WorldWideScience

Sample records for global forest cover

  1. Forest Cover Estimation in Ireland Using Radar Remote Sensing: A Comparative Analysis of Forest Cover Assessment Methodologies

    Science.gov (United States)

    Devaney, John; Barrett, Brian; Barrett, Frank; Redmond, John; O`Halloran, John

    2015-01-01

    Quantification of spatial and temporal changes in forest cover is an essential component of forest monitoring programs. Due to its cloud free capability, Synthetic Aperture Radar (SAR) is an ideal source of information on forest dynamics in countries with near-constant cloud-cover. However, few studies have investigated the use of SAR for forest cover estimation in landscapes with highly sparse and fragmented forest cover. In this study, the potential use of L-band SAR for forest cover estimation in two regions (Longford and Sligo) in Ireland is investigated and compared to forest cover estimates derived from three national (Forestry2010, Prime2, National Forest Inventory), one pan-European (Forest Map 2006) and one global forest cover (Global Forest Change) product. Two machine-learning approaches (Random Forests and Extremely Randomised Trees) are evaluated. Both Random Forests and Extremely Randomised Trees classification accuracies were high (98.1–98.5%), with differences between the two classifiers being minimal (forest area and an increase in overall accuracy of SAR-derived forest cover maps. All forest cover products were evaluated using an independent validation dataset. For the Longford region, the highest overall accuracy was recorded with the Forestry2010 dataset (97.42%) whereas in Sligo, highest overall accuracy was obtained for the Prime2 dataset (97.43%), although accuracies of SAR-derived forest maps were comparable. Our findings indicate that spaceborne radar could aid inventories in regions with low levels of forest cover in fragmented landscapes. The reduced accuracies observed for the global and pan-continental forest cover maps in comparison to national and SAR-derived forest maps indicate that caution should be exercised when applying these datasets for national reporting. PMID:26262681

  2. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges

    Science.gov (United States)

    Persson, U. Martin

    2017-01-01

    While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001–2011, by combining two “state-of-the-art” global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover). We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010’s Grassland class (which we interpret as pasture) being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010’s Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon). This further suggests that the approach taken here generally leads to an underestimation (of up to ~60%) of the role of pasture in replacing forest. Second, a large share (~33%) of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too poor for

  3. Combining global land cover datasets to quantify agricultural expansion into forests in Latin America: Limitations and challenges.

    Directory of Open Access Journals (Sweden)

    Florence Pendrill

    Full Text Available While we know that deforestation in the tropics is increasingly driven by commercial agriculture, most tropical countries still lack recent and spatially-explicit assessments of the relative importance of pasture and cropland expansion in causing forest loss. Here we present a spatially explicit quantification of the extent to which cultivated land and grassland expanded at the expense of forests across Latin America in 2001-2011, by combining two "state-of-the-art" global datasets (Global Forest Change forest loss and GlobeLand30-2010 land cover. We further evaluate some of the limitations and challenges in doing this. We find that this approach does capture some of the major patterns of land cover following deforestation, with GlobeLand30-2010's Grassland class (which we interpret as pasture being the most common land cover replacing forests across Latin America. However, our analysis also reveals some major limitations to combining these land cover datasets for quantifying pasture and cropland expansion into forest. First, a simple one-to-one translation between GlobeLand30-2010's Cultivated land and Grassland classes into cropland and pasture respectively, should not be made without caution, as GlobeLand30-2010 defines its Cultivated land to include some pastures. Comparisons with the TerraClass dataset over the Brazilian Amazon and with previous literature indicates that Cultivated land in GlobeLand30-2010 includes notable amounts of pasture and other vegetation (e.g. in Paraguay and the Brazilian Amazon. This further suggests that the approach taken here generally leads to an underestimation (of up to ~60% of the role of pasture in replacing forest. Second, a large share (~33% of the Global Forest Change forest loss is found to still be forest according to GlobeLand30-2010 and our analysis suggests that the accuracy of the combined datasets, especially for areas with heterogeneous land cover and/or small-scale forest loss, is still too

  4. Mapping Forest Cover and Forest Cover Change with Airborne S-Band Radar

    Directory of Open Access Journals (Sweden)

    Ramesh K. Ningthoujam

    2016-07-01

    Full Text Available Assessments of forest cover, forest carbon stocks and carbon emissions from deforestation and degradation are increasingly important components of sustainable resource management, for combating biodiversity loss and in climate mitigation policies. Satellite remote sensing provides the only means for mapping global forest cover regularly. However, forest classification with optical data is limited by its insensitivity to three-dimensional canopy structure and cloud cover obscuring many forest regions. Synthetic Aperture Radar (SAR sensors are increasingly being used to mitigate these problems, mainly in the L-, C- and X-band domains of the electromagnetic spectrum. S-band has not been systematically studied for this purpose. In anticipation of the British built NovaSAR-S satellite mission, this study evaluates the benefits of polarimetric S-band SAR for forest characterisation. The Michigan Microwave Canopy Scattering (MIMICS-I radiative transfer model is utilised to understand the scattering mechanisms in forest canopies at S-band. The MIMICS-I model reveals strong S-band backscatter sensitivity to the forest canopy in comparison to soil characteristics across all polarisations and incidence angles. Airborne S-band SAR imagery over the temperate mixed forest of Savernake Forest in southern England is analysed for its information content. Based on the modelling results, S-band HH- and VV-polarisation radar backscatter and the Radar Forest Degradation Index (RFDI are used in a forest/non-forest Maximum Likelihood classification at a spatial resolution of 6 m (70% overall accuracy, κ = 0.41 and 20 m (63% overall accuracy, κ = 0.27. The conclusion is that S-band SAR such as from NovaSAR-S is likely to be suitable for monitoring forest cover and its changes.

  5. Global analysis of the protection status of the world's forests

    DEFF Research Database (Denmark)

    Schmitt, Christine B.; Burgess, Neil David; Coad, Lauren

    2009-01-01

    This study presents a global analysis of forest cover and forest protection. An updated Global Forest Map (using MODIS2005) provided a current assessment of forest cover within 20 natural forest types. This map was overlaid onto WWF realms and ecoregions to gain additional biogeographic information...... on forest distribution. Using the 2008 World Database on Protected Areas, percentage forest cover protection was calculated globally, within forest types, realms and ecoregions, and within selected areas of global conservation importance. At the 10% tree cover threshold, global forest cover was 39 million...... km2. Of this, 7.7% fell within protected areas under IUCN management categories I-IV. With the inclusion of IUCN categories V and VI, the level of global forest protection increased to 13.5%. Percentage forest protection (IUCN I-IV) varied greatly between realms from 5.5% (Palearctic) to 13...

  6. High-resolution global maps of 21st-century forest cover change.

    Science.gov (United States)

    Hansen, M C; Potapov, P V; Moore, R; Hancher, M; Turubanova, S A; Tyukavina, A; Thau, D; Stehman, S V; Goetz, S J; Loveland, T R; Kommareddy, A; Egorov, A; Chini, L; Justice, C O; Townshend, J R G

    2013-11-15

    Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.

  7. Accuracy Assessment of Satellite Derived Forest Cover Products in South and Southeast Asia

    Science.gov (United States)

    Gilani, H.; Xu, X.; Jain, A. K.

    2017-12-01

    South and Southeast Asia (SSEA) region occupies 16 % of worlds land area. It is home to over 50% of the world's population. The SSEA's countries are experiencing significant land-use and land-cover changes (LULCCs), primarily in agriculture, forest, and urban land. For this study, we compiled four existing global forest cover maps for year 2010 by Gong et al.(2015), Hansen et al. (2013), Sexton et al.(2013) and Shimada et al. (2014), which were all medium resolution (≤30 m) products based on Landsat and/or PALSAR satellite images. To evaluate the accuracy of these forest products, we used three types of information: (1) ground measurements, (2) high resolution satellite images and (3) forest cover maps produced at the national scale. The stratified random sampling technique was used to select a set of validation data points from the ground and high-resolution satellite images. Then the confusion matrix method was used to assess and rank the accuracy of the forest cover products for the entire SSEA region. We analyzed the spatial consistency of different forest cover maps, and further evaluated the consistency with terrain characteristics. Our study suggests that global forest cover mapping algorithms are trained and tested using limited ground measurement data. We found significant uncertainties in mountainous areas due to the topographical shadow effect and the dense tree canopies effects. The findings of this study will facilitate to improve our understanding of the forest cover dynamics and their impacts on the quantities and pathways of terrestrial carbon and nitrogen fluxes. Gong, P., et al. (2012). "Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data." International Journal of Remote Sensing 34(7): 2607-2654. Hansen, M. C., et al. (2013). "High-Resolution Global Maps of 21st-Century Forest Cover Change." Science 342(6160): 850-853. Sexton, J. O., et al. (2013). "Global, 30-m resolution

  8. Land cover mapping of North and Central America—Global Land Cover 2000

    Science.gov (United States)

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  9. Historical satellite data used to map Pan-Amazon forest cover

    Science.gov (United States)

    Kalluri, Satya; Desch, Arthur; Curry, Troy; Altstatt, Alice; Devers, Didier; Townshend, John; Tucker, Compton

    Deforestation in the Brazilian Amazon is well documented and the contributions of Brazilian deforestation to global change have been extensively discussed in both scientific and popular literature [e.g., Skole and Tucker, 1993]. However, deforestation within the non-Brazilian tropics of South America has received much less attention. The Pan-Amazon region covering Venezuela, Colombia, Ecuador, Peru, and Bolivia comprises ˜2 million km2 of tropical forest that is under increasing pressure from logging and development. Wall-to-wall high-resolution forest cover maps are needed to properly document the complex distribution patterns of deforestation in the Pan-Amazon [Tucker and Townshend, 2000]. The Deforestation Mapping Group at the University of Marylands Global Land Cover Facility is using Landsat data to generate tropical forest cover maps in this region (Figure l). The study shows that while rates of forest loss are generally lower than those in Brazil, there are hot spots where deforestation rates run as high as 2,200 km2 yr1.

  10. Forest cover of North America in the 1970s mapped using Landsat MSS data

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2015-12-01

    The distribution and changes in Earth's forests impact hydrological, biogeochemical, and energy fluxes, as well as ecosystems' capacity to support biodiversity and human economies. Long-term records of forest cover are needed across a broad range of investigation, including climate and carbon-cycle modeling, hydrological studies, habitat analyzes, biological conservation, and land-use planning. Satellite-based observations enable mapping and monitoring of forests at ecologically and economically relevant resolutions and continental or even global extents. Following early forest-mapping efforts using coarser resolution remote sensing data such as the Advanced Very High Resolution Radiometer (AVHRR) and MODerate-resolution Imaging Spectroradiometer (MODIS), forests have been mapped regionally at developed by the Global Land Cover Facility (GLCF) as reference, we developed an automated approach to detect forests using MSS data by leveraging the multispectral and phenological characteristics of forests observed in MSS time-series. The forest-cover map is produced with layers representing the year of observation, detection of forest-cover change relative to 1990, and the uncertainty of forest-cover and -change layers. The approach has been implemented with open-source libraries to facilitate processing large volumes of Landsat MSS images on high-performance computing machines. As the first result of our global mapping effort, we present the forest cover for North America. More than 25,000 Landsat MSS scenes were processed to provide a 120-meter resolution forest cover for North America, which will be made publicly available on the GLCF website (http://www.landcover.org).

  11. Strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1994-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990 and the rate of change in forest cover between 1980 and 1990. The following are described here: (1) the...

  12. Improving snow cover mapping in forests through the use of a canopy reflectance model

    International Nuclear Information System (INIS)

    Klein, A.G.; Hall, D.K.; Riggs, G.A.

    1998-01-01

    MODIS, the moderate resolution imaging spectro radiometer, will be launched in 1998 as part of the first earth observing system (EOS) platform. Global maps of land surface properties, including snow cover, will be created from MODIS imagery. The MODIS snow-cover mapping algorithm that will be used to produce daily maps of global snow cover extent at 500 m resolution is currently under development. With the exception of cloud cover, the largest limitation to producing a global daily snow cover product using MODIS is the presence of a forest canopy. A Landsat Thematic Mapper (TM) time-series of the southern Boreal Ecosystem–Atmosphere Study (BOREAS) study area in Prince Albert National Park, Saskatchewan, was used to evaluate the performance of the current MODIS snow-cover mapping algorithm in varying forest types. A snow reflectance model was used in conjunction with a canopy reflectance model (GeoSAIL) to model the reflectance of a snow-covered forest stand. Using these coupled models, the effects of varying forest type, canopy density, snow grain size and solar illumination geometry on the performance of the MODIS snow-cover mapping algorithm were investigated. Using both the TM images and the reflectance models, two changes to the current MODIS snow-cover mapping algorithm are proposed that will improve the algorithm's classification accuracy in forested areas. The improvements include using the normalized difference snow index and normalized difference vegetation index in combination to discriminate better between snow-covered and snow-free forests. A minimum albedo threshold of 10% in the visible wavelengths is also proposed. This will prevent dense forests with very low visible albedos from being classified incorrectly as snow. These two changes increase the amount of snow mapped in forests on snow-covered TM scenes, and decrease the area incorrectly identified as snow on non-snow-covered TM scenes. (author)

  13. Statistical strategies for global monitoring of tropical forests

    Science.gov (United States)

    Raymond L. Czaplewski

    1991-01-01

    The Food and Agricultural Organization (FAO) of the United Nations is conducting a global assessment of tropical forest resources, which will be accomplished by mid-1992. This assessment requires, in part, estimates of the total area of tropical forest cover in 1990, and the rate of change in forest cover between 1980 and 1990. This paper describes: (1) the strategic...

  14. Changes of forest cover and disturbance regimes in the mountain forests of the Alps☆

    Science.gov (United States)

    Bebi, P.; Seidl, R.; Motta, R.; Fuhr, M.; Firm, D.; Krumm, F.; Conedera, M.; Ginzler, C.; Wohlgemuth, T.; Kulakowski, D.

    2017-01-01

    Natural disturbances, such as avalanches, snow breakage, insect outbreaks, windthrow or fires shape mountain forests globally. However, in many regions over the past centuries human activities have strongly influenced forest dynamics, especially following natural disturbances, thus limiting our understanding of natural ecological processes, particularly in densely-settled regions. In this contribution we briefly review the current understanding of changes in forest cover, forest structure, and disturbance regimes in the mountain forests across the European Alps over the past millennia. We also quantify changes in forest cover across the entire Alps based on inventory data over the past century. Finally, using the Swiss Alps as an example, we analyze in-depth changes in forest cover and forest structure and their effect on patterns of fire and wind disturbances, based on digital historic maps from 1880, modern forest cover maps, inventory data on current forest structure, topographical data, and spatially explicit data on disturbances. This multifaceted approach presents a long-term and detailed picture of the dynamics of mountain forest ecosystems in the Alps. During pre-industrial times, natural disturbances were reduced by fire suppression and land-use, which included extraction of large amounts of biomass that decreased total forest cover. More recently, forest cover has increased again across the entire Alps (on average +4% per decade over the past 25–115 years). Live tree volume (+10% per decade) and dead tree volume (mean +59% per decade) have increased over the last 15–40 years in all regions for which data were available. In the Swiss Alps secondary forests that established after 1880 constitute approximately 43% of the forest cover. Compared to forests established previously, post-1880 forests are situated primarily on steep slopes (>30°), have lower biomass, a more aggregated forest structure (primarily stem-exclusion stage), and have been more

  15. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  16. Economic Development and Forest Cover: Evidence from Satellite Data.

    Science.gov (United States)

    Crespo Cuaresma, Jesús; Danylo, Olha; Fritz, Steffen; McCallum, Ian; Obersteiner, Michael; See, Linda; Walsh, Brian

    2017-01-16

    Ongoing deforestation is a pressing, global environmental issue with direct impacts on climate change, carbon emissions, and biodiversity. There is an intuitive link between economic development and overexploitation of natural resources including forests, but this relationship has proven difficult to establish empirically due to both inadequate data and convoluting geo-climactic factors. In this analysis, we use satellite data on forest cover along national borders in order to study the determinants of deforestation differences across countries. Controlling for trans-border geo-climactic differences, we find that income per capita is the most robust determinant of differences in cross-border forest cover. We show that the marginal effect of per capita income growth on forest cover is strongest at the earliest stages of economic development, and weakens in more advanced economies, presenting some of the strongest evidence to date for the existence of at least half of an environmental Kuznets curve for deforestation.

  17. Economic Development and Forest Cover: Evidence from Satellite Data

    Science.gov (United States)

    Crespo Cuaresma, Jesús; Danylo, Olha; Fritz, Steffen; McCallum, Ian; Obersteiner, Michael; See, Linda; Walsh, Brian

    2017-01-01

    Ongoing deforestation is a pressing, global environmental issue with direct impacts on climate change, carbon emissions, and biodiversity. There is an intuitive link between economic development and overexploitation of natural resources including forests, but this relationship has proven difficult to establish empirically due to both inadequate data and convoluting geo-climactic factors. In this analysis, we use satellite data on forest cover along national borders in order to study the determinants of deforestation differences across countries. Controlling for trans-border geo-climactic differences, we find that income per capita is the most robust determinant of differences in cross-border forest cover. We show that the marginal effect of per capita income growth on forest cover is strongest at the earliest stages of economic development, and weakens in more advanced economies, presenting some of the strongest evidence to date for the existence of at least half of an environmental Kuznets curve for deforestation.

  18. Highlighting continued uncertainty in global land cover maps for the user community

    International Nuclear Information System (INIS)

    Fritz, Steffen; See, Linda; McCallum, Ian; Schill, Christian; Obersteiner, Michael; Van der Velde, Marijn; Boettcher, Hannes; Havlík, Petr; Achard, Frédéric

    2011-01-01

    In the last 10 years a number of new global datasets have been created and new, more sophisticated algorithms have been designed to classify land cover. GlobCover and MODIS v.5 are the most recent global land cover products available, where GlobCover (300 m) has the finest spatial resolution of other comparable products such as MODIS v.5 (500 m) and GLC-2000 (1 km). This letter shows that the thematic accuracy in the cropland domain has decreased when comparing these two latest products. This disagreement is also evident spatially when examining maps of cropland and forest disagreement between GLC-2000, MODIS and GlobCover. The analysis highlights the continued uncertainty surrounding these products, with a combined forest and cropland disagreement of 893 Mha (GlobCover versus MODIS v.5). This letter suggests that data sharing efforts and the provision of more in situ data for training, calibration and validation are very important conditions for improving future global land cover products.

  19. The global extent and determinants of savanna and forest as alternative biome states.

    Science.gov (United States)

    Staver, A Carla; Archibald, Sally; Levin, Simon A

    2011-10-14

    Theoretically, fire-tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire-driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. We use tree cover, climate, fire, and soils data sets to show that tree cover is globally discontinuous. Climate influences tree cover globally but, at intermediate rainfall (1000 to 2500 millimeters) with mild seasonality (less than 7 months), tree cover is bimodal, and only fire differentiates between savanna and forest. These may be alternative states over large areas, including parts of Amazonia and the Congo. Changes in biome distributions, whether at the cost of savanna (due to fragmentation) or forest (due to climate), will be neither smooth nor easily reversible.

  20. CASA Forest Cover Change Data Sets

    Science.gov (United States)

    Potter, Christopher S.

    2012-01-01

    Deforestation and forest fires are global land cover changes that can be caused by both natural and human factors. Although monitoring forest fires in near-real time is critical for operational wildfire management, mapping historical wildfires in a spatially explicit fashion is also important for a number of reasons, including climate change studies (e.g., examining the relationship between rising temperatures and frequency of fires), fuel load management (e.g., deciding when and where to conduct controlled burns), and carbon cycle studies (e.g., quantifying how much CO2 is emitted by fires and for emissions reduction efforts under the United Nations programs for Reducing Emissions from Deforestation and Degradation -- REDD).

  1. Do Relocated Villages Experience More Forest Cover Change? Resettlements, Shifting Cultivation and Forests in the Lao PDR

    Directory of Open Access Journals (Sweden)

    Sébastien Boillat

    2015-06-01

    Full Text Available This study explores the relationships between forest cover change and the village resettlement and land planning policies implemented in Laos, which have led to the relocation of remote and dispersed populations into clustered villages with easier access to state services and market facilities. We used the Global Forest Cover Change (2000–2012 and the most recent Lao Agricultural Census (2011 datasets to assess forest cover change in resettled and non-resettled villages throughout the country. We also reviewed a set of six case studies and performed an original case study in two villages of Luang Prabang province with 55 households, inquiring about relocation, land losses and intensification options. Our results show that resettled villages have greater baseline forest cover and total forest loss than most villages in Laos but not significant forest loss relative to that baseline. Resettled villages are consistently associated with forested areas, minority groups, and intermediate accessibility. The case studies highlight that resettlement coupled with land use planning does not necessarily lead to the abandonment of shifting cultivation or affect forest loss but lead to a re-spatialization of land use. This includes clustering of forest clearings, which might lead to fallow shortening and land degradation while limited intensification options exist in the resettled villages. This study provides a contribution to studying relationships between migration, forest cover change, livelihood strategies, land governance and agricultural practices in tropical forest environments.

  2. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    Science.gov (United States)

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.

  3. Forest Loss in Protected Areas and Intact Forest Landscapes: A Global Analysis.

    Science.gov (United States)

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H; Jalava, Mika; Räsänen, Timo A

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest landscapes (IFLs) have not so far been systematically assessed. Moreover, the impact of protection on preserving the IFLs is not well understood. In this study we conducted a consistent assessment of the global forest loss in PAs and IFLs over the period 2000-2012. We used recently published global remote sensing based spatial forest cover change data, being a uniform and consistent dataset over space and time, together with global datasets on PAs' and IFLs' locations. Our analyses revealed that on a global scale 3% of the protected forest, 2.5% of the intact forest, and 1.5% of the protected intact forest were lost during the study period. These forest loss rates are relatively high compared to global total forest loss of 5% for the same time period. The variation in forest losses and in protection effect was large among geographical regions and countries. In some regions the loss in protected forests exceeded 5% (e.g. in Australia and Oceania, and North America) and the relative forest loss was higher inside protected areas than outside those areas (e.g. in Mongolia and parts of Africa, Central Asia, and Europe). At the same time, protection was found to prevent forest loss in several countries (e.g. in South America and Southeast Asia). Globally, high area-weighted forest loss rates of protected and intact forests were associated with high gross domestic product and in the case of protected forests also with high proportions of agricultural land. Our findings reinforce the need for improved understanding of the reasons for the high forest losses in PAs and IFLs and strategies to prevent further losses.

  4. Percent Forest Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCTFuture) generally indicate healthier ecosystems and cleaner surface water....

  5. Gainesville's urban forest canopy cover

    Science.gov (United States)

    Francisco Escobedo; Jennifer A. Seitz; Wayne Zipperer

    2009-01-01

    Ecosystem benefits from trees are linked directly to the amount of healthy urban forest canopy cover. Urban forest cover is dynamic and changes over time due to factors such as urban development, windstorms, tree removals, and growth. The amount of a city's canopy cover depends on its land use, climate, and people's preferences. This fact sheet examines how...

  6. National forest cover monitoring in mainland South and Southeast Asia: method development and capacity building

    Science.gov (United States)

    Tyukavina, A.; Potapov, P.; Hansen, M.; Talero, Y.; Turubanova, S.; Pickering, J.; Pickens, A. H.; Quyen, N. H.; Spirovska Kono, M.

    2017-12-01

    Timely forest monitoring data produced following good practice guidance are required for national reporting on greenhouse gas emissions, national forest resource assessments, and monitoring for REDD+ projects. Remote sensing provides a cost-efficient supplement to national forest inventories, and is often the single viable source of data on forest extent for countries still in the process of establishing field-based inventories. Operational forest monitoring using remotely sensed data requires technical capacity to store, process, and analyze high volumes of satellite imagery. The University of Maryland Global Land Analysis and Discovery (UMD GLAD) lab possesses such technical capacity and is seeking to transfer it to national agencies responsible for forest reporting, national academic institutions, and NGOs. Our projects in South and Southeast Asia include regional forest monitoring in the lower Mekong region in support of the Regional Land Cover Monitoring System (funded by the NASA SERVIR program) and building capacity for forest monitoring in Nepal, Bangladesh, Vietnam, Cambodia, Laos, and Thailand (funded by the SilvaCarbon program). Our forest monitoring approach is a regional scale adaptation of methods developed for the global analysis (Hansen et al. 2013). The methodology to track large-scale clearing of natural forests (e.g. in Brazil and Indonesia) is well established; however, the methods for small-scale disturbance mapping and tree cover rotation assessment are still in development. In Bangladesh our mapping of tree cover change between 2000-2014 revealed that 54% of the tree canopy cover was outside forests, and the majority of canopy changes were smaller than 0.1 ha. Landsat's 30-m resolution was therefore insufficient to monitor changes in tree cover. By using a probability sample of high resolution (circa 1 m) imagery we were able to quantify change in tree canopy cover outside forests (including village woodlots, tree plantations and agroforestry

  7. An Assessment of Forest Cover Trends in South and North Korea, From 1980 to 2010

    Science.gov (United States)

    Engler, Robin; Teplyakov, Victor; Adams, Jonathan M.

    2014-01-01

    It is generally believed that forest cover in North Korea has undergone a substantial decrease since 1980, while in South Korea, forest cover has remained relatively static during that same period of time. The United Nations Food and Agriculture Organization (FAO) Forest Resources Assessments—based on the reported forest inventories from North and South Korea—suggest a major forest cover decrease in North Korea, but only a slight decrease in South Korea during the last 30 years. In this study, we seek to check and validate those assessments by comparing them to independently derived forest cover maps compiled for three time intervals between 1990 and 2010, as well as to provide a spatially explicit view of forest cover change in the Korean Peninsula since the 1990s. We extracted tree cover data for the Korean Peninsula from existing global datasets derived from satellite imagery. Our estimates, while qualitatively supporting the FAO results, show that North Korea has lost a large number of densely forested areas, and thus in this sense has suffered heavier forest loss than the FAO assessment suggests. Given the limited time interval studied in our assessment, the overall forest loss from North Korea during the whole span of time since 1980 may have been even heavier than in our estimate. For South Korea, our results indicate that the forest cover has remained relatively stable at the national level, but that important variability in forest cover evolution exists at the regional level: While the northern and western provinces show an overall decrease in forested areas, large areas in the southeastern part of the country have increased their forest cover.

  8. Evaluation of forest cover estimates for Haiti using supervised classification of Landsat data

    Science.gov (United States)

    Churches, Christopher E.; Wampler, Peter J.; Sun, Wanxiao; Smith, Andrew J.

    2014-08-01

    This study uses 2010-2011 Landsat Thematic Mapper (TM) imagery to estimate total forested area in Haiti. The thematic map was generated using radiometric normalization of digital numbers by a modified normalization method utilizing pseudo-invariant polygons (PIPs), followed by supervised classification of the mosaicked image using the Food and Agriculture Organization (FAO) of the United Nations Land Cover Classification System. Classification results were compared to other sources of land-cover data produced for similar years, with an emphasis on the statistics presented by the FAO. Three global land cover datasets (GLC2000, Globcover, 2009, and MODIS MCD12Q1), and a national-scale dataset (a land cover analysis by Haitian National Centre for Geospatial Information (CNIGS)) were reclassified and compared. According to our classification, approximately 32.3% of Haiti's total land area was tree covered in 2010-2011. This result was confirmed using an error-adjusted area estimator, which predicted a tree covered area of 32.4%. Standardization to the FAO's forest cover class definition reduces the amount of tree cover of our supervised classification to 29.4%. This result was greater than the reported FAO value of 4% and the value for the recoded GLC2000 dataset of 7.0%, but is comparable to values for three other recoded datasets: MCD12Q1 (21.1%), Globcover (2009) (26.9%), and CNIGS (19.5%). We propose that at coarse resolutions, the segmented and patchy nature of Haiti's forests resulted in a systematic underestimation of the extent of forest cover. It appears the best explanation for the significant difference between our results, FAO statistics, and compared datasets is the accuracy of the data sources and the resolution of the imagery used for land cover analyses. Analysis of recoded global datasets and results from this study suggest a strong linear relationship (R2 = 0.996 for tree cover) between spatial resolution and land cover estimates.

  9. Climate and Pest-Driven Geographic Shifts in Global Coffee Production: Implications for Forest Cover, Biodiversity and Carbon Storage

    Science.gov (United States)

    Magrach, Ainhoa; Ghazoul, Jaboury

    2015-01-01

    Coffee is highly sensitive to temperature and rainfall, making its cultivation vulnerable to geographic shifts in response to a changing climate. This could lead to the establishment of coffee plantations in new areas and potential conflicts with other land covers including natural forest, with consequent implications for biodiversity and ecosystem services. We project areas suitable for future coffee cultivation based on several climate scenarios and expected responses of the coffee berry borer, a principle pest of coffee crops. We show that the global climatically-suitable area will suffer marked shifts from some current major centres of cultivation. Most areas will be suited to Robusta coffee, demand for which could be met without incurring forest encroachment. The cultivation of Arabica, which represents 70% of consumed coffee, can also be accommodated in the future, but only by incurring some natural forest loss. This has corresponding implications for carbon storage, and is likely to affect areas currently designated as priority areas for biodiversity. Where Arabica coffee does encroach on natural forests, we project average local losses of 35% of threatened vertebrate species. The interaction of climate and coffee berry borer greatly influences projected outcomes. PMID:26177201

  10. Comparison results of forest cover mapping of Peninsular Malaysia using geospatial technology

    Science.gov (United States)

    Hamid, Wan Abdul; Abd Rahman, Shukri B. Wan

    2016-06-01

    Climate change and global warming transpire due to several factors. Among them is deforestation which occur mostly in developing countries including Malaysia where forested areas are converted to other land use for tangible economic returns and to a smaller extent, as subsistence for local communities. As a cause for concern, efforts have been taken by the World Resource Institute (WRI) and World Wildlife Fund (WWF) to monitor forest loss using geospatial technology - interpreting time-based remote sensing imageries and producing statistics of forested areas lost since 2001. In Peninsular Malaysia, the Forestry Department of Peninsular Malaysia(FDPM) has conducted forest cover mapping for the region using the same technology since 2011, producing GIS maps for 2009-2010,2011-2012,2013-2014 and 2015. This paper focuses on the comparative study of the results generated from WRI,WWF and FDPM interpretations between 2010 and 2015, the methodologies used, the similarities and differences, challenges and recommendations for future enhancement of forest cover mapping technique.

  11. Simulation of Forest Cover Dynamics for Eastern Eurasian Boreal Forests

    Science.gov (United States)

    Shugart, H. H.; Yan, X.; Zhang, N.; Isaev, A. S.; Shuman, J. K.

    2006-12-01

    We are developing and testing a boreal zone forest dynamics model capable of simulating the forest cover dynamics of the Eurasian boreal forest, a major biospheric ecosystem with potentially large roles in the planetary carbon cycle and in the feedback between terrestrial surface and the atmosphere. In appreciating the role of this region in the coupling between atmosphere and terrestrial surface, on must understand the interactions between CO2 source/sink relationships (associated with growing or clearing forests) and the albedo effects (from changes in terrestrial surface cover). There is some evidence that in the Eurasian Boreal zone, the Carbon budget effects from forest change may oppose the albedo changes. This creates complex feedbacks between surface and atmosphere and motivates the need for a forest dynamics model that simultaneous represents forest vegetation and carbon storage and release. A forest dynamics model applied to Eastern Eurasia, FAREAST, has been tested using three types of information: 1. Direct species composition comparisons between simulated and observed mature forests at the same locations; 2. Forest type comparisons between simulated and observed forests along altitudinal gradients of several different mountains; 3. Comparison with forest stands in different succession stages of simulated forests. Model comparisons with independent data indicate the FAREAST model is capable of representing many of the broad features of the forests of Northeastern China. After model validation in the Northeast China region, model applications were developed for the forests of the Russian Far East. Continental-scale forest cover can be simulated to a relatively realistic degree using a forest gap model with standard representations of individual-plant processes. It appears that such a model, validated relatively locally in this case, in Northeastern China, can then be applied over a much larger region and under conditions of climatic change.

  12. Chapter 6: New Products and Product Categories in the Global Forest Sector

    Science.gov (United States)

    Zhiyong Cai; Alan W. Rudie; Nicole M. Stark; Ronald C. Sabo; Sally A. Ralph

    2013-01-01

    Forests, covering about 30% of the earth’s land area, are a major component in the global ecosystem, influencing the carbon cycle, climate change, habitat protection, clean water supplies, and sustainable economies (FAO 2011). Globally, the vast cellulosic resource found in forests provides about half of all major industrial raw materials for renewable energy, chemical...

  13. Annual global tree cover estimated by fusing optical and SAR satellite observations

    Science.gov (United States)

    Feng, M.; Sexton, J. O.; Channan, S.; Townshend, J. R.

    2017-12-01

    Tree cover defined structurally as the proportional, vertically projected area of vegetation (including leaves, stems, branches, etc.) of woody plants above a given height affects terrestrial energy and water exchanges, photosynthesis and transpiration, net primary production, and carbon and nutrient fluxes. Tree cover provides a measurable attribute upon which forest cover may be defined. Changes in tree cover over time can be used to monitor and retrieve site-specific histories of forest disturbance, succession, and degradation. Measurements of Earth's tree cover have been produced at regional, national, and global extents. However, most representations are static, and those for which multiple time periods have been produced are neither intended nor adequate for consistent, long-term monitoring. Moreover, although a substantial proportion of change has been shown to occur at resolutions below 250 m, existing long-term, Landsat-resolution datasets are either produced as static layers or with annual, five- or ten-year temporal resolution. We have developed an algorithms to retrieve seamless and consistent, sub-hectare resolution estimates of tree-canopy from optical and radar satellite data sources (e.g., Landsat, Sentinel-2, and ALOS-PALSAR). Our approach to estimation enables assimilation of multiple data sources and produces estimates of both cover and its uncertainty at the scale of pixels. It has generated the world's first Landsat-based percent tree cover dataset in 2013. Our previous algorithms are being adapted to produce prototype percent-tree and water-cover layers globally in 2000, 2005, and 2010—as well as annually over North and South America from 2010 to 2015—from passive-optical (Landsat and Sentinel-2) and SAR measurements. Generating a global, annual dataset is beyond the scope of this support; however, North and South America represent all of the world's major biomes and so offer the complete global range of environmental sources of error and

  14. Three Global Land Cover and Use Stage considering Environmental Condition and Economic Development

    Science.gov (United States)

    Lee, W. K.; Song, C.; Moon, J.; Ryu, D.

    2016-12-01

    The Mid-Latitude zone can be broadly defined as part of the hemisphere between around 30° - 60° latitude. This zone is a home to over more than 50% of the world population and encompasses about 36 countries throughout the principal regions which host most of the global problems related to development and poverty. Mid-Latitude region and its ecotone demands in-depth analysis, however, latitudinal approach has not been widely recognized, considering that many of natural resources and environment indicators, as well as social and economic indicators are based on administrative basis or by country and regional boundaries. This study sets the land cover change and use stage based on environmental condition and economic development. Because various land cover and use among the regions, form vegetated parts of East Asia and Mediterranean to deserted parts of Central Asia, the forest area was varied between countries. In addition, some nations such as North Korea, Afghanistan, Pakistan showed decreasing trends in forest area whereas some nations showed increasing trends in forest area. The economic capacity for environmental activities and policies for restoration were different among countries. By adopting the standard from IMF or World Bank, developing and developed counties were classified. Based on the classification, this study suggested the land cover and use stages as degradation, restoration, and sustainability. As the degradation stage, the nations which had decreasing forest area with less environmental restoration capacity based on economic size were selected. As the restoration stage, the nation which had increasing forest area or restoration capacity were selected. In the case of the sustainability, the nation which had enough restoration capacity with increasing forest area or small ratio in forest area decreasing were selected. In reviewing some of the past and current major environmental challenges that regions of Mid-Latitudes are facing, grouping by

  15. Forest value and optimal rotations in continuous cover forestry

    DEFF Research Database (Denmark)

    Jacobsen, Jette Bredahl; Jensen, Frank; Thorsen, Bo Jellesmark

    2018-01-01

    The Faustmann forest rotation model is a celebrated contribution in economics. The model provides a forest value expression and allows a solution to the optimal rotation problem valid for perpetual rotations of even-aged forest stands. However, continuous forest cover forest management systems......, but rigorous mathematical model of the continuous cover forest, which strictly focuses on the area use dynamics that such an uneven-aged forest must have in equilibrium. This implies explicitly accounting for area reallocation and for weighting the productivity of each age class by the area occupied. We...... present results for unrestricted as well as area-restricted versions of the models. We find that land values are unambiguously higher in the continuous cover forest models compared with the even-aged models. Under area restrictions, the optimal rotation age in a continuous cover forest model...

  16. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    Science.gov (United States)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  17. Global extent and determinants of savanna and forest as alternative biome states

    CSIR Research Space (South Africa)

    Staver, C

    2011-10-01

    Full Text Available Theoretically, fire–tree cover feedbacks can maintain savanna and forest as alternative stable states. However, the global extent of fire- driven discontinuities in tree cover is unknown, especially accounting for seasonality and soils. The authors...

  18. Development of a Unique Web2.0 Interface for Global Collaboration in Land Cover Change Research

    Science.gov (United States)

    Dunham, M.; Boriah, S.; Mithal, V.; Garg, A.; Steinbach, M.; Kumar, V.; Potter, C. S.; Klooster, S.; Castilla-Rubio, J.

    2010-12-01

    The ability to detect changes in forest cover is of critical importance for both economic and scientific reasons, e.g. using forests for economic carbon sink management and studying natural and anthropogenic impacts on ecosystems. The contribution of greenhouse gases from deforestation is one of the most uncertain elements of the global carbon cycle. In fact, changes in forests account for as much as 20% of the greenhouse gas emissions in the atmosphere, an amount second only to fossil fuel emissions. Thus, a key ingredient for effective forest management, whether for carbon trading or other purposes, is quantifiable knowledge about changes in forest cover. Rich amounts of data from remotely-sensed images are now becoming available for detecting changes in forests or more generally, land cover. However, in spite of the importance of this problem and the considerable advances made over the last few years in high-resolution satellite data acquisition, data mining, and online mapping tools and services, end users still lack practical tools to help them manage and transform this data into actionable knowledge of changes in forest ecosystems that can be used for decision making and policy planning purposes. We have developed innovations in a number of technical areas with the goal of providing actionable knowledge to end users: (i) identification of changes in global forest cover, (ii) characterization of those changes, (iii) discovery of relationships between the number, magnitude, and type of these changes with natural and anthropogenic variables, and (iv) a web-based platform that supports interactive visualization of disturbances and relationships. The focus of this abstract is on the interactive web-based platform. This key component of the project is a graphical user interface built on the Flash framework. The viewer is a groundbreaking, multi-purpose application used for everything from algorithm refinement and data analysis for the team to a demonstration

  19. Deforestation and rainfall recycling in Brazil: Is decreased forest cover connectivity associated with decreased rainfall connectivity?

    Science.gov (United States)

    Adera, S.; Larsen, L.; Levy, M. C.; Thompson, S. E.

    2017-12-01

    In the Brazilian rainforest-savanna transition zone, deforestation has the potential to significantly affect rainfall by disrupting rainfall recycling, the process by which regional evapotranspiration contributes to regional rainfall. Understanding rainfall recycling in this region is important not only for sustaining Amazon and Cerrado ecosystems, but also for cattle ranching, agriculture, hydropower generation, and drinking water management. Simulations in previous studies suggest complex, scale-dependent interactions between forest cover connectivity and rainfall. For example, the size and distribution of deforested patches has been found to affect rainfall quantity and spatial distribution. Here we take an empirical approach, using the spatial connectivity of rainfall as an indicator of rainfall recycling, to ask: as forest cover connectivity decreased from 1981 - 2015, how did the spatial connectivity of rainfall change in the Brazilian rainforest-savanna transition zone? We use satellite forest cover and rainfall data covering this period of intensive forest cover loss in the region (forest cover from the Hansen Global Forest Change dataset; rainfall from the Climate Hazards Infrared Precipitation with Stations dataset). Rainfall spatial connectivity is quantified using transfer entropy, a metric from information theory, and summarized using network statistics. Networks of connectivity are quantified for paired deforested and non-deforested regions before deforestation (1981-1995) and during/after deforestation (2001-2015). Analyses reveal a decline in spatial connectivity networks of rainfall following deforestation.

  20. Tropical forest policies for the global climate

    International Nuclear Information System (INIS)

    De Groot, W.T.; Kamminga, E.M.

    1995-01-01

    A summary is given of the approach and findings of the NRP project 'Local Actors and Global Tree Cover Policies'. The aim of this project was to identify the most effective and efficient options for global climate policies focusing on the tropical forest. Tropical deforestation is a process with very complex and variable causes. In the project's conclusions, therefore, much care has been given to arrive at a coherent image of what really counts most in the myriad of factors, actors, policy levels and policy options. 5 refs

  1. Mixed Effectiveness of Africa's Tropical Protected Areas for Maintaining Forest Cover: Insights from a Global Forest Change Dataset

    Science.gov (United States)

    De Vos, A.; Bowker, J.; Ament, J.; Cumming, G.

    2016-12-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forest habitats. Tropical forests house a significant portion of the world's remaining biodiversity and are being heavily impacted by anthropogenic activity. We used Hansen et al.'s (2013) global forest change dataset to analyse park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control samples. We found that, although significant geographical variation exists between parks, the majority of African parks experienced significantly lower deforestation within their boundaries. Accessibility was a significant driver of deforestation, with less accessible areas having a higher probability of forest loss in ineffective parks and more accessible areas having a higher probability of forest loss in effective parks. Smaller parks were less effective at preventing forest loss inside park boundaries than larger parks, and older parks were less effective than younger parks. Our analysis, which is the first individual and national assessment of park effectiveness across Africa, demonstrates the complexity of factors influencing the ability of a park to curb deforestation within its boundaries and highlights the potential of web-based remote sensing technology in monitoring protected area effectiveness.

  2. Tropical Montane Cloud Forests: Hydrometeorological variability in three neighbouring catchments with different forest cover

    Science.gov (United States)

    Ramírez, Beatriz H.; Teuling, Adriaan J.; Ganzeveld, Laurens; Hegger, Zita; Leemans, Rik

    2017-09-01

    Mountain areas are characterized by a large heterogeneity in hydrological and meteorological conditions. This heterogeneity is currently poorly represented by gauging networks and by the coarse scale of global and regional climate and hydrological models. Tropical Montane Cloud Forests (TMCFs) are found in a narrow elevation range and are characterized by persistent fog. Their water balance depends on local and upwind temperatures and moisture, therefore, changes in these parameters will alter TMCF hydrology. Until recently the hydrological functioning of TMCFs was mainly studied in coastal regions, while continental TMCFs were largely ignored. This study contributes to fill this gap by focusing on a TMCF which is located on the northern eastern Andes at an elevation of 1550-2300 m asl, in the Orinoco river basin highlands. In this study, we describe the spatial and seasonal meteorological variability, analyse the corresponding catchment hydrological response to different land cover, and perform a sensitivity analysis on uncertainties related to rainfall interpolation, catchment area estimation and streamflow measurements. Hydro-meteorological measurements, including hourly solar radiation, temperature, relative humidity, wind speed, precipitation, soil moisture and streamflow, were collected from June 2013 to May 2014 at three gauged neighbouring catchments with contrasting TMCF/grassland cover and less than 250 m elevation difference. We found wetter and less seasonally contrasting conditions at higher elevations, indicating a positive relation between elevation and fog or rainfall persistence. This pattern is similar to that of other eastern Andean TMCFs, however, the study site had higher wet season rainfall and lower dry season rainfall suggesting that upwind contrasts in land cover and moisture can influence the meteorological conditions at eastern Andean TMCFs. Contrasting streamflow dynamics between the studied catchments reflect the overall system response

  3. Forest cover disturbances in the South Taiga of West Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Dyukarev, E A; Pologova, N N; Golovatskaya, E A; Dyukarev, A G, E-mail: egor@imces.ru [Institute of Monitoring of Climatic and Ecological Systems SB RAS, Akademicheskii Prospekt 10/3 (Russian Federation)

    2011-07-15

    Analysis of vegetation cover and tendencies in forest cover changes at a typical site in the south of West Siberia was performed using remote sensing observations from Landsat. The Northern Eurasia Land Cover legend was used for the assessment of unsupervised classification results. The land cover maps constructed have shown that about half of the study area is occupied by wetlands with several distinctively different vegetation types. The area studied is typical for the South Taiga zone (ecoregion) of Western Siberia from the Ob' river to the Irtysh river, where loamy and clayey soil forming rocks are widespread. Similar vegetation structures dominate over 600 000 km{sup 2}, or about 20%, of the West Siberia area. Analyses of the forest cover changes show that the forest cover loss is not very significant. The area of forest disturbed in 1990-9 is equal to 16 008 ha. The area of forest disturbances during the 2000-7 period was about twice as high (30 907 ha). The main reasons for the forest reduction are intensive forest harvesting and strong windthrow. The high sustainability of the region studied against anthropogenic impacts is explained by the high overall wetness of the territory, the small population density, and the prevalence of deciduous forests at different succession stages with rich vegetation cover.

  4. Forests as landscapes of social inequality: tropical forest cover and land distribution among shifting cultivators

    Directory of Open Access Journals (Sweden)

    Oliver T. Coomes

    2016-09-01

    Full Text Available Can social inequality be seen imprinted in a forest landscape? We studied the relationship between land holding, land use, and inequality in a peasant community in the Peruvian Amazon where farmers practice swidden-fallow cultivation. Longitudinal data on land holding, land use, and land cover were gathered through field-level surveys (n = 316 and household interviews (n = 51 in 1994/1995 and 2007. Forest cover change between 1965 and 2007 was documented through interpretation of air photos and satellite imagery. We introduce the concept of "land use inequality" to capture differences across households in the distribution of forest fallowing and orchard raising as key land uses that affect household welfare and the sustainability of swidden-fallow agriculture. We find that land holding, land use, and forest cover distribution are correlated and that the forest today reflects social inequality a decade prior. Although initially land-poor households may catch up in terms of land holdings, their use and land cover remain impoverished. Differential land use investment through time links social inequality and forest cover. Implications are discussed for the study of forests as landscapes of inequality, the relationship between social inequality and forest composition, and the forest-poverty nexus.

  5. Optimal use of land surface temperature data to detect changes in tropical forest cover

    Science.gov (United States)

    Van Leeuwen, T. T.; Frank, A. J.; Jin, Y.; Smyth, P.; Goulden, M.; van der Werf, G.; Randerson, J. T.

    2011-12-01

    Rapid and accurate assessment of global forest cover change is needed to focus conservation efforts and to better understand how deforestation is contributing to the build up of atmospheric CO2. Here we examined different ways to use remotely sensed land surface temperature (LST) to detect changes in tropical forest cover. In our analysis we used monthly 0.05×0.05 degree Terra MODerate Resolution Imaging Spectroradiometer (MODIS) observations of LST and PRODES (Program for the Estimation of Deforestation in the Brazilian Amazon) estimates of forest cover change. We also compared MODIS LST observations with an independent estimate of forest cover loss derived from MODIS and Landsat observations. Our study domain of approximately 10×10 degree included most of the Brazilian state of Mato Grosso. For optimal use of LST data to detect changes in tropical forest cover in our study area, we found that using data sampled during the end of the dry season (~1-2 months after minimum monthly precipitation) had the greatest predictive skill. During this part of the year, precipitation was low, surface humidity was at a minimum, and the difference between day and night LST was the largest. We used this information to develop a simple temporal sampling algorithm appropriate for use in pan-tropical deforestation classifiers. Combined with the normalized difference vegetation index (NDVI), a logistic regression model using day-night LST did moderately well at predicting forest cover change. Annual changes in day-night LST difference decreased during 2006-2009 relative to 2001-2005 in many regions within the Amazon, providing independent confirmation of lower deforestation levels during the latter part of this decade as reported by PRODES. The use of day-night LST differences may be particularly valuable for use with satellites that do not have spectral bands that allow for the estimation of NDVI or other vegetation indices.

  6. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  7. Forest Aboveground Biomass Mapping and Canopy Cover Estimation from Simulated ICESat-2 Data

    Science.gov (United States)

    Narine, L.; Popescu, S. C.; Neuenschwander, A. L.

    2017-12-01

    The assessment of forest aboveground biomass (AGB) can contribute to reducing uncertainties associated with the amount and distribution of terrestrial carbon. With a planned launch date of July 2018, the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) will provide data which will offer the possibility of mapping AGB at global scales. In this study, we develop approaches for utilizing vegetation data that will be delivered in ICESat-2's land-vegetation along track product (ATL08). The specific objectives are to: (1) simulate ICESat-2 photon-counting lidar (PCL) data using airborne lidar data, (2) utilize simulated PCL data to estimate forest canopy cover and AGB and, (3) upscale AGB predictions to create a wall-to-wall AGB map at 30-m spatial resolution. Using existing airborne lidar data for Sam Houston National Forest (SHNF) located in southeastern Texas and known ICESat-2 beam locations, PCL data are simulated from discrete return lidar points. We use multiple linear regression models to relate simulated PCL metrics for 100 m segments along the ICESat-2 ground tracks to AGB from a biomass map developed using airborne lidar data and canopy cover calculated from the same. Random Forest is then used to create an AGB map from predicted estimates and explanatory data consisting of spectral metrics derived from Landsat TM imagery and land cover data from the National Land Cover Database (NLCD). Findings from this study will demonstrate how data that will be acquired by ICESat-2 can be used to estimate forest structure and characterize the spatial distribution of AGB.

  8. A multi-scale assessment of human and environmental constraints on forest land cover change on the Oregon (USA) coast range.

    Science.gov (United States)

    Michael C. Wimberly; Janet L. Ohmann

    2004-01-01

    Human modification of forest habitats is a major component of global environmental change. Even areas that remain predominantly forested may be changed considerably by human alteration of historical disturbance regimes. To better understand human influences on the abundance and pattern of forest habitats, we studied forest land cover change from 1936 to 1996 in a 25...

  9. A Comparison of Novel Optical Remote Sensing-Based Technologies for Forest-Cover/Change Monitoring

    Directory of Open Access Journals (Sweden)

    Gillian V. Lui

    2015-03-01

    Full Text Available Remote sensing is gaining considerable traction in forest monitoring efforts, with the Carnegie Landsat Analysis System lite (CLASlite software package and the Global Forest Change dataset (GFCD being two of the most recently developed optical remote sensing-based tools for analysing forest cover and change. Due to the relatively nascent state of these technologies, their abilities to classify land cover and monitor forest dynamics have yet to be evaluated against more established approaches. Here, we compared maps of forest cover and change produced by the more traditional supervised classification approach with those produced by CLASlite and the GFCD, working with imagery collected over Sierra Leone, West Africa. CLASlite maps of forest change from 2001–2007 and 2007–2014 exhibited the highest overall accuracies (79.1% and 89.6%, respectively and, importantly, the greatest capacity to discriminate natural from planted mature forest growth. CLASlite’s comparative advantage likely derived from its more robust sub-pixel classification logic and numerous user-defined parameters, which resulted in classified products with greater site relevance than those of the two other classification approaches. In light of today’s continuously growing body of analytical toolsets for remotely sensed data, our study importantly elucidates the ways in which methodological processes and limitations inherent in certain classification tools can impact the maps they are capable of producing, and demonstrates the need to understand and weigh such factors before any one tool is selected for a given application.

  10. Global demand for gold is another threat for tropical forests

    International Nuclear Information System (INIS)

    Alvarez-Berríos, Nora L; Mitchell Aide, T

    2015-01-01

    The current global gold rush, driven by increasing consumption in developing countries and uncertainty in financial markets, is an increasing threat for tropical ecosystems. Gold mining causes significant alteration to the environment, yet mining is often overlooked in deforestation analyses because it occupies relatively small areas. As a result, we lack a comprehensive assessment of the spatial extent of gold mining impacts on tropical forests. In this study, we provide a regional assessment of gold mining deforestation in the tropical moist forest biome of South America. Specifically, we analyzed the patterns of forest change in gold mining sites between 2001 and 2013, and evaluated the proximity of gold mining deforestation to protected areas (PAs). The forest cover maps were produced using the Land Mapper web application and images from the MODIS satellite MOD13Q1 vegetation indices 250 m product. Annual maps of forest cover were used to model the incremental change in forest in ∼1600 potential gold mining sites between 2001–2006 and 2007–2013. Approximately 1680 km 2 of tropical moist forest was lost in these mining sites between 2001 and 2013. Deforestation was significantly higher during the 2007–2013 period, and this was associated with the increase in global demand for gold after the international financial crisis. More than 90% of the deforestation occurred in four major hotspots: Guianan moist forest ecoregion (41%), Southwest Amazon moist forest ecoregion (28%), Tapajós–Xingú moist forest ecoregion (11%), and Magdalena Valley montane forest and Magdalena–Urabá moist forest ecoregions (9%). In addition, some of the more active zones of gold mining deforestation occurred inside or within 10 km of ∼32 PAs. There is an urgent need to understand the ecological and social impacts of gold mining because it is an important cause of deforestation in the most remote forests in South America, and the impacts, particularly in aquatic systems

  11. National Level Assessment of Mangrove Forest Cover in Pakistan

    Science.gov (United States)

    Abbas, S.; Qamer, F. M.; Hussain, N.; Saleem, R.; Nitin, K. T.

    2011-09-01

    Mangroves ecosystems consist of inter tidal flora and fauna found in the tropical and subtropical regions of the world. Mangroves forest is a collection of halophytic trees, shrubs, and other plants receiving inputs from regular tidal flushing and from freshwater streams and rivers. A global reduction of 25 % mangroves' area has been observed since 1980 and it is categorized as one of to the most threatened and vulnerable ecosystems of the world. Forest resources in Pakistan are being deteriorating both quantitatively and qualitatively due to anthropogenic activities, climatic v and loose institutional management. According to the FAO (2007), extent of forest cover of Pakistan in 2005 is 1,902,000 ha, which is 2.5% of its total land area. Annual change rate during 2000-2005 was -2.1% which is highest among all the countries in Asia. The Indus delta region contains the world's fifth-largest mangrove forest which provides a range of important ecosystem services, including coastal stabilisation, primary production and provision of nursery habitat for marine fish. Given their ecological importance in coastal settings, mangroves receive special attention in the assessment of conservation efforts and sustainable coastal developments. Coastline of Pakistan is 1050km long shared by the provinces, Sind (350km) and Baluchistan (700 km). The coastline, with typical arid subtropical climate, possesses five significant sites that are blessed with mangroves. In the Sindh province, mangroves are found in the Indus Delta and Sandspit. The Indus Delta is host to the most extensive mangroves areas and extends from Korangi Creek in the West to Sir Creek in the East, whereas Sandspit is a small locality in the West of Karachi city. In the Balochistan province, mangroves are located at three sites, Miani Hor, Kalmat Khor and Jiwani. Contemporary methods of Earth observation sciences are being incorporated as an integral part of environmental assessment related studies in coastal areas

  12. Monitoring the Extent of Forests on National to Global Scales

    Science.gov (United States)

    Townshend, J.; Townshend, J.; Hansen, M.; DeFries, R.; DeFries, R.; Sohlberg, R.; Desch, A.; White, B.

    2001-05-01

    Information on forest extent and change is important for many purposes, including understanding the global carbon cycle and managing natural resources. International statistics on forest extent are generated using many different sources often producing inconsistent results spatially and through time. Results will be presented comparing forest extent derived from the recent global Food and Agricultural Organization's (FAO) FRA 2000 report with products derived using wall-to-wall Landsat, AVHRR and MODIS data sets. The remotely sensed data sets provide consistent results in terms of total area despite considerable differences in spatial resolution. Although the location of change can be satisfactorily detected with all three remotely sensed data sets, reliable measurement of change can only be achieved through use of Landsat-resolution data. Contrary to the FRA 2000 results we find evidence of an increase in deforestation rates in the late 1990s in several countries. Also we have found evidence of considerable changes in some countries for which little or no change is reported by FAO. The results indicate the benefits of globally consistent analyses of forest cover based on multiscale remotely sensed data sets rather than a reliance on statistics generated by individual countries with very different definitions of forest and methods used to derive them.

  13. Forest value and optimal rotations in continuous cover forestry

    DEFF Research Database (Denmark)

    Jacobsen, Jette Bredahl; Jensen, Frank; Thorsen, Bo Jellesmark

    The Faustmann forest rotation model is a celebrated contribution in economics. The model provides a forest value expression and allows a solution to the optimal rotation problem valid for perpetual rotations of even-aged forest stands. However, continuous forest cover forest management systems......, but rigorous mathematical model of the continuous cover forest, which strictly focuses on the area use dynamics that such an uneven-aged forest must have in equilibrium. This implies explicitly accounting for area reallocation and for weighting the productivity of each age class by the area occupied. The model...... allows for a simple expression for forest value and the derivation of conditions for the optimal rotation age. The model also makes straightforward comparisons with the well-known Faustmann model possible. We present results for unrestricted as well as area-restricted versions of the models. We find...

  14. Global Mangrove Forests Distribution, 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Mangrove Forests Distribution, 2000 data set is a compilation of the extent of mangroves forests from the Global Land Survey and the Landsat archive with...

  15. Mean species cover: a harmonized indicator of shrub cover for forest inventories

    Science.gov (United States)

    Iciar Alberdi; Sonia Condés; Ronald E. Mcroberts; Susanne Winter

    2018-01-01

    Because shrub cover is related to many forest ecosystem functions, it is one of the most relevant variables for describing these communities. Nevertheless, a harmonized indicator of shrub cover for large-scale reporting is lacking. The aims of the study were threefold: to define a shrub indicator that can be used by European countries for harmonized shrub cover...

  16. Sustaining forest landscape connectivity under different land cover change scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Rubio, L.; Rodriguez-Freire, M.; Mateo-Sanchez, M. C.; Estreguil, C.; Saura, S.

    2012-11-01

    Managing forest landscapes to sustain functional connectivity is considered one of the key strategies to counteract the negative effects of climate and human-induced changes in forest species pools. With this objective, we evaluated whether a robust network of forest connecting elements can be identified so that it remains efficient when facing different types of potential land cover changes that may affect forest habitat networks and ecological fluxes. For this purpose we considered changes both in the forested areas and in the non-forest intervening landscape matrix. We combined some of the most recent developments in graph theory with models of land cover permeability and least-cost analysis through the forest landscape. We focused on a case of study covering the habitat of a forest dwelling bird (nuthatch, Sitta europaea) in the region of Galicia (NW Spain). Seven land-use change scenarios were analysed for their effects on connecting forest elements (patches and links): one was the simplest case in which the landscape is represented as a binary forest/non-forest pattern (and where matrix heterogeneity is disregarded), four scenarios in which forest lands were converted to other cover types (to scrubland due to wildfires, to extensive and intensive agriculture, and to urban areas), and two scenarios that only involved changes in the non-forested matrix (re naturalization and intensification). Our results show that while the network of connecting elements for the species was very robust to the conversion of the forest habitat patches to different cover types, the different change scenarios in the landscape matrix could more significantly weaken its long-term validity and effectiveness. This is particularly the case when most of the key connectivity providers for the nuthatch are located outside the protected areas or public forests in Galicia, where biodiversity-friendly measures might be more easily implemented. We discuss how the methodology can be applied to

  17. Forest cover change and fragmentation using Landsat data in Maçka State Forest Enterprise in Turkey.

    Science.gov (United States)

    Cakir, Günay; Sivrikaya, Fatih; Keleş, Sedat

    2008-02-01

    Monitoring forest cover change and understanding the dynamic of forest cover is increasingly important in sustainable development and management of forest ecosystems. This paper uses remote sensing (RS) techniques to monitor forest cover change in Maçka State Forest Enterprise (MSFE) located in NE of Turkey through 1975 to 2000 and then analyses spatial and temporal changes in forest cover by Geographical Information Systems (GIS) and FRAGSTATStrade mark. Forest cover changes were detected from a time series of satellite images of Landsat MSS in 1975, Landsat TM in 1987, and Landsat ETM+ in 2000 using RS and GIS. The results showed that total forest area, productive forest area and degraded forest area increased while broadleaf forest area and non forest area decreased. Mixed forest and degraded forest increased during the first (1975-1987) period, but decreased during the second (1987-2000) period. During the whole study period, the annual forestation rate was 152 ha year(-1), equivalent to 0.27% year(-1) using the compound-interest-rate formula. The total number of patches increased from 36,204 to 48,092 (33%), and mean size of forest patch (MPS) decreased from 2.8 ha to 2.1 ha during a 25 year period. Number of smaller patches (patches in 0-100 ha size class) increased, indicating more fragmented landscape over time that might create a risk for the maintenance of biodiversity of the area. While total population increased from 1975 to 2000 (3.7%), rural population constantly decreased. The increase of forest areas may well be explained by the fact that demographic movement of rural areas concentrated into Maçka City Center. These figures also indicated that decrease in the rural population might likely lead to the release of human pressure to forest areas, probably resulting in a positive development of forest areas.

  18. Reviewing efforts in global forest conservation for sustainable forest ...

    African Journals Online (AJOL)

    Reviewing efforts in global forest conservation for sustainable forest management: The World Wide Fund (WWF) case study. ... Global Journal of Pure and Applied Sciences. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current ...

  19. Forest cover of Champaign County, Illinois in 1993

    Science.gov (United States)

    Jesus Danilo Chinea; Louis R. Iverson

    1997-01-01

    The forest cover of Champaign County, in east-central Illinois, was mapped from 1993 aerial photography and entered in a geographical information system database. One hundred and six forest patches cover 3,380 ha. These patches have a mean area of 32 ha, a mean perimeter of 4,851 m, a mean perimeter to area ratio of 237, a fractal dimension of 1.59, and a mean nearest...

  20. Forest land cover continues to exacerbate freshwater acidification despite decline in sulphate emissions

    International Nuclear Information System (INIS)

    Dunford, Robert W.; Donoghue, Daniel N.M.; Burt, Tim P.

    2012-01-01

    Evidence from a multi-date regional-scale analysis of both high-flow and annual-average water quality data from Galloway, south-west Scotland, demonstrates that forest land cover continues to exacerbate freshwater acidification. This is in spite of significant reductions in airborne pollutants. The relationship between freshwater sulphate and forest cover has decreased from 1996 to 2006 indicating a decrease in pollutant scavenging. The relationship between forest cover and freshwater acidity (pH) is, however, still present over the same period, and does not show conclusive signs of having declined. Furthermore, evidence for forest cover contributing to a chlorine bias in marine ion capture suggests that forest scavenging of sea-salts may mean that the forest acidification effect may continue in the absence of anthropogenic pollutant inputs, particularly in coastal areas. - Highlights: ► Forest cover and water chemistry remain linked despite decreased sulphate emissions. ► Forest cover has significant relationships SO 4 2− , Cl − , Na + , pH, ANC and Na:Cl ratio. ► Forest cover: pH relationships shows some evidence of decline 1996–2006. ► Forest cover: freshwater sulphate relationships show evidence of decline 1996–2006. ► Natural forest-mechanisms may exacerbate acidification, particularly sea-salt scavenging. - Relationships between forest land cover and freshwater pH continue to be evident despite declines in anthropogenic pollutant sulphate deposition; sea-salt scavenging may play a role.

  1. Forest Cover Associated with Improved Child Health and Nutrition: Evidence from the Malawi Demographic and Health Survey and Satellite Data

    Science.gov (United States)

    Johnson, Kiersten B.; Jacob, Anila; Brown, Molly Elizabeth

    2013-01-01

    Healthy forests provide human communities with a host of important ecosystem services, including the provision of food, clean water, fuel, and natural medicines. Yet globally, about 13 million hectares of forests are lost every year, with the biggest losses in Africa and South America. As biodiversity loss and ecosystem degradation due to deforestation continue at unprecedented rates, with concomitant loss of ecosystem services, impacts on human health remain poorly understood. Here, we use data from the 2010 Malawi Demographic and Health Survey, linked with satellite remote sensing data on forest cover, to explore and better understand this relationship. Our analysis finds that forest cover is associated with improved health and nutrition outcomes among children in Malawi. Children living in areas with net forest cover loss between 2000 and 2010 were 19% less likely to have a diverse diet and 29% less likely to consume vitamin A-rich foods than children living in areas with no net change in forest cover. Conversely, children living in communities with higher percentages of forest cover were more likely to consume vitamin A-rich foods and less likely to experience diarrhea. Net gain in forest cover over the 10-year period was associated with a 34% decrease in the odds of children experiencing diarrhea (P5.002). Given that our analysis relied on observational data and that there were potential unknown factors for which we could not account, these preliminary findings demonstrate only associations, not causal relationships, between forest cover and child health and nutrition outcomes. However, the findings raise concerns about the potential short- and long-term impacts of ongoing deforestation and ecosystem degradation on community health in Malawi, and they suggest that preventing forest loss and maintaining the ecosystems services of forests are important factors in improving human health and nutrition outcomes.

  2. Forest loss in protected areas and intact forest landscapes : A global analysis

    NARCIS (Netherlands)

    Heino, Matias; Kummu, Matti; Makkonen, Marika; Mulligan, Mark; Verburg, Peter H.; Jalava, Mika; Räsänen, Timo A.

    2015-01-01

    In spite of the high importance of forests, global forest loss has remained alarmingly high during the last decades. Forest loss at a global scale has been unveiled with increasingly finer spatial resolution, but the forest extent and loss in protected areas (PAs) and in large intact forest

  3. Forests and global warming

    International Nuclear Information System (INIS)

    Curren, T.

    1991-04-01

    The importance of forests to Canada, both in economic and environmental terms, is indisputable. A warmer global climate may well have profound effects on the Canadian boreal forest, and at least some of the effects will not be beneficial. With the state of the current knowledge of climate processes and climate change it is not possible to predict the extent or rate of projected changes of anthropogenic origin. Given these uncertainties, the appropriate course of action for the Canadian forest sector is to develop policies and strategies which will make good sense under the current climatic regime, and which will also be appropriate for actions in a warmer climate scenario. The business as usual approach is not acceptable in the context of pollution control as it has become clear that anthropogenic emissions of greenhouse gases and other pollutants must be substantially reduced, both to prevent (or at least slow the rate of) possible global warming, and to reduce impacts on the biophysical environment and human health. Effective mitigative actions must be introduced on both a national and global scale. Forest management policies more effectively geared to the sustainability of forests are needed. The programs that are developed out of such policies must be cognizant of the real possibility that climate in the present boreal forest regions may change in the near future. 13 refs

  4. Forest Cover Change Analysis in Inner Mongolia Using Remote Sensing Data

    Science.gov (United States)

    Xie, S.; Gong, J.; Huang, X.

    2018-04-01

    Forest is the lung of the earth, and it has important effect on maintaining the ecological balance of the whole earth. This study was conducted in Inner Mongolia during the year 1990-2015. Land use and land cover data were used to obtain forest cover change of Inner Mongolia. In addition, protected area data, road data, ASTER GDEM data were combined with forest cover change data to analyze the relationship between them. Moreover, patch density and landscape shape index were calculated to analyze forest change in perspective of landscape aspect. The results indicated that forest area increased overall during the study period. However, a few cities still had a phenomenon of reduced forest area. Results also demonstrated that the construction of protected area had positive effect on protecting forest while roads may disturbed forest due to human activities. In addition, forest patches in most of cities of Inner Mongolia tended to be larger and less fragmented. This paper reflected forest change in Inner Mongolia objectively, which is helpful for policy making by government.

  5. Global spatial assessment of WUI and related land cover in Portugal

    Science.gov (United States)

    Tonini, Marj; Parente, Joana; Pereira, Mário G.

    2017-04-01

    Forest fires as hazardous events are assuming an increasing importance all around the world, especially in relation to climate changes and to urban sprawl, which makes it difficult to outline a border between human infrastructures and wildland areas. This zone, known as the Wildland Urban Interface (WUI), is defined as the area where structures and other human development meet or intermingle with undeveloped wildland (USDA 2001). Its extension is influenced by anthropogenic features, since, as it was proved, the distance to roads and houses negatively influence the probability of forest fires ignitions, while the population density positively affects it. Land use is also a crucial feature to be considered in the analyses of the impact of forest fires, and each natural, semi-natural and artificial land cover can be affected in a different proportion. The aim of the present study is to investigate and mapping the wildland urban interface and its temporal dynamic in Portugal at global scale. Secondly, it aims at providing a quantitative characterization of forest fires occurred in the last few decades (1990 - 2012) in relation to the burned area and the land covers evolution. The National mapping burnt area dataset (by the Institute for the Conservation of Nature and Forests) provided the information allowing to precisely localize forest fires. The land cover classes were derived from the Corinne Land Cover, available for four periods (1990-2000-2006-2012). The following two classes were retained to outline the WUI: 1) artificial surfaces, as representative of the human development; 2) forest and semi-natural area, as representative of undeveloped wildland. First, we investigated the distribution of the burned areas among the different detailed land covers classes. Then, to map the WUI, we considered a buffer distance around artificial surfaces located in proximity of forests and semi-natural areas. The descriptive statistic carried out individually within each

  6. Global assessment of promising forest management practices for sequestration of carbon

    International Nuclear Information System (INIS)

    Winjum, J.K.; Dixon, R.K.; Schroeder, P.E.

    1991-01-01

    In the 1980s, forests covered an estimated 4.08 billion hectares and contained a carbon pool of 1,400 gigatonnes, or 64% of the total terrestrial pool. Forest biomass productivity per unit of land can be enhanced by proper management practices and it is suggested that by implementing such practices, forests could store more carbon globally and thereby slow the increase in atmospheric CO 2 . Currently, only about 10% of world forests are managed at an active level. An assessment is presented of the amount of carbon that could be sequestered globally by implementing the practices of reforestation, afforestation, natural regeneration, silviculture, and agroforestry. The assessment is based on the development of a global database on managed forest and agroforestry systems. For each of the above five practices, the database contains information on carbon sequestered per hectare, implementation costs, and estimates of the amount of land technically suitable for such practices throughout the world. Results are presented for each practice in the boreal, temperate, and tropical regions. Preliminary estimates show that promising forestry and agroforestry practices could sequester, over a 50-y period, ca 50-100 gigatonnes of carbon at a cost of $170-340 million. This would be a significant contribution as a mitigating measure regarding atmospheric CO 2 buildup and projections for global warming, at present rates of anthropogenic carbon emissions (300-400 gigatonnes carbon over 50 y). 19 refs., 2 figs., 4 tabs

  7. Forest restoration: a global dataset for biodiversity and vegetation structure.

    Science.gov (United States)

    Crouzeilles, Renato; Ferreira, Mariana S; Curran, Michael

    2016-08-01

    Restoration initiatives are becoming increasingly applied around the world. Billions of dollars have been spent on ecological restoration research and initiatives, but restoration outcomes differ widely among these initiatives in part due to variable socioeconomic and ecological contexts. Here, we present the most comprehensive dataset gathered to date on forest restoration. It encompasses 269 primary studies across 221 study landscapes in 53 countries and contains 4,645 quantitative comparisons between reference ecosystems (e.g., old-growth forest) and degraded or restored ecosystems for five taxonomic groups (mammals, birds, invertebrates, herpetofauna, and plants) and five measures of vegetation structure reflecting different ecological processes (cover, density, height, biomass, and litter). We selected studies that (1) were conducted in forest ecosystems; (2) had multiple replicate sampling sites to measure indicators of biodiversity and/or vegetation structure in reference and restored and/or degraded ecosystems; and (3) used less-disturbed forests as a reference to the ecosystem under study. We recorded (1) latitude and longitude; (2) study year; (3) country; (4) biogeographic realm; (5) past disturbance type; (6) current disturbance type; (7) forest conversion class; (8) restoration activity; (9) time that a system has been disturbed; (10) time elapsed since restoration started; (11) ecological metric used to assess biodiversity; and (12) quantitative value of the ecological metric of biodiversity and/or vegetation structure for reference and restored and/or degraded ecosystems. These were the most common data available in the selected studies. We also estimated forest cover and configuration in each study landscape using a recently developed 1 km consensus land cover dataset. We measured forest configuration as the (1) mean size of all forest patches; (2) size of the largest forest patch; and (3) edge:area ratio of forest patches. Global analyses of the

  8. Spatial Simulation Modelling of Future Forest Cover Change Scenarios in Luangprabang Province, Lao PDR

    Directory of Open Access Journals (Sweden)

    Khamma Homsysavath

    2011-08-01

    Full Text Available Taking Luangprabang province in Lao Peoples’s Democratic Republic (PDR as an example, we simulated future forest cover changes under the business-as-usual (BAU, pessimistic and optimistic scenarios based on the Markov-cellular automata (MCA model. We computed transition probabilities from satellite-derived forest cover maps (1993 and 2000 using the Markov chains, while the “weights of evidence” technique was used to generate transition potential maps. The initial forest cover map (1993, the transition potential maps and the 1993–2000 transition probabilities were used to calibrate the model. Forest cover simulations were then performed from 1993 to 2007 at an annual time-step. The simulated forest cover map for 2007 was compared to the observed (actual forest cover map for 2007 in order to test the accuracy of the model. Following the successful calibration and validation, future forest cover changes were simulated up to 2014 under different scenarios. The MCA simulations under the BAU and pessimistic scenarios projected that current forest areas would decrease, whereas unstocked forest areas would increase in the future. Conversely, the optimistic scenario projected that current forest areas would increase in the future if strict forestry laws enforcing conservation in protected forest areas are implemented. The three simulation scenarios provide a very good case study for simulating future forest cover changes at the subnational level (Luangprabang province. Thus, the future simulated forest cover changes can possibly be used as a guideline to set reference scenarios as well as undertake REDD/REDD+ preparedness activities within the study area.

  9. Regional forest cover estimation via remote sensing: the calibration center concept

    Science.gov (United States)

    Louis R. Iverson; Elizabeth A. Cook; Robin L. Graham; Robin L. Graham

    1994-01-01

    A method for combining Landsat Thematic Mapper (TM), Advanced Very High Resolution Radiometer (AVHRR) imagery, and other biogeographic data to estimate forest cover over large regions is applied and evaluated at two locations. In this method, TM data are used to classify a small area (calibration center) into forest/nonforest; the resulting forest cover map is then...

  10. Comprehensive monitoring of Bangladesh tree cover inside and outside of forests, 2000-2014

    Science.gov (United States)

    Potapov, P.; Siddiqui, B. N.; Iqbal, Z.; Aziz, T.; Zzaman, B.; Islam, A.; Pickens, A.; Talero, Y.; Tyukavina, A.; Turubanova, S.; Hansen, M. C.

    2017-10-01

    A novel approach for satellite-based comprehensive national tree cover change assessment was developed and applied in Bangladesh, a country where trees outside of forests play an important role in the national economy and carbon sequestration. Tree cover change area was quantified using the integration of wall-to-wall Landsat-based mapping with a higher spatial resolution sample-based assessment. The total national tree canopy cover area was estimated as 3165 500 ± 186 600 ha in the year 2000, with trees outside forests making up 54% of total canopy cover. Total tree canopy cover increased by 135 700 (± 116 600) ha (4.3%) during the 2000-2014 time interval. Bangladesh exhibits a national tree cover dynamic where net change is rather small, but gross dynamics significant and variable by forest type. Despite the overall gain in tree cover, results revealed the ongoing clearing of natural forests, especially within the Chittagong hill tracts. While forests decreased their tree cover area by 83 600 ha, the trees outside forests (including tree plantations, village woodlots, and agroforestry) increased their canopy area by 219 300 ha. Our results demonstrated method capability to quantify tree canopy cover dynamics within a fine-scale agricultural landscape. Our approach for comprehensive monitoring of tree canopy cover may be recommended for operational implementation in Bangladesh and other countries with significant tree cover outside of forests.

  11. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers.

    Science.gov (United States)

    Briber, Brittain M; Hutyra, Lucy R; Reinmann, Andrew B; Raciti, Steve M; Dearborn, Victoria K; Holden, Christopher E; Dunn, Allison L

    2015-01-01

    Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1). As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2) yr(-1). Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1) yr(-1), a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.

  12. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Energy Technology Data Exchange (ETDEWEB)

    Anderson-Teixeira, Kristina J. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Davies, Stuart J. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Bennett, Amy C. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Gonzalez-Akre, Erika B. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Muller-Landau, Helene C. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Joseph Wright, S. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Abu Salim, Kamariah [Univ. of Brunei Darussalam, Bandar Seri Begawan (Brunei). Faculty of Science. Environmental and Life Sciences; Almeyda Zambrano, Angélica M. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Stanford Univ., CA (United States). Stanford Woods Inst. for the Environment; Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geography; Alonso, Alfonso [Smithsonian Conservation Biology Inst., Washington, DC (United States). National Zoological Park. Center for Conservation Education and Sustainability; Baltzer, Jennifer L. [Wilfrid Laurier Univ., Waterloo, ON (Canada). Dept. of Biology; Basset, Yves [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Bourg, Norman A. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Broadbent, Eben N. [Smithsonian Conservation Biology Inst. (SCBI), Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Stanford Univ., CA (United States). Stanford Woods Inst. for the Environment; Univ. of Alabama, Tuscaloosa, AL (United States). Dept. of Geography; Brockelman, Warren Y. [Mahidol Univ., Bangkok (Thailand). Dept. of Biology; Bunyavejchewin, Sarayudh [Dept. of National Parks, Wildlife and Plant Conservation, Bangkok (Thailand). Research Office; Burslem, David F. R. P. [Univ. of Aberdeen (United Kingdom). School of Biological Sciences; Butt, Nathalie [Univ. of Queensland, St. Lucia (Australia). School of Biological Sciences; Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Cao, Min [Chinese Academy of Sciences (CAS), Kunming (China). Xishuangbanna Tropical Botanical Garden. Key Lab. of Tropical Forest Ecology; Cardenas, Dairon [Sinchi Amazonic Inst. of Scientific Research, Bogota (Colombia); Chuyong, George B. [Univ. of Buea (Cameroon). Dept. of Botany and Plant Physiology; Clay, Keith [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Cordell, Susan [USDA Forest Service, Hilo, HI (United States). Inst. of Pacific Islands Forestry; Dattaraja, Handanakere S. [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Deng, Xiaobao [Chinese Academy of Sciences (CAS), Kunming (China). Xishuangbanna Tropical Botanical Garden. Key Lab. of Tropical Forest Ecology; Detto, Matteo [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Du, Xiaojun [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Duque, Alvaro [Univ. Nacional de Colombia, Medellin (Colombia). Dept. de Ciencias Forestales; Erikson, David L. [National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Ewango, Corneille E. N. [Okapi Wildlife Reserve, Epulu (Democratic Republic of the Congo). Centre de Formation et de Recherche en Conservation Forestiere (CEFRECOF); Fischer, Gunter A. [Kadoorie Farm and Botanic Garden, Tai Po, Hong Kong (China); Fletcher, Christine [Forest Research Inst. Malaysia (FRIM), Selangor (Malaysia); Foster, Robin B. [The Field Museum, Chicago, IL (United States). Botany Dept.; Giardina, Christian P. [USDA Forest Service, Hilo, HI (United States). Inst. of Pacific Islands Forestry; Gilbert, Gregory S. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Univ. of California, Santa Cruz, CA (United States). Environmental Studies Dept.; Gunatilleke, Nimal [Univ. of Peradeniya (Sri Lanka). Faculty of Science. Dept. of Botany; Gunatilleke, Savitri [Univ. of Peradeniya (Sri Lanka). Faculty of Science. Dept. of Botany; Hao, Zhanqing [Chinese Academy of Sciences (CAS), Shenyang (China). State Key Lab. of Forest and Soil Ecology. Inst. of Applied Ecology; Hargrove, William W. [USDA-Forest Service Station Headquarters, Asheville, NC (United States). Eastern Forest Environmental Threat Assessment Center; Hart, Terese B. [Lukuru Wildlife Research Foundation, Kinshasa (Democratic Republic of the Congo). Tshuapa-Lomami-Lualaba Project; Hau, Billy C. H. [Univ. of Hong Kong (China). School of Biological Sciences. Kadoorie Inst.; He, Fangliang [Univ. of Alberta, Edmonton, AB (Canada). Dept. of Renewable Resources; Hoffman, Forrest M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Howe, Robert W. [Univ. of Wisconsin, Green Bay, WI (United States). Dept. of Natural and Applied Sciences; Hubbell, Stephen P. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Univ. of California, Los Angeles, CA (United States). Dept. of Ecology and Evolutionary Biology; Inman-Narahari, Faith M. [Univ. of Hawaii, Honolulu, HI (United States). College of Tropical Agriculture and Human Resources; Jansen, Patrick A. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Wageningen Univ. (Netherlands). Resource Ecology Group; Jiang, Mingxi [Chinese Academy of Sciences (CAS), Wuhan (China). Wuhan Botanical Garden; Johnson, Daniel J. [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Kanzaki, Mamoru [Kyoto Univ. (Japan). Graduate School of Agriculture; Kassim, Abdul Rahman [Forest Research Inst. Malaysia (FRIM), Selangor (Malaysia); Kenfack, David [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; National Museum of Natural History, Washington, DC (United States). Dept. of Botany; Kibet, Staline [National Museums of Kenya, Nairobi (Kenya); Univ. of Nairobi (Kenya). Land Resource Management and Agricultural Technology Dept.; Kinnaird, Margaret F. [Mpala Research Centre, Nanyuki (Kenya); Wildlife Conservation Society, New York, NY (United States). Global Conservation Programs; Korte, Lisa [Smithsonian Conservation Biology Inst., Washington, DC (United States). National Zoological Park. Center for Conservation Education and Sustainability; Kral, Kamil [Silva Tarouca Research Inst., Brno (Czech Republic). Dept. of Forest Ecology; Kumar, Jitendra [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Larson, Andrew J. [Univ. of Montana, Missoula, MT (United States). College of Forestry and Conservation. Dept. of Forest Management; Li, Yide [Chinese Academy of Forestry, Guangzhou (China). Research Inst. of Tropical Forestry; Li, Xiankun [Chinese Academy of Sciences (CAS), Guilin (China). Guangxi Inst. of Botany; Liu, Shirong [Chinese Academy of Forestry, Beijing (China). Research Inst. of Forest Ecology, Environment and Protection; Lum, Shawn K. Y. [Nanyang Technological Univ. (Singapore). National Inst. of Education. Natural Sciences and Science Education Academic Group; Lutz, James A. [Utah State Univ., Logan, UT (United States). Wildland Resources Dept.; Ma, Keping [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Maddalena, Damian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Computational Earth Sciences Group; Makana, Jean-Remy [Wildlife Conservation Society, Brazzaville (Democratic Republic of the Congo); Malhi, Yadvinder [Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Marthews, Toby [Univ. of Oxford (United Kingdom). School of Geography and the Environment. Environmental Change Inst.; Mat Serudin, Rafizah [Univ. of Brunei Darussalam, Bandar Seri Begawan (Brunei). Faculty of Science. Environmental and Life Sciences; McMahon, Sean M. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Smithsonian Environmental Research Center, Edgewater, MD (United States). Forest Ecology Group; McShea, William J. [Smithsonian Conservation Biology Inst., Front Royal, VA (United States). National Zoological Park. Conservation Ecology Center; Memiaghe, Hervé R. [Inst. de Recherche en Ecologie Tropicale, Libreville (Gabon). Centre National de la Recherche Scientifique et Technologique; Mi, Xiangcheng [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Mizuno, Takashi [Kyoto Univ. (Japan). Graduate School of Agriculture; Morecroft, Michael [Natural England, Sheffield (United Kingdom); Myers, Jonathan A. [Washington Univ., St. Louis, MO (United States). Dept. of Biology; Novotny, Vojtech [New Guinea Binatang Research Centre, Madang (Papua New Guinea); Univ. of South Bohemia, Ceske Budejovice (Czech Republic). Academy of Sciences of the Czech Republic. Faculty of Science. Biology Centre; de Oliveira, Alexandre A. [Univ. of Sao Paulo (Brazil). Inst. of Biosciences. Ecology Dept.; Ong, Perry S. [Univ. of the Philippines Diliman, Quezon City (Philippines). Inst. of Biology; Orwig, David A. [Harvard Univ., Petersham, MA (United States). Harvard Forest; Ostertag, Rebecca [Univ. of Hawaii, Hilo, HI (United States). Dept. of Biology; den Ouden, Jan [Wageningen Univ. (Netherlands). Forest Ecology and Forest Management Group; Parker, Geoffrey G. [Smithsonian Environmental Research Center, Edgewater, MD (United States). Forest Ecology Group; Phillips, Richard P. [Indiana Univ., Bloomington, IN (United States). Dept. of Biology; Sack, Lawren [Univ. of California, Los Angeles, CA (United States). Dept. of Ecology and Evolutionary Biology; Sainge, Moses N. [Tropical Plant Exploration Group (TroPEG), Mundemba (Cameroon); Sang, Weiguo [Chinese Academy of Sciences (CAS), Beijing (China). Inst. of Botany; Sri-ngernyuang, Kriangsak [Maejo Univ., Chiang Mai (Thailand). Faculty of Architecture and Environmental Design; Sukumar, Raman [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Sun, I-Fang [National Dong Hwa Univ., Hualian (Taiwan). Dept. of Natural Resources and Environmental Studies; Sungpalee, Witchaphart [Maejo Univ., Chiang Mai (Thailand). Faculty of Architecture and Environmental Design; Suresh, Hebbalalu Sathyanarayana [Indian Inst. of Science, Bangalore (India). Centre for Ecological Sciences; Tan, Sylvester [Sarawak Forest Dept., Kuching (Malaysia); Thomas, Sean C. [Univ. of Toronto, ON (Canada). Faculty of Forestry; Thomas, Duncan W. [Washington State Univ., Vancouver, WA (United States). School of Biological Sciences; Thompson, Jill [Centre for Ecology and Hydrology, Penicuik, Scotland (United Kingdom); Univ. of Puerto Rico Rio Pedras, San Juan (Puerto Rico). Dept. of Environmental Science. Inst. for Tropical Ecosystem Studies; Turner, Benjamin L. [Smithsonian Tropical Research Inst. (STRI), Panama (Panama). Center for Tropical Forest Science. Forest Global Earth Observatory; Uriarte, Maria [Columbia Univ., New York, NY (United States). Dept. of Ecology, Evolution and Environmental Biology; Valencia, Renato [Pontifical Catholic Univ. of Ecuador, Quito (Ecuador). Dept. of Biological Sciences; Vallejo, Marta I. [Inst. Alexander von Humboldt, Bogota (Colombia); Vicentini, Alberto [National Inst. of Amazonian Research (INPA), Manaus (Brazil); Vrška, Tomáš [Silva Tarouca Research Inst., Brno (Czech Republic). Dept. of Forest Ecology; Wang, Xihua [East China Normal Univ. (ECNU), Shanghai (China). School of Ecological and Environmental Sciences; Wang, Xugao [Lukuru Wildlife Research Foundation, Kinshasa (Democratic Republic of the Congo). Tshuapa-Lomami-Lualaba Project; Weiblen, George [Univ. of Minnesota, St. Paul, MN (United States). Dept. of Plant Biology; Wolf, Amy [Univ. of Wisconsin, Green Bay, WI (United States). Dept. of Biology. Dept. of Natural and Applied Sciences; Xu, Han [Chinese Academy of Forestry, Guangzhou (China). Research Inst. of Tropical Forestry; Yap, Sandra [Univ. of the Philippines Diliman, Quezon City (Philippines). Inst. of Biology; Zimmerman, Jess [Univ. of Puerto Rico Rio Piedras, San Juan (Puerto Rico). Dept. of Environmental Science. Inst. for Tropical Ecosystem Studies

    2014-09-25

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services, including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamic research sites useful for characterizing forest responses to global change. The broad suite of measurements made at the CTFS-ForestGEO sites make it possible to investigate the complex ways in which global change is impacting forest dynamics. ongoing research across the network is yielding insights into how and why the forests are changing, and continued monitoring will provide vital contributions to understanding worldwide forest diversity and dynamics in a era of global change

  13. Tropical forest cover change in the 1990s and options for future monitoring.

    Science.gov (United States)

    Mayaux, Philippe; Holmgren, Peter; Achard, Frédéric; Eva, Hugh; Stibig, Hans-Jürgen; Branthomme, Anne

    2005-02-28

    Despite the importance of the world's humid tropical forests, our knowledge concerning their rates of change remains limited. Two recent programmes (FAO 2000 Forest Resources Assessment and TREES II), exploiting the global imaging capabilities of Earth observing satellites, have recently been completed to provide information on the dynamics of tropical forest cover. The results from these independent studies show a high degree of conformity and provide a good understanding of trends at the pan-tropical level. In 1990 there were some 1150 million ha of tropical rain forest with the area of the humid tropics deforested annually estimated at 5.8 million ha (approximately twice the size of Belgium). A further 2.3 million ha of humid forest is apparently degraded annually through fragmentation, logging and/or fires. In the sub-humid and dry tropics, annual deforestation of tropical moist deciduous and tropical dry forests comes to 2.2 and 0.7 million ha, respectively. Southeast Asia is the region where forests are under the highest pressure with an annual change rate of -0.8 to -0.9%. The annual area deforested in Latin America is large, but the relative rate (-0.4 to -0.5%) is lower, owing to the vast area covered by the remaining Amazonian forests. The humid forests of Africa are being converted at a similar rate to those of Latin America (-0.4 to -0.5% per year). During this period, secondary forests have also been established, through re-growth on abandoned land and forest plantations, but with different ecological, biophysical and economic characteristics compared with primary forests. These trends are significant in all regions, but the extent of new forest cover has proven difficult to establish. These results, as well as the lack of more detailed knowledge, clearly demonstrate the need to improve sound scientific evidence to support policy. The two projects provide useful guidance for future monitoring efforts in the context of multilateral environmental

  14. Spatiotemporal Change Detection in Forest Cover Dynamics Along Landslide Susceptible Region of Karakoram Highway, Pakistan

    Science.gov (United States)

    Rashid, Barira; Iqbal, Javed

    2018-04-01

    Forest Cover dynamics and its understanding is essential for a country's social, environmental, and political engagements. This research provides a methodical approach for the assessment of forest cover along Karakoram Highway. It has great ecological and economic significance because it's a part of China-Pakistan Economic Corridor. Landsat 4, 5 TM, Landsat 7 ETM and Landsat 8 OLI imagery for the years 1990, 2000, 2010 and 2016 respectively were subjected to supervised classification in ArcMap 10.5 to identify forest change. The study area was categorized into five major land use land cover classes i.e., Forest, vegetation, urban, open land and snow cover. Results from post classification forest cover change maps illustrated notable decrease of almost 26 % forest cover over the time period of 26 years. The accuracy assessment revealed the kappa coefficients 083, 0.78, 0.77 and 0.85, respectively. Major reason for this change is an observed replacement of native forest cover with urban areas (12.5 %) and vegetation (18.6 %) However, there is no significant change in the reserved forests along the study area that contributes only 2.97 % of the total forest cover. The extensive forest degradation and risk prone topography of the region has increased the environmental risk of landslides. Hence, effective policies and forest management is needed to protect not only the environmental and aesthetic benefits of the forest cover but also to manage the disaster risks. Apart from the forest assessment, this research gives an insight of land cover dynamics, along with causes and consequences, thereby showing the forest degradation hotspots.

  15. Drivers of forest cover dynamics in smallholder farming systems: the case of northwestern Vietnam.

    Science.gov (United States)

    Jadin, Isaline; Vanacker, Veerle; Hoang, Huong Thi Thu

    2013-04-01

    The national-scale forest recovery of Vietnam started in the early 1990s and is associated with a shift from net deforestation to net reforestation. Large disparities in forest cover dynamics are, however, observed at the local scale. This study aims to unravel the mechanisms driving forest cover change for a mountainous region located in northwest Vietnam. Statistical analyses were used to explore the association between forest cover change and household characteristics. In Sa Pa district, deforestation rates are decreasing, but forest degradation continues at similar rates. Deforestation is not necessarily associated with impoverished ethnic communities or high levels of subsistence farming, and the largest forest cover dynamics are found in villages with the best socio-economic conditions. Our empirical study does not provide strong evidence of a dominant role of agriculture in forest cover dynamics. It shows that empirical studies on local-scale forest dynamics remain important to unravel the complexity of human-environment interactions.

  16. Development of 2010 national land cover database for the Nepal.

    Science.gov (United States)

    Uddin, Kabir; Shrestha, Him Lal; Murthy, M S R; Bajracharya, Birendra; Shrestha, Basanta; Gilani, Hammad; Pradhan, Sudip; Dangol, Bikash

    2015-01-15

    Land cover and its change analysis across the Hindu Kush Himalayan (HKH) region is realized as an urgent need to support diverse issues of environmental conservation. This study presents the first and most complete national land cover database of Nepal prepared using public domain Landsat TM data of 2010 and replicable methodology. The study estimated that 39.1% of Nepal is covered by forests and 29.83% by agriculture. Patch and edge forests constituting 23.4% of national forest cover revealed proximate biotic interferences over the forests. Core forests constituted 79.3% of forests of Protected areas where as 63% of area was under core forests in the outside protected area. Physiographic regions wise forest fragmentation analysis revealed specific conservation requirements for productive hill and mid mountain regions. Comparative analysis with Landsat TM based global land cover product showed difference of the order of 30-60% among different land cover classes stressing the need for significant improvements for national level adoption. The online web based land cover validation tool is developed for continual improvement of land cover product. The potential use of the data set for national and regional level sustainable land use planning strategies and meeting several global commitments also highlighted. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Geospatial assessment and monitoring of historical forest cover changes (1920-2012) in Nilgiri Biosphere Reserve, Western Ghats, India.

    Science.gov (United States)

    Satish, K V; Saranya, K R L; Reddy, C Sudhakar; Krishna, P Hari; Jha, C S; Rao, P V V Prasada

    2014-12-01

    Deforestation in the biosphere reserves, which are key Protected Areas has negative impacts on biodiversity, climate, carbon fluxes and livelihoods. Comprehensive study of deforestation in biosphere reserves is required to assess the impact of the management effectiveness. This article assesses the changes in forest cover in various zones and protected areas of Nilgiri Biosphere Reserve, the first declared biosphere reserve in India which forms part of Western Ghats-a global biodiversity hotspot. In this study, we have mapped the forests from earliest available topographical maps and multi-temporal satellite data spanning from 1920's to 2012 period. Mapping of spatial extent of forest cover, vegetation types and land cover was carried out using visual interpretation technique. A grid cell of 1 km × 1 km was generated for time series change analysis to understand the patterns in spatial distribution of forest cover (1920-1973-1989-1999-2006-2012). The total forest area of biosphere reserve was found to be 5,806.5 km(2) (93.8 % of total geographical area) in 1920. Overall loss of forest cover was estimated as 1,423.6 km(2) (24.5 % of the total forest) with reference to 1920. Among the six Protected Areas, annual deforestation rate of >0.5 was found in Wayanad wildlife sanctuary during 1920-1973. The deforestation in Nilgiri Biosphere Reserve is mainly attributed to conversion of forests to plantations and agriculture along with submergence due to construction of dams during 1920 to 1989. Grid wise analysis indicates that 851 grids have undergone large-scale negative changes of >75 ha of forest loss during 1920-1973 while, only 15 grids have shown >75 ha loss during 1973-1989. Annual net rate of deforestation for the period of 1920 to 1973 was calculated as 0.5 followed by 0.1 for 1973 to 1989. Our analysis shows that there was large-scale deforestation before the declaration of area as biosphere reserve in 1986; however, the deforestation has drastically

  18. Drivers of forest cover change in Eastern Europe and European Russia, 1985–2012

    DEFF Research Database (Denmark)

    Alix-Garcia, Jennifer; Munteanu, Catalina; Zhao, Na

    2016-01-01

    to explain variation in forest loss between countries, nor does trade and price liberalization policy. None of our covariates explain forest regrowth on non-forested land over the period. We conclude that history and land privatization drove important cross-country variation in forest dynamics in the region......The relative importance of geography, history, and policy in driving forest cover change at broad scales remains poorly understood. We examine variation in forest cover dynamics over the period 1985–2012 across 19 countries in Eastern Europe and European Russia in order to shed light on the role...... of these in driving forest cover change after the collapse of socialism. Using a combination of cross-section and panel regression methods, we find that privatization of forest lands increased forest cover loss due to logging, as did increases in agricultural land between 1850 and 1900. Land quality has no power...

  19. Tree Productivity Enhanced with Conversion from Forest to Urban Land Covers.

    Directory of Open Access Journals (Sweden)

    Brittain M Briber

    Full Text Available Urban areas are expanding, changing the structure and productivity of landscapes. While some urban areas have been shown to hold substantial biomass, the productivity of these systems is largely unknown. We assessed how conversion from forest to urban land uses affected both biomass structure and productivity across eastern Massachusetts. We found that urban land uses held less than half the biomass of adjacent forest expanses with a plot level mean biomass density of 33.5 ± 8.0 Mg C ha(-1. As the intensity of urban development increased, the canopy cover, stem density, and biomass decreased. Analysis of Quercus rubra tree cores showed that tree-level basal area increment nearly doubled following development, increasing from 17.1 ± 3.0 to 35.8 ± 4.7 cm(2 yr(-1. Scaling the observed stem densities and growth rates within developed areas suggests an aboveground biomass growth rate of 1.8 ± 0.4 Mg C ha(-1 yr(-1, a growth rate comparable to nearby, intact forests. The contrasting high growth rates and lower biomass pools within urban areas suggest a highly dynamic ecosystem with rapid turnover. As global urban extent continues to grow, cities consider climate mitigation options, and as the verification of net greenhouse gas emissions emerges as critical for policy, quantifying the role of urban vegetation in regional-to-global carbon budgets will become ever more important.

  20. Global warming considerations in northern Boreal forest ecosystems

    International Nuclear Information System (INIS)

    Slaughter, C.W.

    1993-01-01

    The northern boreal forests of circumpolar lands are of special significance to questions of global climate change. Throughout its range, these forests are characterized by a relatively few tree species, although they may exhibit great spatial heterogeneity. Their ecosystems are simpler than temperate systems, and ecosystem processes are strongly affected by interactions between water, the landscape, and the biota. Northern boreal forest vegetation patterns are strongly influenced by forest fires, and distribution of forest generally coincides with occurrence of permafrost. Boreal forest landscapes are extremely sensitive to thermal disruption; global warming may result in lasting thermal and physical degradation of soils, altered rates and patterns of vegetation succession, and damage to engineered structures. A change in fire severity and frequency is also a significant concern. The total carbon pool of boreal forests and their associated peatlands is significant on a global scale; this carbon may amount to 10-20% of the global carbon pool. A change in latitudinal or elevational treeline has been suggested as a probable consequence of global warming. More subtle aspects of boreal forest ecosystems which may be affected by global warming include the depth of the active soil layer, the hydrologic cycle, and biological attributes of boreal stream systems. 48 refs., 2 figs

  1. Climate Change for Agriculture, Forest Cover and 3d Urban Models

    Science.gov (United States)

    Kapoor, M.; Bassir, D.

    2014-11-01

    This research demonstrates the important role of the remote sensing in finding out the different parameters behind the agricultural crop change, forest cover and urban 3D models. Standalone software is developed to view and analysis the different factors effecting the change in crop productions. Open-source libraries from the Open Source Geospatial Foundation have been used for the development of the shape-file viewer. Software can be used to get the attribute information, scale, zoom in/out and pan the shapefiles. Environmental changes due to pollution and population that are increasing the urbanisation and decreasing the forest cover on the earth. Satellite imagery such as Landsat 5(1984) to Landsat TRIS/8 (2014), Landsat Data Continuity Mission (LDCM) and NDVI are used to analyse the different parameters that are effecting the agricultural crop production change and forest change. It is advisable for the development of good quality of NDVI and forest cover maps to use data collected from the same processing methods for the complete region. Management practices have been developed from the analysed data for the betterment of the crop and saving the forest cover

  2. Tree cover in Central Africa: determinants and sensitivity under contrasted scenarios of global change.

    Science.gov (United States)

    Aleman, Julie C; Blarquez, Olivier; Gourlet-Fleury, Sylvie; Bremond, Laurent; Favier, Charly

    2017-01-30

    Tree cover is a key variable for ecosystem functioning, and is widely used to study tropical ecosystems. But its determinants and their relative importance are still a matter of debate, especially because most regional and global analyses have not considered the influence of agricultural practices. More information is urgently needed regarding how human practices influence vegetation structure. Here we focused in Central Africa, a region still subjected to traditional agricultural practices with a clear vegetation gradient. Using remote sensing data and global databases, we calibrated a Random Forest model to correlatively link tree cover with climatic, edaphic, fire and agricultural practices data. We showed that annual rainfall and accumulated water deficit were the main drivers of the distribution of tree cover and vegetation classes (defined by the modes of tree cover density), but agricultural practices, especially pastoralism, were also important in determining tree cover. We simulated future tree cover with our model using different scenarios of climate and land-use (agriculture and population) changes. Our simulations suggest that tree cover may respond differently regarding the type of scenarios, but land-use change was an important driver of vegetation change even able to counterbalance the effect of climate change in Central Africa.

  3. Implementation of forest cover and carbon mapping in the Greater Mekong subregion and Malaysia project - A case study of Thailand

    Science.gov (United States)

    Pungkul, S.; Suraswasdi, C.; Phonekeo, V.

    2014-02-01

    The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion.

  4. Application of a COSMO Mesoscale Model to Assess the Influence of Forest Cover Changes on Regional Weather Conditions

    Science.gov (United States)

    Olchev, A.; Rozinkina, I.; Kuzmina, E.; Nikitin, M.; Rivin, G. S.

    2017-12-01

    Modern changes in land use and forest cover have a significant influence on local, regional, and global weather and climate conditions. In this study, the mesoscale model COSMO is used to estimate the possible influence of forest cover change in the central part of the East European Plain on regional weather conditions. The "model region" of the study is surrounded by geographical coordinates 55° and 59°N and 28° and 37°E and situated in the central part of a large modeling domain (50° - 70° N and 15° 55° E), covering almost the entire East European Plain in Northern Eurasia. The forests cover about 50% of the area of the "model region". The modeling study includes 3 main numerical experiments. The first assumes total deforestation of the "model region" and replacement of forests by grasslands. The second is represented by afforestation of the "model region." In the third, weather conditions are simulated with present land use and vegetation structures of the "model region." Output of numerical experiments is at 13.2 km grid resolution, and the ERA-Interim global atmospheric reanalysis (with 6-h resolution in time and 0.75°×0.75° in space) is used to quantify initial and boundary conditions. Numerical experiments for the warm period of 2010 taken as an example show that deforestation and afforestation processes in the selected region can lead to significant changes in weather conditions. Deforestation processes in summer conditions can result in increased air temperature and wind speed, reduction of precipitation, lower clouds, and relative humidity. The afforestation process can result in opposite effects (decreased air temperature, increased precipitation, higher air humidity and fog frequency, and strengthened storm winds). Maximum meteorological changes under forest cover changes are projected for the summer months (July and August). It was also shown that changes of some meteorological characteristics (e.g., air temperature) is observed in the

  5. Interpreting forest biome productivity and cover utilizing nested scales of image resolution and biogeographical analysis

    Science.gov (United States)

    Iverson, Louis R.; Cook, Elizabeth A.; Graham, Robin L.; Olson, Jerry S.; Frank, Thomas D.; Ying, KE

    1988-01-01

    The objective was to relate spectral imagery of varying resolution with ground-based data on forest productivity and cover, and to create models to predict regional estimates of forest productivity and cover with a quantifiable degree of accuracy. A three stage approach was outlined. In the first stage, a model was developed relating forest cover or productivity to TM surface reflectance values (TM/FOREST models). The TM/FOREST models were more accurate when biogeographic information regarding the landscape was either used to stratigy the landscape into more homogeneous units or incorporated directly into the TM/FOREST model. In the second stage, AVHRR/FOREST models that predicted forest cover and productivity on the basis of AVHRR band values were developed. The AVHRR/FOREST models had statistical properties similar to or better than those of the TM/FOREST models. In the third stage, the regional predictions were compared with the independent U.S. Forest Service (USFS) data. To do this regional forest cover and forest productivity maps were created using AVHRR scenes and the AVHRR/FOREST models. From the maps the county values of forest productivity and cover were calculated. It is apparent that the landscape has a strong influence on the success of the approach. An approach of using nested scales of imagery in conjunction with ground-based data can be successful in generating regional estimates of variables that are functionally related to some variable a sensor can detect.

  6. ForC: a global database of forest carbon stocks and fluxes.

    Science.gov (United States)

    Anderson-Teixeira, Kristina J; Wang, Maria M H; McGarvey, Jennifer C; Herrmann, Valentine; Tepley, Alan J; Bond-Lamberty, Ben; LeBauer, David S

    2018-06-01

    Forests play an influential role in the global carbon (C) cycle, storing roughly half of terrestrial C and annually exchanging with the atmosphere more than five times the carbon dioxide (CO 2 ) emitted by anthropogenic activities. Yet, scaling up from field-based measurements of forest C stocks and fluxes to understand global scale C cycling and its climate sensitivity remains an important challenge. Tens of thousands of forest C measurements have been made, but these data have yet to be integrated into a single database that makes them accessible for integrated analyses. Here we present an open-access global Forest Carbon database (ForC) containing previously published records of field-based measurements of ecosystem-level C stocks and annual fluxes, along with disturbance history and methodological information. ForC expands upon the previously published tropical portion of this database, TropForC (https://doi.org/10.5061/dryad.t516f), now including 17,367 records (previously 3,568) representing 2,731 plots (previously 845) in 826 geographically distinct areas. The database covers all forested biogeographic and climate zones, represents forest stands of all ages, and currently includes data collected between 1934 and 2015. We expect that ForC will prove useful for macroecological analyses of forest C cycling, for evaluation of model predictions or remote sensing products, for quantifying the contribution of forests to the global C cycle, and for supporting international efforts to inventory forest carbon and greenhouse gas exchange. A dynamic version of ForC is maintained at on GitHub (https://GitHub.com/forc-db), and we encourage the research community to collaborate in updating, correcting, expanding, and utilizing this database. ForC is an open access database, and we encourage use of the data for scientific research and education purposes. Data may not be used for commercial purposes without written permission of the database PI. Any publications using For

  7. Forest Cover Change, Key Drivers and Community Perception in Wujig Mahgo Waren Forest of Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Negasi Solomon

    2018-03-01

    Full Text Available This study assessed forest cover change from 1985 to 2016, analyzed community perception on forest cover change and its drivers, and suggested possible solutions in northern Ethiopia. Landsat images of 1985, 2000 and 2016, household interviews and focus group discussions were used. While dense forests and open forests increased by 8.2% and 32.3% respectively between 1985 and 2000, they decreased by 10.4% and 9.8% respectively from 2000 to 2016. Grasslands and cultivated land decreased in the first period by 37.3% and 5.5% but increased in the second period by 89.5% and 28.5% respectively. Fuel wood collection, cultivated land expansion, population growth; free grazing, logging for income generation and drought were the major drivers of the change reported by local communities. Soil erosion, reduction in honey bee production, flooding and drought were the most perceived impacts of the changes. Most of the farmers have a holistic understanding of forest cover change. Strengthening of forest protection, improving soil and water conservation, enrichment planting, awareness creation, payment for ecosystem services and zero grazing campaigns were mentioned as possible solutions to the current state of deforestation. In addition, concerted efforts of conservation will ensure that the forests’ ecosystems contribute to increased ecosystem services.

  8. Predictive modelling of the spatial pattern of past and future forest cover changes in India

    Science.gov (United States)

    Reddy, C. Sudhakar; Singh, Sonali; Dadhwal, V. K.; Jha, C. S.; Rao, N. Rama; Diwakar, P. G.

    2017-02-01

    This study was carried out to simulate the forest cover changes in India using Land Change Modeler. Classified multi-temporal long-term forest cover data was used to generate the forest covers of 1880 and 2025. The spatial data were overlaid with variables such as the proximity to roads, settlements, water bodies, elevation and slope to determine the relationship between forest cover change and explanatory variables. The predicted forest cover in 1880 indicates an area of 10,42,008 km2, which represents 31.7% of the geographical area of India. About 40% of the forest cover in India was lost during the time interval of 1880-2013. Ownership of majority of forest lands by non-governmental agencies and large scale shifting cultivation are responsible for higher deforestation rates in the Northeastern states. The six states of the Northeast (Assam, Manipur, Meghalaya, Mizoram, Nagaland, Tripura) and one union territory (Andaman & Nicobar Islands) had shown an annual gross rate of deforestation of >0.3 from 2005 to 2013 and has been considered in the present study for the prediction of future forest cover in 2025. The modelling results predicted widespread deforestation in Northeast India and in Andaman & Nicobar Islands and hence is likely to affect the remaining forests significantly before 2025. The multi-layer perceptron neural network has predicted the forest cover for the period of 1880 and 2025 with a Kappa statistic of >0.70. The model predicted a further decrease of 2305 km2 of forest area in the Northeast and Andaman & Nicobar Islands by 2025. The majority of the protected areas are successful in the protection of the forest cover in the Northeast due to management practices, with the exception of Manas, Sonai-Rupai, Nameri and Marat Longri. The predicted forest cover scenario for the year 2025 would provide useful inputs for effective resource management and help in biodiversity conservation and for mitigating climate change.

  9. Application of Modis Data to Assess the Latest Forest Cover Changes of Sri Lanka

    Science.gov (United States)

    Perera, K.; Herath, S.; Apan, A.; Tateishi, R.

    2012-07-01

    Assessing forest cover of Sri Lanka is becoming important to lower the pressure on forest lands as well as man-elephant conflicts. Furthermore, the land access to north-east Sri Lanka after the end of 30 years long civil war has increased the need of regularly updated land cover information for proper planning. This study produced an assessment of the forest cover of Sri Lanka using two satellite data based maps within 23 years of time span. For the old forest cover map, the study used one of the first island-wide digital land cover classification produced by the main author in 1988. The old land cover classification was produced at 80 m spatial resolution, using Landsat MSS data. A previously published another study by the author has investigated the application feasibility of MODIS and Landsat MSS imagery for a selected sub-section of Sri Lanka to identify the forest cover changes. Through the light of these two studies, the assessment was conducted to investigate the application possibility of MODIS 250 m over a small island like Sri Lanka. The relation between the definition of forest in the study and spatial resolution of the used satellite data sets were considered since the 2012 map was based on MODIS data. The forest cover map of 1988 was interpolated into 250 m spatial resolution to integrate with the GIS data base. The results demonstrated the advantages as well as disadvantages of MODIS data in a study at this scale. The successful monitoring of forest is largely depending on the possibility to update the field conditions at regular basis. Freely available MODIS data provides a very valuable set of information of relatively large green patches on the ground at relatively real-time basis. Based on the changes of forest cover from 1988 to 2012, the study recommends the use of MODIS data as a resalable method to forest assessment and to identify hotspots to be re-investigated. It's noteworthy to mention the possibility of uncounted small isolated pockets of

  10. A stochastic Forest Fire Model for future land cover scenarios assessment

    Directory of Open Access Journals (Sweden)

    M. D'Andrea

    2010-10-01

    Full Text Available Land cover is affected by many factors including economic development, climate and natural disturbances such as wildfires. The ability to evaluate how fire regimes may alter future vegetation, and how future vegetation may alter fire regimes, would assist forest managers in planning management actions to be carried out in the face of anticipated socio-economic and climatic change. In this paper, we present a method for calibrating a cellular automata wildfire regime simulation model with actual data on land cover and wildfire size-frequency. The method is based on the observation that many forest fire regimes, in different forest types and regions, exhibit power law frequency-area distributions. The standard Drossel-Schwabl cellular automata Forest Fire Model (DS-FFM produces simulations which reproduce this observed pattern. However, the standard model is simplistic in that it considers land cover to be binary – each cell either contains a tree or it is empty – and the model overestimates the frequency of large fires relative to actual landscapes. Our new model, the Modified Forest Fire Model (MFFM, addresses this limitation by incorporating information on actual land use and differentiating among various types of flammable vegetation. The MFFM simulation model was tested on forest types with Mediterranean and sub-tropical fire regimes. The results showed that the MFFM was able to reproduce structural fire regime parameters for these two regions. Further, the model was used to forecast future land cover. Future research will extend this model to refine the forecasts of future land cover and fire regime scenarios under climate, land use and socio-economic change.

  11. Implementation of forest cover and carbon mapping in the Greater Mekong subregion and Malaysia project – A case study of Thailand

    International Nuclear Information System (INIS)

    Pungkul, S; Suraswasdi, C; Phonekeo, V

    2014-01-01

    The Great Mekong Subregion (GMS) contains one of the world's largest tropical forests and plays a vital role in sustainable development and provides a range of economic, social and environmental benefits, including essential ecosystem services such as climate change mitigation and adaptation. However, the forest in this Subregion is experiencing deforestation rates at high level due to human activities. The reduction of the forest area has negative influence to the environmental and natural resources issues, particularly, more severe disasters have occurred due to global warming and the release of the greenhouse gases. Therefore, in order to conduct forest management in the Subregion efficiently, the Forest Cover and Carbon Mapping in Greater Mekong Subregion and Malaysia project was initialized by the Asia-Pacific Network for Sustainable Forest Management and Rehabilitation (APFNet) with the collaboration of various research institutions including Institute of Forest Resource Information Technique (IFRIT), Chinese Academy of Forestry (CAF) and the countries in Sub region and Malaysia comprises of Cambodia, the People's Republic of China (Yunnan province and Guangxi province), Lao People's Democratic Republic, Malaysia, Myanmar, Thailand, and Viet Nam. The main target of the project is to apply the intensive use of recent satellite remote sensing technology, establishing regional forest cover maps, documenting forest change processes and estimating carbon storage in the GMS and Malaysia. In this paper, the authors present the implementation of the project in Thailand and demonstrate the result of forest cover mapping in the whole country in 2005 and 2010. The result of the project will contribute towards developing efficient tools to support decision makers to clearly understand the dynamic change of the forest cover which could benefit sustainable forest resource management in Thailand and the whole Subregion

  12. Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals

    Science.gov (United States)

    Chen, Youhua; Peng, Shushi

    2017-03-01

    Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.

  13. Global sensitivity analysis of DRAINMOD-FOREST, an integrated forest ecosystem model

    Science.gov (United States)

    Shiying Tian; Mohamed A. Youssef; Devendra M. Amatya; Eric D. Vance

    2014-01-01

    Global sensitivity analysis is a useful tool to understand process-based ecosystem models by identifying key parameters and processes controlling model predictions. This study reported a comprehensive global sensitivity analysis for DRAINMOD-FOREST, an integrated model for simulating water, carbon (C), and nitrogen (N) cycles and plant growth in lowland forests. The...

  14. Soil and soil cover changes in spruce forests after final logging

    Directory of Open Access Journals (Sweden)

    E. M. Lapteva

    2015-10-01

    Full Text Available Soil cover transformation and changes of morphological and chemical properties of Albeluvisols in clear-cuttings of middle taiga spruce forests were studied. The observed changes in structure and properties of podzolic texturally-differentiated soils at cuttings of spruce forests in the middle taiga subzone do not cause their transition to any other soil type. Soil cover of secondary deciduous-coniferous forests which replace cut forests are characterized with a varied soil contour and a combination of the main type of podzolic soils under undisturbed spruce forests. The increased surface hydromorphism in cut areas causes formation of complicated sub-types of podzolic texturally differentiated soils (podzolic surface-gley soils with microprofile of podzol and enlarges their ratio (up to 35–38 % in soil cover structure. Temporary soil over-wetting at the initial (5–10 years stage of after-cutting self-restoring vegetation succession provides for soil gleyzation, improves yield and segregation of iron compounds, increases the migratory activity of humic substances. Low content and resources of total nitrogen in forest litters mark anthropogenic transformation processes of podzolic soils at this stage. Later (in 30–40 years after logging, soils in cut areas still retain signs of hydromorphism. Forest litters are denser, less acidic and thick with a low weight ratio of organic carbon as compared with Albeluvisols of undisturbed spruce forest. The upper mineral soil horizons under secondary deciduous-coniferous forests contain larger amounts of total iron, its mobile (oxalate-dissolvable components, and Fe-Mn-concretions.

  15. Characterizing Tropical Forest Cover Loss Using Dense Sentinel-1 Data and Active Fire Alerts

    NARCIS (Netherlands)

    Reiche, Johannes; Verhoeven, Rob; Verbesselt, Jan; Hamunyela, Eliakim; Wielaard, Niels; Herold, Martin

    2018-01-01

    Fire use for land management is widespread in natural tropical and plantation forests, causing major environmental and economic damage. Recent studies combining active fire alerts with annual forest-cover loss information identified fire-related forest-cover loss areas well, but do not provide

  16. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Peres, CA; Banks-Leite, C; Wearn, OR; Marsh, CJ; Butchart, SHM; Arroyo-Rodríguez, V; Barlow, J; Cerezo, A; Cisneros, L; D’Cruze, N; Faria, D; Hadley, A; Harris, S; Klingbeil, BT; Kormann, U; Lens, L; Medina-Rangel, GF; Morante-Filho, JC; Olivier, P; Peters, SL; Pidgeon, A; Ribeiro, DB; Scherber, C; Schneider-Maunory, L; Struebig, M; Urbina-Cardona, N; Watling, JI; Willig, MR; Wood, EM; Ewers, RM

    2017-01-01

    Summary Forest edges influence more than half the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. We assembled an unmatched global dataset on species responses to fragmentation and developed a new statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1673 vertebrate species. We show that 85% of species’ abundances are affected, either positively or negatively, by forest edges. Forest core species, which were more likely to be listed as threatened by the IUCN, only reached peak abundances at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale. PMID:29088701

  17. Mapping Global Forest Aboveground Biomass with Spaceborne LiDAR, Optical Imagery, and Forest Inventory Data

    Directory of Open Access Journals (Sweden)

    Tianyu Hu

    2016-07-01

    Full Text Available As a large carbon pool, global forest ecosystems are a critical component of the global carbon cycle. Accurate estimations of global forest aboveground biomass (AGB can improve the understanding of global carbon dynamics and help to quantify anthropogenic carbon emissions. Light detection and ranging (LiDAR techniques have been proven that can accurately capture both horizontal and vertical forest structures and increase the accuracy of forest AGB estimation. In this study, we mapped the global forest AGB density at a 1-km resolution through the integration of ground inventory data, optical imagery, Geoscience Laser Altimeter System/Ice, Cloud, and Land Elevation Satellite data, climate surfaces, and topographic data. Over 4000 ground inventory records were collected from published literatures to train the forest AGB estimation model and validate the resulting global forest AGB product. Our wall-to-wall global forest AGB map showed that the global forest AGB density was 210.09 Mg/ha on average, with a standard deviation of 109.31 Mg/ha. At the continental level, Africa (333.34 ± 63.80 Mg/ha and South America (301.68 ± 67.43 Mg/ha had higher AGB density. The AGB density in Asia, North America and Europe were 172.28 ± 94.75, 166.48 ± 84.97, and 132.97 ± 50.70 Mg/ha, respectively. The wall-to-wall forest AGB map was evaluated at plot level using independent plot measurements. The adjusted coefficient of determination (R2 and root-mean-square error (RMSE between our predicted results and the validation plots were 0.56 and 87.53 Mg/ha, respectively. At the ecological zone level, the R2 and RMSE between our map and Intergovernmental Panel on Climate Change suggested values were 0.56 and 101.21 Mg/ha, respectively. Moreover, a comprehensive comparison was also conducted between our forest AGB map and other published regional AGB products. Overall, our forest AGB map showed good agreements with these regional AGB products, but some of the regional

  18. Differences in breeding bird assemblages related to reed canary grass cover cover and forest structure on the Upper Mississippi River

    Science.gov (United States)

    Kirsch, Eileen M.; Gray, Brian R.

    2017-01-01

    Floodplain forest of the Upper Mississippi River provides habitat for an abundant and diverse breeding bird community. However, reed canary grass Phalaris arundinacea invasion is a serious threat to the future condition of this forest. Reed canary grass is a well-known aggressive invader of wetland systems in the northern tier states of the conterminous United States. Aided by altered flow regimes and nutrient inputs from agriculture, reed canary grass has formed dense stands in canopy gaps and forest edges, retarding tree regeneration. We sampled vegetation and breeding birds in Upper Mississippi River floodplain forest edge and interior areas to 1) measure reed canary grass cover and 2) evaluate whether the breeding bird assemblage responded to differences in reed canary grass cover. Reed canary grass was found far into forest interiors, and its cover was similar between interior and edge sites. Bird assemblages differed between areas with more or less reed canary grass cover (.53% cover breakpoint). Common yellowthroat Geothlypis trichas, black-capped chickadee Parus atricapillus, and rose-breasted grosbeak Pheucticus ludovicianus were more common and American redstart Setophaga ruticilla, great crested flycatcher Myiarchus crinitus, and Baltimore oriole Icterus galbula were less common in sites with more reed canary grass cover. Bird diversity and abundance were similar between sites with different reed canary grass cover. A stronger divergence in bird assemblages was associated with ground cover ,15%, resulting from prolonged spring flooding. These sites hosted more prothonotary warbler Protonotaria citrea, but they had reduced bird abundance and diversity compared to other sites. Our results indicate that frequently flooded sites may be important for prothonotary warblers and that bird assemblages shift in response to reed canary grass invasion.

  19. Impacts of climate change on the global forest sector

    Science.gov (United States)

    Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.

    2002-01-01

    The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors

  20. Creation of forest edges has a global impact on forest vertebrates

    Science.gov (United States)

    Pfeifer, M.; Lefebvre, V.; Peres, C. A.; Banks-Leite, C.; Wearn, O. R.; Marsh, C. J.; Butchart, S. H. M.; Arroyo-Rodríguez, V.; Barlow, J.; Cerezo, A.; Cisneros, L.; D'Cruze, N.; Faria, D.; Hadley, A.; Harris, S. M.; Klingbeil, B. T.; Kormann, U.; Lens, L.; Medina-Rangel, G. F.; Morante-Filho, J. C.; Olivier, P.; Peters, S. L.; Pidgeon, A.; Ribeiro, D. B.; Scherber, C.; Schneider-Maunoury, L.; Struebig, M.; Urbina-Cardona, N.; Watling, J. I.; Willig, M. R.; Wood, E. M.; Ewers, R. M.

    2017-11-01

    Forest edges influence more than half of the world’s forests and contribute to worldwide declines in biodiversity and ecosystem functions. However, predicting these declines is challenging in heterogeneous fragmented landscapes. Here we assembled a global dataset on species responses to fragmentation and developed a statistical approach for quantifying edge impacts in heterogeneous landscapes to quantify edge-determined changes in abundance of 1,673 vertebrate species. We show that the abundances of 85% of species are affected, either positively or negatively, by forest edges. Species that live in the centre of the forest (forest core), that were more likely to be listed as threatened by the International Union for Conservation of Nature (IUCN), reached peak abundances only at sites farther than 200-400 m from sharp high-contrast forest edges. Smaller-bodied amphibians, larger reptiles and medium-sized non-volant mammals experienced a larger reduction in suitable habitat than other forest-core species. Our results highlight the pervasive ability of forest edges to restructure ecological communities on a global scale.

  1. A 50-m forest cover map in Southeast Asia from ALOS/PALSAR and its application on forest fragmentation assessment.

    Directory of Open Access Journals (Sweden)

    Jinwei Dong

    Full Text Available Southeast Asia experienced higher rates of deforestation than other continents in the 1990s and still was a hotspot of forest change in the 2000s. Biodiversity conservation planning and accurate estimation of forest carbon fluxes and pools need more accurate information about forest area, spatial distribution and fragmentation. However, the recent forest maps of Southeast Asia were generated from optical images at spatial resolutions of several hundreds of meters, and they do not capture well the exceptionally complex and dynamic environments in Southeast Asia. The forest area estimates from those maps vary substantially, ranging from 1.73×10(6 km(2 (GlobCover to 2.69×10(6 km(2 (MCD12Q1 in 2009; and their uncertainty is constrained by frequent cloud cover and coarse spatial resolution. Recently, cloud-free imagery from the Phased Array Type L-band Synthetic Aperture Radar (PALSAR onboard the Advanced Land Observing Satellite (ALOS became available. We used the PALSAR 50-m orthorectified mosaic imagery in 2009 to generate a forest cover map of Southeast Asia at 50-m spatial resolution. The validation, using ground-reference data collected from the Geo-Referenced Field Photo Library and high-resolution images in Google Earth, showed that our forest map has a reasonably high accuracy (producer's accuracy 86% and user's accuracy 93%. The PALSAR-based forest area estimates in 2009 are significantly correlated with those from GlobCover and MCD12Q1 at national and subnational scales but differ in some regions at the pixel scale due to different spatial resolutions, forest definitions, and algorithms. The resultant 50-m forest map was used to quantify forest fragmentation and it revealed substantial details of forest fragmentation. This new 50-m map of tropical forests could serve as a baseline map for forest resource inventory, deforestation monitoring, reducing emissions from deforestation and forest degradation (REDD+ implementation, and

  2. The role of forest disturbance in global forest mortality and terrestrial carbon fluxes

    Science.gov (United States)

    Pugh, Thomas; Arneth, Almut; Smith, Benjamin; Poulter, Benjamin

    2017-04-01

    Large-scale forest disturbance dynamics such as insect outbreaks, wind-throw and fires, along with anthropogenic disturbances such as logging, have been shown to turn forests from carbon sinks into intermittent sources, often quite dramatically so. There is also increasing evidence that disturbance regimes in many regions are changing as a result of climatic change and human land-management practices. But how these landscape-scale events fit into the wider picture of global tree mortality is not well understood. Do such events dominate global carbon turnover, or are their effects highly regional? How sensitive is global terrestrial carbon exchange to realistic changes in the occurrence rate of such disturbances? Here, we combine recent advances in global satellite observations of stand-replacing forest disturbances and in compilations of forest inventory data, with a global terrestrial ecosystem model which incorporates an explicit representation of the role of disturbance in forest dynamics. We find that stand-replacing disturbances account for a fraction of wood carbon turnover that varies spatially from less than 5% in the tropical rainforest to ca. 50% in the mid latitudes, and as much as 90% in some heavily-managed regions. We contrast the size of the land-atmosphere carbon flux due to this disturbance with other components of the terrestrial carbon budget. In terms of sensitivity, we find a quasi log-linear relationship of disturbance rate to total carbon storage. Relatively small changes in disturbance rates at all latitudes have marked effects on vegetation carbon storage, with potentially very substantial implications for the global terrestrial carbon sink. Our results suggest a surprisingly small effect of disturbance type on large-scale forest vegetation dynamics and carbon storage, with limited evidence of widespread increases in nitrogen limitation as a result of increasing future disturbance. However, the influence of disturbance type on soil carbon

  3. Effects of Forest Cover Change on Flood Characteristics in the Upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Dasanto

    2015-02-01

    Full Text Available Information on the effect of forest cover changes on streamflow (river discharge in large-scale catchment is important to be studied. The rate of forest cover change in the Upper Citarum Watershed as a large-scale catchment is high enough to drive streamflow change, such as increase of discharge level, or flood volume. Within the research area, flood would occur when the volume of streamflow exceeded the canal capacity and inundated areas that were normally dry. Therefore, this research focused on identifying the effects of forest cover change on flood events and its distribution. The research consisted of 2 main stages; firstly, building geometric data of river and performing frequency analysis of historical and scenario discharges using an approach of probability distribution; and, secondly, flood inundation mapping using HEC-RAS model. The results showed that forest reduction have affected water yield in the downstream of Upper Citarum Watershed. In each return period, this reduction have increased river discharge level and affected the spread of flooded areas. In 2-year return period, the extent of flood as an impact of forest reduction was estimated to decrease slowly. However, in the return period of more than 2 years, the spread of flooded areas increased sharply. These proved that forest cover reduction would always increase the discharge value, but it did not always expand the inundated area.Keywords: geometric data, forest cover, water yield, return period

  4. Anthropogenic Influences in Land Use/Land Cover Changes in Mediterranean Forest Landscapes in Sicily

    Directory of Open Access Journals (Sweden)

    Donato S. La Mela Veca

    2016-01-01

    Full Text Available This paper analyzes and quantifies the land use/land cover changes of the main forest and semi-natural landscape types in Sicily between 1955 and 2012. We analyzed seven representative forest and shrubland landscapes in Sicily. These study areas were chosen for their importance in the Sicilian forest panorama. We carried out a diachronic survey on historical and current aerial photos; all the aerial images used to survey the land use/land cover changes were digitalized and georeferenced in the UTM WGS84 system. In order to classify land use, the Regional Forest Inventory 2010 legend was adopted for the more recent images, and the CORINE Land Cover III level used for the older, lower resolution images. This study quantifies forest landscape dynamics; our results show for almost all study areas an increase of forest cover and expansion, whereas a regressive dynamic is found in rural areas due to intensive agricultural and pasturage uses. Understanding the dynamics of forest landscapes could enhance the role of forestry policy as a tool for landscape management and regional planning.

  5. Multi-temporal Assessment of Forest Cover, Stocking parameters ...

    African Journals Online (AJOL)

    user

    The study assessed forest cover, stocking parameters and above-ground tree .... deration new emerging ideas on REDD+, this study .... representing areas of change and zero values representing no ..... John Wiley & Sons, Inc. New York.

  6. A Sample-Based Forest Monitoring Strategy Using Landsat, AVHRR and MODIS Data to Estimate Gross Forest Cover Loss in Malaysia between 1990 and 2005

    Directory of Open Access Journals (Sweden)

    Peter Potapov

    2013-04-01

    Full Text Available Insular Southeast Asia is a hotspot of humid tropical forest cover loss. A sample-based monitoring approach quantifying forest cover loss from Landsat imagery was implemented to estimate gross forest cover loss for two eras, 1990–2000 and 2000–2005. For each time interval, a probability sample of 18.5 km × 18.5 km blocks was selected, and pairs of Landsat images acquired per sample block were interpreted to quantify forest cover area and gross forest cover loss. Stratified random sampling was implemented for 2000–2005 with MODIS-derived forest cover loss used to define the strata. A probability proportional to x (πpx design was implemented for 1990–2000 with AVHRR-derived forest cover loss used as the x variable to increase the likelihood of including forest loss area in the sample. The estimated annual gross forest cover loss for Malaysia was 0.43 Mha/yr (SE = 0.04 during 1990–2000 and 0.64 Mha/yr (SE = 0.055 during 2000–2005. Our use of the πpx sampling design represents a first practical trial of this design for sampling satellite imagery. Although the design performed adequately in this study, a thorough comparative investigation of the πpx design relative to other sampling strategies is needed before general design recommendations can be put forth.

  7. The sustainable management and protection of forests: analysis of the current position globally.

    Science.gov (United States)

    Freer-Smith, Peter; Carnus, Jean-Michel

    2008-06-01

    The loss of forest area globally due to change of land use, the importance of forests in the conservation of biodiversity and in carbon and other biogeochemical cycles, together with the threat to forests from pollution and from the impacts of climate change, place forestry policy and practice at the center of global environmental and sustainability strategy. Forests provide important economic, environmental, social, and cultural benefits, so that in forestry, as in other areas of environmental policy and management, there are tensions between economic development and environmental protection. In this article we review the current information on global forest cover and condition, examine the international processes that relate to forest protection and to sustainable forest management, and look at the main forest certification schemes. We consider the link between the international processes and certification schemes and also their combined effectiveness. We conclude that in some regions of the world neither mechanism is achieving forest protection, while in others local or regional implementation is occurring and is having a significant impact. Choice of certification scheme and implementation of management standards are often influenced by a consideration of the associated costs, and there are some major issues over the monitoring of agreed actions and of the criteria and indicators of sustainability. There are currently a number of initiatives seeking to improve the operation of the international forestry framework (e.g., The Montreal Process, the Ministerial Convention of the Protection of Forests in Europe and European Union actions in Europe, the African Timber Organisation and International Tropical Timber Organisation initiative for African tropical forest, and the development of a worldwide voluntary agreement on forestry in the United Nations Forum on Forests). We suggest that there is a need to improve the connections between scientific understanding

  8. Incorporating Canopy Cover for Airborne-Derived Assessments of Forest Biomass in the Tropical Forests of Cambodia.

    Science.gov (United States)

    Singh, Minerva; Evans, Damian; Coomes, David A; Friess, Daniel A; Suy Tan, Boun; Samean Nin, Chan

    2016-01-01

    This research examines the role of canopy cover in influencing above ground biomass (AGB) dynamics of an open canopied forest and evaluates the efficacy of individual-based and plot-scale height metrics in predicting AGB variation in the tropical forests of Angkor Thom, Cambodia. The AGB was modeled by including canopy cover from aerial imagery alongside with the two different canopy vertical height metrics derived from LiDAR; the plot average of maximum tree height (Max_CH) of individual trees, and the top of the canopy height (TCH). Two different statistical approaches, log-log ordinary least squares (OLS) and support vector regression (SVR), were used to model AGB variation in the study area. Ten different AGB models were developed using different combinations of airborne predictor variables. It was discovered that the inclusion of canopy cover estimates considerably improved the performance of AGB models for our study area. The most robust model was log-log OLS model comprising of canopy cover only (r = 0.87; RMSE = 42.8 Mg/ha). Other models that approximated field AGB closely included both Max_CH and canopy cover (r = 0.86, RMSE = 44.2 Mg/ha for SVR; and, r = 0.84, RMSE = 47.7 Mg/ha for log-log OLS). Hence, canopy cover should be included when modeling the AGB of open-canopied tropical forests.

  9. Global warming and the forest fire business in Canada

    International Nuclear Information System (INIS)

    Stocks, B.J.

    1991-01-01

    The current forest fire situation in Canada is outlined, and an attempt is made to predict the impact of global warming on the forest fire business in Canada. Despite the development of extremely sophisticated provincial and territorial fire management systems, forest fires continue to exert a tremendous influence on the Canadian forest resource. Research into the relationship between climate warming and forest fires has fallen into two categories: the effect of future global warming on fire weather severity, and the current contribution of forest fires to global atmospheric greenhouse gas budgets. A 46% increase in seasonal fire severity across Canada is suggested under a doubled atmospheric carbon dioxide concentration scenario. Approximately 89% of carbon released to the atmosphere by forest fire burning is in the form of carbon dioxide, 9% is carbon monoxide, and the remaining carbon is released as methane or non-methane hydrocarbons. It is estimated that forest fires in northern circumpolar countries contribute from 1-2% of the carbon released globally through biomass burning. Fire may be the agent by which a northerly shift of forest vegetation in Canada occurs. 13 refs., 2 figs

  10. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle

    Science.gov (United States)

    Brinck, Katharina; Fischer, Rico; Groeneveld, Jürgen; Lehmann, Sebastian; Dantas de Paula, Mateus; Pütz, Sandro; Sexton, Joseph O.; Song, Danxia; Huth, Andreas

    2017-03-01

    Deforestation in the tropics is not only responsible for direct carbon emissions but also extends the forest edge wherein trees suffer increased mortality. Here we combine high-resolution (30 m) satellite maps of forest cover with estimates of the edge effect and show that 19% of the remaining area of tropical forests lies within 100 m of a forest edge. The tropics house around 50 million forest fragments and the length of the world's tropical forest edges sums to nearly 50 million km. Edge effects in tropical forests have caused an additional 10.3 Gt (2.1-14.4 Gt) of carbon emissions, which translates into 0.34 Gt per year and represents 31% of the currently estimated annual carbon releases due to tropical deforestation. Fragmentation substantially augments carbon emissions from tropical forests and must be taken into account when analysing the role of vegetation in the global carbon cycle.

  11. Forest-Observation-System.net - towards a global in-situ data repository for biomass datasets validation

    Science.gov (United States)

    Shchepashchenko, D.; Chave, J.; Phillips, O. L.; Davies, S. J.; Lewis, S. L.; Perger, C.; Dresel, C.; Fritz, S.; Scipal, K.

    2017-12-01

    Forest monitoring is high on the scientific and political agenda. Global measurements of forest height, biomass and how they change with time are urgently needed as essential climate and ecosystem variables. The Forest Observation System - FOS (http://forest-observation-system.net/) is an international cooperation to establish a global in-situ forest biomass database to support earth observation and to encourage investment in relevant field-based observations and science. FOS aims to link the Remote Sensing (RS) community with ecologists who measure forest biomass and estimating biodiversity in the field for a common benefit. The benefit of FOS for the RS community is the partnering of the most established teams and networks that manage permanent forest plots globally; to overcome data sharing issues and introduce a standard biomass data flow from tree level measurement to the plot level aggregation served in the most suitable form for the RS community. Ecologists benefit from the FOS with improved access to global biomass information, data standards, gap identification and potential improved funding opportunities to address the known gaps and deficiencies in the data. FOS closely collaborate with the Center for Tropical Forest Science -CTFS-ForestGEO, the ForestPlots.net (incl. RAINFOR, AfriTRON and T-FORCES), AusCover, Tropical managed Forests Observatory and the IIASA network. FOS is an open initiative with other networks and teams most welcome to join. The online database provides open access for both metadata (e.g. who conducted the measurements, where and which parameters) and actual data for a subset of plots where the authors have granted access. A minimum set of database values include: principal investigator and institution, plot coordinates, number of trees, forest type and tree species composition, wood density, canopy height and above ground biomass of trees. Plot size is 0.25 ha or large. The database will be essential for validating and calibrating

  12. Application of a niche-based model for forest cover classification

    Directory of Open Access Journals (Sweden)

    Amici V

    2012-05-01

    Full Text Available In recent years, a surge of interest in biodiversity conservation have led to the development of new approaches to facilitate ecologically-based conservation policies and management plans. In particular, image classification and predictive distribution modeling applied to forest habitats, constitute a crucial issue as forests constitute the most widespread vegetation type and play a key role for ecosystem functioning. Then, the general purpose of this study is to develop a framework that in the absence of large amounts of field data for large areas may allow to select the most appropriate classification. In some cases, a hard division of classes is required, especially as support to environmental policies; despite this it is necessary to take into account problems which derive from a crisp view of ecological entities being mapped, since habitats are expected to be structurally complex and continuously vary within a landscape. In this paper, a niche model (MaxEnt, generally used to estimate species/habitat distribution, has been applied to classify forest cover in a complex Mediterranean area and to estimate the probability distribution of four forest types, producing continuous maps of forest cover. The use of the obtained models as validation of model for crisp classifications, highlighted that crisp classification, which is being continuously used in landscape research and planning, is not free from drawbacks as it is showing a high degree of inner variability. The modeling approach followed by this study, taking into account the uncertainty proper of the natural ecosystems and the use of environmental variables in land cover classification, may represent an useful approach to making more efficient and effective field inventories and to developing effective forest conservation policies.

  13. Computer-aided classification of forest cover types from small scale aerial photography

    Science.gov (United States)

    Bliss, John C.; Bonnicksen, Thomas M.; Mace, Thomas H.

    1980-11-01

    The US National Park Service must map forest cover types over extensive areas in order to fulfill its goal of maintaining or reconstructing presettlement vegetation within national parks and monuments. Furthermore, such cover type maps must be updated on a regular basis to document vegetation changes. Computer-aided classification of small scale aerial photography is a promising technique for generating forest cover type maps efficiently and inexpensively. In this study, seven cover types were classified with an overall accuracy of 62 percent from a reproduction of a 1∶120,000 color infrared transparency of a conifer-hardwood forest. The results were encouraging, given the degraded quality of the photograph and the fact that features were not centered, as well as the lack of information on lens vignetting characteristics to make corrections. Suggestions are made for resolving these problems in future research and applications. In addition, it is hypothesized that the overall accuracy is artificially low because the computer-aided classification more accurately portrayed the intermixing of cover types than the hand-drawn maps to which it was compared.

  14. Effects of forest cover changes in European Russia on regional weather conditions: results of numerical experiments with the COSMO-CLM model

    Science.gov (United States)

    Olchev, Alexander; Kuzmina, Ekaterina; Rozinkina, Inna; Nikitin, Mikhail; Rivin, Gdaly S.

    2017-04-01

    The forests have a significant effect on the climatic system. They capture CO2 from the atmosphere, regulate the surface evaporation and runoff, and influence the radiation and thermal conditions of the land surface. It is obvious, that their influence depends on many different factors including regional climate conditions, land use and vegetation structure, surface topography, etc. The main goal of the study is to assess the possible influence of forest cover changes (under deforestation and/or afforestation) on regional weather conditions in the central part of European Russia using the results of modeling experiments provided by the meso-scale COSMO-CLM model. The need of the study lies in a lack of the experimental and modeling data characterizing the influence of the forest and land-use changes on regional weather conditions in European part of Russia. The forest ecosystems in the study region play a very important biosphere role that is significantly increased in the last decades due to considerable strengthening of anthropogenic activity in the area of European Russia. The area selected for the study is located in the central part of European Russia between 55 and 59N and 28 and 37E. It comprises several geographical zones including dark-coniferous forests of the South-European taiga in the north, the mixed forests in the central part and the broad-leaved forests in the south. The forests within the study area are very heterogeneous. The total area covered by forests according to recent remote sensing data is about 50%. The numerical experiments were provided using the COSMO-CLM model with the spatial resolution 13.2 km. As initial and boundary conditions for the numerical experiments the global reanalysis ERA Interim (with the 6-hour resolution in time and 0.75° × 0.75° in space) were used. The weather conditions were simulated in a continuous cycle for several months for the entire area of European Russia using the results of global reanalysis on

  15. Assessing double counting of carbon emissions between forest land cover change and forest wildfires: a case study in the United States, 1992-2006

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey; Brad. Quayle

    2013-01-01

    The relative contributions of double counting of carbon emissions between forest-to-nonforest cover change (FNCC) and forest wildfires are an unknown in estimating net forest carbon exchanges at large scales. This study employed land-cover change maps and forest fire data in the four representative states (Arkansas, California, Minnesota, and Washington) of the US for...

  16. Effects of Forest Cover Change on Flood Characteristics in the Upper Citarum Watershed

    Directory of Open Access Journals (Sweden)

    Bambang Dwi Dasanto

    2014-12-01

    Full Text Available Information on the effect of forest cover changes on streamflow (river discharge in large-scale catchment is important to be studied. The rate of forest cover change in the Upper Citarum Watershed as a large-scale catchment is high enough to drive streamflow change, such as increase of discharge level, or flood volume. Within the research area, flood would occur when the volume of streamflow exceeded the canal capacity and inundated areas that were normally dry. Therefore, this research focused on identifying the effects of forest cover change on flood events and its distribution. The research consisted of 2 main stages; firstly, building geometric data of river and performing frequency analysis of historical and scenario discharges using an approach of probability distribution; and, secondly, flood inundation mapping using HEC-RAS model. The results showed that forest reduction have affected water yield in the downstream of Upper Citarum Watershed. In each return period, this reduction have increased river discharge level and affected the spread of flooded areas. In 2-year return period, the extent of flood as an impact of forest reduction was estimated to decrease slowly. However, in the return period of more than 2 years, the spread of flooded areas increased sharply. These proved that forest cover reduction would always increase the discharge value, but it did not always expand the inundated area.

  17. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change

    Science.gov (United States)

    Kristina J. Anderson-Teixeira; Stuart J. Davies; Amy C. Bennett; Erika B. Gonzalez-Akre; Helene C. Muller-Landau; S. Joseph Wright; Kamariah Abu Salim; Angélica M. Almeyda Zambrano; Alfonso Alonso; Jennifer L. Baltzer; Yves Basset; Norman A. Bourg; Eben N. Broadbent; Warren Y. Brockelman; Sarayudh Bunyavejchewin; David F. R. P. Burslem; Nathalie Butt; Min Cao; Dairon Cardenas; George B. Chuyong; Keith Clay; Susan Cordell; Handanakere S. Dattaraja; Xiaobao Deng; Matteo Detto; Xiaojun Du; Alvaro Duque; David L. Erikson; Corneille E.N. Ewango; Gunter A. Fischer; Christine Fletcher; Robin B. Foster; Christian P. Giardina; Gregory S. Gilbert; Nimal Gunatilleke; Savitri Gunatilleke; Zhanqing Hao; William W. Hargrove; Terese B. Hart; Billy C.H. Hau; Fangliang He; Forrest M. Hoffman; Robert W. Howe; Stephen P. Hubbell; Faith M. Inman-Narahari; Patrick A. Jansen; Mingxi Jiang; Daniel J. Johnson; Mamoru Kanzaki; Abdul Rahman Kassim; David Kenfack; Staline Kibet; Margaret F. Kinnaird; Lisa Korte; Kamil Kral; Jitendra Kumar; Andrew J. Larson; Yide Li; Xiankun Li; Shirong Liu; Shawn K.Y. Lum; James A. Lutz; Keping Ma; Damian M. Maddalena; Jean-Remy Makana; Yadvinder Malhi; Toby Marthews; Rafizah Mat Serudin; Sean M. McMahon; William J. McShea; Hervé R. Memiaghe; Xiangcheng Mi; Takashi Mizuno; Michael Morecroft; Jonathan A. Myers; Vojtech Novotny; Alexandre A. de Oliveira; Perry S. Ong; David A. Orwig; Rebecca Ostertag; Jan den Ouden; Geoffrey G. Parker; Richard P. Phillips; Lawren Sack; Moses N. Sainge; Weiguo Sang; Kriangsak Sri-ngernyuang; Raman Sukumar; I-Fang Sun; Witchaphart Sungpalee; Hebbalalu Sathyanarayana Suresh; Sylvester Tan; Sean C. Thomas; Duncan W. Thomas; Jill Thompson; Benjamin L. Turner; Maria Uriarte; Renato Valencia; Marta I. Vallejo; Alberto Vicentini; Tomáš Vrška; Xihua Wang; Xugao Wang; George Weiblen; Amy Wolf; Han Xu; Sandra Yap; Jess Zimmerman

    2014-01-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics research sites (CTFS-ForestGEO) useful for characterizing forest responses...

  18. Ground cover in old-growth forests of the central hardwood region

    Science.gov (United States)

    Martin A. Spetich; Stephen R. Shifley; George R. Parker; Felix, Jr. Ponder

    1997-01-01

    Differences in ground cover (percent cover of litter, percent cover of vegetation and litter weight) in old-growth forests across this region are not well understood. We initiated a long-term study in a three-state region to enhance knowledge in this area. We present baseline results for ground cover and compare these data across productivity regions. Thirty 0.25-ac (0...

  19. Quantifying Structural and Compositional Changes in Forest Cover in NW Yunnan, China

    Science.gov (United States)

    Hakkenberg, C.

    2012-12-01

    NW Yunnan, China is a region renowned for high levels of biodiversity, endemism and genetically distinct refugial plant populations. It is also a focal area for China's national reforestation efforts like the Natural Forest Protection Program (NFPP), intended to control erosion in the Upper Yangtze watershed. As part of a larger project to investigate the role of reforestation programs in facilitating the emergence of increasingly species-rich forest communities on a previously degraded and depauperate land mosaic in montane SW China, this study uses a series of Landsat TM images to quantify the spatial pattern and rate of structural and compositional change in forests recovering from medium to large-scale disturbances in the area over the past 25 years. Beyond the fundamental need to assess the outcomes of one of the world's largest reforestation programs, this research offers approaches to confronting two critical methodological issues: (1) techniques for characterizing subtle changes in the nature of vegetation cover, and (2) reducing change detection uncertainty due to persistent cloud cover and shadow. To address difficulties in accurately assessing the structure and composition of vegetative regrowth, a biophysical model was parameterized with over 300 ground-truthed canopy cover assessment points to determine pattern and rate of long-term vegetation changes. To combat pervasive shadow and cloud cover, an interactive generalized additive model (GAM) model based on topographic and spatial predictors was used to overcome some of the constraints of satellite image analysis in Himalayan regions characterized by extreme topography and extensive cloud cover during the summer monsoon. The change detection is assessed for accuracy using ground-truthed observations in a variety of forest cover types and topographic positions. Results indicate effectiveness in reducing the areal extent of unclassified regions and increasing total change detection accuracy. In addition

  20. CTFS-ForestGEO: A worldwide network monitoring forests in an era of global change

    NARCIS (Netherlands)

    Anderson-Teixeira, K.J.; Davies, S.J.; Bennett, A.C.; Gonzalez-Akre, E.B.; Muller-Landau, H.C.; Wright, S.J.; Abu Salim, K.; Almeyda Zambrano, A.M.; Jansen, P.A.; Ouden, den J.

    2015-01-01

    Global change is impacting forests worldwide, threatening biodiversity and ecosystem services including climate regulation. Understanding how forests respond is critical to forest conservation and climate protection. This review describes an international network of 59 long-term forest dynamics

  1. Comparison of Data Fusion Methods Using Crowdsourced Data in Creating a Hybrid Forest Cover Map

    Directory of Open Access Journals (Sweden)

    Myroslava Lesiv

    2016-03-01

    Full Text Available Data fusion represents a powerful way of integrating individual sources of information to produce a better output than could be achieved by any of the individual sources on their own. This paper focuses on the data fusion of different land cover products derived from remote sensing. In the past, many different methods have been applied, without regard to their relative merit. In this study, we compared some of the most commonly-used methods to develop a hybrid forest cover map by combining available land cover/forest products and crowdsourced data on forest cover obtained through the Geo-Wiki project. The methods include: nearest neighbour, naive Bayes, logistic regression and geographically-weighted logistic regression (GWR, as well as classification and regression trees (CART. We ran the comparison experiments using two data types: presence/absence of forest in a grid cell; percentage of forest cover in a grid cell. In general, there was little difference between the methods. However, GWR was found to perform better than the other tested methods in areas with high disagreement between the inputs.

  2. DEPENDENCE OF GRASS COVER TAXONOMIC AND ECOLOGICAL STRUCTURE ON THE ANTHROPOGENIC IMPACT IN FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    N. V. Miroshnik

    2016-01-01

    Full Text Available Pine forests Chigirinsky Bor grow on fresh sod-podzolic soils formed on ancient alluvial deposits. Pine forests are characterized by stringent moisture regimes and constantly suffer from lack of productive moisture in soil.  Industrial development of Cherkasy in 60th years of ХХ century leaded air pollution and emissions of SO2, NOx, NH3, and dust. This contributed to significant negative influence on the surrounding forest ecosystems from enterprises of  Cherkassy industrial agglomeration. The grass cover in pine stands of Chigirinsky Bor transforms into xerophytic grasses and ruderal communities under the impact of negative biotic and abiotic factors. They are namely the anthropogenic violation of forest conditions, stands decline, recreational and industrial tree crowns understocking, xerophytic and heliophytic transformations of forest conditions. All the above mentioned caused strong ruderal and adventive transformation of grass cover. We registered the changes in nitrophilous plant spread regards the Cherkasy industrial agglomeration approaching which emits toxic with nitrogen-containing gases. Adventive and other non-forest species displace ferns and mosses, the ratio of ecomorfs is also changes due to increase of the quantity and development activation of annuals, xerophytic, ruderal, and nitrofil plants. The Asteraceae/Brassicaceae 3:1 ratio indicates significant anthropogenic violations in the region. We fixed the xerophytic, ruderal, and adventive transformation of grass cover in forest ecosystems. It is also founded the tendency of expanding the fraction of mesophilic plant species due to alterations in water regime (creation of Kremenchug reservoir and draining of floodplain Tyasmyn. When approaching the Cherkasy industrial agglomeration the grass cover degradation is clearly observed on the environmental profile. All this causes the forest ecosystem degradation and gradual loss of forest vegetation typical characteristics. We

  3. Land-use poverty traps identified in shifting cultivation systems shape long-term tropical forest cover

    Science.gov (United States)

    Coomes, Oliver T.; Takasaki, Yoshito; Rhemtulla, Jeanine M.

    2011-01-01

    In this article we illustrate how fine-grained longitudinal analyses of land holding and land use among forest peasant households in an Amazonian village can enrich our understanding of the poverty/land cover nexus. We examine the dynamic links in shifting cultivation systems among asset poverty, land use, and land cover in a community where poverty is persistent and primary forests have been replaced over time—with community enclosure—by secondary forests (i.e., fallows), orchards, and crop land. Land cover change is assessed using aerial photographs/satellite imagery from 1965 to 2007. Household and plot level data are used to track land holding, portfolios, and use as well as land cover over the past 30 y, with particular attention to forest status (type and age). Our analyses find evidence for two important types of “land-use” poverty traps—a “subsistence crop” trap and a “short fallow” trap—and indicate that the initial conditions of land holding by forest peasants have long-term effects on future forest cover and household welfare. These findings suggest a new mechanism driving poverty traps: insufficient initial land holdings induce land use patterns that trap households in low agricultural productivity. Path dependency in the evolution of household land portfolios and land use strategies strongly influences not only the wellbeing of forest people but also the dynamics of tropical deforestation and secondary forest regrowth. PMID:21873179

  4. GHG Mitigation Potential, Costs and Benefits in Global Forests: ADynamic Partial Equilibrium Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant; Makundi, Willy; Dale, Larry; Chan, Peter; Andrasko, Kenneth

    2005-03-22

    This paper reports on the global potential for carbonsequestration in forest plantations, and the reduction of carbonemissions from deforestation, in response to six carbon price scenariosfrom 2000 to 2100. These carbon price scenarios cover a range typicallyseen in global integrated assessment models. The world forest sector wasdisaggregated into tenregions, four largely temperate, developedregions: the European Union, Oceania, Russia, and the United States; andsix developing, mostly tropical, regions: Africa, Central America, China,India, Rest of Asia, and South America. Three mitigation options -- long-and short-rotation forestry, and the reduction of deforestation -- wereanalyzed using a global dynamic partial equilibrium model (GCOMAP). Keyfindings of this work are that cumulative carbon gain ranges from 50.9 to113.2 Gt C by 2100, higher carbon prices early lead to earlier carbongain and vice versa, and avoided deforestation accounts for 51 to 78percent of modeled carbon gains by 2100. The estimated present value ofcumulative welfare change in the sector ranges from a decline of $158billion to a gain of $81 billion by 2100. The decline is associated witha decrease in deforestation.

  5. Forest Policy Scenario Analysis: Sensitivity of Songbird Community to Changes in Forest Cover Amount and Configuration

    Directory of Open Access Journals (Sweden)

    Robert S. Rempel

    2007-06-01

    Full Text Available Changes in mature forest cover amount, composition, and configuration can be of significant consequence to wildlife populations. The response of wildlife to forest patterns is of concern to forest managers because it lies at the heart of such competing approaches to forest planning as aggregated vs. dispersed harvest block layouts. In this study, we developed a species assessment framework to evaluate the outcomes of forest management scenarios on biodiversity conservation objectives. Scenarios were assessed in the context of a broad range of forest structures and patterns that would be expected to occur under natural disturbance and succession processes. Spatial habitat models were used to predict the effects of varying degrees of mature forest cover amount, composition, and configuration on habitat occupancy for a set of 13 focal songbird species. We used a spatially explicit harvest scheduling program to model forest management options and simulate future forest conditions resulting from alternative forest management scenarios, and used a process-based fire-simulation model to simulate future forest conditions resulting from natural wildfire disturbance. Spatial pattern signatures were derived for both habitat occupancy and forest conditions, and these were placed in the context of the simulated range of natural variation. Strategic policy analyses were set in the context of current Ontario forest management policies. This included use of sequential time-restricted harvest blocks (created for Woodland caribou (Rangifer tarandus conservation and delayed harvest areas (created for American marten (Martes americana atrata conservation. This approach increased the realism of the analysis, but reduced the generality of interpretations. We found that forest management options that create linear strips of old forest deviate the most from simulated natural patterns, and had the greatest negative effects on habitat occupancy, whereas policy options

  6. Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe.

    Science.gov (United States)

    Kaplan, Jed O; Pfeiffer, Mirjam; Kolen, Jan C A; Davis, Basil A S

    2016-01-01

    Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM) are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system.

  7. Remotely sensed forest cover loss shows high spatial and temporal variation across Sumatera and Kalimantan, Indonesia 2000-2008

    International Nuclear Information System (INIS)

    Broich, Mark; Hansen, Matthew; Potapov, Peter; Margono, Belinda Arunarwati; Adusei, Bernard; Stolle, Fred

    2011-01-01

    The Indonesian islands of Sumatera and Kalimantan (the Indonesian part of the island of Borneo) are a center of significant and rapid forest cover loss in the humid tropics with implications for carbon dynamics, biodiversity conservation, and local livelihoods. The aim of our research was to analyze and interpret annual trends of forest cover loss for different sub-regions of the study area. We mapped forest cover loss for 2000-2008 using multi-resolution remote sensing data from the Landsat enhanced thematic mapper plus (ETM +) and moderate resolution imaging spectroradiometer (MODIS) sensors and analyzed annual trends per island, province, and official land allocation zone. The total forest cover loss for Sumatera and Kalimantan 2000-2008 was 5.39 Mha, which represents 5.3% of the land area and 9.2% of the year 2000 forest cover of these two islands. At least 6.5% of all mapped forest cover loss occurred in land allocation zones prohibiting clearing. An additional 13.6% of forest cover loss occurred where clearing is legally restricted. The overall trend of forest cover loss increased until 2006 and decreased thereafter. The trends for Sumatera and Kalimantan were distinctly different, driven primarily by the trends of Riau and Central Kalimantan provinces, respectively. This analysis shows that annual mapping of forest cover change yields a clearer picture than a one-time overall national estimate. Monitoring forest dynamics is important for national policy makers, especially given the commitment of Indonesia to reducing greenhouse gas emissions as part of the reducing emissions from deforestation and forest degradation in developing countries initiative (REDD +). The improved spatio-temporal detail of forest change monitoring products will make it possible to target policies and projects in meeting this commitment. Accurate, annual forest cover loss maps will be integral to many REDD + objectives, including policy formulation, definition of baselines, detection

  8. Detecting Forest Cover and Ecosystem Service Change Using ...

    African Journals Online (AJOL)

    user

    Mpigi, than in Butambala by 5.99%, disturbed forest was 3%, farm land ... climate change impacts on ecosystem services requires more attention and ... While these conceptual models usually assume relatively a causal-effect ... images with relatively low cloud cover or free-cloud imagery during the time period of interest.

  9. Global climate change adaptation: examples from Russian boreal forests

    International Nuclear Information System (INIS)

    Krankina, O.N.; Dixon, R.K.; Kirilenko, A.P.; Kobak, K.I.

    1997-01-01

    The Russian Federation contains approximately 20% of the world's timber resources and more than half of all boreal forests. These forests play a prominent role in environmental protection and economic development at global, national, and local levels, as well as, provide commodities for indigenous people and habitat for a variety of plant and animal species. The response and feedbacks of Russian boreal forests to projected global climate change are expected to be profound. Current understanding of the vulnerability of Russian forest resources to projected climate change is discussed and examples of possible adaptation measures for Russian forests are presented including: (1) artificial forestation techniques that can be applied with the advent of failed natural regeneration and to facilitate forest migration northward; (2) silvicultural measures that can influence the species mix to maintain productivity under future climates; (3) identifying forests at risk and developing special management adaption measures for them: (4) alternative processing and uses of wood and non-wood products from future forests; and (5) potential future infrastructure and transport systems that can be employed as boreal forests shift northward into melting permafrost zones. Current infrastructure and technology can be employed to help Russian boreal forests adapt to projected global environmental change, however many current forest management practices may have to be modified. Application of this technical knowledge can help policymakers identify priorities for climate change adaptation

  10. A global assessment of closed forests, deforestation and malaria risk

    Science.gov (United States)

    GUERRA, C. A.; SNOW, R. W.; HAY, S. I.

    2011-01-01

    Global environmental change is expected to affect profoundly the transmission of the parasites that cause human malaria. Amongst the anthropogenic drivers of change, deforestation is arguably the most conspicuous, and its rate is projected to increase in the coming decades. The canonical epidemiological understanding is that deforestation increases malaria risk in Africa and the Americas and diminishes it in South–east Asia. Partial support for this position is provided here, through a systematic review of the published literature on deforestation, malaria and the relevant vector bionomics. By using recently updated boundaries for the spatial limits of malaria and remotely-sensed estimates of tree cover, it has been possible to determine the population at risk of malaria in closed forest, at least for those malaria-endemic countries that lie within the main blocks of tropical forest. Closed forests within areas of malaria risk cover approximately 1.5 million km2 in the Amazon region, 1.4 million km2 in Central Africa, 1.2 million km2 in the Western Pacific, and 0.7 million km2 in South–east Asia. The corresponding human populations at risk of malaria within these forests total 11.7 million, 18.7 million, 35.1 million and 70.1 million, respectively. By coupling these numbers with the country-specific rates of deforestation, it has been possible to rank malaria-endemic countries according to their potential for change in the population at risk of malaria, as the result of deforestation. The on-going research aimed at evaluating these relationships more quantitatively, through the Malaria Atlas Project (MAP), is highlighted. PMID:16630376

  11. Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells

    International Nuclear Information System (INIS)

    Bagan, Hasi; Yamagata, Yoshiki

    2014-01-01

    Global urban expansion has created incentives to convert green spaces to urban/built-up area. Therefore, understanding the distribution and dynamics of the land-cover changes in cities is essential for better understanding of the cities’ fundamental characteristics and processes, and of the impact of changing land-cover on potential carbon storage. We present a grid square approach using multi-temporal Landsat data from around 1985–2010 to monitor the spatio-temporal land-cover dynamics of 50 global cities. The maximum-likelihood classification method is applied to Landsat data to define the cities’ urbanized areas at different points in time. Subsequently, 1 km 2 grid squares with unique cell IDs are designed to link among land-cover maps for spatio-temporal land-cover change analysis. Then, we calculate land-cover category proportions for each map in 1 km 2 grid cells. Statistical comparison of the land-cover changes in grid square cells shows that urban area expansion in 50 global cities was strongly negatively correlated with forest, cropland and grassland changes. The generated land-cover proportions in 1 km 2 grid cells and the spatial relationships between the changes of land-cover classes are critical for understanding past patterns and the consequences of urban development so as to inform future urban planning, risk management and conservation strategies. (letters)

  12. Global climate change impacts on forests and markets

    Science.gov (United States)

    Xiaohui Tian; Brent Sohngen; John B Kim; Sara Ohrel; Jefferson Cole

    2016-01-01

    This paper develops an economic analysis of climate change impacts in the global forest sector. It illustrates how potential future climate change impacts can be integrated into a dynamic forestry economics model using data from a global dynamic vegetation model, theMC2model. The results suggest that climate change will cause forest outputs (such as timber) to increase...

  13. MODIS snow cover mapping accuracy in a small mountain catchment – comparison between open and forest sites

    Directory of Open Access Journals (Sweden)

    G. Blöschl

    2012-07-01

    Full Text Available Numerous global and regional validation studies have examined MODIS snow mapping accuracy by using measurements at climate stations, which are mainly at open sites. MODIS accuracy in alpine and forested regions is, however, still not well understood. The main objective of this study is to evaluate MODIS (MOD10A1 and MYD10A1 snow cover products in a small experimental catchment by using extensive snow course measurements at open and forest sites. The MODIS accuracy is tested in the Jalovecky creek catchment (northern Slovakia in the period 2000–2011. The results show that the combined Terra and Aqua images enable snow mapping at an overall accuracy of 91.5%. The accuracies at forested, open and mixed land uses at the Červenec sites are 92.7%, 98.3% and 81.8%, respectively. The use of a 2-day temporal filter enables a significant reduction in the number of days with cloud coverage and an increase in overall snow mapping accuracy. In total, the 2-day temporal filter decreases the number of cloudy days from 61% to 26% and increases the snow mapping accuracy to 94%. The results indicate three possible factors leading to misclassification of snow as land: patchy snow cover, limited MODIS geolocation accuracy and mapping algorithm errors. Out of a total of 27 misclassification cases, patchy snow cover, geolocation issues and mapping errors occur in 12, 12 and 3 cases, respectively.

  14. Expanding global forest management: An easy first' proposal

    Energy Technology Data Exchange (ETDEWEB)

    Winjum, J.K. (Environmental Protection Agency, Corvallis, OR (United States)); Meganck, R.A. (United Nations Environment Programme, Kingston (Jamaica)); Dixon, R.K.

    1993-04-01

    World leaders have become increasingly aware of the contributions of sustainable forest resources to political, social, economic, and environmental health. As a result, interest is growing for a world treaty or protocol on forest management and protection. This article focuses on global forest management. The first section discusses the current situtation in global forest management (10-12% of the total). Benefits of global benefit to management included sustained and even increased yield, slowing of atmospheric carbon dioxide, and conservation of biodiversity and increase sustainable use options. The Noordwijk Goal is discussed as one example of concrete global action. Finally, the easy first approach is presented in detail. It involves starting in areas where the obstacles are minimal to develop early momentum and a can do outlook for implementation. Difficulties of this approach involve dealing with the political, social, and economic aspects of resource constraints that many nations face daily. But the easy first approach attempts to demonstrate that not all financial commitments, political agreements and forest management techniques must be in place for work to start.

  15. Rohingya Refugee Crisis and Forest Cover Change in Teknaf, Bangladesh

    Directory of Open Access Journals (Sweden)

    Mohammad Mehedy Hassan

    2018-04-01

    Full Text Available Following a targeted campaign of violence by Myanmar military, police, and local militias, more than half a million Rohingya refugees have fled to neighboring Bangladesh since August 2017, joining thousands of others living in overcrowded settlement camps in Teknaf. To accommodate this mass influx of refugees, forestland is razed to build spontaneous settlements, resulting in an enormous threat to wildlife habitats, biodiversity, and entire ecosystems in the region. Although reports indicate that this rapid and vast expansion of refugee camps in Teknaf is causing large scale environmental destruction and degradation of forestlands, no study to date has quantified the camp expansion extent or forest cover loss. Using remotely sensed Sentinel-2A and -2B imagery and a random forest (RF machine learning algorithm with ground observation data, we quantified the territorial expansion of refugee settlements and resulting degradation of the ecological resources surrounding the three largest concentrations of refugee camps—Kutupalong–Balukhali, Nayapara–Leda and Unchiprang—that developed between pre- and post-August of 2017. Employing RF as an image classification approach for this study with a cross-validation technique, we obtained a high overall classification accuracy of 94.53% and 95.14% for 2016 and 2017 land cover maps, respectively, with overall Kappa statistics of 0.93 and 0.94. The producer and user accuracy for forest cover ranged between 92.98–98.21% and 96.49–92.98%, respectively. Results derived from the thematic maps indicate a substantial expansion of refugee settlements in the three refugee camp study sites, with an increase of 175 to 1530 hectares between 2016 and 2017, and a net growth rate of 774%. The greatest camp expansion is observed in the Kutupalong–Balukhali site, growing from 146 ha to 1365 ha with a net increase of 1219 ha (total growth rate of 835% in the same time period. While the refugee camps’ occupancy

  16. Evaluation and prediction of shrub cover in coastal Oregon forests (USA)

    Science.gov (United States)

    Becky K. Kerns; Janet L. Ohmann

    2004-01-01

    We used data from regional forest inventories and research programs, coupled with mapped climatic and topographic information, to explore relationships and develop multiple linear regression (MLR) and regression tree models for total and deciduous shrub cover in the Oregon coastal province. Results from both types of models indicate that forest structure variables were...

  17. How to address a global problem with Earth Observations? Developing best practices to monitor forests around the world

    Science.gov (United States)

    Flores Cordova, A. I.; Cherrington, E. A.; Vadrevu, K.; Thapa, R. B.; Oduor, P.; Mehmood, H.; Quyen, N. H.; Saah, D. S.; Yero, K.; Mamane, B.; Bartel, P.; Limaye, A. S.; French, R.; Irwin, D.; Wilson, S.; Gottielb, S.; Notman, E.

    2017-12-01

    Forests represent a key natural resource, for which degradation or disturbance is directly associated to economic implications, particularly in the context of the United Nations program REDD+ in supporting national policies to fight illegal deforestation. SERVIR, a joint NASA-USAID initiative that brings Earth observations (EO) for improved environmental decision making in developing countries, works with established institutions, called SERVIR hubs, in four regions around the world. SERVIR is partnering with global programs with great experience in providing best practices in forest monitoring systems, such as SilvaCarbon and the Global Forest Observation Initiative (GFOI), to develop a capacity building plan that prioritizes user needs. Representatives from the SERVIR global network met in February 2017 with experts in the field of Synthetic Aperture Radar (SAR) for forest applications to envisage this capacity building plan that aims to leverage the state-of-the-art knowledge on remote sensing to enhance forest monitoring for user agencies in SERVIR regions. SERVIR Hubs in West Africa, Eastern and Southern Africa, Hindu Kush-Himalaya and Lower Mekong, have long-lasting relations with local, national and regional initiatives, and there is a strong understanding of needs, concerns and best practices when addressing forest monitoring and capacity building. SERVIR Hubs also have a wealth of experience in building capacity on the use of EO to monitor forests, mostly using optical imagery. Most of the forest cover maps generated with SERVIR support have been used as the official national forest cover dataset for international reporting commitments. However, as new EO datasets become available, and in view of the inherent limitations of optical imagery, there is a strong need to use all freely available EO datasets, including SAR, to improve Monitoring & Measurement, Reporting and Verification (MRV) systems and provide more frequent and accurate information. SERVIR

  18. Large Scale Anthropogenic Reduction of Forest Cover in Last Glacial Maximum Europe.

    Directory of Open Access Journals (Sweden)

    Jed O Kaplan

    Full Text Available Reconstructions of the vegetation of Europe during the Last Glacial Maximum (LGM are an enigma. Pollen-based analyses have suggested that Europe was largely covered by steppe and tundra, and forests persisted only in small refugia. Climate-vegetation model simulations on the other hand have consistently suggested that broad areas of Europe would have been suitable for forest, even in the depths of the last glaciation. Here we reconcile models with data by demonstrating that the highly mobile groups of hunter-gatherers that inhabited Europe at the LGM could have substantially reduced forest cover through the ignition of wildfires. Similar to hunter-gatherers of the more recent past, Upper Paleolithic humans were masters of the use of fire, and preferred inhabiting semi-open landscapes to facilitate foraging, hunting and travel. Incorporating human agency into a dynamic vegetation-fire model and simulating forest cover shows that even small increases in wildfire frequency over natural background levels resulted in large changes in the forested area of Europe, in part because trees were already stressed by low atmospheric CO2 concentrations and the cold, dry, and highly variable climate. Our results suggest that the impact of humans on the glacial landscape of Europe may be one of the earliest large-scale anthropogenic modifications of the earth system.

  19. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India

    Directory of Open Access Journals (Sweden)

    Amit Kumar Batar

    2017-04-01

    Full Text Available The Garhwal Himalaya has experienced extensive deforestation and forest fragmentation, but data and documentation detailing this transformation of the Himalaya are limited. The aim of this study is to analyse the observed changes in land cover and forest fragmentation that occurred between 1976 and 2014 in the Garhwal Himalayan region in India. Three images from Landsat 2 Multispectral Scanner System (MSS, Landsat 5 Thematic Mapper (TM, and Landsat 8 Operational Land Imager (OLI were used to extract the land cover maps. A cross-tabulation detection method in the geographic information system (GIS module was used to detect land cover changes during the 1st period (1976–1998 and 2nd period (1998–2014. The landscape fragmentation tool LFT v2.0 was used to construct a forest fragmentation map and analyse the forest fragmentation pattern and change during the 1st period (1976–1998 and 2nd period (1998–2014. The overall annual rate of change in the forest cover was observed to be 0.22% and 0.27% in the 1st period (1976–1998 and 2nd period (1998–2014, respectively. The forest fragmentation analysis shows that a large core forest has decreased throughout the study period. The total area of forest patches also increased from 1976 to 2014, which are completely degraded forests. The results indicate that anthropogenic activities are the main causes of the loss of forest cover and forest fragmentation, but that natural factors also contributed. An increase in the area of scrub and barren land also contributed to the accumulation of wasteland or non-forest land in this region. Determining the trend and the rate of land cover conversion is necessary for development planners to establish a rational land use policy.

  20. Automatic crown cover mapping to improve forest inventory

    Science.gov (United States)

    Claude Vidal; Jean-Guy Boureau; Nicolas Robert; Nicolas Py; Josiane Zerubia; Xavier Descombes; Guillaume Perrin

    2009-01-01

    To automatically analyze near infrared aerial photographs, the French National Institute for Research in Computer Science and Control developed together with the French National Forest Inventory (NFI) a method for automatic crown cover mapping. This method uses a Reverse Jump Monte Carlo Markov Chain algorithm to locate the crowns and describe those using ellipses or...

  1. BOREAS SERM Forest Cover Data of Saskatchewan in Vector Format

    Data.gov (United States)

    National Aeronautics and Space Administration — A condensed forest cover type digital map of Saskatchewan and is a product of the Saskatchewan Environment and Resource Management, Forestry Branch-Inventory Unit...

  2. Exploring Subpixel Learning Algorithms for Estimating Global Land Cover Fractions from Satellite Data Using High Performance Computing

    Directory of Open Access Journals (Sweden)

    Uttam Kumar

    2017-10-01

    Full Text Available Land cover (LC refers to the physical and biological cover present over the Earth’s surface in terms of the natural environment such as vegetation, water, bare soil, etc. Most LC features occur at finer spatial scales compared to the resolution of primary remote sensing satellites. Therefore, observed data are a mixture of spectral signatures of two or more LC features resulting in mixed pixels. One solution to the mixed pixel problem is the use of subpixel learning algorithms to disintegrate the pixel spectrum into its constituent spectra. Despite the popularity and existing research conducted on the topic, the most appropriate approach is still under debate. As an attempt to address this question, we compared the performance of several subpixel learning algorithms based on least squares, sparse regression, signal–subspace and geometrical methods. Analysis of the results obtained through computer-simulated and Landsat data indicated that fully constrained least squares (FCLS outperformed the other techniques. Further, FCLS was used to unmix global Web-Enabled Landsat Data to obtain abundances of substrate (S, vegetation (V and dark object (D classes. Due to the sheer nature of data and computational needs, we leveraged the NASA Earth Exchange (NEX high-performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into four classes, namely forest, farmland, water and urban areas (in conjunction with nighttime lights data over California, USA using a random forest classifier. Validation of these LC maps with the National Land Cover Database 2011 products and North American Forest Dynamics static forest map shows a 6% improvement in unmixing-based classification relative to per-pixel classification. As such, abundance maps continue to offer a useful alternative to high-spatial-resolution classified maps for forest inventory analysis, multi

  3. Spatial and Temporal Analysis of Industrial Forest Clearcuts in the Conterminous United States

    Science.gov (United States)

    Huo, L. Z.; Boschetti, L.

    2015-12-01

    Remote sensing has been widely used for mapping and characterizing changes in forest cover, but the available remote sensing forest change products are not discriminating between deforestation (permanent transition from forest to non forest) and industrial forest management (logging followed by regrowth, with no land cover/ land use class change) (Hansen et al, 2010). Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, and forest management. The total change in forest cover (Gross Forest Cover Loss, GFLC) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non/forest)(Kurtz et al, 2010). This paper presents the methodology used to classify the forest loss detected by the University of Maryland Global Forest Change product (Hansen, 2013) into deforestation, disturbances (fires, insect outbreaks) and industrial forest clearcuts. The industrial forest clearcuts were subsequently analysed by converting the pixel based detections into objects, and applying patch level metrics (e.g. size, compactness, straightness of boundaries) and contextual measures. The analysis is stratified by region and by dominant forest specie, to highlight changes in the rate of forest resource utilization in the 2003-2013 period covered by the Maryland Forest Cover Change Product. References Hansen, M.C., Stehman, S.V., & Potapov, P.V. (2010). Reply to Wernick et al.: Global scale quantification of forest change. Proceedings of the National Academy of Sciences, 107, E148-E148 Hansen, M.C., Potapov, P.V., Moore, R et al., (2013), "High resolution Global Maps for the 21stCentury Forest Cover Change", Science 342: 850-853 Kurz, W.A. (2010). An ecosystem context for global

  4. Global-Scale Patterns of Forest Fragmentation

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2000-12-01

    Full Text Available We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 x 9 pixels, "small" scale to 59,049 km 2 (243 x 243 pixels, "large" scale were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe-Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types and Europe-Asia (four types, in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland. The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf.

  5. Global-scale patterns of forest fragmentation

    Science.gov (United States)

    Riitters, K.; Wickham, J.; O'Neill, R.; Jones, B.; Smith, E.

    2000-01-01

    We report an analysis of forest fragmentation based on 1-km resolution land-cover maps for the globe. Measurements in analysis windows from 81 km 2 (9 ?? 9 pixels, "small" scale) to 59,049 km 2 (243 ?? 243 pixels, "large" scale) were used to characterize the fragmentation around each forested pixel. We identified six categories of fragmentation (interior, perforated, edge, transitional, patch, and undetermined) from the amount of forest and its occurrence as adjacent forest pixels. Interior forest exists only at relatively small scales; at larger scales, forests are dominated by edge and patch conditions. At the smallest scale, there were significant differences in fragmentation among continents; within continents, there were significant differences among individual forest types. Tropical rain forest fragmentation was most severe in North America and least severe in Europe - Asia. Forest types with a high percentage of perforated conditions were mainly in North America (five types) and Europe - Asia (four types), in both temperate and subtropical regions. Transitional and patch conditions were most common in 11 forest types, of which only a few would be considered as "naturally patchy" (e.g., dry woodland). The five forest types with the highest percentage of interior conditions were in North America; in decreasing order, they were cool rain forest, coniferous, conifer boreal, cool mixed, and cool broadleaf. Copyright ?? 2000 by The Resilience Alliance.

  6. Next generation of global land cover characterization, mapping, and monitoring

    Science.gov (United States)

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  7. Land cover mapping, fire regeneration, and scaling studies in the Canadian boreal forest with 1 km AVHRR and Landsat TM data

    Science.gov (United States)

    Steyaert, L.T.; Hall, F.G.; Loveland, Thomas R.

    1997-01-01

    the wet conifer mosaic. Major differences in the 1-km AVHRR and 30-m Landsat TM-derived land cover classes are most likely due to differences in the spatial resolution of the data sets. In general, the 1 km AVHRR land cover classes are vegetation mosaics consisting of mixed combinations of the Landsat classes. Detailed mapping of the global boreal forest with this approach will benefit from algorithms for cloud screening and to atmospherically correct reflectance data for both aerosol and water vapor effects. We believe that this 1 km AVHRR land cover analysis provides new and useful information for regional water, energy, carbon, and trace gases studies in BOREAS, especially given the significant spatial variability in land cover type and associated biophysical land cover parameters (e.g., albedo, leaf area index, FPAR, and surface roughness). Multiresolution land cover comparisons (30 m, 1 km, and 100 km grid cells) also illustrated how heterogeneous landscape patterns are represented in land cover maps with differing spatial scales and provided insights on the requirements and challenges for parameterizing landscape heterogeneity as part of land surface process research.

  8. A reconstruction of global agricultural areas and land cover for the last millennium

    Science.gov (United States)

    Pongratz, J.; Reick, C.; Raddatz, T.; Claussen, M.

    2008-09-01

    Humans have substantially modified the Earth's land cover, especially by transforming natural ecosystems to agricultural areas. In preindustrial times, the expansion of agriculture was probably the dominant process by which humankind altered the Earth system, but little is known about its extent, timing, and spatial pattern. This study presents an approach to reconstruct spatially explicit changes in global agricultural areas (cropland and pasture) and the resulting changes in land cover over the last millennium. The reconstruction is based on published maps of agricultural areas for the last three centuries. For earlier times, a country-based method is developed that uses population data as a proxy for agricultural activity. With this approach, the extent of cropland and pasture is consistently estimated since AD 800. The resulting reconstruction of agricultural areas is combined with a map of potential vegetation to estimate the resulting historical changes in land cover. Uncertainties associated with this approach, in particular owing to technological progress in agriculture and uncertainties in population estimates, are quantified. About 5 million km2 of natural vegetation are found to be transformed to agriculture between AD 800 and 1700, slightly more to cropland (mainly at the expense of forested area) than to pasture (mainly at the expense of natural grasslands). Historical events such as the Black Death in Europe led to considerable dynamics in land cover change on a regional scale. The reconstruction can be used with global climate and ecosystem models to assess the impact of human activities on the Earth system in preindustrial times.

  9. Forest Service Global Change Research Strategy, 2009-2019 Implementation Plan

    Science.gov (United States)

    Allen Solomon; Richard A. Birdsey; Linda A. Joyce

    2010-01-01

    In keeping with the research goals of the U.S. Global Change Research Program, the climate change strategy of the U.S. Department of Agriculture (USDA), and the climate change framework of the Forest Service, this Forest Service Global Change Research Strategy, 2009-2019 Implementation Plan (hereafter called the Research Plan), was written by Forest Service Research...

  10. BIOMASS AND MICROBIAL ACTIVITY UNDER DIFFERENT FOREST COVERS

    Directory of Open Access Journals (Sweden)

    Rafael Malfitano Braga

    2016-06-01

    Full Text Available This study evaluated the soil fertility, biomass and microbial activity of the soil under forest cover of Eucalyptus grandis, Eucalyptus pilularis, Eucalyptus cloeziana and Corymbia maculata; Pinus Caribbean var. hondurensis, 40 years old, and a fragment of Semideciduous Forest, located on the campus of the Federal University of Lavras. In soil samples collected in the 0-5 cm layer were determined fertility parameters, basal respiration and microbial biomass carbon. The results showed that for the species E. grandis and E. cloeziana the carbon of biomass microbial content was higher than for any other ecosystem evaluated, and equal to those observed under native forest. In contrast, the ground under Pinus had the lowest microbiological indexes. Under C. maculata and E. pilularis the contents were intermediate for this parameter. The basal respiration of all ecosystems was equal. The fertility level was very low in all types of evaluated vegetation.

  11. Can we set a global threshold age to define mature forests?

    DEFF Research Database (Denmark)

    Martin, Philip; Jung, Martin; Brearley, Francis Q.

    2016-01-01

    ) whether we can set a threshold age for mature forests. Using data from previously published studies we modelled the impacts of forest age and climate on BD using linear mixed effects models. We examined the potential biases in the dataset by comparing how representative it was of global mature forests......Globally, mature forests appear to be increasing in biomass density (BD). There is disagreement whether these increases are the result of increases in atmospheric CO2 concentrations or a legacy effect of previous land-use. Recently, it was suggested that a threshold of 450 years should be used...... to define mature forests and that many forests increasing in BD may be younger than this. However, the study making these suggestions failed to account for the interactions between forest age and climate. Here we revisit the issue to identify: (1) how climate and forest age control global forest BD and (2...

  12. Cropland management dynamics as a driver of forest cover change in European Russia (Invited)

    Science.gov (United States)

    Tyukavina, A.; Krylov, A.; Potapov, P.; Turubanova, S.; Hansen, M.; McCarty, J. L.

    2013-12-01

    The European part of Russia spans over 40% of the European subcontinent and comprises most of Europe's temperate and boreal forests. The region has undergone a socio-economic transition during the last two decades that has resulted in radical changes in land management. Large-scale agriculture land abandonment caused massive afforestation in the Central and Northern parts of the region (Alcantara et al. 2012). Afforestation of former croplands is currently not included in the official forestry statistical reports (Potapov et al. 2012), but is likely to have major impacts on regional carbon budgets (Kuemmerle et al. 2009). We employed a complete archive of Landsat TM and ETM+ imagery and automatic data processing algorithm to create regional time-sequential image composites and multi-temporal metrics for 1985-2012. Spectral metrics were used as independent variables to map forest cover and change with help of supervised machine learning algorithms and trend analysis. Forest cover loss was attributed to fires, harvesting, and wind/disease dynamics, while forest cover gain was disaggregated into reforestation and afforestation using pre-1990 TM imagery as baseline data. Special attention was paid to agricultural abandonment. Fire events of the last decade have been further characterized by ignition place, time, and burning intensity using MODIS fire detection data. Change detection products have been validated using field data collected during summer 2012 and 2013 and high resolution imagery. Massive arable land abandonment caused forest area increase within Central agricultural regions. While total logging area decreased after the USSR breakdown, logging and other forms of clearing increased within the Central and Western parts of the region. Gross forest gain and loss were nearly balanced within region; however, the most populated regions of European Russia featured the highest rate of net forest cover loss during the last decade. The annual burned forest area as

  13. A globally complete map of supraglacial debris cover and a new toolkit for debris cover research

    Science.gov (United States)

    Herreid, Sam; Pellicciotti, Francesca

    2017-04-01

    A growing canon of literature is focused on resolving the processes and implications of debris cover on glaciers. However, this work is often confined to a handful of glaciers that were likely selected based on criteria optimizing their suitability to test a specific hypothesis or logistical ease. The role of debris cover in a glacier system is likely to not go overlooked in forthcoming research, yet the magnitude of this role at a global scale has not yet been fully described. Here, we present a map of debris cover for all glacierized regions on Earth including the Greenland Ice Sheet using 30 m Landsat data. This dataset will begin to open a wider context to the high quality, localized findings from the debris-covered glacier research community and help inform large-scale modeling efforts. A global map of debris cover also facilitates analysis attempting to isolate first order geomorphological and climate controls of supraglacial debris production. Furthering the objective of expanding the inclusion of debris cover in forthcoming research, we also present an under development suite of open-source, Python based tools. Requiring minimal and often freely available input data, we have automated the mapping of: i) debris cover, ii) ice cliffs, iii) debris cover evolution over the Landsat era and iv) glacier flow instabilities from altered debris structures. At the present time, debris extent is the only globally complete quantity but with the expanding repository of high quality global datasets and further tool development minimizing manual tasks and computational cost, we foresee all of these tools being applied globally in the near future.

  14. Forest cover changes due to hydrocarbon extraction disturbance in central Pennsylvania (2004–2010)

    Science.gov (United States)

    Roig-Silva, Coral; Slonecker, Terry; Milheim, Lesley; Ballew, Jesse R.; Winters, S. Gail

    2016-01-01

    The state of Pennsylvania has a long history of oil and gas extraction. In recent years with advances in technology such as hydraulic fracturing, hydrocarbon sources that were not profitable in the past are now being exploited. Here, we present an assessment of the cumulative impact of oil and gas extraction activities on the forests of 35 counties in Pennsylvania and their intersecting sub-watersheds between 2004 and 2010. The assessment categorizes counties and sub-watersheds based on the estimated amount of change to forest cover in the area. From the data collected we recognize that although forest cover has not been greatly impacted (with an average loss of percent forest coverage of 0.16% at the county level), landscape structure is affected. Increase in edge forest and decrease in interior forest is evident in many of the counties and sub-watersheds examined. These changes can have a detrimental effect on forest biodiversity and dynamics.

  15. Food, Paper, Wood, or Energy? Global Trends and Future Swedish Forest Use

    Directory of Open Access Journals (Sweden)

    Erik Westholm

    2010-12-01

    Full Text Available This paper presents a futures study of international forest trends. The study, produced as part of the Swedish Future Forest program, focuses on global changes of importance for future Swedish forest use. It is based on previous international research, policy documents, and 24 interviews with selected key experts and/or actors related to the forest sector, and its findings will provide a basis for future research priorities. The forest sector, here defined as the economic, social, and cultural contributions to life and human welfare derived from forest and forest-based activities, faces major change. Four areas stand out as particularly important: changing energy systems, emerging international climate policies, changing governance systems, and shifting global land use systems. We argue that global developments are, and will be, important for future Swedish forest use. The forest sector is in transition and forest-, energy, climate- and global land use issues are likely to become increasingly intertwined. Therefore, the “forest sector” must be disembedded and approached as an open system in interplay with other systems.

  16. Globalization and structural change in the U.S. forest sector: an evolving context for sustainable forest management

    Science.gov (United States)

    Peter Ince; Albert Schuler; Henry Spelter; William Luppold

    2007-01-01

    This report examines economic implications for sustainable forest management of globalization and related structural changes in the forest sector of the United States. Globalization has accelerated structural change in the U.S. forest sector, favored survival of larger and more capital-intensive enterprises, and altered historical patterns of resource use.

  17. Downscaling global land cover projections from an integrated assessment model for use in regional analyses: results and evaluation for the US from 2005 to 2095

    International Nuclear Information System (INIS)

    West, Tristram O; Le Page, Yannick; Wolf, Julie; Thomson, Allison M; Huang, Maoyi

    2014-01-01

    Projections of land cover change generated from integrated assessment models (IAM) and other economic-based models can be applied for analyses of environmental impacts at sub-regional and landscape scales. For those IAM and economic models that project land cover change at the continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30 m) and at the global extent with relatively coarse spatial resolution (0.5°). We revised existing methods to downscale global land cover change projections for the US to 0.05° resolution using MODIS land cover data as the initial proxy for land class distribution. Land cover change realizations generated here represent a reference scenario and two emissions mitigation pathways (MPs) generated by the global change assessment model (GCAM). Future gridded land cover realizations are constructed for each MODIS plant functional type (PFT) from 2005 to 2095, commensurate with the community land model PFT land classes, and archived for public use. The GCAM land cover realizations provide spatially explicit estimates of potential shifts in croplands, grasslands, shrublands, and forest lands. Downscaling of the MPs indicate a net replacement of grassland by cropland in the western US and by forest in the eastern US. An evaluation of the downscaling method indicates that it is able to reproduce recent changes in cropland and grassland distributions in respective areas in the US, suggesting it could provide relevant insights into the potential impacts of socio-economic and environmental drivers on future changes in land cover. (letters)

  18. Plant-cover influence on the spatial distribution of radiocaesium deposits in forest ecosystems

    International Nuclear Information System (INIS)

    Guillitte, Olivier; Andolina, Jean; Koziol, Michel; Debauche, Antoine

    1990-01-01

    Since the Chernobyl nuclear accident, a major campaign of radioactive deposit measurements has been carried out on forest soils in Belgium and the Grand Duchy of Luxemburg. Three types of forest ecosystems have systematically been taken into account in each region: coniferous forests (mainly spruce stands), deciduous forests (mainly beech stands) and in clearings. Sampling and field measurements have been carried out in different places with regard to the plant cover: near the trunks, under the foliage, in a small gap, on soil with or without herbaceous or moss stratum. The samples have been collected and measured according to the different recognizable soil layers in order to evaluate the vertical deposit distribution. From overall measurements, one may observe a high spatial soil deposit variation which is mainly explained by the nature, structure and age of the forest stands and by the thickness and the nature of holorganic horizons. A particular interest of this study is the identification of the influence of stem flow and impluvium on forest-cover gaps and edges. (author)

  19. Old-growth forests as global carbon sinks

    NARCIS (Netherlands)

    Luyssaert, S; Schulze, E.D.; Börner, A.

    2008-01-01

    Old- growth forests remove carbon dioxide from the atmosphere(1,2) at rates that vary with climate and nitrogen deposition(3). The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil(4). Old- growth forests therefore serve as a global

  20. Surface runoff generation in a small watershed covered by sugarcane and riparian forest

    Directory of Open Access Journals (Sweden)

    Rafael Pires Fernandes

    2013-12-01

    Full Text Available Since an understanding of how runoff is generated is of great importance to soil conservation, to water availability and to the management of a watershed, the objective of this study was to understand the generation of surface runoff in a watershed covered by sugarcane and riparian forest. Nine surface runoff plots were set up, evenly distributed on the lower, middle and upper slopes. The lower portion was covered by riparian forest. We showed that the average surface runoff coefficient along the slope in the present study was higher than in other studies under different land uses. Furthermore, the surface runoff was higher under sugarcane compared to the riparian forest, especially after sugarcane harvesting. Besides land cover, other factors such as the characteristics of rainfall events, relief and physical soil characteristics such as soil bulk density and saturated hydraulic conductivity influenced the surface runoff generation.

  1. Global estimate of lichen and bryophyte contributions to forest precipitation interception

    Science.gov (United States)

    Van Stan, John; Porada, Philipp; Kleidon, Axel

    2017-04-01

    Interception of precipitation by forest canopies plays an important role in its partitioning to evaporation, transpiration and runoff. Field observations show arboreal lichens and bryophytes can substantially enhance forests' precipitation storage and evaporation. However, representations of canopy interception in global land surface models currently ignore arboreal lichen and bryophyte contributions. This study uses the lichen and bryophyte model (LiBry) to provide the first process-based modelling approach estimating these organisms' contributions to canopy water storage and evaporation. The global mean value of forest water storage capacity increased significantly from 0.87 mm to 1.33 mm by the inclusion of arboreal poikilohydric organisms. Global forest canopy evaporation of intercepted precipitation was also greatly enhanced by 44%. Ratio of total versus bare canopy global evaporation exceeded 2 in many forested regions. This altered global patterns in canopy water storage, evaporation, and ultimately the proportion of rainfall evaporated. A sensitivity analysis was also performed. Results indicate rainfall interception is of larger magnitude than previously reported by global land surface modelling work because of the important role of lichen and bryophytes in rainfall interception.

  2. Positive biodiversity-productivity relationship predominant in global forests.

    Science.gov (United States)

    Liang, Jingjing; Crowther, Thomas W; Picard, Nicolas; Wiser, Susan; Zhou, Mo; Alberti, Giorgio; Schulze, Ernst-Detlef; McGuire, A David; Bozzato, Fabio; Pretzsch, Hans; de-Miguel, Sergio; Paquette, Alain; Hérault, Bruno; Scherer-Lorenzen, Michael; Barrett, Christopher B; Glick, Henry B; Hengeveld, Geerten M; Nabuurs, Gert-Jan; Pfautsch, Sebastian; Viana, Helder; Vibrans, Alexander C; Ammer, Christian; Schall, Peter; Verbyla, David; Tchebakova, Nadja; Fischer, Markus; Watson, James V; Chen, Han Y H; Lei, Xiangdong; Schelhaas, Mart-Jan; Lu, Huicui; Gianelle, Damiano; Parfenova, Elena I; Salas, Christian; Lee, Eungul; Lee, Boknam; Kim, Hyun Seok; Bruelheide, Helge; Coomes, David A; Piotto, Daniel; Sunderland, Terry; Schmid, Bernhard; Gourlet-Fleury, Sylvie; Sonké, Bonaventure; Tavani, Rebecca; Zhu, Jun; Brandl, Susanne; Vayreda, Jordi; Kitahara, Fumiaki; Searle, Eric B; Neldner, Victor J; Ngugi, Michael R; Baraloto, Christopher; Frizzera, Lorenzo; Bałazy, Radomir; Oleksyn, Jacek; Zawiła-Niedźwiecki, Tomasz; Bouriaud, Olivier; Bussotti, Filippo; Finér, Leena; Jaroszewicz, Bogdan; Jucker, Tommaso; Valladares, Fernando; Jagodzinski, Andrzej M; Peri, Pablo L; Gonmadje, Christelle; Marthy, William; O'Brien, Timothy; Martin, Emanuel H; Marshall, Andrew R; Rovero, Francesco; Bitariho, Robert; Niklaus, Pascal A; Alvarez-Loayza, Patricia; Chamuya, Nurdin; Valencia, Renato; Mortier, Frédéric; Wortel, Verginia; Engone-Obiang, Nestor L; Ferreira, Leandro V; Odeke, David E; Vasquez, Rodolfo M; Lewis, Simon L; Reich, Peter B

    2016-10-14

    The biodiversity-productivity relationship (BPR) is foundational to our understanding of the global extinction crisis and its impacts on ecosystem functioning. Understanding BPR is critical for the accurate valuation and effective conservation of biodiversity. Using ground-sourced data from 777,126 permanent plots, spanning 44 countries and most terrestrial biomes, we reveal a globally consistent positive concave-down BPR, showing that continued biodiversity loss would result in an accelerating decline in forest productivity worldwide. The value of biodiversity in maintaining commercial forest productivity alone-US$166 billion to 490 billion per year according to our estimation-is more than twice what it would cost to implement effective global conservation. This highlights the need for a worldwide reassessment of biodiversity values, forest management strategies, and conservation priorities. Copyright © 2016, American Association for the Advancement of Science.

  3. Hydrological impacts of global land cover change and human water use

    Directory of Open Access Journals (Sweden)

    J. H. C. Bosmans

    2017-11-01

    Full Text Available Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or include the impact of land cover change. Here we use PCR-GLOBWB, a combined global hydrological and water resources model, to assess the impacts of land cover change as well as human water use globally in different climatic zones. Our results show that land cover change has a strong effect on the global hydrological cycle, on the same order of magnitude as the effect of human water use (applying irrigation, abstracting water, for industrial use for example, including reservoirs, etc.. When globally averaged, changing the land cover from that of 1850 to that of 2000 increases discharge through reduced evapotranspiration. The effect of land cover change shows large spatial variability in magnitude and sign of change depending on, for example, the specific land cover change and climate zone. Overall, land cover effects on evapotranspiration are largest for the transition of tall natural vegetation to crops in energy-limited equatorial and warm temperate regions. In contrast, the inclusion of irrigation, water abstraction and reservoirs reduces global discharge through enhanced evaporation over irrigated areas and reservoirs as well as through water consumption. Hence, in some areas land cover change and water distribution both reduce discharge, while in other areas the effects may partly cancel out. The relative importance of both types of impacts varies spatially across climatic zones. From this study we conclude that land cover change needs to be considered when studying anthropogenic impacts on water resources.

  4. Global estimates of carbon stock changes in living forest biomass: EDGARv4.3 - time series from 1990 to 2010

    Science.gov (United States)

    Petrescu, A. M. R.; Abad-Viñas, R.; Janssens-Maenhout, G.; Blujdea, V. N. B.; Grassi, G.

    2012-08-01

    While the Emissions Database for Global Atmospheric Research (EDGAR) focuses on global estimates for the full set of anthropogenic activities, the Land Use, Land-Use Change and Forestry (LULUCF) sector might be the most diverse and most challenging to cover consistently for all countries of the world. Parties to United Nations Framework Convention on Climate Change (UNFCCC) are required to provide periodic estimates of greenhouse gas (GHG) emissions, following the latest approved methodological guidance by the International Panel on Climate Change (IPCC). The current study aims to consistently estimate the carbon (C) stock changes from living forest biomass for all countries of the world, in order to complete the LULUCF sector in EDGAR. In order to derive comparable estimates for developing and developed countries, it is crucial to use a single methodology with global applicability. Data for developing countries are generally poor, such that only the Tier 1 methods from either the IPCC Good Practice Guide for Land Use, Land-Use Change and Forestry (GPG-LULUCF) 2003 or the IPCC 2006 Guidelines can be applied to these countries. For this purpose, we applied the IPCC Tier 1 method at global level following both IPCC GPG-LULUCF 2003 and IPCC 2006, using spatially coarse activity data (i.e. area, obtained combining two different global forest maps: the Global Land Cover map and the eco-zones subdivision of the Global Ecological Zone (GEZ) map) in combination with the IPCC default C stocks and C stock change factors. Results for the C stock changes were calculated separately for gains, harvest, fires (Global Fire Emissions Database version 3, GFEDv.3) and net deforestation for the years 1990, 2000, 2005 and 2010. At the global level, results obtained with the two sets of IPCC guidance differed by about 40 %, due to different assumptions and default factors. The IPCC Tier 1 method unavoidably introduced high uncertainties due to the "globalization" of parameters. When the

  5. Geography of Global Forest Carbon Stocks & Dynamics

    Science.gov (United States)

    Saatchi, S. S.; Yu, Y.; Xu, L.; Yang, Y.; Fore, A.; Ganguly, S.; Nemani, R. R.; Zhang, G.; Lefsky, M. A.; Sun, G.; Woodall, C. W.; Naesset, E.; Seibt, U. H.

    2014-12-01

    Spatially explicit distribution of carbon stocks and dynamics in global forests can greatly reduce the uncertainty in the terrestrial portion of the global carbon cycle by improving estimates of emissions and uptakes from land use activities, and help with green house gas inventory at regional and national scales. Here, we produce the first global distribution of carbon stocks in living woody biomass at ~ 100 m (1-ha) resolution for circa 2005 from a combination of satellite observations and ground inventory data. The total carbon stored in live woody biomass is estimated to be 337 PgC with 258 PgC in aboveground and 79 PgC in roots, and partitioned globally in boreal (20%), tropical evergreen (50%), temperate (12%), and woodland savanna and shrublands (15%). We use a combination of satellite observations of tree height, remote sensing data on deforestation and degradation to quantify the dynamics of these forests at the biome level globally and provide geographical distribution of carbon storage dynamics in terms sinks and sources globally.

  6. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2014-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in forest vegetation cover for areas burned by wildfires in the Sierra Nevada Mountains of California between the periods of 1975- 79 and 1995-1999. Results for areas burned by wildfire between 1995 and 1999 confirmed the importance of regrowing forest vegetation over 17% of the combined burned areas. A notable fraction (12%) of the entire 5-km (unburned) buffer area outside the 1995-199 fires perimeters showed decline in forest cover, and not nearly as many regrowing forest areas, covering only 3% of all the 1995-1999 buffer areas combined. Areas burned by wildfire between 1975 and 1979 confirmed the importance of disturbed (or declining evergreen) vegetation covering 13% of the combined 1975- 1979 burned areas. Based on comparison of these results to ground-based survey data, the LEDAPS methodology should be capable of fulfilling much of the need for consistent, low-cost monitoring of changes due to climate and biological factors in western forest regrowth following stand-replacing disturbances.

  7. FOREST ECOSYSTEMS AND GLOBAL CHANGE: THE CASE STUDY OF INSUBRIA

    Directory of Open Access Journals (Sweden)

    M. Pautasso

    2013-03-01

    Full Text Available Forest ecosystems face multiple challenges due to climate change, invasive species, urbanization, land use change and the interactions between these global change drivers. This review provides an overview of such challenges for the case study of Insubria. Insubria is a region on the Southern side of the European Alps, famous for its stunning lakes (e.g., Como, Garda, Lugano, Maggiore, blessed by a relatively mild and humid climate, and shaped by the geologic fault line between the African and European plates. Global change impacts in Insubria pose a threat to its biodiversity and chestnut woodlands, particularly through modified winter forest fire regimes. Insubric biodiversity conservation, in turn, is essential to counteract the effects of climate change. Sustainable management of Insubric forests is made more difficult by rural abandonment, air pollution and invasive exotic species. There is a need to develop reliable long-term bio-indicators and to predict the shift of Insubric species, ecosystems and tree-lines due to rapid climate changes. Insubric studies on forests and global change call for enhanced international collaboration in forest management and research. Interdisciplinary approaches are needed to move from studies of single global change drivers to experiments, scenarios and models taking into account their combination and our responses to global change.

  8. Analysis of the spatial dynamics and drivers of forest cover change in the Lempa River Basin of El Salvador

    Science.gov (United States)

    Castaneda, Hector

    This work studies the changes of forest cover that have happened in the Lempa River Basin of El Salvador during the period 1979-2003. Although historically the trend has been towards the loss of forest cover since colonial times, over the period of study a large increase in forest cover was detected. The main tool of evaluation was the analysis of LANDSAT satellite imagery. Images for the dates 1979, 1990-91, and 2003 were classified into forest and noon-forest land covers. Then the changes in land cover were analyzed to determine what were the social, geophysical and climatic drivers determining why and where these new forest appeared. The results indicate that there has been an overall increase in forest cover from 20% in 1979 to 43% in 2003. Although there has been extensive deforestation, this has happened mostly around the main urban centers within the basin. In the more rural and remote areas, the tendency has been towards a resurgence in forest cover. The increase in forest was found to be significantly related to remittances, inaccessibility to roads and markets, density of urban populations, poverty and the civil war of the 1980s. Among the geospatial factors that determined where deforestation and reforestation happened were distance to roads and urban centers, slope, elevation, land use capability, and irrigation potential. The results indicate that the tendency in the future will be towards further reforestation but at a slower rate. Although reforestation and deforestation happened simultaneously, there are clear differences in the spatial patterns that each of these phenomena follow. In terms of climate, it was found areas subjected to inter-annual rainfall extremes due to El Nino Southern Oscillation, particularly areas with low agricultural potential, were more likely to be abandoned and left to revert to forest than those with more stable rainfall. The results of this study support the hypothesis that El Salvador is undergoing a Forest Transition

  9. Linking Attitudes, Policy, and Forest Cover Change in Buffer Zone Communities of Chitwan National Park, Nepal

    Science.gov (United States)

    Stapp, Jared R.; Lilieholm, Robert J.; Leahy, Jessica; Upadhaya, Suraj

    2016-06-01

    Deforestation in Nepal threatens the functioning of complex social-ecological systems, including rural populations that depend on forests for subsistence, as well as Nepal's biodiversity and other ecosystem services. Nepal's forests are particularly important to the nation's poorest inhabitants, as many depend upon them for daily survival. Two-thirds of Nepal's population relies on forests for sustenance, and these pressures are likely to increase in the future. This, coupled with high population densities and growth rates, highlights the importance of studying the relationship between human communities, forest cover trends through time, and forest management institutions. Here, we used surveys to explore how household attitudes associated with conservation-related behaviors in two rural communities—one that has experienced significant forest loss, and the other forest gain—compare with forest cover trends as indicated by satellite-derived forest-loss and -regeneration estimates between 2005 and 2013. Results found a significant difference in attitudes in the two areas, perhaps contributing to and reacting from current forest conditions. In both study sites, participation in community forestry strengthened support for conservation, forest conservation-related attitudes aligned with forest cover trends, and a negative relationship was found between economic status and having supportive forest conservation-related attitudes. In addition, on average, respondents were not satisfied with their district forest officers and did not feel that the current political climate in Nepal supported sustainable forestry. These findings are important as Nepal's Master Plan for the Forestry Sector has expired and the country is in the process of structuring a new Forestry Sector Strategy.

  10. Linking Attitudes, Policy, and Forest Cover Change in Buffer Zone Communities of Chitwan National Park, Nepal.

    Science.gov (United States)

    Stapp, Jared R; Lilieholm, Robert J; Leahy, Jessica; Upadhaya, Suraj

    2016-06-01

    Deforestation in Nepal threatens the functioning of complex social-ecological systems, including rural populations that depend on forests for subsistence, as well as Nepal's biodiversity and other ecosystem services. Nepal's forests are particularly important to the nation's poorest inhabitants, as many depend upon them for daily survival. Two-thirds of Nepal's population relies on forests for sustenance, and these pressures are likely to increase in the future. This, coupled with high population densities and growth rates, highlights the importance of studying the relationship between human communities, forest cover trends through time, and forest management institutions. Here, we used surveys to explore how household attitudes associated with conservation-related behaviors in two rural communities-one that has experienced significant forest loss, and the other forest gain-compare with forest cover trends as indicated by satellite-derived forest-loss and -regeneration estimates between 2005 and 2013. Results found a significant difference in attitudes in the two areas, perhaps contributing to and reacting from current forest conditions. In both study sites, participation in community forestry strengthened support for conservation, forest conservation-related attitudes aligned with forest cover trends, and a negative relationship was found between economic status and having supportive forest conservation-related attitudes. In addition, on average, respondents were not satisfied with their district forest officers and did not feel that the current political climate in Nepal supported sustainable forestry. These findings are important as Nepal's Master Plan for the Forestry Sector has expired and the country is in the process of structuring a new Forestry Sector Strategy.

  11. Comparison of regional and global land cover products and the implications for biogenic emission modeling.

    Science.gov (United States)

    Huang, Ling; McDonald-Buller, Elena; McGaughey, Gary; Kimura, Yosuke; Allen, David T

    2015-10-01

    Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. Uncertainties in the estimation of biogenic emissions associated with

  12. Dynamics of forest cover conversion in and around Bwindi ...

    African Journals Online (AJOL)

    Land use/cover map for 2010 was reconstructed by analyzing 2001 image, validated and/or reconstructed by ground truthing, use of secondary data and key ... The severe loss of woodlot outside the protected area not only poses a potential threat to the protected forest but also calls for intervention measures if efforts to ...

  13. Remote Sensing of Forest Cover in Boreal Zones of the Earth

    Science.gov (United States)

    Sedykh, V. N.

    2011-12-01

    Ecological tension resulting from human activities generates a need for joint efforts of countries in the boreal zone aimed at sustainable forest development, including: conservation of forests binding carbon and ensuring stability of the atmosphere gas composition; preservation of purity and water content of forest areas as conditions ensuring sustainability of the historically formed structure of forest landscapes; and preservation of all flora and fauna species composition diversity as a condition for sustainable existence and functioning of forest ecosystems. We have to address these problems urgently due to climate warming which can interact with the forest cover. In particular, in the forest zone of Siberia, the climate aridization will inevitably result in periodic drying of shallow bogs and upland forests with thick forest litter. This will bring fires of unprecedented intensity which will lead to catastrophic atmospheric pollution. In this connection, the above problems can be solved only by the united efforts of boreal-zone countries, through establishing a uniform system for remote sensing of forests aimed at obtaining and periodic update of comprehensive information for rational decision-making in prevention of adverse human effect on the forest. A need to join efforts in this field of natural resource management is determined by disparate data which were created expressly for economic accounting units used mainly for the solution of economic timber resource problems. However, ecological tasks outlined above can be solved appropriately only by using uniform technologies that are registered within natural territorial complexes (landscapes) established throughout the entire boreal zone. Knowledge of forest state within natural territorial entities having specific physiographic conditions, with account for current and future anthropogenic load, allow one to define evidence-based forest growth potential at these landscapes to ensure development of

  14. Forests and Forest Cover - MDC_NaturalForestCommunity

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — A point feature class of NFCs - Natural Forest Communities. Natural Forest Community shall mean all stands of trees (including their associated understory) which...

  15. Towards monitoring land-cover and land-use changes at a global scale: the global land survey 2005

    Science.gov (United States)

    Gutman, G.; Byrnes, Raymond A.; Masek, J.; Covington, S.; Justice, C.; Franks, S.; Headley, Rachel

    2008-01-01

    Land cover is a critical component of the Earth system, infl uencing land-atmosphere interactions, greenhouse gas fl uxes, ecosystem health, and availability of food, fi ber, and energy for human populations. The recent Integrated Global Observations of Land (IGOL) report calls for the generation of maps documenting global land cover at resolutions between 10m and 30m at least every fi ve years (Townshend et al., in press). Moreover, despite 35 years of Landsat observations, there has not been a unifi ed global analysis of land-cover trends nor has there been a global assessment of land-cover change at Landsat-like resolution. Since the 1990s, the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) have supported development of data sets based on global Landsat observations (Tucker et al., 2004). These land survey data sets, usually referred to as GeoCover ™, provide global, orthorectifi ed, typically cloud-free Landsat imagery centered on the years 1975, 1990, and 2000, with a preference for leaf-on conditions. Collectively, these data sets provided a consistent set of observations to assess land-cover changes at a decadal scale. These data are freely available via the Internet from the USGS Center for Earth Resources Observation and Science (EROS) (see http://earthexplorer.usgs.gov or http://glovis.usgs.gov). This has resulted in unprecedented downloads of data, which are widely used in scientifi c studies of land-cover change (e.g., Boone et al., 2007; Harris et al., 2005; Hilbert, 2006; Huang et al. 2007; Jantz et al., 2005, Kim et al., 2007; Leimgruber, 2005; Masek et al., 2006). NASA and USGS are continuing to support land-cover change research through the development of GLS2005 - an additional global Landsat assessment circa 20051 . Going beyond the earlier initiatives, this data set will establish a baseline for monitoring changes on a 5-year interval and will pave the way toward continuous global land-cover

  16. A comparative analysis of forest cover and catchment water yield relationships in northern China

    Science.gov (United States)

    Shuai Wang; Bo-Jie Fu; Chan-Sheng He; Ge Sun; Guang-Yao Gao

    2011-01-01

    During the past few decades, China has implemented several large-scale forestation programs that have increased forest cover from 16.0% in the 1980s to 20.4% in 2009. In northern China, water is the most sensitive and limiting ecological factor. Understanding the dynamic interactions between forest ecosystems and water in different regions is essential for maximizing...

  17. Forest ecosystems and the global climatic change. Background and need to act

    International Nuclear Information System (INIS)

    Bellmann, K.; Grassl, H.; Kaiser, M.; Kuerzinger, J.; Lindner, M.; Mueller-Kraenner, S.; Schmidt, R.; Schuett, P.; Sperber, G.

    1994-01-01

    The consequences of the climatic change and of the depletion of the stratospheric ozone layer are of global significance and can only be controlled through worldwide measures. Mainly fossil fuels which cover most of our energy demand, industrial production, traffic, industrial intensive agriculture, and deforestation are responsible for trace gases which cause the greenhouse effect. The possible effects of the expected climatic change are discussed, and suitable political, social and silvicultural approaches to the maintenance of stable forest ecosystems are pointed out. Emphasis is placed on forestry and on ecosystems research in Central Europe. (MG) [de

  18. Mapping Annual Forest Cover in Sub-Humid and Semi-Arid Regions through Analysis of Landsat and PALSAR Imagery

    Directory of Open Access Journals (Sweden)

    Yuanwei Qin

    2016-11-01

    Full Text Available Accurately mapping the spatial distribution of forests in sub-humid to semi-arid regions over time is important for forest management but a challenging task. Relatively large uncertainties still exist in the spatial distribution of forests and forest changes in the sub-humid and semi-arid regions. Numerous publications have used either optical or synthetic aperture radar (SAR remote sensing imagery, but the resultant forest cover maps often have large errors. In this study, we propose a pixel- and rule-based algorithm to identify and map annual forests from 2007 to 2010 in Oklahoma, USA, a transitional region with various climates and landscapes, using the integration of the L-band Advanced Land Observation Satellite (ALOS PALSAR Fine Beam Dual Polarization (FBD mosaic dataset and Landsat images. The overall accuracy and Kappa coefficient of the PALSAR/Landsat forest map were about 88.2% and 0.75 in 2010, with the user and producer accuracy about 93.4% and 75.7%, based on the 3270 random ground plots collected in 2012 and 2013. Compared with the forest products from Japan Aerospace Exploration Agency (JAXA, National Land Cover Database (NLCD, Oklahoma Ecological Systems Map (OKESM and Oklahoma Forest Resource Assessment (OKFRA, the PALSAR/Landsat forest map showed great improvement. The area of the PALSAR/Landsat forest was about 40,149 km2 in 2010, which was close to the area from OKFRA (40,468 km2, but much larger than those from JAXA (32,403 km2 and NLCD (37,628 km2. We analyzed annual forest cover dynamics, and the results show extensive forest cover loss (2761 km2, 6.9% of the total forest area in 2010 and gain (3630 km2, 9.0% in southeast and central Oklahoma, and the total area of forests increased by 684 km2 from 2007 to 2010. This study clearly demonstrates the potential of data fusion between PALSAR and Landsat images for mapping annual forest cover dynamics in sub-humid to semi-arid regions, and the resultant forest maps would be

  19. Integrating forest products with ecosystem services: a global perspective

    Science.gov (United States)

    Robert L. Deal; Rachel. White

    2012-01-01

    Around the world forests provide a broad range of vital ecosystem services. Sustainable forest management and forest products play an important role in global carbon management, but one of the major forestry concerns worldwide is reducing the loss of forestland from development. Currently, deforestation accounts for approximately 20% of total greenhouse gas emissions....

  20. Advancing the quantification of humid tropical forest cover loss with multi-resolution optical remote sensing data: Sampling & wall-to-wall mapping

    Science.gov (United States)

    Broich, Mark

    Humid tropical forest cover loss is threatening the sustainability of ecosystem goods and services as vast forest areas are rapidly cleared for industrial scale agriculture and tree plantations. Despite the importance of humid tropical forest in the provision of ecosystem services and economic development opportunities, the spatial and temporal distribution of forest cover loss across large areas is not well quantified. Here I improve the quantification of humid tropical forest cover loss using two remote sensing-based methods: sampling and wall-to-wall mapping. In all of the presented studies, the integration of coarse spatial, high temporal resolution data with moderate spatial, low temporal resolution data enable advances in quantifying forest cover loss in the humid tropics. Imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used as the source of coarse spatial resolution, high temporal resolution data and imagery from the Landsat Enhanced Thematic Mapper Plus (ETM+) sensor are used as the source of moderate spatial, low temporal resolution data. In a first study, I compare the precision of different sampling designs for the Brazilian Amazon using the annual deforestation maps derived by the Brazilian Space Agency for reference. I show that sampling designs can provide reliable deforestation estimates; furthermore, sampling designs guided by MODIS data can provide more efficient estimates than the systematic design used for the United Nations Food and Agricultural Organization Forest Resource Assessment 2010. Sampling approaches, such as the one demonstrated, are viable in regions where data limitations, such as cloud contamination, limit exhaustive mapping methods. Cloud-contaminated regions experiencing high rates of change include Insular Southeast Asia, specifically Indonesia and Malaysia. Due to persistent cloud cover, forest cover loss in Indonesia has only been mapped at a 5-10 year interval using photo interpretation of single

  1. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    Science.gov (United States)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  2. Can we set a global threshold age to define mature forests?

    Directory of Open Access Journals (Sweden)

    Philip Martin

    2016-02-01

    Full Text Available Globally, mature forests appear to be increasing in biomass density (BD. There is disagreement whether these increases are the result of increases in atmospheric CO2 concentrations or a legacy effect of previous land-use. Recently, it was suggested that a threshold of 450 years should be used to define mature forests and that many forests increasing in BD may be younger than this. However, the study making these suggestions failed to account for the interactions between forest age and climate. Here we revisit the issue to identify: (1 how climate and forest age control global forest BD and (2 whether we can set a threshold age for mature forests. Using data from previously published studies we modelled the impacts of forest age and climate on BD using linear mixed effects models. We examined the potential biases in the dataset by comparing how representative it was of global mature forests in terms of its distribution, the climate space it occupied, and the ages of the forests used. BD increased with forest age, mean annual temperature and annual precipitation. Importantly, the effect of forest age increased with increasing temperature, but the effect of precipitation decreased with increasing temperatures. The dataset was biased towards northern hemisphere forests in relatively dry, cold climates. The dataset was also clearly biased towards forests <250 years of age. Our analysis suggests that there is not a single threshold age for forest maturity. Since climate interacts with forest age to determine BD, a threshold age at which they reach equilibrium can only be determined locally. We caution against using BD as the only determinant of forest maturity since this ignores forest biodiversity and tree size structure which may take longer to recover. Future research should address the utility and cost-effectiveness of different methods for determining whether forests should be classified as mature.

  3. High-resolution LIDAR and ground observations of snow cover in a complex forested terrain in the Sierra Nevada - implications for optical remote sensing of seasonal snow.

    Science.gov (United States)

    Kostadinov, T. S.; Harpold, A.; Hill, R.; McGwire, K.

    2017-12-01

    Seasonal snow cover is a key component of the hydrologic regime in many regions of the world, especially those in temperate latitudes with mountainous terrain and dry summers. Such regions support large human populations which depend on the mountain snowpack for their water supplies. It is thus important to quantify snow cover accurately and continuously in these regions. Optical remote-sensing methods are able to detect snow and leverage space-borne spectroradiometers with global coverage such as MODIS to produce global snow cover maps. However, snow is harder to detect accurately in mountainous forested terrain, where topography influences retrieval algorithms, and importantly - forest canopies complicate radiative transfer and obfuscate the snow. Current satellite snow cover algorithms assume that fractional snow-covered area (fSCA) under the canopy is the same as the fSCA in the visible portion of the pixel. In-situ observations and first principles considerations indicate otherwise, therefore there is a need for improvement of the under-canopy correction of snow cover. Here, we leverage multiple LIDAR overflights and in-situ observations with a distributed fiber-optic temperature sensor (DTS) to quantify snow cover under canopy as opposed to gap areas at the Sagehen Experimental Forest in the Northern Sierra Nevada, California, USA. Snow-off LIDAR overflights from 2014 are used to create a baseline high-resolution digital elevation model and classify pixels at 1 m resolution as canopy-covered or gap. Low canopy pixels are excluded from the analysis. Snow-on LIDAR overflights conducted by the Airborne Snow Observatory in 2016 are then used to classify all pixels as snow-covered or not and quantify fSCA under canopies vs. in gap areas over the Sagehen watershed. DTS observations are classified as snow-covered or not based on diel temperature fluctuations and used as validation for the LIDAR observations. LIDAR- and DTS-derived fSCA is also compared with

  4. Phylogenetic responses of forest trees to global change.

    Science.gov (United States)

    Senior, John K; Schweitzer, Jennifer A; O'Reilly-Wapstra, Julianne; Chapman, Samantha K; Steane, Dorothy; Langley, Adam; Bailey, Joseph K

    2013-01-01

    In a rapidly changing biosphere, approaches to understanding the ecology and evolution of forest species will be critical to predict and mitigate the effects of anthropogenic global change on forest ecosystems. Utilizing 26 forest species in a factorial experiment with two levels each of atmospheric CO2 and soil nitrogen, we examined the hypothesis that phylogeny would influence plant performance in response to elevated CO2 and nitrogen fertilization. We found highly idiosyncratic responses at the species level. However, significant, among-genetic lineage responses were present across a molecularly determined phylogeny, indicating that past evolutionary history may have an important role in the response of whole genetic lineages to future global change. These data imply that some genetic lineages will perform well and that others will not, depending upon the environmental context.

  5. Land cover in the Guayas Basin using SAR images from low resolution ASAR Global mode to high resolution Sentinel-1 images

    Science.gov (United States)

    Bourrel, Luc; Brodu, Nicolas; Frappart, Frédéric

    2016-04-01

    Remotely sensed images allow a frequent monitoring of land cover variations at regional and global scale. Recently launched Sentinel-1 satellite offers a global cover of land areas at an unprecedented spatial (20 m) and temporal (6 days at the Equator). We propose here to compare the performances of commonly used supervised classification techniques (i.e., k-nearest neighbors, linear and Gaussian support vector machines, naive Bayes, linear and quadratic discriminant analyzes, adaptative boosting, loggit regression, ridge regression with one-vs-one voting, random forest, extremely randomized trees) for land cover applications in the Guayas Basin, the largest river basin of the Pacific coast of Ecuator (area ~32,000 km²). The reason of this choice is the importance of this region in Ecuatorian economy as its watershed represents 13% of the total area of Ecuador where 40% of the Ecuadorian population lives. It also corresponds to the most productive region of Ecuador for agriculture and aquaculture. Fifty percents of the country shrimp farming production comes from this watershed, and represents with agriculture the largest source of revenue of the country. Similar comparisons are also performed using ENVISAT ASAR images acquired in global mode (1 km of spatial resolution). Accuracy of the results will be achieved using land cover map derived from multi-spectral images.

  6. Evaluating Anthropogenic Risk of Grassland and Forest Habitat Degradation using Land-Cover Data

    Directory of Open Access Journals (Sweden)

    Kurt Riitters

    2009-09-01

    Full Text Available The effects of landscape context on habitat quality are receiving increased attention in conservation biology. The objective of this research is to demonstrate a landscape-level approach to mapping and evaluating the anthropogenic risks of grassland and forest habitat degradation by examining habitat context as defined by intensive anthropogenic land uses at multiple spatial scales. A landscape mosaic model classifies a given location according to the amounts of intensive agriculture and intensive development in its surrounding landscape, providing measures of anthropogenic risks attributable to habitat isolation and edge effects at that location. The model is implemented using a land-cover map (0.09 ha/pixel of the conterminous United States and six landscape sizes (4.4, 15.2, 65.6, 591, 5300, and 47800 ha to evaluate the spatial scales of anthropogenic risk. Statistics for grassland and forest habitat are extracted by geographic overlays of the maps of land-cover and landscape mosaics. Depending on landscape size, 81 to 94 percent of all grassland and forest habitat occurs in landscapes that are dominated by natural land-cover including habitat itself. Within those natural-dominated landscapes, 50 percent of grassland and 59 percent of forest is within 590 m of intensive agriculture and/or intensive developed land which is typically a minor component of total landscape area. The conclusion is that anthropogenic risk attributable to habitat patch isolation affects a small proportion of the total grassland or forest habitat area, while the majority of habitat area is exposed to edge effects.

  7. Monitoring forest cover loss using multiple data streams, a case study of a tropical dry forest in Bolivia

    Science.gov (United States)

    Dutrieux, Loïc Paul; Verbesselt, Jan; Kooistra, Lammert; Herold, Martin

    2015-09-01

    Automatically detecting forest disturbances as they occur can be extremely challenging for certain types of environments, particularly those presenting strong natural variations. Here, we use a generic structural break detection framework (BFAST) to improve the monitoring of forest cover loss by combining multiple data streams. Forest change monitoring is performed using Landsat data in combination with MODIS or rainfall data to further improve the modelling and monitoring. We tested the use of the Normalized Difference Vegetation Index (NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) with varying spatial aggregation window sizes as well as a rainfall derived index as external regressors. The method was evaluated on a dry tropical forest area in lowland Bolivia where forest cover loss is known to occur, and we validated the results against a set of ground truth samples manually interpreted using the TimeSync environment. We found that the addition of an external regressor allows to take advantage of the difference in spatial extent between human induced and naturally induced variations and only detect the processes of interest. Of all configurations, we found the 13 by 13 km MODIS NDVI window to be the most successful, with an overall accuracy of 87%. Compared with a single pixel approach, the proposed method produced better time-series model fits resulting in increases of overall accuracy (from 82% to 87%), and decrease in omission and commission errors (from 33% to 24% and from 3% to 0% respectively). The presented approach seems particularly relevant for areas with high inter-annual natural variability, such as forests regularly experiencing exceptional drought events.

  8. Specific 137Cs and 90Sr accumulation in living soil cover plants of forest cenoses

    International Nuclear Information System (INIS)

    Ermakova, O.O.; Kuz'mich, O.T.; Kazej, A.P.

    2000-01-01

    Observations of the radionuclide content in 38 species of living soil cover plants were carried out in Pinetum myrtillosum, pleuroziosum; Quercetum pteridiosum; Betuletum myrtillosum; Glutinoso-Alnetum filipendulosum, Glutinoso-Alnetum. Radiological monitoring for the 137 Cs and 90 Sr content in living cover plants of forest cenosis in Belarus allows 137 Cs and 90 Sr accumulation to be predicted for the plants of lower circles of forest cenosis. a obtained one can notice that the radionuclide accumulation intensity depends on the contamination density of the accumulation soil layer, forest growing conditions, species and first of all on the weather conditions of the year of observation. Unfavourable conditions (drought) lead to an increase in 137 Cs accumulation by a factor of 3-5 depending on the plant species. The maximum values was obtained in ferns which grow under all the controlled forest growing conditions. The species specific character of 137 Cs and 90 Sr accumulation is due to their ecological-physiological peculiarities. The relationship was found between the caesium-137 accumulation and macro element quantity in overground organs of living soil cover plants. (authors)

  9. Impacts of Tariff and Non-tariff Trade Barriers on Global Forest Products Trade: An Application of the Global Forest Products Model

    NARCIS (Netherlands)

    Sun, L.; Bogdanski, B.; Stennes, B.; Kooten, van G.C.

    2010-01-01

    Although there has been considerable analysis on the effects of trade measures on forest product markets, these have tended to focus on tariffs. There is growing concern about the impact of non-tariff trade measures on the global forest product sector. The objective of this study is to fill a gap

  10. GLOBAL LAND COVER CLASSIFICATION USING MODIS SURFACE REFLECTANCE PROSUCTS

    Directory of Open Access Journals (Sweden)

    K. Fukue

    2016-06-01

    Full Text Available The objective of this study is to develop high accuracy land cover classification algorithm for Global scale by using multi-temporal MODIS land reflectance products. In this study, time-domain co-occurrence matrix was introduced as a classification feature which provides time-series signature of land covers. Further, the non-parametric minimum distance classifier was introduced for timedomain co-occurrence matrix, which performs multi-dimensional pattern matching for time-domain co-occurrence matrices of a classification target pixel and each classification classes. The global land cover classification experiments have been conducted by applying the proposed classification method using 46 multi-temporal(in one year SR(Surface Reflectance and NBAR(Nadir BRDF-Adjusted Reflectance products, respectively. IGBP 17 land cover categories were used in our classification experiments. As the results, SR and NBAR products showed similar classification accuracy of 99%.

  11. Utilizing a Multi-Source Forest Inventory Technique, MODIS Data and Landsat TM Images in the Production of Forest Cover and Volume Maps for the Terai Physiographic Zone in Nepal

    Directory of Open Access Journals (Sweden)

    Kalle Eerikäinen

    2012-12-01

    Full Text Available An approach based on the nearest neighbors techniques is presented for producing thematic maps of forest cover (forest/non-forest and total stand volume for the Terai region in southern Nepal. To create the forest cover map, we used a combination of Landsat TM satellite data and visual interpretation data, i.e., a sample grid of visual interpretation plots for which we obtained the land use classification according to the FAO standard. These visual interpretation plots together with the field plots for volume mapping originate from an operative forest inventory project, i.e., the Forest Resource Assessment of Nepal (FRA Nepal project. The field plots were also used in checking the classification accuracy. MODIS satellite data were used as a reference in a local correction approach conducted for the relative calibration of Landsat TM images. This study applied a non-parametric k-nearest neighbor technique (k-NN to the forest cover and volume mapping. A tree height prediction approach based on a nonlinear, mixed-effects (NLME modeling procedure is presented in the Appendix. The MODIS image data performed well as reference data for the calibration approach applied to make the Landsat image mosaic. The agreement between the forest cover map and the field observed values of forest cover was substantial in Western Terai (KHAT 0.745 and strong in Eastern Terai (KHAT 0.825. The forest cover and volume maps that were estimated using the k-NN method and the inventory data from the FRA Nepal project are already appropriate and valuable data for research purposes and for the planning of forthcoming forest inventories. Adaptation of the methods and techniques was carried out using Open Source software tools.

  12. impacts of rainfall and forest cover change on runoff in small ...

    African Journals Online (AJOL)

    the relationship between rainfall and runoff in the two catchments has changed. Furthermore .... The monthly rainfall data for Namadzi catchment that was used in this .... land cover change with a big jump of forest planted after the 1990s. Fig.

  13. Recent advances in radar remote sensing of forest

    Science.gov (United States)

    Letoan, Thuy

    1993-01-01

    On a global scale, forests represent most of the terrestrial standing biomass (80 to 90 percent). Thus, natural and anthropogenic change in forest covers can have major impacts not only on local ecosystems but also on global hydrologic, climatic, and biogeochemical cycles that involve exchange of energy, water, carbon, and other elements between the earth and atmosphere. Quantitative information on the state and dynamics of forest ecosystems and their interactions with the global cycles appear necessary to understand how the earth works as a natural system. The information required includes the lateral and vertical distribution of forest cover, the estimates of standing biomass (woody and foliar volume), the phenological and environmental variations and disturbances (clearcutting, fires, flood), and the longer term variations following deforestation (regeneration, successional stages). To this end, seasonal, annual, and decadal information is necessary in order to separate the long term effects in the global ecosystem from short term seasonal and interannual variations. Optical remote sensing has been used until now to study the forest cover at local, regional, and global scales. Radar remote sensing, which provides recent SAR data from space on a regular basis, represents an unique means of consistently monitoring different time scales, at all latitudes and in any atmospheric conditions. Also, SAR data have shown the potential to detect several forest parameters that cannot be inferred from optical data. The differences--and complementarity--lie in the penetration capabilities of SAR data and their sensitivity to dielectric and geometric properties of the canopy volume, whereas optical data are sensitive to the chemical composition of the external foliar layer of the vegetation canopy.

  14. Simulating soil organic carbon stock as affected by land cover change and climate change, Hyrcanian forests (northern Iran).

    Science.gov (United States)

    Soleimani, Azam; Hosseini, Seyed Mohsen; Massah Bavani, Ali Reza; Jafari, Mostafa; Francaviglia, Rosa

    2017-12-01

    Soil organic carbon (SOC) contains a considerable portion of the world's terrestrial carbon stock, and is affected by changes in land cover and climate. SOC modeling is a useful approach to assess the impact of land use, land use change and climate change on carbon (C) sequestration. This study aimed to: (i) test the performance of RothC model using data measured from different land covers in Hyrcanian forests (northern Iran); and (ii) predict changes in SOC under different climate change scenarios that may occur in the future. The following land covers were considered: Quercus castaneifolia (QC), Acer velutinum (AV), Alnus subcordata (AS), Cupressus sempervirens (CS) plantations and a natural forest (NF). For assessment of future climate change projections the Fifth Assessment IPCC report was used. These projections were generated with nine Global Climate Models (GCMs), for two Representative Concentration Pathways (RCPs) leading to very low and high greenhouse gases concentration levels (RCP 2.6 and RCP 8.5 respectively), and for four 20year-periods up to 2099 (2030s, 2050s, 2070s and 2090s). Simulated values of SOC correlated well with measured data (R 2 =0.64 to 0.91) indicating a good efficiency of the RothC model. Our results showed an overall decrease in SOC stocks by 2099 under all land covers and climate change scenarios, but the extent of the decrease varied with the climate models, the emissions scenarios, time periods and land covers. Acer velutinum plantation was the most sensitive land cover to future climate change (range of decrease 8.34-21.83tCha -1 ). Results suggest that modeling techniques can be effectively applied for evaluating SOC stocks, allowing the identification of current patterns in the soil and the prediction of future conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A reduction of the globalization and U(1)-covering

    International Nuclear Information System (INIS)

    Tran Dao Dong.

    1993-03-01

    We suggest a reduction of the globalization and multidimensional quantization to the case of reductive Lie groups by lifting to U(1)-covering. our construction is connected with M. Duflo's third method for algebraic groups. From a reductive datum of the given real algebraic Lie group we firstly construct geometric complexes with respect to U(1)-covering by using the unipotent positive distributions. Then we describe in terms of local cohomology the maximal globalization of Harish-Chandra modules which correspond to the geometric complexes. (author). 9 refs

  16. Gross and net land cover changes in the main plant functional types derived from the annual ESA CCI land cover maps (1992-2015)

    Science.gov (United States)

    Li, Wei; MacBean, Natasha; Ciais, Philippe; Defourny, Pierre; Lamarche, Céline; Bontemps, Sophie; Houghton, Richard A.; Peng, Shushi

    2018-01-01

    Land-use and land-cover change (LULCC) impacts local energy and water balance and contributes on global scale to a net carbon emission to the atmosphere. The newly released annual ESA CCI (climate change initiative) land cover maps provide continuous land cover changes at 300 m resolution from 1992 to 2015, and can be used in land surface models (LSMs) to simulate LULCC effects on carbon stocks and on surface energy budgets. Here we investigate the absolute areas and gross and net changes in different plant functional types (PFTs) derived from ESA CCI products. The results are compared with other datasets. Global areas of forest, cropland and grassland PFTs from ESA are 30.4, 19.3 and 35.7 million km2 in the year 2000. The global forest area is lower than that from LUH2v2h (Hurtt et al., 2011), Hansen et al. (2013) or Houghton and Nassikas (2017) while cropland area is higher than LUH2v2h (Hurtt et al., 2011), in which cropland area is from HYDE 3.2 (Klein Goldewijk et al., 2016). Gross forest loss and gain during 1992-2015 are 1.5 and 0.9 million km2 respectively, resulting in a net forest loss of 0.6 million km2, mainly occurring in South and Central America. The magnitudes of gross changes in forest, cropland and grassland PFTs in the ESA CCI are smaller than those in other datasets. The magnitude of global net cropland gain for the whole period is consistent with HYDE 3.2 (Klein Goldewijk et al., 2016), but most of the increases happened before 2004 in ESA and after 2007 in HYDE 3.2. Brazil, Bolivia and Indonesia are the countries with the largest net forest loss from 1992 to 2015, and the decreased areas are generally consistent with those from Hansen et al. (2013) based on Landsat 30 m resolution images. Despite discrepancies compared to other datasets, and uncertainties in converting into PFTs, the new ESA CCI products provide the first detailed long-term time series of land-cover change and can be implemented in LSMs to characterize recent carbon dynamics

  17. Consequences of increasing bioenergy demand on wood and forests: An application of the Global Forest Products Model

    Science.gov (United States)

    Buongiorno, J.; Raunikar, R.; Zhu, S.

    2011-01-01

    The Global Forest Products Model (GFPM) was applied to project the consequences for the global forest sector of doubling the rate of growth of bioenergy demand relative to a base scenario, other drivers being maintained constant. The results showed that this would lead to the convergence of the price of fuelwood and industrial roundwood, raising the price of industrial roundwood by nearly 30% in 2030. The price of sawnwood and panels would be 15% higher. The price of paper would be 3% higher. Concurrently, the demand for all manufactured wood products would be lower in all countries, but the production would rise in countries with competitive advantage. The global value added in wood processing industries would be 1% lower in 2030. The forest stock would be 2% lower for the world and 4% lower for Asia. These effects varied substantially by country. ?? 2011 Department of Forest Economics, SLU Ume??, Sweden.

  18. Trailblazing the Carbon Cycle of Tropical Forests from Puerto Rico

    Directory of Open Access Journals (Sweden)

    Sandra Brown

    2017-03-01

    Full Text Available We review the literature that led to clarifying the role of tropical forests in the global carbon cycle from a time when they were considered sources of atmospheric carbon to the time when they were found to be atmospheric carbon sinks. This literature originates from work conducted by US Forest Service scientists in Puerto Rico and their collaborators. It involves the classification of forests by life zones, estimation of carbon density by forest type, assessing carbon storage changes with ecological succession and land use/land cover type, describing the details of the carbon cycle of forests at stand and landscape levels, assessing global land cover by forest type and the complexity of land use change in tropical regions, and assessing the ecological fluxes and storages that contribute to net carbon accumulation in tropical forests. We also review recent work that couples field inventory data, remote sensing technology such as LIDAR, and GIS analysis in order to more accurately determine the role of tropical forests in the global carbon cycle and point out new avenues of carbon research that address the responses of tropical forests to environmental change.

  19. Response of Boreal forest tree canopy cover to chronic gamma irradiation

    International Nuclear Information System (INIS)

    Amiro, B.D.

    1994-01-01

    A section of the Canadian Boreal forest was irradiated chronically by a point source of 137 Cs from 1973 to 1986. Tree canopy cover was measured at permanently marked locations during the pre-irradiation, irradiation and post-irradiation phases, spanning a period of two decades. The tree canopy was severely affected at dose rates greater than 10 mGy/h delivered chronically. The canopy of sensitive coniferous tree species, such as Abies balsamea and Picea Mariana, decreased at dose rates greater than 2 mGy/h, but in some cases the tree canopy was replaced by more resistant species, such as Populus tremuloides and Salix bebbiana. Effects on canopy cover could not be detected at dose rates less than 0.1 mGy/h. Even at dose rates of 5 mGy/h, the forest canopy is recovering six years after irradiation stopped. (author)

  20. Estimating Rhododendron maximum L. (Ericaceae) Canopy Cover Using GPS/GIS Technology

    Science.gov (United States)

    Tyler J. Tran; Katherine J. Elliott

    2012-01-01

    In the southern Appalachians, Rhododendron maximum L. (Ericaceae) is a key evergreen understory species, often forming a subcanopy in forest stands. Little is known about the significance of R. maximum cover in relation to other forest structural variables. Only recently have studies used Global Positioning System (GPS) technology...

  1. Integrating Landsat Data and High-Resolution Imagery for Applied Conservation Assessment of Forest Cover in Latin American Heterogenous Landscapes

    Science.gov (United States)

    Thomas, N.; Rueda, X.; Lambin, E.; Mendenhall, C. D.

    2012-12-01

    Large intact forested regions of the world are known to be critical to maintaining Earth's climate, ecosystem health, and human livelihoods. Remote sensing has been successfully implemented as a tool to monitor forest cover and landscape dynamics over broad regions. Much of this work has been done using coarse resolution sensors such as AVHRR and MODIS in combination with moderate resolution sensors, particularly Landsat. Finer scale analysis of heterogeneous and fragmented landscapes is commonly performed with medium resolution data and has had varying success depending on many factors including the level of fragmentation, variability of land cover types, patch size, and image availability. Fine scale tree cover in mixed agricultural areas can have a major impact on biodiversity and ecosystem sustainability but may often be inadequately captured with the global to regional (coarse resolution and moderate resolution) satellite sensors and processing techniques widely used to detect land use and land cover changes. This study investigates whether advanced remote sensing methods are able to assess and monitor percent tree canopy cover in spatially complex human-dominated agricultural landscapes that prove challenging for traditional mapping techniques. Our study areas are in high altitude, mixed agricultural coffee-growing regions in Costa Rica and the Colombian Andes. We applied Random Forests regression tree analysis to Landsat data along with additional spectral, environmental, and spatial variables to predict percent tree canopy cover at 30m resolution. Image object-based texture, shape, and neighborhood metrics were generated at the Landsat scale using eCognition and included in the variable suite. Training and validation data was generated using high resolution imagery from digital aerial photography at 1m to 2.5 m resolution. Our results are promising with Pearson's correlation coefficients between observed and predicted percent tree canopy cover of .86 (Costa

  2. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012

    International Nuclear Information System (INIS)

    Tyukavina, A; Hansen, M C; Potapov, P V; Krylov, A M; Turubanova, S; Baccini, A; Houghton, R A; Goetz, S J; Stehman, S V

    2015-01-01

    Tropical forests provide global climate regulation ecosystem services and their clearing is a significant source of anthropogenic greenhouse gas (GHG) emissions and resultant radiative forcing of climate change. However, consensus on pan-tropical forest carbon dynamics is lacking. We present a new estimate that employs recommended good practices to quantify gross tropical forest aboveground carbon (AGC) loss from 2000 to 2012 through the integration of Landsat-derived tree canopy cover, height, intactness and forest cover loss and GLAS-lidar derived forest biomass. An unbiased estimate of forest loss area is produced using a stratified random sample with strata derived from a wall-to-wall 30 m forest cover loss map. Our sample-based results separate the gross loss of forest AGC into losses from natural forests (0.59 PgC yr −1 ) and losses from managed forests (0.43 PgC yr −1 ) including plantations, agroforestry systems and subsistence agriculture. Latin America accounts for 43% of gross AGC loss and 54% of natural forest AGC loss, with Brazil experiencing the highest AGC loss for both categories at national scales. We estimate gross tropical forest AGC loss and natural forest loss to account for 11% and 6% of global year 2012 CO 2 emissions, respectively. Given recent trends, natural forests will likely constitute an increasingly smaller proportion of tropical forest GHG emissions and of global emissions as fossil fuel consumption increases, with implications for the valuation of co-benefits in tropical forest conservation. (letter)

  3. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia

    Science.gov (United States)

    Tarigan, Suria; Wiegand, Kerstin; Sunarti; Slamet, Bejo

    2018-01-01

    In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis) and rubber (Hevea brasiliensis) plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT) model and observed several watersheds to derive the direct runoff coefficient (C) and baseflow index (BFI). The model had a strong performance, with Nash-Sutcliffe efficiency values of 0.80-0.88 (calibration) and 0.80-0.85 (validation) and percent bias values of -2.9-1.2 (calibration) and 7.0-11.9 (validation). We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a watershed can provide

  4. Translating Sustainable Forest Management from the global to the domestic sphere

    NARCIS (Netherlands)

    Mattei Faggin, Joana; Behagel, J.H.

    2017-01-01

    In the context of fragmented global forest governance, Sustainable Forest Management (SFM) has gained force as a strategy to improve forest conditions and livelihood outcomes. Accordingly, SFM related ideas and norms are translated across different environmental domains, levels of governance, and

  5. Processes Underlying 50 Years of Local Forest-Cover Change in Yunnan, China

    Directory of Open Access Journals (Sweden)

    Jens Frayer

    2014-12-01

    Full Text Available Recognition of the importance of forests for local livelihoods, biodiversity and the climate system has spurred a growing interest in understanding the factors that drive forest-cover change. Forest transitions, the change from net deforestation to net reforestation, may follow different pathways depending on a complex interplay of driving forces. However, most studies on forest transitions focus on the national level rather than the local level. Here, case studies from 10 villages in Yunnan, China, are used to clarify the complex interactions among various pathways of forest transitions, derive insights on the underlying drivers that shaped the forest transitions, and determine the importance of changes in drivers over time. The results demonstrate that China’s recent forest transition was caused by a range of interrelated pathways that were mediated by local circumstances. The degradation of forest ecosystem services caused by rampant deforestation and forest degradation created a scarcity of forest products and triggered state-initiated afforestation efforts, particularly in the 1990s, which continue to be important. More recently, economic development concomitant with smallholder intensification spurred reforestation, while the importance of state forest policy declined. The complexity of local land-use changes demonstrates the difficulty of identifying distinct transition pathways and calls for a more diverse approach that recognizes the interdependence of local processes.

  6. Long term changes in forest cover and land use of Similipal ...

    Indian Academy of Sciences (India)

    K R L Saranya and C Sudhakar Reddy. ∗. Forestry & Ecology Group, National Remote Sensing Centre, ISRO, Balanagar, Hyderabad 500 037, India. ∗. Corresponding author. e-mail: drsudhakarreddy@gmail.com. The spatial changes in forest cover of Similipal biosphere reserve, Odisha, India over eight decades (1930–.

  7. The spatiotemporal forest cover changes in Köprülü Canyon ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-15

    Sep 15, 2009 ... cover. Mixed forests increased about 151.7% (1570.7 ha) like agricultural and urban areas 39.8% (777.5 ... carbon sequestration, tourism and recreation and non- ..... affected by human-induced activities and population.

  8. Forest cover, socioeconomics, and reported flood frequency in developing countries

    Science.gov (United States)

    Ferreira, Susana; Ghimire, Ramesh

    2012-08-01

    In this paper, we analyze the determinants of the number of large floods reported since 1990. Using the same sample of countries as Bradshaw et al. (2007), and, like them, omitting socioeconomic characteristics from the analysis, we found that a reduction in natural forest cover is associated with an increase in the reported count of large floods. This result does not hold in any of three new analyses we perform. First, we expand the sample to include all the developing countries and all countries for which data were available but were omitted in their study. Second, and more importantly, since forest management is just one possible channel through which humans can influence reported flood frequency, we account for other important human-flood interactions. People are typically responsible for deforestation, but they are also responsible for other land use changes (e.g., urbanization), for floodplain and flood emergency management, and for reporting the floods. Thus, in our analysis we account for population, urban population growth, income, and corruption. Third, we exploit the panel nature of the data to control for unobserved country and time heterogeneity. We conclude that not only is the link between forest cover and reported flood frequency at the country level not robust, it also seems to be driven by sample selection and omitted variable bias. The human impact on the reported frequency of large floods at the country level is not through deforestation.

  9. Effects of Simulated Forest Cover Change on Projected Climate Change – a Case Study of Hungary

    Directory of Open Access Journals (Sweden)

    GÁLOS, Borbála

    2011-01-01

    Full Text Available Climatic effects of forest cover change have been investigated for Hungary applying theregional climate model REMO. For the end of the 21st century (2071–2100 case studies have beenanalyzed assuming maximal afforestation (forests covering all vegetated area and completedeforestation (forests replaced by grasslands of the country. For 2021–2025, the climatic influence ofthe potential afforestation based on a detailed national survey has been assessed. The simulationresults indicate that maximal afforestation may reduce the projected climate change through coolerand moister conditions for the entire summer period. The magnitude of the simulated climate changemitigating effect of the forest cover increase differs among regions. The smallest climatic benefit wascalculated in the southwestern region, in the area with the potentially strongest climate change. Thestrongest effects of maximal afforestation are expected in the northeastern part of the country. Here,half of the projected precipitation decrease could be relieved and the probability of summer droughtscould be reduced. The potential afforestation has a very slight feedback on the regional climatecompared to the maximal afforestation scenario.

  10. Spatially quantifying and attributing 17 years of land cover change to examine post-agricultural forest transition in Hawai`i

    Science.gov (United States)

    Lucas, M.; Trauernicht, C.; Carlson, K. M.; Miura, T.; Giambelluca, T. W.; Chen, Q.

    2017-12-01

    The past decades in Hawaii have seen large scale land use change and land cover shifts. However, much these dynamics are only described anecdotally or studied at a single locale, with little information on the extent, rate, or direction of change. This lack of data hinders any effort to assess, plan, and prioritize land management. To improve assessments of statewide vegetation and land cover change, this project developed high resolution, sub-pixel, percent cover maps of forest, grassland and bare earth at annual time steps from 1999 to 2016. Vegetation cover was quantified using archived LANDSAT imagery and a custom remote-sensing algorithm developed in the Google Earth Engine platform. A statistical trend analysis of annual maps of the these three proportional land covers were then used to detect land cover transitions across the archipelago. The aim of this work focused on quantifying the total area of change, annual rates of change and final vegetation cover outcomes statewide. Additionally these findings were attributed to past and current land uses and management history by compiling spatial datasets of development, agriculture, forest restoration sites and burned areas statewide. Results indicated that nearly 10% of the state's land surfaces are suspected to have transitioned between the three cover classes during the study period. Total statewide net change resulted in a gain in forest cover with largest areas of change occurring in unmanaged areas, current and past pastoral land, commercial forestry and abandoned cultivated land. The fastest annual rates of change were forest increases that occurred in restoration areas and commercial forestry. These findings indicate that Hawaii is going through a forest transition, primarily driven by agricultural abandonment with likely feedbacks from invasive species, but also influenced by the establishment of forestry production on former agricultural lands that show potential for native forest restoration. These

  11. Rapid Land Cover Map Updates Using Change Detection and Robust Random Forest Classifiers

    Directory of Open Access Journals (Sweden)

    Konrad J. Wessels

    2016-10-01

    Full Text Available The paper evaluated the Landsat Automated Land Cover Update Mapping (LALCUM system designed to rapidly update a land cover map to a desired nominal year using a pre-existing reference land cover map. The system uses the Iteratively Reweighted Multivariate Alteration Detection (IRMAD to identify areas of change and no change. The system then automatically generates large amounts of training samples (n > 1 million in the no-change areas as input to an optimized Random Forest classifier. Experiments were conducted in the KwaZulu-Natal Province of South Africa using a reference land cover map from 2008, a change mask between 2008 and 2011 and Landsat ETM+ data for 2011. The entire system took 9.5 h to process. We expected that the use of the change mask would improve classification accuracy by reducing the number of mislabeled training data caused by land cover change between 2008 and 2011. However, this was not the case due to exceptional robustness of Random Forest classifier to mislabeled training samples. The system achieved an overall accuracy of 65%–67% using 22 detailed classes and 72%–74% using 12 aggregated national classes. “Water”, “Plantations”, “Plantations—clearfelled”, “Orchards—trees”, “Sugarcane”, “Built-up/dense settlement”, “Cultivation—Irrigated” and “Forest (indigenous” had user’s accuracies above 70%. Other detailed classes (e.g., “Low density settlements”, “Mines and Quarries”, and “Cultivation, subsistence, drylands” which are required for operational, provincial-scale land use planning and are usually mapped using manual image interpretation, could not be mapped using Landsat spectral data alone. However, the system was able to map the 12 national classes, at a sufficiently high level of accuracy for national scale land cover monitoring. This update approach and the highly automated, scalable LALCUM system can improve the efficiency and update rate of regional land

  12. Global warming: Sea ice and snow cover

    International Nuclear Information System (INIS)

    Walsh, J.E.

    1993-01-01

    In spite of differences among global climate simulations under scenarios where atmospheric CO 2 is doubled, all models indicate at least some amplification of greenouse warming at the polar regions. Several decades of recent data on air temperature, sea ice, and snow cover of the high latitudes of the Northern Hemisphere are summarized to illustrate the general compatibility of recent variations in those parameters. Despite a data void over the Arctic Ocean, some noteworthy patterns emerge. Warming dominates in winter and spring, as projected by global climate models, with the warming strongest over subpolar land areas of Alaska, northwestern Canada, and northern Eurasia. A time-longitude summary of Arctic sea ice variations indicates that timescales of most anomalies range from several months to several years. Wintertime maxima of total sea ice extent contain no apparent secular trends. The statistical significance of trends in recent sea ice variations was evaluated by a Monte Carlo procedure, showing a statistically significant negative trend in the summer. Snow cover data over the 20-y period of record show a noticeable decrease of Arctic snow cover in the late 1980s. This is of potential climatic significance since the accompanying decrease of surface albedo leads to a rapid increase of solar heating. 21 refs., 3 figs., 1 tab

  13. European Forest Cover During the Past 12,000 Years: A Palynological Reconstruction Based on Modern Analogs and Remote Sensing.

    Science.gov (United States)

    Zanon, Marco; Davis, Basil A S; Marquer, Laurent; Brewer, Simon; Kaplan, Jed O

    2018-01-01

    Characterization of land cover change in the past is fundamental to understand the evolution and present state of the Earth system, the amount of carbon and nutrient stocks in terrestrial ecosystems, and the role played by land-atmosphere interactions in influencing climate. The estimation of land cover changes using palynology is a mature field, as thousands of sites in Europe have been investigated over the last century. Nonetheless, a quantitative land cover reconstruction at a continental scale has been largely missing. Here, we present a series of maps detailing the evolution of European forest cover during last 12,000 years. Our reconstructions are based on the Modern Analog Technique (MAT): a calibration dataset is built by coupling modern pollen samples with the corresponding satellite-based forest-cover data. Fossil reconstructions are then performed by assigning to every fossil sample the average forest cover of its closest modern analogs. The occurrence of fossil pollen assemblages with no counterparts in modern vegetation represents a known limit of analog-based methods. To lessen the influence of no-analog situations, pollen taxa were converted into plant functional types prior to running the MAT algorithm. We then interpolate site-specific reconstructions for each timeslice using a four-dimensional gridding procedure to create continuous gridded maps at a continental scale. The performance of the MAT is compared against methodologically independent forest-cover reconstructions produced using the REVEALS method. MAT and REVEALS estimates are most of the time in good agreement at a trend level, yet MAT regularly underestimates the occurrence of densely forested situations, requiring the application of a bias correction procedure. The calibrated MAT-based maps draw a coherent picture of the establishment of forests in Europe in the Early Holocene with the greatest forest-cover fractions reconstructed between ∼8,500 and 6,000 calibrated years BP. This

  14. Comparison of pixel -based and artificial neural networks classification methods for detecting forest cover changes in Malaysia

    International Nuclear Information System (INIS)

    Deilmai, B R; Rasib, A W; Ariffin, A; Kanniah, K D

    2014-01-01

    According to the FAO (Food and Agriculture Organization), Malaysia lost 8.6% of its forest cover between 1990 and 2005. In forest cover change detection, remote sensing plays an important role. A lot of change detection methods have been developed, and most of them are semi-automated. These methods are time consuming and difficult to apply. One of the new and robust methods for change detection is artificial neural network (ANN). In this study, (ANN) classification scheme is used to detect the forest cover changes in the Johor state in Malaysia. Landsat Thematic Mapper images covering a period of 9 years (2000 and 2009) are used. Results obtained with ANN technique was compared with Maximum likelihood classification (MLC) to investigate whether ANN can perform better in the tropical environment. Overall accuracy of the ANN and MLC techniques are 75%, 68% (2000) and 80%, 75% (2009) respectively. Using the ANN method, it was found that forest area in Johor decreased as much as 1298 km2 between 2000 and 2009. The results also showed the potential and advantages of neural network in classification and change detection analysis

  15. The effect of land cover change to the biomass value in the forest region of West Java province

    Science.gov (United States)

    Rahayu, M. I.; Waryono, T.; Rokhmatullah; Shidiq, I. P. A.

    2018-05-01

    Due to the issue of climate change as a public concern, information of carbon stock availability play an important role to describe the condition of forest ecosystems in the context of sustainable forest management. This study has the objective to identify land cover change during 2 decades (1996 – 2016) in the forest region and estimate the value of forest carbon stocks in west Java Province using remote sensing imagery. The land cover change information was obtained by visually interpreting the Landsat image, while the estimation of the carbon stock value was performed using the transformation of the NDVI (Normalized Difference Vegetation Index) which extracted from Landsat image. Biomass value is calculated by existing allometric equations. The results of this study shows that the forest area in the forest region of West Java Province have decreased from year to year, and the estimation value of forest carbon stock in the forest region of West Java Province also decreased from year to year.

  16. LBA-ECO LC-24 Landsat ETM+ Forest Cover Classification, Uruara, Para, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set contains a 1999 Landsat ETM+ mosaic image land of cover classification showing forested and deforestation areas in Uruara, Para, Brazil. This...

  17. Negative emissions from stopping deforestation and forest degradation, globally.

    Science.gov (United States)

    Houghton, Richard A; Nassikas, Alexander A

    2018-01-01

    Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land-use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be -4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long-lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change. © 2017 John Wiley & Sons Ltd.

  18. Integrated modelling of anthropogenic land-use and land-cover change on the global scale

    Science.gov (United States)

    Schaldach, R.; Koch, J.; Alcamo, J.

    2009-04-01

    In many cases land-use activities go hand in hand with substantial modifications of the physical and biological cover of the Earth's surface, resulting in direct effects on energy and matter fluxes between terrestrial ecosystems and the atmosphere. For instance, the conversion of forest to cropland is changing climate relevant surface parameters (e.g. albedo) as well as evapotranspiration processes and carbon flows. In turn, human land-use decisions are also influenced by environmental processes. Changing temperature and precipitation patterns for example are important determinants for location and intensity of agriculture. Due to these close linkages, processes of land-use and related land-cover change should be considered as important components in the construction of Earth System models. A major challenge in modelling land-use change on the global scale is the integration of socio-economic aspects and human decision making with environmental processes. One of the few global approaches that integrates functional components to represent both anthropogenic and environmental aspects of land-use change, is the LandSHIFT model. It simulates the spatial and temporal dynamics of the human land-use activities settlement, cultivation of food crops and grazing management, which compete for the available land resources. The rational of the model is to regionalize the demands for area intensive commodities (e.g. crop production) and services (e.g. space for housing) from the country-level to a global grid with the spatial resolution of 5 arc-minutes. The modelled land-use decisions within the agricultural sector are influenced by changing climate and the resulting effects on biomass productivity. Currently, this causal chain is modelled by integrating results from the process-based vegetation model LPJmL model for changing crop yields and net primary productivity of grazing land. Model output of LandSHIFT is a time series of grid maps with land-use/land-cover information

  19. LBA-ECO LC-24 Landsat ETM+ Forest Cover Classification, Uruara, Para, Brazil: 1999

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains a 1999 Landsat ETM+ mosaic image land of cover classification showing forested and deforestation areas in Uruara, Para, Brazil. This image may...

  20. Minimum forest cover required for sustainable water flow regulation of a watershed: a case study in Jambi Province, Indonesia

    Directory of Open Access Journals (Sweden)

    S. Tarigan

    2018-01-01

    Full Text Available In many tropical regions, the rapid expansion of monoculture plantations has led to a sharp decline in forest cover, potentially degrading the ability of watersheds to regulate water flow. Therefore, regional planners need to determine the minimum proportion of forest cover that is required to support adequate ecosystem services in these watersheds. However, to date, there has been little research on this issue, particularly in tropical areas where monoculture plantations are expanding at an alarming rate. Therefore, in this study, we investigated the influence of forest cover and oil palm (Elaeis guineensis and rubber (Hevea brasiliensis plantations on the partitioning of rainfall into direct runoff and subsurface flow in a humid, tropical watershed in Jambi Province, Indonesia. To do this, we simulated streamflow with a calibrated Soil and Water Assessment Tool (SWAT model and observed several watersheds to derive the direct runoff coefficient (C and baseflow index (BFI. The model had a strong performance, with Nash–Sutcliffe efficiency values of 0.80–0.88 (calibration and 0.80–0.85 (validation and percent bias values of −2.9–1.2 (calibration and 7.0–11.9 (validation. We found that the percentage of forest cover in a watershed was significantly negatively correlated with C and significantly positively correlated with BFI, whereas the rubber and oil palm plantation cover showed the opposite pattern. Our findings also suggested that at least 30 % of the forest cover was required in the study area for sustainable ecosystem services. This study provides new adjusted crop parameter values for monoculture plantations, particularly those that control surface runoff and baseflow processes, and it also describes the quantitative association between forest cover and flow indicators in a watershed, which will help regional planners in determining the minimum proportion of forest and the maximum proportion of plantation to ensure that a

  1. Incidence of plant cover over the autotrophic nitrifying bacteria population in a fragment of Andean forest

    International Nuclear Information System (INIS)

    Gonzalez, Xiomara; Gonzalez, L; Varela, A; Ahumada, J A

    1999-01-01

    It was determined the incidence of plant cover (forest vs. pasture), on the autotrophy nitrifying bacteria, through the effect of biotic factors (radical exudate) and abiotic factors (temperature, ph and humidity), in a high mountain cloud forest fragment. The site of study was located near La Mesa (Cundinamarca) municipality. The temperature of soil was measured in situ, and soil samples were collected and carried to the laboratory for pH and humidity percentage measurements. Serial soil dilution method was used for plating samples on a selective culture medium with ammonium sulphate as nitrogen source, in order to estimate the autotrophic nitrifying bacteria population levels. Grown colonies were examined macro and microscopically. The quantity of nitrates produced by bacteria cultured in vitro was determined spectra-photometrical. In relation to the abiotic factors, there was no significant differences of pH between both plant covers, but there were significant for soil humidity and temperature (p<0.05). There were highly significant differences with respect to the bacteria population levels (p<0.0001) and with respect to nitrate production. This suggests a higher bacterial activity in the under forest cover. The radical exudate from both types of plant cover reduced the viability of bacteria in vitro, from 1:1 to 1:30 exudate bacteria proportions. In the soils physical and chemical analysis, it was found a higher P and Al concentrations, and a higher CIC and organic matter content under the forest cover. It is suggested the importance of this functional group in this ecosystem

  2. Global land use change, economic globalization, and the looming land scarcity.

    Science.gov (United States)

    Lambin, Eric F; Meyfroidt, Patrick

    2011-03-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms-the displacement, rebound, cascade, and remittance effects-that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors.

  3. Global land use change, economic globalization, and the looming land scarcity

    Science.gov (United States)

    Lambin, Eric F.; Meyfroidt, Patrick

    2011-01-01

    A central challenge for sustainability is how to preserve forest ecosystems and the services that they provide us while enhancing food production. This challenge for developing countries confronts the force of economic globalization, which seeks cropland that is shrinking in availability and triggers deforestation. Four mechanisms—the displacement, rebound, cascade, and remittance effects—that are amplified by economic globalization accelerate land conversion. A few developing countries have managed a land use transition over the recent decades that simultaneously increased their forest cover and agricultural production. These countries have relied on various mixes of agricultural intensification, land use zoning, forest protection, increased reliance on imported food and wood products, the creation of off-farm jobs, foreign capital investments, and remittances. Sound policies and innovations can therefore reconcile forest preservation with food production. Globalization can be harnessed to increase land use efficiency rather than leading to uncontrolled land use expansion. To do so, land systems should be understood and modeled as open systems with large flows of goods, people, and capital that connect local land use with global-scale factors. PMID:21321211

  4. Potential impact of a transatlantic trade and Investment partnership on the global forest sector

    Science.gov (United States)

    Joseph Buongiorno; Paul Rougieux; Ahmed Barkaoui; Shushuai Zhu; Patrice Harou

    2014-01-01

    The effects of a transatlantic trade agreement on the global forest sector were assessed with the Global Forest Products Model, conditional on previous macroeconomic impacts predicted with a general equilibrium model. Comprehensive tariff elimination per se had little effect on the forest sector. However, with deeper reforms and integration consumption would increase...

  5. A global map of mangrove forest soil carbon at 30 m spatial resolution

    Science.gov (United States)

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Greg; Solvik, Kylen; Adame, Maria Fernanda; Benson, Lisa; Bukoski, Jacob J.; Carnell, Paul; Cifuentes-Jara, Miguel; Donato, Daniel; Duncan, Clare; Eid, Ebrahem M.; Ermgassen, Philine zu; Ewers Lewis, Carolyn J.; Macreadie, Peter I.; Glass, Leah; Gress, Selena; Jardine, Sunny L.; Jones, Trevor G.; Ndemem Nsombo, Eugéne; Mizanur Rahman, Md; Sanders, Christian J.; Spalding, Mark; Landis, Emily

    2018-05-01

    With the growing recognition that effective action on climate change will require a combination of emissions reductions and carbon sequestration, protecting, enhancing and restoring natural carbon sinks have become political priorities. Mangrove forests are considered some of the most carbon-dense ecosystems in the world with most of the carbon stored in the soil. In order for mangrove forests to be included in climate mitigation efforts, knowledge of the spatial distribution of mangrove soil carbon stocks are critical. Current global estimates do not capture enough of the finer scale variability that would be required to inform local decisions on siting protection and restoration projects. To close this knowledge gap, we have compiled a large georeferenced database of mangrove soil carbon measurements and developed a novel machine-learning based statistical model of the distribution of carbon density using spatially comprehensive data at a 30 m resolution. This model, which included a prior estimate of soil carbon from the global SoilGrids 250 m model, was able to capture 63% of the vertical and horizontal variability in soil organic carbon density (RMSE of 10.9 kg m‑3). Of the local variables, total suspended sediment load and Landsat imagery were the most important variable explaining soil carbon density. Projecting this model across the global mangrove forest distribution for the year 2000 yielded an estimate of 6.4 Pg C for the top meter of soil with an 86–729 Mg C ha‑1 range across all pixels. By utilizing remotely-sensed mangrove forest cover change data, loss of soil carbon due to mangrove habitat loss between 2000 and 2015 was 30–122 Tg C with >75% of this loss attributable to Indonesia, Malaysia and Myanmar. The resulting map products from this work are intended to serve nations seeking to include mangrove habitats in payment-for- ecosystem services projects and in designing effective mangrove conservation strategies.

  6. Nitrogen fertilization interacts with light to increase Rubus spp. cover in a temperate forest

    Science.gov (United States)

    Christopher A. Walter; Devon T. Raiff; Mark B. Burnham; Frank S. Gilliam; Mary Beth Adams; William T. Peterjohn

    2016-01-01

    Nitrogen additions have caused species composition changes in many ecosystems by facilitating the growth of nitrophilic species. After 24 years of nitrogen fertilization in a 40 year-old stand at the Fernow Experimental Forest (FEF) in Central Appalachia, USA, the cover of Rubus spp. has increased from 1 to 19 % of total herbaceous-layer cover....

  7. A review of the role of temperate forests in the global CO2 balance

    International Nuclear Information System (INIS)

    Musselman, R.C.; Fox, D.G.

    1991-01-01

    The role of temperate forests in the global carbon balance is difficult to determine because many uncertainties exist in the data, and many assumptions must be made in these determinations. Still, there is little doubt that increases in atmospheric CO 2 and global warming would have major effects on temperate forest ecosystems. Increases in atmospheric CO 2 may result in increases in photosynthesis, changes in water and nitrogen use efficiency, and changes in carbon allocation. Indirect effects of changes in global carbon balance on regional climate and on microenvironmental conditions, particularly temperature and moisture, may be more important then direct effects of increased CO 2 on vegetation. Increased incidence of forest perturbations might also be expected. The evidence suggests that conditions favorable to forest growth and development may exist in the northern latitudes, while southern latitude forests may undergo drought stress. Current harvest of temperate and world forests contributes substantial amounts of carbon to the atmosphere, possibly as much as 3 gigatons (Gt) per year. Return of this carbon to forest storage may require decades. Forest managers should be aware of the global as well as local impact their management decisions will have on the atmospheric carbon balance of the ecosystems they oversee

  8. Representing anthropogenic gross land use change, wood harvest, and forest age dynamics in a global vegetation model ORCHIDEE-MICT v8.4.2

    Science.gov (United States)

    Yue, Chao; Ciais, Philippe; Luyssaert, Sebastiaan; Li, Wei; McGrath, Matthew J.; Chang, Jinfeng; Peng, Shushi

    2018-01-01

    Land use change (LUC) is among the main anthropogenic disturbances in the global carbon cycle. Here we present the model developments in a global dynamic vegetation model ORCHIDEE-MICT v8.4.2 for a more realistic representation of LUC processes. First, we included gross land use change (primarily shifting cultivation) and forest wood harvest in addition to net land use change. Second, we included sub-grid evenly aged land cohorts to represent secondary forests and to keep track of the transient stage of agricultural lands since LUC. Combination of these two features allows the simulation of shifting cultivation with a rotation length involving mainly secondary forests instead of primary ones. Furthermore, a set of decision rules regarding the land cohorts to be targeted in different LUC processes have been implemented. Idealized site-scale simulation has been performed for miombo woodlands in southern Africa assuming an annual land turnover rate of 5 % grid cell area between forest and cropland. The result shows that the model can correctly represent forest recovery and cohort aging arising from agricultural abandonment. Such a land turnover process, even though without a net change in land cover, yields carbon emissions largely due to the imbalance between the fast release from forest clearing and the slow uptake from agricultural abandonment. The simulation with sub-grid land cohorts gives lower emissions than without, mainly because the cleared secondary forests have a lower biomass carbon stock than the mature forests that are otherwise cleared when sub-grid land cohorts are not considered. Over the region of southern Africa, the model is able to account for changes in different forest cohort areas along with the historical changes in different LUC activities, including regrowth of old forests when LUC area decreases. Our developments provide possibilities to account for continental or global forest demographic change resulting from past anthropogenic and

  9. Spatial scaling of core and dominant forest cover in the Upper Mississippi and Illinois River floodplains, USA

    Science.gov (United States)

    De Jager, Nathan R.; Rohweder, Jason J.

    2011-01-01

    Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1–100 ha). We further identified forest pixels that met two local density thresholds: 'core' forest pixels were nested in a 100% (unfragmented) forested window and 'dominant' forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the 'core' and 'dominant' criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the 'core' and 'dominant' criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi

  10. Simultaneous comparison and assessment of eight remotely sensed maps of Philippine forests

    Science.gov (United States)

    Estoque, Ronald C.; Pontius, Robert G.; Murayama, Yuji; Hou, Hao; Thapa, Rajesh B.; Lasco, Rodel D.; Villar, Merlito A.

    2018-05-01

    This article compares and assesses eight remotely sensed maps of Philippine forest cover in the year 2010. We examined eight Forest versus Non-Forest maps reclassified from eight land cover products: the Philippine Land Cover, the Climate Change Initiative (CCI) Land Cover, the Landsat Vegetation Continuous Fields (VCF), the MODIS VCF, the MODIS Land Cover Type product (MCD12Q1), the Global Tree Canopy Cover, the ALOS-PALSAR Forest/Non-Forest Map, and the GlobeLand30. The reference data consisted of 9852 randomly distributed sample points interpreted from Google Earth. We created methods to assess the maps and their combinations. Results show that the percentage of the Philippines covered by forest ranges among the maps from a low of 23% for the Philippine Land Cover to a high of 67% for GlobeLand30. Landsat VCF estimates 36% forest cover, which is closest to the 37% estimate based on the reference data. The eight maps plus the reference data agree unanimously on 30% of the sample points, of which 11% are attributable to forest and 19% to non-forest. The overall disagreement between the reference data and Philippine Land Cover is 21%, which is the least among the eight Forest versus Non-Forest maps. About half of the 9852 points have a nested structure such that the forest in a given dataset is a subset of the forest in the datasets that have more forest than the given dataset. The variation among the maps regarding forest quantity and allocation relates to the combined effects of the various definitions of forest and classification errors. Scientists and policy makers must consider these insights when producing future forest cover maps and when establishing benchmarks for forest cover monitoring.

  11. Diatom Responses to Watershed Development and Potential Moderating Effects of Near-Stream Forest and Wetland Cover

    Science.gov (United States)

    Watershed development alters hydrology and delivers anthropogenic stressors to streams via pathways affected by impervious cover. We characterized relationships of diatom communities and metrics with upstream watershed % impervious cover (IC) and with riparian % forest and wetlan...

  12. Evaluation of the behavior of water in soil under eucalipto and native forest covers

    Directory of Open Access Journals (Sweden)

    Geberson Ricardo de Paula

    2013-12-01

    Full Text Available Areas occupied by grasslands have been replaced by eucalyptus plantations, which modifies the landscape, the regional economy, and water dynamics in soils. Thus, this study aimed to evaluate the behavior of water in Oxisol in two vegetation land covers, a six years old eucalyptus plantation, and a native forest in regeneration process for twenty years. The study was developed in the Una River Basin from June 2009 to April 2011. Ninety six moisture sensors were installed (Watermark™ at depths of 20, 60, and 120 cm. It was observed that, upon the occurrence of rainfall, the superficial and intermediate layers had increased humidity, which did not occur in the deepest layer. It was found that there were differences in soil moisture measured in the areas of eucalyptus and native forest and throughout the study period humidity was maintained between field capacity and permanent wilting point, with no water restriction. Canopy temperature of the eucalyptus plantation remained lower, indicating that its evapotranspiration was higher than in the forest area. The differences in moisture can be explained by the difference between the physical properties of soils in the study areas, because although they have the same slope, receive the same insolation and are close to each other, soil covered by eucalyptus presented a water storage capacity 63% above the area with native forest. It was also observed that all rainfall reaching the soil surface infiltrated and there was no runoff in the two areas studied. It was concluded that the results of this research provide important insights about differences in the behavior of water in the soil when covered by eucalyptus or native forest. For this reason, we suggest further studies with greater geographic reach in paired areas with different slopes, aspects and soil types.

  13. Status of the globally threatened forest birds of northeast Brazil

    Directory of Open Access Journals (Sweden)

    Glauco Alves Pereira

    2014-01-01

    Full Text Available The Atlantic Forest of northeast Brazil hosts a unique biota which is among the most threatened in the Neotropics. Near-total conversion of forest habitat to sugar cane monocultures has left the region's endemic forest-dependent avifauna marooned in a few highly-fragmented and degraded forest remnants. Here we summarise the current status of 16 globally threatened species based on surveys conducted over the last 11 years. We found a bleak situation for most of these species and consider that three endemics: Glaucidium mooreorum (Pernambuco Pygmy-owl, Cichlocolaptes mazarbarnetti (Cryptic Treehunter and Philydor novaesi (Alagoas Foliage-gleaner are most likely globally extinct. Some positive news can, however, be reported for both Leptodon forbesi (White-collared Kite and Synallaxis infuscata (Pinto's Spinetail which may warrant re-evaluation of their respective red list statuses. We outline a road map to prioritise conservation interventions in the region directed at preventing the extinction of this suite of threatened bird species and their companion biota.

  14. Towards realistic Holocene land cover scenarios: integration of archaeological, palynological and geomorphological records and comparison to global land cover scenarios.

    Science.gov (United States)

    De Brue, Hanne; Verstraeten, Gert; Broothaerts, Nils; Notebaert, Bastiaan

    2016-04-01

    Accurate and spatially explicit landscape reconstructions for distinct time periods in human history are essential for the quantification of the effect of anthropogenic land cover changes on, e.g., global biogeochemical cycles, ecology, and geomorphic processes, and to improve our understanding of interaction between humans and the environment in general. A long-term perspective covering Mid and Late Holocene land use changes is recommended in this context, as it provides a baseline to evaluate human impact in more recent periods. Previous efforts to assess the evolution and intensity of agricultural land cover in past centuries or millennia have predominantly focused on palynological records. An increasing number of quantitative techniques has been developed during the last two decades to transfer palynological data to land cover estimates. However, these techniques have to deal with equifinality issues and, furthermore, do not sufficiently allow to reconstruct spatial patterns of past land cover. On the other hand, several continental and global databases of historical anthropogenic land cover changes based on estimates of global population and the required agricultural land per capita have been developed in the past decennium. However, at such long temporal and spatial scales, reconstruction of past anthropogenic land cover intensities and spatial patterns necessarily involves many uncertainties and assumptions as well. Here, we present a novel approach that combines archaeological, palynological and geomorphological data for the Dijle catchment in the central Belgium Loess Belt in order to arrive at more realistic Holocene land cover histories. Multiple land cover scenarios (> 60.000) are constructed using probabilistic rules and used as input into a sediment delivery model (WaTEM/SEDEM). Model outcomes are confronted with a detailed geomorphic dataset on Holocene sediment fluxes and with REVEALS based estimates of vegetation cover using palynological data from

  15. Inoculum production of arbuscular mycorrhizal fungi native to soils under different forest covers

    Directory of Open Access Journals (Sweden)

    Renata Soares dos Santos

    Full Text Available ABSTRACT The low natural fertility of Brazilian soils requires the use of inoculants that facilitate the absorption of nutrients by plants. Arbuscular mycorrhizal fungi such as obligatory biotrophics of active roots perform this function, but access to this resource is limited by the difficulty in producing inoculants. The objective of this study was to investigate the production of AMF inoculants native of soils under different forest covers in Vitória da Conquista, BA, by means of spore quantification, colonization rate and species identification. For this purpose, soils were collected from sites under Mata Nativa (native forest and plantations of Madeira Nova (Pterogyne nitens and Eucalyptus, placed into separate 500 mL disposable cups with seeds of Brachiaria sp. and cultivated for five months. Spores were quantified and the AMF species identified in the control soil (without brachiaria and in the cups cultivated with brachiaria at each month. From the first month, the colonization rate of brachiaria roots was evaluated. The inoculants produced showed differences in the number of spores and species, in the AMF species identified, and in the root colonization rate as a function of the forest cover. Thus, considering the increase in the number of spores, species and colonization over time, the inoculant produced from the soil under native forest was more promising for utilization.

  16. Climate warming feedback from mountain birch forest expansion: reduced albedo dominates carbon uptake.

    Science.gov (United States)

    de Wit, Heleen A; Bryn, Anders; Hofgaard, Annika; Karstensen, Jonas; Kvalevåg, Maria M; Peters, Glen P

    2014-07-01

    Expanding high-elevation and high-latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south-central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land-use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow-covered tundra areas. The positive climate feedback of high-latitude and high-elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts. © 2013 John Wiley & Sons Ltd.

  17. The Land Use and Cover Change in Miombo Woodlands under Community Based Forest Management and Its Implication to Climate Change Mitigation: A Case of Southern Highlands of Tanzania

    Directory of Open Access Journals (Sweden)

    Z. J. Lupala

    2015-01-01

    Full Text Available In Tanzania, miombo woodland is the most significant forest vegetation with both ecological and socioeconomic importance. The vegetation has been threatened from land use and cover change due to unsustainable utilization. Over the past two decades, community based forest management (CBFM has been practiced to address the problem. Given the current need to mitigate global climate change, little is known on the influence of CBFM to the land use and cover change in miombo woodlands and therefore compromising climate change mitigation strategies. This study explored the dynamic of land use and covers change and biomass due to CBFM and established the implication to climate change mitigation. The study revealed increasing miombo woodland cover density with decreasing unsustainable utilization. The observed improvement in cover density and biomass provides potential for climate change mitigation strategies. CBFM also developed solidarity, cohesion, and social control of miombo woodlands illegal extraction. This further enhances permanence, reduces leakage, and increases accountability requirement for carbon credits. Collectively with these promising results, good land use plan at village level and introduction of alternative income generating activities can be among the best options to further reduce land use change and biomass loss in miombo woodlands.

  18. COMPARATIVE ANALYSIS OF INDICATORS OBTAINED BY CORINELAND COVER METHODOLOGY FOR SUSTAINABLE USE OF FOREST ECOSYSTEMS

    Directory of Open Access Journals (Sweden)

    Slaviša Popović

    2015-07-01

    Full Text Available Serbian Environmental Protection Agency followed international and national indicators to do monitoring of forested landscape area for the period 1990-2000. Based on the data obtained by Corine Land Cover methodology following the indicators like Forest area, Forested landscape, Forest land and Forest and semi natural area, analysis was done. The forested landscape indicators analysis helped trends monitoring during the period from 1990 - 2000 year. Dynamic of forested area changes could have direct impact on the practical implementation of indicators. Indicator Forest area can be used in planning sustainable use of forests. Recorded growth rates value in 2000year, compared to the 1990th is 0.296%. Indicator Forested landscape increase for 0.186% till 2000 year, while the indicator Forested Land recorded value growth rate of 0.193%. Changes in rates of those indicators can be used in the future for “emission trading”. The smallest increment of rate change of 0.1% was recorded in indicator Forests and semi natural area. Information given by this indicator can be used for monitoring habitats in high mountain areas.

  19. From forest to farmland and moraine to meadow: Integrated modeling of Holocene land cover change

    Science.gov (United States)

    Kaplan, J. O.

    2012-12-01

    Did humans affect global climate over the before the Industrial Era? While this question is hotly debated, the co-evolution of humans and the natural environment over the last 11,700 years had an undisputed role in influencing the development and present state of terrestrial ecosystems, many of which are highly valued today as economic, cultural, and ecological resources. Yet we still have a very incomplete picture of human-environment interactions over the Holocene, both spatially and temporally. In order to address this problem, we combined a global dynamic vegetation model with a new model of preindustrial anthropogenic land cover change. We drive these integrated models with paleoclimate from GCM scenarios, a new synthesis of global demographic, technological, and economic development over preindustrial time, and a global database of historical urbanization covering the last 8000 years. We simulate land cover and land use change, fire, soil erosion, and emissions of CO2 and methane (CH4) from 11,700 years before present to AD 1850. We evaluate our simulations in part with a new set of continental-scale reconstructions of land cover based on records from the Global Pollen Database. Our model results show that climate and tectonic change controlled global land cover in the early Holocene, e.g., shifts in forest biomes in northern continents show an expansion of temperate tree types far to the north of their present day limits, but that by the early Iron Age (1000 BC), humans in Europe, east Asia, and Mesoamerica had a larger influence than natural processes on the landscape. 3000 years before present, anthropogenic deforestation was widespread with most areas of temperate Europe and southwest Asia, east-central China, northern India, and Mesoamerica occupied by a matrix of natural vegetation, cropland and pastures. Burned area and emissions of CO2 and CH4 from wildfires declined slowly over the entire Holocene, as landscape fragmentation and changing agricultural

  20. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    Science.gov (United States)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  1. Identifying Priority Areas for Conservation: A Global Assessment for Forest-Dependent Birds

    Science.gov (United States)

    Buchanan, Graeme M.; Donald, Paul F.; Butchart, Stuart H. M.

    2011-01-01

    Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000–2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from

  2. Identifying priority areas for conservation: a global assessment for forest-dependent birds.

    Directory of Open Access Journals (Sweden)

    Graeme M Buchanan

    Full Text Available Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species, we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000-2005 included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing

  3. Identifying priority areas for conservation: a global assessment for forest-dependent birds.

    Science.gov (United States)

    Buchanan, Graeme M; Donald, Paul F; Butchart, Stuart H M

    2011-01-01

    Limited resources are available to address the world's growing environmental problems, requiring conservationists to identify priority sites for action. Using new distribution maps for all of the world's forest-dependent birds (60.6% of all bird species), we quantify the contribution of remaining forest to conserving global avian biodiversity. For each of the world's partly or wholly forested 5-km cells, we estimated an impact score of its contribution to the distribution of all the forest bird species estimated to occur within it, and so is proportional to the impact on the conservation status of the world's forest-dependent birds were the forest it contains lost. The distribution of scores was highly skewed, a very small proportion of cells having scores several orders of magnitude above the global mean. Ecoregions containing the highest values of this score included relatively species-poor islands such as Hawaii and Palau, the relatively species-rich islands of Indonesia and the Philippines, and the megadiverse Atlantic Forests and northern Andes of South America. Ecoregions with high impact scores and high deforestation rates (2000-2005) included montane forests in Cameroon and the Eastern Arc of Tanzania, although deforestation data were not available for all ecoregions. Ecoregions with high impact scores, high rates of recent deforestation and low coverage by the protected area network included Indonesia's Seram rain forests and the moist forests of Trinidad and Tobago. Key sites in these ecoregions represent some of the most urgent priorities for expansion of the global protected areas network to meet Convention on Biological Diversity targets to increase the proportion of land formally protected to 17% by 2020. Areas with high impact scores, rapid deforestation, low protection and high carbon storage values may represent significant opportunities for both biodiversity conservation and climate change mitigation, for example through Reducing Emissions from

  4. Air Pollution, Global Change and Forests in the New Millennium

    International Nuclear Information System (INIS)

    Karnosky, D.F.; Pikkarainen, J.; Percy, K.E.; Simpson, C.; Chappelka, A.H.

    2003-01-01

    The chapters in this book present a snapshot of the state of knowledge of air pollution effects at the beginning of the 21st century. From their different disciplines, a distinguished collection of authors document their understanding of how leaves, trees, and forests respond to air pollutants and climate change. Scenarios of global change and air pollution are described. The authors describe responses of forests to climate variability, tropospheric ozone, rising atmospheric CO2, the combination of CO2 and ozone, and deposition of acidic compounds and heavy metals. The responses to ozone receive particular attention because of increasing concern about its damaging effects and increasing concentrations in rural areas. Scaling issues are addressed - from leaves to trees, from juvenile trees to mature trees, from short-term responses to long-term responses, and from small-scale experiments and observations to large-scale forest ecosystems. This book is one major product of a conference sponsored by the International Union of Forestry Research Organizations, the USDA Forest Service Global Change Northern Stations Program, the Arthur Ross Foundation, NCASI, the Canadian Forest Service, and Michigan Technological University. The conference was held in May 2000 in Houghton, Michigan, USA

  5. Community structure, life histories and secondary production of stoneflies in two small mountain streams with different degree of forest cover

    Directory of Open Access Journals (Sweden)

    Pavel Beracko

    2015-10-01

    Full Text Available Our study examines community structure and nymphal biology (life cycles and secondary production of stoneflies in two adjacent mountain streams with different degree of forest cover in the Prosiečanka River Basin (Chočské Vrchy Mts., West Carpathians. One of the streams has non-forested catchment, converted to meadows and pastures, while the other one has catchment with 60% covered by spruce forest. Differences in forest cover and in thermal regime of the streams were reflected by the difference of stonefly communities at their structural and functional level. Species Nemoura cinerea and Leuctra aurita created stonefly assemblage in non-forested stream, whereas Nemoura cinerea also occurred in naturally forested stream together with species Leuctra armata, Leuctra nigra, Leuctra prima, Siphonoperla neglecta and Arcynopteryx dichroa. All examined species had maximally annual life cycle and in eudominant species Nemoura cinerea one month shift was found in nymphal hatching and adult emergence between streams. Total secondary production of stoneflies in undisturbed stream (126.46 mg DW m-2 y-1 was more than two times higher than the production in non-forested stream (47.39 mg DW m-2 y-1. 

  6. Effect of forest fragmentation on the epiphytic lichen cover of pine trunks on the example taiga town

    Directory of Open Access Journals (Sweden)

    Gaigysh Irina Sergeevna

    2012-06-01

    Full Text Available The main characteristics of epiphytic lichen cover on pine trunks depending on the area of natural pine forest in Kostomuksha (north Karelia were analysed. The town of Kostomuksha was built so that to provide the conservation of forest sites. 56 fragments with the area of 0.04 - 6.13 ha were studied. The average area of fragment is 0.62 ha, with 49 fragments (88% having the area less than 1 ha. Biodiversity and lichen cover were studied in the each fragment with using framework 10x20 cm. 1792 sample plots were made on 448 trees. The total lichens cover varies from 0 to 85%,averaging 10%. 25 species of lichens were found. The number of species in the sample plots varies from 0 to 9. Dominant species found are Hypogymnia physodes, Parmeliopsis ambigua, P. hyperopta, Imshaugia aleurites, Cladonia. Species Alectoria sarmentosa, Cladonia macilenta, Pseudevernia fufruraceae, Bryoria fremontii were less common. It was shown that the main parameters of lichen cover are closely related to the size of the area left in the city forest fragments. The maximum values of species diversity and cover of lichens were found in the fragments of more 1-2 hectares.

  7. Using urban forest assessment tools to model bird habitat potential

    Science.gov (United States)

    Susannah B. Lerman; Keith H. Nislow; David J. Nowak; Stephen DeStefano; David I. King; D. Todd. Jones-Farrand

    2014-01-01

    The alteration of forest cover and the replacement of native vegetation with buildings, roads, exotic vegetation, and other urban features pose one of the greatest threats to global biodiversity. As more land becomes slated for urban development, identifying effective urban forest wildlife management tools becomes paramount to ensure the urban forest provides habitat...

  8. Global Tree Cover and Biomass Carbon on Agricultural Land: The contribution of agroforestry to global and national carbon budgets.

    Science.gov (United States)

    Zomer, Robert J; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; van Noordwijk, Meine; Wang, Mingcheng

    2016-07-20

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their significance for carbon sequestration at a global level, along with recent change trends. Remote sensing data show that in 2010, 43% of all agricultural land globally had at least 10% tree cover and that this has increased by 2% over the previous ten years. Combining geographically and bioclimatically stratified Intergovernmental Panel on Climate Change (IPCC) Tier 1 default estimates of carbon storage with this tree cover analysis, we estimated 45.3 PgC on agricultural land globally, with trees contributing >75%. Between 2000 and 2010 tree cover increased by 3.7%, resulting in an increase of >2 PgC (or 4.6%) of biomass carbon. On average, globally, biomass carbon increased from 20.4 to 21.4 tC ha(-1). Regional and country-level variation in stocks and trends were mapped and tabulated globally, and for all countries. Brazil, Indonesia, China and India had the largest increases in biomass carbon stored on agricultural land, while Argentina, Myanmar, and Sierra Leone had the largest decreases.

  9. A temporal comparison of forest cover using digital earth science data and visualization techniques

    Science.gov (United States)

    Jones, John W.

    1993-01-01

    Increased demands on forest resources and the recognition of old-growth forests as critical habitats and purifiers of the atmosphere have stimulated attention to forest harvest practices in the United States and worldwide. Visualization technology provides a means by which a history of forestry activities may be documented and presented to the public and decisionmakers. In this project, landsat multispectral scanner and thematic mapper images, acquired July 7, 1981, and July 8, 1991, respectively, were georeferenced, resampled, enhanced, and draped over U.S. Geological Survey 30-meter digital elevation models. These data then were used to create perspective views of portions of Mt. Hood Forest, Oregon. The "fly-by" animation (produced by rapidly displaying a sequence of these perspective views) conveys the forest cover change resulting from forest harvest activities over the 10-year period. This project shows the value of combining satellite data with base cartographic data and earth science information for use in public education and decision-making processes.

  10. Response of the mean global vegetation distribution to interannual climate variability

    Energy Technology Data Exchange (ETDEWEB)

    Notaro, Michael [University of Wisconsin-Madison, Center for Climatic Research, Madison, WI (United States)

    2008-06-15

    The impact of interannual variability in temperature and precipitation on global terrestrial ecosystems is investigated using a dynamic global vegetation model driven by gridded climate observations for the twentieth century. Contrasting simulations are driven either by repeated mean climatology or raw climate data with interannual variability included. Interannual climate variability reduces net global vegetation cover, particularly over semi-arid regions, and favors the expansion of grass cover at the expense of tree cover, due to differences in growth rates, fire impacts, and interception. The area burnt by global fires is substantially enhanced by interannual precipitation variability. The current position of the central United States' ecotone, with forests to the east and grasslands to the west, is largely attributed to climate variability. Among woody vegetation, climate variability supports expanded deciduous forest growth and diminished evergreen forest growth, due to difference in bioclimatic limits, leaf longevity, interception rates, and rooting depth. These results offer insight into future ecosystem distributions since climate models generally predict an increase in climate variability and extremes. (orig.)

  11. VEGETATION ANALYSIS AND LAND USE LAND COVER CLASSIFICATION OF FOREST IN UTTARA KANNADA DISTRICT INDIA USING REMOTE SENSIGN AND GIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. G. Koppad

    2017-10-01

    Full Text Available The study was conducted in Uttara Kannada districts during the year 2012–2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km followed by agriculture 12.88 % (1315.31 sq. km, sparse forest 10.59 % (1081.37 sq. km, open land 6.09 % (622.37 sq. km, horticulture plantation and least was forest plantation (1.07 %. Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  12. Forests between global warming and local wood use

    DEFF Research Database (Denmark)

    Czeskleba-Dupont, Rolf

    2009-01-01

    The sustainability of extended energetic wood use in atmospheric burners is questioned because it accelerates global warming for decades and often intensifies local air pollution with serious health impacts. Forest developments in Denmark and Austria are compared, the latter including data...

  13. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Science.gov (United States)

    Ostertag, Rebecca; Inman-Narahari, Faith; Cordell, Susan; Giardina, Christian P; Sack, Lawren

    2014-01-01

    The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS) methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species) and stem density (3078 vs. 3486/ha). While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species), six-fold variation in mean annual rainfall (835-5272 mm yr(-1)) and 1.8-fold variation in mean annual temperature (16.0-28.4°C). Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological theory for

  14. Forest structure in low-diversity tropical forests: a study of Hawaiian wet and dry forests.

    Directory of Open Access Journals (Sweden)

    Rebecca Ostertag

    Full Text Available The potential influence of diversity on ecosystem structure and function remains a topic of significant debate, especially for tropical forests where diversity can range widely. We used Center for Tropical Forest Science (CTFS methodology to establish forest dynamics plots in montane wet forest and lowland dry forest on Hawai'i Island. We compared the species diversity, tree density, basal area, biomass, and size class distributions between the two forest types. We then examined these variables across tropical forests within the CTFS network. Consistent with other island forests, the Hawai'i forests were characterized by low species richness and very high relative dominance. The two Hawai'i forests were floristically distinct, yet similar in species richness (15 vs. 21 species and stem density (3078 vs. 3486/ha. While these forests were selected for their low invasive species cover relative to surrounding forests, both forests averaged 5->50% invasive species cover; ongoing removal will be necessary to reduce or prevent competitive impacts, especially from woody species. The montane wet forest had much larger trees, resulting in eightfold higher basal area and above-ground biomass. Across the CTFS network, the Hawaiian montane wet forest was similar to other tropical forests with respect to diameter distributions, density, and aboveground biomass, while the Hawai'i lowland dry forest was similar in density to tropical forests with much higher diversity. These findings suggest that forest structural variables can be similar across tropical forests independently of species richness. The inclusion of low-diversity Pacific Island forests in the CTFS network provides an ∼80-fold range in species richness (15-1182 species, six-fold variation in mean annual rainfall (835-5272 mm yr(-1 and 1.8-fold variation in mean annual temperature (16.0-28.4°C. Thus, the Hawaiian forest plots expand the global forest plot network to enable testing of ecological

  15. Land related grievances shape tropical forest-cover in areas affected by armed-conflict

    DEFF Research Database (Denmark)

    Nunez, Augusto Carlos Castro; Mertz, Ole; Buritica, Alexander

    2017-01-01

    Armed-conflicts often occur in tropical areas considered to be of high ‘conservation-value’, termed as such for their biodiversity or carbon-storage functions. Despite this important overlap, few studies have assessed how forest-biomass is affected by armed-conflicts. Thus, in this paper we develop...... a multinomial logit model to examine how outcomes of the interactions between carbon-storage, armed-conflict and deforestation rates are linked to social, institutional and economic factors. We use Colombia as a case study because of its protracted armed-conflict, high forest-cover, sustained deforestation......-ownership disputes, the Colombian government might uphold their international climate change commitments via reducing deforestation and hence forest based carbon emissions, while pursuing their national security objective via undermining opportunities for guerrilla groups to operate....

  16. Changes in forest cover in the Foresta della Lama (Casentino Forests National Park from Karl Siemon’s and Anton Seeland’s 1837 forest management plan

    Directory of Open Access Journals (Sweden)

    Vazzano E

    2011-05-01

    Full Text Available Forest estates with a long history of forest management plans are quite rare in Italy. In such cases, the analysis of historical documents combined with the use of GIS technology, can provide useful information on the evolution of forest cover and silvicultural and management techniques. Based on two unpublished documents by Karl Siemon and Anton Seeland dating back to 1837 and 1850, an archive of historical maps for the Lama Forest (Foreste Casentinesi, Monte Falterona and Campigna National Park was created using GIS techniques. This archive outlines the evolution of the Lama Forest over the last 170 years. Particular attention was given to silver fir plantations, which have strongly characterized silviculture and local economics in the Foreste Casentinesi area. The results of our analysis show that changes in different historical periods have been caused both by silvicultural interventions prescribed by the management plans and by external causes such as changes in forest property or war periods, which have markedly influenced forest area and stand characteristics. Furthermore, our analysis confirms that the work of Karl Siemon and Anton Seeland, carried out between 1835 and 1837, is the oldest forest management plan for an Italian forest. It is interesting to note that the aim of the plan, i.e., a regulated (or “normal” even-aged forest, and the way the plan was laid out, typical of classic forest management originated in Germany at the end of the XVIIIth century, served as model for the forest management plans drawn out by the Florence Forestry School almost until the end of the XXth century.

  17. Land Use and Land Cover Change in Forest Frontiers: The Role of Household Life Cycles

    Science.gov (United States)

    Walker, Robert

    2002-01-01

    Tropical deforestation remains a critical issue given its present rate and a widespread consensus regarding its implications for the global carbon cycle and biodiversity. Nowhere is the problem more pronounced than in the Amazon basin, home to the world's largest intact, tropical forest. This article addresses land cover change processes at household level in the Amazon basin, and to this end adapts a concept of domestic life cycle to the current institutional environment of tropical frontiers. In particular, it poses a risk minimization model that integrates demography with market-based factors such as transportation costs and accessibility. In essence, the article merges the theory of Chayanov with the household economy framework, in which markets exist for inputs (including labor), outputs, and capital. The risk model is specified and estimated, using survey data for 261 small producers along the Transamazon Highway in the eastern sector of the Brazilian Amazon.

  18. What Role for Humans in Global Land Cover Change over the Holocene? Insights from Models and Data

    Science.gov (United States)

    Kaplan, J. O.; Krumhardt, K. M.; Davis, B. A. S.; Zanon, M.

    2014-12-01

    Did humans affect global climate over the before the Industrial Era? While this question is hotly debated, the co-evolution of humans and the natural environment over the last 11,700 years had an undisputed role in influencing the development and present state of terrestrial ecosystems, many of which are highly valued today as economic, cultural, and ecological resources. Yet we still have a very incomplete picture of human-environment interactions over the Holocene. In order to address this, we combined a global dynamic vegetation model with a new model of preindustrial anthropogenic land cover change. We drive this integrated model a new synthesis of demographic, technological, and economic development over preindustrial time, and a database of historical urbanization covering the last 8000 years. We simulate natural vegetation and anthropogenic land use from 11,700 years before present to AD 1850 and compare these results with regional syntheses of pollen-based reconstructions of land cover. Our model results show that climate and tectonics controlled global land cover in the early Holocene. Shifts in forest biomes on the northern continents show an expansion of temperate tree types far to the north of their present day limits. By the early Iron Age (1000 BC), however, humans in Europe, East Asia, and Mesoamerica had a larger influence than natural processes on the landscape. Anthropogenic deforestation was widespread with most areas of temperate Europe and southwest Asia, east-central China, northern India, and Mesoamerica occupied by a matrix of natural vegetation, cropland and pastures. While we simulate fluctuations in human impact on the landscape, including periods of widespread land abandonment, e.g., during the Migration Period in Europe that following the end of the Western Roman Empire, approaching the Industrial Revolution nearly all of the landmasses of Europe and south and East Asia are dominated by anthropogenic activities. In contrast, the

  19. Mapping Russian forest biomass with data from satellites and forest inventories

    International Nuclear Information System (INIS)

    Houghton, R A; Butman, D; Bunn, A G; Krankina, O N; Schlesinger, P; Stone, T A

    2007-01-01

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass

  20. Mapping Russian forest biomass with data from satellites and forest inventories

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, R A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Butman, D [Yale School of Forestry and Environmental Science, Yale University, New Haven, CT 06511 (United States); Bunn, A G [Department of Environmental Sciences, Huxley College of the Environment, Western Washington University, 516 High Street, Bellingham, WA 98225-9181 (United States); Krankina, O N [Department of Forest Science, Oregon State University, 202 Richardson Hall, Corvallis, OR 97331-5752 (United States); Schlesinger, P [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States); Stone, T A [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540 (United States)

    2007-10-15

    The forests of Russia cover a larger area and hold more carbon than the forests of any other nation and thus have the potential for a major role in global warming. Despite a systematic inventory of these forests, however, estimates of total carbon stocks vary, and spatial variations in the stocks within large aggregated units of land are unknown, thus hampering measurement of sources and sinks of carbon. We mapped the distribution of living forest biomass for the year 2000 by developing a relationship between ground measurements of wood volume at 12 sites throughout the Russian Federation and data from the MODIS satellite bidirectional reflectance distribution function (BRDF) product (MOD43B4). Based on the results of regression-tree analyses, we used the MOD43B4 product to assign biomass values to individual 500 m x 500 m cells in areas identified as forest by two satellite-based maps of land cover. According to the analysis, the total living biomass varied between 46 and 67 Pg, largely because of different estimates of forest area. Although optical data are limited in distinguishing differences in biomass in closed canopy forests, the estimates of total living biomass obtained here varied more in response to different definitions of forest than to saturation of the optical sensing of biomass.

  1. The German contribution to the global forest policy. Analysis and evaluation of the engagement for biodiversity conservation and mitigation measures climatic change

    International Nuclear Information System (INIS)

    Busch, Anika

    2013-01-01

    The booklet on the German contribution to the global forest policy covers with analysis and evaluation of the engagement for biodiversity conservation and mitigation measures climatic change. The analysis is based on expert interviews; the theoretical background is the conception on society by Niklas Lehmann. The evaluation includes the issues of allocation of public goods, the improvement of public participation, and improvement of financing resources.

  2. Carbon in down woody materials of eastern U.S. forests

    Science.gov (United States)

    David C. Chojnacky; Robert A. Mickler; Linda S. Heath

    2003-01-01

    To better manage global carbon storage and other ecosystem processes, there is a need for accessible carbon data on components of down woody materials (DWM) in forests. We examined the feasibility of linking available data on DWM to the U.S. Department of Agriculture (USDA) Forest Inventory Analysis (FIA) database, which covers the nation's forest lands. We...

  3. Mapping of land cover in Northern California with simulated HyspIRI images

    Science.gov (United States)

    Clark, M. L.; Kilham, N. E.

    2014-12-01

    Land-cover maps are important science products needed for natural resource and ecosystem service management, biodiversity conservation planning, and assessing human-induced and natural drivers of land change. Most land-cover maps at regional to global scales are produced with remote sensing techniques applied to multispectral satellite imagery with 30-500 m pixel sizes (e.g., Landsat, MODIS). Hyperspectral, or imaging spectrometer, imagery measuring the visible to shortwave infrared regions (i.e., full range) of the spectrum have shown improved capacity to map plant species and coarser land-cover associations, yet techniques have not been widely tested at regional and greater spatial scales. The Hyperspectral Infrared Imager (HyspIRI) mission is a full-range hyperspectral and thermal satellite being considered for development by NASA (hyspiri.jpl.nasa.gov). A hyperspectral satellite, such as HyspIRI, will provide detailed spectral and temporal information at global scales that could greatly improve our ability to map land cover with greater class detail and spatial and temporal accuracy than possible with conventional multispectral satellites. The broad goal of our research is to assess multi-temporal, HyspIRI-like satellite imagery for improved land cover mapping across a range of environmental and anthropogenic gradients in California. In this study, we mapped FAO Land Cover Classification System (LCCS) classes over 30,000 km2 in Northern California using multi-temporal HyspIRI imagery simulated from the AVIRIS airborne sensor. The Random Forests classification was applied to predictor variables derived from the multi-temporal hyperspectral data and accuracies were compared to that from Landsat 8 OLI. Results indicate increased mapping accuracy using HyspIRI multi-temporal imagery, particularly in discriminating different forest life-form types, such as mixed conifer and broadleaf forests and open- and closed-canopy forests.

  4. Does Evapotranspiration Increase When Forests are converted to Grasslands?

    Science.gov (United States)

    Varcoe, Robert; Sterling, Shannon

    2017-04-01

    The conversion of forests to grasslands (FGC) is a widespread land cover change (LCC) and is also among the most commonly studied changes with respect to its impact on ET; such research employs a variety of experimental approaches, including, paired catchment (PC), Budyko and land surface models (LSM), and measurement methods, including the catchment water balance (CWB), eddy covariance (EC) and remote sensing (RS). Until recently, there has been consensus in the scientific literature that rates of ET decrease when a forest is converted to grassland; however, this consensus has recently come into question. Williams (2012) applied the Budyko framework to a global network of eddy covariance measurements with the results that grasslands have a 9% greater evaporative index than forests. In addition, HadGEM2, a recent Hadley Centre LSM, produced increased ET in the northern Amazon Basin after simulating global scale tropical deforestation (Brovkin et al., 2015). Here we present an analysis of available estimates of how ET rates change with FGC to increase our understanding of the forest - grassland-ET paradigm. We used two datasets to investigate the impacts land cover change on ET. I compiled a dataset of change in ET with land cover change (ΔETLCC) using published experiments that compare forest and grassland ET under conditions controlled for meteorological and landscape influences. Using the ΔETLCC dataset, we show that, in all cases, forest ET is higher than grassland under controlled conditions. Results suggest that the eddy covariance method measures smaller changes in ET when forests are converted to grasslands, though more data are needed for this result to be statistically significant. Finally, GETA2.0, a new global dataset of annual ET, projects that forest ET is greater than grassland, except at high latitudes and areas where orography influences precipitation (P). The data included in this study represent the data available on forest and grassland ET

  5. The role of boreal forests and forestry in the global carbon budget : a synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Fyles, I.H.; Shaw, C.H.; Apps, M.J.; Karjalainen, T.; Stocks, B.J.; Running, S.W.; Kurz, W.A.; Weyerhaeuser, G.Jr.; Jarvis, P.G.

    2002-10-01

    This paper provides a synthesis of all papers presented at the conference on the role of boreal forests in the global carbon budget. The scientific community is recognizing the critical links between boreal forest ecosystems, carbon dynamics and global climate change. This paper addresses the five main topics discussed at the conference including: (1) carbon stocks and fluxes, (2) the effects of natural disturbances on carbon dynamics, (3) effects of management practices on carbon dynamics, (4) afforestation and carbon sequestration, and (5) effects of climate change and elevated carbon dioxide concentration on carbon dynamics. Large-scale model simulations suggest that increased global temperatures will result in increased net ecosystem productivity (NEP). Several model simulations also indicate that net primary productivity (NPP) will increase. While most forest stands are currently carbon sinks, disturbances such as fire, insects and tree harvesting make forests susceptible to becoming a source of carbon. In contrast, some studies suggest that climate change will cause shifting vegetation patterns, increased soil carbon and higher forest productivity that may result in higher sequestration of carbon in the boreal forest. 84 refs.

  6. The GOFC-GOLD/CEOS Land Cover Harmonization and Validation Initiative: Technical Design and Implementation

    Science.gov (United States)

    Herold, M.; Woodcock, C.; Stehman, S.; Nightingale, J.; Friedl, M.; Schmullius, C.

    2010-12-01

    A global effort to assess the accuracy of existing and future land cover products derived from a variety of satellite sensors over a range of spatial resolutions is being led by the Land Cover Implementation Team (LC-IT) of GOFC/GOLD (Global Observation of Land Cover Dynamics) in conjunction with the CEOS (Committee on Earth Observation Satellites) WGCV (Working Group on Calibration and Validation) LPV (Land Product Validation) subgroup. The first phase of this effort is complete and culminated in a publication of community consensus "best practices" for validation of global land cover datasets (2). The next phase is to implement the recommendations outlined in the "best practices" document. A "living database" of global randomized sample sites will form the basis of accuracy assessment for a host of global land cover products (GLC2000, MODIS land cover, GLOBCOVER, United Nation's Forest Resource Assessment (FRA2010), and the Mid-Decadal Global Land Survey. This "living dataset" will also be a community resource available for use in validation of regional or national mapping efforts using LCCS (UN FAO's Land Cover Classification System). Based on the known accuracy of existing land cover products, GOFC/GOLD will to develop and update a "best currently available" global land cover map. Individual geographic regions may be selected from different land cover products (global, national or regional), or they may be combined in various ways

  7. Land-use change outweighs projected effects of changing rainfall on tree cover in sub-Saharan Africa.

    Science.gov (United States)

    Aleman, Julie C; Blarquez, Olivier; Staver, Carla A

    2016-09-01

    Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub-Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R(2)  = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century. © 2016 John Wiley & Sons Ltd.

  8. Global context for the United States Forest Sector in 2030

    Science.gov (United States)

    James Turner; Joseph Buongiorno; Shushuai Zhu; Jeffrey P. Prestemon

    2005-01-01

    The purpose of this study was to identify markets for, and competitors to, the United States forest industries in the next 30 years. The Global Forest Products Model was used to make predictions of international demand, supply, trade, and prices, conditional on the last RPA Timber Assessment projections for the United States. It was found that the United States, Japan...

  9. Ten Years of Forest Cover Change in the Sierra Nevada Detected Using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2014-01-01

    A detailed geographic record of recent vegetation regrowth and disturbance patterns in forests of the Sierra Nevada remains a gap that can be filled with remote sensing data. Landsat (TM) imagery was analyzed to detect 10 years of recent changes (between 2000 and 2009) in forest vegetation cover for areas burned by wildfires between years of 1995 to 1999 in the region. Results confirmed the prevalence of regrowing forest vegetation during the period 2000 and 2009 over 17% of the combined burned areas.

  10. Choice of forest map has implications for policy analysis

    DEFF Research Database (Denmark)

    Seebach, Lucia Maria; McCallum, Ian; Fritz, Steffen

    2012-01-01

    /non-forest map (FMAP), the Corine Land Cover (CLC), the Calibrated European Forest Map (CEFM) and the Global Land Cover (GLC). Finally, the impact of potential differences owing to input datasets on decision-making was tested in a selected case study: reaching the EU 10% biofuel target through enhanced....... Similarly, depending on the choice of the input alternate options for decision-making were found within the hypothesized biofuel target (case study), demonstrating a substantial value of information. In general, it was demonstrated that input maps are the major driver of decision-making if forest resource...... outputs of the model are their basis. Improvement of the input forest map would result in immediate benefit for a better decision-making basis....

  11. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    Science.gov (United States)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  12. Forests and global warming mitigation in Brazil: opportunities in the Brazilian forest sector for responses to global warming under the 'clean development mechanism''

    International Nuclear Information System (INIS)

    Fearnside, P.M.

    1999-01-01

    The Kyoto Protocol created global warming response opportunities through the clean development mechanism that allow countries like Brazil to receive investments from companies and governments wishing to offset their emissions of greenhouse gases. Brazil has a special place in strategies for combating global warming because its vast areas of tropical forest represent a potentially large source of emissions if deforested. A number of issues need to be settled to properly assign credit for carbon in the types of options presented by the Brazilian forest sector. These include definition of the units of carbon (permanent sequestration versus carbon-ton-years, the latter being most appropriate for forest options), the means of crediting forest reserve establishment, adoption of discounting or other time-preference weighting for carbon, definition of the accounting method (avoided emissions versus stock maintenance), and mechanism to allow program contributions to be counted, rather than restricting consideration to free-standing projects. Silvicultural plantations offer opportunities for carbon benefits, but have high social impacts in the Brazilian context. Plantations also inherently compete with deforestation reduction options for funds. Forest management has been proposed as a global warming response option, but the assignment of any value to time makes this unattractive in terms of carbon benefits. However, reduced-impact logging can substantially reduce emissions over those from traditional logging practices. Slowing deforestation is the major opportunity offered by Brazil. Slowing deforestation will require understanding its causes and creating functional models capable of generating land-use change scenarios with and without different policy changes and other activities. Brazil already has a number of programs designed to slow deforestation, but the continued rapid loss of forest highlights the vast gulf that exists between the magnitude of the problem and the

  13. Hotspots of uncertainty in land-use and land-cover change projections: a global-scale model comparison.

    Science.gov (United States)

    Prestele, Reinhard; Alexander, Peter; Rounsevell, Mark D A; Arneth, Almut; Calvin, Katherine; Doelman, Jonathan; Eitelberg, David A; Engström, Kerstin; Fujimori, Shinichiro; Hasegawa, Tomoko; Havlik, Petr; Humpenöder, Florian; Jain, Atul K; Krisztin, Tamás; Kyle, Page; Meiyappan, Prasanth; Popp, Alexander; Sands, Ronald D; Schaldach, Rüdiger; Schüngel, Jan; Stehfest, Elke; Tabeau, Andrzej; Van Meijl, Hans; Van Vliet, Jasper; Verburg, Peter H

    2016-12-01

    Model-based global projections of future land-use and land-cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global-scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC

  14. Forest responses to tropospheric ozone and global climate change: an analysis.

    Science.gov (United States)

    Kickert, R N; Krupa, S V

    1990-01-01

    In this paper an analysis is provided on: what we know, what we need to know, and what we need to do, to further our understanding of the relationships between tropospheric ozone (O(3)), global climate change and forest responses. The relationships between global geographic distributions of forest ecosystems and potential geographic regions of high photochemical smog by the year 2025 AD are described. While the emphasis is on the effects of tropospheric O(3) on forest ecosystems, discussion is presented to understand such effects in the context of global climate change. One particular strong point of this paper is the audit of published surface O(3) data by photochemical smog region that reveals important forest/woodland geographic regions where little or no O(3) data exist even though the potential threat to forests in those regions appears to be large. The concepts and considerations relevant to the examination of ecosystem responses as a whole, rather than simply tree stands alone are reviewed. A brief argument is provided to stimulate the modification of the concept of simple cause and effect relationships in viewing total ecosystems. Our knowledge of O(3) exposure and its effects on the energy, nutrient and hydrological flow within the ecosystem are described. Modeling strategies for such systems are reviewed. A discussion of responses of forests to potential multiple climatic changes is provided. An important concept in this paper is that changes in water exchange processes throughout the hydrological cycle can be used as early warning indicators of forest responses to O(3). Another strength of this paper is the integration of information on structural and functional processes of ecosystems and their responses to O(3). An admitted weakness of this analysis is that the information on integrated ecosystem responses is based overwhelmingly on the San Bernardino Forest ecosystem research program of the 1970s because of a lack of similar studies. In the final

  15. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts

    Science.gov (United States)

    T. D. Ramsfield; Barbara Bentz; M. Faccoli; H. Jactel; E. G. Brockerhoff

    2016-01-01

    Forests and trees throughout the world are increasingly affected by factors related to global change. Expanding international trade has facilitated invasions of numerous insects and pathogens into new regions. Many of these invasions have caused substantial forest damage, economic impacts and losses of ecosystem goods and services provided by trees. Climate...

  16. Comparison of cropland and forest surface temperatures across the conterminous United States

    Science.gov (United States)

    Global climate models (GCM) investigating the effects of land cover on climate have found that replacing extra-tropical forest with cropland promotes cooling. We compared cropland and forest surface temperatures across the continental United States in 16 cells that were approxim...

  17. Participatory monitoring to connect local and global priorities for forest restoration.

    Science.gov (United States)

    Evans, Kristen; Guariguata, Manuel R; Brancalion, Pedro H S

    2018-03-13

    New global initiatives to restore forest landscapes present an unparalleled opportunity to reverse deforestation and forest degradation. Participatory monitoring could play a crucial role in providing accountability, generating local buy in, and catalyzing learning in monitoring systems that need scalability and adaptability to a range of local sites. We synthesized current knowledge from literature searches and interviews to provide lessons for the development of a scalable, multisite participatory monitoring system. Studies show that local people can collect accurate data on forest change, drivers of change, threats to reforestation, and biophysical and socioeconomic impacts that remote sensing cannot. They can do this at one-third the cost of professionals. Successful participatory monitoring systems collect information on a few simple indicators, respond to local priorities, provide appropriate incentives for participation, and catalyze learning and decision making based on frequent analyses and multilevel interactions with other stakeholders. Participatory monitoring could provide a framework for linking global, national, and local needs, aspirations, and capacities for forest restoration. © 2018 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  18. A framework for assessing global change risks to forest carbon stocks in the United States.

    Directory of Open Access Journals (Sweden)

    Christopher W Woodall

    Full Text Available Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C, but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and evaluated a basic risk framework which combined the magnitude of C stocks and their associated probability of stock change in the context of global change across the US. For the purposes of this analysis, forest C was divided into five pools, two live (aboveground and belowground biomass and three dead (dead wood, soil organic matter, and forest floor with a risk framework parameterized using the US's national greenhouse gas inventory and associated forest inventory data across current and projected future Köppen-Geiger climate zones (A1F1 scenario. Results suggest that an initial forest C risk matrix may be constructed to focus attention on short- and long-term risks to forest C stocks (as opposed to implementation in decision making using inventory-based estimates of total stocks and associated estimates of variability (i.e., coefficient of variation among climate zones. The empirical parameterization of such a risk matrix highlighted numerous knowledge gaps: 1 robust measures of the likelihood of forest C stock change under climate change scenarios, 2 projections of forest C stocks given unforeseen socioeconomic conditions (i.e., land-use change, and 3 appropriate social responses to global change events for which there is no contemporary climate/disturbance analog (e.g., severe droughts in the Lake States. Coupling these current technical/social limits of developing a risk matrix to the biological processes of forest ecosystems (i.e., disturbance events and interaction among diverse forest C pools, potential positive feedbacks, and forest resiliency/recovery suggests an operational

  19. National forest cover change in Congo Basin: deforestation, reforestation, degradation and regeneration for the years 1990, 2000 and 2005.

    Science.gov (United States)

    Céline, Ernst; Philippe, Mayaux; Astrid, Verhegghen; Catherine, Bodart; Musampa, Christophe; Pierre, Defourny

    2013-04-01

    This research refers to an object-based automatic method combined with a national expert validation to produce regional and national forest cover change statistics over Congo Basin. A total of 547 sampling sites systematically distributed over the whole humid forest domain are required to cover the six Central African countries containing tropical moist forest. High resolution imagery is used to accurately estimate not only deforestation and reforestation but also degradation and regeneration. The overall method consists of four steps: (i) image automatic preprocessing and preinterpretation, (ii) interpretation by national expert, (iii) statistic computation and (iv) accuracy assessment. The annual rate of net deforestation in Congo Basin is estimated to 0.09% between 1990 and 2000 and of net degradation to 0.05%. Between 2000 and 2005, this unique exercise estimates annual net deforestation to 0.17% and annual net degradation to 0.09%. An accuracy assessment reveals that 92.7% of tree cover (TC) classes agree with independent expert interpretation. In the discussion, we underline the direct causes and the drivers of deforestation. Population density, small-scale agriculture, fuelwood collection and forest's accessibility are closely linked to deforestation, whereas timber extraction has no major impact on the reduction in the canopy cover. The analysis also shows the efficiency of protected areas to reduce deforestation. These results are expected to contribute to the discussion on the reduction in CO2 emissions from deforestation and forest degradation (REDD+) and serve as reference for the period. © 2012 Blackwell Publishing Ltd.

  20. Hydrological impacts of global land cover change and human water use

    NARCIS (Netherlands)

    Bosmans, J.H.C.; van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P.

    2017-01-01

    Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or

  1. The extent of forest in dryland biomes

    Science.gov (United States)

    Jean-Francois Bastin; Nora Berrahmouni; Alan Grainger; Danae Maniatis; Danilo Mollicone; Rebecca Moore; Chiara Patriarca; Nicolas Picard; Ben Sparrow; Elena Maria Abraham; Kamel Aloui; Ayhan Atesoglu; Fabio Attore; Caglar Bassullu; Adia Bey; Monica Garzuglia; Luis G. GarcÌa-Montero; Nikee Groot; Greg Guerin; Lars Laestadius; Andrew J. Lowe; Bako Mamane; Giulio Marchi; Paul Patterson; Marcelo Rezende; Stefano Ricci; Ignacio Salcedo; Alfonso Sanchez-Paus Diaz; Fred Stolle; Venera Surappaeva; Rene Castro

    2017-01-01

    Dryland biomes cover two-fifths of Earth’s land surface, but their forest area is poorly known. Here, we report an estimate of global forest extent in dryland biomes, based on analyzing more than 210,000 0.5-hectare sample plots through a photo-interpretation approach using large databases of satellite imagery at (i) very high spatial resolution and (ii) very high...

  2. Thermodynamic contributions of deforestation to global climate change

    International Nuclear Information System (INIS)

    Bell, A.

    2009-01-01

    This paper examines a portion of the thermodynamics of global warming. The calculations use the endothermic photosynthesis reaction and yearly measures of CO 2 uptake to determine the amount of energy that is absorbed by forest cover each year. The energy absorption value of forest coverage determines the yearly cost of deforestation. The calculations reveal that 3.92 * 10 15 kJ less solar energy is absorbed by global forest coverage because of deforestation each year. The energy is enough to warm the atmosphere by 0.00008 °C / year. By comparison the same amount of energy represents 0.001 % of the atmospheric energy gains between 1995 and 2003. The results of this paper raise questions about the nature of global warming and the possibility that thermodynamic contributions to global climate change are significant. (author)

  3. Classification of Global Land Development Phases by Forest and GDP Changes for Appropriate Land Management in the Mid-Latitude

    Directory of Open Access Journals (Sweden)

    Cholho Song

    2017-08-01

    Full Text Available To implement appropriate land management strategies, it is essential to identify past and current land cover and land use conditions. In addition, an assessment of land development phases (LDPs in a human-dominated landscape coupled with an analysis of the water-food-ecosystem (WFE nexus can deepen our understanding of sustainable land management. In this study, we proposed the concept of land development phases (LDPs by forest and GDP changes using previously-applied theoretical and empirical approaches. The positive relationship between GDP growth and forest stock changes was used to analyze the timing of forest stock changes as five-year averages, which were aggregated over 20 years to classify LDPs. In addition, forest area changes compared with GDP and GDP per capita changes were analyzed to identify LDPs. Based on two conceptual approaches, we suggested global land into three LDPs: degradation, restoration and sustainability. Using this approach, most of Europe, North America and northeast Asia were classified as sustainability phases, while Africa and Central Asia in the Mid-Latitude region appeared to have degradation or restoration phases. The LDPs described could be improved with further incorporation of solid data analysis and clear standards, but even at this stage, these LDP classifications suggest points for implementing appropriate land management. In addition, indices from comparative analysis of the LDPs with the WFE nexus can be connected with socio-economic global indices, such as the Global Hunger Index, the Food Production Index and the Climate Change Performance Index. The LDPs have the potential to facilitate appropriate land management strategies through integrating WFE nexus and ecosystem services; we propose future research that uses this integration for the Mid-Latitude region and worldwide.

  4. Removing forest canopy cover restores a reptile assemblage.

    Science.gov (United States)

    Pike, David A; Webb, Jonathan K; Shine, Richard

    2011-01-01

    Humans are rapidly altering natural systems, leading to changes in the distribution and abundance of species. However, so many changes are occurring simultaneously (e.g., climate change, habitat fragmentation) that it is difficult to determine the cause of population fluctuations from correlational studies. We used a manipulative field experiment to determine whether forest canopy cover directly influences reptile assemblages on rock outcrops in southeastern Australia. Our experimental design consisted of three types of rock outcrops: (1) shady sites in which overgrown vegetation was manually removed (n = 25); (2) overgrown controls (n = 30); and (3) sun-exposed controls (n = 20). Following canopy removal, we monitored reptile responses over 30 months. Canopy removal increased reptile species richness, the proportion of shelter sites used by reptiles, and relative abundances of five species that prefer sun-exposed habitats. Our manipulation also decreased the abundances of two shade-tolerant species. Canopy cover thus directly influences this reptile assemblage, with the effects of canopy removal being dependent on each species' habitat preferences (i.e., selection or avoidance of sun-exposed habitat). Our study suggests that increases in canopy cover can cause declines of open-habitat specialists, as previously suggested by correlative studies from a wide range of taxa. Given that reptile colonization of manipulated outcrops occurred rapidly, artificially opening the canopy in ecologically informed ways could help to conserve imperiled species with patchy distributions and low vagility that are threatened by vegetation overgrowth. One such species is Australia's most endangered snake, the broadheaded snake (Hoplocephalus bungaroides).

  5. Hydrologic response to and recovery from differing silvicultural systems in a deciduous forest landscape with seasonal snow cover

    Science.gov (United States)

    Buttle, J. M.; Beall, F. D.; Webster, K. L.; Hazlett, P. W.; Creed, I. F.; Semkin, R. G.; Jeffries, D. S.

    2018-02-01

    Hydrological consequences of alternative harvesting strategies in deciduous forest landscapes with seasonal snow cover have received relatively little attention. Most forest harvesting experiments in landscapes with seasonal snow cover have focused on clearcutting in coniferous forests. Few have examined alternative strategies such as selection or shelterwood cutting in deciduous stands whose hydrologic responses to harvesting may differ from those of conifers. This study presents results from a 31-year examination of hydrological response to and recovery from alternative harvesting strategies in a deciduous forest landscape with seasonal snow cover in central Ontario, Canada. A quantitative means of assessing hydrologic recovery to harvesting is also developed. Clearcutting resulted in increased water year (WY) runoff. This was accompanied by increased runoff in all seasons, with greatest relative increases in Summer. Direct runoff and baseflow from treatment catchments generally increased following harvesting, although annual peak streamflow did not. Largest increases in WY runoff and seasonal runoff as well as direct runoff and baseflow generally occurred in the selection harvest catchment, likely as a result of interception of hillslope runoff by a forest access road and redirection to the stream channel. Hydrologic recovery appeared to begin towards the end of the experimental period for several streamflow metrics but was incomplete for all harvesting strategies 15 years after harvesting. Geochemical tracing indicated that harvesting enhanced the relative importance of surface and near-surface water pathways on catchment slopes for all treatments, with the clearcut catchment showing the most pronounced and prolonged response. Such insights into water partitioning between flow pathways may assist assessments of the ecological and biogeochemical consequences of forest disturbance.

  6. Detailed forest formation mapping in the land cover map series for the Caribbean islands

    Science.gov (United States)

    Helmer, E. H.; Schill, S.; Pedreros, D. H.; Tieszen, L. L.; Kennaway, T.; Cushing, M.; Ruzycki, T.

    2006-12-01

    Forest formation and land cover maps for several Caribbean islands were developed from Landsat ETM+ imagery as part of a multi-organizational project. The spatially explicit data on forest formation types will permit more refined estimates of some forest attributes. The woody vegetation classification scheme relates closely to that of Areces-Malea et al. (1), who classify Caribbean vegetation according to standards of the US Federal Geographic Data Committee (FGDC, 1997), with modifications similar to those in Helmer et al. (2). For several of the islands, we developed image mosaics that filled cloudy parts of scenes with data from other scene dates after using regression tree normalization (3). The regression tree procedure permitted us to develop mosaics for wet and drought seasons for a few of the islands. The resulting multiseason imagery facilitated separation between classes such as seasonal evergreen forest, semi-deciduous forest (including semi-evergreen forest), and drought deciduous forest or woodland formations. We used decision tree classification methods to classify the Landsat image mosaics to detailed forest formations and land cover for Puerto Rico (4), St. Kitts and Nevis, St. Lucia, St. Vincent and the Grenadines and Grenada. The decision trees classified a stack of raster layers for each mapping area that included the Landsat image bands and various ancillary raster data layers. For Puerto Rico, for example, the ancillary data included climate parameters (5). For some islands, the ancillary data included topographic derivatives such as aspect, slope and slope position, SRTM (6) or other topographic data. Mapping forest formations with decision tree classifiers, ancillary geospatial data, and cloud-free image mosaics, accurately distinguished spectrally similar forest formations, without the aid of ecological zone maps, on the islands where the approach was used. The approach resulted in maps of forest formations with comparable or better detail

  7. Observation and Monitoring of Mangrove Forests Using Remote Sensing: Opportunities and Challenges

    Directory of Open Access Journals (Sweden)

    Chandra Giri

    2016-09-01

    Full Text Available Mangrove forests, distributed in the tropical and subtropical regions of the world, are in a constant flux. They provide important ecosystem goods and services to nature and society. In recent years, the carbon sequestration potential and protective role of mangrove forests from natural disasters is being highlighted as an effective option for climate change adaptation and mitigation. The forests are under threat from both natural and anthropogenic forces. However, accurate, reliable, and timely information of the distribution and dynamics of mangrove forests of the world is not readily available. Recent developments in the availability and accessibility of remotely sensed data, advancement in image pre-processing and classification algorithms, significant improvement in computing, availability of expertise in handling remotely sensed data, and an increasing awareness of the applicability of remote sensing products has greatly improved our scientific understanding of changing mangrove forest cover attributes. As reported in this special issue, the use of both optical and radar satellite data at various spatial resolutions (i.e., 1 m to 30 m to derive meaningful forest cover attributes (e.g., species discrimination, above ground biomass is on the rise. This multi-sensor trend is likely to continue into the future providing a more complete inventory of global mangrove forest distributions and attribute inventories at enhanced temporal frequency. The papers presented in this “Special Issue” provide important remote sensing monitoring advancements needed to meet future scientific objectives for global mangrove forest monitoring from local to global scales.

  8. Forests and Forest Cover - DCNR - State Forest Lands 2015

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The state forest boundry coverage is being updated frequently. It is derived from survey descriptions and will be, and has been in certain areas, adjusted to GPS...

  9. Tigers need cover: multi-scale occupancy study of the big cat in Sumatran forest and plantation landscapes.

    Directory of Open Access Journals (Sweden)

    Sunarto Sunarto

    Full Text Available The critically endangered Sumatran tiger (Panthera tigris sumatrae Pocock, 1929 is generally known as a forest-dependent animal. With large-scale conversion of forests into plantations, however, it is crucial for restoration efforts to understand to what extent tigers use modified habitats. We investigated tiger-habitat relationships at 2 spatial scales: occupancy across the landscape and habitat use within the home range. Across major landcover types in central Sumatra, we conducted systematic detection, non-detection sign surveys in 47, 17×17 km grid cells. Within each cell, we surveyed 40, 1-km transects and recorded tiger detections and habitat variables in 100 m segments totaling 1,857 km surveyed. We found that tigers strongly preferred forest and used plantations of acacia and oilpalm, far less than their availability. Tiger probability of occupancy covaried positively and strongly with altitude, positively with forest area, and negatively with distance-to-forest centroids. At the fine scale, probability of habitat use by tigers across landcover types covaried positively and strongly with understory cover and altitude, and negatively and strongly with human settlement. Within forest areas, tigers strongly preferred sites that are farther from water bodies, higher in altitude, farther from edge, and closer to centroid of large forest block; and strongly preferred sites with thicker understory cover, lower level of disturbance, higher altitude, and steeper slope. These results indicate that to thrive, tigers depend on the existence of large contiguous forest blocks, and that with adjustments in plantation management, tigers could use mosaics of plantations (as additional roaming zones, riparian forests (as corridors and smaller forest patches (as stepping stones, potentially maintaining a metapopulation structure in fragmented landscapes. This study highlights the importance of a multi-spatial scale analysis and provides crucial

  10. A framework for assessing global change risks to forest carbon stocks in the United States

    Science.gov (United States)

    Christopher W. Woodall; Grant M. Domke; Karin L. Riley; Christopher M. Oswalt; Susan J. Crocker; Gary W. Yohe

    2013-01-01

    Among terrestrial environments, forests are not only the largest long-term sink of atmospheric carbon (C), but are also susceptible to global change themselves, with potential consequences including alterations of C cycles and potential C emission. To inform global change risk assessment of forest C across large spatial/temporal scales, this study constructed and...

  11. Canadian forests: A vulnerable resource with a global role

    International Nuclear Information System (INIS)

    Pollard, D.F.W.

    1990-01-01

    Impending climatic change could jeopardize the national and global values of Canada's forests, and creates a new and urgent dimension to the objectives of the World Conservation Strategy. The first objective is the maintenance of essential ecological processes and life-support systems. The first priority requirement, reservation of prime crop lands, could bear directly on the forest sector in certain regions of Canada if new areas of prime crop land develop under improving climatic conditions. The second priority, maintenance of productive land capabilities, may be a more serious matter, although in the long run climate change should increase the productivity of much of Canada's land base. The second objective, preservation of genetic diversity, is significant due to the question of whether there is sufficient plasticity within the forest ecosystems, and particularly within their gene pools, for them to withstand changes envisaged over coming decades. The objective of sustainable utilization of species and ecosystems is especially pertinent to Canada, whose forest sector is based on native species in managed and unmanaged ecosystems. In response to the threat of widespread forest dieback resulting from stress and infestation, foresters might engage in premature harvesting followed by planting of more adapted genotypes. 14 refs

  12. GLOBAL CHANGES IN THE SEA ICE COVER AND ASSOCIATED SURFACE TEMPERATURE CHANGES

    Directory of Open Access Journals (Sweden)

    J. C. Comiso

    2016-06-01

    Full Text Available The trends in the sea ice cover in the two hemispheres have been observed to be asymmetric with the rate of change in the Arctic being negative at −3.8 % per decade while that of the Antarctic is positive at 1.7 % per decade. These observations are confirmed in this study through analyses of a more robust data set that has been enhanced for better consistency and updated for improved statistics. With reports of anthropogenic global warming such phenomenon appears physically counter intuitive but trend studies of surface temperature over the same time period show the occurrence of a similar asymmetry. Satellite surface temperature data show that while global warming is strong and dominant in the Arctic, it is relatively minor in the Antarctic with the trends in sea ice covered areas and surrounding ice free regions observed to be even negative. A strong correlation of ice extent with surface temperature is observed, especially during the growth season, and the observed trends in the sea ice cover are coherent with the trends in surface temperature. The trend of global averages of the ice cover is negative but modest and is consistent and compatible with the positive but modest trend in global surface temperature. A continuation of the trend would mean the disappearance of summer ice by the end of the century but modelling projections indicate that the summer ice could be salvaged if anthropogenic greenhouse gases in the atmosphere are kept constant at the current level.

  13. Forest cover dynamics of shifting cultivation in the Democratic Republic of Congo: a remote sensing-based assessment for 2000-2010

    Science.gov (United States)

    Molinario, G.; Hansen, M. C.; Potapov, P. V.

    2015-09-01

    Shifting cultivation has traditionally been practiced in the Democratic Republic of Congo by carving agricultural fields out of primary and secondary forest, resulting in the rural complex: a characteristic land cover mosaic of roads, villages, active and fallow fields and secondary forest. Forest clearing has varying impacts depending on where it occurs relative to this area: whether inside it, along its primary forest interface, or in more isolated primary forest areas. The spatial contextualization of forest cover loss is therefore necessary to understand its impacts and plan its management. We characterized forest clearing using spatial models in a Geographical Information System, applying morphological image processing to the Forets d’Afrique Central Evaluee par Teledetection product. This process allowed us to create forest fragmentation maps for 2000, 2005 and 2010, classifying previously homogenous primary forest into separate patch, edge, perforated, fragmented and core forest subtypes. Subsequently we used spatial rules to map the established rural complex separately from isolated forest perforations, tracking the growth of these areas in time. Results confirm that the expansion of the rural complex and forest perforations has high variance throughout the country, with consequent differences in local impacts on forest ecology and habitat fragmentation. Between 2000 and 2010 the rural complex grew by 10.2% (46 182 ha), increasing from 11.9% to 13.1% of the total land area (1.2% change) while perforated forest grew by 74.4% (23 856 ha), from 0.8% to 1.5%. Core forest decreased by 3.8% (54 852 ha), from 38% to 36.6% of the 2010 land area. Of particular concern is the nearly doubling of perforated forest, a land dynamic that represents greater spatial intrusion of forest clearing within core forest areas and a move away from the established rural complex.

  14. Tropical Forest Gain and Interactions amongst Agents of Forest Change

    Directory of Open Access Journals (Sweden)

    Sean Sloan

    2016-02-01

    Full Text Available The tropical deforestation literature advocates multi-agent enquiry in recognition that key dynamics arise from inter-agent interactions. Studies of tropical forest-cover gain have lagged in this respect. This article explores the roles and key aspects of interactions shaping natural forest regeneration and active reforestation in Eastern Panama since 1990. It employs household surveys of agricultural landholders, interviews with community forest-restoration organisations, archival analysis of plantation reforestation interests, satellite image analysis of forest-cover change, and the consideration of State reforestation policies. Forest-cover gain reflected a convergence of interests and land-use trends amongst agents. Low social and economic costs of sustained interaction and organisation enabled extensive forest-cover gain, but low transaction costs did not. Corporate plantation reforestation rose to the fore of regional forest-cover gain via opportunistic land sales by ranchers and economic subsidies indicative of a State preference for autonomous, self-organising forest-cover gain. This reforestation follows a recent history of neoliberal frontier development in which State-backed loggers and ranchers similarly displaced agriculturalists. Community institutions, long neglected by the State, struggled to coordinate landholders and so effected far less forest-cover gain. National and international commitments to tropical forest restoration risk being similarly characterised as ineffective by a predominance of industrial plantation reforestation without greater State support for community forest management.

  15. Global forest loss disproportionately erodes biodiversity in intact landscapes.

    Science.gov (United States)

    Betts, Matthew G; Wolf, Christopher; Ripple, William J; Phalan, Ben; Millers, Kimberley A; Duarte, Adam; Butchart, Stuart H M; Levi, Taal

    2017-07-27

    Global biodiversity loss is a critical environmental crisis, yet the lack of spatial data on biodiversity threats has hindered conservation strategies. Theory predicts that abrupt biodiversity declines are most likely to occur when habitat availability is reduced to very low levels in the landscape (10-30%). Alternatively, recent evidence indicates that biodiversity is best conserved by minimizing human intrusion into intact and relatively unfragmented landscapes. Here we use recently available forest loss data to test deforestation effects on International Union for Conservation of Nature Red List categories of extinction risk for 19,432 vertebrate species worldwide. As expected, deforestation substantially increased the odds of a species being listed as threatened, undergoing recent upgrading to a higher threat category and exhibiting declining populations. More importantly, we show that these risks were disproportionately high in relatively intact landscapes; even minimal deforestation has had severe consequences for vertebrate biodiversity. We found little support for the alternative hypothesis that forest loss is most detrimental in already fragmented landscapes. Spatial analysis revealed high-risk hot spots in Borneo, the central Amazon and the Congo Basin. In these regions, our model predicts that 121-219 species will become threatened under current rates of forest loss over the next 30 years. Given that only 17.9% of these high-risk areas are formally protected and only 8.9% have strict protection, new large-scale conservation efforts to protect intact forests are necessary to slow deforestation rates and to avert a new wave of global extinctions.

  16. Does Certification Change the Trajectory of Tree Cover in Working Forests in The Tropics? An Application of the Synthetic Control Method of Impact Evaluation

    Directory of Open Access Journals (Sweden)

    Pushpendra Rana

    2018-02-01

    Full Text Available Certification by the Forest Stewardship Council (FSC remains rare among forest management units (FMUs in natural tropical forests, presenting a challenge for impact evaluation. We demonstrate application of the synthetic control method (SCM to evaluate the impact of FSC certification on a single FMU in each of three tropical forest landscapes. Specifically, we estimate causal effects on tree cover change from the year of certification to 2012 using SCM and open-access, pan-tropical datasets. We demonstrate that it is possible to construct synthetic controls, or weighted combinations of non-certified FMUs, that followed the same path of tree cover change as the certified FMUs before certification. By using these synthetic controls to measure counterfactual tree cover change after certification, we find that certification reduced tree cover loss in the most recent year (2012 in all three landscapes. However, placebo tests show that in one case, this effect was not significant, and in another case, it followed several years in which certification had the opposite effect (increasing tree cover loss. We conclude that SCM has promise for identifying temporally varying impacts of small-N interventions on land use and land cover change.

  17. Extraction of land cover change information from ENVISAT-ASAR data in Chengdu Plain

    Science.gov (United States)

    Xu, Wenbo; Fan, Jinlong; Huang, Jianxi; Tian, Yichen; Zhang, Yong

    2006-10-01

    Land cover data are essential to most global change research objectives, including the assessment of current environmental conditions and the simulation of future environmental scenarios that ultimately lead to public policy development. Chinese Academy of Sciences generated a nationwide land cover database in order to carry out the quantification and spatial characterization of land use/cover changes (LUCC) in 1990s. In order to improve the reliability of the database, we will update the database anytime. But it is difficult to obtain remote sensing data to extract land cover change information in large-scale. It is hard to acquire optical remote sensing data in Chengdu plain, so the objective of this research was to evaluate multitemporal ENVISAT advanced synthetic aperture radar (ASAR) data for extracting land cover change information. Based on the fieldwork and the nationwide 1:100000 land cover database, the paper assesses several land cover changes in Chengdu plain, for example: crop to buildings, forest to buildings, and forest to bare land. The results show that ENVISAT ASAR data have great potential for the applications of extracting land cover change information.

  18. Agricultural Abandonment, Suburban Growth, and Forest Expansion in Puerto Rico between 1991 and 2000

    Directory of Open Access Journals (Sweden)

    Isabel K. Parés-Ramos

    2008-12-01

    Full Text Available The response of local economies to the globalization process can have a large effect on population and land-use dynamics. In countries with a high population density and relatively high levels of education, the globalization process has resulted in a shift in the local economy from agriculture to manufacturing, technology, and service sectors. This shift in the economy has impacted land-use dynamics by decreasing agricultural lands, increasing urban growth, and in some cases, increasing forest cover. This process of economic and forest transition has been well documented in Puerto Rico for the period 1950 to 1990, but some authors predicted that poor planning and continued urban growth would eliminate the gains in forest cover. To investigate the impacts of recent economic changes, we evaluated demographic and land-use changes for 880 "barrios" (i.e., neighborhoods, the smallest administrative unit, in Puerto Rico using government census data from 1990 and 2000 and land-cover classifications from 1991 and 2000. During this period, the population increased by 284 127 people (8.2%. Most of the growth was in the suburban barrios, whereas urban barrios lost population. This shift was reflected by the construction of more than 100 000 housing units in suburban barrios. Although urban sprawl is perceived as the major land-cover change, urban cover only increased from 10% to 11% between 1990 and 2000, whereas the increase in forest cover was much greater (28% to 40%. Grasslands and shrublands were the major sources of new urban and forest areas in 2000. Although these results are encouraging in terms of increasing forest cover, most of the new development has been concentrated in the coastal plains, which are the location of most of the remaining agricultural areas, a few protected areas, and threatened ecosystems (e.g., mangroves.

  19. Determination of priority areas for the re-establishment of forest cover, based on the use of geotechnologies

    Directory of Open Access Journals (Sweden)

    Nelson Wellausen Dias

    2012-12-01

    Full Text Available The determination of priority areas for the re-establishment of forest cover in watersheds is directly associated to the probability of effective success of restoration processes. However, considering the complexity of the analysis and the large amount of spatial data necessary to accomplish that purpose, state of the art technological tools capable of processing multi-criteria analysis to support decision making are necessary. Thus, the current work developed for an area of 476 km² corresponding to the Una river watershed in the municipal district of Taubaté, SP, used a multi-criteria analysis based on the continuous classification and on Analytical Hierarchy Process (AHP paired comparisons techniques, available in the complete GIS package named SPRING (Georeferenced Information Processing System for generating a map of priority areas for the re-establishment of forest cover in that watershed. Results revealed a large area (26.6% of the entire watershed falling in the “Extreme Priority” class for forest cover re-establishment, what indicates the urgent need of environmental recovery of this basin considering that it is used for Taubaté city water supply. Results from this research support the decision making for resource optimization applied to priority areas in an operational way.

  20. Monitoring tropical forest dynamics using Landsat time series and community-based data

    NARCIS (Netherlands)

    DeVries, B.R.

    2015-01-01

    Tropical forests cover a significant portion of the earth's surface and provide a range of

    ecosystem services, but are under increasing threat due to human activities. Deforestation

    and forest degradation in the tropics are responsible for a large share of global CO2

  1. Centennial-scale reductions in nitrogen availability in temperate forests of the United States

    Science.gov (United States)

    McLauchlan, Kendra K.; Gerhart, Laci M.; Battles, John J.; Craine, Joseph M.; Elmore, Andrew J.; Higuera, Phil E.; Mack, Michelle M; McNeil, Brendan E.; Nelson, David M.; Pederson, Neil; Perakis, Steven

    2017-01-01

    Forests cover 30% of the terrestrial Earth surface and are a major component of the global carbon (C) cycle. Humans have doubled the amount of global reactive nitrogen (N), increasing deposition of N onto forests worldwide. However, other global changes—especially climate change and elevated atmospheric carbon dioxide concentrations—are increasing demand for N, the element limiting primary productivity in temperate forests, which could be reducing N availability. To determine the long-term, integrated effects of global changes on forest N cycling, we measured stable N isotopes in wood, a proxy for N supply relative to demand, on large spatial and temporal scales across the continental U.S.A. Here, we show that forest N availability has generally declined across much of the U.S. since at least 1850 C.E. with cool, wet forests demonstrating the greatest declines. Across sites, recent trajectories of N availability were independent of recent atmospheric N deposition rates, implying a minor role for modern N deposition on the trajectory of N status of North American forests. Our results demonstrate that current trends of global changes are likely to be consistent with forest oligotrophication into the foreseeable future, further constraining forest C fixation and potentially storage.

  2. Land cover fire proneness in Europe

    Directory of Open Access Journals (Sweden)

    Mario Gonzalez Pereira

    2014-12-01

    Full Text Available Aim of study: This study aims to identify and characterize the spatial and temporal evolution of the types of vegetation that are most affected by forest fires in Europe. The characterization of the fuels is an important issue of the fire regime in each specific ecosystem while, on the other hand, fire is an important disturbance for global vegetation dynamics.Area of study: Southern European countries: Portugal, Spain, France, Italy and Greece.Material and Methods: Corine Land Cover maps for 2000 and 2006 (CLC2000, CLC2006 and burned area (BA perimeters, from 2000 to 2013 in Europe are combined to access the spatial and temporal evolution of the types of vegetation that are most affected by wild fires using descriptive statistics and Geographical Information System (GIS techniques.Main results: The spatial and temporal distribution of BA perimeters, vegetation and burnt vegetation by wild fires was performed and different statistics were obtained for Mediterranean and entire Europe, confirming the usefulness of the proposed land cover system. A fire proneness index is proposed to assess the fire selectivity of land cover classes. The index allowed to quantify and to compare the propensity of vegetation classes and countries to fire.Research highlights: The usefulness and efficiency of the land cover classification scheme and fire proneness index. The differences between northern Europe and southern Europe and among the Mediterranean region in what concerns to vegetation cover, fire incidence, area burnt in land cover classes and fire proneness between classes for the different countries.Keywords: Fire proneness; Mixed forests; Land cover/land use; Fire regime; Europe; GIS; Corine land cover

  3. New ecology, global change, and forest politics

    International Nuclear Information System (INIS)

    Sampson, N.

    1993-01-01

    Ecosystems constantly change. Some changes are caused by natural conditions that evolve at a very slow pace including climate change, species evolution and migration, and soil formation. Forests don't always respond to gradual changes in gradual ways, though gradual change may be hidden for years within the normal variation in the ecosystem. The industrial age has resulted in a rapid and continuing buildup of atmospheric gases such as carbon dioxide, methane, and chlorofluorocarbons which trap heat in the greenhouse effect. Industrial processes also emit oxides of nitrogen and sulfur that change atmospheric chemistry and alter the nutrient input into ecosystems. Natural forests face a hard time adjusting to a rate of climatic change that is 3 to 10 times faster than species can migrate and that increases the occurrence of major windstorms. In the forest ecosystem where trees are removed or destroyed under rapid climatic change, conditions may not return to their original state, even if we try to restore it. When the ecosystem changes faster than the bureaucracy of the management agency, a serious problem exists. New understandings of ecology and global change may force new ways of thinking in these situations

  4. Land cover change and remote sensing: Examples of quantifying spatiotemporal dynamics in tropical forests

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Su, Haiping [Argonne National Lab., IL (United States); Fox, J. [East-West Center, Honolulu, HI (United States); Yarnasan, S.; Ekasingh, M. [Chiang Mai Univ. (Thailand)

    1995-06-01

    Research on human impacts or natural processes that operate over broad geographic areas must explicitly address issues of scale and spatial heterogeneity. While the tropical forests of Southeast Asia and Mexico have been occupied and used to meet human needs for thousands of years, traditional forest management systems are currently being transformed by rapid and far-reaching demographic, political, economic, and environmental changes. The dynamics of population growth, migration into the remaining frontiers, and responses to national and international market forces result in a demand for land to produce food and fiber. These results illustrate some of the mechanisms that drive current land use changes, especially in the tropical forest frontiers. By linking the outcome of individual land use decisions and measures of landscape fragmentation and change, the aggregated results shows the hierarchy of temporal and spatial events that in summation result in global changes to the most complex and sensitive biome -- tropical forests. By quantifying the spatial and temporal patterns of tropical forest change, researchers can assist policy makers by showing how landscape systems in these tropical forests are controlled by physical, biological, social, and economic parameters.

  5. Historical Land-Cover Change and Land-Use Conversions Global Dataset

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A set of three estimates of land-cover types and annual transformations of land use are provided on a global 0.5 x0.5 degree lat/lon grid at annual time steps. The...

  6. Disturbance in boreal forest ecosystems: human impacts and natural processes. Proceedings of the International Boreal Forest Research Association 1997 annual meeting; 1997 August 4-7; Duluth, Minnesota.

    Science.gov (United States)

    2000-01-01

    The papers in these proceedings cover a wide range of topics related to human and natural disturbance processes in forests of the boreal zone in North America and Eurasia. Topics include historic and predicted landscape change; forest management; disturbance by insects, fire, air pollution, severe weather, and global climate change; and carbon cycling.

  7. Mobbing call experiment suggests the enhancement of forest bird movement by tree cover in urban landscapes across seasons

    Directory of Open Access Journals (Sweden)

    Atsushi Shimazaki

    2017-06-01

    Full Text Available Local scale movement behavior is an important basis to predict large-scale bird movements in heterogeneous landscapes. Here we conducted playback experiments using mobbing calls to estimate the probability that forest birds would cross a 50-m urban area during three seasons (breeding, dispersal, and wintering seasons with varying amounts of tree cover, building area, and electric wire density. We examined the responses of four forest resident species: Marsh Tit (Poecile palustris, Varied Tit (Sittiparus varius, Japanese Tit (P. minor, and Eurasian Nuthatch (Sitta europaea in central Hokkaido, northern Japan. We carried out and analyzed 250 playback experiments that attracted 618 individuals. Our results showed that tree cover increased the crossing probability of three species other than Varied Tit. Building area and electric wire density had no detectable effect on crossing probability for four species. Seasonal difference in the crossing probability was found only for Varied Tit, and the probability was the highest in the breeding season. These results suggest that the positive effect of tree cover on the crossing probability would be consistent across seasons. We therefore conclude that planting trees would be an effective way to promote forest bird movement within an urban landscape.

  8. Global forest sector modeling: application to some impacts of climate change

    Science.gov (United States)

    Joseph. Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  9. Feedback of global warming to soil carbon cycling in forest ecosystems

    International Nuclear Information System (INIS)

    Nakane, Kaneyuki

    1993-01-01

    Thus in this study the simulation of soil carbon cycling and dynamics of its storage in several types of mature forests developed from the cool-temperate to the tropics was carried out for quantitatively assessing carbon loss from the soil under several scenarios of global warming, based on the model of soil carbon cycling in forest ecosystems (Nakane et al. 1984, 1987 and Nakane 1992). (J.P.N.)

  10. Determination of Land Use/ Land Cover Changes in Igneada Alluvial (Longos) Forest Ecosystem, Turkey

    Science.gov (United States)

    Bektas Balcik, F.

    2012-12-01

    Alluvial (Longos) forests are one of the most fragile and threatened ecosystems in the world. Typically, these types of ecosystems have high biological diversity, high productivity, and high habitat dynamism. In this study, Igneada, Kirklareli was selected as study area. The region, lies between latitudes 41° 46' N and 41° 59' N and stretches between longitudes 27° 50' E and 28° 02' E and it covers approximately 24000 (ha). Igneada Longos ecosystems include mixed forests, streams, flooded (alluvial) forests, marshes, wetlands, lakes and coastal sand dunes with different types of flora and fauna. Igneada was classified by Conservation International as one of the world's top 122 Important Plant Areas, and 185 Important Bird Areas. These types of wild forest in other parts of Turkey and in Europe have been damaged due to anthropogenic effects. Remote sensing is very effective tool to monitor these types of sensitive regions for sustainable management. In this study, 1984 and 2011 dated Landsat 5 TM data were used to determine land cover/land use change detection of the selected region by using six vegetation indices such as Tasseled Cap index of greenness (TCG), brightness (TCB), and wetness (TCW), ratios of near-infrared to red image (RVI), normalized difference vegetation index (NDVI), and soil-adjusted vegetation index (SAVI). Geometric and radiometric corrections were applied in image pre-processing step. Selective Principle Component Analysis (PCA) change detection method was applied to the selected vegetation index imagery to generate change imagery for extracting the changed features between the year of 1984 and 2011. Accuracy assessment was applied based on error matrix by calculating overall accuracy and Kappa statistics.

  11. Global Forecasts of Urban Expansion to 2030 and Direct Impacts on Biodiversity and Carbon Pools

    Science.gov (United States)

    Seto, K. C.; Guneralp, B.; Hutyra, L.

    2012-12-01

    Urban land cover change threatens biodiversity and affects ecosystem productivity through loss of habitat, biomass, and carbon storage. Yet, despite projections that world urban populations will increase to 4.3 billion by 2030, little is known about future locations, magnitudes, and rates of urban expansion. Here we develop the first global probabilistic forecasts of urban land cover change and explore the impacts on biodiversity hotspots and tropical carbon biomass. If current trends in population density continue, then by 2030, urban land cover will expand between 800,000 and 3.3 million km2, representing a doubling to five-fold increase from the global urban land cover in 2000. This would result in considerable loss of habitats in key biodiversity hotspots, including the Guinean forests of West Africa, Tropical Andes, Western Ghats and Sri Lanka. Within the pan-tropics, loss in forest biomass from urban expansion is estimated to be 1.38 PgC (0.05 PgC yr-1), equal to approximately 5% of emissions from tropical land use change. Although urbanization is often considered a local issue, the aggregate global impacts of projected urban expansion will require significant policy changes to affect future growth trajectories to minimize global biodiversity and forest carbon losses.

  12. Forest Islands and Castaway Communities: REDD+ and Forest Restoration in Prey Lang Forest

    Directory of Open Access Journals (Sweden)

    Courtney Work

    2017-02-01

    Full Text Available Climate Change policies are playing an ever-increasing role in global development strategies and their implementation gives rise to often-unforeseen social conflicts and environmental degradations. A landscape approach to analyzing forest-based Climate Change Mitigation policies (CCM and land grabs in the Prey Lang Forest landscape, Cambodia revealed two Korea-Cambodia partnership projects designed to increase forest cover that are juxtaposed in this paper. Case study data revealed a REDD+ project with little negative impact or social conflict in the project area and an Afforestation/Reforestation (A/R project that created both social and ecological conflicts. The study concludes that forest-based CCM policies can reduce conflict through efforts at minimal transformation of local livelihoods, maximal attention to the tenure rights, responsibilities, and authority of citizens, and by improving, not degrading, the project landscapes. The paper presents the circumstances under which these guidelines are sidestepped by the A/R project, and importantly reveals that dramatic forest and livelihood transformation had already affected the community and environment in the REDD+ project site. There are deep contradictions at the heart of climate change policies toward which attention must be given, lest we leave our future generations with nothing but forest islands and castaway communities.

  13. A synthesis of the impact of Russian forests on the global carbon budget for 1961-1998

    International Nuclear Information System (INIS)

    Shvidenko, Anatoly; Nilsson, Sten

    2003-01-01

    An attempt is made to synthesize the current understanding of the impact of Russian forests on the global carbon (C) budget for the period 1961-1998 (37 years), based on a detailed inventory of pools and fluxes in 1988-1992, and a historical reconstruction of a full forest carbon budget for 1961-1998. All major intermediate indicators of the budget (phytomass, net primary production, impact of disturbances, soil respiration, etc.) were independently estimated and compared with earlier reported results. During the entire period, the C pools of Russian forest land (FL, 882.0 106 ha in 1998) increased by 433 Tg C/yr, of which 153 Tg C/yr are accumulated in live biomass, 57 Tg C/yr in above- and below-ground dead wood, and 223 Tg C/yr are sequestered in soil. A significant part of this increase deals with land-cover changes. The annual average C uptake by the FL from the atmosphere, defined by a flux-based method, is estimated to be 322 Tg C/yr for 1961-1998. The lateral transport to the lithosphere and hydrosphere comprised 47 Tg C/yr (including charcoal), which is considered part of the 'missing C sink.' The uncertainties (excluding unrecognized biases) of averages for the entire period are estimated to be in the range of ±5-8% and ±24% for major fluxes out/into the atmosphere and for net ecosystem exchange, respectively (a priori confidential probability of 0.9). If the impact of land-cover change is excluded, the average annual sink in 1961-1998, estimated by both pool- and flux-based methods, was 268 ± 94 and 272 ± 68 Tg C/yr, respectively. The reported results are in line with recent estimates for Northern Eurasia made by inverse modeling at the continental scale, if land classes other than forests contribute to the total sink of terrestrial vegetation

  14. The Vulnerability of Forest Ecosystems of Armenia to the Global Climate Change

    Science.gov (United States)

    Khachatryan, S.

    2009-05-01

    Climate changes characterized as global warming can lead to irreversible effects on regional and global scales, such as drought, pest attacks, diseases, excessive forest fires, and climate driven extinction of numerous animal and plant species. We assess the issues that the development of forestry in Armenia faces, where the climate change is causing the landscape zone borders in the territory to shift. This will have a significant impact on the most vulnerable tree species in Armenia. An increase in climate aridity and intensification of desertification can be expected under the projected escalated temperatures and reduced precipitation. For example, we can consider average annual temperature of the Ijevan meteorological station (located in forestry region) for the period of 1936-2008. We analyze the vulnerability of forest ecosystems in Armenia to climatic and anthropogenic factors for the period of 1936-2008. Temperature and precipitation data from 25 meteorological stations in the territory of Armenia is studied for the period of 1936-2008. The dynamic of average temperature annual anomalies are revealed. The deviations of temperature and precipitation from the norms (average for 1961-1990) are evaluated for the period of study. We discuss the reasons for the abrupt increase in temperature and decrease in precipitation. Based on the dataset, the possible near future impact of global climate change on the Armenian forest ecosystems is discussed, and measures on the adaptation to the adverse consequences that climate change has on forests are offered.

  15. Transforming forest landscape conflicts: the promises and perils of global forest management initiatives such as REDD+

    Directory of Open Access Journals (Sweden)

    Seth Kane

    2018-04-01

    Full Text Available Implementation of Reducing Emissions from Deforestation and Forest Degradation (REDD+ is designed to relieve pressure on tropical forests, however, many are concerned that it is a threat to the rights of forest communities. These potential risks need serious attention as earlier studies have shown that the Asia-Pacific region is a forest conflict hotspot, with many economic, environmental and social implications at global (e.g. climate change to local levels (e.g. poverty. Drawing on an analysis of nine case studies from four countries (Cambodia, Myanmar, Nepal and Vietnam this paper examines why and how REDD+ can be a driver for forest conflict and how it also has the potential to simultaneously transform these conflicts. The analytical framework, “sources of impairment”, applied in the study was developed to increase understanding and facilitate the resolution of forest landscape conflicts in a sustainable manner (i.e. transformation. The main findings are that REDD+ can be a source of conflict in the study sites, but also had transformative potential when good practices were followed. For example, in some sites, the REDD+ projects were sources of impairment for forest communities by restricting access to forest resources. However, the research also identified REDD+ projects that enabled the participation of traditionally marginalized groups and built local forest management capacities, leading to strengthened tenure for some forest communities. Similarly, in some countries REDD+ has served as a mechanism to pilot Free, Prior and Informed Consent (FPIC, which will likely have significant impacts in mitigating conflicts by addressing the sources at local to national levels. Based on these findings, there are many reasons to be optimistic that REDD+ can address the underlying causes of forest landscape conflicts, especially when linked with other governance initiatives such as Forest Law Enforcement, Governance and Trade – Voluntary

  16. Effects of forests, roads and mistletoe on bird diversity in monoculture rubber plantations.

    Science.gov (United States)

    Sreekar, Rachakonda; Huang, Guohualing; Yasuda, Mika; Quan, Rui-Chang; Goodale, Eben; Corlett, Richard T; Tomlinson, Kyle W

    2016-02-23

    Rising global demand for natural rubber is expanding monoculture rubber (Hevea brasilensis) at the expense of natural forests in the Old World tropics. Conversion of forests into rubber plantations has a devastating impact on biodiversity and we have yet to identify management strategies that can mitigate this. We determined the life-history traits that best predict bird species occurrence in rubber plantations in SW China and investigated the effects of surrounding forest cover and distance to roads on bird diversity. Mistletoes provide nectar and fruit resources in rubber so we examined mistletoe densities and the relationship with forest cover and rubber tree diameter. In rubber plantations, we recorded less than half of all bird species extant in the surrounding area. Birds with wider habitat breadths and low conservation value had a higher probability of occurrence. Species richness and diversity increased logarithmically with surrounding forest cover, but roads had little effect. Mistletoe density increased exponentially with rubber tree diameters, but was unrelated to forest cover. To maximize bird diversity in rubber-dominated landscapes it is therefore necessary to preserve as much forest as possible, construct roads through plantations and not forest, and retain some large rubber trees with mistletoes during crop rotations.

  17. Deforestation Analysis of Riverine Forest of Sindh Using Remote Sensing Techniques

    Directory of Open Access Journals (Sweden)

    Habibullah Abbasi

    2011-07-01

    Full Text Available During recent decades the large scale deterioration of forests and natural resources is an eye opener. The degradation of forests and other natural resources has affected the ecology, environment, health and economy. The ecological problems with living organisms such as animals and plants and environmental problems such as increase in temperature and carbon dioxide, these factors have contributed to change in regional climate, health problems such as skin, eye diseases and sunstroke and economic problems such as loss of income to rural population and resources which depend on forests such as livestock. Therefore, it was necessary to carry out land cover/use research focusing on the monitoring and management of the present and past state of forests cover and other related objects using RS (Remote Sensing technologies. The RS is a way of mapping and monitoring the changes taking place in forests cover and other objects on a continuing basis. Sukkur and Shikarpur riverine forests are vanishing quickly due to the construction of barrages /dams on upper streams to produce hydroelectricity and irrigation installations which reduce the discharge of fresh water into the downstream Indus basin. Moreover, anthropogenic activities, livestock population, increased grazing, load and illegal tree cutting have contributed to this. The riverine forests are turning into barren land and most of the land is used for agriculture. These uncontrolled changes contribute to climate change and global warming. These changes are difficult to monitor and control without using RS technology. Assessment of deforestation of the Sukkur and Shikarpur to find temporal changes in the forests cover from April, 1979 to April, 2009 is presented in this paper. The integrated classes such as water body, grass/agriculture land, dry/barren land and forest cover maps show the temporal changes taking place in the forests cover for the last 30 years period. RS has been employed in the

  18. Global climate change and biodiversity in forests of the southern United States

    Energy Technology Data Exchange (ETDEWEB)

    Devall, M.S.; Parresol, B.R. (Forest Service, New Orleans, LA (United States). Inst. for Quantitative Studies)

    1994-09-01

    This paper examines the effects of projected future climate change scenarios on biodiversity in forests of the southern US. Global climate change will probably influence biodiversity of southern forests as it was affected during periods in the past, with added problems caused by high human population density, development, air pollution, and rising sea levels. Although the increased level of CO[sub 2] could have beneficial effects on plants, climate change could cause serious changes to many ecological systems, for example inducing plants to bloom before their pollinators are available, and could precipitate modifications that few scientists have considered. Certainly many ecological systems will be seriously altered by climate change. Large northward shifts in species' ranges are expected, causing communities and ecosystems to change in composition. Loss of or movement of a dominant tree species may influence many other plant and animal species in the southern forest, bringing about large increases in the numbers of threatened and endangered species, as well as extinctions. Predictions about the effects of global climate change to southern forests and suggestions for detecting and preparing for them are included.

  19. A Global Perspective on Warmer Droughts as a Key Driver of Forest Disturbances and Tree Mortality (Invited)

    Science.gov (United States)

    Allen, C. D.

    2013-12-01

    Recent global warming, in concert with episodic droughts, is causing elevated levels of both chronic and acute forest water stress across large regions. Such increases in water stress affect forest dynamics in multiple ways, including by amplifying the incidence and severity of many significant forest disturbances, particularly drought-induced tree mortality, wildfire, and outbreaks of damaging insects and diseases. Emerging global-scale patterns of drought-related forest die-off are presented, including a newly updated map overview of documented drought- and heat-induced tree mortality events from around the world, demonstrating the vulnerability of all major forest types to forest drought stress, even in typically wet environments. Comparative patterns of drought stress and associated forest disturbances are reviewed for several regions (southwestern Australia, Inner Asia, western North America, Mediterranean Basin), including interactions among climate and various disturbance processes. From the Southwest USA, research is presented that derives a tree-ring-based Forest Drought Stress Index (FDSI) for the most regionally-widespread conifer species (Pinus edulis, Pinus ponderosa, and Pseudotsuga menziesii), demonstrating recent escalation of FDSI to extreme levels relative to the past 1000 years, due to both drought and especially warming. This new work further highlights strong correlations between drought stress and amplified forest disturbances (fire, bark beetle outbreaks), and projects that by CE 2050 anticipated regional warming will cause mean FDSI values to reach historically unprecedented levels that may exceed thresholds for the survival of current tree species in large portions of their current range in the Southwest. Similar patterns of recent climate-amplified forest disturbance risk are apparent from a variety of relatively dry regions across this planet, and given climate projections for substantially warmer temperatures and greater drought stress

  20. Energy balance of a sparse coniferous high-latitude forest under winter conditions

    DEFF Research Database (Denmark)

    Gryning, Sven-Erik; Batchvarova, E.; Bruin, H.A.R. de

    2001-01-01

    was simulated for a three month period. For conditions with a cloud cover of less than 7 oktas good agreement between model predictions and measurements were found. For cloud cover 7 and 8 oktas a considerable spread can be observed. To apply the proposed energy balance model, the global radiation must......Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12-24 March 1997) day...... and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m(-2...

  1. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    Science.gov (United States)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified

  2. An airborne gamma ray snow survey of a forest covered area with a deep snowpack

    International Nuclear Information System (INIS)

    Glynn, J.E.; Carroll, T.R.; Holman, P.B.; Grasty, R.L.

    1988-01-01

    Problems arising from the airborne gamma ray measurement of snow water equivalent over a forest covered deep snowpack are examined. The principal sources of error are believed to be due to the radioactivity in the biomass and to variability in the snow cover. A theoretical model is developed to correct the airborne measurements for these sources of error. The application of the theory to data collected over the St. John River Basin, located in the eastern part of Canada and the United States, is found to significantly improve the airborne results

  3. Carbon storage and emissions offset potential in an African dry forest, the Arabuko-Sokoke Forest, Kenya.

    Science.gov (United States)

    Glenday, Julia

    2008-07-01

    Concerns about rapid tropical deforestation, and its contribution to rising atmospheric concentrations of greenhouse gases, increase the importance of monitoring terrestrial carbon storage in changing landscapes. Emerging markets for carbon emission offsets may offer developing nations needed incentives for reforestation, rehabilitation, and avoided deforestation. However, relatively little empirical data exists regarding carbon storage in African tropical forests, particularly for those in arid or semi-arid regions. Kenya's 416 km(2) Arabuko-Sokoke Forest (ASF) is the largest remaining fragment of East African coastal dry forest and is considered a global biodiversity hotspot (Myers et al. 2000), but has been significantly altered by past commercial logging and ongoing extraction. Forest carbon storage for ASF was estimated using allometric equations for tree biomass, destructive techniques for litter and herbaceous vegetation biomass, and spectroscopy for soils. Satellite imagery was used to assess land cover changes from 1992 to 2004. Forest and thicket types (Cynometra webberi dominated, Brachystegia spiciformis dominated, and mixed species forest) had carbon densities ranging from 58 to 94 Mg C/ha. The ASF area supported a 2.8-3.0 Tg C carbon stock. Although total forested area in ASF did not change over the analyzed time period, ongoing disturbances, quantified by the basal area of cut tree stumps per sample plot, correlated with decreased carbon densities. Madunguni Forest, an adjoining forest patch, lost 86% of its forest cover and at least 76% of its terrestrial carbon stock in the time period. Improved management of wood harvesting in ASF and rehabilitation of Madunguni Forest could substantially increase terrestrial carbon sequestration in the region.

  4. Linear Subpixel Learning Algorithm for Land Cover Classification from WELD using High Performance Computing

    Science.gov (United States)

    Ganguly, S.; Kumar, U.; Nemani, R. R.; Kalia, S.; Michaelis, A.

    2017-12-01

    In this work, we use a Fully Constrained Least Squares Subpixel Learning Algorithm to unmix global WELD (Web Enabled Landsat Data) to obtain fractions or abundances of substrate (S), vegetation (V) and dark objects (D) classes. Because of the sheer nature of data and compute needs, we leveraged the NASA Earth Exchange (NEX) high performance computing architecture to optimize and scale our algorithm for large-scale processing. Subsequently, the S-V-D abundance maps were characterized into 4 classes namely, forest, farmland, water and urban areas (with NPP-VIIRS - national polar orbiting partnership visible infrared imaging radiometer suite nighttime lights data) over California, USA using Random Forest classifier. Validation of these land cover maps with NLCD (National Land Cover Database) 2011 products and NAFD (North American Forest Dynamics) static forest cover maps showed that an overall classification accuracy of over 91% was achieved, which is a 6% improvement in unmixing based classification relative to per-pixel based classification. As such, abundance maps continue to offer an useful alternative to high-spatial resolution data derived classification maps for forest inventory analysis, multi-class mapping for eco-climatic models and applications, fast multi-temporal trend analysis and for societal and policy-relevant applications needed at the watershed scale.

  5. Analysis of correlation between full-waveform metrics, scan geometry and land-cover: an application over forests

    Directory of Open Access Journals (Sweden)

    F. Pirotti

    2013-10-01

    Full Text Available For a correct use of metrics derived from processing of the full-waveform return signal from airborne laser scanner sensors any correlation which is not related to properties of the reflecting target must be known and, if possible, removed. In the following article we report on an analysis of correlation between several metrics extracted from the full-waveform return signal and scan characteristics (mainly range and type of land-cover (urban, grasslands, forests. The metrics taken in consideration are the amplitude, normalized amplitude, width (full width at half maximum, asymmetry indicators, left and right energy content, and the cross-section calculated from width and normalized amplitude considering the range effect. The results show that scan geometry in this case does not have a significant impact scans over forest cover, except for range affecting amplitude and width distribution. Over complex targets such as vegetation canopy, other factors such as incidence angle have little meaning, therefore corrections of range effect are the most meaningful. A strong correlation with the type of land-cover is also shown by the distribution of the values of the metrics in the different areas taken in consideration.

  6. Land and Forest Management by Land Use/ Land Cover Analysis and Change Detection Using Remote Sensing and GIS

    Directory of Open Access Journals (Sweden)

    Ankana

    2016-01-01

    Full Text Available Remote sensing and Geographical Information System (GIS are the most effective tools in spatial data analysis. Natural resources like land, forest and water, these techniques have proved a valuable source of information generation as well as in the management and planning purposes. This study aims to suggest possible land and forest management strategies in Chakia tahsil based on land use and land cover analysis and the changing pattern observed during the last ten years. The population of Chakia tahsil is mainly rural in nature. The study has revealed that the northern part of the region, which offers for the settlement and all the agricultural practices constitutes nearly 23.48% and is a dead level plain, whereas the southern part, which constitute nearly 76.6% of the region is characterized by plateau and is covered with forest. The southern plateau rises abruptly from the northern alluvial plain with a number of escarpments. The contour line of 100 m mainly demarcates the boundary between plateau and plain. The plateau zone is deeply dissected and highly rugged terrain. The resultant topography comprises of a number of mesas and isolated hillocks showing elevation differences from 150 m to 385 m above mean sea level. Being rugged terrain in the southern part, nowadays human encroachment are taking place for more land for the cultivation. The changes were well observed in the land use and land cover in the study region. A large part of fallow land and open forest were converted into cultivated land.

  7. Implications of rural-urban migration for conservation of the Atlantic Forest and urban growth in Misiones, Argentina (1970-2030).

    Science.gov (United States)

    Izquierdo, Andrea E; Grau, Héctor R; Aide, T Mitchell

    2011-05-01

    Global trends of increasing rural-urban migration and population urbanization could provide opportunities for nature conservation, particularly in regions where deforestation is driven by subsistence agriculture. We analyzed the role of rural population as a driver of deforestation and its contribution to urban population growth from 1970 to the present in the Atlantic Forest of Argentina, a global conservation priority. We created future land-use-cover scenarios based on human demographic parameters and the relationship between rural population and land-cover change between 1970 and 2006. In 2006, native forest covered 50% of the province, but by 2030 all scenarios predicted a decrease that ranged from 18 to 39% forest cover. Between 1970 and 2001, rural migrants represented 20% of urban population growth and are expected to represent less than 10% by 2030. This modeling approach shows how rural-urban migration and land-use planning can favor nature conservation with little impact on urban areas.

  8. Stable Forest Cover under Increasing Populations of Swidden Cultivators in Central Laos: the Roles of Intrinsic Culture and Extrinsic Wildlife Trade

    Directory of Open Access Journals (Sweden)

    William G. Robichaud

    2009-06-01

    Full Text Available Swidden agriculture, or shifting cultivation, is variously viewed as a great environmental threat or a sustainable system of land use. In Laos, swidden has long been considered the primary driver of forest loss nationwide, but the assessment is based exclusively on studies from the north of country, where deforestation is most severe. National policies to control swidden have percolated down to management of one of the largest nature reserves in the region, Nakai-Nam Theun National Protected Area (NNT NPA in the Annamite Mountains of central Laos. In NNT NPA, swidden's presumed unsustainability and deleterious impact on forest cover is an untested assumption. We tested it by methods of historical ecology, tracing the patterns of NNT's forest cover and human settlement over the past several decades. Principal sources of data were topographical maps dating to 1943, and Landsat images from 1976, 1989, and 2001. The analysis shows that, although NNT has been inhabited by swidden cultivators for hundreds of years, it retained more than 95% forest cover until the 1960s-early 1970s. Subsequently, a post-Vietnam War release of human population, possibly coupled with government encouragement of agricultural expansion, precipitated a decline in forest of 0.5%/year until the 1980s. Curiously, this was followed by stability or an increase (ca. 0.3%/year in forest cover into the current century, even as NNT's human population continued to grow and as forest declined in Laos overall at 1.7%/year, and in two protected areas near NNT at more than 3%/year. A combination of intrinsic and extrinsic factors probably account for the stability of NNT's forest cover despite recent population growth. First are cultural propensities for sedentariness and livelihoods with relatively low environmental impact among the ethnic groups inhabiting NNT. Since at least the 1940s, there have been remarkably few changes in the number or location of villages in NNT (and despite

  9. Synthesizing Global and Local Datasets to Estimate Jurisdictional Forest Carbon Fluxes in Berau, Indonesia.

    Science.gov (United States)

    Griscom, Bronson W; Ellis, Peter W; Baccini, Alessandro; Marthinus, Delon; Evans, Jeffrey S; Ruslandi

    2016-01-01

    Forest conservation efforts are increasingly being implemented at the scale of sub-national jurisdictions in order to mitigate global climate change and provide other ecosystem services. We see an urgent need for robust estimates of historic forest carbon emissions at this scale, as the basis for credible measures of climate and other benefits achieved. Despite the arrival of a new generation of global datasets on forest area change and biomass, confusion remains about how to produce credible jurisdictional estimates of forest emissions. We demonstrate a method for estimating the relevant historic forest carbon fluxes within the Regency of Berau in eastern Borneo, Indonesia. Our method integrates best available global and local datasets, and includes a comprehensive analysis of uncertainty at the regency scale. We find that Berau generated 8.91 ± 1.99 million tonnes of net CO2 emissions per year during 2000-2010. Berau is an early frontier landscape where gross emissions are 12 times higher than gross sequestration. Yet most (85%) of Berau's original forests are still standing. The majority of net emissions were due to conversion of native forests to unspecified agriculture (43% of total), oil palm (28%), and fiber plantations (9%). Most of the remainder was due to legal commercial selective logging (17%). Our overall uncertainty estimate offers an independent basis for assessing three other estimates for Berau. Two other estimates were above the upper end of our uncertainty range. We emphasize the importance of including an uncertainty range for all parameters of the emissions equation to generate a comprehensive uncertainty estimate-which has not been done before. We believe comprehensive estimates of carbon flux uncertainty are increasingly important as national and international institutions are challenged with comparing alternative estimates and identifying a credible range of historic emissions values.

  10. Tropical Forest Monitoring in Southeast Asia Using Remotely Sensed Optical Time Series

    DEFF Research Database (Denmark)

    Grogan, Kenneth Joseph

    of forest cover using satellite remote sensing technology. Recently, there has been a shift in data protection policy where rich archives of satellite imagery are now freely available. This has spurred a new era in satellite-based forest monitoring leading to advancements in optical time series processing...... markets. At the Landsat 30-m resolution, annual time series coupled with linear segmentation using LandTrendr was found to be an effective approach for monitoring forest disturbance, with moderate to high accuracies, depending on forest type. At the MODIS 250-m resolution, intra-annual time series...... global rubber markets can be linked to forest cover change, the effects of land policy in Cambodia, and beyond, have also had a major influence. It remains to be seen if intervention initiatives such as REDD+ can materialise over the coming years to make a meaningful contribution to tropical forest...

  11. Criterion 5: Maintenance of forest contributions to global carbon cycles

    Science.gov (United States)

    Stephen R. Shifley; Francisco X. Aguilar; Nianfu Song; Susan I. Stewart; David J. Nowak; Dale D. Gormanson; W. Keith Moser; Sherri Wormstead; Eric J. Greenfield

    2012-01-01

    Northern forests cover more than 42 percent of the region and are enormous reservoirs of carbon. Through photosynthesis, live trees emit oxygen in exchange for carbon dioxide they pull from the atmosphere. As a tree grows it stores carbon in wood above and below ground, and sequestered carbon comprises about half of its dry weight. Dead trees and down logs are also...

  12. Using IKONOS and Aerial Videography to Validate Landsat Land Cover Maps of Central African Tropical Rain Forests

    Science.gov (United States)

    Lin, T.; Laporte, N. T.

    2003-12-01

    Compared to the traditional validation methods, aerial videography is a relatively inexpensive and time-efficient approach to collect "field" data for validating satellite-derived land cover map over large areas. In particular, this approach is valuable in remote and inaccessible locations. In the Sangha Tri-National Park region of Central Africa, where road access is limited to industrial logging sites, we are using IKONOS imagery and aerial videography to assess the accuracy of Landsat-derived land cover maps. As part of a NASA Land Cover Land Use Change project (INFORMS) and in collaboration with the Wildlife Conservation Society in the Republic of Congo, over 1500km of aerial video transects were collected in the Spring of 2001. The use of MediaMapper software combined with a VMS 200 video mapping system enabled the collection of aerial transects to be registered with geographic locations from a Geographic Positioning System. Video frame were extracted, visually interpreted, and compared to land cover types mapped by Landsat. We addressed the limitations of accuracy assessment using aerial-base data and its potential for improving vegetation mapping in tropical rain forests. The results of the videography and IKONOS image analysis demonstrate the utility of very high resolution imagery for map validation and forest resource assessment.

  13. Evaluation and parameterization of ATCOR3 topographic correction method for forest cover mapping in mountain areas

    Science.gov (United States)

    Balthazar, Vincent; Vanacker, Veerle; Lambin, Eric F.

    2012-08-01

    A topographic correction of optical remote sensing data is necessary to improve the quality of quantitative forest cover change analyses in mountainous terrain. The implementation of semi-empirical correction methods requires the calibration of model parameters that are empirically defined. This study develops a method to improve the performance of topographic corrections for forest cover change detection in mountainous terrain through an iterative tuning method of model parameters based on a systematic evaluation of the performance of the correction. The latter was based on: (i) the general matching of reflectances between sunlit and shaded slopes and (ii) the occurrence of abnormal reflectance values, qualified as statistical outliers, in very low illuminated areas. The method was tested on Landsat ETM+ data for rough (Ecuadorian Andes) and very rough mountainous terrain (Bhutan Himalayas). Compared to a reference level (no topographic correction), the ATCOR3 semi-empirical correction method resulted in a considerable reduction of dissimilarities between reflectance values of forested sites in different topographic orientations. Our results indicate that optimal parameter combinations are depending on the site, sun elevation and azimuth and spectral conditions. We demonstrate that the results of relatively simple topographic correction methods can be greatly improved through a feedback loop between parameter tuning and evaluation of the performance of the correction model.

  14. Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV

    Directory of Open Access Journals (Sweden)

    Laura Sirro

    2018-06-01

    Full Text Available The applicability of optical and synthetic aperture radar (SAR data for land cover classification to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation MRV (measuring, reporting and verification services was tested on a tropical to sub-tropical test site. The 100 km by 100 km test site was situated in the State of Chiapas in Mexico. Land cover classifications were computed using RapidEye and Landsat TM optical satellite images and ALOS PALSAR L-band and Envisat ASAR C-band images. Identical sample plot data from Kompsat-2 imagery of one-metre spatial resolution were used for the accuracy assessment. The overall accuracy for forest and non-forest classification varied between 95% for the RapidEye classification and 74% for the Envisat ASAR classification. For more detailed land cover classification, the accuracies varied between 89% and 70%, respectively. A combination of Landsat TM and ALOS PALSAR data sets provided only 1% improvement in the overall accuracy. The biases were small in most classifications, varying from practically zero for the Landsat TM based classification to a 7% overestimation of forest area in the Envisat ASAR classification. Considering the pros and cons of the data types, we recommend optical data of 10 m spatial resolution as the primary data source for REDD MRV purposes. The results with L-band SAR data were nearly as accurate as the optical data but considering the present maturity of the imaging systems and image analysis methods, the L-band SAR is recommended as a secondary data source. The C-band SAR clearly has poorer potential than the L-band but it is applicable in stratification for a statistical sampling when other image types are unavailable.

  15. Quantifying the Effects of Historical Land Cover Conversion Uncertainty on Global Carbon and Climate Estimates

    Science.gov (United States)

    Di Vittorio, A. V.; Mao, J.; Shi, X.; Chini, L.; Hurtt, G.; Collins, W. D.

    2018-01-01

    Previous studies have examined land use change as a driver of global change, but the translation of land use change into land cover conversion has been largely unconstrained. Here we quantify the effects of land cover conversion uncertainty on the global carbon and climate system using the integrated Earth System Model. Our experiments use identical land use change data and vary land cover conversions to quantify associated uncertainty in carbon and climate estimates. Land cover conversion uncertainty is large, constitutes a 5 ppmv range in estimated atmospheric CO2 in 2004, and generates carbon uncertainty that is equivalent to 80% of the net effects of CO2 and climate and 124% of the effects of nitrogen deposition during 1850-2004. Additionally, land cover uncertainty generates differences in local surface temperature of over 1°C. We conclude that future studies addressing land use, carbon, and climate need to constrain and reduce land cover conversion uncertainties.

  16. Global Climate Forcing from Albedo Change Caused by Large-scale Deforestation and Reforestation: Quantification and Attribution of Geographic Variation

    Science.gov (United States)

    Jiao, Tong; Williams, Christopher A.; Ghimire, Bardan; Masek, Jeffrey; Gao, Feng; Schaaf, Crystal

    2017-01-01

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies widely across the globe due to a range of factors including forest type, snow cover, and insolation, but resulting geographic variation remain spoorly described and has been largely based on model assessments. This study provides an observation-based approach to quantify local and global radiative forcings from large-scale deforestation and reforestation and further examines mechanisms that result in the spatial heterogeneity of radiative forcing. We incorporate a new spatially and temporally explicit land cover-specific albedo product derived from Moderate Resolution Imaging Spectroradiometer with a historical land use data set (Land Use Harmonization product). Spatial variation in radiative forcing was attributed to four mechanisms, including the change in snow-covered albedo, change in snow-free albedo, snow cover fraction, and incoming solar radiation. We find an albedo-only radiative forcing (RF) of -0.819 W m(exp -2) if year 2000 forests were completely deforested and converted to croplands. Albedo RF from global reforestation of present-day croplands to recover year 1700 forests is estimated to be 0.161 W m)exp -2). Snow-cover fraction is identified as the primary factor in determining the spatial variation of radiative forcing in winter, while the magnitude of the change in snow-free albedo is the primary factor determining variations in summertime RF. Findings reinforce the notion that, for conifers at the snowier high latitudes, albedo RF diminishes the warming from forest loss and the cooling from forest gain more so than for other forest types, latitudes, and climate settings.

  17. Trends and Possible Future Developments in Global Forest-Product Markets—Implications for the Swedish Forest Sector

    Directory of Open Access Journals (Sweden)

    Ragnar Jonsson

    2011-01-01

    Full Text Available This paper analyzes trends and possible future developments in global wood-product markets and discusses implications for the Swedish forest sector. Four possible futures, or scenarios, are considered, based on qualitative scenario analysis. The scenarios are distinguished principally by divergent futures with respect to two highly influential factors driving change in global wood-product markets, whose future development is unpredictable. These so-called critical uncertainties were found to be degrees to which: (i current patterns of globalization will continue, or be replaced by regionalism, and (ii concern about the environment, particularly climate change, related policy initiatives and customer preferences, will materialize. The overall future of the Swedish solid wood-product industry looks bright, irrespective of which of the four possible futures occurs, provided it accommodates the expected growth in demand for factory-made, energy-efficient construction components. The prospects for the pulp and paper industry in Sweden appear more ambiguous. Globalization is increasingly shifting production and consumption to the Southern hemisphere, adversely affecting employment and forest owners in Sweden. Further, technical progress in information and communication technology (ICT is expected to lead to drastic reductions in demand for newsprint and printing paper. Chemical pulp producers may profit from a growing bio-energy industry, since they could manufacture new, high-value products in integrated bio-refineries. Mechanical pulp producers cannot do this, however, and might suffer from higher prices for raw materials and electricity.

  18. Temperature drives global patterns in forest biomass distribution in leaves, stems, and roots.

    Science.gov (United States)

    Reich, Peter B; Luo, Yunjian; Bradford, John B; Poorter, Hendrik; Perry, Charles H; Oleksyn, Jacek

    2014-09-23

    Whether the fraction of total forest biomass distributed in roots, stems, or leaves varies systematically across geographic gradients remains unknown despite its importance for understanding forest ecology and modeling global carbon cycles. It has been hypothesized that plants should maintain proportionally more biomass in the organ that acquires the most limiting resource. Accordingly, we hypothesize greater biomass distribution in roots and less in stems and foliage in increasingly arid climates and in colder environments at high latitudes. Such a strategy would increase uptake of soil water in dry conditions and of soil nutrients in cold soils, where they are at low supply and are less mobile. We use a large global biomass dataset (>6,200 forests from 61 countries, across a 40 °C gradient in mean annual temperature) to address these questions. Climate metrics involving temperature were better predictors of biomass partitioning than those involving moisture availability, because, surprisingly, fractional distribution of biomass to roots or foliage was unrelated to aridity. In contrast, in increasingly cold climates, the proportion of total forest biomass in roots was greater and in foliage was smaller for both angiosperm and gymnosperm forests. These findings support hypotheses about adaptive strategies of forest trees to temperature and provide biogeographically explicit relationships to improve ecosystem and earth system models. They also will allow, for the first time to our knowledge, representations of root carbon pools that consider biogeographic differences, which are useful for quantifying whole-ecosystem carbon stocks and cycles and for assessing the impact of climate change on forest carbon dynamics.

  19. Braking effect of climate and topography on global change-induced upslope forest expansion.

    Science.gov (United States)

    Alatalo, Juha M; Ferrarini, Alessandro

    2017-03-01

    Forests are expected to expand into alpine areas due to global climate change. It has recently been shown that temperature alone cannot realistically explain this process and that upslope tree advance in a warmer scenario may depend on the availability of sites with adequate geomorphic/topographic characteristics. Here, we show that, besides topography (slope and aspect), climate itself can produce a braking effect on the upslope advance of subalpine forests and that tree limit is influenced by non-linear and non-monotonic contributions of the climate variables which act upon treeline upslope advance with varying relative strengths. Our results suggest that global climate change impact on the upslope advance of subalpine forests should be interpreted in a more complex way where climate can both speed up and slow down the process depending on complex patterns of contribution from each climate and non-climate variable.

  20. Contributions of a global network of tree diversity experiments to sustainable forest plantations.

    Science.gov (United States)

    Verheyen, Kris; Vanhellemont, Margot; Auge, Harald; Baeten, Lander; Baraloto, Christopher; Barsoum, Nadia; Bilodeau-Gauthier, Simon; Bruelheide, Helge; Castagneyrol, Bastien; Godbold, Douglas; Haase, Josephine; Hector, Andy; Jactel, Hervé; Koricheva, Julia; Loreau, Michel; Mereu, Simone; Messier, Christian; Muys, Bart; Nolet, Philippe; Paquette, Alain; Parker, John; Perring, Mike; Ponette, Quentin; Potvin, Catherine; Reich, Peter; Smith, Andy; Weih, Martin; Scherer-Lorenzen, Michael

    2016-02-01

    The area of forest plantations is increasing worldwide helping to meet timber demand and protect natural forests. However, with global change, monospecific plantations are increasingly vulnerable to abiotic and biotic disturbances. As an adaption measure we need to move to plantations that are more diverse in genotypes, species, and structure, with a design underpinned by science. TreeDivNet, a global network of tree diversity experiments, responds to this need by assessing the advantages and disadvantages of mixed species plantations. The network currently consists of 18 experiments, distributed over 36 sites and five ecoregions. With plantations 1-15 years old, TreeDivNet can already provide relevant data for forest policy and management. In this paper, we highlight some early results on the carbon sequestration and pest resistance potential of more diverse plantations. Finally, suggestions are made for new, innovative experiments in understudied regions to complement the existing network.

  1. AVHRR for monitoring global tropical deforestation

    Science.gov (United States)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  2. Spatial patterns of land cover in the United States: a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Kurt H. Riitters

    2011-01-01

    Land cover patterns inventoried from a national land cover map provide information about the landscape context and fragmentation of the Nation’s forests, grasslands, and shrublands. This inventory is required to quantify, map, and evaluate the capacities of landscapes to provide ecological goods and services sustainably. This report documents the procedures to...

  3. Impacts of Rainfall and Forest Cover Change on Runoff in Small ...

    African Journals Online (AJOL)

    The impacts of climate change on water resources have received much attention globally especially in the last 30 years. Rainfall, the main driver of the hydrological cycle, has been varying in parts of the world in various ways. The picture is more complicated if impacts of land cover changes on water resources are also ...

  4. European Holocene landscape change: a comparison of pollen-based approaches to reconstructing land use shifts and forest decline

    Science.gov (United States)

    Woodbridge, Jessie; Roberts, Neil; Fyfe, Ralph; Gaillard, Marie-José; Trondman, Anna-Kari; Davis, Basil; Kaplan, Jed

    2016-04-01

    vegetation: a plant functional approach based on pollen data. Vegetation History and Archaeobotany. 24, 303-317. Fyfe RM, Woodbridge J and Roberts N (2015) From forest to farmland: pollen-inferred land cover change across Europe using the pseudobiomization approach. Global Change Biology 20, 1197-1212. Trondman A-K, Gaillard M-J, Sugita S et al. (2015) Pollen-based land-cover reconstructions for the study of past vegetation-climate interactions in NW Europe at 0.2 k, 0.5 k, 3 k and 6 k years before present. Global Change Biology. 21, 676-697.

  5. Land Surface Phenology from MODIS: Characterization of the Collection 5 Global Land Cover Dynamics Product

    Science.gov (United States)

    Ganguly, Sangram; Friedl, Mark A.; Tan, Bin; Zhang, Xiaoyang; Verma, Manish

    2010-01-01

    Information related to land surface phenology is important for a variety of applications. For example, phenology is widely used as a diagnostic of ecosystem response to global change. In addition, phenology influences seasonal scale fluxes of water, energy, and carbon between the land surface and atmosphere. Increasingly, the importance of phenology for studies of habitat and biodiversity is also being recognized. While many data sets related to plant phenology have been collected at specific sites or in networks focused on individual plants or plant species, remote sensing provides the only way to observe and monitor phenology over large scales and at regular intervals. The MODIS Global Land Cover Dynamics Product was developed to support investigations that require regional to global scale information related to spatiotemporal dynamics in land surface phenology. Here we describe the Collection 5 version of this product, which represents a substantial refinement relative to the Collection 4 product. This new version provides information related to land surface phenology at higher spatial resolution than Collection 4 (500-m vs. 1-km), and is based on 8-day instead of 16-day input data. The paper presents a brief overview of the algorithm, followed by an assessment of the product. To this end, we present (1) a comparison of results from Collection 5 versus Collection 4 for selected MODIS tiles that span a range of climate and ecological conditions, (2) a characterization of interannual variation in Collections 4 and 5 data for North America from 2001 to 2006, and (3) a comparison of Collection 5 results against ground observations for two forest sites in the northeastern United States. Results show that the Collection 5 product is qualitatively similar to Collection 4. However, Collection 5 has fewer missing values outside of regions with persistent cloud cover and atmospheric aerosols. Interannual variability in Collection 5 is consistent with expected ranges of

  6. Baseline scenarios of global environmental change

    International Nuclear Information System (INIS)

    Alcamo, J.; Kreileman, G.J.J.; Bollen, J.C.; Born, G.J. van den; Krol, M.S.; Toet, A.M.C.; Vries, H.J.M. de; Gerlagh, R.

    1996-01-01

    This paper presents three baseline scenarios of no policy action computed by the IMAGE2 model. These scenarios cover a wide range of coupled global change indicators, including: energy demand and consumption; food demand, consumption, and production; changes in land cover including changes in extent of agricultural land and forest; emissions of greenhouse gases and ozone precursors; and climate change and its impacts on sea level rise, crop productivity and natural vegetation. Scenario information is available for the entire world with regional and grid scale detail, and covers from 1970 to 2100. (author)

  7. How to Address a Global Problem with Earth Observations? Developing Best Practices to Monitor Forests Around the World

    Science.gov (United States)

    Flores Cordova, Africa I.; Cherrington, Emil A.; Vadrevu, Krishna; Thapa, Rajesh Bahadur; Odour, Phoebe; Mehmood, Hamid; Quyen, Nguyen Hanh; Saah, David; Yero, Kadidia; Mamane, Bako; hide

    2017-01-01

    Forests represent a key natural resource, for which degradation or disturbance is directly associated to economic implications, particularly in the context of the United Nations program REDD+ in supporting national policies to fight illegal deforestation. SERVIR, a joint NASA-USAID initiative that brings Earth observations (EO) for improved environmental decision making in developing countries, works with established institutions, called SERVIR hubs, in four regions around the world. SERVIR is partnering with global programs with great experience in providing best practices in forest monitoring systems, such as SilvaCarbon and the Global Forest Observation Initiative (GFOI), to develop a capacity building plan that prioritizes user needs. Representatives from the SERVIR global network met in February 2017 with experts in the field of Synthetic Aperture Radar (SAR) for forest applications to envisage this capacity building plan that aims to leverage the state-of-the-art knowledge on remote sensing to enhance forest monitoring for user agencies in SERVIR regions.

  8. Using the Landsat data archive to assess long-term regional forest dynamics assessment in Eastern Europe, 1985-2012

    Science.gov (United States)

    Turubanova, S.; Potapov, P.; Krylov, A.; Tyukavina, A.; McCarty, J. L.; Radeloff, V. C.; Hansen, M. C.

    2015-04-01

    Dramatic political and economic changes in Eastern European countries following the dissolution of the "Eastern Bloc" and the collapse of the Soviet Union greatly affected land-cover and land-use trends. In particular, changes in forest cover dynamics may be attributed to the collapse of the planned economy, agricultural land abandonment, economy liberalization, and market conditions. However, changes in forest cover are hard to quantify given inconsistent forest statistics collected by different countries over the last 30 years. The objective of our research was to consistently quantify forest cover change across Eastern Europe from 1985 until 2012 using the complete Landsat data archive. We developed an algorithm for processing imagery from different Landsat platforms and sensors (TM and ETM+), aggregating these images into a common set of multi-temporal metrics, and mapping annual gross forest cover loss and decadal gross forest cover gain. Our results show that forest cover area increased from 1985 to 2012 by 4.7% across the region. Average annual gross forest cover loss was 0.41% of total forest cover area, with a statistically significant increase from 1985 to 2012. Most forest disturbance recovered fast, with only 12% of the areas of forest loss prior to 1995 not being recovered by 2012. Timber harvesting was the main cause of forest loss. Logging area declined after the collapse of socialism in the late 1980s, increased in the early 2000s, and decreased in most countries after 2007 due to the global economic crisis. By 2012, Central and Baltic Eastern European countries showed higher logging rates compared to their Western neighbours. Comparing our results with official forest cover and change estimates showed agreement in total forest area for year 2010, but with substantial disagreement between Landsat-based and official net forest cover area change. Landsat-based logging areas exhibit strong relationship with reported roundwood production at national

  9. Forest Distribution on Small Isolated Hills and Implications on Woody Plant Distribution under Threats of Global Warming

    Directory of Open Access Journals (Sweden)

    Chi-Cheng Liao

    2012-09-01

    Full Text Available Treelines have been found to be lower in small isolated hilltops, but the specific dynamics behind this unique phenomenon are unknown. This study investigates the distribution patterns of woody plants in Yangmingshan National Park (YMSNP, Northern Taiwan in search of the limitation mechanisms unique to small isolated hills, and to evaluate potential threats under global warming. Forests distributed between 200 to 900 m above sea level (ASL. Remnant forest fragments between 400 and 900 m ASL, have the highest species richness, and should be protected to ensure future forest recovery from the former extensive artificial disturbance. The lower boundary is threatened by urban and agricultural development. The lack of native woody species in these low elevation zones may cause a gap susceptible to invasive species. A consistent forest line at 100 m below mountain tops regardless of elevation suggests a topography-induced instead of an elevation-related limiting mechanism. Therefore, upward-shift of forests, caused by global warming, might be limited at 100 m below hilltops in small isolated hills because of topography-related factors. The spatial range of woody plants along the altitudinal gradient, thus, is likely to become narrower under the combined pressures of global warming, limited elevation, exposure-related stress, and artificial disturbance. Management priorities for forest recovery are suggested to include preservation of remnant forest fragments, increasing forest connectivity, and increasing seedling establishment in the grasslands.

  10. Development of deforestation and land cover database for Bhutan (1930-2014).

    Science.gov (United States)

    Reddy, C Sudhakar; Satish, K V; Jha, C S; Diwakar, P G; Murthy, Y V N Krishna; Dadhwal, V K

    2016-12-01

    Bhutan is a mountainous country located in the Himalayan biodiversity hotspot. This study has quantified the total area under land cover types, estimated the rate of forest cover change, analyzed the changes across forest types, and modeled forest cover change hotpots in Bhutan. The topographical maps and satellite remote sensing images were analyzed to get the spatial patterns of forest and associated land cover changes over the past eight decades (1930-1977-1987-1995-2005-2014). Forest is the largest land cover in Bhutan and constitutes 68.3% of the total geographical area in 2014. Subtropical broad leaved hill forest is predominant type occupies 34.1% of forest area in Bhutan, followed by montane dry temperate (20.9%), montane wet temperate (18.9%), Himalayan moist temperate (10%), and tropical moist sal (8.1%) in 2014. The major forest cover loss is observed in subtropical broad leaved hill forest (64.5 km 2 ) and moist sal forest (9.9 km 2 ) from 1977 to 2014. The deforested areas have mainly been converted into agriculture and contributed for 60.9% of forest loss from 1930 to 2014. In spite of major decline of forest cover in time interval of 1930-1977, there is no net rate of deforestation is recorded in Bhutan since 1995. Forest cover change analysis has been carried out to evaluate the conservation effectiveness in "Protected Areas" of Bhutan. Hotspots that have undergone high transformation in forest cover for afforestation and deforestation were highlighted in the study for conservation prioritisation. Forest conservation policies in Bhutan are highly effective in controlling deforestation as compared to neighboring Asian countries and such service would help in mitigating climate change.

  11. Changes in land cover and carbon emissions to 2050 from African tropical forests using policy scenarios

    Science.gov (United States)

    Laporte, N.; Galford, G. L.; Soares Filho, B. S.

    2011-12-01

    Africa has the second largest block of rainforest in the world, next to the Amazon basin, with the majority of the carbon being stored in the dense humid forests of the Democratic Republic of the Congo (DRC). Historically, political instability in the DRC kept development and deforestation low, with primary forest uses being extensive logging and small scale agriculture. In the last decade, political stability has opened the country to foreign investment in forested areas, largely for industrial-scale oil palm plantations and more recently to rice production. The DRC ranks worst on the IFPRI global hunger index, scoring "extremely serious" based on the proportion of undernourished population, prevalence of underweight in children under 5 and the mortality rates of children under 5. In fact, DRC saw its hunger score increase (worsen) from 1990 to 2010, with a 66% gain compared to the other 8 worsening countries increasing only 21% or less. This is a critical time for policy in the DRC, where business-as-usual (relatively low deforestation rates) is unlikely to continue given today's relative political stability and economic stabilization compared to the 1990s. The country must examine options for forest conservation in balance with foreign investment for use of forest resources, national development of rural livelihoods and domestic production of food. Here we present deforestation trajectories simulated through the year 2050 under a set of scenarios. The scenarios consider the relative carbon emissions from business-as-usual (no new policy), conservation (policy favoring protection and enforcement for forest areas), and a food security scenario (favoring clearing for industrial agriculture, extractive timber resources and development of new agricultural areas). Carbon emissions for each scenario are estimated with a coupled bookkeeping model. These scenarios are not predictive of the future, rather, they are meant to provide an understanding of the outcomes of

  12. An initial analysis of LANDSAT 4 Thematic Mapper data for the classification of agricultural, forested wetland, and urban land covers

    Science.gov (United States)

    Quattrochi, D. A.; Anderson, J. E.; Brannon, D. P.; Hill, C. L.

    1982-01-01

    An initial analysis of LANDSAT 4 thematic mapper (TM) data for the delineation and classification of agricultural, forested wetland, and urban land covers was conducted. A study area in Poinsett County, Arkansas was used to evaluate a classification of agricultural lands derived from multitemporal LANDSAT multispectral scanner (MSS) data in comparison with a classification of TM data for the same area. Data over Reelfoot Lake in northwestern Tennessee were utilized to evaluate the TM for delineating forested wetland species. A classification of the study area was assessed for accuracy in discriminating five forested wetland categories. Finally, the TM data were used to identify urban features within a small city. A computer generated classification of Union City, Tennessee was analyzed for accuracy in delineating urban land covers. An evaluation of digitally enhanced TM data using principal components analysis to facilitate photointerpretation of urban features was also performed.

  13. Modeling the recovery and degradation of mangroves at the global scale

    Science.gov (United States)

    Lagomasino, D.; Fatoyinbo, T.; Lee, S. K.; Feliciano, E. A.; Trettin, C.

    2017-12-01

    Forest growth and reforestation rates are crucial information for sustainable forest management practices and decision-making for restoration projects. There has been a recent increase in mangrove blue carbon restoration projects because of their extremely high carbon density, globally can reach over 1000 Mg ha-1 of carbon. If ecosystem projects do plan to facilitate mangrove restoration or deter land cover changes as a climate change mitigation strategy or in other carbon inventory strategies, unbiased field inventories need to become the norm. It is known that mangrove carbon can be extremely high in certain geographic settings, but that is not the case for many other regions. Remotely sensed canopy height has recently been incorporated into mangrove field inventories which provides an unbiased, readily accessible, and spatially-explicit model that was used to stratify the inventory design into discrete height classes. Combining the forest canopy height distribution captured from space and the field inventory data, biomass and carbon density were determined for each height class. Here, we present mangrove vertical growth rates and global carbon stock changes modeled through the combination of remotely sensed land cover change and canopy height class models using Landsat-derived vegetation index anomalies and synthetic aperture radar interferometry, respectively. Average growth rates ( 1-1.5m yr-1) were determined for four mangrove forests in the Zambezi, Rufiji, Ganges, and Mekong Deltas. An average global net productivity (9-10 Mg C ha-1 yr-1) was then derived using the four sites which represent young, fast-growing mangrove forests. Global mangrove carbon change was calculated using the average productivity estimates and land cover change from 2000 to 2015. Losses were categorized based on canopy height derived biomass classes in 2000 using Shuttle Radar Topography Mission data, while gained carbon stocks were assessed by using the study-derived mean

  14. Diversity patterns of ground beetles and understory vegetation in mature, secondary, and plantation forest regions of temperate northern China

    NARCIS (Netherlands)

    Zou, Yi; Sang, Weiguo; Wang, Shunzhong; Warren-Thomas, Eleanor; Liu, Yunhui; Yu, Zhenrong; Wang, Changliu; Axmacher, Jan Christoph

    2015-01-01

    Plantation and secondary forests form increasingly important components of the global forest cover, but our current knowledge about their potential contribution to biodiversity conservation is limited. We surveyed understory plant and carabid species assemblages at three distinct regions in

  15. Carbon markets - an opportunity for the world's forests?

    International Nuclear Information System (INIS)

    Chenost, Clement

    2012-01-01

    Forests cover 30% of the land surface and contain more than half of the carbon stored in terrestrial ecosystems. Carbon credits can be used to compensate the environmental service provided by forests. The sale of carbon credits could be a lever to steer investment. Demand for credits in the forestry sector remains relatively small. However, negotiations directed at a post-Kyoto agreement may create a context that is more favourable to forestry projects by reinstating the question of including forests at the core of the global fight against climate change. (authors)

  16. Evaluation of SLAR and simulated thematic mapper MSS data for forest cover mapping using computer-aided analysis techniques

    Science.gov (United States)

    Hoffer, R. M.; Dean, M. E.; Knowlton, D. J.; Latty, R. S.

    1982-01-01

    Kershaw County, South Carolina was selected as the study site for analyzing simulated thematic mapper MSS data and dual-polarized X-band synthetic aperture radar (SAR) data. The impact of the improved spatial and spectral characteristics of the LANDSAT D thematic mapper data on computer aided analysis for forest cover type mapping was examined as well as the value of synthetic aperture radar data for differentiating forest and other cover types. The utility of pattern recognition techniques for analyzing SAR data was assessed. Topics covered include: (1) collection and of TMS and reference data; (2) reformatting, geometric and radiometric rectification, and spatial resolution degradation of TMS data; (3) development of training statistics and test data sets; (4) evaluation of different numbers and combinations of wavelength bands on classification performance; (5) comparison among three classification algorithms; and (6) the effectiveness of the principal component transformation in data analysis. The collection, digitization, reformatting, and geometric adjustment of SAR data are also discussed. Image interpretation results and classification results are presented.

  17. Biodiversity Meets the Atmosphere: A Global View of Forest Canopies

    Science.gov (United States)

    C. M. P. Ozanne; D. Anhuf; S. L. Boulter; M. Keller; R. L. Kitching; C. Korner; F. C. Meinzer; A. W. Mitchell; T. Nakashizuka; P. L. Silva Dias; N. E. Stork; S. J. Wright; M Yoshimura

    2003-01-01

    The forest canopy is the functional interface between 90% of Earth’s terrestrial biomass and the atmosphere. Multidisciplinary research in the canopy has expanded concepts of global species richness, physiological processes, and the provision of ecosystem services. Trees respond in a species-specific manner to elevated carbon dioxide levels, while climate change...

  18. Building National Capacity To Implement National Forest Monitoring System In Africa By GLAD

    Science.gov (United States)

    Lola Amani, P. K.

    2017-12-01

    Earth Observation data provide numerous information on the earth and its phenomena from space/satellite. They also offer the ability to compile and analyze information at global or local scales in a timely manner. However, to use them, it is important to develop methods that can enable the extraction of the desired information. Such methods should be robust and consistent enough to be considered for national monitoring systems. At the University of Maryland, the Global Land Analysis and Discovery (GLAD) Laboratory, led by Dr. Hansen, has developed automatic methods using Landsat data that have been applied for the Global Forest Change (GFC) in collaboration with the World Resources Institute (WRI), Google and others to providing information on tree cover loss throughout the global on a yearly basis, and on a daily basis a tree cover loss alert system to improve transparency and accessible at GFW Initiative (Global Forest Watch) website. Following the increasing interest in utilizing the GFC data, the GLAD Laboratory is working closely with national governments of different countries to reinforce their capacities in using the data in the best way and implementing the methodological framework for supporting their national forest monitoring, notification, and reporting (MNV) system. More precisely, the Lab supports step by step the countries in developing their reference emission levels and/or forest reference levels based on the country-specific needs, goals, and requirements, including the definition of the forest. Once in place, the methodology can easily be extended to different applications, such as monitoring the droughts events, etc. Here, we present the work accomplished with the national agencies of some countries in Africa, like Cameroon, Republic of Congo and Madagascar with the support of the Silva-Carbon and USAID-CARPE Programs and WRI. These countries are mainly engaged at different levels of the REDD+ process. Keywords: Earth Observation, Landsat data

  19. A web-based system for supporting global land cover data production

    Science.gov (United States)

    Han, Gang; Chen, Jun; He, Chaoying; Li, Songnian; Wu, Hao; Liao, Anping; Peng, Shu

    2015-05-01

    Global land cover (GLC) data production and verification process is very complicated, time consuming and labor intensive, requiring huge amount of imagery data and ancillary data and involving many people, often from different geographic locations. The efficient integration of various kinds of ancillary data and effective collaborative classification in large area land cover mapping requires advanced supporting tools. This paper presents the design and development of a web-based system for supporting 30-m resolution GLC data production by combining geo-spatial web-service and Computer Support Collaborative Work (CSCW) technology. Based on the analysis of the functional and non-functional requirements from GLC mapping, a three tiers system model is proposed with four major parts, i.e., multisource data resources, data and function services, interactive mapping and production management. The prototyping and implementation of the system have been realised by a combination of Open Source Software (OSS) and commercially available off-the-shelf system. This web-based system not only facilitates the integration of heterogeneous data and services required by GLC data production, but also provides online access, visualization and analysis of the images, ancillary data and interim 30 m global land-cover maps. The system further supports online collaborative quality check and verification workflows. It has been successfully applied to China's 30-m resolution GLC mapping project, and has improved significantly the efficiency of GLC data production and verification. The concepts developed through this study should also benefit other GLC or regional land-cover data production efforts.

  20. Integrating the effects of forest cover on slope stability in a deterministic landslide susceptibility model (TRIGRS 2.0)

    Science.gov (United States)

    Zieher, T.; Rutzinger, M.; Bremer, M.; Meissl, G.; Geitner, C.

    2014-12-01

    The potentially stabilizing effects of forest cover in respect of slope stability have been the subject of many studies in the recent past. Hence, the effects of trees are also considered in many deterministic landslide susceptibility models. TRIGRS 2.0 (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability; USGS) is a dynamic, physically-based model designed to estimate shallow landslide susceptibility in space and time. In the original version the effects of forest cover are not considered. As for further studies in Vorarlberg (Austria) TRIGRS 2.0 is intended to be applied in selected catchments that are densely forested, the effects of trees on slope stability were implemented in the model. Besides hydrological impacts such as interception or transpiration by tree canopies and stems, root cohesion directly influences the stability of slopes especially in case of shallow landslides while the additional weight superimposed by trees is of minor relevance. Detailed data on tree positions and further attributes such as tree height and diameter at breast height were derived throughout the study area (52 km²) from high-resolution airborne laser scanning data. Different scenarios were computed for spruce (Picea abies) in the study area. Root cohesion was estimated area-wide based on published correlations between root reinforcement and distance to tree stems depending on the stem diameter at breast height. In order to account for decreasing root cohesion with depth an exponential distribution was assumed and implemented in the model. Preliminary modelling results show that forest cover can have positive effects on slope stability yet strongly depending on tree age and stand structure. This work has been conducted within C3S-ISLS, which is funded by the Austrian Climate and Energy Fund, 5th ACRP Program.

  1. Natural variations in snow cover do not affect the annual soil CO2 efflux from a mid-elevation temperate forest.

    Science.gov (United States)

    Schindlbacher, Andreas; Jandl, Robert; Schindlbacher, Sabine

    2014-02-01

    Climate change might alter annual snowfall patterns and modify the duration and magnitude of snow cover in temperate regions with resultant impacts on soil microclimate and soil CO2 efflux (Fsoil ). We used a 5-year time series of Fsoil measurements from a mid-elevation forest to assess the effects of naturally changing snow cover. Snow cover varied considerably in duration (105-154 days) and depth (mean snow depth 19-59 cm). Periodically shallow snow cover (soil freezing or increased variation in soil temperature. This was mostly not reflected in Fsoil which tended to decrease gradually throughout winter. Progressively decreasing C substrate availability (identified by substrate induced respiration) likely over-rid the effects of slowly changing soil temperatures and determined the overall course of Fsoil . Cumulative CO2 efflux from beneath snow cover varied between 0.46 and 0.95 t C ha(-1)  yr(-1) and amounted to between 6 and 12% of the annual efflux. When compared over a fixed interval (the longest period of snow cover during the 5 years), the cumulative CO2 efflux ranged between 0.77 and 1.18 t C ha(-1) or between 11 and 15% of the annual soil CO2 efflux. The relative contribution (15%) was highest during the year with the shortest winter. Variations in snow cover were not reflected in the annual CO2 efflux (7.44-8.41 t C ha(-1) ) which did not differ significantly between years and did not correlate with any snow parameter. Regional climate at our site was characterized by relatively high amounts of precipitation. Therefore, snow did not play a role in terms of water supply during the warm season and primarily affected cold season processes. The role of changing snow cover therefore seems rather marginal when compared to potential climate change effects on Fsoil during the warm season. © 2013 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  2. Potential of airborne radar to support the assessment of land cover in a tropical rain forest environment

    NARCIS (Netherlands)

    Sanden, van der J.J.; Hoekman, D.H.

    1999-01-01

    The potential of airborne radar systems as tools for collecting information in support of the assessment of tropical primary forests and derived cover types was examined. SAR systems operating with high spatial resolutions and different wavelengths (i.e., X-, C-, L- and P-band) acquired data in

  3. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    NARCIS (Netherlands)

    Janssen, Thomas A.J.; Ametsitsi, George K.D.; Collins, Murray; Adu-Bredu, Stephen; Oliveras, Imma; Mitchard, Edward T.A.; Veenendaal, Elmar M.

    2018-01-01

    Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South America

  4. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    NARCIS (Netherlands)

    Janssen, Thomas A.J.; Ametsitsi, George K.D.; Collins, Murray; Adu-Bredu, Stephen; Oliveras, Imma; Mitchard, Edward T.A.; Veenendaal, Elmar M.

    2018-01-01

    Abstract Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South

  5. Estimated carbon emission from recent rapid forest loss in Southeast Asia

    Science.gov (United States)

    Chen, A.; Zeng, Z.; Peng, L.; Fei, S.

    2017-12-01

    Driven by agricultural expansion, industrial logging, oil palm and rubber plantations, and urbanization, Southeast Asia (SEA) is one of the hotspots for tropical deforestation over recent decades. The extent of the tropical SEA deforestation rate, as well as its impacts on carbon cycle and biodiversity, however, is still highly uncertain. In relevant work using high resolution global maps of the 21st-century forest cover, we find tropical SEA lost 22 million hectares, or 9%, of forest area during 2000-2014, a much higher deforestation rate than previously reported. Here we further conduct research investigating carbon emissions from tropical deforestation in SEA with satellite data of forest cover, a global tropical forest biomass map, and Earth system models. Preliminary results suggest that deforestation in SEA causes about 2.8 Tg C emissions to the atmosphere during the same period, also higher than that of previous studies. Meanwhile, carbon emission from deforestation shows high variations across different countries, topography and between the insular and maritime SEA. Indonesia and Malaysia tops in both total carbon loss and loss from per unit land area. Our results indicates that previous studies have underestimated the carbon loss due to deforestation in SEA. And until further effective forest conservation measures can be adopted, tropical SEA will continue playing a role of atmospheric carbon source in the coming decades.

  6. Variation in wood anatomy of species with a distribution covering both rain forest and savanna areas of the Ivory Coast, West-Africa

    NARCIS (Netherlands)

    Outer, den R.W.; Veenendaal, van W.L.H.

    1976-01-01

    The variation in wood anatomy within 30 hardwood species, each with a distribution covering both rain forest and savanna areas of the Ivory Coast, Africa, has been studied. Compared to specimens from the rain forest, material from the savanna tends to have more wood ray tissue (rays are higher,

  7. Forests in a water limited world under climate change

    International Nuclear Information System (INIS)

    Mátyás, Csaba; Sun, Ge

    2014-01-01

    The debate on ecological and climatic benefits of planted forests at the sensitive dry edge of the closed forest belt (i.e. at the ‘xeric limits’) is still unresolved. Forests sequester atmospheric carbon dioxide, accumulate biomass, control water erosion and dust storms, reduce river sedimentation, and mitigate small floods. However, planting trees in areas previously dominated by grassland or cropland can dramatically alter the energy and water balances at multiple scales. The forest/grassland transition zone is especially vulnerable to projected drastic temperature and precipitation shifts and growing extremes due to its high ecohydrological sensitivity. We investigated some of the relevant aspects of the ecological and climatic role of forests and potential impacts of climate change at the dryland margins of the temperate-continental zone using case studies from China, the United States and SE Europe (Hungary). We found that, contrary to popular expectations, the effects of forest cover on regional climate might be limited and the influence of forestation on water resources might be negative. Planted forests generally reduce stream flow and lower groundwater table level because of higher water use than previous land cover types. Increased evaporation potential due to global warming and/or extreme drought events is likely to reduce areas that are appropriate for tree growth and forest establishment. Ecologically conscious forest management and forestation planning should be adjusted to the local, projected hydrologic and climatic conditions, and should also consider non-forest alternative land uses. (paper)

  8. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  9. Taboos and forest governance: informal protection of hot spot dry forest in southern Madagascar.

    Science.gov (United States)

    Tengö, Maria; Johansson, Kristin; Rakotondrasoa, Fanambinantsoa; Lundberg, Jakob; Andriamaherilala, Jean-Aimé; Rakotoarisoa, Jean-Aimé; Elmqvist, Thomas

    2007-12-01

    In the dry forest of southern Madagascar, a region of global conservation priority, formally protected areas are nearly totally absent. We illustrate how the continued existence of unique forest habitats in the Androy region is directly dependent on informal institutions, taboos, regulating human behavior. Qualitative interviews to map and analyze the social mechanisms underlying forest protection have been combined with vegetation analyses of species diversity and composition. Of 188 forest patches, 93% were classified as protected, and in Southern Androy all remaining forest patches larger than 5 ha were protected. Eight different types of forests, with a gradient of social fencing from open access to almost complete entry prohibitions, were identified. Transgressions were well enforced with strong sanctions of significant economic as well as religious importance. Analyses of species diversity between protected and unprotected forests were complicated because of size differences and access restrictions. However, since, for example, in southern Androy >90% of the total remaining forest cover is protected through taboos, these informal institutions represent an important, and presently the only, mechanism for conservation of the highly endemic forest species. We conclude that social aspects, such as local beliefs and legitimate sanctioning systems, need to be analyzed and incorporated along with biodiversity studies for successful conservation.

  10. EnviroAtlas - Land Cover for the Conterminous United States

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset represents the percentage of land area that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006...

  11. The effects of climate stability on northern temperate forests

    DEFF Research Database (Denmark)

    Ma, Ziyu

    2016-01-01

    a small subset of phylogenetic lineages. For current climate change, I examined the broad-scale dynamics of climate-sensitive boreal forest on a decadal time scale. Using global remote sensing data and machine learning, I tested for associations between spatial patterns of tree cover change with possible...... drivers, i.e., climate anomalies, permafrost, fire, and human activities from years 2000 to 2010. The results showed tree cover change links to fire prevalence and rising temperature in permafrost zones, suggesting impacts of permafrost thawing on large-scale tree cover dynamics in the boreal zone...

  12. Extreme differences in forest degradation in Borneo: comparing practices in Sarawak, Sabah, and Brunei.

    Directory of Open Access Journals (Sweden)

    Jane E Bryan

    Full Text Available The Malaysian states of Sabah and Sarawak are global hotspots of forest loss and degradation due to timber and oil palm industries; however, the rates and patterns of change have remained poorly measured by conventional field or satellite approaches. Using 30 m resolution optical imagery acquired since 1990, forest cover and logging roads were mapped throughout Malaysian Borneo and Brunei using the Carnegie Landsat Analysis System. We uncovered ∼364,000 km of roads constructed through the forests of this region. We estimated that in 2009 there were at most 45,400 km(2 of intact forest ecosystems in Malaysian Borneo and Brunei. Critically, we found that nearly 80% of the land surface of Sabah and Sarawak was impacted by previously undocumented, high-impact logging or clearing operations from 1990 to 2009. This contrasted strongly with neighbouring Brunei, where 54% of the land area remained covered by unlogged forest. Overall, only 8% and 3% of land area in Sabah and Sarawak, respectively, was covered by intact forests under designated protected areas. Our assessment shows that very few forest ecosystems remain intact in Sabah or Sarawak, but that Brunei, by largely excluding industrial logging from its borders, has been comparatively successful in protecting its forests.

  13. Predicting Pinus monophylla forest cover in the Baja California Desert by remote sensing

    Directory of Open Access Journals (Sweden)

    Jonathan G. Escobar-Flores

    2018-04-01

    Full Text Available The Californian single-leaf pinyon (Pinus monophylla var. californiarum, a subspecies of the single-leaf pinyon (the world’s only one-needled pine, inhabits semi-arid zones of the Mojave Desert (southern Nevada and southeastern California, US and also of northern Baja California (Mexico. This tree is distributed as a relict subspecies, at elevations of between 1,010 and 1,631 m in the geographically isolated arid Sierra La Asamblea, an area characterized by mean annual precipitation levels of between 184 and 288 mm. The aim of this research was (i to estimate the distribution of P. monophylla var. californiarum in Sierra La Asamblea by using Sentinel-2 images, and (ii to test and describe the relationship between the distribution of P. monophylla and five topographic and 18 climate variables. We hypothesized that (i Sentinel-2 images can be used to predict the P. monophylla distribution in the study site due to the finer resolution (×3 and greater number of bands (×2 relative to Landsat-8 data, which is publically available free of charge and has been demonstrated to be useful for estimating forest cover, and (ii the topographical variables aspect, ruggedness and slope are particularly important because they represent important microhabitat factors that can determine the sites where conifers can become established and persist. An atmospherically corrected a 12-bit Sentinel-2A MSI image with 10 spectral bands in the visible, near infrared, and short-wave infrared light region was used in combination with the normalized differential vegetation index (NDVI. Supervised classification of this image was carried out using a backpropagation-type artificial neural network algorithm. Stepwise multiple linear binominal logistical regression and Random Forest classification including cross validation were used to model the associations between presence/absence of P. monophylla and the five topographical and 18 climate variables. Using supervised

  14. Amazonia: Burning and global climate impacts

    International Nuclear Information System (INIS)

    Molion, L.C.B.

    1991-01-01

    In recent years, humans have been playing a major role in reducing the natural forest cover in the tropics through different forms of slash and burn. The most serious destruction, it is said, is occurring in the Amazon, which is the largest expanse of tropical forest remaining on the planet. This chapter reviews briefly the causes and the extent of Amazonian deforestation and focuses on its global and local climate impacts. In addition, the effects of loss of diversity and need to preserve Indian cultures and societies are briefly discussed

  15. Using indigenous knowledge to link hyper-temporal land cover mapping with land use in the Venezuelan Amazon: "The Forest Pulse".

    Science.gov (United States)

    Olivero, Jesús; Ferri, Francisco; Acevedo, Pelayo; Lobo, Jorge M; Fa, John E; Farfán, Miguel Á; Romero, David; Real, Raimundo

    2016-12-01

    Remote sensing and traditional ecological knowledge (TEK) can be combined to advance conservation of remote tropical regions, e.g. Amazonia, where intensive in situ surveys are often not possible. Integrating TEK into monitoring and management of these areas allows for community participation, as well as for offering novel insights into sustainable resource use. In this study, we developed a 250 m resolution land-cover map of the Western Guyana Shield (Venezuela) based on remote sensing, and used TEK to validate its relevance for indigenous livelihoods and land uses. We first employed a hyper-temporal remotely sensed vegetation index to derive a land classification system. During a 1 300 km, eight day fluvial expedition in roadless areas in the Amazonas State (Venezuela), we visited six indigenous communities who provided geo-referenced data on hunting, fishing and farming activities. We overlaid these TEK data onto the land classification map, to link land classes with indigenous use. We characterized land classes using patterns of greenness temporal change and topo-hydrological information, and proposed 12 land-cover types, grouped into five main landscapes: 1) water bodies; 2) open lands/forest edges; 3) evergreen forests; 4) submontane semideciduous forests, and 5) cloud forests. Each land cover class was identified with a pulsating profile describing temporal changes in greenness, hence we labelled our map as "The Forest Pulse". These greenness profiles showed a slightly increasing trend, for the period 2000 to 2009, in the land classes representing grassland and scrubland, and a slightly decreasing trend in the classes representing forests. This finding is consistent with a gain in carbon in grassland as a consequence of climate warming, and also with some loss of vegetation in the forests. Thus, our classification shows potential to assess future effects of climate change on landscape. Several classes were significantly connected with agriculture, fishing

  16. Edge effects resulting from forest fragmentation enhance carbon uptake and its vulnerability to climate change in temperate broadleaf forests

    Science.gov (United States)

    Reinmann, A.; Hutyra, L.

    2016-12-01

    Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.

  17. Mapping of forest disturbance magnitudes across the US National Forest System

    Science.gov (United States)

    Hernandez, A. J.; Healey, S. P.; Ramsey, R. D.; McGinty, C.; Garrard, C.; Lu, N.; Huang, C.

    2013-12-01

    A precise record in conjunction with ongoing monitoring of carbon pools constitutes essentials inputs for the continuous modernization of an ever- dynamic science such as climate change. This is particularly important in forested ecosystems for which accurate field archives are available and can be used in combination with historic satellite imagery to obtain spatially explicit estimates of several indicators that can be used in the assessment of said carbon pools. Many forest disturbance processes limit storage of carbon in forested ecosystems and thereby reduce those systems' capacity to mitigate changes in the global climate system. A component of the US National Forest System's (NFS) comprehensive plan for carbon monitoring includes accounting for mapped disturbances, such as fires, harvests, and insect activity. A long-term time series of maps that show the timing, extent, type, and magnitude of disturbances going back to 1990 has been prepared for the United States Forest Service (USFS) Northern Region, and is currently under preparation for the rest of the NFS regions covering more than 75 million hectares. Our mapping approach starts with an automated initial detection of annual disturbances using imagery captured within the growing season from the Landsat archive. Through a meticulous process, the initial detections are then visually inspected, manually corrected and labeled using various USFS ancillary datasets and Google Earth high-resolution historic imagery. We prepared multitemporal models of percent canopy cover and live tree carbon (T/ha) that were calibrated with extensive (in excess of 2000 locations) field data from the US Forest Service Forest Inventory and Analysis program (FIA). The models were then applied to all the years of the radiometrically corrected and normalized Landsat time series in order to provide annual spatially explicit estimates of the magnitude of change in terms of these two attributes. Our results provide objective, widely

  18. ORGANIC MATTER AND AGGREGATION OF A PLANOSOL UNDER DIFFERENT FOREST COVERINGS

    Directory of Open Access Journals (Sweden)

    Julia Kishida Bochner

    2008-03-01

    Full Text Available The litter quality can alter soil aggregation, modifying the transformation dynamics and allocation of soil carbon (Cin different compartments. This study evaluated the aggregate stability and its relation with litter chemical characteristics, organiccarbon and free light fraction (FLL from the organic matter under three different types of vegetation covering: secondary forest (FSand plantings of Mimosa Caesalpiniaefolia (PM and Carapa guianenses (PA with subsequently natural regeneration. Litter sampleswere characterized using polyfenols, lignin, suberine, tannin and holocelulose content and C/N relationship. Soil samples werecollected in two depths (0-10 and 10-20 cm and soil aggregation were estimate using mean weight diameter (DMP, mean geometricdiameter (DMG and index of aggregate stability (IEA analysis . Soil samples in the same depths were also characterized using C andFLL content. The highest suberine and polyfenols content of the litter found in the areas FS and PM reduced the speed of residuesdecomposition in the soil causing larger FLL content in both coverings. Those compositions contributed to the stabilization of C in themineral phase, because the highest C content was found in those areas. This fact is confirmed by the values of DMP, DMG and IEAamong the areas. They are higher in the coverings, PM and FS. It can be concluded that the polyfenols and suberine content weredecisive in the subdivision of C and in the aggregation of the soil in the areas of FS and PM.

  19. The potential negative impacts of global climate change on tropical montane cloud forests

    Science.gov (United States)

    Foster, Pru

    2001-10-01

    Nearly every aspect of the cloud forest is affected by regular cloud immersion, from the hydrological cycle to the species of plants and animals within the forest. Since the altitude band of cloud formation on tropical mountains is limited, the tropical montane cloud forest occurs in fragmented strips and has been likened to island archipelagoes. This isolation and uniqueness promotes explosive speciation, exceptionally high endemism, and a great sensitivity to climate. Global climate change threatens all ecosystems through temperature and rainfall changes, with a typical estimate for altitude shifts in the climatic optimum for mountain ecotones of hundreds of meters by the time of CO 2 doubling. This alone suggests complete replacement of many of the narrow altitude range cloud forests by lower altitude ecosystems, as well as the expulsion of peak residing cloud forests into extinction. However, the cloud forest will also be affected by other climate changes, in particular changes in cloud formation. A number of global climate models suggest a reduction in low level cloudiness with the coming climate changes, and one site in particular, Monteverde, Costa Rica, appears to already be experiencing a reduction in cloud immersion. The coming climate changes appear very likely to upset the current dynamic equilibrium of the cloud forest. Results will include biodiversity loss, altitude shifts in species' ranges and subsequent community reshuffling, and possibly forest death. Difficulties for cloud forest species to survive in climate-induced migrations include no remaining location with a suitable climate, no pristine location to colonize, migration rates or establishment rates that cannot keep up with climate change rates and new species interactions. We review previous cloud forest species redistributions in the paleo-record in light of the coming changes. The characteristic epiphytes of the cloud forest play an important role in the light, hydrological and nutrient

  20. Public policies and communication affecting forest cover in the Amazon

    Science.gov (United States)

    Kawakami Savaget, E.; Batistella, M.; Aguiar, A. P. D.

    2014-12-01

    The research program Amazalert was based on information delivered by the IPCC through its 2007 report, which indicates forest degradation processes in the Amazonian region as a consequence of anthropogenic actions. Such processes affecting the structural and functional characteristics of ecosystems would harm environmental services that guarantee, for example, the regulation of climate and the provision of fresh water. A survey was organized, through a multidisciplinary perspective, on the main policies and programs that can affect forest cover in the Amazon. These rules and norms seek to regulate societal actions by defining a developmental model for the region. Although deforestation rates in the Brazilian Amazon have decreased significantly since 2004, some locations maintain high levels of deforestation. In 2013, for example, the municipalities of Monte Alegre, Óbidos, Alenquer, Oriximiná, Curuá and Almeirin, in the northern region of the state of Para, showed the highest rates of deforestation in the Amazon. Managers and stakeholders within these areas are being interviewed to provide insights on how policies are interpreted and applied locally. There is an understanding delay between discourses normalized by federal governmental institutions and claims of local societies. The possible lack of clarity in official discourses added to the absence of a local communicative dynamics cause the phenomenon of incomplete information. Conflicts often occur in local institutional arenas resulting in violence and complex social and historical dissonances, enhanced by other public policies idealized in different temporal and spatial conditions.

  1. Forests and Forest Cover - DCNR - State Forest Wild and Natural Areas 2015

    Data.gov (United States)

    NSGIC Education | GIS Inventory — The wild and natural areas layer was derived from the state forest boundary coverage which is being updated frequently. It is derived from survey descriptions and...

  2. Intact tropical forests, new evidence they uptake carbon actively

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available According to a paper recently published on Nature, tropical forests play as active carbon sink, absorbing 1.3·109 tons of carbon per year on a global scale. Functional interpretation is not clear yet, but a point is quite easy to realize: tropical forests accumulate and contain more carbon than any other vegetation cover and, if their disruption goes on at current rates, these ecosystems could revert to be a “carbon bomb”, releasing huge amount of CO2 to the atmosphere.

  3. Quantifying forest mortality with the remote sensing of snow

    Science.gov (United States)

    Baker, Emily Hewitt

    Greenhouse gas emissions have altered global climate significantly, increasing the frequency of drought, fire, and pest-related mortality in forests across the western United States, with increasing area affected each year. Associated changes in forests are of great concern for the public, land managers, and the broader scientific community. These increased stresses have resulted in a widespread, spatially heterogeneous decline of forest canopies, which in turn exerts strong controls on the accumulation and melt of the snowpack, and changes forest-atmosphere exchanges of carbon, water, and energy. Most satellite-based retrievals of summer-season forest data are insufficient to quantify canopy, as opposed to the combination of canopy and undergrowth, since the signals of the two types of vegetation greenness have proven persistently difficult to distinguish. To overcome this issue, this research develops a method to quantify forest canopy cover using winter-season fractional snow covered area (FSCA) data from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) snow covered area and grain size (MODSCAG) algorithm. In areas where the ground surface and undergrowth are completely snow-covered, a pixel comprises only forest canopy and snow. Following a snowfall event, FSCA initially rises, as snow is intercepted in the canopy, and then falls, as snow unloads. A select set of local minima in a winter F SCA timeseries form a threshold where canopy is snow-free, but forest understory is snow-covered. This serves as a spatially-explicit measurement of forest canopy, and viewable gap fraction (VGF) on a yearly basis. Using this method, we determine that MODIS-observed VGF is significantly correlated with an independent product of yearly crown mortality derived from spectral analysis of Landsat imagery at 25 high-mortality sites in northern Colorado. (r =0.96 +/-0.03, p =0.03). Additionally, we determine the lag timing between green-stage tree mortality and

  4. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests

    Science.gov (United States)

    Allen, Craig D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, Michel; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.(T.); Gonzalez, P.; Fensham, R.; Zhang, Z.; Castro, J.; Demidova, N.; Lim, J.-H.; Allard, G.; Running, S.W.; Semerci, A.; Cobb, N.

    2010-01-01

    Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.

  5. Ligninolytic Activity at 0 °C of Fungi on Oak Leaves Under Snow Cover in a Mixed Forest in Japan.

    Science.gov (United States)

    Miyamoto, Toshizumi; Koda, Keiichi; Kawaguchi, Arata; Uraki, Yasumitsu

    2017-08-01

    Despite the importance of litter decomposition under snow cover in boreal forests and tundra, very little is known regarding the characteristics and functions of litter-decomposing fungi adapted to the cold climate. We investigated the decomposition of oak leaves in a heavy snowfall forest region of Japan. The rate of litter weight loss reached 26.5% during the snow cover period for 7 months and accounted for 64.6% of the annual loss (41.1%). Although no statistically significant lignin loss was detected, decolourization portions of oak leaf litter, which was attributable to the activities of ligninolytic fungi, were observed during snow cover period. This suggests that fungi involved in litter decomposition can produce extracellular enzymes to degrade lignin that remain active at 0 °C. Fungi were isolated from oak leaves collected from the forest floor under the snow layer. One hundred and sixty-six strains were isolated and classified into 33 operational taxonomic units (OTUs) based on culture characteristics and nuclear rDNA internal transcribed spacer (ITS) region sequences. To test the ability to degrade lignin, the production of extracellular phenoloxidases by isolates was quantified at 0 °C. Ten OTUs (9 Ascomycota and 1 Basidiomycota) of fungi exhibited mycelial growth and ligninolytic activity. These results suggested that some litter-decomposing fungi that had the potential to degrade lignin at 0 °C significantly contribute to litter decomposition under snow cover.

  6. Mapping and analysis land-use and land-cover changes during 1996-2016 in Lubuk Kertang mangrove forest, North Sumatra, Indonesia

    Science.gov (United States)

    Basyuni, M.; Fitri, A.; Harahap, Z. A.

    2018-03-01

    Mangrove forest plays a significant role for biogeochemical carbon cycle in the context of climate change along the tropical coastal area. The present study analyzed the land-use and land-cover changes from 1996, 2006 and 2016 in Lubuk Kertang mangrove forest, Langkat, North Sumatra, Indonesia. Mangrove diversity in Lubuk Kertang consists of fifteen species, Acanthus ilicifolius, Avicennia marina, A. lanata, A. officinalis, Bruguiera gymnorrhiza, B. sexangula, Ceriops tagal, Excoecaria agallocha, Lumnitzera racemosa, L. littorea, R. apiculata, R. mucronata, Scyphiphora hydrophyllacea, Sonneratia caseolaris, and Xylocarpus granatum. The land use/land cover consists of seven classes namely, mangrove forest, river, residential, paddy field, oil palm plantation, aquaculture, and open space area. A land use change matrix showed that the decrease of mangrove forest 109.4 ha from 1996-2006 converted to aquaculture 51.5 ha (47.1%). By contrast, mangrove lost 291.2 ha during 2006-2016, with main driver deforestation was oil palm plantation 128.1 ha (44%). During twenty years mangrove forest has been lost more than 400.4 ha, which is equal to 20.02 ha/year. On the other hand, oil palm plantation and aquaculture have been increased 155.3 ha and 114.1 ha during 1996-2016, respectively, suggested that both land-uses are mainly responsible for mangrove deforestation. These data are likely to contribute towards coastal management planning and practice and mitigating actions for emission reduction scenario.

  7. Modeled impact of anthropogenic land cover change on climate

    Science.gov (United States)

    Findell, K.L.; Shevliakova, E.; Milly, P.C.D.; Stouffer, R.J.

    2007-01-01

    Equilibrium experiments with the Geophysical Fluid Dynamics Laboratory's climate model are used to investigate the impact of anthropogenic land cover change on climate. Regions of altered land cover include large portions of Europe, India, eastern China, and the eastern United States. Smaller areas of change are present in various tropical regions. This study focuses on the impacts of biophysical changes associated with the land cover change (albedo, root and stomatal properties, roughness length), which is almost exclusively a conversion from forest to grassland in the model; the effects of irrigation or other water management practices and the effects of atmospheric carbon dioxide changes associated with land cover conversion are not included in these experiments. The model suggests that observed land cover changes have little or no impact on globally averaged climatic variables (e.g., 2-m air temperature is 0.008 K warmer in a simulation with 1990 land cover compared to a simulation with potential natural vegetation cover). Differences in the annual mean climatic fields analyzed did not exhibit global field significance. Within some of the regions of land cover change, however, there are relatively large changes of many surface climatic variables. These changes are highly significant locally in the annual mean and in most months of the year in eastern Europe and northern India. They can be explained mainly as direct and indirect consequences of model-prescribed increases in surface albedo, decreases in rooting depth, and changes of stomatal control that accompany deforestation. ?? 2007 American Meteorological Society.

  8. Evaluating the Contribution of Climate Forcing and Forest Dynamics to Accelerating Carbon Sequestration by Forest Ecosystems in the Northeastern U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Fitzjarrald, David Roy [Atmos Sciences Res Ctr

    2013-09-11

    We used 10 Hz eddy flux signals and 0.2 Hz incident radiation (global shortwave and PAR) records from Harvard Forest (Massachusetts) and Tapajos National Forest (Brazil) to establish empirical relationships among directly measured cloud type and cover percentage and corresponding PAR fluctuations and its diffuse fraction. In future work such a cloud characterization will be related to water and light use efficiency estimates for each of these ecosystems. We developed empirical relationships to link sky cover type and fraction (measured with the ceilometer) to incident direct and diffuse PAR. We developed a methodology for constructing synthetic incident solar radiation time series based on operational reports of sky cover and cloud type from National Weather Service METAR reports. The aim of this work is to document the temporal and spectral properties radiation incident on the canopy, as a first step toward developing a sky-type parameterization for the net carbon uptake models.

  9. L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark

    DEFF Research Database (Denmark)

    Joshi, Neha P.; Mitchard, Edward T A; Schumacher, Johannes

    2015-01-01

    may be confounded by variations in biophysical forest structure (density, height or cover fraction) and differences in the resolution of satellite and ground data. Here, we attempt to quantify the effect of these factors by relating L-band ALOS PALSAR HV backscatter and unique country-wide Li...

  10. An analysis of forest land use, forest land cover, and change at policy-relevant scales

    Science.gov (United States)

    John W. Coulston; Greg Reams; Dave N. Wear; C. Kenneth Brewer

    2014-01-01

    Quantifying the amount of forest and change in the amount of forest are key to ensure that appropriate management practices and policies are in place to maintain the array of ecosystem services provided by forests. There are a range of analytical techniques and data available to estimate these forest parameters, however, not all ‘forest’ is the same and various...

  11. Land cover and forest formation distributions for St. Kitts, Nevis, St. Eustatius, Grenada and Barbados from decision tree classification of cloud-cleared satellite imagery

    Science.gov (United States)

    Helmer, E.H.; Kennaway, T.A.; Pedreros, D.H.; Clark, M.L.; Marcano-Vega, H.; Tieszen, L.L.; Ruzycki, T.R.; Schill, S.R.; Carrington, C.M.S.

    2008-01-01

    Satellite image-based mapping of tropical forests is vital to conservation planning. Standard methods for automated image classification, however, limit classification detail in complex tropical landscapes. In this study, we test an approach to Landsat image interpretation on four islands of the Lesser Antilles, including Grenada and St. Kitts, Nevis and St. Eustatius, testing a more detailed classification than earlier work in the latter three islands. Secondly, we estimate the extents of land cover and protected forest by formation for five islands and ask how land cover has changed over the second half of the 20th century. The image interpretation approach combines image mosaics and ancillary geographic data, classifying the resulting set of raster data with decision tree software. Cloud-free image mosaics for one or two seasons were created by applying regression tree normalization to scene dates that could fill cloudy areas in a base scene. Such mosaics are also known as cloud-filled, cloud-minimized or cloud-cleared imagery, mosaics, or composites. The approach accurately distinguished several classes that more standard methods would confuse; the seamless mosaics aided reference data collection; and the multiseason imagery allowed us to separate drought deciduous forests and woodlands from semi-deciduous ones. Cultivated land areas declined 60 to 100 percent from about 1945 to 2000 on several islands. Meanwhile, forest cover has increased 50 to 950%. This trend will likely continue where sugar cane cultivation has dominated. Like the island of Puerto Rico, most higher-elevation forest formations are protected in formal or informal reserves. Also similarly, lowland forests, which are drier forest types on these islands, are not well represented in reserves. Former cultivated lands in lowland areas could provide lands for new reserves of drier forest types. The land-use history of these islands may provide insight for planners in countries currently considering

  12. Forest inventory in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Bo, Sit [Forest Resource Div., Forest Department (Myanmar)

    1993-10-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  13. Forest inventory in Myanmar

    International Nuclear Information System (INIS)

    Sit Bo

    1993-01-01

    Forest inventory in Myanmar started in 1850s. Up till 1975, Myanmar Forest Department conducted forest inventories covering approximately one forest division every year. The National Forest Survey and Inventory Project funded by UNDP and assisted by FAO commenced in 1981 and the National Forest Management and Inventory project followed in 1986. Up till end March 1993, pre-investment inventory has covered 26.7 million acres, reconnaissance inventory 5.4 million acres and management inventory has carried out in 12 townships

  14. The deep human prehistory of global tropical forests and its relevance for modern conservation.

    Science.gov (United States)

    Roberts, Patrick; Hunt, Chris; Arroyo-Kalin, Manuel; Evans, Damian; Boivin, Nicole

    2017-08-03

    Significant human impacts on tropical forests have been considered the preserve of recent societies, linked to large-scale deforestation, extensive and intensive agriculture, resource mining, livestock grazing and urban settlement. Cumulative archaeological evidence now demonstrates, however, that Homo sapiens has actively manipulated tropical forest ecologies for at least 45,000 years. It is clear that these millennia of impacts need to be taken into account when studying and conserving tropical forest ecosystems today. Nevertheless, archaeology has so far provided only limited practical insight into contemporary human-tropical forest interactions. Here, we review significant archaeological evidence for the impacts of past hunter-gatherers, agriculturalists and urban settlements on global tropical forests. We compare the challenges faced, as well as the solutions adopted, by these groups with those confronting present-day societies, which also rely on tropical forests for a variety of ecosystem services. We emphasize archaeology's importance not only in promoting natural and cultural heritage in tropical forests, but also in taking an active role to inform modern conservation and policy-making.

  15. Mekong Land Cover Dasboard: Regional Land Cover Mointoring Systems

    Science.gov (United States)

    Saah, D. S.; Towashiraporn, P.; Aekakkararungroj, A.; Phongsapan, K.; Triepke, J.; Maus, P.; Tenneson, K.; Cutter, P. G.; Ganz, D.; Anderson, E.

    2016-12-01

    SERVIR-Mekong, a USAID-NASA partnership, helps decision makers in the Lower Mekong Region utilize GIS and Remote Sensing information to inform climate related activities. In 2015, SERVIR-Mekong conducted a geospatial needs assessment for the Lower Mekong countries which included individual country consultations. The team found that many countries were dependent on land cover and land use maps for land resource planning, quantifying ecosystem services, including resilience to climate change, biodiversity conservation, and other critical social issues. Many of the Lower Mekong countries have developed national scale land cover maps derived in part from remote sensing products and geospatial technologies. However, updates are infrequent and classification systems do not always meet the needs of key user groups. In addition, data products stop at political boundaries and are often not accessible making the data unusable across country boundaries and with resource management partners. Many of these countries rely on global land cover products to fill the gaps of their national efforts, compromising consistency between data and policies. These gaps in national efforts can be filled by a flexible regional land cover monitoring system that is co-developed by regional partners with the specific intention of meeting national transboundary needs, for example including consistent forest definitions in transboundary watersheds. Based on these facts, key regional stakeholders identified a need for a land cover monitoring system that will produce frequent, high quality land cover maps using a consistent regional classification scheme that is compatible with national country needs. SERVIR-Mekong is currently developing a solution that leverages recent developments in remote sensing science and technology, such as Google Earth Engine (GEE), and working together with production partners to develop a system that will use a common set of input data sources to generate high

  16. Simultaneous reproduction of global carbon exchange and storage of terrestrial forest ecosystems

    Science.gov (United States)

    Kondo, M.; Ichii, K.

    2012-12-01

    Understanding the mechanism of the terrestrial carbon cycle is essential for assessing the impact of climate change. Quantification of both carbon exchange and storage is the key to the understanding, but it often associates with difficulties due to complex entanglement of environmental and physiological factors. Terrestrial ecosystem models have been the major tools to assess the terrestrial carbon budget for decades. Because of its strong association with climate change, carbon exchange has been more rigorously investigated by the terrestrial biosphere modeling community. Seeming success of model based assessment of carbon budge often accompanies with the ill effect, substantial misrepresentation of storage. In practice, a number of model based analyses have paid attention solely on terrestrial carbon fluxes and often neglected carbon storage such as forest biomass. Thus, resulting model parameters are inevitably oriented to carbon fluxes. This approach is insufficient to fully reduce uncertainties about future terrestrial carbon cycles and climate change because it does not take into account the role of biomass, which is equivalently important as carbon fluxes in the system of carbon cycle. To overcome this issue, a robust methodology for improving the global assessment of both carbon budget and storage is needed. One potentially effective approach to identify a suitable balance of carbon allocation proportions for each individual ecosystem. Carbon allocations can influence the plant growth by controlling the amount of investment acquired from photosynthesis, as well as carbon fluxes by controlling the carbon content of leaves and litter, both are active media for photosynthesis and decomposition. Considering those aspects, there may exist the suitable balance of allocation proportions enabling the simultaneous reproduction of carbon budget and storage. The present study explored the existence of such suitable balances of allocation proportions, and examines the

  17. Soil dynamics and carbon stocks 10 years after restoration of degraded land using Atlantic Forest tree species

    Science.gov (United States)

    Lauro R. Nogueira; José Leonardo M. Goncalves; Vera L. Engel; John A. Parrotta

    2011-01-01

    Brazil’s Atlantic Forest ecosystem has been greatly affected by land use changes, with only 11.26% of its original vegetation cover remaining. Currently, Atlantic Forest restoration is receiving increasing attention because of its potential for carbon sequestration and the important role of soil carbon in the global carbon balance. Soil organic matter is also essential...

  18. Tropical forest degradation monitoring using ETM+ and MODIS remote sensing data in the Peninsular Malaysia

    International Nuclear Information System (INIS)

    Hashim, M; Pour, A B; Chong, K W

    2014-01-01

    This study was undertaken in order to test the use of remote sensing technology to assess forest degradation in the Peninsular Malaysia. In order to analyse the effect of spatial resolution on forest degradation assessment, course and moderate spatial resolution remote sensing data were examined in this study. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was used as coarse spatial resolution data, while Landsat Enhanced Thematic Mapper + (ETM + ) imagery was used as moderate spatial resolution to compare the accuracy. Geometric and radiometric correction and re-sampling were performed in preprocessing section to enhance the analysis and results. Canopy fractional cover was used as an approach to assess the forest degradation in this study. Then, an optimum vegetation index was selected to apply on canopy fractional cover to enhance the detection of forest canopy damage. At the same time, accuracy assessment for the approach was referred to the location of Neobalanocarpus Heimii and correlate with global evapotranspiration rate. The forest degradation analysis was also applied and compared for all of the states in the Peninsular Malaysia. In conclusion, Landsat ETM + imagery obtained higher accuracy compare to MODIS using canopy fractional cover approach for forest degradation assessment, and can be more broadly applicable to use for forest degradation investigation

  19. Climate change and forests in India: note from the guest editors

    Energy Technology Data Exchange (ETDEWEB)

    Ravindtranath, N.H.; Aaheim, Asbjporn

    2010-12-23

    Forestry is one of the most important sectors in the context of climate change. It lies at the center-stage of global mitigation and adaptation efforts. Yet, it is one of the least understood sectors, especially in tropical zones, which constitute a significant portion of the global forests. Recently, there has been a growing interest in forests in addressing global climate change. The IPCC Assessment Report 4 (2007) Chapters related to forests have highlighted the limited number of studies on the impact of climate change on forests at the regional, national and sub-national level, while policy makers need information at these scales. Further, implication of projected climate change on mitigation potential of forest sector is only briefly mentioned in the IPCC report, with limited literature to support the conclusions. India is one among the top ten nations in the world in terms of forest cover. It is also sixth among the tropical countries in terms of forested area. As IPCC Assessment Report 5 work is about to be initiated soon, studies on the impact of climate change on forests as well as the mitigation potential of the forest sector, particularly at regional and national level, will be of great interest to the scientific and policy community. In order to conserve the carbon stored in forests and to reduce CO2 emissions from the forest sector, the Reduced Emissions from Deforestation and Degradation (REDD) mechanism is now being finalized under the UNFCCC. In this context, climate change itself may affect the mitigation potential significantly, and it is important to understand how vulnerable the forest carbon stock (biomass and soil) in the tropics is to the projected climate change. In fact, there is a need to study the impact of climate change on forests for all the major forested countries

  20. Dynamics of forest cover conversion in and around Bwindi ...

    African Journals Online (AJOL)

    Michael Horsfall

    together determine the rates of deforestation in any particular place (Luoga et al., 2005). The conversions have not spared the forests in and around Bwindi impenetrable forest in Southern western Uganda. The protected forest has a unique eco-system with diverse gene reserves with worldwide interest. It is most popular for ...

  1. Stratifying FIA Ground Plots Using A 3-Year Old MRLC Forest Cover Map and Current TM Derived Variables Selected By "Decision Tree" Classification

    Science.gov (United States)

    Michael Hoppus; Stan Arner; Andrew Lister

    2001-01-01

    A reduction in variance for estimates of forest area and volume in the state of Connecticut was accomplished by stratifying FIA ground plots using raw, transformed and classified Landsat Thematic Mapper (TM) imagery. A US Geological Survey (USGS) Multi-Resolution Landscape Characterization (MRLC) vegetation cover map for Connecticut was used to produce a forest/non-...

  2. Effectiveness of Africa's tropical protected areas for maintaining forest cover.

    Science.gov (United States)

    Bowker, J N; De Vos, A; Ament, J M; Cumming, G S

    2017-06-01

    The effectiveness of parks for forest conservation is widely debated in Africa, where increasing human pressure, insufficient funding, and lack of management capacity frequently place significant demands on forests. Tropical forests house a substantial portion of the world's remaining biodiversity and are heavily affected by anthropogenic activity. We analyzed park effectiveness at the individual (224 parks) and national (23 countries) level across Africa by comparing the extent of forest loss (as a proxy for deforestation) inside parks to matched unprotected control sites. Although significant geographical variation existed among parks, the majority of African parks had significantly less forest loss within their boundaries (e.g., Mahale Park had 34 times less forest loss within its boundary) than control sites. Accessibility was a significant driver of forest loss. Relatively inaccessible areas had a higher probability (odds ratio >1, p < 0.001) of forest loss but only in ineffective parks, and relatively accessible areas had a higher probability of forest loss but only in effective parks. Smaller parks less effectively prevented forest loss inside park boundaries than larger parks (T = -2.32, p < 0.05), and older parks less effectively prevented forest loss inside park boundaries than younger parks (F 2,154 = -4.11, p < 0.001). Our analyses, the first individual and national assessment of park effectiveness across Africa, demonstrated the complexity of factors (such as geographical variation, accessibility, and park size and age) influencing the ability of a park to curb forest loss within its boundaries. © 2016 Society for Conservation Biology.

  3. Anuran assemblage on forest edges in Datu Salumay, Davao City, Philippines

    Directory of Open Access Journals (Sweden)

    Christelle Mae M. Dacalus

    2017-12-01

    Full Text Available Forest fragmentation due to anthropogenic encroachment has been associated with changes in abiotic conditions known as edge effect. This condition plays a major role in the amphibian decline globally. A five-day sampling in a regenerating forest of So. Maharlika, Barangay Datu Salumay, Marilog District, Davao City, Philippines was conducted to test effect of forest edges on a local forest. Visual encounter technique was employed surveying quadrats (10 x 10 meters established along a main transect (1 km long. The first 500 meters of the main transect served as the edge while the rest constituted the forest interior. Data on canopy cover, termperature, and humidity from each site were contrasted with species endemism and diversity to determine influence of differing edge and forest interior conditions. Eight species of frogs were captured: five belongs to the Family Rhacophoridae and one species each belong to the Families Megophryidae, Microhylidae, and Dicroglossidae. No significant difference was noted of the data on canopy cover, temperature, and humidity in both forest edge and interior. Six anuran species were accounted each in the forest edge and interior, although more endemic species were recorded from the forest interior. Current results maybe suggestive of the possible impact of edges on anuran species although more data is required to validate this claim.

  4. Global climate change mitigation and sustainable forest management--The challenge of monitoring and verification

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.

    1997-12-31

    In this paper, sustainable forest management is discussed within the historical and theoretical framework of the sustainable development debate. The various criteria and indicators for sustainable forest management put forth by different institutions are critically explored. Specific types of climate change mitigation policies/projects in the forest sector are identified and examined in the light of the general criteria for sustainable forest management. Areas of compatibility and contradiction between the climate mitigation objectives and the minimum criteria for sustainable forest management are identified and discussed. Emphasis is put on the problems of monitoring and verifying carbon benefits associated with such projects given their impacts on pre-existing policy objectives on sustainable forest management. The implications of such policy interactions on assignment of carbon credits from forest projects under Joint Implementation/Activities Implemented Jointly initiatives are discussed. The paper concludes that a comprehensive monitoring and verification regime must include an impact assessment on the criteria covered under other agreements such as the Biodiversity and/or Desertification Conventions. The actual carbon credit assigned to a specific project should at least take into account the negative impacts on the criteria for sustainable forest management. The value of the impacts and/or the procedure to evaluate them need to be established by interested parties such as the Councils of the respective Conventions.

  5. Threats from urban expansion, agricultural transformation and forest loss on global conservation priority areas

    Science.gov (United States)

    Moilanen, Atte; Di Minin, Enrico

    2017-01-01

    Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results

  6. Non-linear Feedbacks Between Forest Mortality and Climate Change: Implications for Snow Cover, Water Resources, and Ecosystem Recovery in Western North America (Invited)

    Science.gov (United States)

    Brooks, P. D.; Harpold, A. A.; Biederman, J. A.; Gochis, D. J.; Litvak, M. E.; Ewers, B. E.; Broxton, P. D.; Reed, D. E.

    2013-12-01

    Unprecedented levels of tree mortality from insect infestation and wildfire are dramatically altering forest structure and composition in Western North America. Warming temperatures and increased drought stress have been implicated as major factors in the increasing spatial extent and frequency of these forest disturbances, but it is unclear how these changes in forest structure will interact with ongoing climate change to affect snowmelt water resources either for society or for ecosystem recovery following mortality. Because surface discharge, groundwater recharge, and ecosystem productivity all depend on seasonal snowmelt, a critical knowledge gap exists not only in predicting discharge, but in quantifying spatial and temporal variability in the partitioning of snowfall into abiotic vapor loss, plant available water, recharge, and streamflow within the complex mosaic of forest disturbance and topography that characterizes western mountain catchments. This presentation will address this knowledge gap by synthesizing recent work on snowpack dynamics and ecosystem productivity from seasonally snow-covered forests along a climate gradient from Arizona to Wyoming; including undisturbed sites, recently burned forests, and areas of extensive insect-induced forest mortality. Both before-after and control-impacted studies of forest disturbance on snow accumulation and ablation suggest that the spatial scale of snow distribution increases following disturbance, but net snow water input in a warming climate will increase only in topographically sheltered areas. While forest disturbance changes spatial scale of snowpack partitioning, the amount and especially the timing of snow cover accumulation and ablation are strongly related to interannual variability in ecosystem productivity with both earlier snowmelt and later snow accumulation associated with decreased carbon uptake. Empirical analyses and modeling are being developed to identify landscapes most sensitive to

  7. Mapping forest functional type in a forest-shrubland ecotone using SPOT imagery and predictive habitat distribution modelling

    Science.gov (United States)

    Assal, Timothy J.; Anderson, Patrick J.; Sibold, Jason

    2015-01-01

    The availability of land cover data at local scales is an important component in forest management and monitoring efforts. Regional land cover data seldom provide detailed information needed to support local management needs. Here we present a transferable framework to model forest cover by major plant functional type using aerial photos, multi-date Système Pour l’Observation de la Terre (SPOT) imagery, and topographic variables. We developed probability of occurrence models for deciduous broad-leaved forest and needle-leaved evergreen forest using logistic regression in the southern portion of the Wyoming Basin Ecoregion. The model outputs were combined into a synthesis map depicting deciduous and coniferous forest cover type. We evaluated the models and synthesis map using a field-validated, independent data source. Results showed strong relationships between forest cover and model variables, and the synthesis map was accurate with an overall correct classification rate of 0.87 and Cohen’s kappa value of 0.81. The results suggest our method adequately captures the functional type, size, and distribution pattern of forest cover in a spatially heterogeneous landscape.

  8. A Global Analysis of Deforestation in Moist Tropical Forest Protected Areas.

    Science.gov (United States)

    Spracklen, B D; Kalamandeen, M; Galbraith, D; Gloor, E; Spracklen, D V

    2015-01-01

    Protected areas (PAs) have been established to conserve tropical forests, but their effectiveness at reducing deforestation is uncertain. To explore this issue, we combined high resolution data of global forest loss over the period 2000-2012 with data on PAs. For each PA we quantified forest loss within the PA, in buffer zones 1, 5, 10 and 15 km outside the PA boundary as well as a 1 km buffer within the PA boundary. We analysed 3376 tropical and subtropical moist forest PAs in 56 countries over 4 continents. We found that 73% of PAs experienced substantial deforestation pressure, with >0.1% a(-1) forest loss in the outer 1 km buffer. Forest loss within PAs was greatest in Asia (0.25% a(-1)) compared to Africa (0.1% a(-1)), the Neotropics (0.1% a(-1)) and Australasia (Australia and Papua New Guinea; 0.03% a(-1)). We defined performance (P) of a PA as the ratio of forest loss in the inner 1 km buffer compared to the loss that would have occurred in the absence of the PA, calculated as the loss in the outer 1 km buffer corrected for any difference in deforestation pressure between the two buffers. To remove the potential bias due to terrain, we analysed a subset of PAs (n = 1804) where slope and elevation in inner and outer 1 km buffers were similar (within 1° and 100 m, respectively). We found 41% of PAs in this subset reduced forest loss in the inner buffer by at least 25% compared to the expected inner buffer forest loss (P<0.75). Median performance (P) of subset reserves was 0.87, meaning a reduction in forest loss within the PA of 13%. We found PAs were most effective in Australasia (P = 0.16), moderately successful in the Neotropics (P = 0.72) and Africa (p = 0.83), but ineffective in Asia (P = 1). We found many countries have PAs that give little or no protection to forest loss, particularly in parts of Asia, west Africa and central America. Across the tropics, the median effectiveness of PAs at the national level improved with gross domestic product per

  9. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change.

    Science.gov (United States)

    Lladó, Salvador; López-Mondéjar, Rubén; Baldrian, Petr

    2017-06-01

    The ecology of forest soils is an important field of research due to the role of forests as carbon sinks. Consequently, a significant amount of information has been accumulated concerning their ecology, especially for temperate and boreal forests. Although most studies have focused on fungi, forest soil bacteria also play important roles in this environment. In forest soils, bacteria inhabit multiple habitats with specific properties, including bulk soil, rhizosphere, litter, and deadwood habitats, where their communities are shaped by nutrient availability and biotic interactions. Bacteria contribute to a range of essential soil processes involved in the cycling of carbon, nitrogen, and phosphorus. They take part in the decomposition of dead plant biomass and are highly important for the decomposition of dead fungal mycelia. In rhizospheres of forest trees, bacteria interact with plant roots and mycorrhizal fungi as commensalists or mycorrhiza helpers. Bacteria also mediate multiple critical steps in the nitrogen cycle, including N fixation. Bacterial communities in forest soils respond to the effects of global change, such as climate warming, increased levels of carbon dioxide, or anthropogenic nitrogen deposition. This response, however, often reflects the specificities of each studied forest ecosystem, and it is still impossible to fully incorporate bacteria into predictive models. The understanding of bacterial ecology in forest soils has advanced dramatically in recent years, but it is still incomplete. The exact extent of the contribution of bacteria to forest ecosystem processes will be recognized only in the future, when the activities of all soil community members are studied simultaneously. Copyright © 2017 American Society for Microbiology.

  10. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources

    Science.gov (United States)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.

    2007-12-01

    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land

  11. Mapping Forest Biomass Using Remote Sensing and National Forest Inventory in China

    Directory of Open Access Journals (Sweden)

    Ling Du

    2014-06-01

    Full Text Available Quantifying the spatial pattern of large-scale forest biomass can provide a general picture of the carbon stocks within a region and is of great scientific and political importance. The combination of the advantages of remote sensing data and field survey data can reduce uncertainty as well as demonstrate the spatial distribution of forest biomass. In this study, the seventh national forest inventory statistics (for the period 2004–2008 and the spatially explicit MODIS Land Cover Type product (MCD12C1 were used together to quantitatively estimate the spatially-explicit distribution of forest biomass in China (with a resolution of 0.05°, ~5600 m. Our study demonstrated that the calibrated forest cover proportion maps allow proportionate downscaling of regional forest biomass statistics to forest cover pixels to produce a relatively fine-resolution biomass map. The total stock of forest biomass in China was 11.9 Pg with an average of 76.3 Mg ha−1 during the study period; the high values were located in mountain ranges in northeast, southwest and southeast China and were strongly correlated with forest age and forest density.

  12. Observational evidence of changes in global snow and ice cover

    International Nuclear Information System (INIS)

    Barry, R.G.

    1990-01-01

    Sources of observational data on recent variations in the seasonal extent of snow cover and sea ice, of the terminal position and volume of alpine glaciers, and of ground temperature profiles in areas of permafrost are briefly reviewed. Recent evidence of changes in these variables is then examined. The extent of seasonal snow cover in the Northern hemisphere and of sea ice in both hemispheres has fluctuated irregularly over the last 15-20 years with a range of about 10-15% in each case. There is no clear evidence of any recent trends, despite general global warming. In contrast, most glaciers retreated and thinned from before the turn of the century until the 1960s and alaskan permafrost temperatures have risen 2-4 C per century. Recently, glacier advances have been noted, perhaps in response to increased accumulation. Problems of linking climate forcing and snow/ice responses are discussed

  13. Nitrous oxide and methane exchange in two small temperate forest catchments - effects of hydrological gradients and implications for global warming potentials of forest soils

    DEFF Research Database (Denmark)

    Christiansen, Jesper Riis; Vesterdal, Lars; Gundersen, Per

    2012-01-01

    half the catchment area at both sites, the global warming potential (GWP) derived from N2O and CH4 was more than doubled when accounting for these wet areas in the catchments. The results stress the importance of wet soils in assessments of forest soil global warming potentials, as even small...

  14. Forest ecosystems and the global climatic change. Background and need to act; Waldoekosysteme im globalen Klimawandel. Hintergruende und Handlungsbedarf

    Energy Technology Data Exchange (ETDEWEB)

    Bellmann, K; Grassl, H; Kaiser, M; Kuerzinger, J; Lindner, M; Mueller-Kraenner, S; Schmidt, R; Schuett, P; Sperber, G

    1994-12-31

    The consequences of the climatic change and of the depletion of the stratospheric ozone layer are of global significance and can only be controlled through worldwide measures. Mainly fossil fuels which cover most of our energy demand, industrial production, traffic, industrial intensive agriculture, and deforestation are responsible for trace gases which cause the greenhouse effect. The possible effects of the expected climatic change are discussed, and suitable political, social and silvicultural approaches to the maintenance of stable forest ecosystems are pointed out. Emphasis is placed on forestry and on ecosystems research in Central Europe. (MG) [Deutsch] Die Folgen der Klimaaenderung und des Abbaus der stratosphaerischen Ozonschicht sind von globaler Bedeutung und nur durch weltweite Massnahmen einzudaemmen. Der hauptsaechlich durch fossile Brennstoffe gedeckte Energiebedarf, industrielle Produktion, Verkehr, industrielle Intensivlandwirtschaft und die Rodung von Waeldern sind die Hauptverursacher von Spurengasen, die zum Treibhauseffekt fuehren. Ausgehend von den moeglichen Auswirkungen der zu erwartenden Klimaaenderung wird aufgezeigt, welche Wege Politik, Gesellschaft und Forstwirtschaft einschlagen sollen, um stabile Waldoekosysteme erhalten zu koennen. Forstwirtschaft und Oekosystemforschung in Mitteleuropa stehen dabei im Vordergrund. (MG)

  15. Permafrost thaw and wildfire: Equally important drivers of boreal tree cover changes in the Taiga Plains, Canada

    Science.gov (United States)

    Helbig, M.; Pappas, C.; Sonnentag, O.

    2016-02-01

    Boreal forests cover vast areas of the permafrost zones of North America, and changes in their composition and structure can lead to pronounced impacts on the regional and global climate. We partition the variation in regional boreal tree cover changes between 2000 and 2014 across the Taiga Plains, Canada, into its main causes: permafrost thaw, wildfire disturbance, and postfire regrowth. Moderate Resolution Imaging Spectroradiometer Percent Tree Cover (PTC) data are used in combination with maps of historic fires, and permafrost and drainage characteristics. We find that permafrost thaw is equally important as fire history to explain PTC changes. At the southern margin of the permafrost zone, PTC loss due to permafrost thaw outweighs PTC gain from postfire regrowth. These findings emphasize the importance of permafrost thaw in controlling regional boreal forest changes over the last decade, which may become more pronounced with rising air temperatures and accelerated permafrost thaw.

  16. Calibration and Validation of Landsat Tree Cover in the Taiga−Tundra Ecotone

    Directory of Open Access Journals (Sweden)

    Paul Mannix Montesano

    2016-06-01

    Full Text Available Monitoring current forest characteristics in the taiga−tundra ecotone (TTE at multiple scales is critical for understanding its vulnerability to structural changes. A 30 m spatial resolution Landsat-based tree canopy cover map has been calibrated and validated in the TTE with reference tree cover data from airborne LiDAR and high resolution spaceborne images across the full range of boreal forest tree cover. This domain-specific calibration model used estimates of forest height to determine reference forest cover that best matched Landsat estimates. The model removed the systematic under-estimation of tree canopy cover >80% and indicated that Landsat estimates of tree canopy cover more closely matched canopies at least 2 m in height rather than 5 m. The validation improved estimates of uncertainty in tree canopy cover in discontinuous TTE forests for three temporal epochs (2000, 2005, and 2010 by reducing systematic errors, leading to increases in tree canopy cover uncertainty. Average pixel-level uncertainties in tree canopy cover were 29.0%, 27.1% and 31.1% for the 2000, 2005 and 2010 epochs, respectively. Maps from these calibrated data improve the uncertainty associated with Landsat tree canopy cover estimates in the discontinuous forests of the circumpolar TTE.

  17. Forest Canopy Cover and Height from MISR in Topographically Complex Southwestern US Landscape Assessed with High Quality Reference Data

    Science.gov (United States)

    Chopping, Mark; North, Malcolm; Chen, Jiquan; Schaaf, Crystal B.; Blair, J. Bryan; Martonchik, John V.; Bull, Michael A.

    2012-01-01

    This study addresses the retrieval of spatially contiguous canopy cover and height estimates in southwestern USforests via inversion of a geometric-optical (GO) model against surface bidirectional reflectance factor (BRF) estimates from the Multi-angle Imaging SpectroRadiometer (MISR). Model inversion can provide such maps if good estimates of the background bidirectional reflectance distribution function (BRDF) are available. The study area is in the Sierra National Forest in the Sierra Nevada of California. Tree number density, mean crown radius, and fractional cover reference estimates were obtained via analysis of QuickBird 0.6 m spatial resolution panchromatic imagery usingthe CANopy Analysis with Panchromatic Imagery (CANAPI) algorithm, while RH50, RH75 and RH100 (50, 75, and 100 energy return) height data were obtained from the NASA Laser Vegetation Imaging Sensor (LVIS), a full waveform light detection and ranging (lidar) instrument. These canopy parameters were used to drive a modified version of the simple GO model (SGM), accurately reproducing patterns ofMISR 672 nm band surface reflectance (mean RMSE 0.011, mean R2 0.82, N 1048). Cover and height maps were obtained through model inversion against MISR 672 nm reflectance estimates on a 250 m grid.The free parameters were tree number density and mean crown radius. RMSE values with respect to reference data for the cover and height retrievals were 0.05 and 6.65 m, respectively, with of 0.54 and 0.49. MISR can thus provide maps of forest cover and height in areas of topographic variation although refinements are required to improve retrieval precision.

  18. Forest Disturbance Across the Conterminous United States from 1985-2012: The Emerging Dominance of Forest Decline

    Science.gov (United States)

    Cohen, Warren B.; Yang, Zhiqiang; Stehman, Stephen; Schroeder, Todd; Bell, David M.; Masek, Jeffrey; Huang, Chengquan; Meigs, Garrett W.

    2015-01-01

    Evidence of shifting dominance among major forest disturbance agent classes regionally to globally has been emerging in the literature. For example, climate-related stress and secondary stressors on forests (e.g., insect and disease, fire) have dramatically increased since the turn of the century globally, while harvest rates in the western US and elsewhere have declined. For shifts to be quantified, accurate historical forest disturbance estimates are required as a baseline for examining current trends. We report annual disturbance rates (with uncertainties) in the aggregate and by major change causal agent class for the conterminous US and five geographic subregions between 1985 and 2012. Results are based on human interpretations of Landsat time series from a probability sample of 7200 plots (30 m) distributed throughout the study area. Forest disturbance information was recorded with a Landsat time series visualization and data collection tool that incorporates ancillary high-resolution data. National rates of disturbance varied between 1.5% and 4.5% of forest area per year, with trends being strongly affected by shifting dominance among specific disturbance agent influences at the regional scale. Throughout the time series, national harvest disturbance rates varied between one and two percent, and were largely a function of harvest in the more heavily forested regions of the US (Mountain West, Northeast, and Southeast). During the first part of the time series, national disturbance rates largely reflected trends in harvest disturbance. Beginning in the mid-90s, forest decline-related disturbances associated with diminishing forest health (e.g., physiological stress leading to tree canopy cover loss, increases in tree mortality above background levels), especially in the Mountain West and Lowland West regions of the US, increased dramatically. Consequently, national disturbance rates greatly increased by 2000, and remained high for much of the decade. Decline

  19. Shades of green and REDD: Local and global contestations over the value of forest versus plantation development on the Indonesian forest frontier

    DEFF Research Database (Denmark)

    Eilenberg, Michael

    2015-01-01

    In a time of increasing land enclosures sparked by large-scale environmental initiatives and agricultural expansion, this paper examines local and global contestations over the value of forest on an Indonesian forest frontier. Engaging with recent debates on carbon forestry, the paper problematis...... for the future successes of REDD+. The Kalimantan case highlights some of the dilemmas of carbon mitigation initiatives experienced in frontier regions throughout Southeast Asia, places that have become prime battlefronts of large-scale climate change initiatives and agrarian expansion....

  20. Usability Study to Assess the IGBP Land Cover Classification for Singapore

    Directory of Open Access Journals (Sweden)

    Nanki Sidhu

    2017-10-01

    Full Text Available Our research focuses on assessing the usability of the International Geosphere Biosphere Programme (IGBP classification scheme provided in the MODIS MCD12Q1-1 dataset for assessing the land cover of the city-state, Singapore. We conducted a user study with responses from 33 users by providing them with Google Earth images from different parts of Singapore, asking survey-takers to classify these images according to their understanding by the IGBP definitions provided. We also conducted interviews with experts from major governmental agencies working with satellite imagery, which highlighted the need for a detailed land classification for Singapore. In addition to the qualitative analysis of the IGBP land classification scheme, we carried out a validation of the MCD12Q1-1 remote sensing product against SPOT-5 imagery for our study area. The user study revealed that survey-takers were able to correctly classify urban areas, as well as densely forested areas. Misclassifications between Cropland and Mixed Forest classes were highest and were attributed by users to the broad terminology of the IGBP of the two land cover class definitions. For the accuracy assessment, we obtained validation points using weighted and unweighted stratified sampling. The overall classification accuracy for all 17 IGBP land classes is 62%. Upon selecting only the four most occurring IGBP land classes in Singapore, the classification accuracy improved to 71%. Validation of the MCD12Q1-1 against ground truth for Singapore revealed less-common land classes that may be of importance in a global context but are sources of error when the same product is applied at a smaller scale. Combining the user study with the accuracy assessment gives a comprehensive overview of the challenges associated with using global-level land cover data to derive localized land cover information specifically for smaller land masses like Singapore.

  1. Air pollution and forest ecosystems: a regional to global perspective

    International Nuclear Information System (INIS)

    Taylor, G.E.; Johnson, D.W.; Andersen, C.P.

    1994-01-01

    Changes in the atmospheric concentrations of a number of air pollutants over the last century are hallmarks of the magnitude and extent of human impact on the environment. Some of these changes are important to ecologists because many pollutants, acting singly or in combination, affect ecological systems in general and forests in particular. The greatest concern lies with chronic levels of tropospheric ozone, cumulative deposition of hydrogen ion, nitrogen, and sulfur via wet and dry processes, a select number of airborne chemicals (e.g., mercury) that tend to bio accumulate in continental landscapes, and ultraviolet—B radiation through the loss of stratospheric ozone. Because the atmospheric residence time of most pollutants of concern to ecologists is measured on time frames extending from a few weeks to decades, pollutant distribution and effects are regional to global in dimension. We present evidence that ambient levels of some air pollutants in North America are affecting managed and unmanaged forests, and that the two most important pollutants are tropospheric ozone and chronic nitrogen loading. Further evidence indicates that while concentrations of some air pollutants have been declining over the last decade in North America, others are expected to remain unchanged or increase, including tropospheric ozone. We conclude that air pollution is affecting many North American forests and some remote forests around the globe. In the immediate future, the concern for air pollution effects on forests and associated natural resources will broaden to include interactions with changes in climate and pollution effects in the world's developing countries. There has been a rapid evolution in air pollution studies in ecology, shifting away from the agricultural paradigm of single—factor experimentation toward new methodologies that are ecologically and multidisciplinarily based. This shift has been promoted by the recognition that air pollution is one of several

  2. Change detection by the IR-MAD and kernel MAF methods in Landsat TM data covering a Swedish forest region

    DEFF Research Database (Denmark)

    Nielsen, Allan Aasbjerg; Olsson, Håkan

    2010-01-01

    Change over time between two 512 by 512 (25 m by 25 m pixels) multispectral Landsat Thematic Mapper images dated 6 June 1986 and 27 June 1988 respectively covering a forested region in northern Sweden, is here detected by means of the iteratively reweighted multivariate alteration detection (IR-M...

  3. EnviroAtlas - Cleveland, OH - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest and Woody...

  4. Allegheny County Land Cover Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — The Land Cover dataset demarcates 14 land cover types by area; such as Residential, Commercial, Industrial, Forest, Agriculture, etc. If viewing this description on...

  5. EnviroAtlas - Memphis, TN - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. Forest is defined as Trees & Forest and Woody Wetlands. There is a...

  6. The Impact of Conflict on Forests in South Sudan

    Science.gov (United States)

    Gorsevski, V.; Kasischke, E. S.; Dempewolf, J.; Loboda, T. V.; Geores, M.

    2014-12-01

    The impacts of armed conflict on ecosystems are complex and difficult to assess due to restricted access to affected areas making satellite remote sensing a useful tool for studying direct and indirect effects of conflict on the landscape. The Imatong Central Forest Reserve (ICFR) in South Sudan together with the nearby Dongotana Hills and the Agoro-Agu Forest Reserve (AFR) in Northern Uganda share a boundary and encompass a biologically diverse montane ecosystem. This study used satellite data combined with general human population trends to examine the impact of armed conflict and its outcome on similar forest ecosystems both during and after hostilities. A Disturbance Index (DI) was used to investigate the location and extent of forest cover loss and gain in three areas for two key time periods. Results indicate that the rate of forest recovery was significantly higher than the rate of disturbance both during and after wartime in and around the ICFR. In contrast, the nearby Dongotana Hills experienced relatively high rates of disturbance during both periods; however, post war period losses were largely offset by some gains in forest cover. Discussions with local inhabitants confirmed these findings and provided further insights into the underlying causes impacting forest cover and wildlife. South Sudan is the latest nation to join the Global Environment Facility (GEF). While the GEF does not explicitly address conflict, many of the projects it supports occur in conflict and post-conflict zones with wide-ranging repercussions for both people and the environment. In an effort to assess best practices for working in conflict and post-conflict areas, the GEF Scientific and Technical Advisory Panel (STAP) will undertake an analysis of GEF-funded projects over the last two decades to identify where the GEF has promoted cooperation between groups and states, and/or made a positive contribution toward conflict avoidance resulting in shared environmental benefits.

  7. Assessing the consequences of global change for forest disturbance from herbivores and pathogens.

    Science.gov (United States)

    Ayres, M P; Lombardero, M J

    2000-11-15

    Herbivores and pathogens impact the species composition, ecosystem function, and socioeconomic value of forests. Herbivores and pathogens are an integral part of forests, but sometimes produce undesirable effects and a degradation of forest resources. In the United States, a few species of forest pests routinely have significant impacts on up to 20 million ha of forest with economic costs that probably exceed $1 billion/year. Climatic change could alter patterns of disturbance from herbivores and pathogens through: (1) direct effects on the development and survival of herbivores and pathogens; (2) physiological changes in tree defenses; and (3) indirect effects from changes in the abundance of natural enemies (e.g. parasitoids of insect herbivores), mutualists (e.g. insect vectors of tree pathogens), and competitors. Because of their short life cycles, mobility, reproductive potential, and physiological sensitivity to temperature, even modest climate change will have rapid impacts on the distribution and abundance of many forest insects and pathogens. We identify 32 syndromes of biotic disturbance in North American forests that should be carefully evaluated for their responses to climate change: 15 insect herbivores, browsing mammals; 12 pathogens; 1 plant parasite; and 3 undiagnosed patterns of forest decline. It is probable that climatic effects on some herbivores and pathogens will impact on biodiversity, recreation, property value, forest industry, and even water quality. Some scenarios are beneficial (e.g. decreased snow cover may increase winter mortality of some insect pests), but many are detrimental (e.g. warming tends to accelerate insect development rate and facilitate range expansions of pests and climate change tends to produce a mismatch between mature trees and their environment, which can increase vulnerability to herbivores and pathogens). Changes in forest disturbance can produce feedback to climate through affects on water and carbon flux in

  8. A New Synthetic Global Biomass Carbon Map for the year 2010

    Science.gov (United States)

    Spawn, S.; Lark, T.; Gibbs, H.

    2017-12-01

    Satellite technologies have facilitated a recent boom in high resolution, large-scale biomass estimation and mapping. These data are the input into a wide range of global models and are becoming the gold standard for required national carbon (C) emissions reporting. Yet their geographical and/or thematic scope may exclude some or all parts of a given country or region. Most datasets tend to focus exclusively on forest biomass. Grasslands and shrublands generally store less C than forests but cover nearly twice as much global land area and may represent a significant portion of a given country's biomass C stock. To address these shortcomings, we set out to create synthetic, global above- and below-ground biomass maps that combine recently-released satellite based data of standing forest biomass with novel estimates for non-forest biomass stocks that are typically neglected. For forests we integrated existing publicly available regional, global and biome-specific biomass maps and modeled below ground biomass using empirical relationships described in the literature. For grasslands, we developed models for both above- and below-ground biomass based on NPP, mean annual temperature and precipitation to extrapolate field measurements across the globe. Shrubland biomass was extrapolated from existing regional biomass maps using environmental factors to generate the first global estimate of shrub biomass. Our new synthetic map of global biomass carbon circa 2010 represents an update to the IPCC Tier-1 Global Biomass Carbon Map for the Year 2000 (Ruesch and Gibbs, 2008) using the best data currently available. In the absence of a single seamless remotely sensed map of global biomass, our synthetic map provides the only globally-consistent source of comprehensive biomass C data and is valuable for land change analyses, carbon accounting, and emissions modeling.

  9. Fuel forests: a spreading energy resource in developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Smith, N J.H.

    1981-09-01

    The fuel potential of forests, particularly in Third World countries, to raise the contribution of fuelwood to global energy resources is receiving positive notice in the incentive programs for forestry projects offered by lending institutions and actions taken by governments to arrest the loss of forest cover. Residential and industrial use of wood must be balanced by rigorous woodland protection and management to increase tree planting. The example of Korea's success in increasing fuelwood supplies illustrates the importance of public understanding and community involvement so that local environmental and cultural factors are considered and local leaders are involved. 56 references, 1 table. (DCK)

  10. Globalization and its implications for forest health

    Science.gov (United States)

    Andrew Liebhold; Michael. Wingfield

    2014-01-01

    Consideration of forest health is central to the sustainable management of forests. While many definitions of forest health have been proposed, the most widely adopted concept refers to the sustained functioning of desired forest ecosystem processes (Kolb et al., 1994). Legitimate complaints have been raised about the human-centric usage of the term "Forest Health...

  11. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Directory of Open Access Journals (Sweden)

    José Carlos Morante-Filho

    Full Text Available Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists and specific food resources (frugivores and insectivores to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%. At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  12. Birds in Anthropogenic Landscapes: The Responses of Ecological Groups to Forest Loss in the Brazilian Atlantic Forest.

    Science.gov (United States)

    Morante-Filho, José Carlos; Faria, Deborah; Mariano-Neto, Eduardo; Rhodes, Jonathan

    2015-01-01

    Habitat loss is the dominant threat to biodiversity and ecosystem functioning in terrestrial environments. In this study, we used an a priori classification of bird species based on their dependence on native forest habitats (forest-specialist and habitat generalists) and specific food resources (frugivores and insectivores) to evaluate their responses to forest cover reduction in landscapes in the Brazilian Atlantic Forest. From the patch-landscapes approach, we delimited 40 forest sites, and quantified the percentage of native forest within a 2 km radius around the center of each site (from 6 - 85%). At each site, we sampled birds using the point-count method. We used a null model, a generalized linear model and a four-parameter logistic model to evaluate the relationship between richness and abundance of the bird groups and the native forest amount. A piecewise model was then used to determine the threshold value for bird groups that showed nonlinear responses. The richness and abundance of the bird community as a whole were not affected by changes in forest cover in this region. However, a decrease in forest cover had a negative effect on diversity of forest-specialist, frugivorous and insectivorous birds, and a positive effect on generalist birds. The species richness and abundance of all ecological groups were nonlinearly related to forest reduction and showed similar threshold values, i.e., there were abrupt changes in individuals and species numbers when forest amount was less than approximately 50%. Forest sites within landscapes with forest cover that was less than 50% contained a different bird species composition than more extensively forested sites and had fewer forest-specialist species and higher beta-diversity. Our study demonstrated the pervasive effect of forest reduction on bird communities in one of the most important hotspots for bird conservation and shows that many vulnerable species require extensive forest cover to persist.

  13. Climate-induced forest dieback as an emergent global phenomenon: Organized oral session at the Ecological Society of America/Society of Ecological Restoration Joint Meeting; San Jose, California, 5-10 August 2007

    Science.gov (United States)

    Allen, Craig D.; Breshears, David D.

    2007-01-01

    An organized oral session at the annual meeting of the Ecological Society of America in San Jose, Calif., posed this question: Is climate-induced drought stress triggering increasing rates and unusual patterns of forest die-off at a global scale? Twenty-nine researchers representing five continents reported on patterns, mechanisms, and projections of forest mortality.Observations include widespread forest dieback or reductions in tree cover and biodiversity in response to drought and warmer temperatures in the African Sahel (Patrick Gonzalez, The Nature Conservancy), Mediterranean and alpine Europe (Jorge Castro, Universidad de Granada), and Argentinean Patagonia (Thomas Kitzberger, Universidad Nacional del Comahue). In contrast, although much Eucalyptus mortality has resulted from recent droughts in Australia, warming trends have been less pronounced in the Southern Hemisphere and it is unclear if contemporary climate-induced tree mortality differs from previous historical drought impacts (Rod Fensham, Queensland Herbarium).

  14. Extending the baseline of tropical dry forest loss in Ghana (1984–2015) reveals drivers of major deforestation inside a protected area

    OpenAIRE

    Janssen, T; Ametsisi, G; Collins, M; Adu-Bredu, S; Oliveras-Menor, I; Mitchard, ETA; Veenendaal, EM

    2017-01-01

    Abstract Tropical dry forests experience the highest deforestation rates on Earth, with major implications for the biodiversity of these ecosystems, as well as for its human occupants. Global remote sensing based forest cover data (2000 − 2012) point to the rapid loss of tropical dry forest in South America and Africa, also, if not foremost, inside formally protected areas. Here, we significantly extend the baseline of tropical dry forest loss inside a protected area in Ghana using a generali...

  15. Developing a Carbon Monitoring System For Pinyon-juniper Forests and Woodlands

    Science.gov (United States)

    Falkowski, M. J.; Hudak, A. T.; Fekety, P.; Filippelli, S.

    2017-12-01

    Pinyon-juniper (PJ) forests and woodlands are the third largest vegetation type in the United States. They cover over 40 million hectares across the western US, representing 40% of the total forest and woodland area in the Intermountain West. Although the density of carbon stored in these ecosystems is relatively low compared to other forest types, the vast area of short stature forests and woodlands (both nationally and globally) make them critical components of regional, national, and global carbon budgets. The overarching goal of this research is to prototype a carbon monitoring, reporting, and verification (MRV) system for characterizing total aboveground biomass stocks and flux across the PJ vegetation gradient in the western United States. We achieve this by combining in situ forest measurements and novel allometric equations with tree measurements derived from high resolution airborne imagery to map aboveground biomass across 500,000 km2 in the Western US. These high-resolution maps of aboveground biomass are then leveraged as training data to predict biomass flux through time from Landsat time-series data. The results from this research highlight the potential in mapping biomass stocks and flux in open forests and woodlands, and could be easily adopted into an MRV framework.

  16. Deforestation and Forest Fragmentation in South Ecuador since the 1970s - Losing a Hotspot of Biodiversity.

    Science.gov (United States)

    Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino

    2015-01-01

    Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological 'hotspot' due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976-1989) and 2.86% (1989-2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador's original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador.

  17. The impact of organochlorines cycling in the cryosphere on global distributions and fate – 2. Land ice and temporary snow cover

    International Nuclear Information System (INIS)

    Hofmann, Lorenz; Stemmler, Irene; Lammel, Gerhard

    2012-01-01

    Global fate and transport of γ-HCH and DDT was studied using a global multicompartment chemistry-transport model, MPI-MCTM, with and without inclusion of land ice (in Antarctica and Greenland) or snow cover (dynamic). MPI-MCTM is based on coupled ocean and atmosphere general circulation models. After a decade of simulation 4.2% γ-HCH and 2.3% DDT are stored in land ice and snow. Neglection of land ice and snow in modelling would underestimate the total environmental residence time, τ ov , of γ-HCH and overestimate τ ov for DDT, both on the order of 1% and depending on actual compartmental distribution. Volatilisation of DDT from boreal, seasonally snow covered land is enhanced throughout the year, while volatilisation of γ-HCH is only enhanced during the snow-free season. Including land ice and snow cover in modelling matters in particular for the Arctic, where higher burdens are predicted to be stored. - Highlights: ► Land ice and snow hosts 2–4% of the global environmental burden of γ-HCH and DDT. ► Inclusion of land ice and snow cover matters for global environmental residence time. ► Including of land ice and snow cover matters in particular for the Arctic. - The inclusion of cycling in temporary snow cover and land ice in the model is found relevant for predicted POPs multicompartmental distribution and fate in the Arctic and on the global scale.

  18. Variability and Anomalous Trends in the Global Sea Ice Cover

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The advent of satellite data came fortuitously at a time when the global sea ice cover has been changing rapidly and new techniques are needed to accurately assess the true state and characteristics of the global sea ice cover. The extent of the sea ice in the Northern Hemisphere has been declining by about -4% per decade for the period 1979 to 2011 but for the period from 1996 to 2010, the rate of decline became even more negative at -8% per decade, indicating an acceleration in the decline. More intriguing is the drastically declining perennial sea ice area, which is the ice that survives the summer melt and observed to be retreating at the rate of -14% per decade during the 1979 to 2012 period. Although a slight recovery occurred in the last three years from an abrupt decline in 2007, the perennial ice extent was almost as low as in 2007 in 2011. The multiyear ice, which is the thick component of the perennial ice and regarded as the mainstay of the Arctic sea ice cover is declining at an even higher rate of -19% per decade. The more rapid decline of the extent of this thicker ice type means that the volume of the ice is also declining making the survival of the Arctic ice in summer highly questionable. The slight recovery in 2008, 2009 and 2010 for the perennial ice in summer was likely associated with an apparent cycle in the time series with a period of about 8 years. Results of analysis of concurrent MODIS and AMSR-E data in summer also provide some evidence of more extensive summer melt and meltponding in 2007 and 2011 than in other years. Meanwhile, the Antarctic sea ice cover, as observed by the same set of satellite data, is showing an unexpected and counter intuitive increase of about 1 % per decade over the same period. Although a strong decline in ice extent is apparent in the Bellingshausen/ Amundsen Seas region, such decline is more than compensated by increases in the extent of the sea ice cover in the Ross Sea region. The results of analysis of

  19. Secondary Forest Age and Tropical Forest Biomass Estimation Using TM

    Science.gov (United States)

    Nelson, R. F.; Kimes, D. S.; Salas, W. A.; Routhier, M.

    1999-01-01

    The age of secondary forests in the Amazon will become more critical with respect to the estimation of biomass and carbon budgets as tropical forest conversion continues. Multitemporal Thematic Mapper data were used to develop land cover histories for a 33,000 Square kM area near Ariquemes, Rondonia over a 7 year period from 1989-1995. The age of the secondary forest, a surrogate for the amount of biomass (or carbon) stored above-ground, was found to be unimportant in terms of biomass budget error rates in a forested TM scene which had undergone a 20% conversion to nonforest/agricultural cover types. In such a situation, the 80% of the scene still covered by primary forest accounted for over 98% of the scene biomass. The difference between secondary forest biomass estimates developed with and without age information were inconsequential relative to the estimate of biomass for the entire scene. However, in futuristic scenarios where all of the primary forest has been converted to agriculture and secondary forest (55% and 42% respectively), the ability to age secondary forest becomes critical. Depending on biomass accumulation rate assumptions, scene biomass budget errors on the order of -10% to +30% are likely if the age of the secondary forests are not taken into account. Single-date TM imagery cannot be used to accurately age secondary forests into single-year classes. A neural network utilizing TM band 2 and three TM spectral-texture measures (bands 3 and 5) predicted secondary forest age over a range of 0-7 years with an RMSE of 1.59 years and an R(Squared) (sub actual vs predicted) = 0.37. A proposal is made, based on a literature review, to use satellite imagery to identify general secondary forest age groups which, within group, exhibit relatively constant biomass accumulation rates.

  20. Globally covering a-priori regional gravity covariance models

    Directory of Open Access Journals (Sweden)

    D. Arabelos

    2003-01-01

    Full Text Available Gravity anomaly data generated using Wenzel’s GPM98A model complete to degree 1800, from which OSU91A has been subtracted, have been used to estimate covariance functions for a set of globally covering equal-area blocks of size 22.5° × 22.5° at Equator, having a 2.5° overlap. For each block an analytic covariance function model was determined. The models are based on 4 parameters: the depth to the Bjerhammar sphere (determines correlation, the free-air gravity anomaly variance, a scale factor of the OSU91A error degree-variances and a maximal summation index, N, of the error degree-variances. The depth of Bjerhammar-sphere varies from -134km to nearly zero, N varies from 360 to 40, the scale factor from 0.03 to 38.0 and the gravity variance from 1081 to 24(10µms-22. The parameters are interpreted in terms of the quality of the data used to construct OSU91A and GPM98A and general conditions such as the occurrence of mountain chains. The variation of the parameters show that it is necessary to use regional covariance models in order to obtain a realistic signal to noise ratio in global applications.Key words. GOCE mission, Covariance function, Spacewise approach`

  1. Stability, Bistability, and Critical Thresholds in Fire-prone Forested Landscapes: How Frequency and Intensity of Disturbance Interact and Influence Forest Cover

    Science.gov (United States)

    Miller, A. D.

    2015-12-01

    Many aspects of disturbance processes can have large impacts on the composition of plant communities, and associated changes in land cover type in turn have biogeochemical feedbacks to climate. In particular, changes to disturbance regimes can potentially change the number and stability of equilibrial states, and plant community states can differ dramatically in their carbon (C) dynamics, energy balance, and hydrology. Using the Klamath region of northern California as a model system, we present a theoretical analysis of how changes to climate and associated fire dynamics can disrupt high-carbon, long-lived conifer forests and replace them with shrub-chaparral communities that have much lower biomass and are more pyrogenic. Specifically, we develop a tractable model of plant community dynamics, structured by size class, life-history traits, lottery-type competition, and species-specific responses to disturbance. We assess the stability of different states in terms of disturbance frequency and intensity, and quantitatively partition long-term low-density population growth rates into mechanisms that influence critical transitions from stable to bistable behavior. Our findings show how different aspects of disturbance act and interact to control competitive outcomes and stable states, hence ecosystem-atmosphere C exchange. Forests tend to dominate in low frequency and intensity regimes, while shrubs dominate at high fire frequency and intensity. In other regimes, the system is bistable, and the fate of the system depends both on initial conditions and random chance. Importantly, the system can cross a critical threshold where hysteresis prevents easy return to the prior forested state. We conclude that changes in disturbance-recovery dynamics driven by projected climate change can shift this system away from forest dominated in the direction of shrub-dominated landscape. This will result in a large net C release from the landscape, and alter biophysical ecosystem

  2. REDD and PINC: A new policy framework to fund tropical forests as global 'eco-utilities'

    International Nuclear Information System (INIS)

    Trivedi, M R; Mitchell, A W; Mardas, N; Parker, C; Watson, J E; Nobre, A D

    2009-01-01

    Tropical forests are 'eco-utilities' providing critical ecosystem services that underpin food, energy, water and climate security at local to global scales. Currently, these services are unrecognised and unrewarded in international policy and financial frameworks, causing forests to be worth more dead than alive. Much attention is currently focused on REDD (Reducing Emissions from Deforestation and forest Degradation) and A/R (Afforestation and Reforestation) as mitigation options. In this article we propose an additional mechanism - PINC (Proactive Investment in Natural Capital) - that recognises and rewards the value of ecosystem services provided by standing tropical forests, especially from a climate change adaptation perspective. Using Amazonian forests as a case study we show that PINC could improve the wellbeing of rural and forest-dependent populations, enabling them to cope with the impacts associated with climate change and deforestation. By investing pro-actively in areas where deforestation pressures are currently low, the long-term costs of mitigation and adaptation will be reduced. We suggest a number of ways in which funds could be raised through emerging financial mechanisms to provide positive incentives to maintain standing forests. To develop PINC, a new research and capacity-building agenda is needed that explores the interdependence between communities, the forest eco-utility and the wider economy.

  3. REDD and PINC: A new policy framework to fund tropical forests as global 'eco-utilities'

    Science.gov (United States)

    Trivedi, M. R.; Mitchell, A. W.; Mardas, N.; Parker, C.; Watson, J. E.; Nobre, A. D.

    2009-11-01

    Tropical forests are 'eco-utilities' providing critical ecosystem services that underpin food, energy, water and climate security at local to global scales. Currently, these services are unrecognised and unrewarded in international policy and financial frameworks, causing forests to be worth more dead than alive. Much attention is currently focused on REDD (Reducing Emissions from Deforestation and forest Degradation) and A/R (Afforestation and Reforestation) as mitigation options. In this article we propose an additional mechanism - PINC (Proactive Investment in Natural Capital) - that recognises and rewards the value of ecosystem services provided by standing tropical forests, especially from a climate change adaptation perspective. Using Amazonian forests as a case study we show that PINC could improve the wellbeing of rural and forest-dependent populations, enabling them to cope with the impacts associated with climate change and deforestation. By investing pro-actively in areas where deforestation pressures are currently low, the long-term costs of mitigation and adaptation will be reduced. We suggest a number of ways in which funds could be raised through emerging financial mechanisms to provide positive incentives to maintain standing forests. To develop PINC, a new research and capacity-building agenda is needed that explores the interdependence between communities, the forest eco-utility and the wider economy.

  4. Biomass resilience of Neotropical secondary forests.

    Science.gov (United States)

    Poorter, Lourens; Bongers, Frans; Aide, T Mitchell; Almeyda Zambrano, Angélica M; Balvanera, Patricia; Becknell, Justin M; Boukili, Vanessa; Brancalion, Pedro H S; Broadbent, Eben N; Chazdon, Robin L; Craven, Dylan; de Almeida-Cortez, Jarcilene S; Cabral, George A L; de Jong, Ben H J; Denslow, Julie S; Dent, Daisy H; DeWalt, Saara J; Dupuy, Juan M; Durán, Sandra M; Espírito-Santo, Mario M; Fandino, María C; César, Ricardo G; Hall, Jefferson S; Hernandez-Stefanoni, José Luis; Jakovac, Catarina C; Junqueira, André B; Kennard, Deborah; Letcher, Susan G; Licona, Juan-Carlos; Lohbeck, Madelon; Marín-Spiotta, Erika; Martínez-Ramos, Miguel; Massoca, Paulo; Meave, Jorge A; Mesquita, Rita; Mora, Francisco; Muñoz, Rodrigo; Muscarella, Robert; Nunes, Yule R F; Ochoa-Gaona, Susana; de Oliveira, Alexandre A; Orihuela-Belmonte, Edith; Peña-Claros, Marielos; Pérez-García, Eduardo A; Piotto, Daniel; Powers, Jennifer S; Rodríguez-Velázquez, Jorge; Romero-Pérez, I Eunice; Ruíz, Jorge; Saldarriaga, Juan G; Sanchez-Azofeifa, Arturo; Schwartz, Naomi B; Steininger, Marc K; Swenson, Nathan G; Toledo, Marisol; Uriarte, Maria; van Breugel, Michiel; van der Wal, Hans; Veloso, Maria D M; Vester, Hans F M; Vicentini, Alberto; Vieira, Ima C G; Bentos, Tony Vizcarra; Williamson, G Bruce; Rozendaal, Danaë M A

    2016-02-11

    Land-use change occurs nowhere more rapidly than in the tropics, where the imbalance between deforestation and forest regrowth has large consequences for the global carbon cycle. However, considerable uncertainty remains about the rate of biomass recovery in secondary forests, and how these rates are influenced by climate, landscape, and prior land use. Here we analyse aboveground biomass recovery during secondary succession in 45 forest sites and about 1,500 forest plots covering the major environmental gradients in the Neotropics. The studied secondary forests are highly productive and resilient. Aboveground biomass recovery after 20 years was on average 122 megagrams per hectare (Mg ha(-1)), corresponding to a net carbon uptake of 3.05 Mg C ha(-1) yr(-1), 11 times the uptake rate of old-growth forests. Aboveground biomass stocks took a median time of 66 years to recover to 90% of old-growth values. Aboveground biomass recovery after 20 years varied 11.3-fold (from 20 to 225 Mg ha(-1)) across sites, and this recovery increased with water availability (higher local rainfall and lower climatic water deficit). We present a biomass recovery map of Latin America, which illustrates geographical and climatic variation in carbon sequestration potential during forest regrowth. The map will support policies to minimize forest loss in areas where biomass resilience is naturally low (such as seasonally dry forest regions) and promote forest regeneration and restoration in humid tropical lowland areas with high biomass resilience.

  5. Resilience of Alaska's boreal forest to climatic change

    Energy Technology Data Exchange (ETDEWEB)

    Chapin, F.S. III; Ruess, R.W.; Euskirchen, E.S.; Jones, J.B.; Kielland, K.; Taylor, D.L. [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Hollingsworth, T.N. [United States Dept. of Agriculture, Portland, OR (United States). Forest Services, Pacific Northwest Research Station; Alaska Univ., Fairbanks, AK (United States); Mack, M.C. [Florida Univ., Gainesville, FL (United States). Dept. of Botany; Johnstone, J.F. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Biology; Kasischke, E.S. [Maryland Univ., College Park, MD (United States). Dept. of Geography; Jorgenson, M.T. [Alaska Ecoscience, Fairbanks, AK (United States); Kofinas, G.P. [Alaska Univ., Fairanks, AK (United States). School of Natural Resources and Agricultureal Sciences, Inst. of Arctic Biology; Turetsky, M.R. [Guelph Univ., Guelph, ON (Canada). Dept. of Integrative Biology; Yarie, J. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences, Forest Soils Laboratory; Lloyd, A.H. [Middlebury College, Middlebury, VT (United States). Dept. of Biology

    2010-07-15

    This paper reported on a study that evaluated the resilience of Alaska's boreal forest system to rapid climatic change. As the most northern and coldest forested biome, the boreal forest is underlain by discontinuous permafrost. High-latitude amplification of global warming has caused Alaska's boreal forest to warm twice as rapidly as the global average. Recent warming has resulted in reduced growth of dominant tree species, plant disease, insect outbreaks, thawing of permafrost, drying of lakes and increased wildfires. These changes have modified key structural features in the boreal forest, including long-term landscape-scale change in carbon stocks. This study reviewed the findings of the Bonanza Creek Long-Term Ecological Research program and determined that the Alaskan boreal system remains quite resilient but is undergoing changes in ecosystem and landscape structure, feedbacks, and interactions that, with continued warming, will likely cause reorganization or potentially transformation to a fundamentally different system. Permafrost will also remain relatively resilient to continued warming except in high-ice-content lowlands and in areas burned by severe wildfires. The greatest sources of uncertainty are changes in snow cover, which will influence the rate at which these changes occur. 71 refs., 2 figs.

  6. Effects of global climate change on the US forest sector: response functions derived from a dynamic resource and market simulator.

    Science.gov (United States)

    Bruce A. McCarl; Darius M. Adams; Ralph J. Alig; Diana Burton; Chi-Chung. Chen

    2000-01-01

    A multiperiod, regional, mathematical programming economic model is used to evaluate the potential economic impacts of global climatic change on the US forest sector. A wide range of scenarios for the biological response of forests to climate change are developed, ranging from small to large changes in forest growth rates. These scenarios are simulated in the economic...

  7. Effectiveness of forest management strategies to mitigate effects of global change in Siberia

    Science.gov (United States)

    Eric Gustafson; Anatoly Shvidenko; Robert Scheller; Brian. Sturtevant

    2011-01-01

    Siberian forest ecosystems are experiencing multiple global changes. Climate change produces direct (temperature and precipitation) and indirect (altered fire regimes and increase in cold-limited insect outbreaks) effects. Although much of Siberia has not yet been subject to timber harvest, the frontier of timber cutting is advancing steadily across the region. We...

  8. Simulation of the influence of historical land cover changes on the global climate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. [Nanjing Univ. of Aeronautics and Astronautics (China). College of Civil Aviation; Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Yan, X. [Chinese Academy of Sciences, Beijing (China). Key Lab. of Regional Climate-Environment for East Asia; Beijing Normal Univ. (China). State Key Lab. of Earth Surface Processes and Resource Ecology (ESPRE); Wang, Z. [British Antarctic Survey, Cambridge (United Kingdom)

    2013-09-01

    In order to estimate biogeophysical effects of historical land cover change on climate during last three centuries, a set of experiments with a climate system model of intermediate complexity (MPM-2) is performed. In response to historical deforestation, the model simulates a decrease in annual mean global temperature in the range of 0.07-0.14 C based on different grassland albedos. The effect of land cover changes is most pronounced in the middle northern latitudes with maximum cooling reaching approximately 0.6 C during northern summer. The cooling reaches 0.57 C during northern spring owing to the large effects of land surface albedo. These results suggest that land cover forcing is important for study on historical climate change and that more research is necessary in the assessment of land management options for climate change mitigation. (orig.)

  9. Vietnam’s forest transition in retrospect

    DEFF Research Database (Denmark)

    Ankersen, Jeppe; Grogan, Kenneth Joseph; Mertz, Ole

    2015-01-01

    factors like forest degradation and the lack of linearity in forest cover transitions challenge the accuracy of such scenarios. Here we predict and validate such BAU scenarios retrospectively based on forest cover changes at village and district level in North Central Vietnam. With the government...

  10. Temporal Land Cover Analysis for Net Ecosystem Improvement

    Energy Technology Data Exchange (ETDEWEB)

    Ke, Yinghai; Coleman, Andre M.; Diefenderfer, Heida L.

    2013-04-09

    We delineated 8 watersheds contributing to previously defined river reaches within the 1,468-km2 historical floodplain of the tidally influenced lower Columbia River and estuary. We assessed land-cover change at the watershed, reach, and restoration site scales by reclassifying remote-sensing data from the National Oceanic and Atmospheric Administration Coastal Change Analysis Program’s land cover/land change product into forest, wetland, and urban categories. The analysis showed a 198.3 km2 loss of forest cover during the first 6 years of the Columbia Estuary Ecosystem Restoration Program, 2001–2006. Total measured urbanization in the contributing watersheds of the estuary during the full 1996-2006 change analysis period was 48.4 km2. Trends in forest gain/loss and urbanization differed between watersheds. Wetland gains and losses were within the margin of error of the satellite imagery analysis. No significant land cover change was measured at restoration sites, although it was visible in aerial imagery, therefore, the 30-m land-cover product may not be appropriate for assessment of early-stage wetland restoration. These findings suggest that floodplain restoration sites in reaches downstream of watersheds with decreasing forest cover will be subject to increased sediment loads, and those downstream of urbanization will experience effects of increased impervious surfaces on hydrologic processes.

  11. Correlations between land covers and honey bee colony losses in a country with industrialized and rural regions.

    Science.gov (United States)

    Clermont, Antoine; Eickermann, Michael; Kraus, François; Hoffmann, Lucien; Beyer, Marco

    2015-11-01

    High levels of honey bee colony losses were recently reported from Canada, China, Europe, Israel, Turkey and the United States, raising concerns of a global pollinator decline and questioning current land use practices, in particular intense agricultural cropping systems. Sixty-seven crops (data from the years 2010-2012) and 66 mid-term stable land cover classes (data from 2007) were analysed for statistical relationships with the honey bee colony losses experienced over the winters 2010/11-2012/13 in Luxembourg (Western Europe). The area covered by each land cover class, the shortest distance between each land cover class and the respective apiary, the number of plots covered by each land use class and the size of the biggest plot of each land cover class within radii of 2 km and 5 km around 166 apiaries (2010), 184 apiaries (2011) and 188 apiaries (2012) were tested for correlations with honey bee colony losses (% per apiary) experienced in the winter following the season when the crops were grown. Artificial water bodies, open urban areas, large industrial facilities including heavy industry, railways and associated installations, buildings and installations with socio-cultural purpose, camping-, sports-, playgrounds, golf courts, oilseed crops other than oilseed rape like sunflower or linseed, some spring cereals and former forest clearcuts or windthrows were the land cover classes most frequently associated with high honey bee colony losses. Grain maize, mixed forest and mixed coniferous forest were the land cover classes most frequently associated with low honey bee colony losses. The present data suggest that land covers related to transport, industry and leisure may have made a more substantial contribution to winter honey bee colony losses in developed countries than anticipated so far. Recommendations for the positioning of apiaries are discussed. Copyright © 2015. Published by Elsevier B.V.

  12. Recent tree cover increases in eastern China linked to low, declining human pressure, steep topography, and climatic conditions favoring tree growth.

    Directory of Open Access Journals (Sweden)

    Jonas Nüchel

    Full Text Available Globally, the extent of forest continues to decline, however, some countries have increased their forest extent in recent years. China is one of these countries and has managed to increase their tree cover through huge reforestation and afforestation programs during recent decades as well as land abandonment dynamics. This study investigates tree cover change in the eastern half of China between 2000 and 2010 on three different scales, using random forest modeling of remote sensing data for tree cover in relation to environmental and anthropogenic predictor variables. Our results show that between the years 2000 and 2010 2,667,875 km2 experienced an increase in tree cover while 1,854,900 km2 experienced a decline in tree cover. The area experiencing ≥10% increase in tree cover is almost twice as large as the area with ≥10% drop in tree cover. There is a clear relation between topography and tree cover change with steeper and mid-elevation areas having a larger response on tree cover increase than other areas. Furthermore, human influence, change in population density, and actual evapotranspiration are also important factors in explaining where tree cover has changed. This study adds to the understanding of tree cover change in China, as it has focus on the entire eastern half of China on three different scales and how tree cover change is linked to topography and anthropogenic pressure. Though, our results show an increase in tree cover in China, this study emphasizes the importance of incorporating anthropogenic factors together with biodiversity protection into the reforestation and afforestation programs in the future.

  13. Recent tree cover increases in eastern China linked to low, declining human pressure, steep topography, and climatic conditions favoring tree growth.

    Science.gov (United States)

    Nüchel, Jonas; Svenning, Jens-Christian

    2017-01-01

    Globally, the extent of forest continues to decline, however, some countries have increased their forest extent in recent years. China is one of these countries and has managed to increase their tree cover through huge reforestation and afforestation programs during recent decades as well as land abandonment dynamics. This study investigates tree cover change in the eastern half of China between 2000 and 2010 on three different scales, using random forest modeling of remote sensing data for tree cover in relation to environmental and anthropogenic predictor variables. Our results show that between the years 2000 and 2010 2,667,875 km2 experienced an increase in tree cover while 1,854,900 km2 experienced a decline in tree cover. The area experiencing ≥10% increase in tree cover is almost twice as large as the area with ≥10% drop in tree cover. There is a clear relation between topography and tree cover change with steeper and mid-elevation areas having a larger response on tree cover increase than other areas. Furthermore, human influence, change in population density, and actual evapotranspiration are also important factors in explaining where tree cover has changed. This study adds to the understanding of tree cover change in China, as it has focus on the entire eastern half of China on three different scales and how tree cover change is linked to topography and anthropogenic pressure. Though, our results show an increase in tree cover in China, this study emphasizes the importance of incorporating anthropogenic factors together with biodiversity protection into the reforestation and afforestation programs in the future.

  14. Aspen Forest Cover by Stratum/Plot (SNF)

    Data.gov (United States)

    National Aeronautics and Space Administration — Average percent coverage and standard deviation of each canopy stratum from subplots at each aspen site during the SNF study in the Superior National Forest, Minnesota

  15. Technical note: Toward a near-real time forest monitoring system

    Directory of Open Access Journals (Sweden)

    Jean-François Mas

    2016-11-01

    Full Text Available In the last decades, Mexico has experienced important forest loss and degradation processes in both temperate and tropical forests (Mas et al., 2004; Velázquez et al., 2010. According to FAO (2010, deforestation rates in Mexico were 0.5% (354 000 ha/year during the period 1990-2000, and 0.2% (155 000 ha/year in 2005-2010. Wildfires, urbanization, excessive logging, the extension of areas dedicated to agriculture and livestock raising are the main causes of this phenomenon. The most important consequences of the loss of forest cover include the reduction in the environmental assets and services provided by ecosystems, global warming, alteration of biogeochemical and hydrological cycles, soil degradation and habitat loss (Velázquez et al., 2010.

  16. Michigan's forests 2004

    Science.gov (United States)

    Scott A. Pugh; Mark H. Hansen; Lawrence D. Pedersen; Douglas C. Heym; Brett J. Butler; Susan J. Crocker; Dacia Meneguzzo; Charles H. Perry; David E. Haugen; Christopher Woodall; Ed Jepsen

    2009-01-01

    The first annual inventory of Michigan's forests, completed in 2004, covers more than 19.3 million acres of forest land. The data in this report are based on visits to 10,355 forested plots from 2000 to 2004. In addition to detailed information on forest attributes, this report includes data on forest health, biomass, land-use change, and timber-product outputs....

  17. Forest Health Detectives

    Science.gov (United States)

    Bal, Tara L.

    2014-01-01

    "Forest health" is an important concept often not covered in tree, forest, insect, or fungal ecology and biology. With minimal, inexpensive equipment, students can investigate and conduct their own forest health survey to assess the percentage of trees with natural or artificial wounds or stress. Insects and diseases in the forest are…

  18. Unexpectedly large impact of forest management and grazing on global vegetation biomass

    Science.gov (United States)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S.; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-01

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  19. Unexpectedly large impact of forest management and grazing on global vegetation biomass.

    Science.gov (United States)

    Erb, Karl-Heinz; Kastner, Thomas; Plutzar, Christoph; Bais, Anna Liza S; Carvalhais, Nuno; Fetzel, Tamara; Gingrich, Simone; Haberl, Helmut; Lauk, Christian; Niedertscheider, Maria; Pongratz, Julia; Thurner, Martin; Luyssaert, Sebastiaan

    2018-01-04

    Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.

  20. Hydrometric, Hydrochemical, and Hydrogeophysical Runoff Characterization Across Multiple Land Covers in the Agua Salud Project, Panama

    Science.gov (United States)

    Litt, Guy Finley

    As the Panama Canal Authority faces sensitivity to water shortages, managing water resources becomes crucial for the global shipping industry's security. These studies address knowledge gaps in tropical water resources to aid hydrological model development and validation. Field-based hydrological investigations in the Agua Salud Project within the Panama Canal Watershed employed multiple tools across a variety of land covers to investigate hydrological processes. Geochemical tracers informed where storm runoff in a stream comes from and identified electrical conductivity (EC) as an economical, high sample frequency tracer during small storms. EC-based hydrograph separation coupled with hydrograph recession rate analyses identified shallow and deep groundwater storage-discharge relationships that varied by season and land cover. A series of plot-scale electrical resistivity imaging geophysical experiments coupled with rainfall simulation characterized subsurface flow pathway behavior and quantified respectively increasing infiltration rates across pasture, 10 year old secondary succession forest, teak (tectona grandis), and 30 year old secondary succession forest land covers. Additional soil water, groundwater, and geochemical studies informed conceptual model development in subsurface flow pathways and groundwater, and identified future research needs.

  1. Impacts of climate change on Ontario's forests. Forest research information paper number 143

    International Nuclear Information System (INIS)

    Buse, L.J.; Colombo, S.J.

    1998-01-01

    Reviews literature concerning the effects of global climate change on forest plants and communities, and provides opinions on the potential impacts that climate change may have on Ontario forests. Sections of the review discuss the following: The climate of Ontario in the 21st century as predicted by climate models; forest hydrology in relation to climate change; insects and climate change; impacts on fungi in the forest ecosystem; impacts on forest fires and their management; plant physiological responses; genetic implications of climate change; forest vegetation dynamics; the use of models in global climate change studies; and forest management responses to climate change

  2. Modelling Vulnerability and Range Shifts in Ant Communities Responding to Future Global Warming in Temperate Forests.

    Science.gov (United States)

    Kwon, Tae-Sung; Li, Fengqing; Kim, Sung-Soo; Chun, Jung Hwa; Park, Young-Seuk

    2016-01-01

    Global warming is likely leading to species' distributional shifts, resulting in changes in local community compositions and diversity patterns. In this study, we applied species distribution models to evaluate the potential impacts of temperature increase on ant communities in Korean temperate forests, by testing hypotheses that 1) the risk of extinction of forest ant species would increase over time, and 2) the changes in species distribution ranges could drive upward movements of ant communities and further alter patterns of species richness. We sampled ant communities at 335 evenly distributed sites across South Korea and modelled the future distribution range for each species using generalized additive models. To account for spatial autocorrelation, autocovariate regressions were conducted prior to generalized additive models. Among 29 common ant species, 12 species were estimated to shrink their suitable geographic areas, whereas five species would benefit from future global warming. Species richness was highest at low altitudes in the current period, and it was projected to be highest at the mid-altitudes in the 2080s, resulting in an upward movement of 4.9 m yr-1. This altered the altitudinal pattern of species richness from a monotonic-decrease curve (common in temperate regions) to a bell-shaped curve (common in tropical regions). Overall, ant communities in temperate forests are vulnerable to the on-going global warming and their altitudinal movements are similar to other faunal communities.

  3. Opposing effects of fire severity on climate feedbacks in Siberian larch forests

    Science.gov (United States)

    Loranty, M. M.; Alexander, H. D.; Natali, S.; Kropp, H.; Mack, M. C.; Bunn, A. G.; Davydov, S. P.; Erb, A.; Kholodov, A. L.; Schaaf, C.; Wang, Z.; Zimov, N.; Zimov, S. A.

    2017-12-01

    Boreal larch forests in northeastern Siberia comprise nearly 25% of the continuous permafrost zone. Structural and functional changes in these ecosystems will have important climate feedbacks at regional and global scales. Like boreal ecosystems in North America, fire is an important determinant of landscape scale forest distribution, and fire regimes are intensifying as climate warms. In Siberian larch forests are dominated by a single tree species, and there is evidence that fire severity influences post-fire forest density via impacts on seedling establishment. The extent to which these effects occur, or persist, and the associated climate feedbacks are not well quantified. In this study we use forest stand inventories, in situ observations, and satellite remote sensing to examine: 1) variation in forest density within and between fire scars, and 2) changes in land surface albedo and active layer dynamics associated with forest density variation. At the landscape scale we observed declines in Landsat derived albedo as forests recovered in the first several decades after fire, though canopy cover varied widely within and between individual fire scars. Within an individual mid-successional fire scar ( 75 years) we observed canopy cover ranging from 15-90% with correspondingly large ranges of albedo during periods of snow cover, and relatively small differences in albedo during the growing season. We found an inverse relationship between canopy density and soil temperature within this fire scar; high-density low-albedo stands had cooler soils and shallower active layers, while low-density stands had warmer soils and deeper active layers. Intensive energy balance measurements at a high- and low- density site show that canopy cover alters the magnitude and timing of ground heat fluxes that affect active layer properties. Our results show that fire impacts on stand structure in Siberian larch forests affect land surface albedo and active layer dynamics in ways that

  4. Can cover data be used as a surrogate for seedling counts in regeneration stocking evaluations in northern hardwood forests?

    Science.gov (United States)

    Todd E. Ristau; Susan L. Stout

    2014-01-01

    Assessment of regeneration can be time-consuming and costly. Often, foresters look for ways to minimize the cost of doing inventories. One potential method to reduce time required on a plot is use of percent cover data rather than seedling count data to determine stocking. Robust linear regression analysis was used in this report to predict seedling count data from...

  5. EnviroAtlas - New York, NY - 15m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  6. EnviroAtlas - New York, NY - 51m Riparian Buffer Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is forested. In this community, forest is defined as Trees & Forest. There is a...

  7. Forest restoration, biodiversity and ecosystem functioning

    Science.gov (United States)

    2011-01-01

    Globally, forests cover nearly one third of the land area and they contain over 80% of terrestrial biodiversity. Both the extent and quality of forest habitat continue to decrease and the associated loss of biodiversity jeopardizes forest ecosystem functioning and the ability of forests to provide ecosystem services. In the light of the increasing population pressure, it is of major importance not only to conserve, but also to restore forest ecosystems. Ecological restoration has recently started to adopt insights from the biodiversity-ecosystem functioning (BEF) perspective. Central is the focus on restoring the relation between biodiversity and ecosystem functioning. Here we provide an overview of important considerations related to forest restoration that can be inferred from this BEF-perspective. Restoring multiple forest functions requires multiple species. It is highly unlikely that species-poor plantations, which may be optimal for above-ground biomass production, will outperform species diverse assemblages for a combination of functions, including overall carbon storage and control over water and nutrient flows. Restoring stable forest functions also requires multiple species. In particular in the light of global climatic change scenarios, which predict more frequent extreme disturbances and climatic events, it is important to incorporate insights from the relation between biodiversity and stability of ecosystem functioning into forest restoration projects. Rather than focussing on species per se, focussing on functional diversity of tree species assemblages seems appropriate when selecting tree species for restoration. Finally, also plant genetic diversity and above - below-ground linkages should be considered during the restoration process, as these likely have prominent but until now poorly understood effects at the level of the ecosystem. The BEF-approach provides a useful framework to evaluate forest restoration in an ecosystem functioning context, but

  8. Building a Continental Scale Land Cover Monitoring Framework for Australia

    Science.gov (United States)

    Thankappan, Medhavy; Lymburner, Leo; Tan, Peter; McIntyre, Alexis; Curnow, Steven; Lewis, Adam

    2012-04-01

    Land cover information is critical for national reporting and decision making in Australia. A review of information requirements for reporting on national environmental indicators identified the need for consistent land cover information to be compared against a baseline. A Dynamic Land Cover Dataset (DLCD) for Australia has been developed by Geoscience Australia and the Australian Bureau of Agriculture and Resource Economics and Sciences (ABARES) recently, to provide a comprehensive and consistent land cover information baseline to enable monitoring and reporting for sustainable farming practices, water resource management, soil erosion, and forests at national and regional scales. The DLCD was produced from the analysis of Enhanced Vegetation Index (EVI) data at 250-metre resolution derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from 2000 to 2008. The EVI time series data for each pixel was modelled as 12 coefficients based on the statistical, phenological and seasonal characteristics. The time series were then clustered in coefficients spaces and labelled using ancillary information on vegetation and land use at the catchment scale. The accuracy of the DLCD was assessed using field survey data over 25,000 locations provided by vegetation and land management agencies in State and Territory jurisdictions, and by ABARES. The DLCD is seen as the first in a series of steps to build a framework for national land cover monitoring in Australia. A robust methodology to provide annual updates to the DLCD is currently being developed at Geoscience Australia. There is also a growing demand from the user community for land cover information at better spatial resolution than currently available through the DLCD. Global land cover mapping initiatives that rely on Earth observation data offer many opportunities for national and international programs to work in concert and deliver better outcomes by streamlining efforts on development and

  9. Land use/cover disturbance due to tourism in Jeseníky Mountain, Czech Republic: A remote sensing and GIS based approach

    Directory of Open Access Journals (Sweden)

    Mukesh Singh Boori

    2015-06-01

    Full Text Available The Jeseníky Mountains tourism in Czech Republic is unique for its floristic richness. This is caused mainly by the altitude division and polymorphism of the landscape, climate and soil structure. This study assesses the impacts of tourism on the land cover in the Jeseníky Mountain region by comparing multi-temporal Landsat imageries (1991, 2001 and 2013 to describe the rate and extent of land-cover changes. This was achieved through spectral classification of different land cover classes and by assessing the change in forest; settlements; pasture and agriculture in relation to increasing distances (5, 10 and 15 km from three tourism sites with the help of ArcGIS software. The results indicate that the area was deforested (11.13% from 1991 to 2001 than experienced forest regrowth (6.71% from 2001 to 2013. In the first decade pasture and agriculture areas increased and then in next decade decreased. The influence of tourism facilities on land cover is also variable. Around each of the tourism site sampled, there was a general trend of forest removal decreasing as the distance from each village increased, which indicates tourism does have a negative impact on forests. However there was an opposite trend from 2001 to 2013 that indicates conservation area. The interplay among global (tourism, climate, regional (national policies, large-river management and local (construction and agriculture, energy and water sources to support the tourism industry factors drives a distinctive but complex pattern of land-use and land-cover disturbance.

  10. Vulnerability of Forests in India: A National Scale Assessment.

    Science.gov (United States)

    Sharma, Jagmohan; Upgupta, Sujata; Jayaraman, Mathangi; Chaturvedi, Rajiv Kumar; Bala, Govindswamy; Ravindranath, N H

    2017-09-01

    Forests are subjected to stress from climatic and non-climatic sources. In this study, we have reported the results of inherent, as well as climate change driven vulnerability assessments for Indian forests. To assess inherent vulnerability of forests under current climate, we have used four indicators, namely biological richness, disturbance index, canopy cover, and slope. The assessment is presented as spatial profile of inherent vulnerability in low, medium, high and very high vulnerability classes. Fourty percent forest grid points in India show high or very high inherent vulnerability. Plantation forests show higher inherent vulnerability than natural forests. We assess the climate change driven vulnerability by combining the results of inherent vulnerability assessment with the climate change impact projections simulated by the Integrated Biosphere Simulator dynamic global vegetation model. While 46% forest grid points show high, very high, or extremely high vulnerability under future climate in the short term (2030s) under both representative concentration pathways 4.5 and 8.5, such grid points are 49 and 54%, respectively, in the long term (2080s). Generally, forests in the higher rainfall zones show lower vulnerability as compared to drier forests under future climate. Minimizing anthropogenic disturbance and conserving biodiversity can potentially reduce forest vulnerability under climate change. For disturbed forests and plantations, adaptive management aimed at forest restoration is necessary to build long-term resilience.

  11. Forest Management

    Science.gov (United States)

    S. Hummel; K. L. O' Hara

    2008-01-01

    Global variation in forests and in human cultures means that a single method for managing forests is not possible. However, forest management everywhere shares some common principles because it is rooted in physical and biological sciences like chemistry and genetics. Ecological forest management is an approach that combines an understanding of universal processes with...

  12. Streamflow variation of forest covered catchments

    Science.gov (United States)

    Gribovszki, Z.; Kalicz, P.; Kucsara, M.

    2003-04-01

    Rainfall concentration and runoff, otherwise rainfall-runoff processes, which cause river water discharge fluctuation, is one of the basic questions of hydrology. Several social-economy demands have a strong connection with small or bigger rivers from the point of view both quantity and quality of the water. Gratification or consideration of these demands is complicated substantially that we have still poor knowledge about our stream-flow regime. Water resources mainly stem from upper watersheds. These upper watersheds are the basis of the water concentration process; therefore we have to improve our knowledge about hydrological processes coming up in these territories. In this article we present runoff regime of two small catchments on the basis of one year data. Both catchments have a similar magnitude 0.6 and 0.9 km^2. We have been analyzed in detail some hydrological elements: features of rainfall, discharge, rainfall induced flooding waves and basic discharge in rainless periods. Variances of these parameters have been analyzed in relation to catchments surface, vegetation coverage and forest management. Result data set well enforce our knowledge about small catchments hydrological processes. On the basis of these fundamentals we can plan more established the management of these lands (forest practices, civil engineering works, and usage of natural water resources).

  13. Analysis of Expectations of Forest Products Industry from Forest Industry Engineering Education

    OpenAIRE

    GEDİK, Tarık; ÇİL, Muhammet; SEVİM KORKUT, Derya; CEMİL AKYÜZ, Kadri; KOŞAR, Gökşen; BEKAR, İlter

    2016-01-01

    Forest industry engineers, representing the qualified labor within the forest products industry, choose their field of study either deliberately or by chance. This study explores the main skill sets of forest industry engineers required by forest products industry. As representatives of forest industry owner of forest products companies were surveyed about their views on the qualifications a forest industry engineer must have.This study covered total 7111 companies registered to TOBB as a for...

  14. Identifying grain-size dependent errors on global forest area estimates and carbon studies

    Science.gov (United States)

    Daolan Zheng; Linda S. Heath; Mark J. Ducey

    2008-01-01

    Satellite-derived coarse-resolution data are typically used for conducting global analyses. But the forest areas estimated from coarse-resolution maps (e.g., 1 km) inevitably differ from a corresponding fine-resolution map (such as a 30-m map) that would be closer to ground truth. A better understanding of changes in grain size on area estimation will improve our...

  15. Land cover in Upper Egypt assessed using regional and global land cover products derived from MODIS imagery.

    Science.gov (United States)

    Fuller, Douglas O; Parenti, Michael S; Gad, Adel M; Beier, John C

    2012-01-01

    Irrigation along the Nile River has resulted in dramatic changes in the biophysical environment of Upper Egypt. In this study we used a combination of MODIS 250 m NDVI data and Landsat imagery to identify areas that changed from 2001-2008 as a result of irrigation and water-level fluctuations in the Nile River and nearby water bodies. We used two different methods of time series analysis -- principal components (PCA) and harmonic decomposition (HD), applied to the MODIS 250 m NDVI images to derive simple three-class land cover maps and then assessed their accuracy using a set of reference polygons derived from 30 m Landsat 5 and 7 imagery. We analyzed our MODIS 250 m maps against a new MODIS global land cover product (MOD12Q1 collection 5) to assess whether regionally specific mapping approaches are superior to a standard global product. Results showed that the accuracy of the PCA-based product was greater than the accuracy of either the HD or MOD12Q1 products for the years 2001, 2003, and 2008. However, the accuracy of the PCA product was only slightly better than the MOD12Q1 for 2001 and 2003. Overall, the results suggest that our PCA-based approach produces a high level of user and producer accuracies, although the MOD12Q1 product also showed consistently high accuracy. Overlay of 2001-2008 PCA-based maps showed a net increase of 12 129 ha of irrigated vegetation, with the largest increase found from 2006-2008 around the Districts of Edfu and Kom Ombo. This result was unexpected in light of ambitious government plans to develop 336 000 ha of irrigated agriculture around the Toshka Lakes.

  16. The Role of Forests in Regulating the River Flow Regime of Large Basins of the World

    Science.gov (United States)

    Salazar, J. F.; Villegas, J. C.; Mercado-Bettin, D. A.; Rodríguez, E.

    2017-12-01

    Many natural and social phenomena depend on river flow regimes that are being altered by global change. Understanding the mechanisms behind such alterations is crucial for predicting river flow regimes in a changing environment. Here we explore potential linkages between the presence of forests and the capacity of river basins for regulating river flows. Regulation is defined here as the capacity of river basins to attenuate the amplitude of the river flow regime, that is to reduce the difference between high and low flows. We first use scaling theory to show how scaling properties of observed river flows can be used to classify river basins as regulated or unregulated. This parsimonious classification is based on a physical interpretation of the scaling properties (particularly the scaling exponents) that is novel (most previous studies have focused on the interpretation of the scaling exponents for floods only), and widely-applicable to different basins (the only assumption is that river flows in a given river basin exhibit scaling properties through well-known power laws). Then we show how this scaling framework can be used to explore global-change-induced temporal variations in the regulation capacity of river basins. Finally, we propose a conceptual hypothesis (the "Forest reservoir concept") to explain how large-scale forests can exert important effects on the long-term water balance partitioning and regulation capacity of large basins of the world. Our quantitative results are based on data analysis (river flows and land cover features) from 22 large basins of the world, with emphasis in the Amazon river and its main tributaries. Collectively, our findings support the hypothesis that forest cover enhances the capacity of large river basins to maintain relatively high mean river flows, as well as to regulate (ameliorate) extreme river flows. Advancing towards this quantitative understanding of the relation between forest cover and river flow regimes is

  17. Effects of bryophyte and lichen cover on permafrost soil temperature at large scale

    Directory of Open Access Journals (Sweden)

    P. Porada

    2016-09-01

    Full Text Available Bryophyte and lichen cover on the forest floor at high latitudes exerts an insulating effect on the ground. In this way, the cover decreases mean annual soil temperature and can protect permafrost soil. Climate change, however, may change bryophyte and lichen cover, with effects on the permafrost state and related carbon balance. It is, therefore, crucial to predict how the bryophyte and lichen cover will react to environmental change at the global scale. To date, current global land surface models contain only empirical representations of the bryophyte and lichen cover, which makes it impractical to predict the future state and function of bryophytes and lichens. For this reason, we integrate a process-based model of bryophyte and lichen growth into the global land surface model JSBACH (Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg. The model simulates bryophyte and lichen cover on upland sites. Wetlands are not included. We take into account the dynamic nature of the thermal properties of the bryophyte and lichen cover and their relation to environmental factors. Subsequently, we compare simulations with and without bryophyte and lichen cover to quantify the insulating effect of the organisms on the soil. We find an average cooling effect of the bryophyte and lichen cover of 2.7 K on temperature in the topsoil for the region north of 50° N under the current climate. Locally, a cooling of up to 5.7 K may be reached. Moreover, we show that using a simple, empirical representation of the bryophyte and lichen cover without dynamic properties only results in an average cooling of around 0.5 K. This suggests that (a bryophytes and lichens have a significant impact on soil temperature in high-latitude ecosystems and (b a process-based description of their thermal properties is necessary for a realistic representation of the cooling effect. The advanced land surface scheme, including a dynamic bryophyte and lichen model, will

  18. Optimizing continuous cover management of boreal forest when timber prices and tree growth are stochastic

    Directory of Open Access Journals (Sweden)

    Timo Pukkala

    2015-03-01

    Full Text Available Background Decisions on forest management are made under risk and uncertainty because the stand development cannot be predicted exactly and future timber prices are unknown. Deterministic calculations may lead to biased advice on optimal forest management. The study optimized continuous cover management of boreal forest in a situation where tree growth, regeneration, and timber prices include uncertainty. Methods Both anticipatory and adaptive optimization approaches were used. The adaptive approach optimized the reservation price function instead of fixed cutting years. The future prices of different timber assortments were described by cross-correlated auto-regressive models. The high variation around ingrowth model was simulated using a model that describes the cross- and autocorrelations of the regeneration results of different species and years. Tree growth was predicted with individual tree models, the predictions of which were adjusted on the basis of a climate-induced growth trend, which was stochastic. Residuals of the deterministic diameter growth model were also simulated. They consisted of random tree factors and cross- and autocorrelated temporal terms. Results Of the analyzed factors, timber price caused most uncertainty in the calculation of the net present value of a certain management schedule. Ingrowth and climate trend were less significant sources of risk and uncertainty than tree growth. Stochastic anticipatory optimization led to more diverse post-cutting stand structures than obtained in deterministic optimization. Cutting interval was shorter when risk and uncertainty were included in the analyses. Conclusions Adaptive optimization and management led to 6%–14% higher net present values than obtained in management that was based on anticipatory optimization. Increasing risk aversion of the forest landowner led to earlier cuttings in a mature stand. The effect of risk attitude on optimization results was small.

  19. Habitats and Natural Areas--Some Applications of the 1995-96 Forest Survey of Arkansas on the Conservation of Biodiversity in Arkansas

    Science.gov (United States)

    Douglas Zollner

    2001-01-01

    The conservation status and trend of rare species groups should be better in landscapes with more forest cover due to the presence of quantitatively more habitat, and in the case of aquatic species,qualitatively better habitat. Arkansas provides habitat for 97 species of plants and animals considered critically imperiled globally or imperiled globally.T hese 97 species...

  20. U.S. forest products module : a technical document supporting the Forest Service 2010 RPA Assessment

    Science.gov (United States)

    Peter J. Ince; Andrew D. Kramp; Kenneth E. Skog; Henry N. Spelter; David N. Wear

    2011-01-01

    The U.S. Forest Products Module (USFPM) is a partial market equilibrium model of the U.S. forest sector that operates within the Global Forest Products Model (GFPM) to provide long-range timber market projections in relation to global economic scenarios. USFPM was designed specifically for the 2010 RPA forest assessment, but it is being used also in other applications...

  1. Land cover and land use changes of native forests categories: the case of the Atencio District, Argentina, in the period from 1984 to 2013

    Directory of Open Access Journals (Sweden)

    Julián A. Sabattini

    2015-08-01

    Full Text Available Aim of study: The aim of this work was to assess land use and land cover change in Distrito Atencio, near Feliciano, in the province of Entre Ríos, Argentina, from 1984 to 2013 and to make a projection of possible changes in the native forests of Espinal Phytogeographic Region. Area of study: Espinal Ecorregion, Atencio (Argentina Material and Methods: Ten LANDSAT 5-TM and LANDSAT 8-OLI satellite images were used and two classes were distinguished by vectorization: NF-Native Forests and OL-Other Lands. Besides, four categories were defined by supervised classification: CNF-Closed Native Forest, ONF-Open Native Forest, RF-Riverside Forest with Shrub Jungle, and ONG-Open Native Grassland or Savanna. Main results: It was estimated NF as being 76,619 ha and 59,994 ha for years 1984 and 2013 respectively, which represented a 21.69% reduction over a period of 30 years. In 1984, 32.93% of the district surface was occup∫ied by CNF; the same proportion was covered by ONF; and ONG followed with 16.361 ha (20.66%. In 2013, contrarily, CNF was reduced by 13.67%. Land use change was noted to be directed towards the central eastern region. By 2015, OL are expected to keep 88% of their surface, while ONG areas might suffer a 28.80% and 41.25% reduction for years 2025 and 2050 respectively. Research highlights: District’s areas with higher incidence on changes due to ecosystem fragmentation processes were identified. It is hoped that this study may contribute to settling native forests protection and recovery areas.

  2. Using soundscapes to detect variable degrees of human influence on tropical forests in Papua New Guinea.

    Science.gov (United States)

    Burivalova, Zuzana; Towsey, Michael; Boucher, Tim; Truskinger, Anthony; Apelis, Cosmas; Roe, Paul; Game, Edward T

    2018-02-01

    There is global concern about tropical forest degradation, in part, because of the associated loss of biodiversity. Communities and indigenous people play a fundamental role in tropical forest management and are often efficient at preventing forest degradation. However, monitoring changes in biodiversity due to degradation, especially at a scale appropriate to local tropical forest management, is plagued by difficulties, including the need for expert training, inconsistencies across observers, and lack of baseline or reference data. We used a new biodiversity remote-sensing technology, the recording of soundscapes, to test whether the acoustic saturation of a tropical forest in Papua New Guinea decreases as land-use intensity by the communities that manage the forest increases. We sampled soundscapes continuously for 24 hours at 34 sites in different land-use zones of 3 communities. Land-use zones where forest cover was fully retained had significantly higher soundscape saturation during peak acoustic activity times (i.e., dawn and dusk chorus) compared with land-use types with fragmented forest cover. We conclude that, in Papua New Guinea, the relatively simple measure of soundscape saturation may provide a cheap, objective, reproducible, and effective tool for monitoring tropical forest deviation from an intact state, particularly if it is used to detect the presence of intact dawn and dusk choruses. © 2017 The Authors. Conservation Biology published by Wiley Periodicals, Inc. on behalf of Society for Conservation Biology.

  3. Mapping Distinct Forest Types Improves Overall Forest Identification Based on Multi-Spectral Landsat Imagery for Myanmar’s Tanintharyi Region

    Directory of Open Access Journals (Sweden)

    Grant Connette

    2016-10-01

    Full Text Available We investigated the use of multi-spectral Landsat OLI imagery for delineating mangrove, lowland evergreen, upland evergreen and mixed deciduous forest types in Myanmar’s Tanintharyi Region and estimated the extent of degraded forest for each unique forest type. We mapped a total of 16 natural and human land use classes using both a Random Forest algorithm and a multivariate Gaussian model while considering scenarios with all natural forest classes grouped into a single intact or degraded category. Overall, classification accuracy increased for the multivariate Gaussian model with the partitioning of intact and degraded forest into separate forest cover classes but slightly decreased based on the Random Forest classifier. Natural forest cover was estimated to be 80.7% of total area in Tanintharyi. The most prevalent forest types are upland evergreen forest (42.3% of area and lowland evergreen forest (21.6%. However, while just 27.1% of upland evergreen forest was classified as degraded (on the basis of canopy cover <80%, 66.0% of mangrove forest and 47.5% of the region’s biologically-rich lowland evergreen forest were classified as degraded. This information on the current status of Tanintharyi’s unique forest ecosystems and patterns of human land use is critical to effective conservation strategies and land-use planning.

  4. The carbon cycle and global warming

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Five land-use-based approaches can be used to slow the buildup of CO 2 in the atmosphere: slowing or stopping the loss of existing forests, thus preserving current carbon reservoirs; adding to the planet's vegetative cover through reforestation or other means, thus enlarging living terrestrial carbon reservoirs; increasing the carbon stored in nonliving carbon reservoirs such as agricultural soils; increasing the carbon stored in artificial reservoirs, including timber products; and substituting sustainable biomass energy sources for fossil fuel consumption, thus reducing energy-related carbon emissions. These approaches are all based on the same basic premise: adding to the planet's net carbon stores in vegetative cover or soil, or preventing any net loss, will help moderate global warming by keeping atmospheric CO 2 levels lower than they would otherwise be. Because biotic policy options appear capable of contributing significantly to the mitigation of global warming while also furthering many other public policy objectives, their role deserves careful consideration on a country-by-country basis

  5. Landsat-Based Land Use Change Assessment in the Brazilian Atlantic Forest: Forest Transition and Sugarcane Expansion

    Directory of Open Access Journals (Sweden)

    Alindomar Lacerda Silva

    2018-06-01

    Full Text Available In this study, we examine the hypothesis of a forest transition in an area of early expansion of the agricultural frontier over the Brazilian Atlantic Forest in the south-central part of the State of São Paulo. Large scale land use/cover changes were assessed by integrating Landsat imagery, census data, and landscape metrics. Two Landsat multi-temporal datasets were assembled for two consecutive periods—1995–2006 and 2006–2013—to assess changes in forest cover according to four classes: (i transition from non-forest cover to planted forest (NF-PF; (ii transition from non-forest to secondary (successional forest (NF-SF; (iii conservation of planted forest (PF and (iv conservation of forest remnants (REM. Data from the two most recent, 1995/96 and 2006 agricultural censuses were analyzed to single out major changes in agricultural production. The total area of forest cover, including primary, secondary, and planted forest, increased 30% from 1995 to 2013, whereas forest planted in non-forest areas (NF-PF and conservation of planted forest (PF accounted for 14.1% and 19.6%, respectively, of the total forest area by 2013. Such results showed a relatively important forest transition that would be explained mostly by forest plantations though. Analysis of the landscape metrics indicated an increase in connectivity among forest fragments during the period of study, and revealed that nearly half of the forest fragments were located within 50 m from riverbeds, possibly suggesting some level of compliance with environmental laws. Census data showed an increase in both the area and productivity of sugarcane plantations, while pasture and citrus area decreased by a relatively important level, suggesting that sugarcane production has expanded at the expense of these land uses. Both satellite and census data helped to delineate the establishment of two major production systems, the first one dominated by sugarcane plantations approximately located in

  6. Assessment and monitoring of deforestation and forest fragmentation in South Asia since the 1930s

    Science.gov (United States)

    Sudhakar Reddy, C.; Saranya, K. R. L.; Vazeed Pasha, S.; Satish, K. V.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.; Rao, P. V. N.; Krishna Murthy, Y. V. N.

    2018-02-01

    The present study, first of its kind, has analyzed the land cover and investigated the spatial patterns of deforestation and forest fragmentation in South Asian region since the 1930's. This region comprises of eight countries: India, Bangladesh, Bhutan, Nepal, Pakistan, Afghanistan, Sri Lanka and Maldives. In South Asia, agricultural land is predominant constituting 43% of the total geographical area followed by barren land (19.99%) and forests (14.72%). The long-term change analysis using the classified maps of 1930 and 2014 indicated a loss of 29.62% of the forest cover. Higher annual net deforestation rates were observed in the period from 1930-1975 (0.68%) followed by 1975-1985 (0.23%), 1985-1995 (0.12%), 1995-2005 (0.06%) and 2005-2014 (0.04%) for the region. Forest fragmentation had significant spatio-temporal variation across the South Asian countries. In 1930, 88.91% of the South Asian forest was classified as large core forest, 8.18% as edge forest and 1.18% as perforated forest. The large core forest category has decreased significantly in area over last eight decades. The results of the present study are expected to serve as a reference for the evaluation of globally agreed Aichi biodiversity target 5 for South Asian countries. This study will be a valuable basis for developing management strategies and restoration programs as it tracks the spatial changes in deforestation and forest fragmentation.

  7. Deforestation and Forest Fragmentation in South Ecuador since the 1970s – Losing a Hotspot of Biodiversity

    Science.gov (United States)

    Tapia-Armijos, María Fernanda; Homeier, Jürgen; Espinosa, Carlos Iván; Leuschner, Christoph; de la Cruz, Marcelino

    2015-01-01

    Deforestation and fragmentation are major components of global change; both are contributing to the rapid loss of tropical forest area with important implications for ecosystem functioning and biodiversity conservation. The forests of South Ecuador are a biological ‘hotspot’ due to their high diversity and endemism levels. We examined the deforestation and fragmentation patterns in this area of high conservation value using aerial photographs and Aster satellite scenes. The registered annual deforestation rates of 0.75% (1976–1989) and 2.86% (1989–2008) for two consecutive survey periods, the decreasing mean patch size and the increasing isolation of the forest fragments show that the area is under severe threat. Approximately 46% of South Ecuador’s original forest cover had been converted by 2008 into pastures and other anthropogenic land cover types. We found that deforestation is more intense at lower elevations (premontane evergreen forest and shrubland) and that the deforestation front currently moves in upslope direction. Improved awareness of the spatial extent, dynamics and patterns of deforestation and forest fragmentation is urgently needed in biologically diverse areas like South Ecuador. PMID:26332681

  8. Border Lakes land-cover classification

    Science.gov (United States)

    Marvin Bauer; Brian Loeffelholz; Doug. Shinneman

    2009-01-01

    This document contains metadata and description of land-cover classification of approximately 5.1 million acres of land bordering Minnesota, U.S.A. and Ontario, Canada. The classification focused on the separation and identification of specific forest-cover types. Some separation of the nonforest classes also was performed. The classification was derived from multi-...

  9. Temporal change in fragmentation of continental US forests

    Science.gov (United States)

    James D. Wickham; Kurt H. Riitters; Timothy G. Wade; Collin Homer

    2008-01-01

    Changes in forest ecosystem function and condition arise from changes in forest fragmentation. Previous studies estimated forest fragmentation for the continental United States (US). In this study, new temporal land-cover data from the National Land Cover Database (NLCD) were used to estimate changes in forest fragmentation at multiple scales for the continental US....

  10. Securing tropical forest carbon

    DEFF Research Database (Denmark)

    Scharlemann, Jörn P. W.; Kapos, Valerie; Campbell, Alison

    2010-01-01

    Forest loss and degradation in the tropics contribute 6-17% of all greenhouse gas emissions. Protected areas cover 217.2 million ha (19.6%) of the world's humid tropical forests and contain c. 70.3 petagrams of carbon (Pg C) in biomass and soil to 1 m depth. Between 2000 and 2005, we estimate...... that 1.75 million ha of forest were lost from protected areas in humid tropical forests, causing the emission of 0.25-0.33 Pg C. Protected areas lost about half as much carbon as the same area of unprotected forest. We estimate that the reduction of these carbon emissions from ongoing deforestation...... in protected sites in humid tropical forests could be valued at USD 6,200-7,400 million depending on the land use after clearance. This is >1.5 times the estimated spending on protected area management in these regions. Improving management of protected areas to retain forest cover better may be an important...

  11. Land Cover as a Framework For Assessing the Risk of Water Pollution

    Science.gov (United States)

    James D. Wickham; Kurt H. Riitters; Robert V. O' Neill; Kenneth H. Reckhow; Timothy G. Wade; K. Bruce Jones

    2000-01-01

    A survey of numerous field studies shows that nitrogen and phosphorous export coefficients are significantly different across forest, agriculture, and urban land-cover types. We used simulations to estimate the land-cover composition at which there was a significant risk of nutrient loads representative of watersheds without forest cover. The results suggest that at...

  12. Multi-aged Forest: an Optimal Management Strategy for Carbon Sequestration

    Science.gov (United States)

    Yao, L.; Tang, X.; Ma, M.

    2017-12-01

    Disturbances and climatic changes significantly affect forest ecosystem productivity, water use efficiency (WUE) and carbon (C) flux dynamics. A deep understanding of terrestrial feedbacks to such effects and recovery mechanisms in forests across contrasting climatic regimes is essential to predict future regional/global C and water budgets, which are also closely related to the potential forest management decisions. However, the resilience of multi-aged and even-aged forests to disturbances has been debated for more than 60 years because of technical measurement constraints. Here we evaluated 62 site-years of eddy covariance measurements of net ecosystem production (NEP), evapotranspiration (ET), the estimates of gross primary productivity (GPP), ecosystem respiration (Re) and ecosystem-level WUE, as well as the relationships with environmental controls in three chronosequences of multi- and even-aged coniferous forests covering the Mediterranean, temperate and boreal regions. Age-specific dynamics in multi-year mean annual NEP and WUE revealed that forest age is a key variable that determines the sign and magnitude of recovering forest C source-sink strength from disturbances. However, the trends of annual NEP and WUE across succession stages between two stand structures differed substantially. The successional patterns of NEP exhibited an inverted-U trend with age at the two even-aged chronosequences, whereas NEP of the multi-aged chronosequence increased steadily through time. Meanwhile, site-level WUE of even-aged forests decreased gradually from young to mature, whereas an apparent increase occurred for the same forest age in multi-aged stands. Compared with even-aged forests, multi-aged forests sequestered more CO2 with forest age and maintained a relatively higher WUE in the later succession periods. With regard to the available flux measurements in this study, these behaviors are independent of tree species, stand ages and climate conditions . We also

  13. Remote Sensing of Forest Loss and Human Land Use to Predict Biodiversity Impacts in Myanmar

    Science.gov (United States)

    Connette, G.; Huang, Q.; Leimgruber, P.; Songer, M.

    2017-12-01

    Myanmar's ongoing transition from military rule towards a democratic government has largely ended decades of economic isolation. The resulting expansion of foreign investment, infrastructure development, and natural resource extraction has led to high rates of deforestation and the concurrent loss of critical wildlife habitat. To identify and mitigate the impacts of rapid land use change on Myanmar's globally-unique biodiversity, researchers at Smithsonian's Conservation Biology Institute have used moderate-resolution satellite imagery to map forest cover change at the national scale, while performing regional- or local-scale analyses to identify ecologically-distinct forest types. At the national scale, forest was lost at a rate of 0.55% annually from 2002-2014. Deforestation was more pronounced in Myanmar's closed-canopy forests (>80% cover), which experienced an annual rate of forest loss of 0.95%. Studies at regional and local scales show that ecologically-distinct forest types vary considerably in both geographic extent and risk of conversion to human land use. For instance, local deforestation rates around a proposed national park in Myanmar's Tanintharyi Region were 7.83% annually and have been accelerating. Recent integration of such results into wildlife habitat mapping and national conservation planning can play an important role in ensuring that future development in Myanmar is both informed and sustainable.

  14. Global power production scenarios to 2100 and the dual role of forests: accelerated climate damage or regulating and provisioning ecosystem services?

    DEFF Research Database (Denmark)

    Callesen, Ingeborg

    The worlds' electrical power production is depending on the current energy infrastructure, and future investments in new power supply facilities using renewable and non-renewable energy sources. Continued growth in power production in the 21st century will cause global environmental change (GEC......). GEC with climate change as an important driver will affect the environment and the economy in multiple ways that can be summarized as losses of biodiversity and changing ecosystem services (ES), but with very diverse temporal and spatial impacts. In a simple global growth model for power production......, including non-renewable and renewable energy sources, the potential role of forest biomass is investigated. The demands for forest ecosystem services imposed by the global power production are assessed in the present study. Three global power supply scenarios to 2050 with different emphasis...

  15. The German contribution to the global forest policy. Analysis and evaluation of the engagement for biodiversity conservation and mitigation measures climatic change; Der deutsche Beitrag zur globalen Waldpolitik. Analyse und Bewertung des Engagements zum Erhalt der Biodiversitaet und zur Eindaemmung des Klimawandels

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Anika

    2013-07-01

    The booklet on the German contribution to the global forest policy covers with analysis and evaluation of the engagement for biodiversity conservation and mitigation measures climatic change. The analysis is based on expert interviews; the theoretical background is the conception on society by Niklas Lehmann. The evaluation includes the issues of allocation of public goods, the improvement of public participation, and improvement of financing resources.

  16. Ecosystem services from converted land: the importance of tree cover in Amazonian pastures

    Science.gov (United States)

    Barrett, Kirsten; Valentim, Judson; Turner, B. L.

    2013-01-01

    Deforestation is responsible for a substantial fraction of global carbon emissions and changes in surface energy budgets that affect climate. Deforestation losses include wildlife and human habitat, and myriad forest products on which rural and urban societies depend for food, fiber, fuel, fresh water, medicine, and recreation. Ecosystem services gained in the transition from forests to pasture and croplands, however, are often ignored in assessments of the impact of land cover change. The role of converted lands in tropical areas in terms of carbon uptake and storage is largely unknown. Pastures represent the fastest-growing form of converted land use in the tropics, even in some areas of rapid urban expansion. Tree biomass stored in these areas spans a broad range, depending on tree cover. Trees in pasture increase carbon storage, provide shade for cattle, and increase productivity of forage material. As a result, increasing fractional tree cover can provide benefits land managers as well as important ecosystem services such as reducing conversion pressure on forests adjacent to pastures. This study presents an estimation of fractional tree cover in pasture in a dynamic region on the verge of large-scale land use change. An appropriate sampling interval is established for similar studies, one that balances the need for independent samples of sufficient number to characterize a pasture in terms of fractional tree cover. This information represents a useful policy tool for government organizations and NGOs interested in encouraging ecosystem services on converted lands. Using high spatial resolution remotely sensed imagery, fractional tree cover in pasture is quantified for the municipality of Rio Branco, Brazil. A semivariogram and devolving spatial resolution are employed to determine the coarsest sampling interval that may be used, minimizing effects of spatial autocorrelation. The coarsest sampling interval that minimizes spatial dependence was about 22 m. The

  17. Simulating boreal forest carbon dynamics after stand-replacing fire disturbance: insights from a global process-based vegetation model

    Science.gov (United States)

    Yue, C.; Ciais, P.; Luyssaert, S.; Cadule, P.; Harden, J.; Randerson, J.; Bellassen, V.; Wang, T.; Piao, S.L.; Poulter, B.; Viovy, N.

    2013-01-01

    Stand-replacing fires are the dominant fire type in North American boreal forests. They leave a historical legacy of a mosaic landscape of different aged forest cohorts. This forest age dynamics must be included in vegetation models to accurately quantify the role of fire in the historical and current regional forest carbon balance. The present study adapted the global process-based vegetation model ORCHIDEE to simulate the CO2 emissions from boreal forest fire and the subsequent recovery after a stand-replacing fire; the model represents postfire new cohort establishment, forest stand structure and the self-thinning process. Simulation results are evaluated against observations of three clusters of postfire forest chronosequences in Canada and Alaska. The variables evaluated include: fire carbon emissions, CO2 fluxes (gross primary production, total ecosystem respiration and net ecosystem exchange), leaf area index, and biometric measurements (aboveground biomass carbon, forest floor carbon, woody debris carbon, stand individual density, stand basal area, and mean diameter at breast height). When forced by local climate and the atmospheric CO2 history at each chronosequence site, the model simulations generally match the observed CO2 fluxes and carbon stock data well, with model-measurement mean square root of deviation comparable with the measurement accuracy (for CO2 flux ~100 g C m−2 yr−1, for biomass carbon ~1000 g C m−2 and for soil carbon ~2000 g C m−2). We find that the current postfire forest carbon sink at the evaluation sites, as observed by chronosequence methods, is mainly due to a combination of historical CO2 increase and forest succession. Climate change and variability during this period offsets some of these expected carbon gains. The negative impacts of climate were a likely consequence of increasing water stress caused by significant temperature increases that were not matched by concurrent increases in precipitation. Our simulation

  18. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  19. Global carbon impacts of using forest harvest residues for district heating in Vermont

    International Nuclear Information System (INIS)

    McLain, H.A.

    1998-01-01

    Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels

  20. A Study on PolInSAR Coherence Based Regression Analysis of Forest Biomass (BARKOT Reserve Forest India), Using RADARSAT-2 Datasets

    Science.gov (United States)

    Singh, J.; Kumar, S.; Kushwaha, S. P. S.

    2015-04-01

    Forests cover 30% of the world's land surface, and are home to around 90% of the world's flora and fauna. They serve as one of the world's largest carbon sinks, absorbing 2.4 million tons of CO2 each year and storing billions more in form of biomass. Around 6 million hectares of forest is lost or changed each year and as much as a fifth of global emissions are estimated to come from deforestation. Hence accurate estimation of forest biophysical variables is necessary as it is a key parameter in determination of forest inventories, vegetation modeling and global carbon cycle. SAR Remote sensing technique is capable of providing accurate and reliable information about forest parameters. The present work aims to explore the potential of C-band Radarsat-2 Polarimetric Interferometric Synthetic Aperture Radar (PolinSAR) technique for developing a relationship between complex coherence and forest aboveground biomass (t/ha). In order to attain our objective Radarsat-2 satellite interferometric pair of 4th March 2013(master image) and 28th March 2013(slave image) were acquired for Barkot Reserve Forest, Dehradun, India. Field inventory was done for 30 plots (31.62m x 31.62m) and tree height and stem diameter were procured for each plot which were later utilized in calculation of aboveground biomass(AGB).Work emphasizes on the application of PolinSAR coherence instead of using SAR backscatter which saturates after a certain value of biomass content. Complex coherence values for different polarization channels were computed with the help of polarimetric interferometric coherence matrix. Retrieved complex coherences were investigated individually and then regression analysis was carried with the field estimated aboveground biomass. R2 value of HV+VH complex coherence component was found to be relatively higher than other polarization channel components