow over North America and the Pacific between January and February is quite distinct both in the lower and upper troposphere. In these longitudes there is a stronger tropical overturning and subtropical jet stream in January than February. The divergent flow reversed between 850 and 200 mb. Poleward rotational flow at upper levels is associated with an equatorward rotational flow at low levels. This suggests that the monsoon and other tropical circulations project more amplitude upon low order (global scale) representations of the flow than do the typical midlatitude circulations and that their structures show conspicuous changes on a time scale of a week or less.

  19. Global daily precipitation fields from bias-corrected rain gauge and satellite observations. Pt. 1. Design and development

    Kottek, M.; Rubel, F. [Univ. of Veterinary Medicine, Vienna (Austria). Biometeorology Group

    2007-10-15

    Global daily precipitation analyses are mainly based on satellite estimates, often calibrated with monthly ground analyses or merged with model predictions. We argue here that an essential improvement of their accuracy is only possible by incorporation of daily ground measurements. In this work we apply geostatistical methods to compile a global precipitation product based on daily rain gauge measurements. The raw ground measurements, disseminated via Global Telecommunication System (GTS), are corrected for their systematic measurement errors and interpolated onto a global 1 degree grid. For interpolation ordinary block kriging is applied, with precalculated spatial auto-correlation functions (ACFs). This technique allows to incorporate additional climate information. First, monthly ACFs are calculated from the daily data; second, they are regionalised according to the five main climatic zones of the Koeppen-Geiger climate classification. The interpolation error, a by-product of kriging, is used to flag grid points as missing if the error is above a predefined threshold. But for many applications missing values constitute a problem. Due to a combination of the ground analyses with the daily multi-satellite product of the Global Precipitation Climatology Project (GPCP-1DD) not only these missing values are replaced but also the spatial structure of the satellite estimates is considered. As merging method bivariate ordinary co-kriging is applied. The ACFs necessary for the gauge and the satellite fields as well as the corresponding spatial cross-correlation functions (CCFs) are again precalculated for each of the five main climatic zones and for each individual month. As a result two new global daily data sets for the period 1996 up to today will be available on the Internet (www.gmes-geoland.info): A precipitation product over land, analysed from ground measurements; and a global precipitation product merged from this and the GPCP-1DD multi-satellite product. (orig.)

  20. Globalization in the field of higher education in focus of macro-analysis: trends and problems

    O. A. Khomeriki

    2015-06-01

    Full Text Available The article deals with globalization of higher education. Higher education is grouped around many of the key issues of globalization: the internationalization strategy; transnational education; providing international quality; entrepreneurial approaches for education; regional and interregional cooperation; information and communication technologies and virtual schools; the emergence of new educational mediators – education providers, the problems of equality and access to education and so on. More of globalization produce new relationships of exchange, the internationalization of trade, restructuring of the international labor market, reduce labor conflicts at the level of capital, international division of labor, the development of new forces of production and technology, capital­intensive production, increasing the number of women employed in industrial and economic processes, increasing the size and value of services. It should be noted that the higher education system is able to influence globalization, forming a line of future policy, and region. It is reported that leaders of the globalization process in general and in particular the integration processes and the processes of formation of the education market internationally are leading countries that embarked on the path of transformation of their education systems and consider an active part in shaping the world educational space as a factor in solving the existing problems national and international levels. These countries are the United States, Canada, Western Europe, Australia.

  1. Global enhancement and structure formation of the magnetic field in spiral galaxies

    Khoperskov, Sergey A.; Khrapov, Sergey S.

    2018-01-01

    In this paper we study numerically large-scale magnetic field evolution and its enhancement in gaseous disks of spiral galaxies. We consider a set of models with the various spiral pattern parameters and the initial magnetic field strength with taking into account gas self-gravity and cooling and heating processes. In agreement with previous studies we find out that galactic magnetic field is mostly aligned with gaseous structures, however small-scale gaseous structures (spurs and clumps) are more chaotic than the magnetic field structure. In spiral arms magnetic field often coexists with the gas distribution, in the inter-arm region we see filamentary magnetic field structure. These filaments connect several isolated gaseous clumps. Simulations reveal the presence of the small-scale irregularities of the magnetic field as well as the reversal of magnetic field at the outer edge of the large-scale spurs. We provide evidences that the magnetic field in the spiral arms has a stronger mean-field component, and there is a clear inverse correlation between gas density and plasma-beta parameter, compared to the rest of the disk with a more turbulent component of the field and an absence of correlation between gas density and plasma-beta. We show the mean field growth up to >3-10 μG in the cold gas during several rotation periods (>500-800 Myr), whereas ratio between azimuthal and radial field is equal to >4/1. We find an enhancement of random and ordered components of the magnetic field. Mean field strength increases by a factor of >1.5-2.5 for models with various spiral pattern parameters. Random magnetic field component can reach up to 25% from the total strength. By making an analysis of the time-dependent evolution of the radial Poynting flux, we point out that the magnetic field strength is enhanced more strongly at the galactic outskirts which is due to the radial transfer of magnetic energy by the spiral arms pushing the magnetic field outward. Our results also

  2. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    Mackay, Duncan H.; Yeates, Anthony R.; Bocquet, Francois-Xavier

    2016-01-01

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  3. IMPACT OF AN L5 MAGNETOGRAPH ON NONPOTENTIAL SOLAR GLOBAL MAGNETIC FIELD MODELING

    Mackay, Duncan H. [School of Mathematics and Statistics, University of St Andrews, North Haugh, St Andrews, Fife, Scotland, KY16 9SS (United Kingdom); Yeates, Anthony R. [Department of Mathematical Sciences, Durham University, Science Laboratories, South Road, Durham, DH1 3LE (United Kingdom); Bocquet, Francois-Xavier, E-mail: dhm@st-andrews.ac.uk [Met Office, FitzRoy Road, Exeter, EX1 3PB (United Kingdom)

    2016-07-10

    We present the first theoretical study to consider what improvement could be obtained in global nonpotential modeling of the solar corona if magnetograph data were available from the L5 Lagrange point, in addition to from the direction of Earth. To consider this, we first carry out a “reference Sun” simulation over two solar cycles. An important property of this simulation is that random bipole emergences are allowed across the entire solar surface at any given time (such as can occur on the Sun). Next, we construct two “limited data” simulations, where bipoles are only included when they could be seen from (i) an Earth-based magnetograph and (ii) either Earth- or L5-based magnetographs. The improvement in reproducing the reference Sun simulation when an L5 view is available is quantified through considering global quantities in the limited data simulations. These include surface and polar flux, total magnetic energy, volume electric current, open flux, and the number of flux ropes. Results show that when an L5 observational viewpoint is included, the accuracy of the global quantities in the limited data simulations can increase by 26%–40%. This clearly shows that a magnetograph at the L5 point could significantly increase the accuracy of global nonpotential modeling and with this the accuracy of future space weather forecasts.

  4. Global Competition, US Research Universities, and International Doctoral Education: Growth and Consolidation of an Organizational Field

    Taylor, Barrett J.; Cantwell, Brendan

    2015-01-01

    The heightened mobility of resources, ideas, and cultural practices across national borders--commonly known as "globalization"--entails changes in the contexts in which US research universities operate. We draw on recent developments in neo-institutional theory to understand these changes and their implications for the ways in which US…

  5. Evaluation of using digital gravity field models for zoning map creation

    Loginov, Dmitry

    2018-05-01

    At the present time the digital cartographic models of geophysical fields are taking a special significance into geo-physical mapping. One of the important directions to their application is the creation of zoning maps, which allow taking into account the morphology of geophysical field in the implementation automated choice of contour intervals. The purpose of this work is the comparative evaluation of various digital models in the creation of integrated gravity field zoning map. For comparison were chosen the digital model of gravity field of Russia, created by the analog map with scale of 1 : 2 500 000, and the open global model of gravity field of the Earth - WGM2012. As a result of experimental works the four integrated gravity field zoning maps were obtained with using raw and processed data on each gravity field model. The study demonstrates the possibility of open data use to create integrated zoning maps with the condition to eliminate noise component of model by processing in specialized software systems. In this case, for solving problem of contour intervals automated choice the open digital models aren't inferior to regional models of gravity field, created for individual countries. This fact allows asserting about universality and independence of integrated zoning maps creation regardless of detail of a digital cartographic model of geo-physical fields.

  6. Digital Underground (Shh. It's really Applied Geophysics!)

    McAdoo, B. G.

    2003-12-01

    Digital Underground (Geology/Physics 241) at Vassar College is an applied geophysics course designed for a liberal arts curriculum, and has nothing to do with Shock G and Tupac Shakur. Applied geophysics courses have a history of using geophysical methods on environmental contamination-type applications (underground storage tanks, leach fields, etc.). Inspired in large part by the Keck Geology Consortium project run by Franklin and Marshall College geophysicist (Robert Sternberg) and archaeologist (James Delle) in an old slave village in Jamaica in 1999, this class examines the history of slavery in New York's Hudson Valley region by way of its forgotten African-American graveyards. This multidisciplinary approach to an issue draws students from across the curriculum- we have had our compliments of geologists and physicists, along with students from sociology, environmental studies, history, and Africana studies. The name of the class and content are designed to attract a non-traditional student of geophysics.- The project-based nature of the class appeals to student yearning for an out-of-classroom experience. The uncontrolled nature of the class demonstrates the complications that occur in real-word situations. The class has in the past broken itself into two teams- a surveying team and an archival research team. Archival research is done (usually by the social scientists in the class) to add a human dimension to the geophysical. The surveying equipment used in delineating these forgotten graveyards includes a Total Station surveyor, an electrical resistivity meter, a magnetometer, and a ground penetrating radar. All students must have a rudimentary understanding of the physics behind the equipment (to the level of where they can explain it to the general public), and the methods used by those studying the archives. This is a project-based class, where the instructor acts as a project manager, and the students make the decisions regarding the survey itself. Every

  7. Geophysical interpretation using integral equations

    Eskola, L

    1992-01-01

    Along with the general development of numerical methods in pure and applied to apply integral equations to geophysical modelling has sciences, the ability improved considerably within the last thirty years or so. This is due to the successful derivation of integral equations that are applicable to the modelling of complex structures, and efficient numerical algorithms for their solution. A significant stimulus for this development has been the advent of fast digital computers. The purpose of this book is to give an idea of the principles by which boundary-value problems describing geophysical models can be converted into integral equations. The end results are the integral formulas and integral equations that form the theoretical framework for practical applications. The details of mathematical analysis have been kept to a minimum. Numerical algorithms are discussed only in connection with some illustrative examples involving well-documented numerical modelling results. The reader is assu­ med to have a back...

  8. Geophysical and solar activity indices

    Bossy, L.; Lemaire, J.

    1984-04-01

    A large number of geophysicists try to correlate their observations with one or even a series of different geophysical or solar activity indices. Yet the right choice of the most appropriate index with which to correlate depends mainly on our understanding of the physical cause-effect relationship between the new set of observations and the index chosen. This best choice will therefore depend on our good understanding of the methods of measurement and derivation of the adopted index in such correlative studies. It relies also on our awareness of the range of applicability of the indices presently available as well as on our understanding of their limitations. It was to achieve these goals that a series of general lectures on geophysical and solar activity indices was organized by L. Bossy and J. Lemaire (Institut d'Aeronomie Spatiale de Belgique (IASB), Brussels), March 26-29, 1984 at Han-sur-Lesse, Belgium.

  9. Mathematics applied to nuclear geophysics

    Pereira, E.B.; Nordemann, D.J.R.

    1987-01-01

    One of the powerful auxiliary to nuclear geophysics is the obtention and interpretation of the alpha and gamma radiation spectra. This work discuss, qualitative and quantitative, the lost information problem, motivated by the noise in the process of information codification. The decodification process must be suppield by the appropriate mathematical model on the measure system to recovery the information from nuclear source. (C.D.G.) [pt

  10. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global Cloud-Permiting Models

    Zhang, Chidong [Univ. of Miami, Coral Gables, FL (United States)

    2016-08-14

    Motivated by the success of the AMIE/DYNAMO field campaign, which collected unprecedented observations of cloud and precipitation from the tropical Indian Ocean in Octber 2011 – March 2012, this project explored how such observations can be applied to assist the development of global cloud-permitting models through evaluating and correcting model biases in cloud statistics. The main accomplishment of this project were made in four categories: generating observational products for model evaluation, using AMIE/DYNAMO observations to validate global model simulations, using AMIE/DYNAMO observations in numerical studies of cloud-permitting models, and providing leadership in the field. Results from this project provide valuable information for building a seamless bridge between DOE ASR program’s component on process level understanding of cloud processes in the tropics and RGCM focus on global variability and regional extremes. In particular, experience gained from this project would be directly applicable to evaluation and improvements of ACME, especially as it transitions to a non-hydrostatic variable resolution model.

  11. Global calibration of multi-cameras with non-overlapping fields of view based on photogrammetry and reconfigurable target

    Xia, Renbo; Hu, Maobang; Zhao, Jibin; Chen, Songlin; Chen, Yueling

    2018-06-01

    Multi-camera vision systems are often needed to achieve large-scale and high-precision measurement because these systems have larger fields of view (FOV) than a single camera. Multiple cameras may have no or narrow overlapping FOVs in many applications, which pose a huge challenge to global calibration. This paper presents a global calibration method for multi-cameras without overlapping FOVs based on photogrammetry technology and a reconfigurable target. Firstly, two planar targets are fixed together and made into a long target according to the distance between the two cameras to be calibrated. The relative positions of the two planar targets can be obtained by photogrammetric methods and used as invariant constraints in global calibration. Then, the reprojection errors of target feature points in the two cameras’ coordinate systems are calculated at the same time and optimized by the Levenberg–Marquardt algorithm to find the optimal solution of the transformation matrix between the two cameras. Finally, all the camera coordinate systems are converted to the reference coordinate system in order to achieve global calibration. Experiments show that the proposed method has the advantages of high accuracy (the RMS error is 0.04 mm) and low cost and is especially suitable for on-site calibration.

  12. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    Borns, D.J.

    1997-01-01

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have used support characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program was focused on support of experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Issue 1: Site Characterization; Issue 2: Castile Brine Reservoirs; Issue 3: Rustler /Dewey Lake Hydrogeology; Issue 4: Salado Hydrogeology; and Issue 5: Excavation Effects. The nature of geophysics program for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). An effect of being a support program is that as new project priorities arose the funding for the geophysics program was limited and withdrawn. An outcome is that much of the geophysics survey information resides in contractor reports since final interpretation reports were not funded

  13. Robustness of edge states in topological quantum dots against global electric field

    Qu, Jin-Xian; Zhang, Shu-Hui; Liu, Ding-Yang; Wang, Ping; Yang, Wen

    2017-07-01

    The topological insulator has attracted increasing attention as a new state of quantum matter featured by the symmetry-protected edge states. Although the qualitative robustness of the edge states against local perturbations has been well established, it is not clear how these topological edge states respond quantitatively to a global perturbation. Here, we study the response of topological edge states in a HgTe quantum dot to an external in-plane electric field—a paradigmatic global perturbation in solid-state environments. We find that the stability of the topological edge state could be larger than that of the ground bulk state by several orders of magnitudes. This robustness may be verified by standard transport measurements in the Coulomb blockage regime. Our work may pave the way towards utilizing these topological edge states as stable memory devices for charge and/or spin information and stable emitter of single terahertz photons or entangled terahertz photon pairs for quantum communication.

  14. Geoscience Australia Continuous Global Positioning System (CGPS) Station Field Campaign Report

    Ruddick, R. [Geoscience Australia, Symonston (Australia); Twilley, B. [Geoscience Australia, Symonston (Australia)

    2016-03-01

    This station formed part of the Australian Regional GPS Network (ARGN) and South Pacific Regional GPS Network (SPRGN), which is a network of continuous GPS stations operating within Australia and its Territories (including Antarctica) and the Pacific. These networks support a number of different science applications including maintenance of the Geospatial Reference Frame, both national and international, continental and tectonic plate motions, sea level rise, and global warming.

  15. Path integral for spinning particle in the plane wave field: Global and local projections

    Boudiaf, N.; Boudjedaa, T.; Chetouani, L.

    2001-01-01

    The Green function related to the problem of a Dirac particle interacting with a plane wave is calculated via the path integral formalism proposed recently by Alexandrou et al. according to the two so-called global and local projections. With the help of the incorporation of two simple identities, it is shown that the contribution to the calculation of the integrals comes essentially from classical solutions projected along the direction of wave propagation. (orig.)

  16. Accounts from the field: a public relations perspective on global AIDS/HIV.

    Bardhan, Nilanjana R

    2002-01-01

    This study is a theoretical as well as empirical exploration of the power and cultural differentials that mark and construct various intersecting discourses, specifically media discourse, on global AIDS/HIV. It applies the language and concepts of public relations to understand how the press coverage of the pandemic is associated with the variables that impact the newsmaking process as well as the public and policy implications of macro news frames generated over time. Theoretical work in the areas of agenda setting and news framing also instruct the conceptual framework of this analysis. Narrative analysis is used as a methodology to qualitatively analyze three pools of accounts-from people either living with AIDS/HIV, involved in AIDS/HIV work, or discursively engaged in the media construction of the pandemic; from transnational wire service journalists who cover the issue at global and regional levels; and policy shapers and communicators who are active at the global level. These three communities of respondents represent important stakeholders in the AIDS/HIV issue. The findings are analyzed from a public relations standpoint. Perhaps the most important finding of this study is that the public relations approaches used to address AIDS/HIV related issues need to be grounded in context-specific research and communicative practices that bring out the lived realities of AIDS/HIV at grassroots levels. The findings also posit that those situated at critical junctions between various stakeholders need to cultivate a finely balanced understanding of the etic and emic intersections and subjectivities of global/local AIDS/HIV.

  17. 3D geophysical inversion for contact surfaces

    Lelièvre, Peter; Farquharson, Colin

    2014-05-01

    geophysical models can be specified using the same parameterization: they are, in essence, the same Earth model. We solve for the locations of the nodes through a Particle Swarm Optimization strategy and follow this with a more rigorous stochastic sampling to provide likelihood information. Such global optimization methods introduce high computational costs; to provide computationally feasible inversion methods, we reduce the dimensionality of the problem by parameterizing the nodes in a coarse representation of the geological wireframe model and we use splines (2D) or surface subdivision (3D) to refine further. This also provides a simple and effective way to regularize the inverse problem.

  18. Geophysical examinations of deposits and old sites

    1991-01-01

    Geomagnetic total field measurements by proton magnetometers with memories form the systematic exploration of suspected surfaces of old sites and old sites of an important, flexible and reasonably priced geophysical process. From experience, there are two important main applications. These are firstly the detailed work on location problems jointly with and supplementing multi-temporal evaluations of the air picture and secondly to locate iron in deposits. The particular advantage of geo-magnetics is that even in the most difficult measurement conditions, with the aid of the suitable analytical method evaluation, clear results and practically usable information can be obtained. In comparison with this, other high resolution methods of measurement, such as electromagnetic charting, for example (problem of integral anomaly pictures which cannot be evaluated) and geo-radar (loam covering, trickled water saturation) are limited to a considerably narrower measurement and evaluation spectrum in practical applications. (orig.) [de

  19. COTHERM: Geophysical Modeling of High Enthalpy Geothermal Systems

    Grab, Melchior; Maurer, Hansruedi; Greenhalgh, Stewart

    2014-05-01

    In recent years geothermal heating and electricity generation have become an attractive alternative energy resource, especially natural high enthalpy geothermal systems such as in Iceland. However, the financial risk of installing and operating geothermal power plants is still high and more needs to be known about the geothermal processes and state of the reservoir in the subsurface. A powerful tool for probing the underground system structure is provided by geophysical techniques, which are able to detect flow paths and fracture systems without drilling. It has been amply demonstrated that small-scale features can be well imaged at shallow depths, but only gross structures can be delineated for depths of several kilometers, where most high enthalpy systems are located. Therefore a major goal of our study is to improve geophysical mapping strategies by multi-method geophysical simulations and synthetic data inversions, to better resolve structures at greater depth, characterize the reservoir and monitor any changes within it. The investigation forms part of project COTHERM - COmbined hydrological, geochemical and geophysical modeling of geoTHERMal systems - in which a holistic and synergistic approach is being adopted to achieve multidisciplinary cooperation and mutual benefit. The geophysical simulations are being performed in combination with hydrothermal fluid flow modeling and chemical fluid rock interaction modeling, to provide realistic constraints on lithology, pressure, temperature and fluid conditions of the subsurface. Two sites in Iceland have been selected for the study, Krafla and Reykjanes. As a starting point for the geophysical modeling, we seek to establish petrophysical relations, connecting rock properties and reservoir conditions with geophysical parameters such as seismic wave speed, attenuation, electrical conductivity and magnetic susceptibility with a main focus on seismic properties. Therefore, we follow a comprehensive approach involving

  20. A New Social Contract for Geophysics

    Malone, T. F.

    2002-12-01

    The Golden Age for geophysical research that followed the IGY set the stage for a new era of interaction among science, technology, and society. World population and the average economic productivity of individuals have both continued to grow exponentially during the past 50 years with the result that by the 1980s the demands of the human economy on the finite renewable resources of planet Earth were approximately equal to the natural regenerative capacities of planetary ecosystems. These demands are now "overshooting" those regenerative powers by about 20 per cent (1). The result could be a collapse in the life-supporting capacity of global ecosystems during coming decades, with tragic implications for civilized society. Novel modes of collaboration among all disciplines and all sectors of society are urgently needed to transform a potential catastrophe into the attractive vision that is now within reach as a result of rapidly expanding human knowledge, emerging technologies for sharing that knowledge (2), and the set of ethical principles for sustainable development contained in the Earth Charter (3). This prospect challenges geophysicists and scholars in all disciplines to forge a new and broadly based contract with society (4). 1. Wackernagel M. et al. 2002. "Tracking the ecological overshoot of the human economy." Proc. Natl. Acad. Sci. USA, Vol. 99, Issue 14, 9266-9271, July 9. 2. Malone T. and Yohe G. 2002. "Knowledge partnerships for a sustainable, equitable, and stable society." J. of Knowledge Management, Vol. 6, No. 4, October (in press). 3. www.earthcharter.org 4. Malone T. 1997. "Building on the legacies of the Intenational Geophysical Year." Transactions, AGU, Vol.78, No. 15, pp. 185-191.

  1. Globally coherent short duration magnetic field transients and their effect on ground based gravitational-wave detectors

    Kowalska-Leszczynska, Izabela; Bulik, Tomasz; Bizouard, Marie-Anne; Robinet, Florent; Christensen, Nelson; Rohde, Maximilian; Coughlin, Michael; Gołkowski, Mark; Kubisz, Jerzy; Kulak, Andrzej; Mlynarczyk, Janusz

    2017-01-01

    It has been recognized that the magnetic fields from the Schumann resonances could affect the search for a stochastic gravitational-wave background by LIGO and Virgo. Presented here are the observations of short duration magnetic field transients that are coincident in the magnetometers at the LIGO and Virgo sites. Data from low-noise magnetometers in Poland and Colorado, USA, are also used and show short duration magnetic transients of global extent. We measure at least 2.3 coincident (between Poland and Colorado) magnetic transient events per day where one of the pulses exceeds 200 pT. Given the recently measured values of the magnetic coupling to differential arm motion for Advanced LIGO, there would be a few events per day that would appear simultaneously at the gravitational-wave detector sites and could move the test masses of order 10 −18 m. We confirm that in the advanced detector era short duration transient gravitational-wave searches must account for correlated magnetic field noise in the global detector network. (paper)

  2. A comparison of the gravity field over Central Europe from superconducting gravimeters, GRACE and global hydrological models, using EOF analysis

    Crossley, David; de Linage, Caroline; Hinderer, Jacques; Boy, Jean-Paul; Famiglietti, James

    2012-05-01

    We analyse data from seven superconducting gravimeter (SG) stations in Europe from 2002 to 2007 from the Global Geodynamics Project (GGP) and compare seasonal variations with data from GRACE and several global hydrological models - GLDAS, WGHM and ERA-Interim. Our technique is empirical orthogonal function (EOF) decomposition of the fields that allows for the inherent incompatibility of length scales between ground and satellite observations. GGP stations below the ground surface pose a problem because part of the attraction from soil moisture comes from above the gravimeter, and this gives rise to a complex (mixed) gravity response. The first principle component (PC) of the EOF decomposition is the main indicator for comparing the fields, although for some of the series it accounts for only about 50 per cent of the variance reduction. PCs for GRACE solutions RL04 from CSR and GFZ are filtered with a cosine taper (degrees 20-40) and a Gaussian window (350 km). Significant differences are evident between GRACE solutions from different groups and filters, though they all agree reasonably well with the global hydrological models for the predominantly seasonal signal. We estimate the first PC at 10-d sampling to be accurate to 1 μGal for GGP data, 1.5 μGal for GRACE data and 1 μGal between the three global hydrological models. Within these limits the CNES/GRGS solution and ground GGP data agree at the 79 per cent level, and better when the GGP solution is restricted to the three above-ground stations. The major limitation on the GGP side comes from the water mass distribution surrounding the underground instruments that leads to a complex gravity effect. To solve this we propose a method for correcting the SG residual gravity series for the effects of soil moisture above the station.

  3. Global solar magetic field organization in the extended corona: influence on the solar wind speed and density over the cycle.

    Réville, V.; Velli, M.; Brun, S.

    2017-12-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11yr solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 Rȯ, the source surface radius which approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface: we demonstrate this using 3D global MHD simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). For models to comply with the constraints provided by observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun (Ulysses observations beyond 1 AU), and that the terminal wind speed is anti-correlated with the mass flux, they must accurately describe expansion beyond the solar wind critical point (even up to 10Rȯ and higher in our model). We also show that near activity minimum, expansion in the higher corona beyond 2.5 Rȯ is actually the dominant process affecting the wind speed. We discuss the consequences of this result on the necessary acceleration profile of the solar wind, the location of the sonic point and of the energy deposition by Alfvén waves.

  4. Improved geophysical excitation of length-of-day constrained by Earth orientation parameters and satellite gravimetry products

    Yu, Nan; Li, Jiancheng; Ray, Jim; Chen, Wei

    2018-05-01

    At time scales shorter than about two years, non-tidal LOD variations are mainly excited by angular momentum exchanges between the atmospheric, oceanic, and continental hydrological fluid envelopes and the underlying solid Earth. But, neither agreement among different geophysical models for the fluid dynamics nor consistency with geodetic observations of LOD has reached satisfactory levels. This is mainly ascribed to significant discrepancies and uncertainties in the theories and assumptions adopted by different modeling groups, in their numerical methods, and in the accuracy and coverage of global input data fields. Based on careful comparisons with more accurate geodetic measurements and satellite gravimetry products (from satellite laser ranging, SLR), observed length-of day (LOD) and C20 geopotential time series can provide strong constraints to evaluate or form combined geophysical models. In this study, wavelet decomposition is used to extract several narrow-band components to compare in addition to considering the total signals. We then make refinements to the least difference combination (LDC) method proposed by Chen et al. (2013b) to form multi-model geophysical excitations. Two combination variants, called the weighted mean combination (WMC2 and WMC4), are also evaluated. All the multi-model methods attempt to extract the best-modeled frequency components from each geophysical model by relying on geodetic excitation and the C20 series as references. The comparative performances of the three combinations LDC, WMC2 and WMC4 and the original single models are determined. We find that (1) the Estimating the Circulation and Climate of the Ocean (ECCO) and Max-Planck-Institute for Meteorology Ocean Model (MPIOM) give a more reliable view of the ocean redistributions than the Ocean Model for Circulation and Tides (OMCT) used by European Centre for Medium-Range Weather Forecasts (ECMWF), especially for the annual component; (2) C20 series from SLR can provide a

  5. Cyclic Investigation of Geophysical Studies in the Exploration and Discovery of Natural Resources in Our Country

    Gonulalan, A. U.

    2007-01-01

    Although the methods of exploration geophysics were first utilized after the discovery of an oil field in 1921, they have also applied in the old centuries. Likewise, the half of the total production in the United States of America is covered by new oil fields discovered by utilizing geophysical methods. The industry's energy necessity increases the interest to oil. The investments in the field of geophysics by the companies which makes large amount of money in order to discover new oil fields, widespread use of computers, the developments of space technology and world-wide nuclear competition even though its great danger for human beings have great share in the development of geophysics. Our country has 18 different types mines which has more than 10 billion $ potential. Geophysical engineers have great Kowledge and labor in the discovery of 1,795 trillion wealth from borax to building stone, and 60 billion $ oil and gas. On the other hand, as 1,5 billion investment in the field of geophysics is only 0.08 % of total investments, the increase of investments will add more contribution

  6. Geophysical, petrological and mineral physics constraints on Earth's surface topography

    Guerri, Mattia; Cammarano, Fabio; Tackley, Paul J.

    2015-04-01

    Earth's surface topography is controlled by isostatically compensated density variations within the lithosphere, but dynamic topography - i.e. the topography due to adjustment of surface to mantle convection - is an important component, specially at a global scale. In order to separate these two components it is fundamental to estimate crustal and mantle density structure and rheological properties. Usually, crustal density is constrained from interpretation of available seismic data (mostly VP profiles) based on empirical relationships such those in Brocher [2005]. Mantle density structure is inferred from seismic tomography models. Constant coefficients are used to interpret seismic velocity anomalies in density anomalies. These simplified methods are unable to model the effects that pressure and temperature variations have on mineralogical assemblage and physical properties. Our approach is based on a multidisciplinary method that involves geophysical observables, mineral physics constraints, and petrological data. Mantle density is based on the thermal interpretation of global seismic tomography models assuming various compositional structures, as in Cammarano et al. [2011]. We further constrain the top 150 km by including heat-flow data and considering the thermal evolution of the oceanic lithosphere. Crustal density is calculated as in Guerri and Cammarano [2015] performing thermodynamic modeling of various average chemical compositions proposed for the crust. The modeling, performed with the code PerpleX [Connolly, 2005], relies on the thermodynamic dataset from Holland and Powell [1998]. Compressional waves velocity and crustal layers thickness from the model CRUST 1.0 [Laske et al., 2013] offer additional constrains. The resulting lithospheric density models are tested against gravity (GOCE) data. Various crustal and mantle density models have been tested in order to ascertain the effects that uncertainties in the estimate of those features have on the

  7. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Kramar, Maxim [Physics Department, The Catholic University of America, Washington, DC (United States); Airapetian, Vladimir [Department of Physics and Astronomy, George Mason University, Fairfax, VA (United States); NASA/Goddard Space Flight Center, Code 671, Greenbelt, MD (United States); Lin, Haosheng, E-mail: vladimir.airapetian@nasa.gov [College of Natural Sciences, Institute for Astronomy, University of Hawaii at Manoa, Pukalani, HI (United States)

    2016-08-09

    Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131) to retrieve and analyze the three-dimensional (3D) coronal electron density in the range of heights from 1.5 to 4 R{sub ⊙} using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 Å band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below ~2.5 R{sub ⊙}. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  8. 3D Global Coronal Density Structure and Associated Magnetic Field near Solar Maximum

    Maxim Kramar

    2016-08-01

    Full Text Available Measurement of the coronal magnetic field is a crucial ingredient in understanding the nature of solar coronal dynamic phenomena at all scales. We employ STEREO/COR1 data obtained near maximum of solar activity in December 2012 (Carrington rotation, CR 2131 to retrieve and analyze the three-dimensional (3D coronal electron density in the range of heights from $1.5$ to $4 R_odot$ using a tomography method and qualitatively deduce structures of the coronal magnetic field. The 3D electron density analysis is complemented by the 3D STEREO/EUVI emissivity in 195 AA band obtained by tomography for the same CR period. We find that the magnetic field configuration during CR 2131 has a tendency to become radially open at heliocentric distances below $sim 2.5 R_odot$. We compared the reconstructed 3D coronal structures over the CR near the solar maximum to the one at deep solar minimum. Results of our 3D density reconstruction will help to constrain solar coronal field models and test the accuracy of the magnetic field approximations for coronal modeling.

  9. Global Hawk dropsonde observations of the Arctic atmosphere obtained during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign

    J. M. Intrieri

    2014-11-01

    Full Text Available In February and March of 2011, the Global Hawk unmanned aircraft system (UAS was deployed over the Pacific Ocean and the Arctic during the Winter Storms and Pacific Atmospheric Rivers (WISPAR field campaign. The WISPAR science missions were designed to (1 mprove our understanding of Pacific weather systems and the polar atmosphere; (2 evaluate operational use of unmanned aircraft for investigating these atmospheric events; and (3 demonstrate operational and research applications of a UAS dropsonde system at high latitudes. Dropsondes deployed from the Global Hawk successfully obtained high-resolution profiles of temperature, pressure, humidity, and wind information between the stratosphere and surface. The 35 m wingspan Global Hawk, which can soar for ~ 31 h at altitudes up to ~ 20 km, was remotely operated from NASA's Dryden Flight Research Center at Edwards Air Force Base (AFB in California. During the 25 h polar flight on 9–10 March 2011, the Global Hawk released 35 sondes between the North Slope of Alaska and 85° N latitude, marking the first UAS Arctic dropsonde mission of its kind. The polar flight transected an unusually cold polar vortex, notable for an associated record-level Arctic ozone loss, and documented polar boundary layer variations over a sizable ocean–ice lead feature. Comparison of dropsonde observations with atmospheric reanalyses reveal that, for this day, large-scale structures such as the polar vortex and air masses are captured by the reanalyses, while smaller-scale features, including low-level jets and inversion depths, are mischaracterized. The successful Arctic dropsonde deployment demonstrates the capability of the Global Hawk to conduct operations in harsh, remote regions. The limited comparison with other measurements and reanalyses highlights the potential value of Arctic atmospheric dropsonde observations where routine in situ measurements are practically nonexistent.

  10. Field theories on conformally related space-times: Some global considerations

    Candelas, P.; Dowker, J.S.

    1979-01-01

    The nature of the vacua appearing in the relation between the vacuum expectation value of stress tensors in conformally flat spaces is clarified. The simple but essential point is that the relevant spaces should have conformally related global Cauchy surfaces. Some commonly occurring conformally flat space-times are divided into two families according to whether they are conformally equivalent to Minkowski space or to the Rindler wedge. Expressions, some new, are obtained for the vacuum expectation value of the stress tensor for a number of illustrative cases. It is noted that thermalization relates the Green's functions of these two families

  11. Spatial correlation structure of the ionosphere predicted by geomagnetic indices and application to global field modelling

    Holschneider, M.; Ferrat, K.; Lesur, V.; Stolle, C.

    2017-12-01

    Ionospheric fields are modelled in terms of random structures taking into account a mean behaviour as well as random fluctuations which are described through two point correlation kernels. These kernels are estimated from long time series of numerical simulations from various models. These correlations are best expressed in SM system of coordinates. For the moment we limit ourselves to spatial correlations only in this coordinate system. We study the influence of various indices as possible predictor parameters for these correlations as well as seasonal effects. The various time series of ionospheric fields are stored in a HDF5 database which is accessible via a web interface. The obtained correlation structures serve as prior information to separate external and internal field components from observatory based measurements. We present a model that predicts the correlations as a function of time and some geomagnetic indices. First results of the inversion from observatory data are presented.

  12. Development of a global toroidal gyrokinetic Vlasov code with new real space field solver

    Obrejan, Kevin; Imadera, Kenji; Li, Ji-Quan; Kishimoto, Yasuaki

    2015-01-01

    This work introduces a new full-f toroidal gyrokinetic (GK) Vlasov simulation code that uses a real space field solver. This solver enables us to compute the gyro-averaging operators in real space to allow proper treatment of finite Larmor radius (FLR) effects without requiring any particular hypothesis and in any magnetic field configuration (X-point, D-shaped etc). The code was well verified through benchmark tests such as toroidal Ion Temperature Gradient (ITG) instability and collisionless damping of zonal flow. (author)

  13. Brightening of the global cloud field by nitric acid and the associated radiative forcing

    R. Makkonen

    2012-08-01

    Full Text Available Clouds cool Earth's climate by reflecting 20% of the incoming solar energy, while also trapping part of the outgoing radiation. The effect of human activities on clouds is poorly understood, but the present-day anthropogenic cooling via changes of cloud albedo and lifetime could be of the same order as warming from anthropogenic addition in CO2. Soluble trace gases can increase water condensation to particles, possibly leading to activation of smaller aerosols and more numerous cloud droplets. We have studied the effect of nitric acid on the aerosol indirect effect with the global aerosol-climate model ECHAM5.5-HAM2. Including the nitric acid effect in the model increases cloud droplet number concentrations globally by 7%. The nitric acid contribution to the present-day cloud albedo effect was found to be −0.32 W m−2 and to the total indirect effect −0.46 W m−2. The contribution to the cloud albedo effect is shown to increase to −0.37 W m−2 by the year 2100, if considering only the reductions in available cloud condensation nuclei. Overall, the effect of nitric acid can play a large part in aerosol cooling during the following decades with decreasing SO2 emissions and increasing NOx and greenhouse gases.

  14. Diurnal global variability of the Earth's magnetic field during geomagnetically quiet conditions

    Klausner, V.

    2012-12-01

    This work proposes a methodology (or treatment) to establish a representative signal of the global magnetic diurnal variation. It is based on a spatial distribution in both longitude and latitude of a set of magnetic stations as well as their magnetic behavior on a time basis. We apply the Principal Component Analysis (PCA) technique using gapped wavelet transform and wavelet correlation. This new approach was used to describe the characteristics of the magnetic variations at Vassouras (Brazil) and 12 other magnetic stations spread around the terrestrial globe. Using magnetograms from 2007, we have investigated the global dominant pattern of the Sq variation as a function of low solar activity. This year was divided into two seasons for seasonal variation analysis: solstices (June and December) and equinoxes (March and September). We aim to reconstruct the original geomagnetic data series of the H component taking into account only the diurnal variations with periods of 24 hours on geomagnetically quiet days. We advance a proposal to reconstruct the Sq baseline using only the PCA first mode. The first interpretation of the results suggests that PCA/wavelet method could be used to the reconstruction of the Sq baseline.

  15. The DNSC08GRA global marine gravity field from double retracked satellite altimetry

    Andersen, Ole Baltazar; Knudsen, Per; Berry, P.A.M.

    2010-01-01

    Satellite radar altimetry has been monitoring the earth's oceans from space for several decades. However, only the GEOSAT and ERS-1 geodetic mission data recorded more than a decade ago provide altimetry with adequate spatial coverage to derive a high-resolution marine gravity field. The original...

  16. A global and stochastic analysis approach to bosonic strings and associated quantum fields

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 << d << 13, having as world sheet compact Riemann surfaces Λ of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on Λ and a measure on Teichmueller space. (orig.)

  17. A global and stochastic analysis approach to bosonic strings and associated quantum fields

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 << d << 13, having as world sheet compact Riemann surfaces /Lambda/ of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on /Lambda/ and a measure on Teichmueller space. (orig.).

  18. A global and stochastic analysis approach to bosonic strings and associated quantum fields

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 ≤ d ≤ 13, having as world sheet compact Riemann surfaces Λ of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on Λ and a measure on Teichmueller space. (orig.)

  19. Interaction of Fast Ions with Global Plasma Modes in the C-2 Field Reversed Configuration Experiment

    Smirnov, Artem; Dettrick, Sean; Clary, Ryan; Korepanov, Sergey; Thompson, Matthew; Trask, Erik; Tuszewski, Michel

    2012-10-01

    A high-confinement operating regime [1] with plasma lifetimes significantly exceeding past empirical scaling laws was recently obtained by combining plasma gun edge biasing and tangential Neutral Beam Injection (NBI) in the C-2 field-reversed configuration (FRC) experiment [2, 3]. We present experimental and computational results on the interaction of fast ions with the n=2 rotational and n=1 wobble modes in the C-2 FRC. It is found that the n=2 mode is similar to quadrupole magnetic fields in its detrimental effect on the fast ion transport due to symmetry breaking. The plasma gun generates an inward radial electric field, thus stabilizing the n=2 rotational instability without applying the quadrupole magnetic fields. The resultant FRCs are nearly axisymmetric, which enables fast ion confinement. The NBI further suppresses the n=2 mode, improves the plasma confinement characteristics, and increases the plasma configuration lifetime [4]. The n=1 wobble mode has relatively little effect on the fast ion transport, likely due to the approximate axisymmetry about the displaced plasma column. [4pt] [1] M. Tuszewski et al., Phys. Rev. Lett. 108, 255008 (2012).[0pt] [2] M. Binderbauer et al., Phys. Rev. Lett. 105, 045003 (2010).[0pt] [3] H.Y. Guo et al., Phys. Plasmas 18, 056110 (2011).[0pt] [4] M. Tuszewski et al., Phys. Plasmas 19, 056108 (2012)

  20. Long-term Regularities in Distribution of Global Solar and Interplanetary Magnetic Fields

    Ambrož, Pavel

    2013-01-01

    Roč. 37, č. 2 (2013), s. 637-642 ISSN 1845-8319. [Hvar Astrophysical Colloquium /12./. Hvar, 03.09.2012-07.09.2012] R&D Projects: GA AV ČR IAA300030808 Institutional support: RVO:67985815 Keywords : interplanetary magnetic field * solar wind Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  1. An Equivalent Source Method for Modelling the Global Lithospheric Magnetic Field

    Kother, Livia Kathleen; Hammer, Magnus Danel; Finlay, Chris

    2015-01-01

    it was at its lowest altitude and solar activity was quiet. All three components of the vector field data are utilized at all available latitudes. Estimates of core and large-scale magnetospheric sources are removed from the measurements using the CHAOS-4 model. Quiet-time and night-side data selection criteria...

  2. Geometrical phases from global gauge invariance of nonlinear classical field theories

    Garrison, J.C.; Chiao, R.Y.

    1988-01-01

    We show that the geometrical phases recently discovered in quantum mechanics also occur naturally in the theory of any classical complex multicomponent field satisfying nonlinear equations derived from a Lagrangean with is invariant under gauge transformations of the first kind. Some examples are the paraxial wave equation for nonlinear optics, and Ginzburg-Landau equations for complex order parameters in condensed-matter physics

  3. Codimension-one tangency bifurcations of global Poincare maps of four-dimensional vector fields

    Krauskopf, B.; Lee, C.M.; Osinga, H.M.

    2009-01-01

    When one considers a Poincarreturn map on a general unbounded (n - 1)-dimensional section for a vector field in R-n there are typically points where the flow is tangent to the section. The only notable exception is when the system is (equivalent to) a periodically forced system. The tangencies can

  4. SIAM conference on inverse problems: Geophysical applications. Final technical report

    NONE

    1995-12-31

    This conference was the second in a series devoted to a particular area of inverse problems. The theme of this series is to discuss problems of major scientific importance in a specific area from a mathematical perspective. The theme of this symposium was geophysical applications. In putting together the program we tried to include a wide range of mathematical scientists and to interpret geophysics in as broad a sense as possible. Our speaker came from industry, government laboratories, and diverse departments in academia. We managed to attract a geographically diverse audience with participation from five continents. There were talks devoted to seismology, hydrology, determination of the earth`s interior on a global scale as well as oceanographic and atmospheric inverse problems.

  5. [Effects of biochar and nitrification inhibitor incorporation on global warming potential of a vegetable field in Nanjing, China].

    Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin

    2014-09-01

    The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.

  6. Geophysical subsurface imaging and interface identification.

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in

  7. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    Jiang, Lijian; Efendiev, Yalchin; Ginting, Victor

    2010-01-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  8. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales

    Jiang, Lijian

    2010-08-01

    In this paper, we discuss a numerical multiscale approach for solving wave equations with heterogeneous coefficients. Our interest comes from geophysics applications and we assume that there is no scale separation with respect to spatial variables. To obtain the solution of these multiscale problems on a coarse grid, we compute global fields such that the solution smoothly depends on these fields. We present a Galerkin multiscale finite element method using the global information and provide a convergence analysis when applied to solve the wave equations. We investigate the relation between the smoothness of the global fields and convergence rates of the global Galerkin multiscale finite element method for the wave equations. Numerical examples demonstrate that the use of global information renders better accuracy for wave equations with heterogeneous coefficients than the local multiscale finite element method. © 2010 IMACS.

  9. Evaluation of geophysical borehole studies

    Brotzen, O.; Duran, O.; Magnusson, K.Aa.

    Four studies concerning geophysical investigations and TV inspection in boreholes in connection with KBS studies at Finnsjoe, Karlshamn, Kraakemaala and Stripa and PRAV's studies at Studsvik have been evaluated. This has led to proposals concerning the choice of instruments and methods for future studies and a review of future work required. The evaluation has shown that the following borehole measurements are of primary interest in the continued work: Determinations of temperature and resistivity of the borehole liquid, resistance and resistivity measurements, SP, Sonic, Caliper and VLF. TV inspection, IP and gamma-gamma should also be included in the arsenal of available test methods.(author)

  10. Stochastic resonance for exploration geophysics

    Omerbashich, Mensur

    2008-01-01

    Stochastic resonance (SR) is a phenomenon in which signal to noise (SN) ratio gets improved by noise addition rather than removal as envisaged classically. SR was first claimed in climatology a few decades ago and then in other disciplines as well. The same as it is observed in natural systems, SR is used also for allowable SN enhancements at will. Here I report a proof of principle that SR can be useful in exploration geophysics. For this I perform high frequency GaussVanicek variance spectr...

  11. Impact of CryoSat-2 for marine gravity field - globally and in the Arctic Ocean

    Andersen, Ole Baltazar; Stenseng, Lars; Knudsen, Per

    GDR data, NOAA LRM data, but also Level1b (LRM, SAR and SAR-in waveforms) data have been analyzed. A suite of eight different empirical retrackers have been developed and investigated for their ability to predict marine gravity in the Arctic Ocean. The impact of the various improvement offered by Cryo...... days repeat offered by CryoSat-2 provides denser coverage than older geodetic mission data set like ERS-1. Thirdly, the 92 degree inclination of CryoSat-2 is designed to map more of the Arctic Ocean than previous altimetric satellites. Finally, CryoSat-2 is able to operate in two new modes (SAR and SAR......Sat-2 in comparison with conventional satellite altimetry have been studied and quantified both globally but particularly for the Arctic Ocean using a large number of marine and airborne surveys providing “ground truth” marine gravity....

  12. Institute of Geophysics, Planetary Physics, and Signatures

    Federal Laboratory Consortium — The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge...

  13. Laurel Clark Earth Camp: A Program for Teachers and Students to Explore Their World and Study Global Change Through Field-Experience and Satellite Images

    Buxner, S.; Orchard, A.; Colodner, D.; Schwartz, K.; Crown, D. A.; King, B.; Baldridge, A.

    2012-03-01

    The Laurel Clark Earth Camp program provides middle and high school students and teachers opportunities to explore local environmental issues and global change through field-experiences, inquiry exercises, and exploring satellite images.

  14. A Genealogy of Convex Solids Via Local and Global Bifurcations of Gradient Vector Fields

    Domokos, Gábor; Holmes, Philip; Lángi, Zsolt

    2016-12-01

    Three-dimensional convex bodies can be classified in terms of the number and stability types of critical points on which they can balance at rest on a horizontal plane. For typical bodies, these are non-degenerate maxima, minima, and saddle points, the numbers of which provide a primary classification. Secondary and tertiary classifications use graphs to describe orbits connecting these critical points in the gradient vector field associated with each body. In previous work, it was shown that these classifications are complete in that no class is empty. Here, we construct 1- and 2-parameter families of convex bodies connecting members of adjacent primary and secondary classes and show that transitions between them can be realized by codimension 1 saddle-node and saddle-saddle (heteroclinic) bifurcations in the gradient vector fields. Our results indicate that all combinatorially possible transitions can be realized in physical shape evolution processes, e.g., by abrasion of sedimentary particles.

  15. Quasi-biennial oscillations in the geomagnetic field: Their global characteristics and origin

    Ou, Jiaming; Du, Aimin; Finlay, Chris

    2017-01-01

    Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also of cruc...... primarily originates from the current systems due to the solar wind-magnetosphere-ionosphere coupling process....... postmidnight sectors, and the results from spherical harmonic analysis, verify that the majority of geomagnetic QBO is of external origin. We furthermore find a very high correlation between the geomagnetic QBO and the QBOs in solar wind speed and solar wind dynamic pressure. This suggests the geomagnetic QBO......Quasi-biennial oscillations (QBOs), with periods in the range 1–3 years, have been persistently observed in the geomagnetic field. They provide unique information on the mechanisms by which magnetospheric and ionospheric current systems are modulated on interannual timescales and are also...

  16. Global and stochastic analysis approach to bosonic strings and associated quantum fields

    Albeverio, S.; Hoeegh-Krohn, R.; Paycha, S.; Scarlatti, S.

    1989-01-01

    We construct a probability measure giving a mathematical realization of Polyakov's heuristic measure for bosonic strings in space-time dimensions 3 less than or equal to d less than or equal to 13, having as world sheet compact Riemann surfaces ..lambda.. of arbitrary genus. The measure involves the path space measures for scalar fields with exponential interaction on ..lambda.. and a measure on Teichmueller space.

  17. National Geophysical Data Center Tsunami Data Archive

    Stroker, K. J.; Dunbar, P. K.; Brocko, R.

    2008-12-01

    NOAA's National Geophysical Data Center (NGDC) and co-located World Data Center for Geophysics and Marine Geology long-term tsunami data archive provides data and derived products essential for tsunami hazard assessment, forecast and warning, inundation modeling, preparedness, mitigation, education, and research. As a result of NOAA's efforts to strengthen its tsunami activities, the long-term tsunami data archive has grown from less than 5 gigabyte in 2004 to more than 2 terabytes in 2008. The types of data archived for tsunami research and operation activities have also expanded in fulfillment of the P.L. 109-424. The archive now consists of: global historical tsunami, significant earthquake and significant volcanic eruptions database; global tsunami deposits and proxies database; reference database; damage photos; coastal water-level data (i.e. digital tide gauge data and marigrams on microfiche); bottom pressure recorder (BPR) data as collected by Deep-ocean Assessment and Reporting of Tsunamis (DART) buoys. The tsunami data archive comes from a wide variety of data providers and sources. These include the NOAA Tsunami Warning Centers, NOAA National Data Buoy Center, NOAA National Ocean Service, IOC/NOAA International Tsunami Information Center, NOAA Pacific Marine Environmental Laboratory, U.S. Geological Survey, tsunami catalogs, reconnaissance reports, journal articles, newspaper articles, internet web pages, and email. NGDC has been active in the management of some of these data for more than 50 years while other data management efforts are more recent. These data are openly available, either directly on-line or by contacting NGDC. All of the NGDC tsunami and related databases are stored in a relational database management system. These data are accessible over the Web as tables, reports, and interactive maps. The maps provide integrated web-based GIS access to individual GIS layers including tsunami sources, tsunami effects, significant earthquakes

  18. The Global Garlic Mustard Field Survey (GGMFS: challenges and opportunities of a unique, large-scale collaboration for invasion biology

    Robert Colautti

    2014-04-01

    Full Text Available To understand what makes some species successful invaders, it is critical to quantify performance differences between native and introduced regions, and among populations occupying a broad range of environmental conditions within each region. However, these data are not available even for the world’s most notorious invasive species. Here we introduce the Global Garlic Mustard Field Survey, a coordinated distributed field survey to collect performance data and germplasm from a single invasive species: garlic mustard (Alliaria petiolata across its entire distribution using minimal resources. We chose this species for its ecological impacts, prominence in ecological studies of invasion success, simple life history, and several genetic and life history attributes that make it amenable to experimental study. We developed a standardised field survey protocol to estimate population size (area and density, age structure, plant size and fecundity, as well as damage by herbivores and pathogens in each population, and to collect representative seed samples. Across four years and with contributions from 164 academic and non-academic participants from 16 countries in North America and Europe thus far, we have collected 45,788 measurements and counts of 137,811 plants from 383 populations and seeds from over 5,000 plants. All field data and seed resources will be curated for release to the scientific community. Our goal is to establish A. petiolata as a model species for plant invasion biology and to encourage large collaborative studies of other invasive species.

  19. Geophysical survey at archaeological sites in northeastern Syria

    Mateiciucová, Inna; Milo, Peter; Tencer, Tomáš; Vlach, Marek

    2011-01-01

    From August 25 to September 4, 2008, geophysical surveys were carried out at the Neolithic, Chalcolithic, Bronze and Iron Age tell- and non-tell settlements in the Khabur region in Northeastern Syria (Syrian-Polish-Czech expedition) (Fig. 1). Four sites were prospected: Tell Arbid Abyad, Tell Arbid (West-hill), Khirbet Shane, Khirbet Bezi. The Scintrex Navmag SM-5 – Caesium Magnetometer was used for the measurement of the vertical gradient of the local magnetic field. The measurement resoluti...

  20. Changes of visual-field global indices after cataract surgery in primary open-angle glaucoma patients.

    Seol, Bo Ram; Jeoung, Jin Wook; Park, Ki Ho

    2016-11-01

    To determine changes of visual-field (VF) global indices after cataract surgery and the factors associated with the effect of cataracts on those indices in primary open-angle glaucoma (POAG) patients. A retrospective chart review of 60 POAG patients who had undergone phacoemulsification and intraocular lens insertion was conducted. All of the patients were evaluated with standard automated perimetry (SAP; 30-2 Swedish interactive threshold algorithm; Carl Zeiss Meditec Inc.) before and after surgery. VF global indices before surgery were compared with those after surgery. The best-corrected visual acuity, intraocular pressure (IOP), number of glaucoma medications before surgery, mean total deviation (TD) values, mean pattern deviation (PD) value, and mean TD-PD value were also compared with the corresponding postoperative values. Additionally, postoperative peak IOP and mean IOP were evaluated. Univariate and multivariate logistic regression analyses were performed to identify the factors associated with the effect of cataract on global indices. Mean deviation (MD) after cataract surgery was significantly improved compared with the preoperative MD. Pattern standard deviation (PSD) and visual-field index (VFI) after surgery were similar to those before surgery. Also, mean TD and mean TD-PD were significantly improved after surgery. The posterior subcapsular cataract (PSC) type showed greater MD changes than did the non-PSC type in both the univariate and multivariate logistic regression analyses. In the univariate logistic regression analysis, the preoperative TD-PD value and type of cataract were associated with MD change. However, in the multivariate logistic regression analysis, type of cataract was the only associated factor. None of the other factors was associated with MD change. MD was significantly affected by cataracts, whereas PSD and VFI were not. Most notably, the PSC type showed better MD improvement compared with the non-PSC type after cataract surgery

  1. The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models

    Zhang, Yuying [Lawrence Livermore National Laboratory, Livermore, California; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Marchand, Roger [University of Washington, Seattle, Washington; Kollias, Pavlos [Stony Brook University, Stony Brook, New York; Clothiaux, Eugene E. [The Pennsylvania State University, University Park, Pennsylvania; Lin, Wuyin [Brookhaven National Laboratory, Upton, New York; Johnson, Karen [Brookhaven National Laboratory, Upton, New York; Swales, Dustin [CIRES and NOAA/Earth System Research Laboratory, Boulder, Colorado; Bodas-Salcedo, Alejandro [Met Office Hadley Centre, Exeter, United Kingdom; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California; Haynes, John M. [Cooperative Institute for Research in the Atmosphere/Colorado State University, Fort Collins, Colorado; Collis, Scott [Argonne National Laboratory, Argonne, Illinois; Jensen, Michael [Brookhaven National Laboratory, Upton, New York; Bharadwaj, Nitin [Pacific Northwest National Laboratory, Richland, Washington; Hardin, Joseph [Pacific Northwest National Laboratory, Richland, Washington; Isom, Bradley [Pacific Northwest National Laboratory, Richland, Washington

    2018-01-01

    Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the concept of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are

  2. Surface Geophysical Exploration - Compendium Document

    Rucker, D.F.; Myers, D.A.

    2011-01-01

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  3. Geophysical characterization of subsurface barriers

    Borns, D.J.

    1995-08-01

    An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier

  4. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    RUCKER DF; MYERS DA

    2011-10-04

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  5. Global and Local Gravity Field Models of the Moon Using GRAIL Primary and Extended Mission Data

    Goossens, Sander; Lemoine, Frank G.; Sabaka, Terence J.; Nicholas, Joseph B.; Mazarico, Erwan; Rowlands, David D.; Loomis, Bryant D.; Chinn, Douglas S.; Neumann, Gregory A.; Smith, David E.; hide

    2015-01-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission was designed to map the structure of the lunar interior from crust to core and to advance the understanding of the Moon's thermal evolution by producing a high-quality, high-resolution map of the gravitational field of the Moon. The mission consisted of two spacecraft, which were launched in September 2011 on a Discovery-class NASA mission. Ka-band tracking between the two satellites was the single science instrument, augmented by tracking from Earth using the Deep Space Network (DSN).

  6. Global modelling of plasma-wall interaction in reversed field pinches

    Bagatin, M.; Costa, S.; Ortolani, S.

    1989-01-01

    The impurity production and deuterium recycling mechanisms in ETA-BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Z eff to ≅ 4, but without affecting significantly the plasma performance. (orig.)

  7. Global modelling of plasma-wall interaction in reversed field pinches

    Bagatin, M.; Costa, S.; Ortolani, S.

    1989-04-01

    The impurity production and deuterium recycling mechanisms in ETA—BETA II and RFX are firstly discussed by means of a simple model applicable to a stationary plasma interacting with the wall. This gives the time constant and the saturation values of the impurity concentration as a function of the boundary temperature and density. If the latter is sufficiently high, the impurity buildup in the main plasma becomes to some extent stabilized by the shielding effect of the edge. A self-consistent global model of the time evolution of an RFP plasma interacting with the wall is then described. The bulk and edge parameters are derived by solving the energy and particle balance equations incorporating some of the basic plasma-surface processes, such as sputtering, backscattering and desorption. The application of the model to ETA-BETA II confirms the impurity concentrations of the light and metal impurities as well as the time evolution of the average electron density found experimentally under different conditions. The model is then applied to RFX, a larger RFP experiment under construction, whose wall will be protected by a full graphite armour. The time evolution of the discharge shows that carbon sputtering could increase Zeff to ~ 4, but without affecting significantly the plasma performance.

  8. Three approaches in the research field of ethnomodeling: emic (local, etic (global, and dialogical (glocal

    Daniel C. Orey

    2015-07-01

    Full Text Available The acquisition of both emic (local and etic (global knowledge is an alternative goal for the implementation of ethnomodeling research. Emic knowledge is essential for an intuitive and empathic understanding of mathematical ideas, procedures, and practices developed by the members of distinct cultural groups. It is essential for conducting effective ethnographic fieldwork. Furthermore, emic knowledge is a valuable source of inspiration for etic hypotheses. Etic knowledge is essential for cross-cultural comparisons, which are based on the components of ethnology. In this regard, such comparisons demand standard units and categories to facilitate communication. Dialogical (glocal is a third approach for ethnomodeling research that makes use of both emic and etic knowledge traditions through processes of dialogue and interaction. Ethnomodeling is defined as the study of mathematical phenomena within a culture because it is a social construct and is culturally bound. Finally, the objective of this article is to show how we have come to use a combination of emic, etic and dialogical (glocal approaches in our work in the area of ethnomodeling, which contributes to the acquisition of a more complete understanding of mathematical practices developed by the members of distinct cultural groups.

  9. Experimental implementation of a low-frequency global sound equalization method based on free field propagation

    Santillan, Arturo Orozco; Pedersen, Christian Sejer; Lydolf, Morten

    2007-01-01

    An experimental implementation of a global sound equalization method in a rectangular room using active control is described in this paper. The main purpose of the work has been to provide experimental evidence that sound can be equalized in a continuous three-dimensional region, the listening zone......, which occupies a considerable part of the complete volume of the room. The equalization method, based on the simulation of a progressive plane wave, was implemented in a room with inner dimensions of 2.70 m x 2.74 m x 2.40 m. With this method,the sound was reproduced by a matrix of 4 x 5 loudspeakers...... in one of the walls. After traveling through the room, the sound wave was absorbed on the opposite wall, which had a similar arrangement of loudspeakers, by means of active control. A set of 40 digital FIR filters was used to modify the original input signal before it was fed to the loudspeakers, one...

  10. GRIM5-C1: Combination solution of the global gravity field to degree and order 120

    Gruber, Thomas; Bode, Albert; Reigber, Christoph; Schwintzer, Peter; Balmino, Georges; Biancale, Richard; Lemoine, Jean-Michel

    2000-12-01

    The new satellite Earth gravity field model GRIM5-S1 was recently prepared in a joint GFZ and GRGS effort. Based on this satellite solution and terrestrial and altimetric gravity anomalies from NIMA, a combined model GRIM5-C1, with full variance-covariance matrix up to degree and order 120, was computed. Surface gravity and altimetric gravity data are corrected for several systematic effects, such as ellipsoidal corrections and aliasing. A weighting scheme for gravity anomalies, according to their given standard deviations was developed. From each data set full normal equations were set up and finally combined with the GRIM5-S1 normals. To take into account good information from the satellite-only model a procedure was developed to identify such coefficients and appropriately weighed them in the final normal equation system. Internal error propagation and comparisons to external data sets show, that the GRIM5-C1 model represents the best state of long wavelength gravity field models.

  11. Learning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes

    Gilda M. Currenti

    2017-05-01

    Full Text Available Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical, which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock. A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii the elastostatic equation for the deformation field and (iii the Poisson's equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of

  12. The impact of geophysical weapons on endangering of environment for the purposes of war

    Stajić Ljubomir

    2012-01-01

    Full Text Available The environment has considerably been damaged due to numerous destructive impacts of obsolete and dirty technologies, heavy and uncontrolled traffic, arms race, military actions, terrorist acts and other activities which are all seriously disturbing the existing balance of nature and endangering human life at the same time. There have been ominous warnings about the situation. Rapid increase in techniques of geophysical engineering and so-called geophysical weapons which their practical threats to the mere physical existence of the wild life and of human society has created a need for this exceptionally important field to be legally regulated and sanctioned by international standards. The aim of their pursuit and study is for the man to protect and improve the environment in order to save it as on integral and crucial part of human work, life and sheer existence. Over the history of human society and of scientific and technological development, implementation of learning in different fields of human activities have caused ground breaking discoveries but at the some time and aspiration to control natural processes and phenomena such as the weather, climate, earthquake, tsunami, drought, cloudiness, precipitation etc. Starting from the fact that protection of the environment is a most fundamental postulate in the best national interests of each country, a conclusion can be made that only a deep radical change in man's attitude towards natural world with its processes and with its laws can secure further development of mankind. In respect of that, understanding and adoption of the findings and the effects of so-called geophysical weapons that have been made in this field so far have must relevant part. Namely, results and findings of the research still have not provided answers to a great number of questions. This paper examines exceptionally complex interaction between changes in nature in terms of the climate, weather etc. deliberate influence on

  13. From condensed matter to Higgs physics. Solving functional renormalization group equations globally in field space

    Borchardt, Julia

    2017-02-07

    By means of the functional renormalization group (FRG), systems can be described in a nonperturbative way. The derived flow equations are solved via pseudo-spectral methods. As they allow to resolve the full field dependence of the effective potential and provide highly accurate results, these numerical methods are very powerful but have hardly been used in the FRG context. We show their benefits using several examples. Moreover, we apply the pseudo-spectral methods to explore the phase diagram of a bosonic model with two coupled order parameters and to clarify the nature of a possible metastability of the Higgs-Yukawa potential.In the phase diagram of systems with two competing order parameters, fixed points govern multicritical behavior. Such systems are often discussed in the context of condensed matter. Considering the phase diagram of the bosonic model between two and three dimensions, we discover additional fixed points besides the well-known ones from studies in three dimensions. Interestingly, our findings suggest that in certain regions of the phase diagram, two universality classes coexist. To our knowledge, this is the first bosonic model where coexisting (multi-)criticalities are found. Also, the absence of nontrivial fixed points can have a physical meaning, such as in the electroweak sector of the standard model which suffers from the triviality problem. The electroweak transition giving rise to the Higgs mechanism is dominated by the Gaussian fixed point. Due to the low Higgs mass, perturbative calculations suggest a metastable potential. However, the existence of the lower Higgs-mass bound eventually is interrelated with the maximal ultraviolet extension of the standard model. A relaxation of the lower bound would mean that the standard model may be still valid to even higher scales. Within a simple Higgs-Yukawa model, we discuss the origin of metastabilities and mechanisms, which relax the Higgs-mass bound, including higher field operators.

  14. Responsibilities, opportunities and challenges in geophysical exploration

    Rytle, R.J.

    1982-01-01

    Geophysical exploration for engineering purposes is conducted to decrease the risk in encountering site uncertainties in construction of underground facilities. Current responsibilities, opportunities and challenges for those with geophysical expertise are defined. These include: replacing the squiggly line format, developing verification sites for method evaluations, applying knowledge engineering and assuming responsibility for crucial national problems involving rock mechanics expertise

  15. GLOBAL ELECTROMAGNETIC RADIATION POLLUTION: RISK ASSESSMENT FROM FIELD MEASUREMENTS AND ANIMAL EXPERIMENTS

    Fragkopoulou, A. F.; Margaritis, L. H.

    2009-12-01

    The extended use of wireless technology throughout the globe in almost all developed and non-developed countries has forced a large number of scientists to get involved in the investigation of the effects. The major issue is that unlike other forms of radiation exposure, this “non-ionizing electromagnetic radiation” was not present throughout the evolution of life in earth and therefore there are no adaptive mechanisms evolved. All organisms are vulnerable to the possible effects of radiation depending on the actual exposure level. “Safety limits” on the power density have been proposed but ongoing research has shown that these limits are not really safe for humans, not mentioning the entire population of living creatures on earth. The so called “Electrosmog Pollution” originating from the numerous radio and TV stations, communication satellite emission, but most importantly from mobile phone mast antennas, are of major concern, because it is gradually increasing at exponential rate. Therefore the key question is, do living organisms react upon their exposure to fields of non ionizing electromagnetic radiation? To have this question answered extensive research is being performed in various laboratories. One approach of our research includes field measurements within houses and classrooms, since a considerable proportion of the population in each country is exposed to the radiation coming from the nearby mast stations, in order to make a risk assessment. The measurements showed that in many cases the actual radiation present was potentially harmful. In other words, although the measured values were below the national safety levels, nevertheless they were above the levels of other countries. Therefore it has been suggested that a new cellular network should be constructed in order to minimize radiation levels in living areas and schools. Our experimental work is focusing on the elucidation of the effects of non-ionizing EMFs on mice exposed to mobile

  16. Radiation Geophysics - Putting theory into practice

    2014-01-01

    Gamma spectroscopy (SGA) is used in geo-physics to get information on the spatial distribution of K, U and Th. SGA is used on board of aircraft for geological survey, prospecting and contamination detection. On a typical SGA spectrum we get peaks corresponding to Bi 214 (609, 1120 and 1760 keV); Tl 208 (908 and 2615 keV) and K 40 (1460 keV). SGA gives information only on the top layer of the soil, the interpretation of the data requires information on the nature of the soil and on the relationship between surface elements and the underneath rock layers. Unlike a camera lens, a gamma-ray spectrometer does not have a fixed field of view: a highly radioactive point source may be detected even when it is outside the field of view. The gamma flux decreases exponentially with distance from the source. SGA can be combined with magnetic or electromagnetic measurements to get more accurate results. (A.C.)

  17. Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification

    Leonhardt, Roman; Fabian, Karl

    2007-01-01

    The Earth's magnetic field changed its polarity from the last reversed into today's normal state approximately 780 000 years ago. While before and after this so called Matuyama/Brunhes reversal, the Earth magnetic field was essentially an axial dipole, the details of its transitional structure are still largely unknown. Here, a Bayesian inversion method is developed to reconstruct the spherical harmonic expansion of this transitional field from paleomagnetic data. This is achieved by minimizing the total variational power at the core-mantle boundary during the transition under paleomagnetic constraints. The validity of the inversion technique is proved in two ways. First by inverting synthetic data sets from a modeled reversal. Here it is possible to reliably reconstruct the Gauss coefficients even from noisy records. Second by iteratively combining four geographically distributed high quality paleomagnetic records of the Matuyama/Brunhes reversal into a single geometric reversal scenario without assuming an a priori common age model. The obtained spatio-temporal reversal scenario successfully predicts most independent Matuyama/Brunhes transitional records. Therefore, the obtained global reconstruction based on paleomagnetic data invites to compare the inferred transitional field structure with results from numerical geodynamo models regarding the morphology of the transitional field. It is found that radial magnetic flux patches form at the equator and move polewards during the transition. Our model indicates an increase of non-dipolar energy prior to the last reversal and a non-dipolar dominance during the transition. Thus, the character and information of surface geomagnetic field records is strongly site dependent. The reconstruction also offers new answers to the question of existence of preferred longitudinal bands during the transition and to the problem of reversal duration. Different types of directional variations of the surface geomagnetic field

  18. Numerical simulation in applied geophysics

    Santos, Juan Enrique

    2016-01-01

    This book presents the theory of waves propagation in a fluid-saturated porous medium (a Biot medium) and its application in Applied Geophysics. In particular, a derivation of absorbing boundary conditions in viscoelastic and poroelastic media is presented, which later is employed in the applications. The partial differential equations describing the propagation of waves in Biot media are solved using the Finite Element Method (FEM). Waves propagating in a Biot medium suffer attenuation and dispersion effects. In particular the fast compressional and shear waves are converted to slow diffusion-type waves at mesoscopic-scale heterogeneities (on the order of centimeters), effect usually occurring in the seismic range of frequencies. In some cases, a Biot medium presents a dense set of fractures oriented in preference directions. When the average distance between fractures is much smaller than the wavelengths of the travelling fast compressional and shear waves, the medium behaves as an effective viscoelastic an...

  19. Intermittent 20-HZ-photic stimulation leads to a uniform reduction of alpha-global field power in healthy volunteers.

    Rau, R; Raschka, C; Koch, H J

    2001-01-01

    19-channel-EEGs were recorded from scalp surface of 30 healthy subjects (16m, 14f, mean age: 34 ys, SD: 11.7 ys) at rest and under IPS (Intermittent Photic Stimulation) at rates of 5, 10 and 20 Hertz (Hz). Digitalized data underwent spectral analysis with fast fourier transfomation (FFT) yielding the basis for the computation of global field power (GFP). For quantification GFP values in the frequency ranges of 5, 10 and 20 Hz at rest were divided by the corresponding data gained under IPS. While ratios from PDE data showed no stable parameter due to high interindividual variability, ratios of alpha-power turned out to be uniform in all subjects: IPS at 20 Hz always led to a suppression of alpha-power. Dividing alpha-GFP at rest by alpha-GFP under 20-Hz IPS thus resulted in a ratio paradigma.

  20. A global analysis of the behaviour of the ZT-40M reversed field pinch

    Philipps, J.A.; Baker, D.A.; Gribble, R.F.

    1995-01-01

    Experimental data from the reversed field experiment, ZT-40M, have been re-examined in an attempt to determine the scaling behaviour of the physical plasma quantities and their fluctuations. A subset of the data is defined, allowing a reduced number of independent variables to described the behaviour. For flat-top ZT-40M discharges the independent variables are chosen as being the toroidal current, I φ , and the dimensionless pinch parameter, Θ, which is proportional to the ratio of the toroidal current to the toroidal magnetic flux. The amplitudes of the dependent variables, including the electron temperature, plasma resistance, toroidal flux, the ratio of I φ to the mean electron density and their fluctuation amplitudes, exhibit minima as functions of Θ for constant Iφ. These minima move towards lower Θ values with increasing I φ . Over the range of conditions for acceptable operation, the scaling of variables with I φ is not unique but depends on the variation of Θ as I φ increases. The Θ variation is governed by the specific conditions (such as constant poloidal beta, β p ) chosen to set the desired RFP operational constraints. Contour plots of the dependent variables versus the two independent variables, I φ and Θ, allow the determination of the Iφ-Θ trajectory that corresponds to discharges that meet the chosen condition. The analysis shows that the amplitude of the low frequency fluctuations correlates with the mean β p and energy confinement time of ZT-40M. By modifying the external circuits on ZT-40M, low frequency fluctuations were reduced. Comparing the designs of different RFP experiments and their operating behaviour, these modifications suggest design changes for present and future RFP experiments that will benefit their performance. (author). 90 refs, 14 figs, 3 tabs

  1. A positioning and data logging system for surface geophysical surveys

    Nyquist, J.E.; Blair, M.S.

    1988-01-01

    The Ultrasonic Ranging and Data System (USRADS) developed at ORNL is being adapted to work with two commercially available geophysical instruments: a magnetometer and an EM31 terrain conductivity meter. Geophysical surveys have proven an important preliminary step in investigating hazardous waste sites. Magnetometers and terrain conductivity meters are used to locate buried drums, trenches, conductive contaminant plumes and map regional changes in geology. About half the field time of a typical geophysical investigation is spent surveying the position of the grid points at which the measurements will be made. Additional time is lost and errors may be made recording instrument values in field notebooks and transcribing the data to a computer. Developed for gamma radiation surveys, the USRAD system keeps track of the surveyor's position automatically by triangulating on an ultrasonic transmitter carried in a backpack. The backpack also contains a radio transmitter that sends the instrument's reading coincident with the ultrasonic pulse. The surveyor's position and the instrument's reading are recorded by a portable computer which can plot the data to check the survey's progress. Electronic files are stored in a form compatible with AutoCAD to speed report writing. 7 refs., 3 figs

  2. Global Journal of Geological Sciences

    Global Journal of Geological Sciences is aimed at promoting research in all areas of Geological Sciences including geochemistry, geophysics, engineering geology, hydrogeology, petrology, mineralogy, geochronology, tectonics, mining, structural geology, marine geology, space science etc. Visit the Global Journal Series ...

  3. NATO Advanced Study Institute on Buoyant Convection in Geophysical Flows

    Fedorovich, E; Viegas, D; Wyngaard, J

    1998-01-01

    Studies of convection in geophysical flows constitute an advanced and rapidly developing area of research that is relevant to problems of the natural environment. During the last decade, significant progress has been achieved in the field as a result of both experimental studies and numerical modelling. This led to the principal revision of the widely held view on buoyancy-driven turbulent flows comprising an organised mean component with superimposed chaotic turbulence. An intermediate type of motion, represented by coherent structures, has been found to play a key role in geophysical boundary layers and in larger scale atmospheric and hydrospheric circulations driven by buoyant forcing. New aspects of the interaction between convective motions and rotation have recently been discovered and investigated. Extensive experimental data have also been collected on the role of convection in cloud dynamics and microphysics. New theoretical concepts and approaches have been outlined regarding scaling and parameteriz...

  4. Geophysical data fusion for subsurface imaging. Final report

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites

  5. Geophysical data fusion for subsurface imaging. Final report

    NONE

    1995-10-01

    This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

  6. Environmental and regulatory considerations when planning a geophysical program

    Down-Cicoria, C.

    1999-01-01

    Public concerns regarding the environmental impact of geophysical programs have resulted in more pressure on the federal and provincial governments to regulate and protect unique ecosites. In the past decade, about 1 million kilometres of seismic have been shot by the petroleum industry in Alberta alone, representing about 70,000 hectares of land base. This paper reviewed how a preliminary assessment of any geophysical project should consider the effects of all projects on the terrain, climate, vegetation, soils, fisheries, wildlife, aquatic ecosystems, heritage resources, and timber dispositions. Geo-administrative boundaries, field assessments, environmental assessments and mitigation measures such as low impact line cutting methods, timing methods, and heli-portable operations must also be considered. Special considerations when planning a three-dimensional program were highlighted. Certain equipment suitable as mitigation measures such as mulchers, hydro-axes, enviro-drills, biodegradable lathes, tracked/low PSI equipment, and doglegs were also reviewed. 15 refs., 2 tabs., 18 figs

  7. GeoFramework: A Modeling Framework for Solid Earth Geophysics

    Gurnis, M.; Aivazis, M.; Tromp, J.; Tan, E.; Thoutireddy, P.; Liu, Q.; Choi, E.; Dicaprio, C.; Chen, M.; Simons, M.; Quenette, S.; Appelbe, B.; Aagaard, B.; Williams, C.; Lavier, L.; Moresi, L.; Law, H.

    2003-12-01

    As data sets in geophysics become larger and of greater relevance to other earth science disciplines, and as earth science becomes more interdisciplinary in general, modeling tools are being driven in new directions. There is now a greater need to link modeling codes to one another, link modeling codes to multiple datasets, and to make modeling software available to non modeling specialists. Coupled with rapid progress in computer hardware (including the computational speed afforded by massively parallel computers), progress in numerical algorithms, and the introduction of software frameworks, these lofty goals of merging software in geophysics are now possible. The GeoFramework project, a collaboration between computer scientists and geoscientists, is a response to these needs and opportunities. GeoFramework is based on and extends Pyre, a Python-based modeling framework, recently developed to link solid (Lagrangian) and fluid (Eulerian) models, as well as mesh generators, visualization packages, and databases, with one another for engineering applications. The utility and generality of Pyre as a general purpose framework in science is now being recognized. Besides its use in engineering and geophysics, it is also being used in particle physics and astronomy. Geology and geophysics impose their own unique requirements on software frameworks which are not generally available in existing frameworks and so there is a need for research in this area. One of the special requirements is the way Lagrangian and Eulerian codes will need to be linked in time and space within a plate tectonics context. GeoFramework has grown beyond its initial goal of linking a limited number of exiting codes together. The following codes are now being reengineered within the context of Pyre: Tecton, 3-D FE Visco-elastic code for lithospheric relaxation; CitComS, a code for spherical mantle convection; SpecFEM3D, a SEM code for global and regional seismic waves; eqsim, a FE code for dynamic

  8. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  9. Geophysical constraints on geodynamical processes at convergent margins

    Artemieva, Irina; Thybo, Hans; Shulgin, Alexey

    2016-01-01

    Convergent margins, being the boundaries between colliding lithospheric plates, form the most disastrous areas in the world due to intensive, strong seismicity and volcanism. We review global geophysical data in order to illustrate the effects of the plate tectonic processes at convergent margins......, at least, one of the plates is oceanic. However, the oldest oceanic plate in the Pacific ocean has the smallest convergence rate. (2) The presence of an oceanic plate is, in general, required for generation of high-magnitude (M>8.0) earthquakes and for generating intermediate and deep seismicity along...... to shallow mantle levels....

  10. Global Journal of Geological Sciences: Editorial Policies

    Focus and Scope. Global Journal of Geological Sciences is aimed at promoting research in all areas of geological Sciences including Petrology, Mineralogy, geophysics, hydrogeology, Engineering geology, Petroleum geology, Palaeontology, environmental geology, Economic geology, etc.

  11. Spherical Process Models for Global Spatial Statistics

    Jeong, Jaehong; Jun, Mikyoung; Genton, Marc G.

    2017-01-01

    Statistical models used in geophysical, environmental, and climate science applications must reflect the curvature of the spatial domain in global data. Over the past few decades, statisticians have developed covariance models that capture

  12. Development and implementation of the software for visualization and analysis of data geophysical loggers

    Gordeev, V. F.; Malyshkov, S. Yu.; Botygin, I. A.; Sherstnev, V. S.; Sherstneva, A. I.

    2017-11-01

    The general trend of modern ecological geophysics is changing priorities towards rapid assessment, management and prediction of ecological and engineering soil stability as well as developing brand new geophysical technologies. The article describes researches conducted by using multi-canal geophysical logger MGR-01 (developed by IMCES SB RAS), which allows to measure flux density of very low-frequency electromagnetic radiation. It is shown that natural pulsed electromagnetic fields of the earthen lithosphere can be a source of new information on Earth's crust and processes in it, including earthquakes. The device is intended for logging electromagnetic processes in Earth's crust, geophysical exploration, finding structural and lithological inhomogeneities, monitoring the geodynamic movement of Earth's crust, express assessment of seismic hazards. The data is gathered automatically from observation point network in Siberia

  13. Integrated application of the database for airborne geophysical survey achievement information

    Ji Zengxian; Zhang Junwei

    2006-01-01

    The paper briefly introduces the database of information for airborne geophysical survey achievements. This database was developed on the platform of Microsoft Windows System with the technical methods of Visual C++ 6.0 and MapGIS. It is an information management system concerning airborne geophysical surveying achievements with perfect functions in graphic display, graphic cutting and output, query of data, printing of documents and reports, maintenance of database, etc. All information of airborne geophysical survey achievements in nuclear industry from 1972 to 2003 was embedded in. Based on regional geological map and Meso-Cenozoic basin map, the detailed statistical information of each airborne survey area, each airborne radioactive anomalous point and high field point can be presented visually by combining geological or basin research result. The successful development of this system will provide a fairly good base and platform for management of archives and data of airborne geophysical survey achievements in nuclear industry. (authors)

  14. The magnetic universe geophysical and astrophysical dynamo theory

    Rüdiger, Günther

    2004-01-01

    Magnetism is one of the most pervasive features of the Universe, with planets, stars and entire galaxies all having associated magnetic fields. All of these fields are generated by the motion of electrically conducting fluids, the so-called dynamo effect. The precise details of what drives the motion, and indeed what the fluid consists of, differ widely though. In this work the authors draw upon their expertise in geophysical and astrophysical MHD to explore some of these phenomena, and describe the similarities and differences between different magnetized objects. They also explain why magn

  15. Towards the Development and Validation of a Global Field Size and Irrigation Map using Crowdsourcing, Mobile Apps and Google Earth Engine in support of GEOGLAM

    Fritz, S.; Nordling, J.; See, L. M.; McCallum, I.; Perger, C.; Becker-Reshef, I.; Mucher, S.; Bydekerke, L.; Havlik, P.; Kraxner, F.; Obersteiner, M.

    2014-12-01

    The International Institute for Applied Systems Analysis (IIASA) has developed a global cropland extent map, which supports the monitoring and assessment activities of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative). Through the European-funded SIGMA (Stimulating Innovation for Global Monitoring of Agriculture and its Impact on the Environment in support of GEOGLAM) project, IIASA is continuing to support GEOGLAM by providing cropland projections in the future and modelling environmental impacts on agriculture under various scenarios. In addition, IIASA is focusing on two specific elements within SIGMA: the development of a global field size and irrigation map; and mobile app development for in-situ data collection and validation of remotely-sensed products. Cropland field size is a very useful indicator for agricultural monitoring yet the information we have at a global scale is currently very limited. IIASA has already created a global map of field size at a 1 km resolution using crowdsourced data from Geo-Wiki as a first approximation. Using automatic classification of Landsat imagery and algorithms contained within Google Earth Engine, initial experimentation has shown that circular fields and landscape structures can easily be extracted. Not only will this contribute to improving the global map of field size, it can also be used to create a global map that contains a large proportion of the world's irrigated areas, which will be another useful contribution to GEOGLAM. The field size map will also be used to stratify and develop a global crop map in SIGMA. Mobile app development in support of in-situ data collection is another area where IIASA is currently working. An Android app has been built using the Open Data Toolkit (ODK) and extended further with spatial mapping capabilities called GeoODK. The app allows users to collect data on different crop types and delineate fields on the ground, which can be used to validate the

  16. Global scientific production in the field of knee arthroplasty: A cross-sectional survey of research activities.

    Wang, Lu; Li, Lingxia; Cheng, Cai; Tian, Hua; Li, Yang; Zhao, Minwei

    2017-06-01

    Objective To determine the quantity and quality of articles in the field of knee arthroplasty worldwide and elucidate the characteristics of global scientific production. Methods Web of Science was used to identify articles in the field of knee arthroplasty from 2011 to 2015. The total number of papers, number of papers per capita, total number of citations, and mean number of citations were collected. Results In total, 11,590 papers were identified. The number of publications significantly increased from 2011 to 2015. Most originated from North America, East Asia, and West Europe. Most (88.51%) were from high-income countries, 11.48% were from middle-income countries, and only 0.01% were from lower-income countries. The United States had the most articles and total citations. Sweden had the highest mean citations, followed by Denmark and Canada. However, when adjusted by population size, Denmark had the most articles per million population, followed by Switzerland and the Netherlands. Conclusions The number of knee arthroplasty publications has rapidly increased in recent years. The United States is the most prolific, but some European countries are more productive relative to their population.

  17. Defect Localization Capabilities of a Global Detection Scheme: Spatial Pattern Recognition Using Full-field Vibration Test Data in Plates

    Saleeb, A. F.; Prabhu, M.; Arnold, S. M. (Technical Monitor)

    2002-01-01

    Recently, a conceptually simple approach, based on the notion of defect energy in material space has been developed and extensively studied (from the theoretical and computational standpoints). The present study focuses on its evaluation from the viewpoint of damage localization capabilities in case of two-dimensional plates; i.e., spatial pattern recognition on surfaces. To this end, two different experimental modal test results are utilized; i.e., (1) conventional modal testing using (white noise) excitation and accelerometer-type sensors and (2) pattern recognition using Electronic speckle pattern interferometry (ESPI), a full field method capable of analyzing the mechanical vibration of complex structures. Unlike the conventional modal testing technique (using contacting accelerometers), these emerging ESPI technologies operate in a non-contacting mode, can be used even under hazardous conditions with minimal or no presence of noise and can simultaneously provide measurements for both translations and rotations. Results obtained have clearly demonstrated the robustness and versatility of the global NDE scheme developed. The vectorial character of the indices used, which enabled the extraction of distinct patterns for localizing damages proved very useful. In the context of the targeted pattern recognition paradigm, two algorithms were developed for the interrogation of test measurements; i.e., intensity contour maps for the damaged index, and the associated defect energy vector field plots.

  18. The 2018 Inter-agency field manual on reproductive health in humanitarian settings: revising the global standards.

    Foster, Angel M; Evans, Dabney P; Garcia, Melissa; Knaster, Sarah; Krause, Sandra; McGinn, Therese; Rich, Sarah; Shah, Meera; Tappis, Hannah; Wheeler, Erin

    2017-11-01

    Since the 1990s, the Inter-agency field manual on reproductive health in humanitarian settings (IAFM) has provided authoritative guidance on reproductive health service provision during different phases of complex humanitarian emergencies. In 2018, the Inter-Agency Working Group on Reproductive Health in Crises will release a new edition of this global resource. In this article, we describe the collaborative and inter-sectoral revision process and highlight major changes in the 2018 IAFM. Key revisions to the manual include repositioning unintended pregnancy prevention within and explicitly incorporating safe abortion care into the Minimum Initial Service Package (MISP) chapter, which outlines a set of priority activities to be implemented at the outset of a humanitarian crisis; stronger guidance on the transition from the MISP to comprehensive sexual and reproductive health services; and the addition of a logistics chapter. In addition, the IAFM now places greater and more consistent emphasis on human rights principles and obligations, gender-based violence, and the linkages between maternal and newborn health, and incorporates a diverse range of field examples. We conclude this article with an outline of plans for releasing the 2018 IAFM and facilitating uptake by those working in refugee, crisis, conflict, and emergency settings.

  19. How to deal with the high condition number of the noise covariance matrix of gravity field functionals synthesised from a satellite-only global gravity field model?

    Klees, R.; Slobbe, D. C.; Farahani, H. H.

    2018-03-01

    The posed question arises for instance in regional gravity field modelling using weighted least-squares techniques if the gravity field functionals are synthesised from the spherical harmonic coefficients of a satellite-only global gravity model (GGM), and are used as one of the noisy datasets. The associated noise covariance matrix, appeared to be extremely ill-conditioned with a singular value spectrum that decayed gradually to zero without any noticeable gap. We analysed three methods to deal with the ill-conditioned noise covariance matrix: Tihonov regularisation of the noise covariance matrix in combination with the standard formula for the weighted least-squares estimator, a formula of the weighted least-squares estimator, which does not involve the inverse noise covariance matrix, and an estimator based on Rao's unified theory of least-squares. Our analysis was based on a numerical experiment involving a set of height anomalies synthesised from the GGM GOCO05s, which is provided with a full noise covariance matrix. We showed that the three estimators perform similar, provided that the two regularisation parameters each method knows were chosen properly. As standard regularisation parameter choice rules do not apply here, we suggested a new parameter choice rule, and demonstrated its performance. Using this rule, we found that the differences between the three least-squares estimates were within noise. For the standard formulation of the weighted least-squares estimator with regularised noise covariance matrix, this required an exceptionally strong regularisation, much larger than one expected from the condition number of the noise covariance matrix. The preferred method is the inversion-free formulation of the weighted least-squares estimator, because of its simplicity with respect to the choice of the two regularisation parameters.

  20. Marine mammal observations conducted during US National Science Foundation geophysical research cruises in the global oceans from the platforms Maurice Ewing, Marcus G. Langseth, Thomas G. Thompson, and the R/V Knorr from 28 May 2003 to 25 August 2009 (NODC Accession 0083783)

    National Oceanic and Atmospheric Administration, Department of Commerce — All marine mammals and sea turtles that were visually observed during a marine geophysical survey were recorded to: 1) determine whether a mitigation measure needed...

  1. Improving Discoverability of Geophysical Data using Location Based Services

    Morrison, D.; Barnes, R. J.; Potter, M.; Nylund, S. R.; Patrone, D.; Weiss, M.; Talaat, E. R.; Sarris, T. E.; Smith, D.

    2014-12-01

    The great promise of Virtual Observatories is the ability to perform complex search operations across the metadata of a large variety of different data sets. This allows the researcher to isolate and select the relevant measurements for their topic of study. The Virtual ITM Observatory (VITMO) has many diverse geophysical datasets that cover a large temporal and spatial range that present a unique search problem. VITMO provides many methods by which the user can search for and select data of interest including restricting selections based on geophysical conditions (solar wind speed, Kp, etc) as well as finding those datasets that overlap in time. One of the key challenges in improving discoverability is the ability to identify portions of datasets that overlap in time and in location. The difficulty is that location data is not contained in the metadata for datasets produced by satellites and would be extremely large in volume if it were available, making searching for overlapping data very time consuming. To solve this problem we have developed a series of light-weight web services that can provide a new data search capability for VITMO and others. The services consist of a database of spacecraft ephemerides and instrument fields of view; an overlap calculator to find times when the fields of view of different instruments intersect; and a magnetic field line tracing service that maps in situ and ground based measurements to the equatorial plane in magnetic coordinates for a number of field models and geophysical conditions. These services run in real-time when the user queries for data. They will allow the non-specialist user to select data that they were previously unable to locate, opening up analysis opportunities beyond the instrument teams and specialists, making it easier for future students who come into the field.

  2. Calibration and Confirmation in Geophysical Models

    Werndl, Charlotte

    2016-04-01

    For policy decisions the best geophysical models are needed. To evaluate geophysical models, it is essential that the best available methods for confirmation are used. A hotly debated issue on confirmation in climate science (as well as in philosophy) is the requirement of use-novelty (i.e. that data can only confirm models if they have not already been used before. This talk investigates the issue of use-novelty and double-counting for geophysical models. We will see that the conclusions depend on the framework of confirmation and that it is not clear that use-novelty is a valid requirement and that double-counting is illegitimate.

  3. Geophysical Anomalies and Earthquake Prediction

    Jackson, D. D.

    2008-12-01

    Finding anomalies is easy. Predicting earthquakes convincingly from such anomalies is far from easy. Why? Why have so many beautiful geophysical abnormalities not led to successful prediction strategies? What is earthquake prediction? By my definition it is convincing information that an earthquake of specified size is temporarily much more likely than usual in a specific region for a specified time interval. We know a lot about normal earthquake behavior, including locations where earthquake rates are higher than elsewhere, with estimable rates and size distributions. We know that earthquakes have power law size distributions over large areas, that they cluster in time and space, and that aftershocks follow with power-law dependence on time. These relationships justify prudent protective measures and scientific investigation. Earthquake prediction would justify exceptional temporary measures well beyond those normal prudent actions. Convincing earthquake prediction would result from methods that have demonstrated many successes with few false alarms. Predicting earthquakes convincingly is difficult for several profound reasons. First, earthquakes start in tiny volumes at inaccessible depth. The power law size dependence means that tiny unobservable ones are frequent almost everywhere and occasionally grow to larger size. Thus prediction of important earthquakes is not about nucleation, but about identifying the conditions for growth. Second, earthquakes are complex. They derive their energy from stress, which is perniciously hard to estimate or model because it is nearly singular at the margins of cracks and faults. Physical properties vary from place to place, so the preparatory processes certainly vary as well. Thus establishing the needed track record for validation is very difficult, especially for large events with immense interval times in any one location. Third, the anomalies are generally complex as well. Electromagnetic anomalies in particular require

  4. Understanding biogeobatteries: Where geophysics meets microbiology

    Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.

    2009-08-15

    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  5. A global wave-driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies

    Oran, R.; Van der Holst, B.; Landi, E.; Jin, M.; Sokolov, I. V.; Gombosi, T. I., E-mail: oran@umich.edu [Atmospheric, Oceanic and Atmospheric Sciences, University of Michigan, 2455 Hayward, Ann Arbor, MI, 48105 (United States)

    2013-12-01

    We describe, analyze, and validate the recently developed Alfvén Wave Solar Model, a three-dimensional global model starting from the top of the chromosphere and extending into interplanetary space (out to 1-2 AU). This model solves the extended, two-temperature magnetohydrodynamics equations coupled to a wave kinetic equation for low-frequency Alfvén waves. In this picture, heating and acceleration of the plasma are due to wave dissipation and to wave pressure gradients, respectively. The dissipation process is described by a fully developed turbulent cascade of counterpropagating waves. We adopt a unified approach for calculating the wave dissipation in both open and closed magnetic field lines, allowing for a self-consistent treatment in any magnetic topology. Wave dissipation is the only heating mechanism assumed in the model; no geometric heating functions are invoked. Electron heat conduction and radiative cooling are also included. We demonstrate that the large-scale, steady state (in the corotating frame) properties of the solar environment are reproduced, using three adjustable parameters: the Poynting flux of chromospheric Alfvén waves, the perpendicular correlation length of the turbulence, and a pseudoreflection coefficient. We compare model results for Carrington rotation 2063 (2007 November-December) with remote observations in the extreme-ultraviolet and X-ray ranges from the Solar Terrestrial Relations Observatory, Solar and Heliospheric Observatory, and Hinode spacecraft and with in situ measurements by Ulysses. The results are in good agreement with observations. This is the first global simulation that is simultaneously consistent with observations of both the thermal structure of the lower corona and the wind structure beyond Earth's orbit.

  6. Global field synchronization in gamma range of the sleep EEG tracks sleep depth: Artifact introduced by a rectangular analysis window.

    Rusterholz, Thomas; Achermann, Peter; Dürr, Roland; Koenig, Thomas; Tarokh, Leila

    2017-06-01

    Investigating functional connectivity between brain networks has become an area of interest in neuroscience. Several methods for investigating connectivity have recently been developed, however, these techniques need to be applied with care. We demonstrate that global field synchronization (GFS), a global measure of phase alignment in the EEG as a function of frequency, must be applied considering signal processing principles in order to yield valid results. Multichannel EEG (27 derivations) was analyzed for GFS based on the complex spectrum derived by the fast Fourier transform (FFT). We examined the effect of window functions on GFS, in particular of non-rectangular windows. Applying a rectangular window when calculating the FFT revealed high GFS values for high frequencies (>15Hz) that were highly correlated (r=0.9) with spectral power in the lower frequency range (0.75-4.5Hz) and tracked the depth of sleep. This turned out to be spurious synchronization. With a non-rectangular window (Tukey or Hanning window) these high frequency synchronization vanished. Both, GFS and power density spectra significantly differed for rectangular and non-rectangular windows. Previous papers using GFS typically did not specify the applied window and may have used a rectangular window function. However, the demonstrated impact of the window function raises the question of the validity of some previous findings at higher frequencies. We demonstrated that it is crucial to apply an appropriate window function for determining synchronization measures based on a spectral approach to avoid spurious synchronization in the beta/gamma range. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Redesigning Curricula in Geology and Geophysics

    Sparks, D. W.; Ewing, R. C.; Fowler, D.; Macik, M.; Marcantonio, F.; Miller, B.; Newman, J.; Olszewski, T.; Reece, R.; Rosser, S.

    2015-12-01

    In the summer of 2014, the Texas A&M Department of Geology and Geophysics partnered with the Texas A&M Center for Teaching Excellence to implement TAMU's curriculum revision process: a data-informed, faculty-driven, educational-developer-supported rebuilding of our degree programs and course offerings. The current curricula (B.S. and B.A. in Geology, B.S. in Geophysics) were put into place in 1997, following the merger of two separate departments. The needs and capabilities of the Department and the student body have changed significantly since that time: more than 50% turnover of the faculty, a rapidly-changing job climate for geologists and geophysicists, and a nearly five-fold increase in the undergraduate population to over 500 majors in Fall 2015. Surveys of former students, employers and faculty at other universities revealed more reasons to address the curriculum. Some of the most desired skills are also those at which our graduates feel and are perceived to be least prepared: oral communication and the ability to learn software packages (skills that are most challenging to teach with growing class sizes). The challenge facing the Department is to accommodate growing student numbers while maintaining strength in traditional instructor-intensive activities such as microscopy and field mapping, and also improving our graduates' non-geological skills (e.g., communication, software use, teamwork, problem-solving) to insulate them from volatility in the current job market. We formed the Curriculum Study Group, consisting of faculty, graduate students, advisors and curriculum experts, to gather and analyze data and define the knowledge and skill base a graduate of our department must have. In addition to conducting external surveys, this group interviewed current students and faculty to determine the strengths and weaknesses of our program. We developed program learning goals that were further specified into over fifty criteria. For each criteria we defined

  8. Bringing 3D Printing to Geophysical Science Education

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  9. Results from the University of Calgary environmental geophysics test range

    Duckworth, K; Lawton, D.C.; Juigalli, J; Parry, D. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    1995-12-31

    The Spy Hill Research Farm, operated by the University of Calgary as a test range site where geophysical equipment and methods related to environmental monitoring can be operated under controlled conditions, was described. The site is used by students in the geophysics courses offered at the University, but it is also intended to be available to other users for equipment tests. The site is underlain by glacial gravels and clays which reach thicknesses in excess of 30 m. Surveys of the site have been completed with the following geophysical systems: Geonics EM-31 and EM-34; Apex Max-Min; Huntec Mk4 IP with Phoenix IP-T1 transmitter; Geometrics Proton Magnetometer; McPhar vertical field Fluxgate magnetometer; Androtex TDR6 IP with Phoenix IP-T1 transmitter; Geometrics 12 channel refraction seismic system; and Pulse Echo Ground Penetrating Radar. The site has proved to be well suited to serve as a test range. The addition of yet more features to the site is being planned.

  10. Fundamentals of Geophysical Fluid Dynamics

    McWilliams, James C.

    2006-07-01

    Earth's atmosphere and oceans exhibit complex patterns of fluid motion over a vast range of space and time scales. These patterns combine to establish the climate in response to solar radiation that is inhomogeneously absorbed by the materials comprising air, water, and land. Spontaneous, energetic variability arises from instabilities in the planetary-scale circulations, appearing in many different forms such as waves, jets, vortices, boundary layers, and turbulence. Geophysical fluid dynamics (GFD) is the science of all these types of fluid motion. This textbook is a concise and accessible introduction to GFD for intermediate to advanced students of the physics, chemistry, and/or biology of Earth's fluid environment. The book was developed from the author's many years of teaching a first-year graduate course at the University of California, Los Angeles. Readers are expected to be familiar with physics and mathematics at the level of general dynamics (mechanics) and partial differential equations. Covers the essential GFD required for atmospheric science and oceanography courses Mathematically rigorous, concise coverage of basic theory and applications to both oceans and atmospheres Author is a world expert; this book is based on the course he has taught for many years Exercises are included, with solutions available to instructors from solutions@cambridge.org

  11. Airborne geophysical radon hazard mapping

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  12. Tabletop Models for Electrical and Electromagnetic Geophysics.

    Young, Charles T.

    2002-01-01

    Details the use of tabletop models that demonstrate concepts in direct current electrical resistivity, self-potential, and electromagnetic geophysical models. Explains how data profiles of the models are obtained. (DDR)

  13. rights reserved Geophysical Identification of Hydrothermally Altered

    ADOWIE PERE

    Geophysical Identification of Hydrothermally Altered Structures That Favour .... aircraft. Total line kilometers of 36,500 were covered in the survey. Magnetic ... tie lines occur at about 2000 metres interval in the ... visual inspection of the map.

  14. Exploring the oceans- The geophysical way

    Murthy, K.S.R.

    The evolution of the eastern continental margin of India (ECMI), the Bengal Fan and the Central Indian Basin (CIB) is a consequence of the breakup of India from the eastern Gondwanaland in Late Jurassic to Early Cretaceous. Recent marine geophysical...

  15. A geological and geophysical data collection system

    Sudhakar, T.; Afzulpurkar, S.

    A geological and geophysical data collection system using a Personal Computer is described below. The system stores data obtained from various survey systems typically installed in a charter vessel and can be used for similar applications on any...

  16. Geophysical assessments of renewable gas energy compressed in geologic pore storage reservoirs.

    Al Hagrey, Said Attia; Köhn, Daniel; Rabbel, Wolfgang

    2014-01-01

    Renewable energy resources can indisputably minimize the threat of global warming and climate change. However, they are intermittent and need buffer storage to bridge the time-gap between production (off peak) and demand peaks. Based on geologic and geochemical reasons, the North German Basin has a very large capacity for compressed air/gas energy storage CAES in porous saltwater aquifers and salt cavities. Replacing pore reservoir brine with CAES causes changes in physical properties (elastic moduli, density and electrical properties) and justify applications of integrative geophysical methods for monitoring this energy storage. Here we apply techniques of the elastic full waveform inversion FWI, electric resistivity tomography ERT and gravity to map and quantify a gradually saturated gas plume injected in a thin deep saline aquifer within the North German Basin. For this subsurface model scenario we generated different synthetic data sets without and with adding random noise in order to robust the applied techniques for the real field applications. Datasets are inverted by posing different constraints on the initial model. Results reveal principally the capability of the applied integrative geophysical approach to resolve the CAES targets (plume, host reservoir, and cap rock). Constrained inversion models of elastic FWI and ERT are even able to recover well the gradual gas desaturation with depth. The spatial parameters accurately recovered from each technique are applied in the adequate petrophysical equations to yield precise quantifications of gas saturations. Resulting models of gas saturations independently determined from elastic FWI and ERT techniques are in accordance with each other and with the input (true) saturation model. Moreover, the gravity technique show high sensitivity to the mass deficit resulting from the gas storage and can resolve saturations and temporal saturation changes down to ±3% after reducing any shallow fluctuation such as that of

  17. Location of Buried Mineshafts and Adits Using Reconnaissance Geophysical Methods

    Culshaw, Martin; Donnelly, Laurance; McCann, David

    Britain has a long history of mining activity, which stretches back some 3000 years to the excavation of flint in East Anglia. The legacy of this long period of activity is the presence of many buried mineshafts and adits, whose location is often unknown precisely and in many cases not even recorded in historical mining records. As has been shown by Donnelly et al (2003) the discovery of a mineshaft in an area of housing development can have a profound effect on property values in its vicinity. Hence, urgent action must be taken to establish at the site investigation stage of a development to determine whether any mineshafts are present at the site so that remedial action can be taken before construction commences. A study of historical information and the drilling may well enable the developer to locate any suspected mineshafts and adits on his site. However, the use of geophysical reconnaissance methods across the whole site may well provide sufficient information to simplify the drilling programme and reduce its cost to a minimum. In this paper a number of rapid reconnaissance geophysical methods are described and evaluated in terms of their success in the location of buried mineshafts and adits. It has shown that a combination of ground conductivity and magnetic surveys provides a most effective approach on open sites in greenfield and brownfield areas. Ground penetrating radar and micro-gravity surveys have proved to be a valuable approach in urban areas where the use of many geophysical methods is prevented by the presence of various types of cultural noise. On a regional scale the infrared thermography method is being increasingly used but care must be taken to overcome certain environmental difficulties. The practical use of all these geophysical methods in the field is illustrated by a number of appropriate case histories.

  18. Fusion of Geophysical Images in the Study of Archaeological Sites

    Karamitrou, A. A.; Petrou, M.; Tsokas, G. N.

    2011-12-01

    This paper presents results from different fusion techniques between geophysical images from different modalities in order to combine them into one image with higher information content than the two original images independently. The resultant image will be useful for the detection and mapping of buried archaeological relics. The examined archaeological area is situated in Kampana site (NE Greece) near the ancient theater of Maronia city. Archaeological excavations revealed an ancient theater, an aristocratic house and the temple of the ancient Greek God Dionysus. Numerous ceramic objects found in the broader area indicated the probability of the existence of buried urban structure. In order to accurately locate and map the latter, geophysical measurements performed with the use of the magnetic method (vertical gradient of the magnetic field) and of the electrical method (apparent resistivity). We performed a semi-stochastic pixel based registration method between the geophysical images in order to fine register them by correcting their local spatial offsets produced by the use of hand held devices. After this procedure we applied to the registered images three different fusion approaches. Image fusion is a relatively new technique that not only allows integration of different information sources, but also takes advantage of the spatial and spectral resolution as well as the orientation characteristics of each image. We have used three different fusion techniques, fusion with mean values, with wavelets by enhancing selected frequency bands and curvelets giving emphasis at specific bands and angles (according the expecting orientation of the relics). In all three cases the fused images gave significantly better results than each of the original geophysical images separately. The comparison of the results of the three different approaches showed that the fusion with the use of curvelets, giving emphasis at the features' orientation, seems to give the best fused image

  19. Geophysical investigations in the Kivetty area, Finland

    Heikkinen, E.; Paananen, M.; Oehberg, A.; Front, K.; Okko, O.; Pitkaenen, P.

    1992-09-01

    Investigations were carried out at Kivetty site in Konginkangas, in central Finland, by geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. Airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  20. Geophysical investigations in the Syyry area, Finland

    Heikkinen, E.; Kurimo, M.

    1992-12-01

    Investigations were carried out at the Syyry site at Sievi using geological, geophysical, geohydrological and geochemical methods in 1987-1991 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  1. Geophysical investigations in the Olkiluoto area, Finland

    Heikkinen, E.; Paananen, M.

    1992-12-01

    Investigations were carried out at the Olkiluoto site at Eurajoki using geological, geophysical, geohydrological and geochemical methods in 1987-1992 to determine the suitability of the bedrock for the final disposal of spent nuclear fuel. In this survey airborne, ground and borehole geophysical methods were used to study the rock type distribution, fracturing and hydraulic conductivity of the bedrock to a depth of one kilometre

  2. uranium and thorium exploration by geophysical methods

    Yueksel, F.A.; Kanli, A.I.

    1997-01-01

    Radioactivity is often measured from the ground in mineral exploration. If large areas have to be investigated, it is often unsuitable to carry out the measurements with ground-bound expeditions. A geophysical method of gamma-ray spectrometry is generally applied for uranium exploration. Exploration of uranium surveys were stopped after the year of 1990 in Turkey. Therefore the real potential of uranium in Turkey have to be investigated by using the geophysical techniques

  3. Modeling the Global Coronal Field with Simulated Synoptic Magnetograms from Earth and the Lagrange Points L3, L4, and L5

    Petrie, Gordon; Pevtsov, Alexei; Schwarz, Andrew; DeRosa, Marc

    2018-06-01

    The solar photospheric magnetic flux distribution is key to structuring the global solar corona and heliosphere. Regular full-disk photospheric magnetogram data are therefore essential to our ability to model and forecast heliospheric phenomena such as space weather. However, our spatio-temporal coverage of the photospheric field is currently limited by our single vantage point at/near Earth. In particular, the polar fields play a leading role in structuring the large-scale corona and heliosphere, but each pole is unobservable for {>} 6 months per year. Here we model the possible effect of full-disk magnetogram data from the Lagrange points L4 and L5, each extending longitude coverage by 60°. Adding data also from the more distant point L3 extends the longitudinal coverage much further. The additional vantage points also improve the visibility of the globally influential polar fields. Using a flux-transport model for the solar photospheric field, we model full-disk observations from Earth/L1, L3, L4, and L5 over a solar cycle, construct synoptic maps using a novel weighting scheme adapted for merging magnetogram data from multiple viewpoints, and compute potential-field models for the global coronal field. Each additional viewpoint brings the maps and models into closer agreement with the reference field from the flux-transport simulation, with particular improvement at polar latitudes, the main source of the fast solar wind.

  4. EAST93: Geophysical traverse from the Transantarctic Mountains to the Wilkes Basin, East Antarctica

    ten Brink, Uri S.; Bannister, Stephen

    1995-01-01

    The East Antarctic Seismic Traverse (EAST93) was a geophysical traverse designed to image the bedrock under the East Antarctic ice cap. The traverse started 10 km west of the Taylor Dome drill site and 25 km west of the exposed bedrock of the Transantarctic Mountains at Lashly Mt. and ended 323 km west of the drill site over the Wilkes subglacial basin (Fig. 1). The traverse was located subparallel to latitude 78° S starting 30-50 km north of the Victoria Land Traverse (1958-1959). It was carried out jointly by the U.S. Geological Survey and Stanford University, U.S.A., together with the Institute of Geological and Nuclear Sciences, and Victoria University, New Zealand, during December 1993 and January 1994. The geophysical traverse included 236 km of multichannel seismic reflection data at 150 m shot intervals, 312.5 km of gravity data collected at intervals of 2.1 km, 312.5 km of magnetic data (total field intensity) collected at average intervals of 0.5 km, and 205 km of ground penetrating radar at intervals of 77 m. Relative locations and elevations of the entire traverse were measured at intervals of 150 m by traditional surveying methods, and tied to three absolute locations measured by the Global Positioning System (GPS). EAST93 is the first large-scale geophysical traverse on the polar plateau to our knowledge since the early 1960s. As such, the experiment presented several logistical challenges: (1) how to collect regional seismic profiles during the short Antarctic summer; (2) how to keep the scientific instruments running with minimal protection in harsh conditions; and (3) how to combine daily moves of camp with full days of work. The scientific and logistical aspects of the project proceeded, in general, according to plan despite the harsh conditions and our lack of previous experience on the polar plateau. Two unanticipated problems affected the progress of the work: the strong wind which slowed seismic acquisition, and the break-down of one of the

  5. Exotic geophysical phenomena observed in an environmental neutron flux study using EAS PRISMA detectors

    Alekseenko Victor

    2017-01-01

    Full Text Available Some exotic geophysical events are observed by a global net of electron-neutron detectors (en-detectors developed in the framework of the PRISMA EAS project. Our en-detectors running both on the Earth's surface and underground are continuously measuring the environmental thermal neutron flux. Thermal neutrons are in equilibrium with media and are therefore sensitive to many geophysical phenomena, which are exotic for people studying ultra high-energy cosmic rays or carrying out low background experiments deep underground.

  6. On global and regional spectral evaluation of global geopotential models

    Ustun, A; Abbak, R A

    2010-01-01

    Spectral evaluation of global geopotential models (GGMs) is necessary to recognize the behaviour of gravity signal and its error recorded in spherical harmonic coefficients and associated standard deviations. Results put forward in this wise explain the whole contribution of gravity data in different kinds that represent various sections of the gravity spectrum. This method is more informative than accuracy assessment methods, which use external data such as GPS-levelling. Comparative spectral evaluation for more than one model can be performed both in global and local sense using many spectral tools. The number of GGMs has grown with the increasing number of data collected by the dedicated satellite gravity missions, CHAMP, GRACE and GOCE. This fact makes it necessary to measure the differences between models and to monitor the improvements in the gravity field recovery. In this paper, some of the satellite-only and combined models are examined in different scales, globally and regionally, in order to observe the advances in the modelling of GGMs and their strengths at various expansion degrees for geodetic and geophysical applications. The validation of the published errors of model coefficients is a part of this evaluation. All spectral tools explicitly reveal the superiority of the GRACE-based models when compared against the models that comprise the conventional satellite tracking data. The disagreement between models is large in local/regional areas if data sets are different, as seen from the example of the Turkish territory

  7. Geophysical Monitoring of Hydrological and Biogeochemical Transformations associated with Cr(VI) Bioremediation

    Hubbard, Susan; Williams, Kenneth H.; Conrad, Mark E.; Faybishenko, Boris; Peterson, John; Chen, Jinsong; Long, Philip E.; Hazen, Terry C.

    2008-01-01

    Understanding how hydrological and biogeochemical properties change over space and time in response to remedial treatments is hindered by our ability to monitor these processes with sufficient resolution and over field relevant scales. Here, we explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI)bioremediation experiment performed at Hanford, WA. We first integrated hydrological wellbore and geophysical tomographic datasets to estimate hydrological zonation at the study site. Using results from laboratory biogeophysical experiments and constraints provided by field geochemical datasets, we then interpreted time-lapse seismic and radar tomographic datasets, collected during thirteen acquisition campaigns over a three year experimental period, in terms of hydrological and biogeochemical transformations. The geophysical monitoring datasets were used to infer: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total dissolved solids (nitrate and sulfate) as a function of pumping activity; the formation of precipitates and dissolution of calcites; and concomitant changes in porosity. Although qualitative in nature, the integrated interpretation illustrates how geophysical techniques have the potential to provide a wealth of information about coupled hydrobiogeochemical responses to remedial treatments in high spatial resolution and in a minimally invasive manner. Particularly novel aspects of our study include the use of multiple lines of evidence to constrain the interpretation of a long-term, field-scale geophysical monitoring dataset and the interpretation of the transformations as a function of hydrological heterogeneity and pumping activity

  8. The Earth's heterogeneous mantle a geophysical, geodynamical, and geochemical perspective

    Khan, Amir

    2015-01-01

    This book highlights and discusses recent developments that have contributed to an improved understanding of observed mantle heterogeneities and their relation to the thermo-chemical state of Earth's mantle, which ultimately holds the key to unlocking the secrets of the evolution of our planet. This series of topical reviews and original contributions address 4 themes. Theme 1 covers topics in geophysics, including global and regional seismic tomography, electrical conductivity and seismic imaging of mantle discontinuities and heterogeneities in the upper mantle, transition zone and lower mantle. Theme 2 addresses geochemical views of the mantle including lithospheric evolution from analysis of mantle xenoliths, composition of the deep Earth and the effect of water on subduction-zone processes. Theme 3 discusses geodynamical perspectives on the global thermo-chemical structure of the deep mantle. Theme 4 covers application of mineral physics data and phase equilibrium computations to infer the regional-scale ...

  9. Geophysical observations at cavity collapse

    Jousset, Philippe; Bazargan-Sabet, Behrooz; Lebert, François; Bernardie, Séverine; Gourry, Jean-Christophe

    2010-05-01

    In Lorraine region (France) salt layers at about 200 meters depth are exploited by Solvay using solution mining methodology which consists in extracting the salt by dissolution, collapsing the cavern overburden during the exploitation phase and finally reclaiming the landscape by creating a water area. In this process, one of the main challenges for the exploiting company is to control the initial 120-m diameter collapse so as to minimize possible damages. In order to detect potential precursors and understand processes associated with such collapses, a wide series of monitoring techniques including micro seismics, broad-band seismology, hydro-acoustic, electromagnetism, gas probing, automatic leveling, continuous GPS, continuous gravity and borehole extensometry was set-up in the frame of an in-situ study carried out by the "Research Group for the Impact and Safety of Underground Works" (GISOS, France). Equipments were set-up well before the final collapse, giving a unique opportunity to analyze a great deal of information prior to and during the collapse process which has been successfully achieved on February the 13th, 2009 by controlling the cavity internal pressure. In this work, we present the results of data recorded by a network of 3 broadband seismometers, 2 accelerometers, 2 tilt-meters and a continuously gravity meter. We relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals and finally we propose a first mechanical model for describing the controlled collapse. Beyond the studied case, extrapolation of the results obtained might contribute to the understanding of uncontrolled cavity collapses, such as pit-craters or calderas at volcanoes.

  10. Moving Beyond IGY: An Electronic Geophysical Year (eGY) Concept

    Baker, D. N.; Barton, C. E.; Rodger, A. S.; Thompson, B. J.; Fraser, B.; Papitashvili, V.

    2003-12-01

    During the International Geophysical Year (1957-1958), member countries established many new geophysical observatories pursuing the major IGY objectives - to collect geophysical data as widely as possible and to provide free access to these data for all scientists around the globe. Today, geophysics has attained a rather good understanding within traditional regions, i.e., the atmosphere, ionosphere, magnetosphere, and other such geospheres. At the same time, it has become clear that much of the new and important science is coming from the studies of interfaces and coupling between geospheres. Thus, if geophysical data are made `'transparently'' available to a much wider range of scientists and students than to those who do the observations, then new and exciting discoveries can be expected. An International Association of Geomagnetic and Aeronomy (IAGA) task force, recognizing that a key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories, proposes that for the 50th anniversary of IGY, the worldwide scientific community should endorse and promote an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the IGY in 2007-2008 and provide a forward impetus to geophysics in 21st century, similar to that provided by the IGY fifty years ago. The IAGA task force strongly advocates: (1) Securing permission and release of existing data; (2) Creating access to information; and (3) Conversion of relevant analog data to digital form. The eGY concept embraces all available and upcoming geophysical data (e.g., atmospheric, ionospheric, geomagnetic, gravity, etc.) through the establishment of a series of virtual geophysical observatories now being `'deployed'' in cyberspace. The eGY concept is modern, global, and timely; it is attractive, pragmatic, and affordable. The eGY is based on the existing and continually developing computing/networking technologies (e.g., XML, Semantic Web

  11. Global observations of electromagnetic and particle energy flux for an event during northern winter with southward interplanetary magnetic field

    H. Korth

    2008-06-01

    Full Text Available The response of the polar ionosphere–thermosphere (I-T system to electromagnetic (EM energy input is fundamentally different to that from particle precipitation. To understand the I-T response to polar energy input one must know the intensities and spatial distributions of both EM and precipitation energy deposition. Moreover, since individual events typically display behavior different from statistical models, it is important to observe the global system state for specific events. We present an analysis of an event in Northern Hemisphere winter for sustained southward interplanetary magnetic field (IMF, 10 January 2002, 10:00–12:00 UT, for which excellent observations are available from the constellation of Iridium satellites, the SuperDARN radar network, and the Far-Ultraviolet (FUV instrument on the IMAGE satellite. Using data from these assets we determine the EM and particle precipitation energy fluxes to the Northern Hemisphere poleward of 60° MLAT and examine their spatial distributions and intensities. The accuracy of the global estimates are assessed quantitatively using comparisons with in-situ observations by DMSP along two orbit planes. While the location of EM power input evaluated from Iridium and SuperDARN data is in good agreement with DMSP, the magnitude estimated from DMSP observations is approximately four times larger. Corrected for this underestimate, the total EM power input to the Northern Hemisphere is 188 GW. Comparison of IMAGE FUV-derived distributions of the particle energy flux with DMSP plasma data indicates that the IMAGE FUV results similarly locate the precipitation accurately while underestimating the precipitation input somewhat. The total particle input is estimated to be 20 GW, nearly a factor of ten lower than the EM input. We therefore expect the thermosphere response to be determined primarily by the EM input even under winter conditions, and accurate assessment of the EM energy input is therefore key

  12. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    Tao, Ran

    2015-01-01

    is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in

  13. Comparing plume characteristics inferred from cross-borehole geophysical data

    Haarder, Eline Bojsen; Binley, Andrew; Zibar, Majken Caroline Looms

    2012-01-01

    significantly influences results of the moment analysis. We compare results of three cross-borehole geophysical approaches for imaging tracer migration arising from a point injection of water in the unsaturated zone: three-dimensional electrical resistivity tomography (ERT), two-dimensional ground......-penetrating radar (GPR) tomography and quasi-three-dimensional GPR tomography. In the studied field experiment, a tracer was injected for a period of 5 d and was monitored both during injection and for 5 d during the subsequent redistribution. The three methods show similar characteristics of the plume development...

  14. Introduction to the geophysical methods applicable to coal

    Fourie, S

    2015-01-01

    Full Text Available 2, it is the differences in the magnetic susceptibility of rocks that are exploited by the magnetic method. Units and terminology The internationally accepted unit for the magnetic field strength or intensity is the Tesla (named after Nikola Tesla..., the famous Serbian-American engineer and inventor). The Tesla is too large a unit for practical purposes and the nanotesla (nT, one billionth of a Tesla) is used in geophysical magnetic exploration. The name gamma (γ) was previously used instead...

  15. The Global and Small-scale Magnetic Fields of Fully Convective, Rapidly Spinning M Dwarf Pair GJ65 A and B

    Kochukhov, Oleg; Lavail, Alexis [Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala SE-75120 (Sweden)

    2017-01-20

    The nearby M dwarf binary GJ65 AB, also known as BL Cet and UV Cet, is a unique benchmark for investigation of dynamo-driven activity of low-mass stars. Magnetic activity of GJ65 was repeatedly assessed by indirect means, such as studies of flares, photometric variability, X-ray, and radio emission. Here, we present a direct analysis of large-scale and local surface magnetic fields in both components. Interpreting high-resolution circular polarization spectra (sensitive to a large-scale field geometry) we uncovered a remarkable difference of the global stellar field topologies. Despite nearly identical masses and rotation rates, the secondary exhibits an axisymmetric, dipolar-like global field with an average strength of 1.3 kG while the primary has a much weaker, more complex, and non-axisymmetric 0.3 kG field. On the other hand, an analysis of the differential Zeeman intensification (sensitive to the total magnetic flux) shows the two stars having similar magnetic fluxes of 5.2 and 6.7 kG for GJ65 A and B, respectively, although there is evidence that the field strength distribution in GJ65 B is shifted toward a higher field strength compared to GJ65 A. Based on these complementary magnetic field diagnostic results, we suggest that the dissimilar radio and X-ray variability of GJ65 A and B is linked to their different global magnetic field topologies. However, this difference appears to be restricted to the upper atmospheric layers but does not encompass the bulk of the stars and has no influence on the fundamental stellar properties.

  16. Impact Of The Oil Trade On The Global Economy And The Role Of Giant Fields In Predicting Supply

    Kelley, Wayne; Bishop, Richard

    2010-09-15

    Confusion about global oil supply ('peak oil') is a distraction from the economic issue of massive wealth transfer associated with oil trading and its potential to destabilize the world economy. Without an accurate forecast of oil volumes (resources, reserves and supply), timing and cost, there is no reliable way to model the consequences of the oil trade on the global economy. This paper illustrates why it is imperative to improve our understanding of the oil trade on the global economy and proposes a method of forecasting oil supply for input into a credible global economic model.

  17. Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model

    C. L. Heald

    2011-12-01

    Full Text Available The global organic aerosol (OA budget is highly uncertain and past studies suggest that models substantially underestimate observed concentrations. Few of these studies have examined the vertical distribution of OA. Furthermore, many model-measurement comparisons have been performed with different models for single field campaigns. We synthesize organic aerosol measurements from 17 aircraft campaigns from 2001–2009 and use these observations to consistently evaluate a GEOS-Chem model simulation. Remote, polluted and fire-influenced conditions are all represented in this extensive dataset. Mean observed OA concentrations range from 0.2–8.2 μg sm−3 and make up 15 to 70% of non-refractory aerosol. The standard GEOS-Chem simulation reproduces the observed vertical profile, although observations are underestimated in 13 of the 17 field campaigns (the median observed to simulated ratio ranges from 0.4 to 4.2, with the largest model bias in anthropogenic regions. However, the model is best able to capture the observed variability in these anthropogenically-influenced regions (R2=0.18−0.57, but has little skill in remote or fire-influenced regions. The model bias increases as a function of relative humidity for 11 of the campaigns, possibly indicative of missing aqueous phase SOA production. However, model simulations of aqueous phase SOA suggest a pronounced signature in the mid-troposphere (2–6 km which is not supported in the observations examined here. Spracklen et al. (2011 suggest adding ~100 Tg yr−1 source of anthropogenically-controlled SOA to close the measurement-model gap, which we add as anthropogenic SOA. This eliminates the model underestimate near source, but leads to overestimates aloft in a few regions and in remote regions, suggesting either additional sinks of OA or higher volatility aerosol at colder temperatures. Sensitivity simulations indicate that fragmentation of organics upon

  18. Continuous assessment of land mapping accuracy at High Resolution from global networks of atmospheric and field observatories -concept and demonstration

    Sicard, Pierre; Martin-lauzer, François-regis

    2017-04-01

    In the context of global climate change and adjustment/resilience policies' design and implementation, there is a need not only i. for environmental monitoring, e.g. through a range of Earth Observations (EO) land "products" but ii. for a precise assessment of uncertainties of the aforesaid information that feed environmental decision-making (to be introduced in the EO metadata) and also iii. for a perfect handing of the thresholds which help translate "environment tolerance limits" to match detected EO changes through ecosystem modelling. Uncertainties' insight means precision and accuracy's knowledge and subsequent ability of setting thresholds for change detection systems. Traditionally, the validation of satellite-derived products has taken the form of intensive field campaigns to sanction the introduction of data processors in Payload Data Ground Segments chains. It is marred by logistical challenges and cost issues, reason why it is complemented by specific surveys at ground-based monitoring sites which can provide near-continuous observations at a high temporal resolution (e.g. RadCalNet). Unfortunately, most of the ground-level monitoring sites, in the number of 100th or 1000th, which are part of wider observation networks (e.g. FLUXNET, NEON, IMAGINES) mainly monitor the state of the atmosphere and the radiation exchange at the surface, which are different to the products derived from EO data. In addition they are "point-based" compared to the EO cover to be obtained from Sentinel-2 or Sentinel-3. Yet, data from these networks, processed by spatial extrapolation models, are well-suited to the bottom-up approach and relevant to the validation of vegetation parameters' consistency (e.g. leaf area index, fraction of absorbed photosynthetically active radiation). Consistency means minimal errors on spatial and temporal gradients of EO products. Test of the procedure for land-cover products' consistency assessment with field measurements delivered by worldwide

  19. Applied geophysics for civil engineering and mining engineering. 2. rev. and enlarged ed.

    Militzer, H.; Schoen, J.; Stoetzner, U.

    1986-01-01

    In the process of geological and geotechnical prospecting for the exploration and exploitation of deposits, as well as for engineering structures, the knowledge contributed by geophysics is of significance in order to ensure an objective assessment of geological and geotechnical conditions of a given site, and to promote economic efficiency in the field of civil engineering and mining. For this reason, engineering and mining geophysics has become an important special subject field. The present second edition of the textbook offers enhanced information about practical applications of available methods and measuring techniques, and about the information to be obtained by civil and mining engineers from the geophysical science. The material has been arranged with a view to practice, facilitating an overview over potential applications and efficiencies as well as limits of geophysical methods. The methods are also explained in terms of suitability for the various steps of civil engineering or mining geological activities and studies. A major extension of the first edition's material consists of the chapter on basic principles and aspects of well geophysics for shallow well drilling. (orig./HP) [de

  20. Generalized global symmetries in states with dynamical defects: The case of the transverse sound in field theory and holography

    Grozdanov, Sašo; Poovuttikul, Napat

    2018-05-01

    In this work, we show how states with conserved numbers of dynamical defects (strings, domain walls, etc.) can be understood as possessing generalized global symmetries even when the microscopic origins of these symmetries are unknown. Using this philosophy, we build an effective theory of a 2 +1 -dimensional fluid state with two perpendicular sets of immersed elastic line defects. When the number of defects is independently conserved in each set, then the state possesses two one-form symmetries. Normally, such viscoelastic states are described as fluids coupled to Goldstone bosons associated with spontaneous breaking of translational symmetry caused by the underlying microscopic structure—the principle feature of which is a transverse sound mode. At the linear, nondissipative level, we verify that our theory, based entirely on symmetry principles, is equivalent to a viscoelastic theory. We then build a simple holographic dual of such a state containing dynamical gravity and two two-form gauge fields, and use it to study its hydrodynamic and higher-energy spectral properties characterized by nonhydrodynamic, gapped modes. Based on the holographic analysis of transverse two-point functions, we study consistency between low-energy predictions of the bulk theory and the effective boundary theory. Various new features of the holographic dictionary are explained in theories with higher-form symmetries, such as the mixed-boundary-condition modification of the quasinormal mode prescription that depends on the running coupling of the boundary double-trace deformations. Furthermore, we examine details of low- and high-energy parts of the spectrum that depend on temperature, line defect densities and the renormalization group scale.

  1. Chaos theory in geophysics: past, present and future

    Sivakumar, B.

    2004-01-01

    The past two decades of research on chaos theory in geophysics has brought about a significant shift in the way we view geophysical phenomena. Research on chaos theory in geophysics continues to grow at a much faster pace, with applications to a wide variety of geophysical phenomena and geophysical problems. In spite of our success in understanding geophysical phenomena also from a different (i.e. chaotic) perspective, there still seems to be lingering suspicions on the scope of chaos theory in geophysics. The goal of this paper is to present a comprehensive account of the achievements and status of chaos theory in geophysics, and to disseminate the hope and scope for the future. A systematic review of chaos theory in geophysics, covering a wide spectrum of geophysical phenomena studied (e.g. rainfall, river flow, sediment transport, temperature, pressure, tree ring series, etc.), is presented to narrate our past achievements not only in understanding and predicting geophysical phenomena but also in improving the chaos identification and prediction techniques. The present state of chaos research in geophysics (in terms of geophysical phenomena, problems, and chaos methods) and potential for future improvements (in terms of where, why and possibly how) are also highlighted. Our popular views of nature (i.e. stochastic and deterministic), and of geophysical phenomena in particular, are discussed, and the usefulness of chaos theory as a bridge between such views is also put forth

  2. Looking Forward to the electronic Geophysical Year

    Kamide, Y.; Baker, D. N.; Thompson, B.; Barton, C.; Kihn, E.

    2004-12-01

    During the International Geophysical Year (1957-1958), member countries established many new capabilities pursuing the major IGY objectives of collecting geophysical data as widely as possible and providing free access to these data for all scientists around the globe. A key achievement of the IGY was the establishment of a worldwide system of data centers and physical observatories. The worldwide scientific community has now endorsed and is promoting an electronic Geophysical Year (eGY) initiative. The proposed eGY concept would both commemorate the 50th anniversary of the IGY in 2007-2008 and would provide a forward impetus to geophysics in the 21st century, similar to that provide by the IGY fifty years ago. The eGY concept advocates the establishment of a series of virtual geophysical observatories now being deployed in cyberspace. We discuss plans to aggregate measurements into a readily accessible database along with analysis, visualization, and display tools that will make information available and useful to the scientific community, to the user community, and to the general public. We are examining the possibilities for near-realtime acquisition of data and utilization of forecast tools in order to provide users with advanced space weather capabilities. This program will provide powerful tools for education and public outreach concerning the connected Sun-Earth System.

  3. Geophysical images of basement rocks. Geophysical images in the Guianese basement. Airborne geophysical campaign in French Guiana - 1996

    Delor, C.; Perrin, J.; Truffert, C.; Asfirane, F.; Rossi, Ph.; Bonjoly, D.; Dubreuihl, J.; Chardon, D.

    1998-01-01

    The French Office for Geological and Mining Research (BRGM) has carried out a high sensitivity airborne geophysical survey of northern French Guiana during the second half of 1996. The aim was to realize a high resolution magnetic and gamma spectrometric mapping for future prospecting, land use and environment management. This paper describes in details the geophysical campaign, the material used, the navigation techniques, the processing of magnetic data, the gamma radiation sources used, the spectrometric calibrations and the geologic interpretation of the results. (J.S.)

  4. HVDC Ground Electrodes - a Source of Geophysical Data

    Freire, P. F.; Pereira, S. Y.

    2015-12-01

    The HVDC electrode is a component of a High Voltage Direct Current energy transmission system, and is designed to inject into the ground continuous currents up to 3500 A. The typical HVDC ground electrode is a ring of vertical conductors, 1 km wide, buried a few tens of meters.The design of a HVDC electrode is based on extensive geological, geotechnical and geophysical surveys. Geophysical data are usually electrical (VES) and electromagnetic (TEM/MT) acquisitions, for the modeling of the shallow, near-surface and deep layers of the crust. This survey aims, first, the electrode site selection, and then, at the selected site, this data is combined into a single apparent resistivity curve, which is inverted, allowing for the determination of the layered geoelectric crust model. The injection of electrical continuous current in the electrode is then simulated, with the geoelectric crust model, for the determination of the soil surface potential profile (which is usually asymmetric for different directions, due to non-1D geoelectric models).For the commissioning of a HVDC electrode, field measurements are done, such as electrode grounding resistance, soil surface potentials and metal-to-soil potentials at specific structures (buried pipelines, for instance).The geophysical data acquired during the design phase is a set of data completely independent from the electrical data acquired during the electrode commissioning phase, and both are correlated by the geoelectric model. It happens, therefore, that the geoelectric model can be calibrated based on the electrical data, with the correction of static shifts and other adjustments.This paper suggests that the commissioning of HVDC systems should be associated to a research & development program, with a university or foundation. The idea is to enjoy the opportunity of a more complete field survey, with the acquisition of a wide set of data for a better geological characterization of the area where the electrode was built.

  5. A New Approach to Isolating External Magnetic Field Components in Spacecraft Measurements of the Earth's Magnetic Field Using Global Positioning System observables

    Raymond, C.; Hajj, G.

    1994-01-01

    We review the problem of separating components of the magnetic field arising from sources in the Earth's core and lithosphere, from those contributions arising external to the Earth, namely ionospheric and magnetospheric fields, in spacecraft measurements of the Earth's magnetic field.

  6. Geophysical Investigations in the Caucasus (1925 - 2012): Initial, Basic and Modern Stages

    Eppelbaum, L. V.

    2012-04-01

    testing different geophysical methods and methodologies in complicated environments. Airborne magnetic and gravity surveys covered all the Caucasus, regional seismic and magnetotelluric studies were used as reference profiles for deep structure investigation. Numerous effective applications of geophysical methods for searching ore, oil&gas deposits, building raw, fresh water localization, solving engineering, etc. was demonstrated. Seismological investigations (including different methods) were widely applied throughout the entire Caucasian region. Satellite geophysical examinations were successfully combined with other methods. Finally, destruction of the former Soviet Union in 1991 (beginning of the modern stage) caused a sharp common decreasing of the geophysical activity in this region. Only foreign oil-&gas companies (mainly American and England) demonstrated some industrial geophysical activity basically in the Caspian Sea. In the last few years the situation began to straighten out, especially in the field of seismology. This presentation is based of the author's experience (e.g., Eppelbaum, 1989, 1991, 2009; Eppelbaum et al., 1987; Eppelbaum and Finkelstein, 1998; Eppelbaum and Khesin, 1988, 1992, 2002, 2004, 2011, 2012; Eppelbaum and Mishne, 2011; Eppelbaum et al., 2003, 2004; Khesin et al., 1988, 1993a, 1993b, 1996, 1997; Khesin and Eppelbaum, 1986, 1994, 1997, 2007; Pilchin and Eppelbaum, 1997, 2011) and corresponding publications and reviews of other authors.

  7. Brief overview of geophysical probing technology

    Ramirez, A.L.; Lytle, R.J.

    1982-01-01

    An evaluation of high-resolution geophysical techniques which can be used to characterize a nulcear waste disposal site is being conducted by the Lawrence Livermore National Laboratory (LLNL) at the request of the US Nuclear Regulatory Commisson (NRC). LLNL is involved in research work aimed at evaluating the current capabilities and limitations of geophysical methods used for site selection. This report provides a brief overview of the capabilities and limitations associated with this technology and explains how our work addresses some of the present limitations. We are examining both seismic and electromagnetic techniques to obtain high-resolution information. We are also assessing the usefulness of geotomography in mapping fracture zones remotely. Finally, we are collecting core samples from a site in an effort to assess the capability of correlating such geophysical data with parameters of interest such as fracture continuity, orientation, and fracture density

  8. Geophysical Investigation of the 618-10 and 618-11 Burial Grounds, 300-FF-2 Operable Unit

    Bergstrom, K.A.; Bolin, D.J.; Mitchell, T.H.

    1997-09-01

    This document summarizes the results of geophysical investigations conducted at two radioactive solid waste burial grounds, 618-10 and 618-11. The burial grounds are located approximately 4.5 miles and 7 miles north of the 300 Area, respectively. These sites are within the 300-FF-2 Operable Unit, where geophysical techniques are being used to characterize the distribution of solid waste in the subsurface as part of the Limited Field Investigations for this operable unit

  9. Geophysical experiments at Mariano Lake uranium orebody

    Thompson, D.T.

    1980-01-01

    Several geophysical experiments were performed over the Mariano Lake orebody before mining. Surface self-potential methods, surface-to-hole induced-polarization methods, and reflection-seismic methods were used. These geophysical techniques provided data which relate to the conceptual model of this orebody. Currents generated in the productive formation by oxidation-reduction reactions do not generate measurable potential anomalies at the surface. Surface-to-hole induced-polarization measurements apparently can detect an oxidation-reduction front in the vicinity of an exploration borehole. Reflection-seismic techniques can provide information concening the paleostructure of the area

  10. Geophysical characterization from Itu intrusive suite

    Pascholati, M.E.

    1989-01-01

    The integrated use of geophysical, geological, geochemical, petrographical and remote sensing data resulted in a substantial increase in the knowledge of the Itu Intrusive Suite. The main geophysical method was gamma-ray spectrometry together with fluorimetry and autoradiography. Three methods were used for calculation of laboratory gamma-ray spectrometry data. For U, the regression method was the best one. For K and Th, equations system and absolute calibration presented the best results. Surface gamma-ray spectrometry allowed comparison with laboratory data and permitted important contribution to the study of environmental radiation. (author)

  11. Geophysical methods for evaluation of plutonic rocks

    Gibb, R.A.; Scott, J.S.

    1986-04-01

    Geophysical methods are systematically described according to the physical principle and operational mode of each method, the type of information produced, limitations of a technical and/or economic nature, and the applicability of the method to rock-mass evaluation at Research Areas of the Nuclear Fuel Waste Management Program. The geophysical methods fall into three categories: (1) airborne and other reconnaissance surveys, (2) detailed or surface (ground) surveys, and (3) borehole or subsurface surveys. The possible roles of each method in the site-screening and site-evaluation processes of disposal vault site selection are summarized

  12. fields

    Brad J. Arnold

    2014-07-01

    Full Text Available Surface irrigation, such as flood or furrow, is the predominant form of irrigation in California for agronomic crops. Compared to other irrigation methods, however, it is inefficient in terms of water use; large quantities of water, instead of being used for crop production, are lost to excess deep percolation and tail runoff. In surface-irrigated fields, irrigators commonly cut off the inflow of water when the water advance reaches a familiar or convenient location downfield, but this experience-based strategy has not been very successful in reducing the tail runoff water. Our study compared conventional cutoff practices to a retroactively applied model-based cutoff method in four commercially producing alfalfa fields in Northern California, and evaluated the model using a simple sensor system for practical application in typical alfalfa fields. These field tests illustrated that the model can be used to reduce tail runoff in typical surface-irrigated fields, and using it with a wireless sensor system saves time and labor as well as water.

  13. Alligator Rivers Analogue project. Geophysics, petrophysics and structure

    Emerson, D.W.; Mills, K.J.; Hallett, M.S.; Cao, L.Q.; Miyakawa, K.

    1992-01-01

    The geophysical and geological field work at Koongarra (including borehole core logging) showed that the site itself is a folded, faulted, variably fractured Precambrian psammitic and pelitic schist sequence with a quasi-horizontal weathered zone superimposed on the steeply dipping rock fabric. The site is flanked by a high resistivity younger sandstone unit to the northwest and by a magnetic amphibolite/ferricrete sequence to the far southeast. The data interpretations elicited the essential structural and broad lithological elements. Gravity, magnetic and electrical laboratory and field studies confirmed a broad folded fractured sequence of dipping layered host rocks weathered in their upper parts and trending in a southwest-northeast direction. Qualitatively interpreted anomalies indicated the trend of the main groundwater movement to the south where dolomites are thought to act as a sink. These drainage features have SP, resistivity and radiometric expression. The roles of the Kombolgie Sandstone as a source of water and the Koongarra Fault as a barrier or otherwise were not established owing to the lack of sufficient samples for testing and also on account of the difficulty of geophysical access over the site's rugged escarpment. 40 refs., 13 tabs., 69 figs

  14. Influence of grain size and upper critical magnetic field on global pinning force of bronze-processed Nb/sub 3/Sn compound

    Ochiai, S.; Osamura, K.

    1986-01-01

    In order to know the dependency of global pinning force of Nb/sub 3/Sn compound on grain size and upper critical magnetic field, the global pinning force was measured at 3-15 T using bronze-processed multifilamentary composites. The grain size and upper critical magnetic field were varied by two types of annealing treatment: one is the isothermal annealing at 873, 973 and 1073 K up to 1730 ks and another is the two-stage annealing (low temperature annealing to form fine grains at 873 K for 1730 ks + high temperature annealing to raise upper critical magnetic field at 1073 K up to 18 ks). In the case of isothermal annealing treatment, both of grain size and upper critical magnetic field increased with increasing annealing temperature and time except for the annealing treatments at high temperature for prolonged times. In the case of two-stage annealing, both of them increased with second stage annealing time. The increase in grain size led to decrease in the pinning force but the increase in upper critical magnetic field to increase in it. From the analysis of the present data based on the Suenaga's speculation concerning with the density of pinning site and the Kramer's equation, it was suggested that the pinning force is, to a first approximation, proportional to the product of inverse grain size and (1-h)/sup 2/h/sup 1/2/ where h is the reduced magnetic field

  15. Annals of the International Geophysical Year solar radio emission during the International Geophysical Year

    Smerd, S F

    1969-01-01

    Annals of the International Geophysical Year, Volume 34: Solar Radio Emission During the International Geophysical Year covers the significant solar radio emission events observed during the International Geophysical Year (IGY). This book is composed of six chapters, and begins with a summary of tabulated quantities describing solar radio emission during the IGY. The tabulated figures illustrate the method of recording the position of radio sources on the sun, the use of symbols in describing the structure of bursts observed at single frequencies, and the different types used in a spectral

  16. Definition of global dispersion coefficients

    Naff, R.L.

    1983-10-01

    For estimation of a global longitudinal dispersivity at the Gorleben site, data available primarily consist of suites of geophysical logs from wells penetrating the Quaternary aquifer. A length scale for the principle aquifer at Gorleben is to be found. Samples are to be taken separately to estimate the variance in hydraulic conductivity (Taylor Analysis, Fickian dispersion process). (DG)

  17. Geophysical investigation programme of Northern Switzerland: Gravimetric measurements 81/82

    Klingele, E.; Schwendener, H.

    1984-10-01

    Within the frame of the geophysical investigations of the NAGRA in the northern part of Switzerland the Swiss Geophysical Commission has measured 4954 gravity stations. The gravity data were processed and presented as Bouguer-anomaly and residual anomaly maps. The densities used for the corrections were 2.40 and 2.67 g/cm 3 . The residual field showed a negative anomaly along an axis passing through Weiach and Villigen. This anomaly can be interpreted quantitatively in terms of depth of the crystalline basement. (author)

  18. A portable marine geophysical data access and management system

    Kunte, P.D.; Narvekar, P.

    Geophysical Oracle Database Management System (GPODMS) that is residing on UNIX True 64 Compaq Alpha server. GPODMS is a stable Oracle database system for longterm storage and systematic management of geophysical data and information of various disciplines...

  19. Overview of Effective Geophysical Methods Used in the Study of ...

    Abstract. The Application of various Geophysical Techniques for the assessment of the extent of ... ineffective Geophysical Method may not give true picture of the overall level of pollution in the .... stations shut down or maintenance which halt ...

  20. Archaeological Geophysics in Israel: Past, Present and Future

    Eppelbaum, L. V.

    2009-04-01

    et al., 1999; Reeder et al., 2004; Reinhardt et al., 2006; Reich et al., 2003; Ron et al., 2003; Segal et al., 2003; Sternberg and Lass, 2007; Sternberg et al., 1999; Verri et al., 2004; Weiner et al., 1993; Weinstein-Evron et al., 1991, 2003; Weiss et al., 2007; Witten et al., 1994), and (3) future [2010 -]. The past stage with several archaeoseismic reviews and very limited application of geophysical methods was replaced by the present stage with the violent employment of numerous geophysical techniques (first of all, high-precise magnetic survey and GPR). It is supposed that the future stage will be characterized by extensive development of multidiscipline physical-archaeological databases (Eppelbaum et al., 2009b), utilization of supercomputers for 4D monitoring and ancient sites reconstruction (Foster et al., 2001; Pelfer et al., 2004) as well as wide application of geophysical surveys using remote operated vehicles at low altitudes (Eppelbaum, 2008a). REFERENCES Batey, R.A., 1987. Subsurface Interface Radar at Sepphoris, Israel 1985. Journal of Field Archaeology, 14 (1), 1-8. Bauman, P., Parker, D., Coren, A., Freund, R., and Reeder, P., 2005. Archaeological Reconnaissance at Tel Yavne, Israel: 2-D Electrical Imaging and Low Altitude Aerial Photography. CSEG Recorder, No. 6, 28-33. Ben-Dor, E., Portugali, J., Kochavi, M., Shimoni, M., and Vinitzky, L., 1999. Airborne thermal video radiometry and excavation planning at Tel Leviah, Golan Heights, Israel. Journal of Field Archaeology, 26 (2), 117-127. Ben-Menahem, A., 1979. Earthquake catalogue for the Middle East (92 B.C. - 1980 A.D.). Bollettino di Geofisica Teorica ed Applicata, 21 (84), 245-310. Ben-Yosef, E., Tauxe, L., Ronb, H., Agnon, A., Avner, U., Najjar, M., and Levy, T.E., 2008. A new approach for geomagnetic archaeointensity research: insights on ancient metallurgy in the Southern Levant. Journal of Archaeological Science, 25, 2863-2879. Berkovitch, A.L., Eppelbaum, L.V., and Basson, U., 2000

  1. Proceedings of a workshop on geophysical and related geoscientific research at Chalk River, Ontario

    Thomas, M.D.; Dixon, D.F.

    1989-10-01

    A large part of the Canadian Nuclear Fuel Waste Management Program is geoscience research and development aimed at obtaining information to quantify the transport of radionuclides through the geosphere and at determining the geotechnical properties required for disposal vault design. The geosphere at potential disposal sites is characterized in part by the use of remote sensing (geophysical) methods. In 1977 public concern about the disposal of radioactive waste resulted in field work being restricted to the site of Chalk River Nuclear Laboratories, which was used to develop, evaluate and compare various techniques in order to optimize the methods for obtaining geoscience information. Methods tested at Chalk River are to be applied at other research sites. Most investigations have been carried out around Maskinonge Lake, using about thirty boreholes sink into bedrock. The boreholes provide subsurface geological information that can be used as a reference to compare the responses of various geophysical methods and equipment. Regional studies, including airborne geophysical surveys, have also been conducted. The 25 papers presented at this workshop provide comprehensive documentation of the most significant results of geophysical studies. The workshop also provided an evaluation of geophysical techniques and their utility to the Nuclear Fuel Waste Management Program

  2. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  3. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    Oliver, H.W.; Hardin, E.L.; Nelson, P.H.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs

  4. Spherical Harmonics Analysis of the ECMWF Global Wind Fields at the 10-Meter Height Level During 1985: A Collection of Figures Illustrating Results

    Sanchez, Braulio V.; Nishihama, Masahiro

    1997-01-01

    Half-daily global wind speeds in the east-west (u) and north-south (v) directions at the 10-meter height level were obtained from the European Centre for Medium Range Weather Forecasts (ECMWF) data set of global analyses. The data set covered the period 1985 January to 1995 January. A spherical harmonic expansion to degree and order 50 was used to perform harmonic analysis of the east-west (u) and north-south (v) velocity field components. The resulting wind field is displayed, as well as the residual of the fit, at a particular time. The contribution of particular coefficients is shown. The time variability of the coefficients up to degree and order 3 is presented. Corresponding power spectrum plots are given. Time series analyses were applied also to the power associated with degrees 0-10; the results are included.

  5. Geophysical Methods for Non-Destructive Testing in Civil Engineering

    Niederleithinger, E.

    2013-12-01

    Many non-destructive testing (NDT) methods for civil engineering (e. g. ultrasonics, radar) are similar to geophysical techniques. They just differ in scale, material under investigation and vocabulary used. In spite of the fact that the same principles of physics and mathematics apply to both fields, exchange has been limited in the past. But since a few years more and more geophysical knowledge is used in civil engineering. One of the focal points in research is to improve ultrasonic testing of concrete to be able to image the inside even of large, complex structures and to detect any deterioration as early as possible. One of the main issues is the heterogeneity of concrete, including aggregates, reinforcement, cracks and many other features. Our current research focuses on three points. One is the application of state of the art geophysical migration techniques as Reverse Time Migration (RTM) to image vertical faces or the backside of voids and ducts in thick concrete structures, which isn't possible with conventional techniques used in NDT. Second, we have started to use seismic interferometric techniques to interpolate ultrasonic traces, which can't be measured directly for technical reasons. Third, we are using coda wave interferometry to detect concrete degradation due to load, fatigue, temperature or other influences as early as possible. Practical examples of the application of these techniques are given and potential future research directions will be discussed. It will be shown, how a subset of these techniques can be used for innovative monitoring systems for civil infrastructure. Imaging the interior of a concrete body by ultrasonics and reverse time migration(simulated data).

  6. Cosmic global strings

    Sikivie, P.

    1991-01-01

    The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)

  7. Evaluation of some Geophysical and Physicochemical ...

    PROF HORSFALL

    2018-04-18

    Apr 18, 2018 ... spill point parallel to the pipeline right of way. A research work carried ... of soils has been known to affect soil physio-chemical properties, which in .... The results of the geophysical analysis from the study area are presented ...

  8. Hydro geophysical Investigation for Groundwater Development at ...

    ADOWIE PERE

    Environ. Manage. May. 2017. Vol. 21 (3) 527-535. Full-text Available Online at ... is of equal importance with the air we breathe in ... numerical modeling solutions. The electrical geophysical survey method is the .... VES data at twelve (12) sounding points as shown in figure 2; five along traverse one; two along traverse two,.

  9. Geophysical data fusion for subsurface imaging

    Hoekstra, P.; Vandergraft, J.; Blohm, M.; Porter, D.

    1993-08-01

    A geophysical data fusion methodology is under development to combine data from complementary geophysical sensors and incorporate geophysical understanding to obtain three dimensional images of the subsurface. The research reported here is the first phase of a three phase project. The project focuses on the characterization of thin clay lenses (aquitards) in a highly stratified sand and clay coastal geology to depths of up to 300 feet. The sensor suite used in this work includes time-domain electromagnetic induction (TDEM) and near surface seismic techniques. During this first phase of the project, enhancements to the acquisition and processing of TDEM data were studied, by use of simulated data, to assess improvements for the detection of thin clay layers. Secondly, studies were made of the use of compressional wave and shear wave seismic reflection data by using state-of-the-art high frequency vibrator technology. Finally, a newly developed processing technique, called ''data fusion,'' was implemented to process the geophysical data, and to incorporate a mathematical model of the subsurface strata. Examples are given of the results when applied to real seismic data collected at Hanford, WA, and for simulated data based on the geology of the Savannah River Site

  10. Early geophysical maps published by A. Petermann

    Kozák, Jan; Vaněk, Jiří

    2012-01-01

    Roč. 56, č. 4 (2012), s. 1109-1122 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z30120515 Keywords : August Petermann * Geographische Mitteilungen * geophysical maps Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.975, year: 2012

  11. Atmospheric and Geophysical Sciences Division: Program report, FY 1987

    1988-05-01

    In 1988 the Atmospheric and Geophysical Sciences Division began its 15th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to years, and from kilometers to global, respectively. For this report, we have chosen to show a subset of results from several projects to illustrate the breadth, depth, and diversity of the modeling activities that are a major part of the Division's research, development, and application efforts. In addition, the recent reorganization of the Division, including the merger of another group with the Division, is described, and the budget, personnel, models, and publications are reviewed. 95 refs., 26 figs., 2 tabs

  12. The FIFA medical emergency bag and FIFA 11 steps to prevent sudden cardiac death: setting a global standard and promoting consistent football field emergency care.

    Dvorak, Jiri; Kramer, Efraim B; Schmied, Christian M; Drezner, Jonathan A; Zideman, David; Patricios, Jon; Correia, Luis; Pedrinelli, André; Mandelbaum, Bert

    2013-12-01

    Life-threatening medical emergencies are an infrequent but regular occurrence on the football field. Proper prevention strategies, emergency medical planning and timely access to emergency equipment are required to prevent catastrophic outcomes. In a continuing commitment to player safety during football, this paper presents the FIFA Medical Emergency Bag and FIFA 11 Steps to prevent sudden cardiac death. These recommendations are intended to create a global standard for emergency preparedness and the medical response to serious or catastrophic on-field injuries in football.

  13. Global Solar Magnetic Field Organization in the Outer Corona: Influence on the Solar Wind Speed and Mass Flux Over the Cycle

    Réville, Victor; Brun, Allan Sacha

    2017-11-01

    The dynamics of the solar wind depends intrinsically on the structure of the global solar magnetic field, which undergoes fundamental changes over the 11-year solar cycle. For instance, the wind terminal velocity is thought to be anti-correlated with the expansion factor, a measure of how the magnetic field varies with height in the solar corona, usually computed at a fixed height (≈ 2.5 {R}⊙ , the source surface radius that approximates the distance at which all magnetic field lines become open). However, the magnetic field expansion affects the solar wind in a more detailed way, its influence on the solar wind properties remaining significant well beyond the source surface. We demonstrate this using 3D global magnetohydrodynamic (MHD) simulations of the solar corona, constrained by surface magnetograms over half a solar cycle (1989-2001). A self-consistent expansion beyond the solar wind critical point (even up to 10 {R}⊙ ) makes our model comply with observed characteristics of the solar wind, namely, that the radial magnetic field intensity becomes latitude independent at some distance from the Sun, and that the mass flux is mostly independent of the terminal wind speed. We also show that near activity minimum, the expansion in the higher corona has more influence on the wind speed than the expansion below 2.5 {R}⊙ .

  14. A New Multiscale Technique for Time-Accurate Geophysics Simulations

    Omelchenko, Y. A.; Karimabadi, H.

    2006-12-01

    Large-scale geophysics systems are frequently described by multiscale reactive flow models (e.g., wildfire and climate models, multiphase flows in porous rocks, etc.). Accurate and robust simulations of such systems by traditional time-stepping techniques face a formidable computational challenge. Explicit time integration suffers from global (CFL and accuracy) timestep restrictions due to inhomogeneous convective and diffusion processes, as well as closely coupled physical and chemical reactions. Application of adaptive mesh refinement (AMR) to such systems may not be always sufficient since its success critically depends on a careful choice of domain refinement strategy. On the other hand, implicit and timestep-splitting integrations may result in a considerable loss of accuracy when fast transients in the solution become important. To address this issue, we developed an alternative explicit approach to time-accurate integration of such systems: Discrete-Event Simulation (DES). DES enables asynchronous computation by automatically adjusting the CPU resources in accordance with local timescales. This is done by encapsulating flux- conservative updates of numerical variables in the form of events, whose execution and synchronization is explicitly controlled by imposing accuracy and causality constraints. As a result, at each time step DES self- adaptively updates only a fraction of the global system state, which eliminates unnecessary computation of inactive elements. DES can be naturally combined with various mesh generation techniques. The event-driven paradigm results in robust and fast simulation codes, which can be efficiently parallelized via a new preemptive event processing (PEP) technique. We discuss applications of this novel technology to time-dependent diffusion-advection-reaction and CFD models representative of various geophysics applications.

  15. From Mathematical Monsters to Generalized Scale Invariance in Geophysics: Highlights of the Multifractal Saga

    Schertzer, D. J.; Tchiguirinskaia, I.; Lovejoy, S.

    2013-12-01

    Fractals and multifractals are very illustrative of the profound synergies between mathematics and geophysics. The book ';Fractal Geometry of Nature' (Mandelbrot, 1982) brilliantly demonstrated the genericity in geophysics of geometric forms like Cantor set, Peano curve and Koch snowflake, which were once considered as mathematical monsters. However, to tame the geophysical monsters (e.g. extreme weather, floods, earthquakes), it was required to go beyond geometry and a unique fractal dimension. The concept of multifractal was coined in the course of rather theoretical debates on intermittency in hydrodynamic turbulence, sometimes with direct links to atmospheric dynamics. The latter required a generalized notion of scale in order to deal both with scale symmetries and strong anisotropies (e.g. time vs. space, vertical vs. horizontal). It was thus possible to show that the consequences of intermittency are of first order, not just 'corrections' with respect to the classical non-intermittent modeling. This was in fact a radical paradigm shift for geophysics: the extreme variability of geophysical fields over wide ranges of scale, which had long been so often acknowledged and deplored, suddenly became handy. Recent illustrations are the possibility to track down in large date sets the Higgs boson of intermittence, i.e. a first order multifractal phase transition leading to self-organized criticality, and to simulate intermittent vector fields with the help of Lie cascades, based for instance on random Clifford algebra. It is rather significant that this revolution is no longer limited to fundamental and theoretical problems of geophysics, but now touches many applications including environmental management, in particular for urban management and resilience. These applications are particularly stimulating when taken in their full complexity.

  16. Practices to enable the geophysical research spectrum: from fundamentals to applications

    Kang, S.; Cockett, R.; Heagy, L. J.; Oldenburg, D.

    2016-12-01

    In a geophysical survey, a source injects energy into the earth and a response is measured. These physical systems are governed by partial differential equations and their numerical solutions are obtained by discretizing the earth. Geophysical simulations and inversions are tools for understanding physical responses and constructing models of the subsurface given a finite amount of data. SimPEG (http://simpeg.xyz) is our effort to synthesize geophysical forward and inverse methodologies into a consistent framework. The primary focus of our initial development has been on the electromagnetics (EM) package, with recent extensions to magnetotelluric, direct current (DC), and induced polarization. Across these methods, and applied geophysics in general, we require tools to explore and build an understanding of the physics (behaviour of fields, fluxes), and work with data to produce models through reproducible inversions. If we consider DC or EM experiments, with the aim of understanding responses from subsurface conductors, we require resources that provide multiple "entry points" into the geophysical problem. To understand the physical responses and measured data, we must simulate the physical system and visualize electric fields, currents, and charges. Performing an inversion requires that many moving pieces be brought together: simulation, physics, linear algebra, data processing, optimization, etc. Each component must be trusted, accessible to interrogation and manipulation, and readily combined in order to enable investigation into inversion methodologies. To support such research, we not only require "entry points" into the software, but also extensibility to new situations. In our development of SimPEG, we have sought to use leading practices in software development with the aim of supporting and promoting collaborations across a spectrum of geophysical research: from fundamentals to applications. Designing software to enable this spectrum puts unique

  17. 36 CFR 902.59 - Geological and geophysical information.

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Geological and geophysical information. 902.59 Section 902.59 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT... Geological and geophysical information. Any geological or geophysical information and data (including maps...

  18. 25 CFR 211.56 - Geological and geophysical permits.

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 211.56 Section 211.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations and Appeals § 211.56 Geological and geophysical permits. Permits to conduct geological and geophysical operations on Indian lands which do not...

  19. 25 CFR 212.56 - Geological and geophysical permits.

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Geological and geophysical permits. 212.56 Section 212.56... FOR MINERAL DEVELOPMENT Rents, Royalties, Cancellations, and Appeals § 212.56 Geological and geophysical permits. (a) Permits to conduct geological and geophysical operations on Indian lands which do not...

  20. Field Strain Measurement on the Fiber Scale in Carbon Fiber Reinforced Polymers Using Global Finite-Element Based Digital Image Correlation

    Tao, Ran

    2015-05-01

    Laminated composites are materials with complex architecture made of continuous fibers embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. This thesis is aimed to accurately measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. First, the theories of both local subset-based digital image correlation (DIC) and global finite-element based DIC are outlined. Second, in-situ secondary electron tensile images obtained by scanning electron microscopy (SEM) are post-processed by both DIC techniques. Finally, it is shown that when global DIC is applied with a conformal mesh, it can capture more accurately sharp local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset-based local DIC, finite-element based global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  1. Deep Interior: The first comprehensive geophysical investigation of an asteroid

    Asphaug, E.; Belton, M.; Klaasen, K.; McFadden, L.; Ostro, S.; Safaeinili, A.; Scheeres, D.; Sunshine, J.; Yeomans, D.

    Near-Earth Objects (NEOs) come closer to Earth than any other celestial body, and their compositions are represented on Earth by thousands of well-studied meteorites. Yet we understand neither their origin, evolution, nor their geophysical behavior. These secrets are locked up in their unexplored interiors. Goal 1 of the NASA Strategic Plan emphasizes the requirement to catalogue and understand NEOs down to 1 km diameter. Goal 4 urges us to understand natural processes at work in the low gravity environment. Goal 5 expresses the need to explore the solar system and to learn how planets originated and evolved. In response to the NASA Strategic Plan we are proposing a NASA Discovery mission whose primary science objective is to greatly advance the realization of these Goals by conducting the first investigation of the global geophysics of an asteroid. Radio reflection data from 5 km orbit about a 1 km NEO will provide a tomographic 3D image of electromagnetic properties. Mechanical properties will be examined in the simplest possible way, using explosions to initiate seismic cratering events and to expose diverse interior units for spectroscopic analysis. Deep Interior is the lowest-risk, lowest cost path towards attaining the required characterization of NEOs. It breaks new ground for future missions to asteroids and comets and facilitates the design of reliable NEO technologies. Our science goals are as follows, and the techniques (radio science, imaging, IR spectroscopy, active surface science) will be described at this meeting: Asteroid Interiors. Radio, gravity, and seismology experiments give a complete first picture of an asteroid's deep interior, resolving inclusions, voids and unit boundaries at ˜ 30 m scales, and determining global and regional mechanical properties. Surface Geophysics. Blast experiments explore the structure and mechanics of the upper meters, demonstrate microgravity cratering, trigger natural geomorphic events, and expose subsurface

  2. Neglected knowledge in geophysics: Patents - how to find them, how to use them and how to apply for them

    Wollny, K. G.

    2013-12-01

    their time, but maybe useful now, and to explore the historical background and/or timelines of inventions. Patent documents can help to avoid pitfalls and mistakes other experts might already have experienced and documented in describing the state of the art or the inspiration for their invention. It will be shown how to get access to these databases, how to use them to solve scientific problems and how to leverage search results to improve expertise, work experience or facilitate personal patent application. Patent documents resemble journal articles a lot - they contain an abstract, a description regarding the state of the art, the applicant's motivation to overcome a deficit, technical figures and claims to protect the invention. This structure is used globally for all patent documents. Besides the technical facts, they include the name of the inventor, the company applying for the patent, patent validity information and potential 'family members', which cover the same invention but often in other languages than the original patent document. To summarize, patent documents are a highly useful tool to strengthen one's knowledge in a practically orientated geophysical field and to widen the horizon to adjacent technical areas.

  3. SQUID technology for geophysical exploration

    Meyer, Hans-Georg; Stolz, R.; Chwala, A.; Schulz, M.

    2005-01-01

    We report on successful tests of planar LTS SQUID gradiometers on airborne platforms such as helicopter and aircraft. The system works stable and allows profile work without any constraints. In mobile applications the gradient resolution at low frequencies is dominated by motion noise, since the parasitic areas of the SQUID gradiometer lead to strong disturbances if the gradiometer is tilted in the homogenous Earth's magnetic field. The balance can be improved further by software using data of a SQUID magnetometer triple. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. THE SMALL BODY GEOPHYSICAL ANALYSIS TOOL

    Bercovici, Benjamin; McMahon, Jay

    2017-10-01

    The Small Body Geophysical Analysis Tool (SBGAT) that we are developing aims at providing scientists and mission designers with a comprehensive, easy to use, open-source analysis tool. SBGAT is meant for seamless generation of valuable simulated data originating from small bodies shape models, combined with advanced shape-modification properties.The current status of SBGAT is as follows:The modular software architecture that was specified in the original SBGAT proposal was implemented in the form of two distinct packages: a dynamic library SBGAT Core containing the data structure and algorithm backbone of SBGAT, and SBGAT Gui which wraps the former inside a VTK, Qt user interface to facilitate user/data interaction. This modular development facilitates maintenance and addi- tion of new features. Note that SBGAT Core can be utilized independently from SBGAT Gui.SBGAT is presently being hosted on a GitHub repository owned by SBGAT’s main developer. This repository is public and can be accessed at https://github.com/bbercovici/SBGAT. Along with the commented code, one can find the code documentation at https://bbercovici.github.io/sbgat-doc/index.html. This code documentation is constently updated in order to reflect new functionalities.SBGAT’s user’s manual is available at https://github.com/bbercovici/SBGAT/wiki. This document contains a comprehensive tutorial indicating how to retrieve, compile and run SBGAT from scratch.Some of the upcoming development goals are listed hereafter. First, SBGAT's dynamics module will be extented: the PGM algorithm is the only type of analysis method currently implemented. Future work will therefore consists in broadening SBGAT’s capabilities with the Spherical Harmonics Expansion of the gravity field and the calculation of YORP coefficients. Second, synthetic measurements will soon be available within SBGAT. The software should be able to generate synthetic observations of different type (radar, lightcurve, point clouds

  5. Geophysics of neutrinos is born

    Savatier, F.

    2005-01-01

    Beta minus decay is the prevailing radioactive decay in rocks inside the earth. One antineutrino and an amount of energy are released in each decay process, antineutrinos are elusive particles: they have no charge, almost no mass and pass through most matter without interacting with it. Detecting them is thus extremely difficult. The Kamland detector has been designed to do such a job. This detector is situated in a mine 1 km below the mount Ikenoyama in Japan. Within 2 years of operation a total of 152 neutrinos have been detected and among them only 25 are considered to be from terrestrial origin it means from uranium or thorium decay chains. The remaining, background neutrinos, come from nuclear power plants or from the interactions of cosmic muons with the earth. An important work of modelling of the earth crust was necessary to deduce from the number of antineutrinos detected, the global thermal power released inside the earth and due to the radioactivity. The mean value of the result bracket is 16.10 12 Watt. This value is to be compared to the thermal power that is necessary to trigger tectonics and volcanism on earth: 44.10 12 Watt. (A.C.)

  6. ETOPO1 1 Arc-Minute Global Relief Model

    National Oceanic and Atmospheric Administration, Department of Commerce — In August 2008, the National Geophysical Data Center (NGDC), an office of the National Oceanic and Atmospheric Administration (NOAA), developed the ETOPO1 Global...

  7. An MHD simulation model of time-dependent global solar corona with temporally varying solar-surface magnetic field maps

    Hayashi, K.

    2013-11-01

    We present a model of a time-dependent three-dimensional magnetohydrodynamics simulation of the sub-Alfvenic solar corona and super-Alfvenic solar wind with temporally varying solar-surface boundary magnetic field data. To (i) accommodate observational data with a somewhat arbitrarily evolving solar photospheric magnetic field as the boundary value and (ii) keep the divergence-free condition, we developed a boundary model, here named Confined Differential Potential Field model, that calculates the horizontal components of the magnetic field, from changes in the vertical component, as a potential field confined in a thin shell. The projected normal characteristic method robustly simulates the solar corona and solar wind, in response to the temporal variation of the boundary Br. We conduct test MHD simulations for two periods, from Carrington Rotation number 2009 to 2010 and from Carrington Rotation 2074 to 2075 at solar maximum and minimum of Cycle 23, respectively. We obtained several coronal features that a fixed boundary condition cannot yield, such as twisted magnetic field lines at the lower corona and the transition from an open-field coronal hole to a closed-field streamer. We also obtained slight improvements of the interplanetary magnetic field, including the latitudinal component, at Earth.

  8. Palaeomagnetism principles and applications in geology, geophysics and archaeology

    Tarling, D H

    1983-01-01

    Palaeomagnetism and archaeomagnetism are fascinating specialized studies because they are applicable to such a wide range of problems in geology, archaeology and geophysics. They can also be undertaken cheaply, when compared with most other geophysical techniques, and, at first sight, simply. In fact, real comprehension of the magnetic processes that have occurred in rocks and other types of material over several thousands or many millions of years is still extremely difficult to assess and measure. On this basis, this book cannot explain all such features, nor can it attempt to cover all the actual and potential applications of the method. All that can be attempted is to give an impression of the ways in which such techniques can be used in a wide variety of fields, and how these techniques are usually applied. The magnetization of rocks is, in fact, one of the earliest of the true sciences, but we are still not in a position to answer many of the problems posed. Consequently some of the examples given of ap...

  9. Geological and geophysical investigations at Sierra del Medio massif - Argentine

    Perucca, J.C.; Llambias, E.; Puigdomenech, H.H.; Cebrelli, E.; Castro, C.E.; Grassi, I.; Salinas, L.I.

    1987-01-01

    Geological investigations were performed at Sierra del Medio (Chubut Province), a mountainous massif of about 25 km by 8 km of migmatic origin, which emerges from a depressed tectonic trench or graben called Pampa de Gastre. The most ancient rocks belong to biotitic and anphibolic schist that passed almost entirely to tonalitoid migmatites with a second process producing granitic rocks. Boreholes were drilled on the basis of conclusions from Landsat satellites imagery and aerial photographic sets, folowed by field work on geological, petrographic, geophysical and hydrogeological features at surface, structural interpretation supported by geostatistical computations. Two sets of boreholes were drilled to investigate subsurface rock behaviour al 300 m depth and 800 m depth respectively, beginning at peripheral places and ending at the central part or selected site. Basic purposes of boreholes were to define structural and petrographic features of the rock massif by a good comprehension of master joints and faulting distribution with its belts of alteration mylonitization or brecciation, mechanical properties of samples, chemical composition and varitions, petrographic facies and mineralogy. Boreholes provided data to investigate joints, faults and dikes as general discontinuities for hydraulic research like permeability or effective hydraulic conductivity, and their geostatistical modelling. Boreholes are also being prepared for geophysical logging from which logthermal ones have already been completed. (Author) [es

  10. Review of geophysical characterization methods used at the Hanford Site

    GV Last; DG Horton

    2000-03-23

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

  11. Review of geophysical characterization methods used at the Hanford Site

    GV Last; DG Horton

    2000-01-01

    This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ''all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts

  12. Global gravity and the geodynamic model of the Earth

    Nedoma, J.

    1988-01-01

    Plate tectonic hypotheses require the formation of a new oceanic lithosphere at mid-oceanic ridges and imply the further modification and continued evolution towards the continental type of lithosphere in the regions of island arcs and orogenic belts. All these phenomena observed on the Earths's surface are results of all geodynamic processes passing through the Earth's interior. Since geodynamic processes change through the geological epochs, the gravity field also changes during the same geological periods. Thus, the paper is concerned with physical relationships between the global gravity field and the geodynamic processes as well as all geophysical fields affected by the geodynamic processes inside the Earth. The aim of this paper is to analyse the inner and outer gravity field of the Earth during the evolution of the Earth in the course of the geological epochs, and to build the generalized theory of the global gravity field of the Earth from the point of view of the global and local geodynamic processes taking place within the Earth's interior. (author)

  13. Advances in Airborne and Ground Geophysical Methods for Uranium Exploration

    2013-01-01

    One of the IAEA's statutory objectives is to 'seek to accelerate and enlarge the contribution of atomic energy to peace, health and prosperity throughout the world'. One way this objective is achieved is through the publication of a range of technical series. Two of these are the IAEA Nuclear Energy Series and the IAEA Safety Standards Series. According to Article III.A.6 of the IAEA Statute, the safety standards establish 'standards of safety for protection of health and minimization of danger to life and property.' The safety standards include the Safety Fundamentals, Safety Requirements and Safety Guides. These standards are written primarily in a regulatory style, and are binding on the IAEA for its own programmes. The principal users are the regulatory bodies in Member States and other national authorities. The IAEA Nuclear Energy Series comprises reports designed to encourage and assist R and D on, and application of, nuclear energy for peaceful uses. This includes practical examples to be used by owners and operators of utilities in Member States, implementing organizations, academia, and government officials, among others. This information is presented in guides, reports on technology status and advances, and best practices for peaceful uses of nuclear energy based on inputs from international experts. The IAEA Nuclear Energy Series complements the IAEA Safety Standards Series. According to current estimates, after 2050 available resources and cumulative uranium demand are expected to be balanced. Recent annual uranium production constitutes 65-75% of annual nuclear energy uranium requirements worldwide. With typical timeframes of between 15 and 40 years from the commencement of uranium exploration activities until uranium production, together with increasingly favourable uranium prices, many countries have seen a rise in uranium exploration activities since 2005. This experience and assessment of global energy needs support continued uranium exploration

  14. A global reference database from very high resolution commercial satellite data and methodology for application to Landsat derived 30 m continuous field tree cover data

    Pengra, Bruce; Long, Jordan; Dahal, Devendra; Stehman, Stephen V.; Loveland, Thomas R.

    2015-01-01

    The methodology for selection, creation, and application of a global remote sensing validation dataset using high resolution commercial satellite data is presented. High resolution data are obtained for a stratified random sample of 500 primary sampling units (5 km  ×  5 km sample blocks), where the stratification based on Köppen climate classes is used to distribute the sample globally among biomes. The high resolution data are classified to categorical land cover maps using an analyst mediated classification workflow. Our initial application of these data is to evaluate a global 30 m Landsat-derived, continuous field tree cover product. For this application, the categorical reference classification produced at 2 m resolution is converted to percent tree cover per 30 m pixel (secondary sampling unit)for comparison to Landsat-derived estimates of tree cover. We provide example results (based on a subsample of 25 sample blocks in South America) illustrating basic analyses of agreement that can be produced from these reference data. Commercial high resolution data availability and data quality are shown to provide a viable means of validating continuous field tree cover. When completed, the reference classifications for the full sample of 500 blocks will be released for public use.

  15. Geophysical Reservoir Evaluation of Obaiyed Field, Western Desert, Egypt

    Farag, Mohamed Ibrahim Abdel-Fattah Ibrahim

    2010-01-01

    Die Obaiyed-Gaslagerstätte liegt in der westlichen Wüste Ägyptens, etwa 50 km südlich der Mittelmeerküste. Das produzierte Gas entstammt dem oberen Safa-Member der Khatatba Formation (Mitteljura). Das obere Safa Reservoir ist zu einem wichtigen Ziel in der Erforschung des Obaiyed-Feldes geworden und hat dazu beigetragen, die Exploration im nordwestlichen Teil der Western Desert in Ägypten neu zu beleben. Daher ist das Hauptziel dieser Arbeit ist die Bewertung des Kohlenwasserstoff-Potentials ...

  16. Geophysical Exploration. New site exploration method

    Imai, Tsuneo; Otomo, Hideo; Sakayama, Toshihiko

    1988-07-25

    Geophysical exploration is used for geologic survey to serve purposes in civil engineering. New methods are being developed inside and outside Japan and are used to serve various purposes. This paper discusses recently developed techniques based on the measurement of seismic waves and electric potential. It also explains seismic tomography, radar tomography, and resistivity tomography which are included in the category of geotomography. At present, effort is being made to apply geophysical exploration technology to problems which were considered to be unsuitable for conventional exploration techniques. When such effort proceeds successfully, it is necessary to develop technology for presenting results quickly and exploration equipment which can work in various conditions. (10 figs, 15 refs)

  17. Geophysical contribution for Folha Patos (PI, Brazil)

    Rodrigues, J.C.; Mota, A.C.; Metelo, M.J.; Vasconcelos, R.M. de

    1990-01-01

    As a part of PLGB (Brazilian Geologic reconnaissance program), executed in 1986-1989 period by Companhia de Pesquisa de Recursos Minerais - CPRM to the Departamento Nacional da Producao Mineral - DNPM, geophysical studies were carried out in the Patos Quadrangle (SB. 24-Y-C-V). Gravimetric, magnetometric and scintillometric methods were performed over selected profiles, and the interpretation of aerial gamma-spectrometric maps (total, potassium, uranium and thorium channels) were integrated with geologic data. Computer programs Magpoly and Gravpoly were utilized in modelling geophysical surface data. Results of theses studies were auxiliary to the geological mapping of that area, specially in localizing lithological contacts and differentiations, tectonic structures, and revealed the structural compartimentation among crustal segments with distinct metamorphic grades. (author)

  18. Geophysical and atmospheric evolution of habitable planets.

    Lammer, Helmut; Selsis, Frank; Chassefière, Eric; Breuer, Doris; Griessmeier, Jean-Mathias; Kulikov, Yuri N; Erkaev, Nikolai V; Khodachenko, Maxim L; Biernat, Helfried K; Leblanc, Francois; Kallio, Esa; Lundin, Richard; Westall, Frances; Bauer, Siegfried J; Beichman, Charles; Danchi, William; Eiroa, Carlos; Fridlund, Malcolm; Gröller, Hannes; Hanslmeier, Arnold; Hausleitner, Walter; Henning, Thomas; Herbst, Tom; Kaltenegger, Lisa; Léger, Alain; Leitzinger, Martin; Lichtenegger, Herbert I M; Liseau, René; Lunine, Jonathan; Motschmann, Uwe; Odert, Petra; Paresce, Francesco; Parnell, John; Penny, Alan; Quirrenbach, Andreas; Rauer, Heike; Röttgering, Huub; Schneider, Jean; Spohn, Tilman; Stadelmann, Anja; Stangl, Günter; Stam, Daphne; Tinetti, Giovanna; White, Glenn J

    2010-01-01

    The evolution of Earth-like habitable planets is a complex process that depends on the geodynamical and geophysical environments. In particular, it is necessary that plate tectonics remain active over billions of years. These geophysically active environments are strongly coupled to a planet's host star parameters, such as mass, luminosity and activity, orbit location of the habitable zone, and the planet's initial water inventory. Depending on the host star's radiation and particle flux evolution, the composition in the thermosphere, and the availability of an active magnetic dynamo, the atmospheres of Earth-like planets within their habitable zones are differently affected due to thermal and nonthermal escape processes. For some planets, strong atmospheric escape could even effect the stability of the atmosphere.

  19. Karst aquifer characterization using geophysical remote sensing of dynamic recharge events

    Grapenthin, R.; Bilek, S. L.; Luhmann, A. J.

    2017-12-01

    Geophysical monitoring techniques, long used to make significant advances in a wide range of deeper Earth science disciplines, are now being employed to track surficial processes such as landslide, glacier, and river flow. Karst aquifers are another important hydrologic resource that can benefit from geophysical remote sensing, as this monitoring allows for safe, noninvasive karst conduit measurements. Conduit networks are typically poorly constrained, let alone the processes that occur within them. Geophysical monitoring can also provide a regionally integrated analysis to characterize subsurface architecture and to understand the dynamics of flow and recharge processes in karst aquifers. Geophysical signals are likely produced by several processes during recharge events in karst aquifers. For example, pressure pulses occur when water enters conduits that are full of water, and experiments suggest seismic signals result from this process. Furthermore, increasing water pressure in conduits during recharge events increases the load applied to conduit walls, which deforms the surrounding rock to yield measureable surface displacements. Measureable deformation should also occur with mass loading, with subsidence and rebound signals associated with increases and decreases of water mass stored in the aquifer, respectively. Additionally, geophysical signals will likely arise with turbulent flow and pore pressure change in the rock surrounding conduits. Here we present seismic data collected during a pilot study of controlled and natural recharge events in a karst aquifer system near Bear Spring, near Eyota, MN, USA as well as preliminary model results regarding the processes described above. In addition, we will discuss an upcoming field campaign where we will use seismometers, tiltmeters, and GPS instruments to monitor for recharge-induced responses in a FL, USA karst system with existing cave maps, coupling these geophysical observations with hydrologic and

  20. Geophysical investigation, Salmon Site, Lamar County, Mississippi

    1995-02-01

    Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C